Clang] Fix expansion of response files in -Wp after integrated-cc1 change
[llvm-project.git] / llvm / lib / Transforms / Utils / LoopRotationUtils.cpp
blobc065e0269c64a4bd50e1555f9cd89f9319af0de8
1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/DomTreeUpdater.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
45 #define DEBUG_TYPE "loop-rotate"
47 STATISTIC(NumRotated, "Number of loops rotated");
49 namespace {
50 /// A simple loop rotation transformation.
51 class LoopRotate {
52 const unsigned MaxHeaderSize;
53 LoopInfo *LI;
54 const TargetTransformInfo *TTI;
55 AssumptionCache *AC;
56 DominatorTree *DT;
57 ScalarEvolution *SE;
58 MemorySSAUpdater *MSSAU;
59 const SimplifyQuery &SQ;
60 bool RotationOnly;
61 bool IsUtilMode;
63 public:
64 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
65 const TargetTransformInfo *TTI, AssumptionCache *AC,
66 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
67 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode)
68 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
69 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
70 IsUtilMode(IsUtilMode) {}
71 bool processLoop(Loop *L);
73 private:
74 bool rotateLoop(Loop *L, bool SimplifiedLatch);
75 bool simplifyLoopLatch(Loop *L);
77 } // end anonymous namespace
79 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
80 /// previously exist in the map, and the value was inserted.
81 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
82 bool Inserted = VM.insert({K, V}).second;
83 assert(Inserted);
84 (void)Inserted;
86 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
87 /// old header into the preheader. If there were uses of the values produced by
88 /// these instruction that were outside of the loop, we have to insert PHI nodes
89 /// to merge the two values. Do this now.
90 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
91 BasicBlock *OrigPreheader,
92 ValueToValueMapTy &ValueMap,
93 SmallVectorImpl<PHINode*> *InsertedPHIs) {
94 // Remove PHI node entries that are no longer live.
95 BasicBlock::iterator I, E = OrigHeader->end();
96 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
97 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
99 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
100 // as necessary.
101 SSAUpdater SSA(InsertedPHIs);
102 for (I = OrigHeader->begin(); I != E; ++I) {
103 Value *OrigHeaderVal = &*I;
105 // If there are no uses of the value (e.g. because it returns void), there
106 // is nothing to rewrite.
107 if (OrigHeaderVal->use_empty())
108 continue;
110 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
112 // The value now exits in two versions: the initial value in the preheader
113 // and the loop "next" value in the original header.
114 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
115 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
116 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
118 // Visit each use of the OrigHeader instruction.
119 for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
120 UE = OrigHeaderVal->use_end();
121 UI != UE;) {
122 // Grab the use before incrementing the iterator.
123 Use &U = *UI;
125 // Increment the iterator before removing the use from the list.
126 ++UI;
128 // SSAUpdater can't handle a non-PHI use in the same block as an
129 // earlier def. We can easily handle those cases manually.
130 Instruction *UserInst = cast<Instruction>(U.getUser());
131 if (!isa<PHINode>(UserInst)) {
132 BasicBlock *UserBB = UserInst->getParent();
134 // The original users in the OrigHeader are already using the
135 // original definitions.
136 if (UserBB == OrigHeader)
137 continue;
139 // Users in the OrigPreHeader need to use the value to which the
140 // original definitions are mapped.
141 if (UserBB == OrigPreheader) {
142 U = OrigPreHeaderVal;
143 continue;
147 // Anything else can be handled by SSAUpdater.
148 SSA.RewriteUse(U);
151 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
152 // intrinsics.
153 SmallVector<DbgValueInst *, 1> DbgValues;
154 llvm::findDbgValues(DbgValues, OrigHeaderVal);
155 for (auto &DbgValue : DbgValues) {
156 // The original users in the OrigHeader are already using the original
157 // definitions.
158 BasicBlock *UserBB = DbgValue->getParent();
159 if (UserBB == OrigHeader)
160 continue;
162 // Users in the OrigPreHeader need to use the value to which the
163 // original definitions are mapped and anything else can be handled by
164 // the SSAUpdater. To avoid adding PHINodes, check if the value is
165 // available in UserBB, if not substitute undef.
