1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
85 using namespace PatternMatch
;
87 #define DEBUG_TYPE "simplifycfg"
89 // Chosen as 2 so as to be cheap, but still to have enough power to fold
90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
91 // To catch this, we need to fold a compare and a select, hence '2' being the
92 // minimum reasonable default.
93 static cl::opt
<unsigned> PHINodeFoldingThreshold(
94 "phi-node-folding-threshold", cl::Hidden
, cl::init(2),
96 "Control the amount of phi node folding to perform (default = 2)"));
98 static cl::opt
<unsigned> TwoEntryPHINodeFoldingThreshold(
99 "two-entry-phi-node-folding-threshold", cl::Hidden
, cl::init(4),
100 cl::desc("Control the maximal total instruction cost that we are willing "
101 "to speculatively execute to fold a 2-entry PHI node into a "
102 "select (default = 4)"));
104 static cl::opt
<bool> DupRet(
105 "simplifycfg-dup-ret", cl::Hidden
, cl::init(false),
106 cl::desc("Duplicate return instructions into unconditional branches"));
109 SinkCommon("simplifycfg-sink-common", cl::Hidden
, cl::init(true),
110 cl::desc("Sink common instructions down to the end block"));
112 static cl::opt
<bool> HoistCondStores(
113 "simplifycfg-hoist-cond-stores", cl::Hidden
, cl::init(true),
114 cl::desc("Hoist conditional stores if an unconditional store precedes"));
116 static cl::opt
<bool> MergeCondStores(
117 "simplifycfg-merge-cond-stores", cl::Hidden
, cl::init(true),
118 cl::desc("Hoist conditional stores even if an unconditional store does not "
119 "precede - hoist multiple conditional stores into a single "
120 "predicated store"));
122 static cl::opt
<bool> MergeCondStoresAggressively(
123 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden
, cl::init(false),
124 cl::desc("When merging conditional stores, do so even if the resultant "
125 "basic blocks are unlikely to be if-converted as a result"));
127 static cl::opt
<bool> SpeculateOneExpensiveInst(
128 "speculate-one-expensive-inst", cl::Hidden
, cl::init(true),
129 cl::desc("Allow exactly one expensive instruction to be speculatively "
132 static cl::opt
<unsigned> MaxSpeculationDepth(
133 "max-speculation-depth", cl::Hidden
, cl::init(10),
134 cl::desc("Limit maximum recursion depth when calculating costs of "
135 "speculatively executed instructions"));
137 STATISTIC(NumBitMaps
, "Number of switch instructions turned into bitmaps");
138 STATISTIC(NumLinearMaps
,
139 "Number of switch instructions turned into linear mapping");
140 STATISTIC(NumLookupTables
,
141 "Number of switch instructions turned into lookup tables");
143 NumLookupTablesHoles
,
144 "Number of switch instructions turned into lookup tables (holes checked)");
145 STATISTIC(NumTableCmpReuses
, "Number of reused switch table lookup compares");
146 STATISTIC(NumSinkCommons
,
147 "Number of common instructions sunk down to the end block");
148 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
152 // The first field contains the value that the switch produces when a certain
153 // case group is selected, and the second field is a vector containing the
154 // cases composing the case group.
155 using SwitchCaseResultVectorTy
=
156 SmallVector
<std::pair
<Constant
*, SmallVector
<ConstantInt
*, 4>>, 2>;
158 // The first field contains the phi node that generates a result of the switch
159 // and the second field contains the value generated for a certain case in the
160 // switch for that PHI.
161 using SwitchCaseResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
163 /// ValueEqualityComparisonCase - Represents a case of a switch.
164 struct ValueEqualityComparisonCase
{
168 ValueEqualityComparisonCase(ConstantInt
*Value
, BasicBlock
*Dest
)
169 : Value(Value
), Dest(Dest
) {}
171 bool operator<(ValueEqualityComparisonCase RHS
) const {
172 // Comparing pointers is ok as we only rely on the order for uniquing.
173 return Value
< RHS
.Value
;
176 bool operator==(BasicBlock
*RHSDest
) const { return Dest
== RHSDest
; }
179 class SimplifyCFGOpt
{
180 const TargetTransformInfo
&TTI
;
181 const DataLayout
&DL
;
182 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
;
183 const SimplifyCFGOptions
&Options
;
186 Value
*isValueEqualityComparison(Instruction
*TI
);
187 BasicBlock
*GetValueEqualityComparisonCases(
188 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
);
189 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction
*TI
,
191 IRBuilder
<> &Builder
);
192 bool FoldValueComparisonIntoPredecessors(Instruction
*TI
,
193 IRBuilder
<> &Builder
);
195 bool SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
);
196 bool SimplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
);
197 bool SimplifySingleResume(ResumeInst
*RI
);
198 bool SimplifyCommonResume(ResumeInst
*RI
);
199 bool SimplifyCleanupReturn(CleanupReturnInst
*RI
);
200 bool SimplifyUnreachable(UnreachableInst
*UI
);
201 bool SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
);
202 bool SimplifyIndirectBr(IndirectBrInst
*IBI
);
203 bool SimplifyUncondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
204 bool SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
206 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst
*ICI
,
207 IRBuilder
<> &Builder
);
210 SimplifyCFGOpt(const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
211 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
,
212 const SimplifyCFGOptions
&Opts
)
213 : TTI(TTI
), DL(DL
), LoopHeaders(LoopHeaders
), Options(Opts
) {}
215 bool run(BasicBlock
*BB
);
216 bool simplifyOnce(BasicBlock
*BB
);
218 // Helper to set Resimplify and return change indication.
219 bool requestResimplify() {
225 } // end anonymous namespace
227 /// Return true if it is safe to merge these two
228 /// terminator instructions together.
230 SafeToMergeTerminators(Instruction
*SI1
, Instruction
*SI2
,
231 SmallSetVector
<BasicBlock
*, 4> *FailBlocks
= nullptr) {
233 return false; // Can't merge with self!
235 // It is not safe to merge these two switch instructions if they have a common
236 // successor, and if that successor has a PHI node, and if *that* PHI node has
237 // conflicting incoming values from the two switch blocks.
238 BasicBlock
*SI1BB
= SI1
->getParent();
239 BasicBlock
*SI2BB
= SI2
->getParent();
241 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
243 for (BasicBlock
*Succ
: successors(SI2BB
))
244 if (SI1Succs
.count(Succ
))
245 for (BasicBlock::iterator BBI
= Succ
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
246 PHINode
*PN
= cast
<PHINode
>(BBI
);
247 if (PN
->getIncomingValueForBlock(SI1BB
) !=
248 PN
->getIncomingValueForBlock(SI2BB
)) {
250 FailBlocks
->insert(Succ
);
258 /// Return true if it is safe and profitable to merge these two terminator
259 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
260 /// store all PHI nodes in common successors.
262 isProfitableToFoldUnconditional(BranchInst
*SI1
, BranchInst
*SI2
,
264 SmallVectorImpl
<PHINode
*> &PhiNodes
) {
266 return false; // Can't merge with self!
267 assert(SI1
->isUnconditional() && SI2
->isConditional());
269 // We fold the unconditional branch if we can easily update all PHI nodes in
270 // common successors:
271 // 1> We have a constant incoming value for the conditional branch;
272 // 2> We have "Cond" as the incoming value for the unconditional branch;
273 // 3> SI2->getCondition() and Cond have same operands.
274 CmpInst
*Ci2
= dyn_cast
<CmpInst
>(SI2
->getCondition());
277 if (!(Cond
->getOperand(0) == Ci2
->getOperand(0) &&
278 Cond
->getOperand(1) == Ci2
->getOperand(1)) &&
279 !(Cond
->getOperand(0) == Ci2
->getOperand(1) &&
280 Cond
->getOperand(1) == Ci2
->getOperand(0)))
283 BasicBlock
*SI1BB
= SI1
->getParent();
284 BasicBlock
*SI2BB
= SI2
->getParent();
285 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
286 for (BasicBlock
*Succ
: successors(SI2BB
))
287 if (SI1Succs
.count(Succ
))
288 for (BasicBlock::iterator BBI
= Succ
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
289 PHINode
*PN
= cast
<PHINode
>(BBI
);
290 if (PN
->getIncomingValueForBlock(SI1BB
) != Cond
||
291 !isa
<ConstantInt
>(PN
->getIncomingValueForBlock(SI2BB
)))
293 PhiNodes
.push_back(PN
);
298 /// Update PHI nodes in Succ to indicate that there will now be entries in it
299 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
300 /// will be the same as those coming in from ExistPred, an existing predecessor
302 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
303 BasicBlock
*ExistPred
,
304 MemorySSAUpdater
*MSSAU
= nullptr) {
305 for (PHINode
&PN
: Succ
->phis())
306 PN
.addIncoming(PN
.getIncomingValueForBlock(ExistPred
), NewPred
);
308 if (auto *MPhi
= MSSAU
->getMemorySSA()->getMemoryAccess(Succ
))
309 MPhi
->addIncoming(MPhi
->getIncomingValueForBlock(ExistPred
), NewPred
);
312 /// Compute an abstract "cost" of speculating the given instruction,
313 /// which is assumed to be safe to speculate. TCC_Free means cheap,
314 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
316 static unsigned ComputeSpeculationCost(const User
*I
,
317 const TargetTransformInfo
&TTI
) {
318 assert(isSafeToSpeculativelyExecute(I
) &&
319 "Instruction is not safe to speculatively execute!");
320 return TTI
.getUserCost(I
);
323 /// If we have a merge point of an "if condition" as accepted above,
324 /// return true if the specified value dominates the block. We
325 /// don't handle the true generality of domination here, just a special case
326 /// which works well enough for us.
328 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
329 /// see if V (which must be an instruction) and its recursive operands
330 /// that do not dominate BB have a combined cost lower than CostRemaining and
331 /// are non-trapping. If both are true, the instruction is inserted into the
332 /// set and true is returned.
334 /// The cost for most non-trapping instructions is defined as 1 except for
335 /// Select whose cost is 2.
337 /// After this function returns, CostRemaining is decreased by the cost of
338 /// V plus its non-dominating operands. If that cost is greater than
339 /// CostRemaining, false is returned and CostRemaining is undefined.
340 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
341 SmallPtrSetImpl
<Instruction
*> &AggressiveInsts
,
342 int &BudgetRemaining
,
343 const TargetTransformInfo
&TTI
,
344 unsigned Depth
= 0) {
345 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
346 // so limit the recursion depth.
347 // TODO: While this recursion limit does prevent pathological behavior, it
348 // would be better to track visited instructions to avoid cycles.
349 if (Depth
== MaxSpeculationDepth
)
352 Instruction
*I
= dyn_cast
<Instruction
>(V
);
354 // Non-instructions all dominate instructions, but not all constantexprs
355 // can be executed unconditionally.
356 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
361 BasicBlock
*PBB
= I
->getParent();
363 // We don't want to allow weird loops that might have the "if condition" in
364 // the bottom of this block.
368 // If this instruction is defined in a block that contains an unconditional
369 // branch to BB, then it must be in the 'conditional' part of the "if
370 // statement". If not, it definitely dominates the region.
371 BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
372 if (!BI
|| BI
->isConditional() || BI
->getSuccessor(0) != BB
)
375 // If we have seen this instruction before, don't count it again.
376 if (AggressiveInsts
.count(I
))
379 // Okay, it looks like the instruction IS in the "condition". Check to
380 // see if it's a cheap instruction to unconditionally compute, and if it
381 // only uses stuff defined outside of the condition. If so, hoist it out.
382 if (!isSafeToSpeculativelyExecute(I
))
385 BudgetRemaining
-= ComputeSpeculationCost(I
, TTI
);
387 // Allow exactly one instruction to be speculated regardless of its cost
388 // (as long as it is safe to do so).
389 // This is intended to flatten the CFG even if the instruction is a division
390 // or other expensive operation. The speculation of an expensive instruction
391 // is expected to be undone in CodeGenPrepare if the speculation has not
392 // enabled further IR optimizations.
393 if (BudgetRemaining
< 0 &&
394 (!SpeculateOneExpensiveInst
|| !AggressiveInsts
.empty() || Depth
> 0))
397 // Okay, we can only really hoist these out if their operands do
398 // not take us over the cost threshold.
399 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
400 if (!DominatesMergePoint(*i
, BB
, AggressiveInsts
, BudgetRemaining
, TTI
,
403 // Okay, it's safe to do this! Remember this instruction.
404 AggressiveInsts
.insert(I
);
408 /// Extract ConstantInt from value, looking through IntToPtr
409 /// and PointerNullValue. Return NULL if value is not a constant int.
410 static ConstantInt
*GetConstantInt(Value
*V
, const DataLayout
&DL
) {
411 // Normal constant int.
412 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
413 if (CI
|| !isa
<Constant
>(V
) || !V
->getType()->isPointerTy())
416 // This is some kind of pointer constant. Turn it into a pointer-sized
417 // ConstantInt if possible.
418 IntegerType
*PtrTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
420 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
421 if (isa
<ConstantPointerNull
>(V
))
422 return ConstantInt::get(PtrTy
, 0);
424 // IntToPtr const int.
425 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
426 if (CE
->getOpcode() == Instruction::IntToPtr
)
427 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(0))) {
428 // The constant is very likely to have the right type already.
429 if (CI
->getType() == PtrTy
)
432 return cast
<ConstantInt
>(
433 ConstantExpr::getIntegerCast(CI
, PtrTy
, /*isSigned=*/false));
440 /// Given a chain of or (||) or and (&&) comparison of a value against a
441 /// constant, this will try to recover the information required for a switch
443 /// It will depth-first traverse the chain of comparison, seeking for patterns
444 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
445 /// representing the different cases for the switch.
446 /// Note that if the chain is composed of '||' it will build the set of elements
447 /// that matches the comparisons (i.e. any of this value validate the chain)
448 /// while for a chain of '&&' it will build the set elements that make the test
450 struct ConstantComparesGatherer
{
451 const DataLayout
&DL
;
453 /// Value found for the switch comparison
454 Value
*CompValue
= nullptr;
456 /// Extra clause to be checked before the switch
457 Value
*Extra
= nullptr;
459 /// Set of integers to match in switch
460 SmallVector
<ConstantInt
*, 8> Vals
;
462 /// Number of comparisons matched in the and/or chain
463 unsigned UsedICmps
= 0;
465 /// Construct and compute the result for the comparison instruction Cond
466 ConstantComparesGatherer(Instruction
*Cond
, const DataLayout
&DL
) : DL(DL
) {
470 ConstantComparesGatherer(const ConstantComparesGatherer
&) = delete;
471 ConstantComparesGatherer
&
472 operator=(const ConstantComparesGatherer
&) = delete;
475 /// Try to set the current value used for the comparison, it succeeds only if
476 /// it wasn't set before or if the new value is the same as the old one
477 bool setValueOnce(Value
*NewVal
) {
478 if (CompValue
&& CompValue
!= NewVal
)
481 return (CompValue
!= nullptr);
484 /// Try to match Instruction "I" as a comparison against a constant and
485 /// populates the array Vals with the set of values that match (or do not
486 /// match depending on isEQ).
487 /// Return false on failure. On success, the Value the comparison matched
488 /// against is placed in CompValue.
489 /// If CompValue is already set, the function is expected to fail if a match
490 /// is found but the value compared to is different.
491 bool matchInstruction(Instruction
*I
, bool isEQ
) {
492 // If this is an icmp against a constant, handle this as one of the cases.
495 if (!((ICI
= dyn_cast
<ICmpInst
>(I
)) &&
496 (C
= GetConstantInt(I
->getOperand(1), DL
)))) {
503 // Pattern match a special case
504 // (x & ~2^z) == y --> x == y || x == y|2^z
505 // This undoes a transformation done by instcombine to fuse 2 compares.
