1 //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements some loop unrolling utilities for peeling loops
10 // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
11 // unrolling loops with compile-time constant trip counts.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopIterator.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 #include "llvm/Transforms/Utils/ValueMapper.h"
50 using namespace llvm::PatternMatch
;
52 #define DEBUG_TYPE "loop-unroll"
54 STATISTIC(NumPeeled
, "Number of loops peeled");
56 static cl::opt
<unsigned> UnrollPeelMaxCount(
57 "unroll-peel-max-count", cl::init(7), cl::Hidden
,
58 cl::desc("Max average trip count which will cause loop peeling."));
60 static cl::opt
<unsigned> UnrollForcePeelCount(
61 "unroll-force-peel-count", cl::init(0), cl::Hidden
,
62 cl::desc("Force a peel count regardless of profiling information."));
64 static cl::opt
<bool> UnrollPeelMultiDeoptExit(
65 "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden
,
66 cl::desc("Allow peeling of loops with multiple deopt exits."));
68 static const char *PeeledCountMetaData
= "llvm.loop.peeled.count";
70 // Designates that a Phi is estimated to become invariant after an "infinite"
71 // number of loop iterations (i.e. only may become an invariant if the loop is
73 static const unsigned InfiniteIterationsToInvariance
=
74 std::numeric_limits
<unsigned>::max();
76 // Check whether we are capable of peeling this loop.
77 bool llvm::canPeel(Loop
*L
) {
78 // Make sure the loop is in simplified form
79 if (!L
->isLoopSimplifyForm())
82 if (UnrollPeelMultiDeoptExit
) {
83 SmallVector
<BasicBlock
*, 4> Exits
;
84 L
->getUniqueNonLatchExitBlocks(Exits
);
87 // Latch's terminator is a conditional branch, Latch is exiting and
88 // all non Latch exits ends up with deoptimize.
89 const BasicBlock
*Latch
= L
->getLoopLatch();
90 const BranchInst
*T
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
91 return T
&& T
->isConditional() && L
->isLoopExiting(Latch
) &&
92 all_of(Exits
, [](const BasicBlock
*BB
) {
93 return BB
->getTerminatingDeoptimizeCall();
98 // Only peel loops that contain a single exit
99 if (!L
->getExitingBlock() || !L
->getUniqueExitBlock())
102 // Don't try to peel loops where the latch is not the exiting block.
103 // This can be an indication of two different things:
104 // 1) The loop is not rotated.
105 // 2) The loop contains irreducible control flow that involves the latch.
106 if (L
->getLoopLatch() != L
->getExitingBlock())
112 // This function calculates the number of iterations after which the given Phi
113 // becomes an invariant. The pre-calculated values are memorized in the map. The
114 // function (shortcut is I) is calculated according to the following definition:
115 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
116 // If %y is a loop invariant, then I(%x) = 1.
117 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
118 // Otherwise, I(%x) is infinite.
119 // TODO: Actually if %y is an expression that depends only on Phi %z and some
120 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example
122 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration.
125 static unsigned calculateIterationsToInvariance(
126 PHINode
*Phi
, Loop
*L
, BasicBlock
*BackEdge
,
127 SmallDenseMap
<PHINode
*, unsigned> &IterationsToInvariance
) {
128 assert(Phi
->getParent() == L
->getHeader() &&
129 "Non-loop Phi should not be checked for turning into invariant.");
130 assert(BackEdge
== L
->getLoopLatch() && "Wrong latch?");
131 // If we already know the answer, take it from the map.
132 auto I
= IterationsToInvariance
.find(Phi
);
133 if (I
!= IterationsToInvariance
.end())
136 // Otherwise we need to analyze the input from the back edge.
137 Value
*Input
= Phi
->getIncomingValueForBlock(BackEdge
);
138 // Place infinity to map to avoid infinite recursion for cycled Phis. Such
139 // cycles can never stop on an invariant.
