Clang] Fix expansion of response files in -Wp after integrated-cc1 change
[llvm-project.git] / llvm / lib / Transforms / Utils / LoopUnrollPeel.cpp
blob7a168ff6f32b0d2875a3b1335539b5852a414ed2
1 //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for peeling loops
10 // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
11 // unrolling loops with compile-time constant trip counts.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopIterator.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 #include "llvm/Transforms/Utils/ValueMapper.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <limits>
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
52 #define DEBUG_TYPE "loop-unroll"
54 STATISTIC(NumPeeled, "Number of loops peeled");
56 static cl::opt<unsigned> UnrollPeelMaxCount(
57 "unroll-peel-max-count", cl::init(7), cl::Hidden,
58 cl::desc("Max average trip count which will cause loop peeling."));
60 static cl::opt<unsigned> UnrollForcePeelCount(
61 "unroll-force-peel-count", cl::init(0), cl::Hidden,
62 cl::desc("Force a peel count regardless of profiling information."));
64 static cl::opt<bool> UnrollPeelMultiDeoptExit(
65 "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden,
66 cl::desc("Allow peeling of loops with multiple deopt exits."));
68 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
70 // Designates that a Phi is estimated to become invariant after an "infinite"
71 // number of loop iterations (i.e. only may become an invariant if the loop is
72 // fully unrolled).
73 static const unsigned InfiniteIterationsToInvariance =
74 std::numeric_limits<unsigned>::max();
76 // Check whether we are capable of peeling this loop.
77 bool llvm::canPeel(Loop *L) {
78 // Make sure the loop is in simplified form
79 if (!L->isLoopSimplifyForm())
80 return false;
82 if (UnrollPeelMultiDeoptExit) {
83 SmallVector<BasicBlock *, 4> Exits;
84 L->getUniqueNonLatchExitBlocks(Exits);
86 if (!Exits.empty()) {
87 // Latch's terminator is a conditional branch, Latch is exiting and
88 // all non Latch exits ends up with deoptimize.
89 const BasicBlock *Latch = L->getLoopLatch();
90 const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator());
91 return T && T->isConditional() && L->isLoopExiting(Latch) &&
92 all_of(Exits, [](const BasicBlock *BB) {
93 return BB->getTerminatingDeoptimizeCall();
94 });
98 // Only peel loops that contain a single exit
99 if (!L->getExitingBlock() || !L->getUniqueExitBlock())
100 return false;
102 // Don't try to peel loops where the latch is not the exiting block.
103 // This can be an indication of two different things:
104 // 1) The loop is not rotated.
105 // 2) The loop contains irreducible control flow that involves the latch.
106 if (L->getLoopLatch() != L->getExitingBlock())
107 return false;
109 return true;
112 // This function calculates the number of iterations after which the given Phi
113 // becomes an invariant. The pre-calculated values are memorized in the map. The
114 // function (shortcut is I) is calculated according to the following definition:
115 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
116 // If %y is a loop invariant, then I(%x) = 1.
117 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
118 // Otherwise, I(%x) is infinite.
119 // TODO: Actually if %y is an expression that depends only on Phi %z and some
120 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example
121 // looks like:
122 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration.
123 // %y = phi(0, 5),
124 // %a = %y + 1.
125 static unsigned calculateIterationsToInvariance(
126 PHINode *Phi, Loop *L, BasicBlock *BackEdge,
127 SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
128 assert(Phi->getParent() == L->getHeader() &&
129 "Non-loop Phi should not be checked for turning into invariant.");
130 assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
131 // If we already know the answer, take it from the map.
132 auto I = IterationsToInvariance.find(Phi);
133 if (I != IterationsToInvariance.end())
134 return I->second;
136 // Otherwise we need to analyze the input from the back edge.
137 Value *Input = Phi->getIncomingValueForBlock(BackEdge);
138 // Place infinity to map to avoid infinite recursion for cycled Phis. Such
139 // cycles can never stop on an invariant.