506 if (ICI
->getPredicate() == (isEQ
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
)) {
507 // It's a little bit hard to see why the following transformations are
508 // correct. Here is a CVC3 program to verify them for 64-bit values:
511 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
515 mask : BITVECTOR(64) = BVSHL(ONE, z);
516 QUERY( (y & ~mask = y) =>
517 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
519 QUERY( (y | mask = y) =>
520 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
524 // Please note that each pattern must be a dual implication (<--> or
525 // iff). One directional implication can create spurious matches. If the
526 // implication is only one-way, an unsatisfiable condition on the left
527 // side can imply a satisfiable condition on the right side. Dual
528 // implication ensures that satisfiable conditions are transformed to
529 // other satisfiable conditions and unsatisfiable conditions are
530 // transformed to other unsatisfiable conditions.
532 // Here is a concrete example of a unsatisfiable condition on the left
533 // implying a satisfiable condition on the right:
536 // (x & ~mask) == y --> (x == y || x == (y | mask))
538 // Substituting y = 3, z = 0 yields:
539 // (x & -2) == 3 --> (x == 3 || x == 2)
541 // Pattern match a special case:
543 QUERY( (y & ~mask = y) =>
544 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
547 if (match(ICI
->getOperand(0),
548 m_And(m_Value(RHSVal
), m_APInt(RHSC
)))) {
550 if (Mask
.isPowerOf2() && (C
->getValue() & ~Mask
) == C
->getValue()) {
551 // If we already have a value for the switch, it has to match!
552 if (!setValueOnce(RHSVal
))
557 ConstantInt::get(C
->getContext(),
558 C
->getValue() | Mask
));
564 // Pattern match a special case:
566 QUERY( (y | mask = y) =>
567 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
570 if (match(ICI
->getOperand(0),
571 m_Or(m_Value(RHSVal
), m_APInt(RHSC
)))) {
573 if (Mask
.isPowerOf2() && (C
->getValue() | Mask
) == C
->getValue()) {
574 // If we already have a value for the switch, it has to match!
575 if (!setValueOnce(RHSVal
))
579 Vals
.push_back(ConstantInt::get(C
->getContext(),
580 C
->getValue() & ~Mask
));
586 // If we already have a value for the switch, it has to match!
587 if (!setValueOnce(ICI
->getOperand(0)))
592 return ICI
->getOperand(0);
595 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
596 ConstantRange Span
= ConstantRange::makeAllowedICmpRegion(
597 ICI
->getPredicate(), C
->getValue());
599 // Shift the range if the compare is fed by an add. This is the range
600 // compare idiom as emitted by instcombine.
601 Value
*CandidateVal
= I
->getOperand(0);
602 if (match(I
->getOperand(0), m_Add(m_Value(RHSVal
), m_APInt(RHSC
)))) {
603 Span
= Span
.subtract(*RHSC
);
604 CandidateVal
= RHSVal
;
607 // If this is an and/!= check, then we are looking to build the set of
608 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
611 Span
= Span
.inverse();
613 // If there are a ton of values, we don't want to make a ginormous switch.
614 if (Span
.isSizeLargerThan(8) || Span
.isEmptySet()) {
618 // If we already have a value for the switch, it has to match!
619 if (!setValueOnce(CandidateVal
))
622 // Add all values from the range to the set
623 for (APInt Tmp
= Span
.getLower(); Tmp
!= Span
.getUpper(); ++Tmp
)
624 Vals
.push_back(ConstantInt::get(I
->getContext(), Tmp
));
630 /// Given a potentially 'or'd or 'and'd together collection of icmp
631 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
632 /// the value being compared, and stick the list constants into the Vals
634 /// One "Extra" case is allowed to differ from the other.
635 void gather(Value
*V
) {
636 bool isEQ
= (cast
<Instruction
>(V
)->getOpcode() == Instruction::Or
);
638 // Keep a stack (SmallVector for efficiency) for depth-first traversal
639 SmallVector
<Value
*, 8> DFT
;
640 SmallPtrSet
<Value
*, 8> Visited
;
646 while (!DFT
.empty()) {
647 V
= DFT
.pop_back_val();
649 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
650 // If it is a || (or && depending on isEQ), process the operands.
651 if (I
->getOpcode() == (isEQ
? Instruction::Or
: Instruction::And
)) {
652 if (Visited
.insert(I
->getOperand(1)).second
)
653 DFT
.push_back(I
->getOperand(1));
654 if (Visited
.insert(I
->getOperand(0)).second
)
655 DFT
.push_back(I
->getOperand(0));
659 // Try to match the current instruction
660 if (matchInstruction(I
, isEQ
))
661 // Match succeed, continue the loop
665 // One element of the sequence of || (or &&) could not be match as a
666 // comparison against the same value as the others.
667 // We allow only one "Extra" case to be checked before the switch
672 // Failed to parse a proper sequence, abort now
679 } // end anonymous namespace
681 static void EraseTerminatorAndDCECond(Instruction
*TI
,
682 MemorySSAUpdater
*MSSAU
= nullptr) {
683 Instruction
*Cond
= nullptr;
684 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
685 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
686 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
687 if (BI
->isConditional())
688 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
689 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(TI
)) {
690 Cond
= dyn_cast
<Instruction
>(IBI
->getAddress());
693 TI
->eraseFromParent();
695 RecursivelyDeleteTriviallyDeadInstructions(Cond
, nullptr, MSSAU
);
698 /// Return true if the specified terminator checks
699 /// to see if a value is equal to constant integer value.
700 Value
*SimplifyCFGOpt::isValueEqualityComparison(Instruction
*TI
) {
702 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
703 // Do not permit merging of large switch instructions into their
704 // predecessors unless there is only one predecessor.
705 if (!SI
->getParent()->hasNPredecessorsOrMore(128 / SI
->getNumSuccessors()))
706 CV
= SI
->getCondition();
707 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
708 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
709 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
710 if (ICI
->isEquality() && GetConstantInt(ICI
->getOperand(1), DL
))
711 CV
= ICI
->getOperand(0);
714 // Unwrap any lossless ptrtoint cast.
716 if (PtrToIntInst
*PTII
= dyn_cast
<PtrToIntInst
>(CV
)) {
717 Value
*Ptr
= PTII
->getPointerOperand();
718 if (PTII
->getType() == DL
.getIntPtrType(Ptr
->getType()))
725 /// Given a value comparison instruction,
726 /// decode all of the 'cases' that it represents and return the 'default' block.
727 BasicBlock
*SimplifyCFGOpt::GetValueEqualityComparisonCases(
728 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
) {
729 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
730 Cases
.reserve(SI
->getNumCases());
731 for (auto Case
: SI
->cases())
732 Cases
.push_back(ValueEqualityComparisonCase(Case
.getCaseValue(),
733 Case
.getCaseSuccessor()));
734 return SI
->getDefaultDest();
737 BranchInst
*BI
= cast
<BranchInst
>(TI
);
738 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
739 BasicBlock
*Succ
= BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_NE
);
740 Cases
.push_back(ValueEqualityComparisonCase(
741 GetConstantInt(ICI
->getOperand(1), DL
), Succ
));
742 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
745 /// Given a vector of bb/value pairs, remove any entries
746 /// in the list that match the specified block.
748 EliminateBlockCases(BasicBlock
*BB
,
749 std::vector
<ValueEqualityComparisonCase
> &Cases
) {
750 Cases
.erase(std::remove(Cases
.begin(), Cases
.end(), BB
), Cases
.end());
753 /// Return true if there are any keys in C1 that exist in C2 as well.
754 static bool ValuesOverlap(std::vector
<ValueEqualityComparisonCase
> &C1
,
755 std::vector
<ValueEqualityComparisonCase
> &C2
) {
756 std::vector
<ValueEqualityComparisonCase
> *V1
= &C1
, *V2
= &C2
;
758 // Make V1 be smaller than V2.
759 if (V1
->size() > V2
->size())
764 if (V1
->size() == 1) {
766 ConstantInt
*TheVal
= (*V1
)[0].Value
;
767 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
768 if (TheVal
== (*V2
)[i
].Value
)
772 // Otherwise, just sort both lists and compare element by element.
773 array_pod_sort(V1
->begin(), V1
->end());
774 array_pod_sort(V2
->begin(), V2
->end());
775 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
776 while (i1
!= e1
&& i2
!= e2
) {
777 if ((*V1
)[i1
].Value
== (*V2
)[i2
].Value
)
779 if ((*V1
)[i1
].Value
< (*V2
)[i2
].Value
)
787 // Set branch weights on SwitchInst. This sets the metadata if there is at
788 // least one non-zero weight.
789 static void setBranchWeights(SwitchInst
*SI
, ArrayRef
<uint32_t> Weights
) {
790 // Check that there is at least one non-zero weight. Otherwise, pass
791 // nullptr to setMetadata which will erase the existing metadata.
793 if (llvm::any_of(Weights
, [](uint32_t W
) { return W
!= 0; }))
794 N
= MDBuilder(SI
->getParent()->getContext()).createBranchWeights(Weights
);
795 SI
->setMetadata(LLVMContext::MD_prof
, N
);
798 // Similar to the above, but for branch and select instructions that take
799 // exactly 2 weights.
800 static void setBranchWeights(Instruction
*I
, uint32_t TrueWeight
,
801 uint32_t FalseWeight
) {
802 assert(isa
<BranchInst
>(I
) || isa
<SelectInst
>(I
));
803 // Check that there is at least one non-zero weight. Otherwise, pass
804 // nullptr to setMetadata which will erase the existing metadata.
806 if (TrueWeight
|| FalseWeight
)
807 N
= MDBuilder(I
->getParent()->getContext())
808 .createBranchWeights(TrueWeight
, FalseWeight
);
809 I
->setMetadata(LLVMContext::MD_prof
, N
);
812 /// If TI is known to be a terminator instruction and its block is known to
813 /// only have a single predecessor block, check to see if that predecessor is
814 /// also a value comparison with the same value, and if that comparison
815 /// determines the outcome of this comparison. If so, simplify TI. This does a
816 /// very limited form of jump threading.
817 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
818 Instruction
*TI
, BasicBlock
*Pred
, IRBuilder
<> &Builder
) {
819 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
821 return false; // Not a value comparison in predecessor.
823 Value
*ThisVal
= isValueEqualityComparison(TI
);
824 assert(ThisVal
&& "This isn't a value comparison!!");
825 if (ThisVal
!= PredVal
)
826 return false; // Different predicates.
828 // TODO: Preserve branch weight metadata, similarly to how
829 // FoldValueComparisonIntoPredecessors preserves it.
831 // Find out information about when control will move from Pred to TI's block.
832 std::vector
<ValueEqualityComparisonCase
> PredCases
;
833 BasicBlock
*PredDef
=
834 GetValueEqualityComparisonCases(Pred
->getTerminator(), PredCases
);
835 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
837 // Find information about how control leaves this block.
838 std::vector
<ValueEqualityComparisonCase
> ThisCases
;
839 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
840 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
842 // If TI's block is the default block from Pred's comparison, potentially
843 // simplify TI based on this knowledge.
844 if (PredDef
== TI
->getParent()) {
845 // If we are here, we know that the value is none of those cases listed in
846 // PredCases. If there are any cases in ThisCases that are in PredCases, we
848 if (!ValuesOverlap(PredCases
, ThisCases
))
851 if (isa
<BranchInst
>(TI
)) {
852 // Okay, one of the successors of this condbr is dead. Convert it to a
854 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
855 // Insert the new branch.
856 Instruction
*NI
= Builder
.CreateBr(ThisDef
);
859 // Remove PHI node entries for the dead edge.
860 ThisCases
[0].Dest
->removePredecessor(TI
->getParent());
862 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
863 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
866 EraseTerminatorAndDCECond(TI
);
870 SwitchInstProfUpdateWrapper SI
= *cast
<SwitchInst
>(TI
);
871 // Okay, TI has cases that are statically dead, prune them away.
872 SmallPtrSet
<Constant
*, 16> DeadCases
;
873 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
874 DeadCases
.insert(PredCases
[i
].Value
);
876 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
877 << "Through successor TI: " << *TI
);
879 for (SwitchInst::CaseIt i
= SI
->case_end(), e
= SI
->case_begin(); i
!= e
;) {
881 if (DeadCases
.count(i
->getCaseValue())) {
882 i
->getCaseSuccessor()->removePredecessor(TI
->getParent());
886 LLVM_DEBUG(dbgs() << "Leaving: " << *TI
<< "\n");
890 // Otherwise, TI's block must correspond to some matched value. Find out
891 // which value (or set of values) this is.
892 ConstantInt
*TIV
= nullptr;
893 BasicBlock
*TIBB
= TI
->getParent();
894 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
895 if (PredCases
[i
].Dest
== TIBB
) {
897 return false; // Cannot handle multiple values coming to this block.
898 TIV
= PredCases
[i
].Value
;
900 assert(TIV
&& "No edge from pred to succ?");
902 // Okay, we found the one constant that our value can be if we get into TI's
903 // BB. Find out which successor will unconditionally be branched to.
904 BasicBlock
*TheRealDest
= nullptr;
905 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
906 if (ThisCases
[i
].Value
== TIV
) {
907 TheRealDest
= ThisCases
[i
].Dest
;
911 // If not handled by any explicit cases, it is handled by the default case.
913 TheRealDest
= ThisDef
;
915 // Remove PHI node entries for dead edges.
916 BasicBlock
*CheckEdge
= TheRealDest
;
917 for (BasicBlock
*Succ
: successors(TIBB
))
918 if (Succ
!= CheckEdge
)
919 Succ
->removePredecessor(TIBB
);
923 // Insert the new branch.
924 Instruction
*NI
= Builder
.CreateBr(TheRealDest
);
927 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
928 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
931 EraseTerminatorAndDCECond(TI
);
937 /// This class implements a stable ordering of constant
938 /// integers that does not depend on their address. This is important for
939 /// applications that sort ConstantInt's to ensure uniqueness.
940 struct ConstantIntOrdering
{
941 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
942 return LHS
->getValue().ult(RHS
->getValue());
946 } // end anonymous namespace
948 static int ConstantIntSortPredicate(ConstantInt
*const *P1
,
949 ConstantInt
*const *P2
) {
950 const ConstantInt
*LHS
= *P1
;
951 const ConstantInt
*RHS
= *P2
;
954 return LHS
->getValue().ult(RHS
->getValue()) ? 1 : -1;
957 static inline bool HasBranchWeights(const Instruction
*I
) {
958 MDNode
*ProfMD
= I
->getMetadata(LLVMContext::MD_prof
);
959 if (ProfMD
&& ProfMD
->getOperand(0))
960 if (MDString
*MDS
= dyn_cast
<MDString
>(ProfMD
->getOperand(0)))
961 return MDS
->getString().equals("branch_weights");
966 /// Get Weights of a given terminator, the default weight is at the front
967 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
969 static void GetBranchWeights(Instruction
*TI
,
970 SmallVectorImpl
<uint64_t> &Weights
) {
971 MDNode
*MD
= TI
->getMetadata(LLVMContext::MD_prof
);
973 for (unsigned i
= 1, e
= MD
->getNumOperands(); i
< e
; ++i
) {
974 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(i
));
975 Weights
.push_back(CI
->getValue().getZExtValue());
978 // If TI is a conditional eq, the default case is the false case,
979 // and the corresponding branch-weight data is at index 2. We swap the
980 // default weight to be the first entry.
981 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
982 assert(Weights
.size() == 2);
983 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
984 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
985 std::swap(Weights
.front(), Weights
.back());
989 /// Keep halving the weights until all can fit in uint32_t.
990 static void FitWeights(MutableArrayRef
<uint64_t> Weights
) {
991 uint64_t Max
= *std::max_element(Weights
.begin(), Weights
.end());
992 if (Max
> UINT_MAX
) {
993 unsigned Offset
= 32 - countLeadingZeros(Max
);
994 for (uint64_t &I
: Weights
)
999 /// The specified terminator is a value equality comparison instruction
1000 /// (either a switch or a branch on "X == c").
1001 /// See if any of the predecessors of the terminator block are value comparisons
1002 /// on the same value. If so, and if safe to do so, fold them together.
1003 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction
*TI
,
1004 IRBuilder
<> &Builder
) {
1005 BasicBlock
*BB
= TI
->getParent();
1006 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
1007 assert(CV
&& "Not a comparison?");
1008 bool Changed
= false;
1010 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
1011 while (!Preds
.empty()) {
1012 BasicBlock
*Pred
= Preds
.pop_back_val();
1014 // See if the predecessor is a comparison with the same value.