140 IterationsToInvariance
[Phi
] = InfiniteIterationsToInvariance
;
141 unsigned ToInvariance
= InfiniteIterationsToInvariance
;
143 if (L
->isLoopInvariant(Input
))
145 else if (PHINode
*IncPhi
= dyn_cast
<PHINode
>(Input
)) {
146 // Only consider Phis in header block.
147 if (IncPhi
->getParent() != L
->getHeader())
148 return InfiniteIterationsToInvariance
;
149 // If the input becomes an invariant after X iterations, then our Phi
150 // becomes an invariant after X + 1 iterations.
151 unsigned InputToInvariance
= calculateIterationsToInvariance(
152 IncPhi
, L
, BackEdge
, IterationsToInvariance
);
153 if (InputToInvariance
!= InfiniteIterationsToInvariance
)
154 ToInvariance
= InputToInvariance
+ 1u;
157 // If we found that this Phi lies in an invariant chain, update the map.
158 if (ToInvariance
!= InfiniteIterationsToInvariance
)
159 IterationsToInvariance
[Phi
] = ToInvariance
;
163 // Return the number of iterations to peel off that make conditions in the
164 // body true/false. For example, if we peel 2 iterations off the loop below,
165 // the condition i < 2 can be evaluated at compile time.
166 // for (i = 0; i < n; i++)
172 static unsigned countToEliminateCompares(Loop
&L
, unsigned MaxPeelCount
,
173 ScalarEvolution
&SE
) {
174 assert(L
.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
175 unsigned DesiredPeelCount
= 0;
177 for (auto *BB
: L
.blocks()) {
178 auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
179 if (!BI
|| BI
->isUnconditional())
182 // Ignore loop exit condition.
183 if (L
.getLoopLatch() == BB
)
186 Value
*Condition
= BI
->getCondition();
187 Value
*LeftVal
, *RightVal
;
188 CmpInst::Predicate Pred
;
189 if (!match(Condition
, m_ICmp(Pred
, m_Value(LeftVal
), m_Value(RightVal
))))
192 const SCEV
*LeftSCEV
= SE
.getSCEV(LeftVal
);
193 const SCEV
*RightSCEV
= SE
.getSCEV(RightVal
);
195 // Do not consider predicates that are known to be true or false
196 // independently of the loop iteration.
197 if (SE
.isKnownPredicate(Pred
, LeftSCEV
, RightSCEV
) ||
198 SE
.isKnownPredicate(ICmpInst::getInversePredicate(Pred
), LeftSCEV
,
202 // Check if we have a condition with one AddRec and one non AddRec
203 // expression. Normalize LeftSCEV to be the AddRec.
204 if (!isa
<SCEVAddRecExpr
>(LeftSCEV
)) {
205 if (isa
<SCEVAddRecExpr
>(RightSCEV
)) {
206 std::swap(LeftSCEV
, RightSCEV
);
207 Pred
= ICmpInst::getSwappedPredicate(Pred
);
212 const SCEVAddRecExpr
*LeftAR
= cast
<SCEVAddRecExpr
>(LeftSCEV
);
214 // Avoid huge SCEV computations in the loop below, make sure we only
215 // consider AddRecs of the loop we are trying to peel.
216 if (!LeftAR
->isAffine() || LeftAR
->getLoop() != &L
)
219 if (!(ICmpInst::isEquality(Pred
) && LeftAR
->hasNoSelfWrap()) &&
220 !SE
.isMonotonicPredicate(LeftAR
, Pred
, Increasing
))
224 // Check if extending the current DesiredPeelCount lets us evaluate Pred
225 // or !Pred in the loop body statically.
226 unsigned NewPeelCount
= DesiredPeelCount
;
228 const SCEV
*IterVal
= LeftAR
->evaluateAtIteration(
229 SE
.getConstant(LeftSCEV
->getType(), NewPeelCount
), SE
);
231 // If the original condition is not known, get the negated predicate
232 // (which holds on the else branch) and check if it is known. This allows
233 // us to peel of iterations that make the original condition false.
