Clang] Fix expansion of response files in -Wp after integrated-cc1 change
[llvm-project.git] / llvm / lib / Transforms / Utils / LowerSwitch.cpp
blob4b9d0dadfc1733df4662948265ae4dd642d376a6
1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LowerSwitch transformation rewrites switch instructions with a sequence
10 // of branches, which allows targets to get away with not implementing the
11 // switch instruction until it is convenient.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/ConstantRange.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <limits>
44 #include <vector>
46 using namespace llvm;
48 #define DEBUG_TYPE "lower-switch"
50 namespace {
52 struct IntRange {
53 int64_t Low, High;
56 } // end anonymous namespace
58 // Return true iff R is covered by Ranges.
59 static bool IsInRanges(const IntRange &R,
60 const std::vector<IntRange> &Ranges) {
61 // Note: Ranges must be sorted, non-overlapping and non-adjacent.
63 // Find the first range whose High field is >= R.High,
64 // then check if the Low field is <= R.Low. If so, we
65 // have a Range that covers R.
66 auto I = llvm::lower_bound(
67 Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
68 return I != Ranges.end() && I->Low <= R.Low;
71 namespace {
73 /// Replace all SwitchInst instructions with chained branch instructions.
74 class LowerSwitch : public FunctionPass {
75 public:
76 // Pass identification, replacement for typeid
77 static char ID;
79 LowerSwitch() : FunctionPass(ID) {
80 initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
83 bool runOnFunction(Function &F) override;
85 void getAnalysisUsage(AnalysisUsage &AU) const override {
86 AU.addRequired<LazyValueInfoWrapperPass>();
89 struct CaseRange {
90 ConstantInt* Low;
91 ConstantInt* High;
92 BasicBlock* BB;
94 CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
95 : Low(low), High(high), BB(bb) {}
98 using CaseVector = std::vector<CaseRange>;
99 using CaseItr = std::vector<CaseRange>::iterator;
101 private:
102 void processSwitchInst(SwitchInst *SI,
103 SmallPtrSetImpl<BasicBlock *> &DeleteList,
104 AssumptionCache *AC, LazyValueInfo *LVI);
106 BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
107 ConstantInt *LowerBound, ConstantInt *UpperBound,
108 Value *Val, BasicBlock *Predecessor,
109 BasicBlock *OrigBlock, BasicBlock *Default,
110 const std::vector<IntRange> &UnreachableRanges);
111 BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val,
112 ConstantInt *LowerBound, ConstantInt *UpperBound,
113 BasicBlock *OrigBlock, BasicBlock *Default);
114 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
117 /// The comparison function for sorting the switch case values in the vector.
118 /// WARNING: Case ranges should be disjoint!
119 struct CaseCmp {
120 bool operator()(const LowerSwitch::CaseRange& C1,
121 const LowerSwitch::CaseRange& C2) {
122 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
123 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
124 return CI1->getValue().slt(CI2->getValue());
128 } // end anonymous namespace
130 char LowerSwitch::ID = 0;
132 // Publicly exposed interface to pass...
133 char &llvm::LowerSwitchID = LowerSwitch::ID;
135 INITIALIZE_PASS_BEGIN(LowerSwitch, "lowerswitch",
136 "Lower SwitchInst's to branches", false, false)
137 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
138 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
139 INITIALIZE_PASS_END(LowerSwitch, "lowerswitch",
140 "Lower SwitchInst's to branches", false, false)
142 // createLowerSwitchPass - Interface to this file...
143 FunctionPass *llvm::createLowerSwitchPass() {
144 return new LowerSwitch();
147 bool LowerSwitch::runOnFunction(Function &F) {
148 LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
149 auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
150 AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
151 // Prevent LazyValueInfo from using the DominatorTree as LowerSwitch does not
152 // preserve it and it becomes stale (when available) pretty much immediately.
153 // Currently the DominatorTree is only used by LowerSwitch indirectly via LVI
154 // and computeKnownBits to refine isValidAssumeForContext's results. Given
155 // that the latter can handle some of the simple cases w/o a DominatorTree,
156 // it's easier to refrain from using the tree than to keep it up to date.