1015 Instruction
*PTI
= Pred
->getTerminator();
1016 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
1018 if (PCV
== CV
&& TI
!= PTI
) {
1019 SmallSetVector
<BasicBlock
*, 4> FailBlocks
;
1020 if (!SafeToMergeTerminators(TI
, PTI
, &FailBlocks
)) {
1021 for (auto *Succ
: FailBlocks
) {
1022 if (!SplitBlockPredecessors(Succ
, TI
->getParent(), ".fold.split"))
1027 // Figure out which 'cases' to copy from SI to PSI.
1028 std::vector
<ValueEqualityComparisonCase
> BBCases
;
1029 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
1031 std::vector
<ValueEqualityComparisonCase
> PredCases
;
1032 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
1034 // Based on whether the default edge from PTI goes to BB or not, fill in
1035 // PredCases and PredDefault with the new switch cases we would like to
1037 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
1039 // Update the branch weight metadata along the way
1040 SmallVector
<uint64_t, 8> Weights
;
1041 bool PredHasWeights
= HasBranchWeights(PTI
);
1042 bool SuccHasWeights
= HasBranchWeights(TI
);
1044 if (PredHasWeights
) {
1045 GetBranchWeights(PTI
, Weights
);
1046 // branch-weight metadata is inconsistent here.
1047 if (Weights
.size() != 1 + PredCases
.size())
1048 PredHasWeights
= SuccHasWeights
= false;
1049 } else if (SuccHasWeights
)
1050 // If there are no predecessor weights but there are successor weights,
1051 // populate Weights with 1, which will later be scaled to the sum of
1052 // successor's weights
1053 Weights
.assign(1 + PredCases
.size(), 1);
1055 SmallVector
<uint64_t, 8> SuccWeights
;
1056 if (SuccHasWeights
) {
1057 GetBranchWeights(TI
, SuccWeights
);
1058 // branch-weight metadata is inconsistent here.
1059 if (SuccWeights
.size() != 1 + BBCases
.size())
1060 PredHasWeights
= SuccHasWeights
= false;
1061 } else if (PredHasWeights
)
1062 SuccWeights
.assign(1 + BBCases
.size(), 1);
1064 if (PredDefault
== BB
) {
1065 // If this is the default destination from PTI, only the edges in TI
1066 // that don't occur in PTI, or that branch to BB will be activated.
1067 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1068 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1069 if (PredCases
[i
].Dest
!= BB
)
1070 PTIHandled
.insert(PredCases
[i
].Value
);
1072 // The default destination is BB, we don't need explicit targets.
1073 std::swap(PredCases
[i
], PredCases
.back());
1075 if (PredHasWeights
|| SuccHasWeights
) {
1076 // Increase weight for the default case.
1077 Weights
[0] += Weights
[i
+ 1];
1078 std::swap(Weights
[i
+ 1], Weights
.back());
1082 PredCases
.pop_back();
1087 // Reconstruct the new switch statement we will be building.
1088 if (PredDefault
!= BBDefault
) {
1089 PredDefault
->removePredecessor(Pred
);
1090 PredDefault
= BBDefault
;
1091 NewSuccessors
.push_back(BBDefault
);
1094 unsigned CasesFromPred
= Weights
.size();
1095 uint64_t ValidTotalSuccWeight
= 0;
1096 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1097 if (!PTIHandled
.count(BBCases
[i
].Value
) &&
1098 BBCases
[i
].Dest
!= BBDefault
) {
1099 PredCases
.push_back(BBCases
[i
]);
1100 NewSuccessors
.push_back(BBCases
[i
].Dest
);
1101 if (SuccHasWeights
|| PredHasWeights
) {
1102 // The default weight is at index 0, so weight for the ith case
1103 // should be at index i+1. Scale the cases from successor by
1104 // PredDefaultWeight (Weights[0]).
1105 Weights
.push_back(Weights
[0] * SuccWeights
[i
+ 1]);
1106 ValidTotalSuccWeight
+= SuccWeights
[i
+ 1];
1110 if (SuccHasWeights
|| PredHasWeights
) {
1111 ValidTotalSuccWeight
+= SuccWeights
[0];
1112 // Scale the cases from predecessor by ValidTotalSuccWeight.
1113 for (unsigned i
= 1; i
< CasesFromPred
; ++i
)
1114 Weights
[i
] *= ValidTotalSuccWeight
;
1115 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1116 Weights
[0] *= SuccWeights
[0];
1119 // If this is not the default destination from PSI, only the edges
1120 // in SI that occur in PSI with a destination of BB will be
1122 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1123 std::map
<ConstantInt
*, uint64_t> WeightsForHandled
;
1124 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1125 if (PredCases
[i
].Dest
== BB
) {
1126 PTIHandled
.insert(PredCases
[i
].Value
);
1128 if (PredHasWeights
|| SuccHasWeights
) {
1129 WeightsForHandled
[PredCases
[i
].Value
] = Weights
[i
+ 1];
1130 std::swap(Weights
[i
+ 1], Weights
.back());
1134 std::swap(PredCases
[i
], PredCases
.back());
1135 PredCases
.pop_back();
1140 // Okay, now we know which constants were sent to BB from the
1141 // predecessor. Figure out where they will all go now.
1142 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1143 if (PTIHandled
.count(BBCases
[i
].Value
)) {
1144 // If this is one we are capable of getting...
1145 if (PredHasWeights
|| SuccHasWeights
)
1146 Weights
.push_back(WeightsForHandled
[BBCases
[i
].Value
]);
1147 PredCases
.push_back(BBCases
[i
]);
1148 NewSuccessors
.push_back(BBCases
[i
].Dest
);
1150 BBCases
[i
].Value
); // This constant is taken care of
1153 // If there are any constants vectored to BB that TI doesn't handle,
1154 // they must go to the default destination of TI.
1155 for (ConstantInt
*I
: PTIHandled
) {
1156 if (PredHasWeights
|| SuccHasWeights
)
1157 Weights
.push_back(WeightsForHandled
[I
]);
1158 PredCases
.push_back(ValueEqualityComparisonCase(I
, BBDefault
));
1159 NewSuccessors
.push_back(BBDefault
);
1163 // Okay, at this point, we know which new successor Pred will get. Make
1164 // sure we update the number of entries in the PHI nodes for these
1166 for (BasicBlock
*NewSuccessor
: NewSuccessors
)
1167 AddPredecessorToBlock(NewSuccessor
, Pred
, BB
);
1169 Builder
.SetInsertPoint(PTI
);
1170 // Convert pointer to int before we switch.
1171 if (CV
->getType()->isPointerTy()) {
1172 CV
= Builder
.CreatePtrToInt(CV
, DL
.getIntPtrType(CV
->getType()),
1176 // Now that the successors are updated, create the new Switch instruction.
1178 Builder
.CreateSwitch(CV
, PredDefault
, PredCases
.size());
1179 NewSI
->setDebugLoc(PTI
->getDebugLoc());
1180 for (ValueEqualityComparisonCase
&V
: PredCases
)
1181 NewSI
->addCase(V
.Value
, V
.Dest
);
1183 if (PredHasWeights
|| SuccHasWeights
) {
1184 // Halve the weights if any of them cannot fit in an uint32_t
1185 FitWeights(Weights
);
1187 SmallVector
<uint32_t, 8> MDWeights(Weights
.begin(), Weights
.end());
1189 setBranchWeights(NewSI
, MDWeights
);
1192 EraseTerminatorAndDCECond(PTI
);
1194 // Okay, last check. If BB is still a successor of PSI, then we must
1195 // have an infinite loop case. If so, add an infinitely looping block
1196 // to handle the case to preserve the behavior of the code.
1197 BasicBlock
*InfLoopBlock
= nullptr;
1198 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
1199 if (NewSI
->getSuccessor(i
) == BB
) {
1200 if (!InfLoopBlock
) {
1201 // Insert it at the end of the function, because it's either code,
1202 // or it won't matter if it's hot. :)
1203 InfLoopBlock
= BasicBlock::Create(BB
->getContext(), "infloop",
1205 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1207 NewSI
->setSuccessor(i
, InfLoopBlock
);
1216 // If we would need to insert a select that uses the value of this invoke
1217 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1218 // can't hoist the invoke, as there is nowhere to put the select in this case.
1219 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
1220 Instruction
*I1
, Instruction
*I2
) {
1221 for (BasicBlock
*Succ
: successors(BB1
)) {
1222 for (const PHINode
&PN
: Succ
->phis()) {
1223 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1224 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1225 if (BB1V
!= BB2V
&& (BB1V
== I1
|| BB2V
== I2
)) {
1233 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
);
1235 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1236 /// in the two blocks up into the branch block. The caller of this function
1237 /// guarantees that BI's block dominates BB1 and BB2.
1238 static bool HoistThenElseCodeToIf(BranchInst
*BI
,
1239 const TargetTransformInfo
&TTI
) {
1240 // This does very trivial matching, with limited scanning, to find identical
1241 // instructions in the two blocks. In particular, we don't want to get into
1242 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1243 // such, we currently just scan for obviously identical instructions in an
1245 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
1246 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
1248 BasicBlock::iterator BB1_Itr
= BB1
->begin();
1249 BasicBlock::iterator BB2_Itr
= BB2
->begin();
1251 Instruction
*I1
= &*BB1_Itr
++, *I2
= &*BB2_Itr
++;
1252 // Skip debug info if it is not identical.
1253 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1254 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1255 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1256 while (isa
<DbgInfoIntrinsic
>(I1
))
1258 while (isa
<DbgInfoIntrinsic
>(I2
))
1261 // FIXME: Can we define a safety predicate for CallBr?
1262 if (isa
<PHINode
>(I1
) || !I1
->isIdenticalToWhenDefined(I2
) ||
1263 (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
)) ||
1264 isa
<CallBrInst
>(I1
))
1267 BasicBlock
*BIParent
= BI
->getParent();
1269 bool Changed
= false;
1271 // If we are hoisting the terminator instruction, don't move one (making a
1272 // broken BB), instead clone it, and remove BI.
1273 if (I1
->isTerminator())
1274 goto HoistTerminator
;
1276 // If we're going to hoist a call, make sure that the two instructions we're
1277 // commoning/hoisting are both marked with musttail, or neither of them is
1278 // marked as such. Otherwise, we might end up in a situation where we hoist
1279 // from a block where the terminator is a `ret` to a block where the terminator
1280 // is a `br`, and `musttail` calls expect to be followed by a return.
1281 auto *C1
= dyn_cast
<CallInst
>(I1
);
1282 auto *C2
= dyn_cast
<CallInst
>(I2
);
1284 if (C1
->isMustTailCall() != C2
->isMustTailCall())
1287 if (!TTI
.isProfitableToHoist(I1
) || !TTI
.isProfitableToHoist(I2
))
1290 if (isa
<DbgInfoIntrinsic
>(I1
) || isa
<DbgInfoIntrinsic
>(I2
)) {
1291 assert (isa
<DbgInfoIntrinsic
>(I1
) && isa
<DbgInfoIntrinsic
>(I2
));
1292 // The debug location is an integral part of a debug info intrinsic
1293 // and can't be separated from it or replaced. Instead of attempting
1294 // to merge locations, simply hoist both copies of the intrinsic.
1295 BIParent
->getInstList().splice(BI
->getIterator(),
1296 BB1
->getInstList(), I1
);
1297 BIParent
->getInstList().splice(BI
->getIterator(),
1298 BB2
->getInstList(), I2
);
1301 // For a normal instruction, we just move one to right before the branch,
1302 // then replace all uses of the other with the first. Finally, we remove
1303 // the now redundant second instruction.
1304 BIParent
->getInstList().splice(BI
->getIterator(),
1305 BB1
->getInstList(), I1
);
1306 if (!I2
->use_empty())
1307 I2
->replaceAllUsesWith(I1
);
1309 unsigned KnownIDs
[] = {LLVMContext::MD_tbaa
,
1310 LLVMContext::MD_range
,
1311 LLVMContext::MD_fpmath
,
1312 LLVMContext::MD_invariant_load
,
1313 LLVMContext::MD_nonnull
,
1314 LLVMContext::MD_invariant_group
,
1315 LLVMContext::MD_align
,
1316 LLVMContext::MD_dereferenceable
,
1317 LLVMContext::MD_dereferenceable_or_null
,
1318 LLVMContext::MD_mem_parallel_loop_access
,
1319 LLVMContext::MD_access_group
,
1320 LLVMContext::MD_preserve_access_index
};
1321 combineMetadata(I1
, I2
, KnownIDs
, true);
1323 // I1 and I2 are being combined into a single instruction. Its debug
1324 // location is the merged locations of the original instructions.
1325 I1
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1327 I2
->eraseFromParent();
1333 // Skip debug info if it is not identical.
1334 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1335 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1336 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1337 while (isa
<DbgInfoIntrinsic
>(I1
))
1339 while (isa
<DbgInfoIntrinsic
>(I2
))
1342 } while (I1
->isIdenticalToWhenDefined(I2
));
1347 // It may not be possible to hoist an invoke.
1348 // FIXME: Can we define a safety predicate for CallBr?
1349 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
1352 // TODO: callbr hoisting currently disabled pending further study.
1353 if (isa
<CallBrInst
>(I1
))
1356 for (BasicBlock
*Succ
: successors(BB1
)) {
1357 for (PHINode
&PN
: Succ
->phis()) {
1358 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1359 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1363 // Check for passingValueIsAlwaysUndefined here because we would rather
1364 // eliminate undefined control flow then converting it to a select.
1365 if (passingValueIsAlwaysUndefined(BB1V
, &PN
) ||
1366 passingValueIsAlwaysUndefined(BB2V
, &PN
))
1369 if (isa
<ConstantExpr
>(BB1V
) && !isSafeToSpeculativelyExecute(BB1V
))
1371 if (isa
<ConstantExpr
>(BB2V
) && !isSafeToSpeculativelyExecute(BB2V
))
1376 // Okay, it is safe to hoist the terminator.
1377 Instruction
*NT
= I1
->clone();
1378 BIParent
->getInstList().insert(BI
->getIterator(), NT
);
1379 if (!NT
->getType()->isVoidTy()) {
1380 I1
->replaceAllUsesWith(NT
);
1381 I2
->replaceAllUsesWith(NT
);
1385 // Ensure terminator gets a debug location, even an unknown one, in case
1386 // it involves inlinable calls.
1387 NT
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1389 // PHIs created below will adopt NT's merged DebugLoc.
1390 IRBuilder
<NoFolder
> Builder(NT
);
1392 // Hoisting one of the terminators from our successor is a great thing.
1393 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1394 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1395 // nodes, so we insert select instruction to compute the final result.
1396 std::map
<std::pair
<Value
*, Value
*>, SelectInst
*> InsertedSelects
;
1397 for (BasicBlock
*Succ
: successors(BB1
)) {
1398 for (PHINode
&PN
: Succ
->phis()) {
1399 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1400 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1404 // These values do not agree. Insert a select instruction before NT
1405 // that determines the right value.
1406 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
1408 // Propagate fast-math-flags from phi node to its replacement select.
1409 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
1410 if (isa
<FPMathOperator
>(PN
))
1411 Builder
.setFastMathFlags(PN
.getFastMathFlags());
1413 SI
= cast
<SelectInst
>(
1414 Builder
.CreateSelect(BI
->getCondition(), BB1V
, BB2V
,
1415 BB1V
->getName() + "." + BB2V
->getName(), BI
));
1418 // Make the PHI node use the select for all incoming values for BB1/BB2
1419 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
1420 if (PN
.getIncomingBlock(i
) == BB1
|| PN
.getIncomingBlock(i
) == BB2
)
1421 PN
.setIncomingValue(i
, SI
);
1425 // Update any PHI nodes in our new successors.
1426 for (BasicBlock
*Succ
: successors(BB1
))
1427 AddPredecessorToBlock(Succ
, BIParent
, BB1
);
1429 EraseTerminatorAndDCECond(BI
);
1433 // Check lifetime markers.