234 if (!SE
.isKnownPredicate(Pred
, IterVal
, RightSCEV
))
235 Pred
= ICmpInst::getInversePredicate(Pred
);
237 const SCEV
*Step
= LeftAR
->getStepRecurrence(SE
);
238 const SCEV
*NextIterVal
= SE
.getAddExpr(IterVal
, Step
);
239 auto PeelOneMoreIteration
= [&IterVal
, &NextIterVal
, &SE
, Step
,
241 IterVal
= NextIterVal
;
242 NextIterVal
= SE
.getAddExpr(IterVal
, Step
);
246 auto CanPeelOneMoreIteration
= [&NewPeelCount
, &MaxPeelCount
]() {
247 return NewPeelCount
< MaxPeelCount
;
250 while (CanPeelOneMoreIteration() &&
251 SE
.isKnownPredicate(Pred
, IterVal
, RightSCEV
))
252 PeelOneMoreIteration();
254 // With *that* peel count, does the predicate !Pred become known in the
255 // first iteration of the loop body after peeling?
256 if (!SE
.isKnownPredicate(ICmpInst::getInversePredicate(Pred
), IterVal
,
258 continue; // If not, give up.
260 // However, for equality comparisons, that isn't always sufficient to
261 // eliminate the comparsion in loop body, we may need to peel one more
262 // iteration. See if that makes !Pred become unknown again.
263 if (ICmpInst::isEquality(Pred
) &&
264 !SE
.isKnownPredicate(ICmpInst::getInversePredicate(Pred
), NextIterVal
,
266 assert(!SE
.isKnownPredicate(Pred
, IterVal
, RightSCEV
) &&
267 SE
.isKnownPredicate(Pred
, NextIterVal
, RightSCEV
) &&
268 "Expected Pred to go from known to unknown.");
269 if (!CanPeelOneMoreIteration())
270 continue; // Need to peel one more iteration, but can't. Give up.
271 PeelOneMoreIteration(); // Great!
274 DesiredPeelCount
= std::max(DesiredPeelCount
, NewPeelCount
);
277 return DesiredPeelCount
;
280 // Return the number of iterations we want to peel off.
281 void llvm::computePeelCount(Loop
*L
, unsigned LoopSize
,
282 TargetTransformInfo::UnrollingPreferences
&UP
,
283 unsigned &TripCount
, ScalarEvolution
&SE
) {
284 assert(LoopSize
> 0 && "Zero loop size is not allowed!");
285 // Save the UP.PeelCount value set by the target in
286 // TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
287 unsigned TargetPeelCount
= UP
.PeelCount
;
292 // Only try to peel innermost loops.
296 // If the user provided a peel count, use that.
297 bool UserPeelCount
= UnrollForcePeelCount
.getNumOccurrences() > 0;
299 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
300 << " iterations.\n");
301 UP
.PeelCount
= UnrollForcePeelCount
;
302 UP
.PeelProfiledIterations
= true;
306 // Skip peeling if it's disabled.
307 if (!UP
.AllowPeeling
)
310 unsigned AlreadyPeeled
= 0;
311 if (auto Peeled
= getOptionalIntLoopAttribute(L
, PeeledCountMetaData
))
312 AlreadyPeeled
= *Peeled
;
313 // Stop if we already peeled off the maximum number of iterations.
314 if (AlreadyPeeled
>= UnrollPeelMaxCount
)
317 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
318 // iterations of the loop. For this we compute the number for iterations after
319 // which every Phi is guaranteed to become an invariant, and try to peel the
320 // maximum number of iterations among these values, thus turning all those
321 // Phis into invariants.
322 // First, check that we can peel at least one iteration.
323 if (2 * LoopSize
<= UP
.Threshold
&& UnrollPeelMaxCount
> 0) {
324 // Store the pre-calculated values here.
325 SmallDenseMap
<PHINode
*, unsigned> IterationsToInvariance
;
326 // Now go through all Phis to calculate their the number of iterations they
327 // need to become invariants.