157 LVI->disableDT();
159 bool Changed = false;
160 SmallPtrSet<BasicBlock*, 8> DeleteList;
162 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
163 BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
165 // If the block is a dead Default block that will be deleted later, don't
166 // waste time processing it.
167 if (DeleteList.count(Cur))
168 continue;
170 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
171 Changed = true;
172 processSwitchInst(SI, DeleteList, AC, LVI);
176 for (BasicBlock* BB: DeleteList) {
177 LVI->eraseBlock(BB);
178 DeleteDeadBlock(BB);
181 return Changed;
184 /// Used for debugging purposes.
185 LLVM_ATTRIBUTE_USED
186 static raw_ostream &operator<<(raw_ostream &O,
187 const LowerSwitch::CaseVector &C) {
188 O << "[";
190 for (LowerSwitch::CaseVector::const_iterator B = C.begin(), E = C.end();
191 B != E;) {
192 O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
193 if (++B != E)
194 O << ", ";
197 return O << "]";
200 /// Update the first occurrence of the "switch statement" BB in the PHI
201 /// node with the "new" BB. The other occurrences will:
203 /// 1) Be updated by subsequent calls to this function. Switch statements may
204 /// have more than one outcoming edge into the same BB if they all have the same
205 /// value. When the switch statement is converted these incoming edges are now
206 /// coming from multiple BBs.
207 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
208 /// multiple outcome edges are condensed into one. This is necessary to keep the
209 /// number of phi values equal to the number of branches to SuccBB.
210 static void
211 fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
212 const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
213 for (BasicBlock::iterator I = SuccBB->begin(),
214 IE = SuccBB->getFirstNonPHI()->getIterator();
215 I != IE; ++I) {
216 PHINode *PN = cast<PHINode>(I);
218 // Only update the first occurrence.
219 unsigned Idx = 0, E = PN->getNumIncomingValues();
220 unsigned LocalNumMergedCases = NumMergedCases;
221 for (; Idx != E; ++Idx) {
222 if (PN->getIncomingBlock(Idx) == OrigBB) {
223 PN->setIncomingBlock(Idx, NewBB);
224 break;
228 // Remove additional occurrences coming from condensed cases and keep the
229 // number of incoming values equal to the number of branches to SuccBB.
230 SmallVector<unsigned, 8> Indices;
231 for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
232 if (PN->getIncomingBlock(Idx) == OrigBB) {
233 Indices.push_back(Idx);
234 LocalNumMergedCases--;
236 // Remove incoming values in the reverse order to prevent invalidating
237 // *successive* index.
238 for (unsigned III : llvm::reverse(Indices))
239 PN->removeIncomingValue(III);
243 /// Convert the switch statement into a binary lookup of the case values.
244 /// The function recursively builds this tree. LowerBound and UpperBound are
245 /// used to keep track of the bounds for Val that have already been checked by
246 /// a block emitted by one of the previous calls to switchConvert in the call
247 /// stack.
248 BasicBlock *
249 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
250 ConstantInt *UpperBound, Value *Val,
251 BasicBlock *Predecessor, BasicBlock *OrigBlock,
252 BasicBlock *Default,
253 const std::vector<IntRange> &UnreachableRanges) {
254 assert(LowerBound && UpperBound && "Bounds must be initialized");
255 unsigned Size = End - Begin;
257 if (Size == 1) {
258 // Check if the Case Range is perfectly squeezed in between
259 // already checked Upper and Lower bounds. If it is then we can avoid
260 // emitting the code that checks if the value actually falls in the range
261 // because the bounds already tell us so.
262 if (Begin->Low == LowerBound && Begin->High == UpperBound) {
263 unsigned NumMergedCases = 0;
264 NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
265 fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
266 return Begin->BB;
268 return newLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
269 Default);
272 unsigned Mid = Size / 2;
273 std::vector<CaseRange> LHS(Begin, Begin + Mid);
274 LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
275 std::vector<CaseRange> RHS(Begin + Mid, End);
276 LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
278 CaseRange &Pivot = *(Begin + Mid);
279 LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
280 << Pivot.High->getValue() << "]\n");
282 // NewLowerBound here should never be the integer minimal value.