1434 static bool isLifeTimeMarker(const Instruction
*I
) {
1435 if (auto II
= dyn_cast
<IntrinsicInst
>(I
)) {
1436 switch (II
->getIntrinsicID()) {
1439 case Intrinsic::lifetime_start
:
1440 case Intrinsic::lifetime_end
:
1447 // All instructions in Insts belong to different blocks that all unconditionally
1448 // branch to a common successor. Analyze each instruction and return true if it
1449 // would be possible to sink them into their successor, creating one common
1450 // instruction instead. For every value that would be required to be provided by
1451 // PHI node (because an operand varies in each input block), add to PHIOperands.
1452 static bool canSinkInstructions(
1453 ArrayRef
<Instruction
*> Insts
,
1454 DenseMap
<Instruction
*, SmallVector
<Value
*, 4>> &PHIOperands
) {
1455 // Prune out obviously bad instructions to move. Each instruction must have
1456 // exactly zero or one use, and we check later that use is by a single, common
1457 // PHI instruction in the successor.
1458 bool HasUse
= !Insts
.front()->user_empty();
1459 for (auto *I
: Insts
) {
1460 // These instructions may change or break semantics if moved.
1461 if (isa
<PHINode
>(I
) || I
->isEHPad() || isa
<AllocaInst
>(I
) ||
1462 I
->getType()->isTokenTy())
1465 // Conservatively return false if I is an inline-asm instruction. Sinking
1466 // and merging inline-asm instructions can potentially create arguments
1467 // that cannot satisfy the inline-asm constraints.
1468 if (const auto *C
= dyn_cast
<CallBase
>(I
))
1469 if (C
->isInlineAsm())
1472 // Each instruction must have zero or one use.
1473 if (HasUse
&& !I
->hasOneUse())
1475 if (!HasUse
&& !I
->user_empty())
1479 const Instruction
*I0
= Insts
.front();
1480 for (auto *I
: Insts
)
1481 if (!I
->isSameOperationAs(I0
))
1484 // All instructions in Insts are known to be the same opcode. If they have a
1485 // use, check that the only user is a PHI or in the same block as the
1486 // instruction, because if a user is in the same block as an instruction we're
1487 // contemplating sinking, it must already be determined to be sinkable.
1489 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1490 auto *Succ
= I0
->getParent()->getTerminator()->getSuccessor(0);
1491 if (!all_of(Insts
, [&PNUse
,&Succ
](const Instruction
*I
) -> bool {
1492 auto *U
= cast
<Instruction
>(*I
->user_begin());
1494 PNUse
->getParent() == Succ
&&
1495 PNUse
->getIncomingValueForBlock(I
->getParent()) == I
) ||
1496 U
->getParent() == I
->getParent();
1501 // Because SROA can't handle speculating stores of selects, try not to sink
1502 // loads, stores or lifetime markers of allocas when we'd have to create a
1503 // PHI for the address operand. Also, because it is likely that loads or
1504 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1506 // This can cause code churn which can have unintended consequences down
1507 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1508 // FIXME: This is a workaround for a deficiency in SROA - see
1509 // https://llvm.org/bugs/show_bug.cgi?id=30188
1510 if (isa
<StoreInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1511 return isa
<AllocaInst
>(I
->getOperand(1)->stripPointerCasts());
1514 if (isa
<LoadInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1515 return isa
<AllocaInst
>(I
->getOperand(0)->stripPointerCasts());
1518 if (isLifeTimeMarker(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1519 return isa
<AllocaInst
>(I
->getOperand(1)->stripPointerCasts());
1523 for (unsigned OI
= 0, OE
= I0
->getNumOperands(); OI
!= OE
; ++OI
) {
1524 if (I0
->getOperand(OI
)->getType()->isTokenTy())
1525 // Don't touch any operand of token type.
1528 auto SameAsI0
= [&I0
, OI
](const Instruction
*I
) {
1529 assert(I
->getNumOperands() == I0
->getNumOperands());
1530 return I
->getOperand(OI
) == I0
->getOperand(OI
);
1532 if (!all_of(Insts
, SameAsI0
)) {
1533 if (!canReplaceOperandWithVariable(I0
, OI
))
1534 // We can't create a PHI from this GEP.
1536 // Don't create indirect calls! The called value is the final operand.
1537 if (isa
<CallBase
>(I0
) && OI
== OE
- 1) {
1538 // FIXME: if the call was *already* indirect, we should do this.
1541 for (auto *I
: Insts
)
1542 PHIOperands
[I
].push_back(I
->getOperand(OI
));
1548 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1549 // instruction of every block in Blocks to their common successor, commoning
1550 // into one instruction.
1551 static bool sinkLastInstruction(ArrayRef
<BasicBlock
*> Blocks
) {
1552 auto *BBEnd
= Blocks
[0]->getTerminator()->getSuccessor(0);
1554 // canSinkLastInstruction returning true guarantees that every block has at
1555 // least one non-terminator instruction.
1556 SmallVector
<Instruction
*,4> Insts
;
1557 for (auto *BB
: Blocks
) {
1558 Instruction
*I
= BB
->getTerminator();
1560 I
= I
->getPrevNode();
1561 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= &BB
->front());
1562 if (!isa
<DbgInfoIntrinsic
>(I
))
1566 // The only checking we need to do now is that all users of all instructions
1567 // are the same PHI node. canSinkLastInstruction should have checked this but
1568 // it is slightly over-aggressive - it gets confused by commutative instructions
1569 // so double-check it here.
1570 Instruction
*I0
= Insts
.front();
1571 if (!I0
->user_empty()) {
1572 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1573 if (!all_of(Insts
, [&PNUse
](const Instruction
*I
) -> bool {
1574 auto *U
= cast
<Instruction
>(*I
->user_begin());
1580 // We don't need to do any more checking here; canSinkLastInstruction should
1581 // have done it all for us.
1582 SmallVector
<Value
*, 4> NewOperands
;
1583 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
) {
1584 // This check is different to that in canSinkLastInstruction. There, we
1585 // cared about the global view once simplifycfg (and instcombine) have
1586 // completed - it takes into account PHIs that become trivially
1587 // simplifiable. However here we need a more local view; if an operand
1588 // differs we create a PHI and rely on instcombine to clean up the very
1589 // small mess we may make.
1590 bool NeedPHI
= any_of(Insts
, [&I0
, O
](const Instruction
*I
) {
1591 return I
->getOperand(O
) != I0
->getOperand(O
);
1594 NewOperands
.push_back(I0
->getOperand(O
));
1598 // Create a new PHI in the successor block and populate it.
1599 auto *Op
= I0
->getOperand(O
);
1600 assert(!Op
->getType()->isTokenTy() && "Can't PHI tokens!");
1601 auto *PN
= PHINode::Create(Op
->getType(), Insts
.size(),
1602 Op
->getName() + ".sink", &BBEnd
->front());
1603 for (auto *I
: Insts
)
1604 PN
->addIncoming(I
->getOperand(O
), I
->getParent());
1605 NewOperands
.push_back(PN
);
1608 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1609 // and move it to the start of the successor block.
1610 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
)
1611 I0
->getOperandUse(O
).set(NewOperands
[O
]);
1612 I0
->moveBefore(&*BBEnd
->getFirstInsertionPt());
1614 // Update metadata and IR flags, and merge debug locations.
1615 for (auto *I
: Insts
)
1617 // The debug location for the "common" instruction is the merged locations
1618 // of all the commoned instructions. We start with the original location
1619 // of the "common" instruction and iteratively merge each location in the
1621 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1622 // However, as N-way merge for CallInst is rare, so we use simplified API
1623 // instead of using complex API for N-way merge.
1624 I0
->applyMergedLocation(I0
->getDebugLoc(), I
->getDebugLoc());
1625 combineMetadataForCSE(I0
, I
, true);
1629 if (!I0
->user_empty()) {
1630 // canSinkLastInstruction checked that all instructions were used by
1631 // one and only one PHI node. Find that now, RAUW it to our common
1632 // instruction and nuke it.
1633 auto *PN
= cast
<PHINode
>(*I0
->user_begin());
1634 PN
->replaceAllUsesWith(I0
);
1635 PN
->eraseFromParent();
1638 // Finally nuke all instructions apart from the common instruction.
1639 for (auto *I
: Insts
)
1641 I
->eraseFromParent();
1648 // LockstepReverseIterator - Iterates through instructions
1649 // in a set of blocks in reverse order from the first non-terminator.
1650 // For example (assume all blocks have size n):
1651 // LockstepReverseIterator I([B1, B2, B3]);
1652 // *I-- = [B1[n], B2[n], B3[n]];
1653 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1654 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1656 class LockstepReverseIterator
{
1657 ArrayRef
<BasicBlock
*> Blocks
;
1658 SmallVector
<Instruction
*,4> Insts
;
1662 LockstepReverseIterator(ArrayRef
<BasicBlock
*> Blocks
) : Blocks(Blocks
) {
1669 for (auto *BB
: Blocks
) {
1670 Instruction
*Inst
= BB
->getTerminator();
1671 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1672 Inst
= Inst
->getPrevNode();
1674 // Block wasn't big enough.
1678 Insts
.push_back(Inst
);
1682 bool isValid() const {
1689 for (auto *&Inst
: Insts
) {
1690 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1691 Inst
= Inst
->getPrevNode();
1692 // Already at beginning of block.
1700 ArrayRef
<Instruction
*> operator * () const {
1705 } // end anonymous namespace
1707 /// Check whether BB's predecessors end with unconditional branches. If it is
1708 /// true, sink any common code from the predecessors to BB.
1709 /// We also allow one predecessor to end with conditional branch (but no more
1711 static bool SinkCommonCodeFromPredecessors(BasicBlock
*BB
) {
1712 // We support two situations:
1713 // (1) all incoming arcs are unconditional
1714 // (2) one incoming arc is conditional
1716 // (2) is very common in switch defaults and
1717 // else-if patterns;
1720 // else if (b) f(2);
1733 // [end] has two unconditional predecessor arcs and one conditional. The
1734 // conditional refers to the implicit empty 'else' arc. This conditional
1735 // arc can also be caused by an empty default block in a switch.
1737 // In this case, we attempt to sink code from all *unconditional* arcs.
1738 // If we can sink instructions from these arcs (determined during the scan
1739 // phase below) we insert a common successor for all unconditional arcs and
1740 // connect that to [end], to enable sinking:
1753 SmallVector
<BasicBlock
*,4> UnconditionalPreds
;
1754 Instruction
*Cond
= nullptr;
1755 for (auto *B
: predecessors(BB
)) {
1756 auto *T
= B
->getTerminator();
1757 if (isa
<BranchInst
>(T
) && cast
<BranchInst
>(T
)->isUnconditional())
1758 UnconditionalPreds
.push_back(B
);
1759 else if ((isa
<BranchInst
>(T
) || isa
<SwitchInst
>(T
)) && !Cond
)
1764 if (UnconditionalPreds
.size() < 2)
1767 bool Changed
= false;
1768 // We take a two-step approach to tail sinking. First we scan from the end of
1769 // each block upwards in lockstep. If the n'th instruction from the end of each
1770 // block can be sunk, those instructions are added to ValuesToSink and we
1771 // carry on. If we can sink an instruction but need to PHI-merge some operands
1772 // (because they're not identical in each instruction) we add these to
1774 unsigned ScanIdx
= 0;
1775 SmallPtrSet
<Value
*,4> InstructionsToSink
;
1776 DenseMap
<Instruction
*, SmallVector
<Value
*,4>> PHIOperands
;
1777 LockstepReverseIterator
LRI(UnconditionalPreds
);
1778 while (LRI
.isValid() &&
1779 canSinkInstructions(*LRI
, PHIOperands
)) {
1780 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI
)[0]
1782 InstructionsToSink
.insert((*LRI
).begin(), (*LRI
).end());
1787 auto ProfitableToSinkInstruction
= [&](LockstepReverseIterator
&LRI
) {
1788 unsigned NumPHIdValues
= 0;
1789 for (auto *I
: *LRI
)
1790 for (auto *V
: PHIOperands
[I
])
1791 if (InstructionsToSink
.count(V
) == 0)
1793 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues
<< "\n");
1794 unsigned NumPHIInsts
= NumPHIdValues
/ UnconditionalPreds
.size();
1795 if ((NumPHIdValues
% UnconditionalPreds
.size()) != 0)
1798 return NumPHIInsts
<= 1;
1801 if (ScanIdx
> 0 && Cond
) {
1802 // Check if we would actually sink anything first! This mutates the CFG and
1803 // adds an extra block. The goal in doing this is to allow instructions that
1804 // couldn't be sunk before to be sunk - obviously, speculatable instructions
1805 // (such as trunc, add) can be sunk and predicated already. So we check that
1806 // we're going to sink at least one non-speculatable instruction.
1809 bool Profitable
= false;
1810 while (ProfitableToSinkInstruction(LRI
) && Idx
< ScanIdx
) {
1811 if (!isSafeToSpeculativelyExecute((*LRI
)[0])) {
1821 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1822 // We have a conditional edge and we're going to sink some instructions.
1823 // Insert a new block postdominating all blocks we're going to sink from.
1824 if (!SplitBlockPredecessors(BB
, UnconditionalPreds
, ".sink.split"))
1825 // Edges couldn't be split.
1830 // Now that we've analyzed all potential sinking candidates, perform the
1831 // actual sink. We iteratively sink the last non-terminator of the source
1832 // blocks into their common successor unless doing so would require too
1833 // many PHI instructions to be generated (currently only one PHI is allowed
1834 // per sunk instruction).
1836 // We can use InstructionsToSink to discount values needing PHI-merging that will
1837 // actually be sunk in a later iteration. This allows us to be more
1838 // aggressive in what we sink. This does allow a false positive where we
1839 // sink presuming a later value will also be sunk, but stop half way through
1840 // and never actually sink it which means we produce more PHIs than intended.
1841 // This is unlikely in practice though.
1842 for (unsigned SinkIdx
= 0; SinkIdx
!= ScanIdx
; ++SinkIdx
) {
1843 LLVM_DEBUG(dbgs() << "SINK: Sink: "
1844 << *UnconditionalPreds
[0]->getTerminator()->getPrevNode()
1847 // Because we've sunk every instruction in turn, the current instruction to
1848 // sink is always at index 0.
1850 if (!ProfitableToSinkInstruction(LRI
)) {
1851 // Too many PHIs would be created.
1853 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1857 if (!sinkLastInstruction(UnconditionalPreds
))
1865 /// Determine if we can hoist sink a sole store instruction out of a
1866 /// conditional block.
1868 /// We are looking for code like the following:
1870 /// store i32 %add, i32* %arrayidx2
1871 /// ... // No other stores or function calls (we could be calling a memory
1872 /// ... // function).
1873 /// %cmp = icmp ult %x, %y
1874 /// br i1 %cmp, label %EndBB, label %ThenBB
1876 /// store i32 %add5, i32* %arrayidx2
1880 /// We are going to transform this into:
1882 /// store i32 %add, i32* %arrayidx2
1884 /// %cmp = icmp ult %x, %y
1885 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1886 /// store i32 %add.add5, i32* %arrayidx2
1889 /// \return The pointer to the value of the previous store if the store can be
1890 /// hoisted into the predecessor block. 0 otherwise.
1891 static Value
*isSafeToSpeculateStore(Instruction
*I
, BasicBlock
*BrBB
,
1892 BasicBlock
*StoreBB
, BasicBlock
*EndBB
) {
1893 StoreInst
*StoreToHoist
= dyn_cast
<StoreInst
>(I
);
1897 // Volatile or atomic.
1898 if (!StoreToHoist
->isSimple())
1901 Value
*StorePtr
= StoreToHoist
->getPointerOperand();
1903 // Look for a store to the same pointer in BrBB.
1904 unsigned MaxNumInstToLookAt
= 9;
1905 for (Instruction
&CurI
: reverse(BrBB
->instructionsWithoutDebug())) {
1906 if (!MaxNumInstToLookAt
)
1908 --MaxNumInstToLookAt
;
1910 // Could be calling an instruction that affects memory like free().