328 // Start the max computation with the UP.PeelCount value set by the target
329 // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
330 unsigned DesiredPeelCount
= TargetPeelCount
;
331 BasicBlock
*BackEdge
= L
->getLoopLatch();
332 assert(BackEdge
&& "Loop is not in simplified form?");
333 for (auto BI
= L
->getHeader()->begin(); isa
<PHINode
>(&*BI
); ++BI
) {
334 PHINode
*Phi
= cast
<PHINode
>(&*BI
);
335 unsigned ToInvariance
= calculateIterationsToInvariance(
336 Phi
, L
, BackEdge
, IterationsToInvariance
);
337 if (ToInvariance
!= InfiniteIterationsToInvariance
)
338 DesiredPeelCount
= std::max(DesiredPeelCount
, ToInvariance
);
341 // Pay respect to limitations implied by loop size and the max peel count.
342 unsigned MaxPeelCount
= UnrollPeelMaxCount
;
343 MaxPeelCount
= std::min(MaxPeelCount
, UP
.Threshold
/ LoopSize
- 1);
345 DesiredPeelCount
= std::max(DesiredPeelCount
,
346 countToEliminateCompares(*L
, MaxPeelCount
, SE
));
348 if (DesiredPeelCount
> 0) {
349 DesiredPeelCount
= std::min(DesiredPeelCount
, MaxPeelCount
);
350 // Consider max peel count limitation.
351 assert(DesiredPeelCount
> 0 && "Wrong loop size estimation?");
352 if (DesiredPeelCount
+ AlreadyPeeled
<= UnrollPeelMaxCount
) {
353 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
354 << " iteration(s) to turn"
355 << " some Phis into invariants.\n");
356 UP
.PeelCount
= DesiredPeelCount
;
357 UP
.PeelProfiledIterations
= false;
363 // Bail if we know the statically calculated trip count.
364 // In this case we rather prefer partial unrolling.
368 // Do not apply profile base peeling if it is disabled.
369 if (!UP
.PeelProfiledIterations
)
371 // If we don't know the trip count, but have reason to believe the average
372 // trip count is low, peeling should be beneficial, since we will usually
373 // hit the peeled section.
374 // We only do this in the presence of profile information, since otherwise
375 // our estimates of the trip count are not reliable enough.
376 if (L
->getHeader()->getParent()->hasProfileData()) {
377 Optional
<unsigned> PeelCount
= getLoopEstimatedTripCount(L
);
381 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
385 if ((*PeelCount
+ AlreadyPeeled
<= UnrollPeelMaxCount
) &&
386 (LoopSize
* (*PeelCount
+ 1) <= UP
.Threshold
)) {
387 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
388 << " iterations.\n");
389 UP
.PeelCount
= *PeelCount
;
392 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount
<< "\n");
393 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled
<< "\n");
394 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount
<< "\n");
395 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize
* (*PeelCount
+ 1)
397 LLVM_DEBUG(dbgs() << "Max peel cost: " << UP
.Threshold
<< "\n");
402 /// Update the branch weights of the latch of a peeled-off loop
404 /// This sets the branch weights for the latch of the recently peeled off loop
405 /// iteration correctly.
406 /// Let F is a weight of the edge from latch to header.
407 /// Let E is a weight of the edge from latch to exit.
408 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
410 /// Then, Estimated TripCount = F / E.
411 /// For I-th (counting from 0) peeled off iteration we set the the weights for
412 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
413 /// The probability to go to exit 1/(TC-I) increases. At the same time
414 /// the estimated trip count of remaining loop reduces by I.
415 /// To avoid dealing with division rounding we can just multiple both part
416 /// of weights to E and use weight as (F - I * E, E).
418 /// \param Header The copy of the header block that belongs to next iteration.
419 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
420 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
421 /// header before peeling (in) and after peeled off one iteration (out).
422 static void updateBranchWeights(BasicBlock
*Header
, BranchInst
*LatchBR
,
424 uint64_t &FallThroughWeight
) {
425 // FallThroughWeight is 0 means that there is no branch weights on original
426 // latch block or estimated trip count is zero.