283 // This is because it is computed from a case range that is never
284 // the smallest, so there is always a case range that has at least
285 // a smaller value.
286 ConstantInt *NewLowerBound = Pivot.Low;
288 // Because NewLowerBound is never the smallest representable integer
289 // it is safe here to subtract one.
290 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
291 NewLowerBound->getValue() - 1);
293 if (!UnreachableRanges.empty()) {
294 // Check if the gap between LHS's highest and NewLowerBound is unreachable.
295 int64_t GapLow = LHS.back().High->getSExtValue() + 1;
296 int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
297 IntRange Gap = { GapLow, GapHigh };
298 if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
299 NewUpperBound = LHS.back().High;
302 LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
303 << NewUpperBound->getSExtValue() << "]\n"
304 << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
305 << ", " << UpperBound->getSExtValue() << "]\n");
307 // Create a new node that checks if the value is < pivot. Go to the
308 // left branch if it is and right branch if not.
309 Function* F = OrigBlock->getParent();
310 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
312 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
313 Val, Pivot.Low, "Pivot");
315 BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
316 NewUpperBound, Val, NewNode, OrigBlock,
317 Default, UnreachableRanges);
318 BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
319 UpperBound, Val, NewNode, OrigBlock,
320 Default, UnreachableRanges);
322 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
323 NewNode->getInstList().push_back(Comp);
325 BranchInst::Create(LBranch, RBranch, Comp, NewNode);
326 return NewNode;
329 /// Create a new leaf block for the binary lookup tree. It checks if the
330 /// switch's value == the case's value. If not, then it jumps to the default
331 /// branch. At this point in the tree, the value can't be another valid case
332 /// value, so the jump to the "default" branch is warranted.
333 BasicBlock *LowerSwitch::newLeafBlock(CaseRange &Leaf, Value *Val,
334 ConstantInt *LowerBound,
335 ConstantInt *UpperBound,
336 BasicBlock *OrigBlock,
337 BasicBlock *Default) {
338 Function* F = OrigBlock->getParent();
339 BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
340 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
342 // Emit comparison
343 ICmpInst* Comp = nullptr;
344 if (Leaf.Low == Leaf.High) {
345 // Make the seteq instruction...
346 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
347 Leaf.Low, "SwitchLeaf");
348 } else {
349 // Make range comparison
350 if (Leaf.Low == LowerBound) {
351 // Val >= Min && Val <= Hi --> Val <= Hi
352 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
353 "SwitchLeaf");
354 } else if (Leaf.High == UpperBound) {
355 // Val <= Max && Val >= Lo --> Val >= Lo
356 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
357 "SwitchLeaf");
358 } else if (Leaf.Low->isZero()) {
359 // Val >= 0 && Val <= Hi --> Val <=u Hi
360 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
361 "SwitchLeaf");
362 } else {
363 // Emit V-Lo <=u Hi-Lo
364 Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
365 Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
366 Val->getName()+".off",
367 NewLeaf);
368 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
369 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
370 "SwitchLeaf");
374 // Make the conditional branch...
375 BasicBlock* Succ = Leaf.BB;
376 BranchInst::Create(Succ, Default, Comp, NewLeaf);
378 // If there were any PHI nodes in this successor, rewrite one entry
379 // from OrigBlock to come from NewLeaf.
380 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
381 PHINode* PN = cast<PHINode>(I);
382 // Remove all but one incoming entries from the cluster
383 uint64_t Range = Leaf.High->getSExtValue() -
384 Leaf.Low->getSExtValue();
385 for (uint64_t j = 0; j < Range; ++j) {
386 PN->removeIncomingValue(OrigBlock);
389 int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
390 assert(BlockIdx != -1 && "Switch didn't go to this successor??");
391 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
394 return NewLeaf;
397 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
398 /// \post \p Cases wouldn't contain references to \p SI's default BB.