166 Value *NewVal;
167 if (UserBB == OrigPreheader)
168 NewVal = OrigPreHeaderVal;
169 else if (SSA.HasValueForBlock(UserBB))
170 NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
171 else
172 NewVal = UndefValue::get(OrigHeaderVal->getType());
173 DbgValue->setOperand(0,
174 MetadataAsValue::get(OrigHeaderVal->getContext(),
175 ValueAsMetadata::get(NewVal)));
180 // Look for a phi which is only used outside the loop (via a LCSSA phi)
181 // in the exit from the header. This means that rotating the loop can
182 // remove the phi.
183 static bool shouldRotateLoopExitingLatch(Loop *L) {
184 BasicBlock *Header = L->getHeader();
185 BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
186 if (L->contains(HeaderExit))
187 HeaderExit = Header->getTerminator()->getSuccessor(1);
189 for (auto &Phi : Header->phis()) {
190 // Look for uses of this phi in the loop/via exits other than the header.
191 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
192 return cast<Instruction>(U)->getParent() != HeaderExit;
194 continue;
195 return true;
198 return false;
201 /// Rotate loop LP. Return true if the loop is rotated.
203 /// \param SimplifiedLatch is true if the latch was just folded into the final
204 /// loop exit. In this case we may want to rotate even though the new latch is
205 /// now an exiting branch. This rotation would have happened had the latch not
206 /// been simplified. However, if SimplifiedLatch is false, then we avoid
207 /// rotating loops in which the latch exits to avoid excessive or endless
208 /// rotation. LoopRotate should be repeatable and converge to a canonical
209 /// form. This property is satisfied because simplifying the loop latch can only
210 /// happen once across multiple invocations of the LoopRotate pass.
211 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
212 // If the loop has only one block then there is not much to rotate.
213 if (L->getBlocks().size() == 1)
214 return false;
216 BasicBlock *OrigHeader = L->getHeader();
217 BasicBlock *OrigLatch = L->getLoopLatch();
219 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
220 if (!BI || BI->isUnconditional())
221 return false;
223 // If the loop header is not one of the loop exiting blocks then
224 // either this loop is already rotated or it is not
225 // suitable for loop rotation transformations.
226 if (!L->isLoopExiting(OrigHeader))
227 return false;
229 // If the loop latch already contains a branch that leaves the loop then the
230 // loop is already rotated.
231 if (!OrigLatch)
232 return false;
234 // Rotate if either the loop latch does *not* exit the loop, or if the loop
235 // latch was just simplified. Or if we think it will be profitable.
236 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
237 !shouldRotateLoopExitingLatch(L))
238 return false;
240 // Check size of original header and reject loop if it is very big or we can't
241 // duplicate blocks inside it.
243 SmallPtrSet<const Value *, 32> EphValues;
244 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
246 CodeMetrics Metrics;
247 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
248 if (Metrics.notDuplicatable) {
249 LLVM_DEBUG(
250 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
251 << " instructions: ";
252 L->dump());
253 return false;
255 if (Metrics.convergent) {
256 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
257 "instructions: ";
258 L->dump());
259 return false;
261 if (Metrics.NumInsts > MaxHeaderSize)
262 return false;
265 // Now, this loop is suitable for rotation.
266 BasicBlock *OrigPreheader = L->getLoopPreheader();
268 // If the loop could not be converted to canonical form, it must have an
269 // indirectbr in it, just give up.
270 if (!OrigPreheader || !L->hasDedicatedExits())
271 return false;
273 // Anything ScalarEvolution may know about this loop or the PHI nodes
274 // in its header will soon be invalidated. We should also invalidate
275 // all outer loops because insertion and deletion of blocks that happens
276 // during the rotation may violate invariants related to backedge taken
277 // infos in them.
278 if (SE)
279 SE->forgetTopmostLoop(L);
281 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
282 if (MSSAU && VerifyMemorySSA)
283 MSSAU->getMemorySSA()->verifyMemorySSA();
285 // Find new Loop header. NewHeader is a Header's one and only successor
286 // that is inside loop. Header's other successor is outside the
287 // loop. Otherwise loop is not suitable for rotation.