140 IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
141 unsigned ToInvariance = InfiniteIterationsToInvariance;
143 if (L->isLoopInvariant(Input))
144 ToInvariance = 1u;
145 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
146 // Only consider Phis in header block.
147 if (IncPhi->getParent() != L->getHeader())
148 return InfiniteIterationsToInvariance;
149 // If the input becomes an invariant after X iterations, then our Phi
150 // becomes an invariant after X + 1 iterations.
151 unsigned InputToInvariance = calculateIterationsToInvariance(
152 IncPhi, L, BackEdge, IterationsToInvariance);
153 if (InputToInvariance != InfiniteIterationsToInvariance)
154 ToInvariance = InputToInvariance + 1u;
157 // If we found that this Phi lies in an invariant chain, update the map.
158 if (ToInvariance != InfiniteIterationsToInvariance)
159 IterationsToInvariance[Phi] = ToInvariance;
160 return ToInvariance;
163 // Return the number of iterations to peel off that make conditions in the
164 // body true/false. For example, if we peel 2 iterations off the loop below,
165 // the condition i < 2 can be evaluated at compile time.
166 // for (i = 0; i < n; i++)
167 // if (i < 2)
168 // ..
169 // else
170 // ..
171 // }
172 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
173 ScalarEvolution &SE) {
174 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
175 unsigned DesiredPeelCount = 0;
177 for (auto *BB : L.blocks()) {
178 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
179 if (!BI || BI->isUnconditional())
180 continue;
182 // Ignore loop exit condition.
183 if (L.getLoopLatch() == BB)
184 continue;
186 Value *Condition = BI->getCondition();
187 Value *LeftVal, *RightVal;
188 CmpInst::Predicate Pred;
189 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
190 continue;
192 const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
193 const SCEV *RightSCEV = SE.getSCEV(RightVal);
195 // Do not consider predicates that are known to be true or false
196 // independently of the loop iteration.
197 if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
198 SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
199 RightSCEV))
200 continue;
202 // Check if we have a condition with one AddRec and one non AddRec
203 // expression. Normalize LeftSCEV to be the AddRec.
204 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
205 if (isa<SCEVAddRecExpr>(RightSCEV)) {
206 std::swap(LeftSCEV, RightSCEV);
207 Pred = ICmpInst::getSwappedPredicate(Pred);
208 } else
209 continue;
212 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
214 // Avoid huge SCEV computations in the loop below, make sure we only
215 // consider AddRecs of the loop we are trying to peel.
216 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
217 continue;
218 bool Increasing;
219 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
220 !SE.isMonotonicPredicate(LeftAR, Pred, Increasing))
221 continue;
222 (void)Increasing;
224 // Check if extending the current DesiredPeelCount lets us evaluate Pred
225 // or !Pred in the loop body statically.
226 unsigned NewPeelCount = DesiredPeelCount;
228 const SCEV *IterVal = LeftAR->evaluateAtIteration(
229 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
231 // If the original condition is not known, get the negated predicate
232 // (which holds on the else branch) and check if it is known. This allows
233 // us to peel of iterations that make the original condition false.
234 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
235 Pred = ICmpInst::getInversePredicate(Pred);
237 const SCEV *Step = LeftAR->getStepRecurrence(SE);
238 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
239 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
240 &NewPeelCount]() {
241 IterVal = NextIterVal;
242 NextIterVal = SE.getAddExpr(IterVal, Step);
243 NewPeelCount++;
246 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
247 return NewPeelCount < MaxPeelCount;
250 while (CanPeelOneMoreIteration() &&
251 SE.isKnownPredicate(Pred, IterVal, RightSCEV))
252 PeelOneMoreIteration();
254 // With *that* peel count, does the predicate !Pred become known in the
255 // first iteration of the loop body after peeling?
256 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
257 RightSCEV))
258 continue; // If not, give up.
260 // However, for equality comparisons, that isn't always sufficient to
261 // eliminate the comparsion in loop body, we may need to peel one more
262 // iteration. See if that makes !Pred become unknown again.
