1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file provides utilities to convert a loop into a loop with bottom test.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/DomTreeUpdater.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
45 #define DEBUG_TYPE "loop-rotate"
47 STATISTIC(NumRotated
, "Number of loops rotated");
50 /// A simple loop rotation transformation.
52 const unsigned MaxHeaderSize
;
54 const TargetTransformInfo
*TTI
;
58 MemorySSAUpdater
*MSSAU
;
59 const SimplifyQuery
&SQ
;
64 LoopRotate(unsigned MaxHeaderSize
, LoopInfo
*LI
,
65 const TargetTransformInfo
*TTI
, AssumptionCache
*AC
,
66 DominatorTree
*DT
, ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
,
67 const SimplifyQuery
&SQ
, bool RotationOnly
, bool IsUtilMode
)
68 : MaxHeaderSize(MaxHeaderSize
), LI(LI
), TTI(TTI
), AC(AC
), DT(DT
), SE(SE
),
69 MSSAU(MSSAU
), SQ(SQ
), RotationOnly(RotationOnly
),
70 IsUtilMode(IsUtilMode
) {}
71 bool processLoop(Loop
*L
);
74 bool rotateLoop(Loop
*L
, bool SimplifiedLatch
);
75 bool simplifyLoopLatch(Loop
*L
);
77 } // end anonymous namespace
79 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
80 /// previously exist in the map, and the value was inserted.
81 static void InsertNewValueIntoMap(ValueToValueMapTy
&VM
, Value
*K
, Value
*V
) {
82 bool Inserted
= VM
.insert({K
, V
}).second
;
86 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
87 /// old header into the preheader. If there were uses of the values produced by
88 /// these instruction that were outside of the loop, we have to insert PHI nodes
89 /// to merge the two values. Do this now.
90 static void RewriteUsesOfClonedInstructions(BasicBlock
*OrigHeader
,
91 BasicBlock
*OrigPreheader
,
92 ValueToValueMapTy
&ValueMap
,
93 SmallVectorImpl
<PHINode
*> *InsertedPHIs
) {
94 // Remove PHI node entries that are no longer live.
95 BasicBlock::iterator I
, E
= OrigHeader
->end();
96 for (I
= OrigHeader
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
97 PN
->removeIncomingValue(PN
->getBasicBlockIndex(OrigPreheader
));
99 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
101 SSAUpdater
SSA(InsertedPHIs
);
102 for (I
= OrigHeader
->begin(); I
!= E
; ++I
) {
103 Value
*OrigHeaderVal
= &*I
;
105 // If there are no uses of the value (e.g. because it returns void), there
106 // is nothing to rewrite.
107 if (OrigHeaderVal
->use_empty())
110 Value
*OrigPreHeaderVal
= ValueMap
.lookup(OrigHeaderVal
);
112 // The value now exits in two versions: the initial value in the preheader
113 // and the loop "next" value in the original header.
114 SSA
.Initialize(OrigHeaderVal
->getType(), OrigHeaderVal
->getName());
115 SSA
.AddAvailableValue(OrigHeader
, OrigHeaderVal
);
116 SSA
.AddAvailableValue(OrigPreheader
, OrigPreHeaderVal
);
118 // Visit each use of the OrigHeader instruction.
119 for (Value::use_iterator UI
= OrigHeaderVal
->use_begin(),
120 UE
= OrigHeaderVal
->use_end();
122 // Grab the use before incrementing the iterator.
125 // Increment the iterator before removing the use from the list.
128 // SSAUpdater can't handle a non-PHI use in the same block as an
129 // earlier def. We can easily handle those cases manually.
130 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
131 if (!isa
<PHINode
>(UserInst
)) {
132 BasicBlock
*UserBB
= UserInst
->getParent();
134 // The original users in the OrigHeader are already using the
135 // original definitions.
136 if (UserBB
== OrigHeader
)
139 // Users in the OrigPreHeader need to use the value to which the
140 // original definitions are mapped.
141 if (UserBB
== OrigPreheader
) {
142 U
= OrigPreHeaderVal
;
147 // Anything else can be handled by SSAUpdater.