288 BasicBlock *Exit = BI->getSuccessor(0);
289 BasicBlock *NewHeader = BI->getSuccessor(1);
290 if (L->contains(Exit))
291 std::swap(Exit, NewHeader);
292 assert(NewHeader && "Unable to determine new loop header");
293 assert(L->contains(NewHeader) && !L->contains(Exit) &&
294 "Unable to determine loop header and exit blocks");
296 // This code assumes that the new header has exactly one predecessor.
297 // Remove any single-entry PHI nodes in it.
298 assert(NewHeader->getSinglePredecessor() &&
299 "New header doesn't have one pred!");
300 FoldSingleEntryPHINodes(NewHeader);
302 // Begin by walking OrigHeader and populating ValueMap with an entry for
303 // each Instruction.
304 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
305 ValueToValueMapTy ValueMap, ValueMapMSSA;
307 // For PHI nodes, the value available in OldPreHeader is just the
308 // incoming value from OldPreHeader.
309 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
310 InsertNewValueIntoMap(ValueMap, PN,
311 PN->getIncomingValueForBlock(OrigPreheader));
313 // For the rest of the instructions, either hoist to the OrigPreheader if
314 // possible or create a clone in the OldPreHeader if not.
315 Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
317 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
318 using DbgIntrinsicHash =
319 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
320 auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
321 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
323 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
324 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
325 I != E; ++I) {
326 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
327 DbgIntrinsics.insert(makeHash(DII));
328 else
329 break;
332 while (I != E) {
333 Instruction *Inst = &*I++;
335 // If the instruction's operands are invariant and it doesn't read or write
336 // memory, then it is safe to hoist. Doing this doesn't change the order of
337 // execution in the preheader, but does prevent the instruction from
338 // executing in each iteration of the loop. This means it is safe to hoist
339 // something that might trap, but isn't safe to hoist something that reads
340 // memory (without proving that the loop doesn't write).
341 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
342 !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
343 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
344 Inst->moveBefore(LoopEntryBranch);
345 continue;
348 // Otherwise, create a duplicate of the instruction.
349 Instruction *C = Inst->clone();
351 // Eagerly remap the operands of the instruction.
352 RemapInstruction(C, ValueMap,
353 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
355 // Avoid inserting the same intrinsic twice.
356 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
357 if (DbgIntrinsics.count(makeHash(DII))) {
358 C->deleteValue();
359 continue;
362 // With the operands remapped, see if the instruction constant folds or is
363 // otherwise simplifyable. This commonly occurs because the entry from PHI
364 // nodes allows icmps and other instructions to fold.
365 Value *V = SimplifyInstruction(C, SQ);
366 if (V && LI->replacementPreservesLCSSAForm(C, V)) {
367 // If so, then delete the temporary instruction and stick the folded value
368 // in the map.
369 InsertNewValueIntoMap(ValueMap, Inst, V);
370 if (!C->mayHaveSideEffects()) {
371 C->deleteValue();
372 C = nullptr;
374 } else {
375 InsertNewValueIntoMap(ValueMap, Inst, C);
377 if (C) {
378 // Otherwise, stick the new instruction into the new block!
379 C->setName(Inst->getName());
380 C->insertBefore(LoopEntryBranch);
382 if (auto *II = dyn_cast<IntrinsicInst>(C))
383 if (II->getIntrinsicID() == Intrinsic::assume)
384 AC->registerAssumption(II);
385 // MemorySSA cares whether the cloned instruction was inserted or not, and
386 // not whether it can be remapped to a simplified value.
387 if (MSSAU)
388 InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
392 // Along with all the other instructions, we just cloned OrigHeader's
393 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
394 // successors by duplicating their incoming values for OrigHeader.
395 for (BasicBlock *SuccBB : successors(OrigHeader))
396 for (BasicBlock::iterator BI = SuccBB->begin();
397 PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
398 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
400 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
401 // OrigPreHeader's old terminator (the original branch into the loop), and
402 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
403 LoopEntryBranch->eraseFromParent();
405 // Update MemorySSA before the rewrite call below changes the 1:1
406 // instruction:cloned_instruction_or_value mapping.
407 if (MSSAU) {
408 InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
409 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
410 ValueMapMSSA);
413 SmallVector<PHINode*, 2> InsertedPHIs;
414 // If there were any uses of instructions in the duplicated block outside the
415 // loop, update them, inserting PHI nodes as required
416 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
417 &InsertedPHIs);
419 // Attach dbg.value intrinsics to the new phis if that phi uses a value that
420 // previously had debug metadata attached. This keeps the debug info
421 // up-to-date in the loop body.