263 if (ICmpInst::isEquality(Pred) &&
264 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
265 RightSCEV)) {
266 assert(!SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
267 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV) &&
268 "Expected Pred to go from known to unknown.");
269 if (!CanPeelOneMoreIteration())
270 continue; // Need to peel one more iteration, but can't. Give up.
271 PeelOneMoreIteration(); // Great!
274 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
277 return DesiredPeelCount;
280 // Return the number of iterations we want to peel off.
281 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
282 TargetTransformInfo::UnrollingPreferences &UP,
283 unsigned &TripCount, ScalarEvolution &SE) {
284 assert(LoopSize > 0 && "Zero loop size is not allowed!");
285 // Save the UP.PeelCount value set by the target in
286 // TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
287 unsigned TargetPeelCount = UP.PeelCount;
288 UP.PeelCount = 0;
289 if (!canPeel(L))
290 return;
292 // Only try to peel innermost loops.
293 if (!L->empty())
294 return;
296 // If the user provided a peel count, use that.
297 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
298 if (UserPeelCount) {
299 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
300 << " iterations.\n");
301 UP.PeelCount = UnrollForcePeelCount;
302 UP.PeelProfiledIterations = true;
303 return;
306 // Skip peeling if it's disabled.
307 if (!UP.AllowPeeling)
308 return;
310 unsigned AlreadyPeeled = 0;
311 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
312 AlreadyPeeled = *Peeled;
313 // Stop if we already peeled off the maximum number of iterations.
314 if (AlreadyPeeled >= UnrollPeelMaxCount)
315 return;
317 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
318 // iterations of the loop. For this we compute the number for iterations after
319 // which every Phi is guaranteed to become an invariant, and try to peel the
320 // maximum number of iterations among these values, thus turning all those
321 // Phis into invariants.
322 // First, check that we can peel at least one iteration.
323 if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) {
324 // Store the pre-calculated values here.
325 SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
326 // Now go through all Phis to calculate their the number of iterations they
327 // need to become invariants.
328 // Start the max computation with the UP.PeelCount value set by the target
329 // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
330 unsigned DesiredPeelCount = TargetPeelCount;
331 BasicBlock *BackEdge = L->getLoopLatch();
332 assert(BackEdge && "Loop is not in simplified form?");
333 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
334 PHINode *Phi = cast<PHINode>(&*BI);
335 unsigned ToInvariance = calculateIterationsToInvariance(
336 Phi, L, BackEdge, IterationsToInvariance);
337 if (ToInvariance != InfiniteIterationsToInvariance)
338 DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
341 // Pay respect to limitations implied by loop size and the max peel count.
342 unsigned MaxPeelCount = UnrollPeelMaxCount;
343 MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1);
345 DesiredPeelCount = std::max(DesiredPeelCount,
346 countToEliminateCompares(*L, MaxPeelCount, SE));
348 if (DesiredPeelCount > 0) {
349 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
350 // Consider max peel count limitation.
351 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
352 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
353 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
354 << " iteration(s) to turn"
355 << " some Phis into invariants.\n");
356 UP.PeelCount = DesiredPeelCount;
357 UP.PeelProfiledIterations = false;
358 return;
363 // Bail if we know the statically calculated trip count.
364 // In this case we rather prefer partial unrolling.
365 if (TripCount)
366 return;
368 // Do not apply profile base peeling if it is disabled.
369 if (!UP.PeelProfiledIterations)
370 return;
371 // If we don't know the trip count, but have reason to believe the average
372 // trip count is low, peeling should be beneficial, since we will usually
373 // hit the peeled section.
374 // We only do this in the presence of profile information, since otherwise
375 // our estimates of the trip count are not reliable enough.
376 if (L->getHeader()->getParent()->hasProfileData()) {
377 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
378 if (!PeelCount)
379 return;
381 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
382 << "\n");
384 if (*PeelCount) {
385 if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
386 (LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
387 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
388 << " iterations.\n");
389 UP.PeelCount = *PeelCount;
390 return;
392 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
393 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
394 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
395 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
396 << "\n");
397 LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
402 /// Update the branch weights of the latch of a peeled-off loop
403 /// iteration.