151 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
153 SmallVector
<DbgValueInst
*, 1> DbgValues
;
154 llvm::findDbgValues(DbgValues
, OrigHeaderVal
);
155 for (auto &DbgValue
: DbgValues
) {
156 // The original users in the OrigHeader are already using the original
158 BasicBlock
*UserBB
= DbgValue
->getParent();
159 if (UserBB
== OrigHeader
)
162 // Users in the OrigPreHeader need to use the value to which the
163 // original definitions are mapped and anything else can be handled by
164 // the SSAUpdater. To avoid adding PHINodes, check if the value is
165 // available in UserBB, if not substitute undef.
167 if (UserBB
== OrigPreheader
)
168 NewVal
= OrigPreHeaderVal
;
169 else if (SSA
.HasValueForBlock(UserBB
))
170 NewVal
= SSA
.GetValueInMiddleOfBlock(UserBB
);
172 NewVal
= UndefValue::get(OrigHeaderVal
->getType());
173 DbgValue
->setOperand(0,
174 MetadataAsValue::get(OrigHeaderVal
->getContext(),
175 ValueAsMetadata::get(NewVal
)));
180 // Look for a phi which is only used outside the loop (via a LCSSA phi)
181 // in the exit from the header. This means that rotating the loop can
183 static bool shouldRotateLoopExitingLatch(Loop
*L
) {
184 BasicBlock
*Header
= L
->getHeader();
185 BasicBlock
*HeaderExit
= Header
->getTerminator()->getSuccessor(0);
186 if (L
->contains(HeaderExit
))
187 HeaderExit
= Header
->getTerminator()->getSuccessor(1);
189 for (auto &Phi
: Header
->phis()) {
190 // Look for uses of this phi in the loop/via exits other than the header.
191 if (llvm::any_of(Phi
.users(), [HeaderExit
](const User
*U
) {
192 return cast
<Instruction
>(U
)->getParent() != HeaderExit
;
201 /// Rotate loop LP. Return true if the loop is rotated.
203 /// \param SimplifiedLatch is true if the latch was just folded into the final
204 /// loop exit. In this case we may want to rotate even though the new latch is
205 /// now an exiting branch. This rotation would have happened had the latch not
206 /// been simplified. However, if SimplifiedLatch is false, then we avoid
207 /// rotating loops in which the latch exits to avoid excessive or endless
208 /// rotation. LoopRotate should be repeatable and converge to a canonical
209 /// form. This property is satisfied because simplifying the loop latch can only
210 /// happen once across multiple invocations of the LoopRotate pass.
211 bool LoopRotate::rotateLoop(Loop
*L
, bool SimplifiedLatch
) {
212 // If the loop has only one block then there is not much to rotate.
213 if (L
->getBlocks().size() == 1)
216 BasicBlock
*OrigHeader
= L
->getHeader();
217 BasicBlock
*OrigLatch
= L
->getLoopLatch();
219 BranchInst
*BI
= dyn_cast
<BranchInst
>(OrigHeader
->getTerminator());
220 if (!BI
|| BI
->isUnconditional())
223 // If the loop header is not one of the loop exiting blocks then
224 // either this loop is already rotated or it is not
225 // suitable for loop rotation transformations.
226 if (!L
->isLoopExiting(OrigHeader
))
229 // If the loop latch already contains a branch that leaves the loop then the
230 // loop is already rotated.
234 // Rotate if either the loop latch does *not* exit the loop, or if the loop
235 // latch was just simplified. Or if we think it will be profitable.
236 if (L
->isLoopExiting(OrigLatch
) && !SimplifiedLatch
&& IsUtilMode
== false &&
237 !shouldRotateLoopExitingLatch(L
))
240 // Check size of original header and reject loop if it is very big or we can't
241 // duplicate blocks inside it.
243 SmallPtrSet
<const Value
*, 32> EphValues
;
244 CodeMetrics::collectEphemeralValues(L
, AC
, EphValues
);
247 Metrics
.analyzeBasicBlock(OrigHeader
, *TTI
, EphValues
);
248 if (Metrics
.notDuplicatable
) {
250 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
251 << " instructions: ";
255 if (Metrics
.convergent
) {
256 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
261 if (Metrics
.NumInsts
> MaxHeaderSize
)
265 // Now, this loop is suitable for rotation.