427 if (!FallThroughWeight
)
430 unsigned HeaderIdx
= (LatchBR
->getSuccessor(0) == Header
? 0 : 1);
431 MDBuilder
MDB(LatchBR
->getContext());
433 HeaderIdx
? MDB
.createBranchWeights(ExitWeight
, FallThroughWeight
)
434 : MDB
.createBranchWeights(FallThroughWeight
, ExitWeight
);
435 LatchBR
->setMetadata(LLVMContext::MD_prof
, WeightNode
);
437 FallThroughWeight
> ExitWeight
? FallThroughWeight
- ExitWeight
: 1;
440 /// Initialize the weights.
442 /// \param Header The header block.
443 /// \param LatchBR The latch branch.
444 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
445 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
446 static void initBranchWeights(BasicBlock
*Header
, BranchInst
*LatchBR
,
447 uint64_t &ExitWeight
,
448 uint64_t &FallThroughWeight
) {
449 uint64_t TrueWeight
, FalseWeight
;
450 if (!LatchBR
->extractProfMetadata(TrueWeight
, FalseWeight
))
452 unsigned HeaderIdx
= LatchBR
->getSuccessor(0) == Header
? 0 : 1;
453 ExitWeight
= HeaderIdx
? TrueWeight
: FalseWeight
;
454 FallThroughWeight
= HeaderIdx
? FalseWeight
: TrueWeight
;
457 /// Update the weights of original Latch block after peeling off all iterations.
459 /// \param Header The header block.
460 /// \param LatchBR The latch branch.
461 /// \param ExitWeight The weight of the edge from Latch to Exit.
462 /// \param FallThroughWeight The weight of the edge from Latch to Header.
463 static void fixupBranchWeights(BasicBlock
*Header
, BranchInst
*LatchBR
,
465 uint64_t FallThroughWeight
) {
466 // FallThroughWeight is 0 means that there is no branch weights on original
467 // latch block or estimated trip count is zero.
468 if (!FallThroughWeight
)
471 // Sets the branch weights on the loop exit.
472 MDBuilder
MDB(LatchBR
->getContext());
473 unsigned HeaderIdx
= LatchBR
->getSuccessor(0) == Header
? 0 : 1;
475 HeaderIdx
? MDB
.createBranchWeights(ExitWeight
, FallThroughWeight
)
476 : MDB
.createBranchWeights(FallThroughWeight
, ExitWeight
);
477 LatchBR
->setMetadata(LLVMContext::MD_prof
, WeightNode
);
480 /// Clones the body of the loop L, putting it between \p InsertTop and \p
482 /// \param IterNumber The serial number of the iteration currently being
484 /// \param ExitEdges The exit edges of the original loop.
485 /// \param[out] NewBlocks A list of the blocks in the newly created clone
486 /// \param[out] VMap The value map between the loop and the new clone.
487 /// \param LoopBlocks A helper for DFS-traversal of the loop.
488 /// \param LVMap A value-map that maps instructions from the original loop to
489 /// instructions in the last peeled-off iteration.
490 static void cloneLoopBlocks(
491 Loop
*L
, unsigned IterNumber
, BasicBlock
*InsertTop
, BasicBlock
*InsertBot
,
492 SmallVectorImpl
<std::pair
<BasicBlock
*, BasicBlock
*> > &ExitEdges
,
493 SmallVectorImpl
<BasicBlock
*> &NewBlocks
, LoopBlocksDFS
&LoopBlocks
,
494 ValueToValueMapTy
&VMap
, ValueToValueMapTy
&LVMap
, DominatorTree
*DT
,
496 BasicBlock
*Header
= L
->getHeader();
497 BasicBlock
*Latch
= L
->getLoopLatch();
498 BasicBlock
*PreHeader
= L
->getLoopPreheader();
500 Function
*F
= Header
->getParent();
501 LoopBlocksDFS::RPOIterator BlockBegin
= LoopBlocks
.beginRPO();
502 LoopBlocksDFS::RPOIterator BlockEnd
= LoopBlocks
.endRPO();
503 Loop
*ParentLoop
= L
->getParentLoop();
505 // For each block in the original loop, create a new copy,
506 // and update the value map with the newly created values.