404 /// This sets the branch weights for the latch of the recently peeled off loop
405 /// iteration correctly.
406 /// Let F is a weight of the edge from latch to header.
407 /// Let E is a weight of the edge from latch to exit.
408 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
409 /// go to exit.
410 /// Then, Estimated TripCount = F / E.
411 /// For I-th (counting from 0) peeled off iteration we set the the weights for
412 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
413 /// The probability to go to exit 1/(TC-I) increases. At the same time
414 /// the estimated trip count of remaining loop reduces by I.
415 /// To avoid dealing with division rounding we can just multiple both part
416 /// of weights to E and use weight as (F - I * E, E).
418 /// \param Header The copy of the header block that belongs to next iteration.
419 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
420 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
421 /// header before peeling (in) and after peeled off one iteration (out).
422 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
423 uint64_t ExitWeight,
424 uint64_t &FallThroughWeight) {
425 // FallThroughWeight is 0 means that there is no branch weights on original
426 // latch block or estimated trip count is zero.
427 if (!FallThroughWeight)
428 return;
430 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
431 MDBuilder MDB(LatchBR->getContext());
432 MDNode *WeightNode =
433 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
434 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
435 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
436 FallThroughWeight =
437 FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
440 /// Initialize the weights.
442 /// \param Header The header block.
443 /// \param LatchBR The latch branch.
444 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
445 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
446 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
447 uint64_t &ExitWeight,
448 uint64_t &FallThroughWeight) {
449 uint64_t TrueWeight, FalseWeight;
450 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
451 return;
452 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
453 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
454 FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
457 /// Update the weights of original Latch block after peeling off all iterations.
459 /// \param Header The header block.
460 /// \param LatchBR The latch branch.
461 /// \param ExitWeight The weight of the edge from Latch to Exit.
462 /// \param FallThroughWeight The weight of the edge from Latch to Header.
463 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
464 uint64_t ExitWeight,
465 uint64_t FallThroughWeight) {
466 // FallThroughWeight is 0 means that there is no branch weights on original
467 // latch block or estimated trip count is zero.
468 if (!FallThroughWeight)
469 return;
471 // Sets the branch weights on the loop exit.
472 MDBuilder MDB(LatchBR->getContext());
473 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
474 MDNode *WeightNode =
475 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
476 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
477 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
480 /// Clones the body of the loop L, putting it between \p InsertTop and \p
481 /// InsertBot.
482 /// \param IterNumber The serial number of the iteration currently being
483 /// peeled off.
484 /// \param ExitEdges The exit edges of the original loop.
485 /// \param[out] NewBlocks A list of the blocks in the newly created clone
486 /// \param[out] VMap The value map between the loop and the new clone.
487 /// \param LoopBlocks A helper for DFS-traversal of the loop.
488 /// \param LVMap A value-map that maps instructions from the original loop to
489 /// instructions in the last peeled-off iteration.
490 static void cloneLoopBlocks(
491 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
492 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *> > &ExitEdges,
493 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
494 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
495 LoopInfo *LI) {
496 BasicBlock *Header = L->getHeader();
497 BasicBlock *Latch = L->getLoopLatch();
498 BasicBlock *PreHeader = L->getLoopPreheader();
500 Function *F = Header->getParent();
501 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
502 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
503 Loop *ParentLoop = L->getParentLoop();
505 // For each block in the original loop, create a new copy,
506 // and update the value map with the newly created values.
507 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
508 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
509 NewBlocks.push_back(NewBB);
511 if (ParentLoop)
512 ParentLoop->addBasicBlockToLoop(NewBB, *LI);
514 VMap[*BB] = NewBB;
516 // If dominator tree is available, insert nodes to represent cloned blocks.
517 if (DT) {
518 if (Header == *BB)
519 DT->addNewBlock(NewBB, InsertTop);
520 else {
521 DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
522 // VMap must contain entry for IDom, as the iteration order is RPO.
523 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
528 // Hook-up the control flow for the newly inserted blocks.