266 BasicBlock
*OrigPreheader
= L
->getLoopPreheader();
268 // If the loop could not be converted to canonical form, it must have an
269 // indirectbr in it, just give up.
270 if (!OrigPreheader
|| !L
->hasDedicatedExits())
273 // Anything ScalarEvolution may know about this loop or the PHI nodes
274 // in its header will soon be invalidated. We should also invalidate
275 // all outer loops because insertion and deletion of blocks that happens
276 // during the rotation may violate invariants related to backedge taken
279 SE
->forgetTopmostLoop(L
);
281 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L
->dump());
282 if (MSSAU
&& VerifyMemorySSA
)
283 MSSAU
->getMemorySSA()->verifyMemorySSA();
285 // Find new Loop header. NewHeader is a Header's one and only successor
286 // that is inside loop. Header's other successor is outside the
287 // loop. Otherwise loop is not suitable for rotation.
288 BasicBlock
*Exit
= BI
->getSuccessor(0);
289 BasicBlock
*NewHeader
= BI
->getSuccessor(1);
290 if (L
->contains(Exit
))
291 std::swap(Exit
, NewHeader
);
292 assert(NewHeader
&& "Unable to determine new loop header");
293 assert(L
->contains(NewHeader
) && !L
->contains(Exit
) &&
294 "Unable to determine loop header and exit blocks");
296 // This code assumes that the new header has exactly one predecessor.
297 // Remove any single-entry PHI nodes in it.
298 assert(NewHeader
->getSinglePredecessor() &&
299 "New header doesn't have one pred!");
300 FoldSingleEntryPHINodes(NewHeader
);
302 // Begin by walking OrigHeader and populating ValueMap with an entry for
304 BasicBlock::iterator I
= OrigHeader
->begin(), E
= OrigHeader
->end();
305 ValueToValueMapTy ValueMap
, ValueMapMSSA
;
307 // For PHI nodes, the value available in OldPreHeader is just the
308 // incoming value from OldPreHeader.
309 for (; PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
310 InsertNewValueIntoMap(ValueMap
, PN
,
311 PN
->getIncomingValueForBlock(OrigPreheader
));
313 // For the rest of the instructions, either hoist to the OrigPreheader if
314 // possible or create a clone in the OldPreHeader if not.
315 Instruction
*LoopEntryBranch
= OrigPreheader
->getTerminator();
317 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
318 using DbgIntrinsicHash
=
319 std::pair
<std::pair
<Value
*, DILocalVariable
*>, DIExpression
*>;
320 auto makeHash
= [](DbgVariableIntrinsic
*D
) -> DbgIntrinsicHash
{
321 return {{D
->getVariableLocation(), D
->getVariable()}, D
->getExpression()};
323 SmallDenseSet
<DbgIntrinsicHash
, 8> DbgIntrinsics
;
324 for (auto I
= std::next(OrigPreheader
->rbegin()), E
= OrigPreheader
->rend();
326 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&*I
))
327 DbgIntrinsics
.insert(makeHash(DII
));
333 Instruction
*Inst
= &*I
++;
335 // If the instruction's operands are invariant and it doesn't read or write
336 // memory, then it is safe to hoist. Doing this doesn't change the order of
337 // execution in the preheader, but does prevent the instruction from
338 // executing in each iteration of the loop. This means it is safe to hoist
339 // something that might trap, but isn't safe to hoist something that reads
340 // memory (without proving that the loop doesn't write).
341 if (L
->hasLoopInvariantOperands(Inst
) && !Inst
->mayReadFromMemory() &&
342 !Inst
->mayWriteToMemory() && !Inst
->isTerminator() &&
343 !isa
<DbgInfoIntrinsic
>(Inst
) && !isa
<AllocaInst
>(Inst
)) {
344 Inst
->moveBefore(LoopEntryBranch
);
348 // Otherwise, create a duplicate of the instruction.
349 Instruction
*C
= Inst
->clone();
351 // Eagerly remap the operands of the instruction.
352 RemapInstruction(C
, ValueMap
,
353 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
355 // Avoid inserting the same intrinsic twice.