399 /// \returns Number of \p SI's cases that do not reference \p SI's default BB.
400 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
401 unsigned NumSimpleCases = 0;
403 // Start with "simple" cases
404 for (auto Case : SI->cases()) {
405 if (Case.getCaseSuccessor() == SI->getDefaultDest())
406 continue;
407 Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
408 Case.getCaseSuccessor()));
409 ++NumSimpleCases;
412 llvm::sort(Cases, CaseCmp());
414 // Merge case into clusters
415 if (Cases.size() >= 2) {
416 CaseItr I = Cases.begin();
417 for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
418 int64_t nextValue = J->Low->getSExtValue();
419 int64_t currentValue = I->High->getSExtValue();
420 BasicBlock* nextBB = J->BB;
421 BasicBlock* currentBB = I->BB;
423 // If the two neighboring cases go to the same destination, merge them
424 // into a single case.
425 assert(nextValue > currentValue && "Cases should be strictly ascending");
426 if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
427 I->High = J->High;
428 // FIXME: Combine branch weights.
429 } else if (++I != J) {
430 *I = *J;
433 Cases.erase(std::next(I), Cases.end());
436 return NumSimpleCases;
439 /// Replace the specified switch instruction with a sequence of chained if-then
440 /// insts in a balanced binary search.
441 void LowerSwitch::processSwitchInst(SwitchInst *SI,
442 SmallPtrSetImpl<BasicBlock *> &DeleteList,
443 AssumptionCache *AC, LazyValueInfo *LVI) {
444 BasicBlock *OrigBlock = SI->getParent();
445 Function *F = OrigBlock->getParent();
446 Value *Val = SI->getCondition(); // The value we are switching on...
447 BasicBlock* Default = SI->getDefaultDest();
449 // Don't handle unreachable blocks. If there are successors with phis, this
450 // would leave them behind with missing predecessors.
451 if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
452 OrigBlock->getSinglePredecessor() == OrigBlock) {
453 DeleteList.insert(OrigBlock);
454 return;
457 // Prepare cases vector.
458 CaseVector Cases;
459 const unsigned NumSimpleCases = Clusterify(Cases, SI);
460 LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
461 << ". Total non-default cases: " << NumSimpleCases
462 << "\nCase clusters: " << Cases << "\n");
464 // If there is only the default destination, just branch.
465 if (Cases.empty()) {
466 BranchInst::Create(Default, OrigBlock);
467 // Remove all the references from Default's PHIs to OrigBlock, but one.
468 fixPhis(Default, OrigBlock, OrigBlock);
469 SI->eraseFromParent();
470 return;
473 ConstantInt *LowerBound = nullptr;
474 ConstantInt *UpperBound = nullptr;
475 bool DefaultIsUnreachableFromSwitch = false;
477 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
478 // Make the bounds tightly fitted around the case value range, because we
479 // know that the value passed to the switch must be exactly one of the case
480 // values.
481 LowerBound = Cases.front().Low;
482 UpperBound = Cases.back().High;
483 DefaultIsUnreachableFromSwitch = true;
484 } else {
485 // Constraining the range of the value being switched over helps eliminating
486 // unreachable BBs and minimizing the number of `add` instructions
487 // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
488 // LowerSwitch isn't as good, and also much more expensive in terms of
489 // compile time for the following reasons:
490 // 1. it processes many kinds of instructions, not just switches;
491 // 2. even if limited to icmp instructions only, it will have to process
492 // roughly C icmp's per switch, where C is the number of cases in the
493 // switch, while LowerSwitch only needs to call LVI once per switch.
494 const DataLayout &DL = F->getParent()->getDataLayout();
495 KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
496 // TODO Shouldn't this create a signed range?
497 ConstantRange KnownBitsRange =
498 ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
499 const ConstantRange LVIRange = LVI->getConstantRange(Val, OrigBlock, SI);
500 ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
501 // We delegate removal of unreachable non-default cases to other passes. In
502 // the unlikely event that some of them survived, we just conservatively
503 // maintain the invariant that all the cases lie between the bounds. This
504 // may, however, still render the default case effectively unreachable.