1911 if (CurI
.mayHaveSideEffects() && !isa
<StoreInst
>(CurI
))
1914 if (auto *SI
= dyn_cast
<StoreInst
>(&CurI
)) {
1915 // Found the previous store make sure it stores to the same location.
1916 if (SI
->getPointerOperand() == StorePtr
)
1917 // Found the previous store, return its value operand.
1918 return SI
->getValueOperand();
1919 return nullptr; // Unknown store.
1926 /// Speculate a conditional basic block flattening the CFG.
1928 /// Note that this is a very risky transform currently. Speculating
1929 /// instructions like this is most often not desirable. Instead, there is an MI
1930 /// pass which can do it with full awareness of the resource constraints.
1931 /// However, some cases are "obvious" and we should do directly. An example of
1932 /// this is speculating a single, reasonably cheap instruction.
1934 /// There is only one distinct advantage to flattening the CFG at the IR level:
1935 /// it makes very common but simplistic optimizations such as are common in
1936 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1937 /// modeling their effects with easier to reason about SSA value graphs.
1940 /// An illustration of this transform is turning this IR:
1943 /// %cmp = icmp ult %x, %y
1944 /// br i1 %cmp, label %EndBB, label %ThenBB
1946 /// %sub = sub %x, %y
1949 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1956 /// %cmp = icmp ult %x, %y
1957 /// %sub = sub %x, %y
1958 /// %cond = select i1 %cmp, 0, %sub
1962 /// \returns true if the conditional block is removed.
1963 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*ThenBB
,
1964 const TargetTransformInfo
&TTI
) {
1965 // Be conservative for now. FP select instruction can often be expensive.
1966 Value
*BrCond
= BI
->getCondition();
1967 if (isa
<FCmpInst
>(BrCond
))
1970 BasicBlock
*BB
= BI
->getParent();
1971 BasicBlock
*EndBB
= ThenBB
->getTerminator()->getSuccessor(0);
1973 // If ThenBB is actually on the false edge of the conditional branch, remember
1974 // to swap the select operands later.
1975 bool Invert
= false;
1976 if (ThenBB
!= BI
->getSuccessor(0)) {
1977 assert(ThenBB
== BI
->getSuccessor(1) && "No edge from 'if' block?");
1980 assert(EndBB
== BI
->getSuccessor(!Invert
) && "No edge from to end block");
1982 // Keep a count of how many times instructions are used within ThenBB when
1983 // they are candidates for sinking into ThenBB. Specifically:
1984 // - They are defined in BB, and
1985 // - They have no side effects, and
1986 // - All of their uses are in ThenBB.
1987 SmallDenseMap
<Instruction
*, unsigned, 4> SinkCandidateUseCounts
;
1989 SmallVector
<Instruction
*, 4> SpeculatedDbgIntrinsics
;
1991 unsigned SpeculatedInstructions
= 0;
1992 Value
*SpeculatedStoreValue
= nullptr;
1993 StoreInst
*SpeculatedStore
= nullptr;
1994 for (BasicBlock::iterator BBI
= ThenBB
->begin(),
1995 BBE
= std::prev(ThenBB
->end());
1996 BBI
!= BBE
; ++BBI
) {
1997 Instruction
*I
= &*BBI
;
1999 if (isa
<DbgInfoIntrinsic
>(I
)) {
2000 SpeculatedDbgIntrinsics
.push_back(I
);
2004 // Only speculatively execute a single instruction (not counting the
2005 // terminator) for now.
2006 ++SpeculatedInstructions
;
2007 if (SpeculatedInstructions
> 1)
2010 // Don't hoist the instruction if it's unsafe or expensive.
2011 if (!isSafeToSpeculativelyExecute(I
) &&
2012 !(HoistCondStores
&& (SpeculatedStoreValue
= isSafeToSpeculateStore(
2013 I
, BB
, ThenBB
, EndBB
))))
2015 if (!SpeculatedStoreValue
&&
2016 ComputeSpeculationCost(I
, TTI
) >
2017 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
)
2020 // Store the store speculation candidate.
2021 if (SpeculatedStoreValue
)
2022 SpeculatedStore
= cast
<StoreInst
>(I
);
2024 // Do not hoist the instruction if any of its operands are defined but not
2025 // used in BB. The transformation will prevent the operand from
2026 // being sunk into the use block.
2027 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
) {
2028 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
2029 if (!OpI
|| OpI
->getParent() != BB
|| OpI
->mayHaveSideEffects())
2030 continue; // Not a candidate for sinking.
2032 ++SinkCandidateUseCounts
[OpI
];
2036 // Consider any sink candidates which are only used in ThenBB as costs for
2037 // speculation. Note, while we iterate over a DenseMap here, we are summing
2038 // and so iteration order isn't significant.
2039 for (SmallDenseMap
<Instruction
*, unsigned, 4>::iterator
2040 I
= SinkCandidateUseCounts
.begin(),
2041 E
= SinkCandidateUseCounts
.end();
2043 if (I
->first
->hasNUses(I
->second
)) {
2044 ++SpeculatedInstructions
;
2045 if (SpeculatedInstructions
> 1)
2049 // Check that the PHI nodes can be converted to selects.
2050 bool HaveRewritablePHIs
= false;
2051 for (PHINode
&PN
: EndBB
->phis()) {
2052 Value
*OrigV
= PN
.getIncomingValueForBlock(BB
);
2053 Value
*ThenV
= PN
.getIncomingValueForBlock(ThenBB
);
2055 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2056 // Skip PHIs which are trivial.
2060 // Don't convert to selects if we could remove undefined behavior instead.
2061 if (passingValueIsAlwaysUndefined(OrigV
, &PN
) ||
2062 passingValueIsAlwaysUndefined(ThenV
, &PN
))
2065 HaveRewritablePHIs
= true;
2066 ConstantExpr
*OrigCE
= dyn_cast
<ConstantExpr
>(OrigV
);
2067 ConstantExpr
*ThenCE
= dyn_cast
<ConstantExpr
>(ThenV
);
2068 if (!OrigCE
&& !ThenCE
)
2069 continue; // Known safe and cheap.
2071 if ((ThenCE
&& !isSafeToSpeculativelyExecute(ThenCE
)) ||
2072 (OrigCE
&& !isSafeToSpeculativelyExecute(OrigCE
)))
2074 unsigned OrigCost
= OrigCE
? ComputeSpeculationCost(OrigCE
, TTI
) : 0;
2075 unsigned ThenCost
= ThenCE
? ComputeSpeculationCost(ThenCE
, TTI
) : 0;
2077 2 * PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2078 if (OrigCost
+ ThenCost
> MaxCost
)
2081 // Account for the cost of an unfolded ConstantExpr which could end up
2082 // getting expanded into Instructions.
2083 // FIXME: This doesn't account for how many operations are combined in the
2084 // constant expression.
2085 ++SpeculatedInstructions
;
2086 if (SpeculatedInstructions
> 1)
2090 // If there are no PHIs to process, bail early. This helps ensure idempotence
2092 if (!HaveRewritablePHIs
&& !(HoistCondStores
&& SpeculatedStoreValue
))
2095 // If we get here, we can hoist the instruction and if-convert.
2096 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB
<< "\n";);
2098 // Insert a select of the value of the speculated store.
2099 if (SpeculatedStoreValue
) {
2100 IRBuilder
<NoFolder
> Builder(BI
);
2101 Value
*TrueV
= SpeculatedStore
->getValueOperand();
2102 Value
*FalseV
= SpeculatedStoreValue
;
2104 std::swap(TrueV
, FalseV
);
2105 Value
*S
= Builder
.CreateSelect(
2106 BrCond
, TrueV
, FalseV
, "spec.store.select", BI
);
2107 SpeculatedStore
->setOperand(0, S
);
2108 SpeculatedStore
->applyMergedLocation(BI
->getDebugLoc(),
2109 SpeculatedStore
->getDebugLoc());
2112 // Metadata can be dependent on the condition we are hoisting above.
2113 // Conservatively strip all metadata on the instruction.
2114 for (auto &I
: *ThenBB
)
2115 I
.dropUnknownNonDebugMetadata();
2117 // Hoist the instructions.
2118 BB
->getInstList().splice(BI
->getIterator(), ThenBB
->getInstList(),
2119 ThenBB
->begin(), std::prev(ThenBB
->end()));
2121 // Insert selects and rewrite the PHI operands.
2122 IRBuilder
<NoFolder
> Builder(BI
);
2123 for (PHINode
&PN
: EndBB
->phis()) {
2124 unsigned OrigI
= PN
.getBasicBlockIndex(BB
);
2125 unsigned ThenI
= PN
.getBasicBlockIndex(ThenBB
);
2126 Value
*OrigV
= PN
.getIncomingValue(OrigI
);
2127 Value
*ThenV
= PN
.getIncomingValue(ThenI
);
2129 // Skip PHIs which are trivial.
2133 // Create a select whose true value is the speculatively executed value and
2134 // false value is the preexisting value. Swap them if the branch
2135 // destinations were inverted.
2136 Value
*TrueV
= ThenV
, *FalseV
= OrigV
;
2138 std::swap(TrueV
, FalseV
);
2139 Value
*V
= Builder
.CreateSelect(
2140 BrCond
, TrueV
, FalseV
, "spec.select", BI
);
2141 PN
.setIncomingValue(OrigI
, V
);
2142 PN
.setIncomingValue(ThenI
, V
);
2145 // Remove speculated dbg intrinsics.
2146 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2147 // dbg value for the different flows and inserting it after the select.
2148 for (Instruction
*I
: SpeculatedDbgIntrinsics
)
2149 I
->eraseFromParent();
2155 /// Return true if we can thread a branch across this block.
2156 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
2159 for (Instruction
&I
: BB
->instructionsWithoutDebug()) {
2161 return false; // Don't clone large BB's.
2164 // We can only support instructions that do not define values that are
2165 // live outside of the current basic block.
2166 for (User
*U
: I
.users()) {
2167 Instruction
*UI
= cast
<Instruction
>(U
);
2168 if (UI
->getParent() != BB
|| isa
<PHINode
>(UI
))
2172 // Looks ok, continue checking.
2178 /// If we have a conditional branch on a PHI node value that is defined in the
2179 /// same block as the branch and if any PHI entries are constants, thread edges
2180 /// corresponding to that entry to be branches to their ultimate destination.
2181 static bool FoldCondBranchOnPHI(BranchInst
*BI
, const DataLayout
&DL
,
2182 AssumptionCache
*AC
) {
2183 BasicBlock
*BB
= BI
->getParent();
2184 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
2185 // NOTE: we currently cannot transform this case if the PHI node is used
2186 // outside of the block.
2187 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
2190 // Degenerate case of a single entry PHI.
2191 if (PN
->getNumIncomingValues() == 1) {
2192 FoldSingleEntryPHINodes(PN
->getParent());
2196 // Now we know that this block has multiple preds and two succs.
2197 if (!BlockIsSimpleEnoughToThreadThrough(BB
))
2200 // Can't fold blocks that contain noduplicate or convergent calls.
2201 if (any_of(*BB
, [](const Instruction
&I
) {
2202 const CallInst
*CI
= dyn_cast
<CallInst
>(&I
);
2203 return CI
&& (CI
->cannotDuplicate() || CI
->isConvergent());
2207 // Okay, this is a simple enough basic block. See if any phi values are
2209 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
2210 ConstantInt
*CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
));
2211 if (!CB
|| !CB
->getType()->isIntegerTy(1))
2214 // Okay, we now know that all edges from PredBB should be revectored to
2215 // branch to RealDest.
2216 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
2217 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
2220 continue; // Skip self loops.
2221 // Skip if the predecessor's terminator is an indirect branch.
2222 if (isa
<IndirectBrInst
>(PredBB
->getTerminator()))
2225 // The dest block might have PHI nodes, other predecessors and other
2226 // difficult cases. Instead of being smart about this, just insert a new
2227 // block that jumps to the destination block, effectively splitting
2228 // the edge we are about to create.
2229 BasicBlock
*EdgeBB
=
2230 BasicBlock::Create(BB
->getContext(), RealDest
->getName() + ".critedge",
2231 RealDest
->getParent(), RealDest
);
2232 BranchInst
*CritEdgeBranch
= BranchInst::Create(RealDest
, EdgeBB
);
2233 CritEdgeBranch
->setDebugLoc(BI
->getDebugLoc());
2235 // Update PHI nodes.
2236 AddPredecessorToBlock(RealDest
, EdgeBB
, BB
);
2238 // BB may have instructions that are being threaded over. Clone these
2239 // instructions into EdgeBB. We know that there will be no uses of the
2240 // cloned instructions outside of EdgeBB.
2241 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
2242 DenseMap
<Value
*, Value
*> TranslateMap
; // Track translated values.
2243 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
2244 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
2245 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
2248 // Clone the instruction.
2249 Instruction
*N
= BBI
->clone();
2251 N
->setName(BBI
->getName() + ".c");
2253 // Update operands due to translation.
2254 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end(); i
!= e
; ++i
) {
2255 DenseMap
<Value
*, Value
*>::iterator PI
= TranslateMap
.find(*i
);
2256 if (PI
!= TranslateMap
.end())
2260 // Check for trivial simplification.
2261 if (Value
*V
= SimplifyInstruction(N
, {DL
, nullptr, nullptr, AC
})) {
2262 if (!BBI
->use_empty())
2263 TranslateMap
[&*BBI
] = V
;
2264 if (!N
->mayHaveSideEffects()) {
2265 N
->deleteValue(); // Instruction folded away, don't need actual inst
2269 if (!BBI
->use_empty())
2270 TranslateMap
[&*BBI
] = N
;
2273 // Insert the new instruction into its new home.
2274 EdgeBB
->getInstList().insert(InsertPt
, N
);
2276 // Register the new instruction with the assumption cache if necessary.
2277 if (AC
&& match(N
, m_Intrinsic
<Intrinsic::assume
>()))
2278 AC
->registerAssumption(cast
<IntrinsicInst
>(N
));
2282 // Loop over all of the edges from PredBB to BB, changing them to branch
2283 // to EdgeBB instead.
2284 Instruction
*PredBBTI
= PredBB
->getTerminator();
2285 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
2286 if (PredBBTI
->getSuccessor(i
) == BB
) {
2287 BB
->removePredecessor(PredBB
);
2288 PredBBTI
->setSuccessor(i
, EdgeBB
);
2291 // Recurse, simplifying any other constants.
2292 return FoldCondBranchOnPHI(BI
, DL
, AC
) || true;
2298 /// Given a BB that starts with the specified two-entry PHI node,
2299 /// see if we can eliminate it.
2300 static bool FoldTwoEntryPHINode(PHINode
*PN
, const TargetTransformInfo
&TTI
,
2301 const DataLayout
&DL
) {
2302 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
2303 // statement", which has a very simple dominance structure. Basically, we
2304 // are trying to find the condition that is being branched on, which
2305 // subsequently causes this merge to happen. We really want control
2306 // dependence information for this check, but simplifycfg can't keep it up
2307 // to date, and this catches most of the cases we care about anyway.
2308 BasicBlock
*BB
= PN
->getParent();
2309 const Function
*Fn
= BB
->getParent();
2310 if (Fn
&& Fn
->hasFnAttribute(Attribute::OptForFuzzing
))
2313 BasicBlock
*IfTrue
, *IfFalse
;
2314 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
2316 // Don't bother if the branch will be constant folded trivially.
2317 isa
<ConstantInt
>(IfCond
))
2320 // Okay, we found that we can merge this two-entry phi node into a select.
2321 // Doing so would require us to fold *all* two entry phi nodes in this block.
2322 // At some point this becomes non-profitable (particularly if the target
2323 // doesn't support cmov's). Only do this transformation if there are two or
2324 // fewer PHI nodes in this block.
2325 unsigned NumPhis
= 0;
2326 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
2330 // Loop over the PHI's seeing if we can promote them all to select
2331 // instructions. While we are at it, keep track of the instructions
2332 // that need to be moved to the dominating block.