356 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(C
))
357 if (DbgIntrinsics
.count(makeHash(DII
))) {
362 // With the operands remapped, see if the instruction constant folds or is
363 // otherwise simplifyable. This commonly occurs because the entry from PHI
364 // nodes allows icmps and other instructions to fold.
365 Value
*V
= SimplifyInstruction(C
, SQ
);
366 if (V
&& LI
->replacementPreservesLCSSAForm(C
, V
)) {
367 // If so, then delete the temporary instruction and stick the folded value
369 InsertNewValueIntoMap(ValueMap
, Inst
, V
);
370 if (!C
->mayHaveSideEffects()) {
375 InsertNewValueIntoMap(ValueMap
, Inst
, C
);
378 // Otherwise, stick the new instruction into the new block!
379 C
->setName(Inst
->getName());
380 C
->insertBefore(LoopEntryBranch
);
382 if (auto *II
= dyn_cast
<IntrinsicInst
>(C
))
383 if (II
->getIntrinsicID() == Intrinsic::assume
)
384 AC
->registerAssumption(II
);
385 // MemorySSA cares whether the cloned instruction was inserted or not, and
386 // not whether it can be remapped to a simplified value.
388 InsertNewValueIntoMap(ValueMapMSSA
, Inst
, C
);
392 // Along with all the other instructions, we just cloned OrigHeader's
393 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
394 // successors by duplicating their incoming values for OrigHeader.
395 for (BasicBlock
*SuccBB
: successors(OrigHeader
))
396 for (BasicBlock::iterator BI
= SuccBB
->begin();
397 PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
398 PN
->addIncoming(PN
->getIncomingValueForBlock(OrigHeader
), OrigPreheader
);
400 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
401 // OrigPreHeader's old terminator (the original branch into the loop), and
402 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
403 LoopEntryBranch
->eraseFromParent();
405 // Update MemorySSA before the rewrite call below changes the 1:1
406 // instruction:cloned_instruction_or_value mapping.
408 InsertNewValueIntoMap(ValueMapMSSA
, OrigHeader
, OrigPreheader
);
409 MSSAU
->updateForClonedBlockIntoPred(OrigHeader
, OrigPreheader
,
413 SmallVector
<PHINode
*, 2> InsertedPHIs
;
414 // If there were any uses of instructions in the duplicated block outside the
415 // loop, update them, inserting PHI nodes as required
416 RewriteUsesOfClonedInstructions(OrigHeader
, OrigPreheader
, ValueMap
,
419 // Attach dbg.value intrinsics to the new phis if that phi uses a value that
420 // previously had debug metadata attached. This keeps the debug info
421 // up-to-date in the loop body.
422 if (!InsertedPHIs
.empty())
423 insertDebugValuesForPHIs(OrigHeader
, InsertedPHIs
);
425 // NewHeader is now the header of the loop.
426 L
->moveToHeader(NewHeader
);
427 assert(L
->getHeader() == NewHeader
&& "Latch block is our new header");
429 // Inform DT about changes to the CFG.
431 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
432 // the DT about the removed edge to the OrigHeader (that got removed).
433 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
434 Updates
.push_back({DominatorTree::Insert
, OrigPreheader
, Exit
});
435 Updates
.push_back({DominatorTree::Insert
, OrigPreheader
, NewHeader
});
436 Updates
.push_back({DominatorTree::Delete
, OrigPreheader
, OrigHeader
});
437 DT
->applyUpdates(Updates
);
440 MSSAU
->applyUpdates(Updates
, *DT
);
442 MSSAU
->getMemorySSA()->verifyMemorySSA();
446 // At this point, we've finished our major CFG changes. As part of cloning
447 // the loop into the preheader we've simplified instructions and the
448 // duplicated conditional branch may now be branching on a constant. If it is
449 // branching on a constant and if that constant means that we enter the loop,
450 // then we fold away the cond branch to an uncond branch. This simplifies the
451 // loop in cases important for nested loops, and it also means we don't have
452 // to split as many edges.
453 BranchInst
*PHBI
= cast
<BranchInst
>(OrigPreheader
->getTerminator());
454 assert(PHBI
->isConditional() && "Should be clone of BI condbr!");
455 if (!isa
<ConstantInt
>(PHBI
->getCondition()) ||
456 PHBI
->getSuccessor(cast
<ConstantInt
>(PHBI
->getCondition())->isZero()) !=
458 // The conditional branch can't be folded, handle the general case.