507 for (LoopBlocksDFS::RPOIterator BB
= BlockBegin
; BB
!= BlockEnd
; ++BB
) {
508 BasicBlock
*NewBB
= CloneBasicBlock(*BB
, VMap
, ".peel", F
);
509 NewBlocks
.push_back(NewBB
);
512 ParentLoop
->addBasicBlockToLoop(NewBB
, *LI
);
516 // If dominator tree is available, insert nodes to represent cloned blocks.
519 DT
->addNewBlock(NewBB
, InsertTop
);
521 DomTreeNode
*IDom
= DT
->getNode(*BB
)->getIDom();
522 // VMap must contain entry for IDom, as the iteration order is RPO.
523 DT
->addNewBlock(NewBB
, cast
<BasicBlock
>(VMap
[IDom
->getBlock()]));
528 // Hook-up the control flow for the newly inserted blocks.
529 // The new header is hooked up directly to the "top", which is either
530 // the original loop preheader (for the first iteration) or the previous
531 // iteration's exiting block (for every other iteration)
532 InsertTop
->getTerminator()->setSuccessor(0, cast
<BasicBlock
>(VMap
[Header
]));
534 // Similarly, for the latch:
535 // The original exiting edge is still hooked up to the loop exit.
536 // The backedge now goes to the "bottom", which is either the loop's real
537 // header (for the last peeled iteration) or the copied header of the next
538 // iteration (for every other iteration)
539 BasicBlock
*NewLatch
= cast
<BasicBlock
>(VMap
[Latch
]);
540 BranchInst
*LatchBR
= cast
<BranchInst
>(NewLatch
->getTerminator());
541 for (unsigned idx
= 0, e
= LatchBR
->getNumSuccessors(); idx
< e
; ++idx
)
542 if (LatchBR
->getSuccessor(idx
) == Header
) {
543 LatchBR
->setSuccessor(idx
, InsertBot
);
547 DT
->changeImmediateDominator(InsertBot
, NewLatch
);
549 // The new copy of the loop body starts with a bunch of PHI nodes
550 // that pick an incoming value from either the preheader, or the previous
551 // loop iteration. Since this copy is no longer part of the loop, we
552 // resolve this statically:
553 // For the first iteration, we use the value from the preheader directly.
554 // For any other iteration, we replace the phi with the value generated by
555 // the immediately preceding clone of the loop body (which represents
556 // the previous iteration).
557 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
558 PHINode
*NewPHI
= cast
<PHINode
>(VMap
[&*I
]);
559 if (IterNumber
== 0) {
560 VMap
[&*I
] = NewPHI
->getIncomingValueForBlock(PreHeader
);
562 Value
*LatchVal
= NewPHI
->getIncomingValueForBlock(Latch
);
563 Instruction
*LatchInst
= dyn_cast
<Instruction
>(LatchVal
);
564 if (LatchInst
&& L
->contains(LatchInst
))
565 VMap
[&*I
] = LVMap
[LatchInst
];
567 VMap
[&*I
] = LatchVal
;
569 cast
<BasicBlock
>(VMap
[Header
])->getInstList().erase(NewPHI
);
572 // Fix up the outgoing values - we need to add a value for the iteration
573 // we've just created. Note that this must happen *after* the incoming
574 // values are adjusted, since the value going out of the latch may also be
575 // a value coming into the header.
576 for (auto Edge
: ExitEdges
)
577 for (PHINode
&PHI
: Edge
.second
->phis()) {
578 Value
*LatchVal
= PHI
.getIncomingValueForBlock(Edge
.first
);
579 Instruction
*LatchInst
= dyn_cast
<Instruction
>(LatchVal
);
580 if (LatchInst
&& L
->contains(LatchInst
))
581 LatchVal
= VMap
[LatchVal
];
582 PHI
.addIncoming(LatchVal
, cast
<BasicBlock
>(VMap
[Edge
.first
]));
585 // LastValueMap is updated with the values for the current loop
586 // which are used the next time this function is called.