2333 SmallPtrSet
<Instruction
*, 4> AggressiveInsts
;
2334 int BudgetRemaining
=
2335 TwoEntryPHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2337 for (BasicBlock::iterator II
= BB
->begin(); isa
<PHINode
>(II
);) {
2338 PHINode
*PN
= cast
<PHINode
>(II
++);
2339 if (Value
*V
= SimplifyInstruction(PN
, {DL
, PN
})) {
2340 PN
->replaceAllUsesWith(V
);
2341 PN
->eraseFromParent();
2345 if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
, AggressiveInsts
,
2346 BudgetRemaining
, TTI
) ||
2347 !DominatesMergePoint(PN
->getIncomingValue(1), BB
, AggressiveInsts
,
2348 BudgetRemaining
, TTI
))
2352 // If we folded the first phi, PN dangles at this point. Refresh it. If
2353 // we ran out of PHIs then we simplified them all.
2354 PN
= dyn_cast
<PHINode
>(BB
->begin());
2358 // Return true if at least one of these is a 'not', and another is either
2359 // a 'not' too, or a constant.
2360 auto CanHoistNotFromBothValues
= [](Value
*V0
, Value
*V1
) {
2361 if (!match(V0
, m_Not(m_Value())))
2363 auto Invertible
= m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2364 return match(V0
, m_Not(m_Value())) && match(V1
, Invertible
);
2367 // Don't fold i1 branches on PHIs which contain binary operators, unless one
2368 // of the incoming values is an 'not' and another one is freely invertible.
2369 // These can often be turned into switches and other things.
2370 if (PN
->getType()->isIntegerTy(1) &&
2371 (isa
<BinaryOperator
>(PN
->getIncomingValue(0)) ||
2372 isa
<BinaryOperator
>(PN
->getIncomingValue(1)) ||
2373 isa
<BinaryOperator
>(IfCond
)) &&
2374 !CanHoistNotFromBothValues(PN
->getIncomingValue(0),
2375 PN
->getIncomingValue(1)))
2378 // If all PHI nodes are promotable, check to make sure that all instructions
2379 // in the predecessor blocks can be promoted as well. If not, we won't be able
2380 // to get rid of the control flow, so it's not worth promoting to select
2382 BasicBlock
*DomBlock
= nullptr;
2383 BasicBlock
*IfBlock1
= PN
->getIncomingBlock(0);
2384 BasicBlock
*IfBlock2
= PN
->getIncomingBlock(1);
2385 if (cast
<BranchInst
>(IfBlock1
->getTerminator())->isConditional()) {
2388 DomBlock
= *pred_begin(IfBlock1
);
2389 for (BasicBlock::iterator I
= IfBlock1
->begin(); !I
->isTerminator(); ++I
)
2390 if (!AggressiveInsts
.count(&*I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
2391 // This is not an aggressive instruction that we can promote.
2392 // Because of this, we won't be able to get rid of the control flow, so
2393 // the xform is not worth it.
2398 if (cast
<BranchInst
>(IfBlock2
->getTerminator())->isConditional()) {
2401 DomBlock
= *pred_begin(IfBlock2
);
2402 for (BasicBlock::iterator I
= IfBlock2
->begin(); !I
->isTerminator(); ++I
)
2403 if (!AggressiveInsts
.count(&*I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
2404 // This is not an aggressive instruction that we can promote.
2405 // Because of this, we won't be able to get rid of the control flow, so
2406 // the xform is not worth it.
2410 assert(DomBlock
&& "Failed to find root DomBlock");
2412 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
2413 << " T: " << IfTrue
->getName()
2414 << " F: " << IfFalse
->getName() << "\n");
2416 // If we can still promote the PHI nodes after this gauntlet of tests,
2417 // do all of the PHI's now.
2418 Instruction
*InsertPt
= DomBlock
->getTerminator();
2419 IRBuilder
<NoFolder
> Builder(InsertPt
);
2421 // Move all 'aggressive' instructions, which are defined in the
2422 // conditional parts of the if's up to the dominating block.
2424 hoistAllInstructionsInto(DomBlock
, InsertPt
, IfBlock1
);
2426 hoistAllInstructionsInto(DomBlock
, InsertPt
, IfBlock2
);
2428 // Propagate fast-math-flags from phi nodes to replacement selects.
2429 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
2430 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
2431 if (isa
<FPMathOperator
>(PN
))
2432 Builder
.setFastMathFlags(PN
->getFastMathFlags());
2434 // Change the PHI node into a select instruction.
2435 Value
*TrueVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
2436 Value
*FalseVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
2438 Value
*Sel
= Builder
.CreateSelect(IfCond
, TrueVal
, FalseVal
, "", InsertPt
);
2439 PN
->replaceAllUsesWith(Sel
);
2441 PN
->eraseFromParent();
2444 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2445 // has been flattened. Change DomBlock to jump directly to our new block to
2446 // avoid other simplifycfg's kicking in on the diamond.
2447 Instruction
*OldTI
= DomBlock
->getTerminator();
2448 Builder
.SetInsertPoint(OldTI
);
2449 Builder
.CreateBr(BB
);
2450 OldTI
->eraseFromParent();
2454 /// If we found a conditional branch that goes to two returning blocks,
2455 /// try to merge them together into one return,
2456 /// introducing a select if the return values disagree.
2457 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
,
2458 IRBuilder
<> &Builder
) {
2459 assert(BI
->isConditional() && "Must be a conditional branch");
2460 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
2461 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
2462 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
2463 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
2465 // Check to ensure both blocks are empty (just a return) or optionally empty
2466 // with PHI nodes. If there are other instructions, merging would cause extra
2467 // computation on one path or the other.
2468 if (!TrueSucc
->getFirstNonPHIOrDbg()->isTerminator())
2470 if (!FalseSucc
->getFirstNonPHIOrDbg()->isTerminator())
2473 Builder
.SetInsertPoint(BI
);
2474 // Okay, we found a branch that is going to two return nodes. If
2475 // there is no return value for this function, just change the
2476 // branch into a return.
2477 if (FalseRet
->getNumOperands() == 0) {
2478 TrueSucc
->removePredecessor(BI
->getParent());
2479 FalseSucc
->removePredecessor(BI
->getParent());
2480 Builder
.CreateRetVoid();
2481 EraseTerminatorAndDCECond(BI
);
2485 // Otherwise, figure out what the true and false return values are
2486 // so we can insert a new select instruction.
2487 Value
*TrueValue
= TrueRet
->getReturnValue();
2488 Value
*FalseValue
= FalseRet
->getReturnValue();
2490 // Unwrap any PHI nodes in the return blocks.
2491 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
2492 if (TVPN
->getParent() == TrueSucc
)
2493 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
2494 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
2495 if (FVPN
->getParent() == FalseSucc
)
2496 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
2498 // In order for this transformation to be safe, we must be able to
2499 // unconditionally execute both operands to the return. This is
2500 // normally the case, but we could have a potentially-trapping
2501 // constant expression that prevents this transformation from being
2503 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
2506 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
2510 // Okay, we collected all the mapped values and checked them for sanity, and
2511 // defined to really do this transformation. First, update the CFG.
2512 TrueSucc
->removePredecessor(BI
->getParent());
2513 FalseSucc
->removePredecessor(BI
->getParent());
2515 // Insert select instructions where needed.
2516 Value
*BrCond
= BI
->getCondition();
2518 // Insert a select if the results differ.
2519 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
2520 } else if (isa
<UndefValue
>(TrueValue
)) {
2521 TrueValue
= FalseValue
;
2524 Builder
.CreateSelect(BrCond
, TrueValue
, FalseValue
, "retval", BI
);
2529 !TrueValue
? Builder
.CreateRetVoid() : Builder
.CreateRet(TrueValue
);
2533 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2534 << "\n " << *BI
<< "NewRet = " << *RI
<< "TRUEBLOCK: "
2535 << *TrueSucc
<< "FALSEBLOCK: " << *FalseSucc
);
2537 EraseTerminatorAndDCECond(BI
);
2542 /// Return true if the given instruction is available
2543 /// in its predecessor block. If yes, the instruction will be removed.
2544 static bool tryCSEWithPredecessor(Instruction
*Inst
, BasicBlock
*PB
) {
2545 if (!isa
<BinaryOperator
>(Inst
) && !isa
<CmpInst
>(Inst
))
2547 for (Instruction
&I
: *PB
) {
2548 Instruction
*PBI
= &I
;
2549 // Check whether Inst and PBI generate the same value.
2550 if (Inst
->isIdenticalTo(PBI
)) {
2551 Inst
->replaceAllUsesWith(PBI
);
2552 Inst
->eraseFromParent();
2559 /// Return true if either PBI or BI has branch weight available, and store
2560 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2561 /// not have branch weight, use 1:1 as its weight.
2562 static bool extractPredSuccWeights(BranchInst
*PBI
, BranchInst
*BI
,
2563 uint64_t &PredTrueWeight
,
2564 uint64_t &PredFalseWeight
,
2565 uint64_t &SuccTrueWeight
,
2566 uint64_t &SuccFalseWeight
) {
2567 bool PredHasWeights
=
2568 PBI
->extractProfMetadata(PredTrueWeight
, PredFalseWeight
);
2569 bool SuccHasWeights
=
2570 BI
->extractProfMetadata(SuccTrueWeight
, SuccFalseWeight
);
2571 if (PredHasWeights
|| SuccHasWeights
) {
2572 if (!PredHasWeights
)
2573 PredTrueWeight
= PredFalseWeight
= 1;
2574 if (!SuccHasWeights
)
2575 SuccTrueWeight
= SuccFalseWeight
= 1;
2582 /// If this basic block is simple enough, and if a predecessor branches to us
2583 /// and one of our successors, fold the block into the predecessor and use
2584 /// logical operations to pick the right destination.
2585 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
, MemorySSAUpdater
*MSSAU
,
2586 unsigned BonusInstThreshold
) {
2587 BasicBlock
*BB
= BI
->getParent();
2589 const unsigned PredCount
= pred_size(BB
);
2591 Instruction
*Cond
= nullptr;
2592 if (BI
->isConditional())
2593 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
2595 // For unconditional branch, check for a simple CFG pattern, where
2596 // BB has a single predecessor and BB's successor is also its predecessor's
2597 // successor. If such pattern exists, check for CSE between BB and its
2599 if (BasicBlock
*PB
= BB
->getSinglePredecessor())
2600 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PB
->getTerminator()))
2601 if (PBI
->isConditional() &&
2602 (BI
->getSuccessor(0) == PBI
->getSuccessor(0) ||
2603 BI
->getSuccessor(0) == PBI
->getSuccessor(1))) {
2604 for (auto I
= BB
->instructionsWithoutDebug().begin(),
2605 E
= BB
->instructionsWithoutDebug().end();
2607 Instruction
*Curr
= &*I
++;
2608 if (isa
<CmpInst
>(Curr
)) {
2612 // Quit if we can't remove this instruction.
2613 if (!tryCSEWithPredecessor(Curr
, PB
))
2622 if (!Cond
|| (!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
2623 Cond
->getParent() != BB
|| !Cond
->hasOneUse())
2626 // Make sure the instruction after the condition is the cond branch.
2627 BasicBlock::iterator CondIt
= ++Cond
->getIterator();
2629 // Ignore dbg intrinsics.
2630 while (isa
<DbgInfoIntrinsic
>(CondIt
))
2636 // Only allow this transformation if computing the condition doesn't involve
2637 // too many instructions and these involved instructions can be executed
2638 // unconditionally. We denote all involved instructions except the condition
2639 // as "bonus instructions", and only allow this transformation when the
2640 // number of the bonus instructions we'll need to create when cloning into
2641 // each predecessor does not exceed a certain threshold.
2642 unsigned NumBonusInsts
= 0;
2643 for (auto I
= BB
->begin(); Cond
!= &*I
; ++I
) {
2644 // Ignore dbg intrinsics.
2645 if (isa
<DbgInfoIntrinsic
>(I
))
2647 if (!I
->hasOneUse() || !isSafeToSpeculativelyExecute(&*I
))
2649 // I has only one use and can be executed unconditionally.
2650 Instruction
*User
= dyn_cast
<Instruction
>(I
->user_back());
2651 if (User
== nullptr || User
->getParent() != BB
)
2653 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2654 // to use any other instruction, User must be an instruction between next(I)
2657 // Account for the cost of duplicating this instruction into each
2659 NumBonusInsts
+= PredCount
;
2660 // Early exits once we reach the limit.
2661 if (NumBonusInsts
> BonusInstThreshold
)
2665 // Cond is known to be a compare or binary operator. Check to make sure that
2666 // neither operand is a potentially-trapping constant expression.
2667 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
2670 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
2674 // Finally, don't infinitely unroll conditional loops.
2675 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
2676 BasicBlock
*FalseDest
= (BI
->isConditional()) ? BI
->getSuccessor(1) : nullptr;
2677 if (TrueDest
== BB
|| FalseDest
== BB
)
2680 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
2681 BasicBlock
*PredBlock
= *PI
;
2682 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
2684 // Check that we have two conditional branches. If there is a PHI node in
2685 // the common successor, verify that the same value flows in from both
2687 SmallVector
<PHINode
*, 4> PHIs
;
2688 if (!PBI
|| PBI
->isUnconditional() ||
2689 (BI
->isConditional() && !SafeToMergeTerminators(BI
, PBI
)) ||
2690 (!BI
->isConditional() &&
2691 !isProfitableToFoldUnconditional(BI
, PBI
, Cond
, PHIs
)))
2694 // Determine if the two branches share a common destination.
2695 Instruction::BinaryOps Opc
= Instruction::BinaryOpsEnd
;
2696 bool InvertPredCond
= false;
2698 if (BI
->isConditional()) {
2699 if (PBI
->getSuccessor(0) == TrueDest
) {
2700 Opc
= Instruction::Or
;
2701 } else if (PBI
->getSuccessor(1) == FalseDest
) {
2702 Opc
= Instruction::And
;
2703 } else if (PBI
->getSuccessor(0) == FalseDest
) {
2704 Opc
= Instruction::And
;
2705 InvertPredCond
= true;
2706 } else if (PBI
->getSuccessor(1) == TrueDest
) {
2707 Opc
= Instruction::Or
;
2708 InvertPredCond
= true;
2713 if (PBI
->getSuccessor(0) != TrueDest
&& PBI
->getSuccessor(1) != TrueDest
)
2717 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
);
2718 IRBuilder
<> Builder(PBI
);
2720 // If we need to invert the condition in the pred block to match, do so now.
2721 if (InvertPredCond
) {
2722 Value
*NewCond
= PBI
->getCondition();
2724 if (NewCond
->hasOneUse() && isa
<CmpInst
>(NewCond
)) {
2725 CmpInst
*CI
= cast
<CmpInst
>(NewCond
);
2726 CI
->setPredicate(CI
->getInversePredicate());
2729 Builder
.CreateNot(NewCond
, PBI
->getCondition()->getName() + ".not");
2732 PBI
->setCondition(NewCond
);
2733 PBI
->swapSuccessors();
2736 // If we have bonus instructions, clone them into the predecessor block.
2737 // Note that there may be multiple predecessor blocks, so we cannot move
2738 // bonus instructions to a predecessor block.
2739 ValueToValueMapTy VMap
; // maps original values to cloned values
2740 // We already make sure Cond is the last instruction before BI. Therefore,
2741 // all instructions before Cond other than DbgInfoIntrinsic are bonus
2743 for (auto BonusInst
= BB
->begin(); Cond
!= &*BonusInst
; ++BonusInst
) {
2744 if (isa
<DbgInfoIntrinsic
>(BonusInst
))
2746 Instruction
*NewBonusInst
= BonusInst
->clone();
2747 RemapInstruction(NewBonusInst
, VMap
,
2748 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
2749 VMap
[&*BonusInst
] = NewBonusInst
;
2751 // If we moved a load, we cannot any longer claim any knowledge about
2752 // its potential value. The previous information might have been valid
2753 // only given the branch precondition.
2754 // For an analogous reason, we must also drop all the metadata whose
2755 // semantics we don't understand.