459 // Split edges as necessary to preserve LoopSimplify form.
461 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
462 // thus is not a preheader anymore.
463 // Split the edge to form a real preheader.
464 BasicBlock
*NewPH
= SplitCriticalEdge(
465 OrigPreheader
, NewHeader
,
466 CriticalEdgeSplittingOptions(DT
, LI
, MSSAU
).setPreserveLCSSA());
467 NewPH
->setName(NewHeader
->getName() + ".lr.ph");
469 // Preserve canonical loop form, which means that 'Exit' should have only
470 // one predecessor. Note that Exit could be an exit block for multiple
471 // nested loops, causing both of the edges to now be critical and need to
473 SmallVector
<BasicBlock
*, 4> ExitPreds(pred_begin(Exit
), pred_end(Exit
));
474 bool SplitLatchEdge
= false;
475 for (BasicBlock
*ExitPred
: ExitPreds
) {
476 // We only need to split loop exit edges.
477 Loop
*PredLoop
= LI
->getLoopFor(ExitPred
);
478 if (!PredLoop
|| PredLoop
->contains(Exit
) ||
479 ExitPred
->getTerminator()->isIndirectTerminator())
481 SplitLatchEdge
|= L
->getLoopLatch() == ExitPred
;
482 BasicBlock
*ExitSplit
= SplitCriticalEdge(
484 CriticalEdgeSplittingOptions(DT
, LI
, MSSAU
).setPreserveLCSSA());
485 ExitSplit
->moveBefore(Exit
);
487 assert(SplitLatchEdge
&&
488 "Despite splitting all preds, failed to split latch exit?");
490 // We can fold the conditional branch in the preheader, this makes things
491 // simpler. The first step is to remove the extra edge to the Exit block.
492 Exit
->removePredecessor(OrigPreheader
, true /*preserve LCSSA*/);
493 BranchInst
*NewBI
= BranchInst::Create(NewHeader
, PHBI
);
494 NewBI
->setDebugLoc(PHBI
->getDebugLoc());
495 PHBI
->eraseFromParent();
497 // With our CFG finalized, update DomTree if it is available.
498 if (DT
) DT
->deleteEdge(OrigPreheader
, Exit
);
500 // Update MSSA too, if available.
502 MSSAU
->removeEdge(OrigPreheader
, Exit
);
505 assert(L
->getLoopPreheader() && "Invalid loop preheader after loop rotation");
506 assert(L
->getLoopLatch() && "Invalid loop latch after loop rotation");
508 if (MSSAU
&& VerifyMemorySSA
)
509 MSSAU
->getMemorySSA()->verifyMemorySSA();
511 // Now that the CFG and DomTree are in a consistent state again, try to merge
512 // the OrigHeader block into OrigLatch. This will succeed if they are
513 // connected by an unconditional branch. This is just a cleanup so the
514 // emitted code isn't too gross in this common case.
515 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
516 MergeBlockIntoPredecessor(OrigHeader
, &DTU
, LI
, MSSAU
);
518 if (MSSAU
&& VerifyMemorySSA
)
519 MSSAU
->getMemorySSA()->verifyMemorySSA();
521 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L
->dump());
527 /// Determine whether the instructions in this range may be safely and cheaply
528 /// speculated. This is not an important enough situation to develop complex
529 /// heuristics. We handle a single arithmetic instruction along with any type
531 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin
,
532 BasicBlock::iterator End
, Loop
*L
) {
533 bool seenIncrement
= false;
534 bool MultiExitLoop
= false;
536 if (!L
->getExitingBlock())
537 MultiExitLoop
= true;
539 for (BasicBlock::iterator I
= Begin
; I
!= End
; ++I
) {
541 if (!isSafeToSpeculativelyExecute(&*I
))
544 if (isa
<DbgInfoIntrinsic
>(I
))
547 switch (I
->getOpcode()) {
550 case Instruction::GetElementPtr
:
551 // GEPs are cheap if all indices are constant.