505 APInt Low = Cases.front().Low->getValue();
506 APInt High = Cases.back().High->getValue();
507 APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
508 APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
510 LowerBound = ConstantInt::get(SI->getContext(), Min);
511 UpperBound = ConstantInt::get(SI->getContext(), Max);
512 DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
515 std::vector<IntRange> UnreachableRanges;
517 if (DefaultIsUnreachableFromSwitch) {
518 DenseMap<BasicBlock *, unsigned> Popularity;
519 unsigned MaxPop = 0;
520 BasicBlock *PopSucc = nullptr;
522 IntRange R = {std::numeric_limits<int64_t>::min(),
523 std::numeric_limits<int64_t>::max()};
524 UnreachableRanges.push_back(R);
525 for (const auto &I : Cases) {
526 int64_t Low = I.Low->getSExtValue();
527 int64_t High = I.High->getSExtValue();
529 IntRange &LastRange = UnreachableRanges.back();
530 if (LastRange.Low == Low) {
531 // There is nothing left of the previous range.
532 UnreachableRanges.pop_back();
533 } else {
534 // Terminate the previous range.
535 assert(Low > LastRange.Low);
536 LastRange.High = Low - 1;
538 if (High != std::numeric_limits<int64_t>::max()) {
539 IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
540 UnreachableRanges.push_back(R);
543 // Count popularity.
544 int64_t N = High - Low + 1;
545 unsigned &Pop = Popularity[I.BB];
546 if ((Pop += N) > MaxPop) {
547 MaxPop = Pop;
548 PopSucc = I.BB;
551 #ifndef NDEBUG
552 /* UnreachableRanges should be sorted and the ranges non-adjacent. */
553 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
554 I != E; ++I) {
555 assert(I->Low <= I->High);
556 auto Next = I + 1;
557 if (Next != E) {
558 assert(Next->Low > I->High);
561 #endif
563 // As the default block in the switch is unreachable, update the PHI nodes
564 // (remove all of the references to the default block) to reflect this.
565 const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
566 for (unsigned I = 0; I < NumDefaultEdges; ++I)
567 Default->removePredecessor(OrigBlock);
569 // Use the most popular block as the new default, reducing the number of
570 // cases.
571 assert(MaxPop > 0 && PopSucc);
572 Default = PopSucc;
573 Cases.erase(
574 llvm::remove_if(
575 Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
576 Cases.end());
578 // If there are no cases left, just branch.
579 if (Cases.empty()) {
580 BranchInst::Create(Default, OrigBlock);
581 SI->eraseFromParent();
582 // As all the cases have been replaced with a single branch, only keep
583 // one entry in the PHI nodes.
584 for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
585 PopSucc->removePredecessor(OrigBlock);
586 return;
589 // If the condition was a PHI node with the switch block as a predecessor
590 // removing predecessors may have caused the condition to be erased.
591 // Getting the condition value again here protects against that.
592 Val = SI->getCondition();
595 // Create a new, empty default block so that the new hierarchy of
596 // if-then statements go to this and the PHI nodes are happy.
597 BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
598 F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
599 BranchInst::Create(Default, NewDefault);
601 BasicBlock *SwitchBlock =
602 switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
603 OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
605 // If there are entries in any PHI nodes for the default edge, make sure
606 // to update them as well.
607 fixPhis(Default, OrigBlock, NewDefault);
609 // Branch to our shiny new if-then stuff...
610 BranchInst::Create(SwitchBlock, OrigBlock);
612 // We are now done with the switch instruction, delete it.
613 BasicBlock *OldDefault = SI->getDefaultDest();
614 OrigBlock->getInstList().erase(SI);
616 // If the Default block has no more predecessors just add it to DeleteList.
617 if (pred_begin(OldDefault) == pred_end(OldDefault))
618 DeleteList.insert(OldDefault);