2756 NewBonusInst
->dropUnknownNonDebugMetadata();
2758 PredBlock
->getInstList().insert(PBI
->getIterator(), NewBonusInst
);
2759 NewBonusInst
->takeName(&*BonusInst
);
2760 BonusInst
->setName(BonusInst
->getName() + ".old");
2763 // Clone Cond into the predecessor basic block, and or/and the
2764 // two conditions together.
2765 Instruction
*CondInPred
= Cond
->clone();
2766 RemapInstruction(CondInPred
, VMap
,
2767 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
2768 PredBlock
->getInstList().insert(PBI
->getIterator(), CondInPred
);
2769 CondInPred
->takeName(Cond
);
2770 Cond
->setName(CondInPred
->getName() + ".old");
2772 if (BI
->isConditional()) {
2773 Instruction
*NewCond
= cast
<Instruction
>(
2774 Builder
.CreateBinOp(Opc
, PBI
->getCondition(), CondInPred
, "or.cond"));
2775 PBI
->setCondition(NewCond
);
2777 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
2779 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
2780 SuccTrueWeight
, SuccFalseWeight
);
2781 SmallVector
<uint64_t, 8> NewWeights
;
2783 if (PBI
->getSuccessor(0) == BB
) {
2785 // PBI: br i1 %x, BB, FalseDest
2786 // BI: br i1 %y, TrueDest, FalseDest
2787 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2788 NewWeights
.push_back(PredTrueWeight
* SuccTrueWeight
);
2789 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2790 // TrueWeight for PBI * FalseWeight for BI.
2791 // We assume that total weights of a BranchInst can fit into 32 bits.
2792 // Therefore, we will not have overflow using 64-bit arithmetic.
2793 NewWeights
.push_back(PredFalseWeight
*
2794 (SuccFalseWeight
+ SuccTrueWeight
) +
2795 PredTrueWeight
* SuccFalseWeight
);
2797 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
, MSSAU
);
2798 PBI
->setSuccessor(0, TrueDest
);
2800 if (PBI
->getSuccessor(1) == BB
) {
2802 // PBI: br i1 %x, TrueDest, BB
2803 // BI: br i1 %y, TrueDest, FalseDest
2804 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2805 // FalseWeight for PBI * TrueWeight for BI.
2806 NewWeights
.push_back(PredTrueWeight
*
2807 (SuccFalseWeight
+ SuccTrueWeight
) +
2808 PredFalseWeight
* SuccTrueWeight
);
2809 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2810 NewWeights
.push_back(PredFalseWeight
* SuccFalseWeight
);
2812 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
, MSSAU
);
2813 PBI
->setSuccessor(1, FalseDest
);
2815 if (NewWeights
.size() == 2) {
2816 // Halve the weights if any of them cannot fit in an uint32_t
2817 FitWeights(NewWeights
);
2819 SmallVector
<uint32_t, 8> MDWeights(NewWeights
.begin(),
2821 setBranchWeights(PBI
, MDWeights
[0], MDWeights
[1]);
2823 PBI
->setMetadata(LLVMContext::MD_prof
, nullptr);
2825 // Update PHI nodes in the common successors.
2826 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
) {
2827 ConstantInt
*PBI_C
= cast
<ConstantInt
>(
2828 PHIs
[i
]->getIncomingValueForBlock(PBI
->getParent()));
2829 assert(PBI_C
->getType()->isIntegerTy(1));
2830 Instruction
*MergedCond
= nullptr;
2831 if (PBI
->getSuccessor(0) == TrueDest
) {
2832 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2833 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2834 // is false: !PBI_Cond and BI_Value
2835 Instruction
*NotCond
= cast
<Instruction
>(
2836 Builder
.CreateNot(PBI
->getCondition(), "not.cond"));
2837 MergedCond
= cast
<Instruction
>(
2838 Builder
.CreateBinOp(Instruction::And
, NotCond
, CondInPred
,
2841 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2842 Instruction::Or
, PBI
->getCondition(), MergedCond
, "or.cond"));
2844 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2845 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2846 // is false: PBI_Cond and BI_Value
2847 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2848 Instruction::And
, PBI
->getCondition(), CondInPred
, "and.cond"));
2849 if (PBI_C
->isOne()) {
2850 Instruction
*NotCond
= cast
<Instruction
>(
2851 Builder
.CreateNot(PBI
->getCondition(), "not.cond"));
2852 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2853 Instruction::Or
, NotCond
, MergedCond
, "or.cond"));
2857 PHIs
[i
]->setIncomingValueForBlock(PBI
->getParent(), MergedCond
);
2860 // PBI is changed to branch to TrueDest below. Remove itself from
2861 // potential phis from all other successors.
2863 MSSAU
->changeCondBranchToUnconditionalTo(PBI
, TrueDest
);
2865 // Change PBI from Conditional to Unconditional.
2866 BranchInst
*New_PBI
= BranchInst::Create(TrueDest
, PBI
);
2867 EraseTerminatorAndDCECond(PBI
, MSSAU
);
2871 // If BI was a loop latch, it may have had associated loop metadata.
2872 // We need to copy it to the new latch, that is, PBI.
2873 if (MDNode
*LoopMD
= BI
->getMetadata(LLVMContext::MD_loop
))
2874 PBI
->setMetadata(LLVMContext::MD_loop
, LoopMD
);
2876 // TODO: If BB is reachable from all paths through PredBlock, then we
2877 // could replace PBI's branch probabilities with BI's.
2879 // Copy any debug value intrinsics into the end of PredBlock.
2880 for (Instruction
&I
: *BB
)
2881 if (isa
<DbgInfoIntrinsic
>(I
))
2882 I
.clone()->insertBefore(PBI
);
2889 // If there is only one store in BB1 and BB2, return it, otherwise return
2891 static StoreInst
*findUniqueStoreInBlocks(BasicBlock
*BB1
, BasicBlock
*BB2
) {
2892 StoreInst
*S
= nullptr;
2893 for (auto *BB
: {BB1
, BB2
}) {
2897 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
2899 // Multiple stores seen.
2908 static Value
*ensureValueAvailableInSuccessor(Value
*V
, BasicBlock
*BB
,
2909 Value
*AlternativeV
= nullptr) {
2910 // PHI is going to be a PHI node that allows the value V that is defined in
2911 // BB to be referenced in BB's only successor.
2913 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2914 // doesn't matter to us what the other operand is (it'll never get used). We
2915 // could just create a new PHI with an undef incoming value, but that could
2916 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2917 // other PHI. So here we directly look for some PHI in BB's successor with V
2918 // as an incoming operand. If we find one, we use it, else we create a new
2921 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2922 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2923 // where OtherBB is the single other predecessor of BB's only successor.
2924 PHINode
*PHI
= nullptr;
2925 BasicBlock
*Succ
= BB
->getSingleSuccessor();
2927 for (auto I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
)
2928 if (cast
<PHINode
>(I
)->getIncomingValueForBlock(BB
) == V
) {
2929 PHI
= cast
<PHINode
>(I
);
2933 assert(Succ
->hasNPredecessors(2));
2934 auto PredI
= pred_begin(Succ
);
2935 BasicBlock
*OtherPredBB
= *PredI
== BB
? *++PredI
: *PredI
;
2936 if (PHI
->getIncomingValueForBlock(OtherPredBB
) == AlternativeV
)
2943 // If V is not an instruction defined in BB, just return it.
2944 if (!AlternativeV
&&
2945 (!isa
<Instruction
>(V
) || cast
<Instruction
>(V
)->getParent() != BB
))
2948 PHI
= PHINode::Create(V
->getType(), 2, "simplifycfg.merge", &Succ
->front());
2949 PHI
->addIncoming(V
, BB
);
2950 for (BasicBlock
*PredBB
: predecessors(Succ
))
2953 AlternativeV
? AlternativeV
: UndefValue::get(V
->getType()), PredBB
);
2957 static bool mergeConditionalStoreToAddress(BasicBlock
*PTB
, BasicBlock
*PFB
,
2958 BasicBlock
*QTB
, BasicBlock
*QFB
,
2959 BasicBlock
*PostBB
, Value
*Address
,
2960 bool InvertPCond
, bool InvertQCond
,
2961 const DataLayout
&DL
,
2962 const TargetTransformInfo
&TTI
) {
2963 // For every pointer, there must be exactly two stores, one coming from
2964 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2965 // store (to any address) in PTB,PFB or QTB,QFB.
2966 // FIXME: We could relax this restriction with a bit more work and performance
2968 StoreInst
*PStore
= findUniqueStoreInBlocks(PTB
, PFB
);
2969 StoreInst
*QStore
= findUniqueStoreInBlocks(QTB
, QFB
);
2970 if (!PStore
|| !QStore
)
2973 // Now check the stores are compatible.
2974 if (!QStore
->isUnordered() || !PStore
->isUnordered())
2977 // Check that sinking the store won't cause program behavior changes. Sinking
2978 // the store out of the Q blocks won't change any behavior as we're sinking
2979 // from a block to its unconditional successor. But we're moving a store from
2980 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2981 // So we need to check that there are no aliasing loads or stores in
2982 // QBI, QTB and QFB. We also need to check there are no conflicting memory
2983 // operations between PStore and the end of its parent block.
2985 // The ideal way to do this is to query AliasAnalysis, but we don't
2986 // preserve AA currently so that is dangerous. Be super safe and just
2987 // check there are no other memory operations at all.
2988 for (auto &I
: *QFB
->getSinglePredecessor())
2989 if (I
.mayReadOrWriteMemory())
2991 for (auto &I
: *QFB
)
2992 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
2995 for (auto &I
: *QTB
)
2996 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
2998 for (auto I
= BasicBlock::iterator(PStore
), E
= PStore
->getParent()->end();
3000 if (&*I
!= PStore
&& I
->mayReadOrWriteMemory())
3003 // If we're not in aggressive mode, we only optimize if we have some
3004 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3005 auto IsWorthwhile
= [&](BasicBlock
*BB
, ArrayRef
<StoreInst
*> FreeStores
) {
3008 // Heuristic: if the block can be if-converted/phi-folded and the
3009 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3010 // thread this store.
3011 int BudgetRemaining
=
3012 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
3013 for (auto &I
: BB
->instructionsWithoutDebug()) {
3014 // Consider terminator instruction to be free.
3015 if (I
.isTerminator())
3017 // If this is one the stores that we want to speculate out of this BB,
3018 // then don't count it's cost, consider it to be free.
3019 if (auto *S
= dyn_cast
<StoreInst
>(&I
))
3020 if (llvm::find(FreeStores
, S
))
3022 // Else, we have a white-list of instructions that we are ak speculating.
3023 if (!isa
<BinaryOperator
>(I
) && !isa
<GetElementPtrInst
>(I
))
3024 return false; // Not in white-list - not worthwhile folding.
3025 // And finally, if this is a non-free instruction that we are okay
3026 // speculating, ensure that we consider the speculation budget.
3027 BudgetRemaining
-= TTI
.getUserCost(&I
);
3028 if (BudgetRemaining
< 0)
3029 return false; // Eagerly refuse to fold as soon as we're out of budget.
3031 assert(BudgetRemaining
>= 0 &&
3032 "When we run out of budget we will eagerly return from within the "
3033 "per-instruction loop.");
3037 const SmallVector
<StoreInst
*, 2> FreeStores
= {PStore
, QStore
};
3038 if (!MergeCondStoresAggressively
&&
3039 (!IsWorthwhile(PTB
, FreeStores
) || !IsWorthwhile(PFB
, FreeStores
) ||
3040 !IsWorthwhile(QTB
, FreeStores
) || !IsWorthwhile(QFB
, FreeStores
)))
3043 // If PostBB has more than two predecessors, we need to split it so we can
3045 if (std::next(pred_begin(PostBB
), 2) != pred_end(PostBB
)) {
3046 // We know that QFB's only successor is PostBB. And QFB has a single
3047 // predecessor. If QTB exists, then its only successor is also PostBB.
3048 // If QTB does not exist, then QFB's only predecessor has a conditional
3049 // branch to QFB and PostBB.
3050 BasicBlock
*TruePred
= QTB
? QTB
: QFB
->getSinglePredecessor();
3051 BasicBlock
*NewBB
= SplitBlockPredecessors(PostBB
, { QFB
, TruePred
},
3058 // OK, we're going to sink the stores to PostBB. The store has to be
3059 // conditional though, so first create the predicate.
3060 Value
*PCond
= cast
<BranchInst
>(PFB
->getSinglePredecessor()->getTerminator())
3062 Value
*QCond
= cast
<BranchInst
>(QFB
->getSinglePredecessor()->getTerminator())
3065 Value
*PPHI
= ensureValueAvailableInSuccessor(PStore
->getValueOperand(),
3066 PStore
->getParent());
3067 Value
*QPHI
= ensureValueAvailableInSuccessor(QStore
->getValueOperand(),
3068 QStore
->getParent(), PPHI
);
3070 IRBuilder
<> QB(&*PostBB
->getFirstInsertionPt());
3072 Value
*PPred
= PStore
->getParent() == PTB
? PCond
: QB
.CreateNot(PCond
);
3073 Value
*QPred
= QStore
->getParent() == QTB
? QCond
: QB
.CreateNot(QCond
);
3076 PPred
= QB
.CreateNot(PPred
);
3078 QPred
= QB
.CreateNot(QPred
);
3079 Value
*CombinedPred
= QB
.CreateOr(PPred
, QPred
);
3082 SplitBlockAndInsertIfThen(CombinedPred
, &*QB
.GetInsertPoint(), false);
3083 QB
.SetInsertPoint(T
);
3084 StoreInst
*SI
= cast
<StoreInst
>(QB
.CreateStore(QPHI
, Address
));
3086 PStore
->getAAMetadata(AAMD
, /*Merge=*/false);
3087 PStore
->getAAMetadata(AAMD
, /*Merge=*/true);
3088 SI
->setAAMetadata(AAMD
);
3089 unsigned PAlignment
= PStore
->getAlignment();
3090 unsigned QAlignment
= QStore
->getAlignment();
3091 unsigned TypeAlignment
=
3092 DL
.getABITypeAlignment(SI
->getValueOperand()->getType());
3093 unsigned MinAlignment
;
3094 unsigned MaxAlignment
;
3095 std::tie(MinAlignment
, MaxAlignment
) = std::minmax(PAlignment
, QAlignment
);
3096 // Choose the minimum alignment. If we could prove both stores execute, we
3097 // could use biggest one. In this case, though, we only know that one of the
3098 // stores executes. And we don't know it's safe to take the alignment from a
3099 // store that doesn't execute.
3100 if (MinAlignment
!= 0) {
3101 // Choose the minimum of all non-zero alignments.
3102 SI
->setAlignment(Align(MinAlignment
));
3103 } else if (MaxAlignment
!= 0) {
3104 // Choose the minimal alignment between the non-zero alignment and the ABI
3105 // default alignment for the type of the stored value.
3106 SI
->setAlignment(Align(std::min(MaxAlignment
, TypeAlignment
)));
3108 // If both alignments are zero, use ABI default alignment for the type of
3109 // the stored value.
3110 SI
->setAlignment(Align(TypeAlignment
));
3113 QStore
->eraseFromParent();
3114 PStore
->eraseFromParent();
3119 static bool mergeConditionalStores(BranchInst
*PBI
, BranchInst
*QBI
,
3120 const DataLayout
&DL
,
3121 const TargetTransformInfo
&TTI
) {
3122 // The intention here is to find diamonds or triangles (see below) where each
3123 // conditional block contains a store to the same address. Both of these
3124 // stores are conditional, so they can't be unconditionally sunk. But it may
3125 // be profitable to speculatively sink the stores into one merged store at the
3126 // end, and predicate the merged store on the union of the two conditions of
3129 // This can reduce the number of stores executed if both of the conditions are
3130 // true, and can allow the blocks to become small enough to be if-converted.
3131 // This optimization will also chain, so that ladders of test-and-set
3132 // sequences can be if-converted away.
3134 // We only deal with simple diamonds or triangles:
3136 // PBI or PBI or a combination of the two
3146 // We model triangles as a type of diamond with a nullptr "true" block.
3147 // Triangles are canonicalized so that the fallthrough edge is represented by
3148 // a true condition, as in the diagram above.