552 if (!cast
<GEPOperator
>(I
)->hasAllConstantIndices())
554 // fall-thru to increment case
556 case Instruction::Add
:
557 case Instruction::Sub
:
558 case Instruction::And
:
559 case Instruction::Or
:
560 case Instruction::Xor
:
561 case Instruction::Shl
:
562 case Instruction::LShr
:
563 case Instruction::AShr
: {
565 !isa
<Constant
>(I
->getOperand(0))
567 : !isa
<Constant
>(I
->getOperand(1)) ? I
->getOperand(1) : nullptr;
571 // If increment operand is used outside of the loop, this speculation
572 // could cause extra live range interference.
574 for (User
*UseI
: IVOpnd
->users()) {
575 auto *UserInst
= cast
<Instruction
>(UseI
);
576 if (!L
->contains(UserInst
))
583 seenIncrement
= true;
586 case Instruction::Trunc
:
587 case Instruction::ZExt
:
588 case Instruction::SExt
:
589 // ignore type conversions
596 /// Fold the loop tail into the loop exit by speculating the loop tail
597 /// instructions. Typically, this is a single post-increment. In the case of a
598 /// simple 2-block loop, hoisting the increment can be much better than
599 /// duplicating the entire loop header. In the case of loops with early exits,
600 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
601 /// canonical form so downstream passes can handle it.
603 /// I don't believe this invalidates SCEV.
604 bool LoopRotate::simplifyLoopLatch(Loop
*L
) {
605 BasicBlock
*Latch
= L
->getLoopLatch();
606 if (!Latch
|| Latch
->hasAddressTaken())
609 BranchInst
*Jmp
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
610 if (!Jmp
|| !Jmp
->isUnconditional())
613 BasicBlock
*LastExit
= Latch
->getSinglePredecessor();
614 if (!LastExit
|| !L
->isLoopExiting(LastExit
))
617 BranchInst
*BI
= dyn_cast
<BranchInst
>(LastExit
->getTerminator());
621 if (!shouldSpeculateInstrs(Latch
->begin(), Jmp
->getIterator(), L
))
624 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch
->getName() << " into "
625 << LastExit
->getName() << "\n");
627 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
628 MergeBlockIntoPredecessor(Latch
, &DTU
, LI
, MSSAU
, nullptr,
629 /*PredecessorWithTwoSuccessors=*/true);
631 if (MSSAU
&& VerifyMemorySSA
)
632 MSSAU
->getMemorySSA()->verifyMemorySSA();
637 /// Rotate \c L, and return true if any modification was made.
638 bool LoopRotate::processLoop(Loop
*L
) {
639 // Save the loop metadata.
640 MDNode
*LoopMD
= L
->getLoopID();
642 bool SimplifiedLatch
= false;
644 // Simplify the loop latch before attempting to rotate the header
645 // upward. Rotation may not be needed if the loop tail can be folded into the
648 SimplifiedLatch
= simplifyLoopLatch(L
);
650 bool MadeChange
= rotateLoop(L
, SimplifiedLatch
);
651 assert((!MadeChange
|| L
->isLoopExiting(L
->getLoopLatch())) &&
652 "Loop latch should be exiting after loop-rotate.");
654 // Restore the loop metadata.
655 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
656 if ((MadeChange
|| SimplifiedLatch
) && LoopMD
)
657 L
->setLoopID(LoopMD
);
659 return MadeChange
|| SimplifiedLatch
;
663 /// The utility to convert a loop into a loop with bottom test.
664 bool llvm::LoopRotation(Loop
*L
, LoopInfo
*LI
, const TargetTransformInfo
*TTI
,
665 AssumptionCache
*AC
, DominatorTree
*DT
,
666 ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
,
667 const SimplifyQuery
&SQ
, bool RotationOnly
= true,
668 unsigned Threshold
= unsigned(-1),
669 bool IsUtilMode
= true) {
670 if (MSSAU
&& VerifyMemorySSA
)
671 MSSAU
->getMemorySSA()->verifyMemorySSA();
672 LoopRotate
LR(Threshold
, LI
, TTI
, AC
, DT
, SE
, MSSAU
, SQ
, RotationOnly
,
674 if (MSSAU
&& VerifyMemorySSA
)
675 MSSAU
->getMemorySSA()->verifyMemorySSA();
677 return LR
.processLoop(L
);