529 // The new header is hooked up directly to the "top", which is either
530 // the original loop preheader (for the first iteration) or the previous
531 // iteration's exiting block (for every other iteration)
532 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
534 // Similarly, for the latch:
535 // The original exiting edge is still hooked up to the loop exit.
536 // The backedge now goes to the "bottom", which is either the loop's real
537 // header (for the last peeled iteration) or the copied header of the next
538 // iteration (for every other iteration)
539 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
540 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
541 for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
542 if (LatchBR->getSuccessor(idx) == Header) {
543 LatchBR->setSuccessor(idx, InsertBot);
544 break;
546 if (DT)
547 DT->changeImmediateDominator(InsertBot, NewLatch);
549 // The new copy of the loop body starts with a bunch of PHI nodes
550 // that pick an incoming value from either the preheader, or the previous
551 // loop iteration. Since this copy is no longer part of the loop, we
552 // resolve this statically:
553 // For the first iteration, we use the value from the preheader directly.
554 // For any other iteration, we replace the phi with the value generated by
555 // the immediately preceding clone of the loop body (which represents
556 // the previous iteration).
557 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
558 PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
559 if (IterNumber == 0) {
560 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
561 } else {
562 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
563 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
564 if (LatchInst && L->contains(LatchInst))
565 VMap[&*I] = LVMap[LatchInst];
566 else
567 VMap[&*I] = LatchVal;
569 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
572 // Fix up the outgoing values - we need to add a value for the iteration
573 // we've just created. Note that this must happen *after* the incoming
574 // values are adjusted, since the value going out of the latch may also be
575 // a value coming into the header.
576 for (auto Edge : ExitEdges)
577 for (PHINode &PHI : Edge.second->phis()) {
578 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
579 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
580 if (LatchInst && L->contains(LatchInst))
581 LatchVal = VMap[LatchVal];
582 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
585 // LastValueMap is updated with the values for the current loop
586 // which are used the next time this function is called.
587 for (auto KV : VMap)
588 LVMap[KV.first] = KV.second;
591 /// Peel off the first \p PeelCount iterations of loop \p L.
593 /// Note that this does not peel them off as a single straight-line block.
594 /// Rather, each iteration is peeled off separately, and needs to check the
595 /// exit condition.
596 /// For loops that dynamically execute \p PeelCount iterations or less
597 /// this provides a benefit, since the peeled off iterations, which account
598 /// for the bulk of dynamic execution, can be further simplified by scalar
599 /// optimizations.
600 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
601 ScalarEvolution *SE, DominatorTree *DT,
602 AssumptionCache *AC, bool PreserveLCSSA) {
603 assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
604 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
606 LoopBlocksDFS LoopBlocks(L);
607 LoopBlocks.perform(LI);
609 BasicBlock *Header = L->getHeader();
610 BasicBlock *PreHeader = L->getLoopPreheader();
611 BasicBlock *Latch = L->getLoopLatch();
612 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
613 L->getExitEdges(ExitEdges);
615 DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
616 if (DT) {
617 // We'd like to determine the idom of exit block after peeling one
618 // iteration.
619 // Let Exit is exit block.
620 // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
621 // blocks.
622 // Let Latch' and ExitingSet' are copies after a peeling.
623 // We'd like to find an idom'(Exit) - idom of Exit after peeling.
624 // It is an evident that idom'(Exit) will be the nearest common dominator
625 // of ExitingSet and ExitingSet'.
626 // idom(Exit) is a nearest common dominator of ExitingSet.
627 // idom(Exit)' is a nearest common dominator of ExitingSet'.
628 // Taking into account that we have a single Latch, Latch' will dominate
629 // Header and idom(Exit).
630 // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
631 // All these basic blocks are in the same loop, so what we find is
632 // (nearest common dominator of idom(Exit) and Latch)'.
633 // In the loop below we remember nearest common dominator of idom(Exit) and
634 // Latch to update idom of Exit later.