588 LVMap
[KV
.first
] = KV
.second
;
591 /// Peel off the first \p PeelCount iterations of loop \p L.
593 /// Note that this does not peel them off as a single straight-line block.
594 /// Rather, each iteration is peeled off separately, and needs to check the
596 /// For loops that dynamically execute \p PeelCount iterations or less
597 /// this provides a benefit, since the peeled off iterations, which account
598 /// for the bulk of dynamic execution, can be further simplified by scalar
600 bool llvm::peelLoop(Loop
*L
, unsigned PeelCount
, LoopInfo
*LI
,
601 ScalarEvolution
*SE
, DominatorTree
*DT
,
602 AssumptionCache
*AC
, bool PreserveLCSSA
) {
603 assert(PeelCount
> 0 && "Attempt to peel out zero iterations?");
604 assert(canPeel(L
) && "Attempt to peel a loop which is not peelable?");
606 LoopBlocksDFS
LoopBlocks(L
);
607 LoopBlocks
.perform(LI
);
609 BasicBlock
*Header
= L
->getHeader();
610 BasicBlock
*PreHeader
= L
->getLoopPreheader();
611 BasicBlock
*Latch
= L
->getLoopLatch();
612 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 4> ExitEdges
;
613 L
->getExitEdges(ExitEdges
);
615 DenseMap
<BasicBlock
*, BasicBlock
*> ExitIDom
;
617 // We'd like to determine the idom of exit block after peeling one
619 // Let Exit is exit block.
620 // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
622 // Let Latch' and ExitingSet' are copies after a peeling.
623 // We'd like to find an idom'(Exit) - idom of Exit after peeling.
624 // It is an evident that idom'(Exit) will be the nearest common dominator
625 // of ExitingSet and ExitingSet'.
626 // idom(Exit) is a nearest common dominator of ExitingSet.
627 // idom(Exit)' is a nearest common dominator of ExitingSet'.
628 // Taking into account that we have a single Latch, Latch' will dominate
629 // Header and idom(Exit).
630 // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
631 // All these basic blocks are in the same loop, so what we find is
632 // (nearest common dominator of idom(Exit) and Latch)'.
633 // In the loop below we remember nearest common dominator of idom(Exit) and
634 // Latch to update idom of Exit later.
635 assert(L
->hasDedicatedExits() && "No dedicated exits?");
636 for (auto Edge
: ExitEdges
) {
637 if (ExitIDom
.count(Edge
.second
))
639 BasicBlock
*BB
= DT
->findNearestCommonDominator(
640 DT
->getNode(Edge
.second
)->getIDom()->getBlock(), Latch
);
641 assert(L
->contains(BB
) && "IDom is not in a loop");
642 ExitIDom
[Edge
.second
] = BB
;
646 Function
*F
= Header
->getParent();
648 // Set up all the necessary basic blocks. It is convenient to split the
649 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
650 // body, and a new preheader for the "real" loop.
652 // Peeling the first iteration transforms.
658 // If (cond) goto Header
665 // If (!cond) goto Exit
671 // If (cond) goto Header
674 // Each following iteration will split the current bottom anchor in two,
675 // and put the new copy of the loop body between these two blocks. That is,
676 // after peeling another iteration from the example above, we'll split
677 // InsertBot, and get:
681 // If (!cond) goto Exit
684 // If (!cond) goto Exit
690 // If (cond) goto Header
693 BasicBlock
*InsertTop
= SplitEdge(PreHeader
, Header
, DT
, LI
);
694 BasicBlock
*InsertBot
=
695 SplitBlock(InsertTop
, InsertTop
->getTerminator(), DT
, LI
);
696 BasicBlock
*NewPreHeader
=
697 SplitBlock(InsertBot
, InsertBot
->getTerminator(), DT
, LI
);
699 InsertTop
->setName(Header
->getName() + ".peel.begin");
700 InsertBot
->setName(Header
->getName() + ".peel.next");
701 NewPreHeader
->setName(PreHeader
->getName() + ".peel.newph");
703 ValueToValueMapTy LVMap
;
705 // If we have branch weight information, we'll want to update it for the
706 // newly created branches.