422 if (!InsertedPHIs.empty())
423 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
425 // NewHeader is now the header of the loop.
426 L->moveToHeader(NewHeader);
427 assert(L->getHeader() == NewHeader && "Latch block is our new header");
429 // Inform DT about changes to the CFG.
430 if (DT) {
431 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
432 // the DT about the removed edge to the OrigHeader (that got removed).
433 SmallVector<DominatorTree::UpdateType, 3> Updates;
434 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
435 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
436 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
437 DT->applyUpdates(Updates);
439 if (MSSAU) {
440 MSSAU->applyUpdates(Updates, *DT);
441 if (VerifyMemorySSA)
442 MSSAU->getMemorySSA()->verifyMemorySSA();
446 // At this point, we've finished our major CFG changes. As part of cloning
447 // the loop into the preheader we've simplified instructions and the
448 // duplicated conditional branch may now be branching on a constant. If it is
449 // branching on a constant and if that constant means that we enter the loop,
450 // then we fold away the cond branch to an uncond branch. This simplifies the
451 // loop in cases important for nested loops, and it also means we don't have
452 // to split as many edges.
453 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
454 assert(PHBI->isConditional() && "Should be clone of BI condbr!");
455 if (!isa<ConstantInt>(PHBI->getCondition()) ||
456 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
457 NewHeader) {
458 // The conditional branch can't be folded, handle the general case.
459 // Split edges as necessary to preserve LoopSimplify form.
461 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
462 // thus is not a preheader anymore.
463 // Split the edge to form a real preheader.
464 BasicBlock *NewPH = SplitCriticalEdge(
465 OrigPreheader, NewHeader,
466 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
467 NewPH->setName(NewHeader->getName() + ".lr.ph");
469 // Preserve canonical loop form, which means that 'Exit' should have only
470 // one predecessor. Note that Exit could be an exit block for multiple
471 // nested loops, causing both of the edges to now be critical and need to
472 // be split.
473 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
474 bool SplitLatchEdge = false;
475 for (BasicBlock *ExitPred : ExitPreds) {
476 // We only need to split loop exit edges.
477 Loop *PredLoop = LI->getLoopFor(ExitPred);
478 if (!PredLoop || PredLoop->contains(Exit) ||
479 ExitPred->getTerminator()->isIndirectTerminator())
480 continue;
481 SplitLatchEdge |= L->getLoopLatch() == ExitPred;
482 BasicBlock *ExitSplit = SplitCriticalEdge(
483 ExitPred, Exit,
484 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
485 ExitSplit->moveBefore(Exit);
487 assert(SplitLatchEdge &&
488 "Despite splitting all preds, failed to split latch exit?");
489 } else {
490 // We can fold the conditional branch in the preheader, this makes things
491 // simpler. The first step is to remove the extra edge to the Exit block.
492 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
493 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
494 NewBI->setDebugLoc(PHBI->getDebugLoc());
495 PHBI->eraseFromParent();
497 // With our CFG finalized, update DomTree if it is available.
498 if (DT) DT->deleteEdge(OrigPreheader, Exit);
500 // Update MSSA too, if available.
501 if (MSSAU)
502 MSSAU->removeEdge(OrigPreheader, Exit);
505 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
506 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
508 if (MSSAU && VerifyMemorySSA)
509 MSSAU->getMemorySSA()->verifyMemorySSA();
511 // Now that the CFG and DomTree are in a consistent state again, try to merge
512 // the OrigHeader block into OrigLatch. This will succeed if they are
513 // connected by an unconditional branch. This is just a cleanup so the
514 // emitted code isn't too gross in this common case.
515 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
516 MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
518 if (MSSAU && VerifyMemorySSA)
519 MSSAU->getMemorySSA()->verifyMemorySSA();
521 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
523 ++NumRotated;
524 return true;
527 /// Determine whether the instructions in this range may be safely and cheaply
528 /// speculated. This is not an important enough situation to develop complex
529 /// heuristics. We handle a single arithmetic instruction along with any type
530 /// conversions.