635 assert(L->hasDedicatedExits() && "No dedicated exits?");
636 for (auto Edge : ExitEdges) {
637 if (ExitIDom.count(Edge.second))
638 continue;
639 BasicBlock *BB = DT->findNearestCommonDominator(
640 DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
641 assert(L->contains(BB) && "IDom is not in a loop");
642 ExitIDom[Edge.second] = BB;
646 Function *F = Header->getParent();
648 // Set up all the necessary basic blocks. It is convenient to split the
649 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
650 // body, and a new preheader for the "real" loop.
652 // Peeling the first iteration transforms.
654 // PreHeader:
655 // ...
656 // Header:
657 // LoopBody
658 // If (cond) goto Header
659 // Exit:
661 // into
663 // InsertTop:
664 // LoopBody
665 // If (!cond) goto Exit
666 // InsertBot:
667 // NewPreHeader:
668 // ...
669 // Header:
670 // LoopBody
671 // If (cond) goto Header
672 // Exit:
674 // Each following iteration will split the current bottom anchor in two,
675 // and put the new copy of the loop body between these two blocks. That is,
676 // after peeling another iteration from the example above, we'll split
677 // InsertBot, and get:
679 // InsertTop:
680 // LoopBody
681 // If (!cond) goto Exit
682 // InsertBot:
683 // LoopBody
684 // If (!cond) goto Exit
685 // InsertBot.next:
686 // NewPreHeader:
687 // ...
688 // Header:
689 // LoopBody
690 // If (cond) goto Header
691 // Exit:
693 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
694 BasicBlock *InsertBot =
695 SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
696 BasicBlock *NewPreHeader =
697 SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
699 InsertTop->setName(Header->getName() + ".peel.begin");
700 InsertBot->setName(Header->getName() + ".peel.next");
701 NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
703 ValueToValueMapTy LVMap;
705 // If we have branch weight information, we'll want to update it for the
706 // newly created branches.
707 BranchInst *LatchBR =
708 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
709 uint64_t ExitWeight = 0, FallThroughWeight = 0;
710 initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
712 // For each peeled-off iteration, make a copy of the loop.
713 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
714 SmallVector<BasicBlock *, 8> NewBlocks;
715 ValueToValueMapTy VMap;
717 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
718 LoopBlocks, VMap, LVMap, DT, LI);
720 // Remap to use values from the current iteration instead of the
721 // previous one.
722 remapInstructionsInBlocks(NewBlocks, VMap);
724 if (DT) {
725 // Latches of the cloned loops dominate over the loop exit, so idom of the
726 // latter is the first cloned loop body, as original PreHeader dominates
727 // the original loop body.
728 if (Iter == 0)
729 for (auto Exit : ExitIDom)
730 DT->changeImmediateDominator(Exit.first,
731 cast<BasicBlock>(LVMap[Exit.second]));
732 #ifdef EXPENSIVE_CHECKS
733 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
734 #endif
737 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
738 updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
739 // Remove Loop metadata from the latch branch instruction
740 // because it is not the Loop's latch branch anymore.
741 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
743 InsertTop = InsertBot;
744 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
745 InsertBot->setName(Header->getName() + ".peel.next");
747 F->getBasicBlockList().splice(InsertTop->getIterator(),
748 F->getBasicBlockList(),
749 NewBlocks[0]->getIterator(), F->end());
752 // Now adjust the phi nodes in the loop header to get their initial values
753 // from the last peeled-off iteration instead of the preheader.
754 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
755 PHINode *PHI = cast<PHINode>(I);
756 Value *NewVal = PHI->getIncomingValueForBlock(Latch);
757 Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
758 if (LatchInst && L->contains(LatchInst))
759 NewVal = LVMap[LatchInst];
761 PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
764 fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
766 // Update Metadata for count of peeled off iterations.
767 unsigned AlreadyPeeled = 0;
768 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
769 AlreadyPeeled = *Peeled;
770 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
772 if (Loop *ParentLoop = L->getParentLoop())
773 L = ParentLoop;
775 // We modified the loop, update SE.
776 SE->forgetTopmostLoop(L);
778 // Finally DomtTree must be correct.
779 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
781 // FIXME: Incrementally update loop-simplify
782 simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
784 NumPeeled++;
786 return true;