707 BranchInst
*LatchBR
=
708 cast
<BranchInst
>(cast
<BasicBlock
>(Latch
)->getTerminator());
709 uint64_t ExitWeight
= 0, FallThroughWeight
= 0;
710 initBranchWeights(Header
, LatchBR
, ExitWeight
, FallThroughWeight
);
712 // For each peeled-off iteration, make a copy of the loop.
713 for (unsigned Iter
= 0; Iter
< PeelCount
; ++Iter
) {
714 SmallVector
<BasicBlock
*, 8> NewBlocks
;
715 ValueToValueMapTy VMap
;
717 cloneLoopBlocks(L
, Iter
, InsertTop
, InsertBot
, ExitEdges
, NewBlocks
,
718 LoopBlocks
, VMap
, LVMap
, DT
, LI
);
720 // Remap to use values from the current iteration instead of the
722 remapInstructionsInBlocks(NewBlocks
, VMap
);
725 // Latches of the cloned loops dominate over the loop exit, so idom of the
726 // latter is the first cloned loop body, as original PreHeader dominates
727 // the original loop body.
729 for (auto Exit
: ExitIDom
)
730 DT
->changeImmediateDominator(Exit
.first
,
731 cast
<BasicBlock
>(LVMap
[Exit
.second
]));
732 #ifdef EXPENSIVE_CHECKS
733 assert(DT
->verify(DominatorTree::VerificationLevel::Fast
));
737 auto *LatchBRCopy
= cast
<BranchInst
>(VMap
[LatchBR
]);
738 updateBranchWeights(InsertBot
, LatchBRCopy
, ExitWeight
, FallThroughWeight
);
739 // Remove Loop metadata from the latch branch instruction
740 // because it is not the Loop's latch branch anymore.
741 LatchBRCopy
->setMetadata(LLVMContext::MD_loop
, nullptr);
743 InsertTop
= InsertBot
;
744 InsertBot
= SplitBlock(InsertBot
, InsertBot
->getTerminator(), DT
, LI
);
745 InsertBot
->setName(Header
->getName() + ".peel.next");
747 F
->getBasicBlockList().splice(InsertTop
->getIterator(),
748 F
->getBasicBlockList(),
749 NewBlocks
[0]->getIterator(), F
->end());
752 // Now adjust the phi nodes in the loop header to get their initial values
753 // from the last peeled-off iteration instead of the preheader.
754 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
755 PHINode
*PHI
= cast
<PHINode
>(I
);
756 Value
*NewVal
= PHI
->getIncomingValueForBlock(Latch
);
757 Instruction
*LatchInst
= dyn_cast
<Instruction
>(NewVal
);
758 if (LatchInst
&& L
->contains(LatchInst
))
759 NewVal
= LVMap
[LatchInst
];
761 PHI
->setIncomingValueForBlock(NewPreHeader
, NewVal
);
764 fixupBranchWeights(Header
, LatchBR
, ExitWeight
, FallThroughWeight
);
766 // Update Metadata for count of peeled off iterations.
767 unsigned AlreadyPeeled
= 0;
768 if (auto Peeled
= getOptionalIntLoopAttribute(L
, PeeledCountMetaData
))
769 AlreadyPeeled
= *Peeled
;
770 addStringMetadataToLoop(L
, PeeledCountMetaData
, AlreadyPeeled
+ PeelCount
);
772 if (Loop
*ParentLoop
= L
->getParentLoop())
775 // We modified the loop, update SE.
776 SE
->forgetTopmostLoop(L
);
778 // Finally DomtTree must be correct.
779 assert(DT
->verify(DominatorTree::VerificationLevel::Fast
));
781 // FIXME: Incrementally update loop-simplify
782 simplifyLoop(L
, DT
, LI
, SE
, AC
, nullptr, PreserveLCSSA
);