531 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
532 BasicBlock::iterator End, Loop *L) {
533 bool seenIncrement = false;
534 bool MultiExitLoop = false;
536 if (!L->getExitingBlock())
537 MultiExitLoop = true;
539 for (BasicBlock::iterator I = Begin; I != End; ++I) {
541 if (!isSafeToSpeculativelyExecute(&*I))
542 return false;
544 if (isa<DbgInfoIntrinsic>(I))
545 continue;
547 switch (I->getOpcode()) {
548 default:
549 return false;
550 case Instruction::GetElementPtr:
551 // GEPs are cheap if all indices are constant.
552 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
553 return false;
554 // fall-thru to increment case
555 LLVM_FALLTHROUGH;
556 case Instruction::Add:
557 case Instruction::Sub:
558 case Instruction::And:
559 case Instruction::Or:
560 case Instruction::Xor:
561 case Instruction::Shl:
562 case Instruction::LShr:
563 case Instruction::AShr: {
564 Value *IVOpnd =
565 !isa<Constant>(I->getOperand(0))
566 ? I->getOperand(0)
567 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
568 if (!IVOpnd)
569 return false;
571 // If increment operand is used outside of the loop, this speculation
572 // could cause extra live range interference.
573 if (MultiExitLoop) {
574 for (User *UseI : IVOpnd->users()) {
575 auto *UserInst = cast<Instruction>(UseI);
576 if (!L->contains(UserInst))
577 return false;
581 if (seenIncrement)
582 return false;
583 seenIncrement = true;
584 break;
586 case Instruction::Trunc:
587 case Instruction::ZExt:
588 case Instruction::SExt:
589 // ignore type conversions
590 break;
593 return true;
596 /// Fold the loop tail into the loop exit by speculating the loop tail
597 /// instructions. Typically, this is a single post-increment. In the case of a
598 /// simple 2-block loop, hoisting the increment can be much better than
599 /// duplicating the entire loop header. In the case of loops with early exits,
600 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
601 /// canonical form so downstream passes can handle it.
603 /// I don't believe this invalidates SCEV.
604 bool LoopRotate::simplifyLoopLatch(Loop *L) {
605 BasicBlock *Latch = L->getLoopLatch();
606 if (!Latch || Latch->hasAddressTaken())
607 return false;
609 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
610 if (!Jmp || !Jmp->isUnconditional())
611 return false;
613 BasicBlock *LastExit = Latch->getSinglePredecessor();
614 if (!LastExit || !L->isLoopExiting(LastExit))
615 return false;
617 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
618 if (!BI)
619 return false;
621 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
622 return false;
624 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
625 << LastExit->getName() << "\n");
627 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
628 MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
629 /*PredecessorWithTwoSuccessors=*/true);
631 if (MSSAU && VerifyMemorySSA)
632 MSSAU->getMemorySSA()->verifyMemorySSA();
634 return true;
637 /// Rotate \c L, and return true if any modification was made.
638 bool LoopRotate::processLoop(Loop *L) {
639 // Save the loop metadata.
640 MDNode *LoopMD = L->getLoopID();
642 bool SimplifiedLatch = false;
644 // Simplify the loop latch before attempting to rotate the header
645 // upward. Rotation may not be needed if the loop tail can be folded into the
646 // loop exit.
647 if (!RotationOnly)
648 SimplifiedLatch = simplifyLoopLatch(L);
650 bool MadeChange = rotateLoop(L, SimplifiedLatch);
651 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
652 "Loop latch should be exiting after loop-rotate.");
654 // Restore the loop metadata.
655 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
656 if ((MadeChange || SimplifiedLatch) && LoopMD)
657 L->setLoopID(LoopMD);
659 return MadeChange || SimplifiedLatch;
663 /// The utility to convert a loop into a loop with bottom test.
664 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
665 AssumptionCache *AC, DominatorTree *DT,
666 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
667 const SimplifyQuery &SQ, bool RotationOnly = true,
668 unsigned Threshold = unsigned(-1),
669 bool IsUtilMode = true) {
670 if (MSSAU && VerifyMemorySSA)
671 MSSAU->getMemorySSA()->verifyMemorySSA();
672 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
673 IsUtilMode);
674 if (MSSAU && VerifyMemorySSA)
675 MSSAU->getMemorySSA()->verifyMemorySSA();
677 return LR.processLoop(L);