3149 BasicBlock
*PTB
= PBI
->getSuccessor(0);
3150 BasicBlock
*PFB
= PBI
->getSuccessor(1);
3151 BasicBlock
*QTB
= QBI
->getSuccessor(0);
3152 BasicBlock
*QFB
= QBI
->getSuccessor(1);
3153 BasicBlock
*PostBB
= QFB
->getSingleSuccessor();
3155 // Make sure we have a good guess for PostBB. If QTB's only successor is
3156 // QFB, then QFB is a better PostBB.
3157 if (QTB
->getSingleSuccessor() == QFB
)
3160 // If we couldn't find a good PostBB, stop.
3164 bool InvertPCond
= false, InvertQCond
= false;
3165 // Canonicalize fallthroughs to the true branches.
3166 if (PFB
== QBI
->getParent()) {
3167 std::swap(PFB
, PTB
);
3170 if (QFB
== PostBB
) {
3171 std::swap(QFB
, QTB
);
3175 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3176 // and QFB may not. Model fallthroughs as a nullptr block.
3177 if (PTB
== QBI
->getParent())
3182 // Legality bailouts. We must have at least the non-fallthrough blocks and
3183 // the post-dominating block, and the non-fallthroughs must only have one
3185 auto HasOnePredAndOneSucc
= [](BasicBlock
*BB
, BasicBlock
*P
, BasicBlock
*S
) {
3186 return BB
->getSinglePredecessor() == P
&& BB
->getSingleSuccessor() == S
;
3188 if (!HasOnePredAndOneSucc(PFB
, PBI
->getParent(), QBI
->getParent()) ||
3189 !HasOnePredAndOneSucc(QFB
, QBI
->getParent(), PostBB
))
3191 if ((PTB
&& !HasOnePredAndOneSucc(PTB
, PBI
->getParent(), QBI
->getParent())) ||
3192 (QTB
&& !HasOnePredAndOneSucc(QTB
, QBI
->getParent(), PostBB
)))
3194 if (!QBI
->getParent()->hasNUses(2))
3197 // OK, this is a sequence of two diamonds or triangles.
3198 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3199 SmallPtrSet
<Value
*, 4> PStoreAddresses
, QStoreAddresses
;
3200 for (auto *BB
: {PTB
, PFB
}) {
3204 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3205 PStoreAddresses
.insert(SI
->getPointerOperand());
3207 for (auto *BB
: {QTB
, QFB
}) {
3211 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3212 QStoreAddresses
.insert(SI
->getPointerOperand());
3215 set_intersect(PStoreAddresses
, QStoreAddresses
);
3216 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3217 // clear what it contains.
3218 auto &CommonAddresses
= PStoreAddresses
;
3220 bool Changed
= false;
3221 for (auto *Address
: CommonAddresses
)
3222 Changed
|= mergeConditionalStoreToAddress(
3223 PTB
, PFB
, QTB
, QFB
, PostBB
, Address
, InvertPCond
, InvertQCond
, DL
, TTI
);
3228 /// If the previous block ended with a widenable branch, determine if reusing
3229 /// the target block is profitable and legal. This will have the effect of
3230 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3231 static bool tryWidenCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
) {
3232 // TODO: This can be generalized in two important ways:
3233 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3234 // values from the PBI edge.
3235 // 2) We can sink side effecting instructions into BI's fallthrough
3236 // successor provided they doesn't contribute to computation of
3239 BasicBlock
*IfTrueBB
, *IfFalseBB
;
3240 if (!parseWidenableBranch(PBI
, CondWB
, WC
, IfTrueBB
, IfFalseBB
) ||
3241 IfTrueBB
!= BI
->getParent() || !BI
->getParent()->getSinglePredecessor())
3243 if (!IfFalseBB
->phis().empty())
3244 return false; // TODO
3245 // Use lambda to lazily compute expensive condition after cheap ones.
3246 auto NoSideEffects
= [](BasicBlock
&BB
) {
3247 return !llvm::any_of(BB
, [](const Instruction
&I
) {
3248 return I
.mayWriteToMemory() || I
.mayHaveSideEffects();
3251 if (BI
->getSuccessor(1) != IfFalseBB
&& // no inf looping
3252 BI
->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3253 NoSideEffects(*BI
->getParent())) {
3254 BI
->getSuccessor(1)->removePredecessor(BI
->getParent());
3255 BI
->setSuccessor(1, IfFalseBB
);
3258 if (BI
->getSuccessor(0) != IfFalseBB
&& // no inf looping
3259 BI
->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3260 NoSideEffects(*BI
->getParent())) {
3261 BI
->getSuccessor(0)->removePredecessor(BI
->getParent());
3262 BI
->setSuccessor(0, IfFalseBB
);
3268 /// If we have a conditional branch as a predecessor of another block,
3269 /// this function tries to simplify it. We know
3270 /// that PBI and BI are both conditional branches, and BI is in one of the
3271 /// successor blocks of PBI - PBI branches to BI.
3272 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
,
3273 const DataLayout
&DL
,
3274 const TargetTransformInfo
&TTI
) {
3275 assert(PBI
->isConditional() && BI
->isConditional());
3276 BasicBlock
*BB
= BI
->getParent();
3278 // If this block ends with a branch instruction, and if there is a
3279 // predecessor that ends on a branch of the same condition, make
3280 // this conditional branch redundant.
3281 if (PBI
->getCondition() == BI
->getCondition() &&
3282 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3283 // Okay, the outcome of this conditional branch is statically
3284 // knowable. If this block had a single pred, handle specially.
3285 if (BB
->getSinglePredecessor()) {
3286 // Turn this into a branch on constant.
3287 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3289 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
));
3290 return true; // Nuke the branch on constant.
3293 // Otherwise, if there are multiple predecessors, insert a PHI that merges
3294 // in the constant and simplify the block result. Subsequent passes of
3295 // simplifycfg will thread the block.
3296 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
3297 pred_iterator PB
= pred_begin(BB
), PE
= pred_end(BB
);
3298 PHINode
*NewPN
= PHINode::Create(
3299 Type::getInt1Ty(BB
->getContext()), std::distance(PB
, PE
),
3300 BI
->getCondition()->getName() + ".pr", &BB
->front());
3301 // Okay, we're going to insert the PHI node. Since PBI is not the only
3302 // predecessor, compute the PHI'd conditional value for all of the preds.
3303 // Any predecessor where the condition is not computable we keep symbolic.
3304 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
3305 BasicBlock
*P
= *PI
;
3306 if ((PBI
= dyn_cast
<BranchInst
>(P
->getTerminator())) && PBI
!= BI
&&
3307 PBI
->isConditional() && PBI
->getCondition() == BI
->getCondition() &&
3308 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3309 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3311 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
),
3314 NewPN
->addIncoming(BI
->getCondition(), P
);
3318 BI
->setCondition(NewPN
);
3323 // If the previous block ended with a widenable branch, determine if reusing
3324 // the target block is profitable and legal. This will have the effect of
3325 // "widening" PBI, but doesn't require us to reason about hosting safety.
3326 if (tryWidenCondBranchToCondBranch(PBI
, BI
))
3329 if (auto *CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
3333 // If both branches are conditional and both contain stores to the same
3334 // address, remove the stores from the conditionals and create a conditional
3335 // merged store at the end.
3336 if (MergeCondStores
&& mergeConditionalStores(PBI
, BI
, DL
, TTI
))
3339 // If this is a conditional branch in an empty block, and if any
3340 // predecessors are a conditional branch to one of our destinations,
3341 // fold the conditions into logical ops and one cond br.
3343 // Ignore dbg intrinsics.
3344 if (&*BB
->instructionsWithoutDebug().begin() != BI
)
3348 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0)) {
3351 } else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1)) {
3354 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0)) {
3357 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1)) {
3364 // Check to make sure that the other destination of this branch
3365 // isn't BB itself. If so, this is an infinite loop that will
3366 // keep getting unwound.
3367 if (PBI
->getSuccessor(PBIOp
) == BB
)
3370 // Do not perform this transformation if it would require
3371 // insertion of a large number of select instructions. For targets
3372 // without predication/cmovs, this is a big pessimization.
3374 // Also do not perform this transformation if any phi node in the common
3375 // destination block can trap when reached by BB or PBB (PR17073). In that
3376 // case, it would be unsafe to hoist the operation into a select instruction.
3378 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
3379 unsigned NumPhis
= 0;
3380 for (BasicBlock::iterator II
= CommonDest
->begin(); isa
<PHINode
>(II
);
3382 if (NumPhis
> 2) // Disable this xform.
3385 PHINode
*PN
= cast
<PHINode
>(II
);
3386 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
3387 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BIV
))
3391 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
3392 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
3393 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PBIV
))
3398 // Finally, if everything is ok, fold the branches to logical ops.
3399 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
3401 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI
->getParent()
3402 << "AND: " << *BI
->getParent());
3404 // If OtherDest *is* BB, then BB is a basic block with a single conditional
3405 // branch in it, where one edge (OtherDest) goes back to itself but the other
3406 // exits. We don't *know* that the program avoids the infinite loop
3407 // (even though that seems likely). If we do this xform naively, we'll end up
3408 // recursively unpeeling the loop. Since we know that (after the xform is
3409 // done) that the block *is* infinite if reached, we just make it an obviously
3410 // infinite loop with no cond branch.
3411 if (OtherDest
== BB
) {
3412 // Insert it at the end of the function, because it's either code,
3413 // or it won't matter if it's hot. :)
3414 BasicBlock
*InfLoopBlock
=
3415 BasicBlock::Create(BB
->getContext(), "infloop", BB
->getParent());
3416 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
3417 OtherDest
= InfLoopBlock
;
3420 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3422 // BI may have other predecessors. Because of this, we leave
3423 // it alone, but modify PBI.
3425 // Make sure we get to CommonDest on True&True directions.
3426 Value
*PBICond
= PBI
->getCondition();
3427 IRBuilder
<NoFolder
> Builder(PBI
);
3429 PBICond
= Builder
.CreateNot(PBICond
, PBICond
->getName() + ".not");
3431 Value
*BICond
= BI
->getCondition();
3433 BICond
= Builder
.CreateNot(BICond
, BICond
->getName() + ".not");
3435 // Merge the conditions.
3436 Value
*Cond
= Builder
.CreateOr(PBICond
, BICond
, "brmerge");
3438 // Modify PBI to branch on the new condition to the new dests.
3439 PBI
->setCondition(Cond
);
3440 PBI
->setSuccessor(0, CommonDest
);
3441 PBI
->setSuccessor(1, OtherDest
);
3443 // Update branch weight for PBI.
3444 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
3445 uint64_t PredCommon
, PredOther
, SuccCommon
, SuccOther
;
3447 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
3448 SuccTrueWeight
, SuccFalseWeight
);
3450 PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3451 PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3452 SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3453 SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3454 // The weight to CommonDest should be PredCommon * SuccTotal +
3455 // PredOther * SuccCommon.
3456 // The weight to OtherDest should be PredOther * SuccOther.
3457 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
) +
3458 PredOther
* SuccCommon
,
3459 PredOther
* SuccOther
};
3460 // Halve the weights if any of them cannot fit in an uint32_t
3461 FitWeights(NewWeights
);
3463 setBranchWeights(PBI
, NewWeights
[0], NewWeights
[1]);
3466 // OtherDest may have phi nodes. If so, add an entry from PBI's
3467 // block that are identical to the entries for BI's block.
3468 AddPredecessorToBlock(OtherDest
, PBI
->getParent(), BB
);
3470 // We know that the CommonDest already had an edge from PBI to
3471 // it. If it has PHIs though, the PHIs may have different
3472 // entries for BB and PBI's BB. If so, insert a select to make
3474 for (PHINode
&PN
: CommonDest
->phis()) {
3475 Value
*BIV
= PN
.getIncomingValueForBlock(BB
);
3476 unsigned PBBIdx
= PN
.getBasicBlockIndex(PBI
->getParent());
3477 Value
*PBIV
= PN
.getIncomingValue(PBBIdx
);
3479 // Insert a select in PBI to pick the right value.
3480 SelectInst
*NV
= cast
<SelectInst
>(
3481 Builder
.CreateSelect(PBICond
, PBIV
, BIV
, PBIV
->getName() + ".mux"));
3482 PN
.setIncomingValue(PBBIdx
, NV
);
3483 // Although the select has the same condition as PBI, the original branch
3484 // weights for PBI do not apply to the new select because the select's
3485 // 'logical' edges are incoming edges of the phi that is eliminated, not
3486 // the outgoing edges of PBI.
3488 uint64_t PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3489 uint64_t PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3490 uint64_t SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3491 uint64_t SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3492 // The weight to PredCommonDest should be PredCommon * SuccTotal.
3493 // The weight to PredOtherDest should be PredOther * SuccCommon.
3494 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
),
3495 PredOther
* SuccCommon
};
3497 FitWeights(NewWeights
);
3499 setBranchWeights(NV
, NewWeights
[0], NewWeights
[1]);
3504 LLVM_DEBUG(dbgs() << "INTO: " << *PBI
->getParent());
3505 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3507 // This basic block is probably dead. We know it has at least
3508 // one fewer predecessor.
3512 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3513 // true or to FalseBB if Cond is false.
3514 // Takes care of updating the successors and removing the old terminator.
3515 // Also makes sure not to introduce new successors by assuming that edges to
3516 // non-successor TrueBBs and FalseBBs aren't reachable.
3517 static bool SimplifyTerminatorOnSelect(Instruction
*OldTerm
, Value
*Cond
,
3518 BasicBlock
*TrueBB
, BasicBlock
*FalseBB
,
3519 uint32_t TrueWeight
,
3520 uint32_t FalseWeight
) {
3521 // Remove any superfluous successor edges from the CFG.
3522 // First, figure out which successors to preserve.
3523 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3525 BasicBlock
*KeepEdge1
= TrueBB
;
3526 BasicBlock
*KeepEdge2
= TrueBB
!= FalseBB
? FalseBB
: nullptr;
3528 // Then remove the rest.
3529 for (BasicBlock
*Succ
: successors(OldTerm
)) {
3530 // Make sure only to keep exactly one copy of each edge.
3531 if (Succ
== KeepEdge1
)
3532 KeepEdge1
= nullptr;
3533 else if (Succ
== KeepEdge2
)
3534 KeepEdge2
= nullptr;
3536 Succ
->removePredecessor(OldTerm
->getParent(),
3537 /*KeepOneInputPHIs=*/true);
3540 IRBuilder
<> Builder(OldTerm
);
3541 Builder
.SetCurrentDebugLocation(OldTerm
->getDebugLoc());
3543 // Insert an appropriate new terminator.
3544 if (!KeepEdge1
&& !KeepEdge2
) {
3545 if (TrueBB
== FalseBB
)
3546 // We were only looking for one successor, and it was present.
3547 // Create an unconditional branch to it.
3548 Builder
.CreateBr(TrueBB
);
3550 // We found both of the successors we were looking for.
3551 // Create a conditional branch sharing the condition of the select.
3552 BranchInst
*NewBI
= Builder
.CreateCondBr(Cond
, TrueBB
, FalseBB
);
3553 if (TrueWeight
!= FalseWeight
)
3554 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
3556 } else if (KeepEdge1
&& (KeepEdge2
|| TrueBB
== FalseBB
)) {
3557 // Neither of the selected blocks were successors, so this
3558 // terminator must be unreachable.
3559 new UnreachableInst(OldTerm
->getContext(), OldTerm
);
3561 // One of the selected values was a successor, but the other wasn't.
3562 // Insert an unconditional branch to the one that was found;
3563 // the edge to the one that wasn't must be unreachable.
3565 // Only TrueBB was found.
3566 Builder
.CreateBr(TrueBB
);
3568 // Only FalseBB was found.
3569 Builder
.CreateBr(FalseBB
);
3572 EraseTerminatorAndDCECond(OldTerm
);
3577 // (switch (select cond, X, Y)) on constant X, Y
3578 // with a branch - conditional if X and Y lead to distinct BBs,
3579 // unconditional otherwise.
3580 static bool SimplifySwitchOnSelect(SwitchInst
*SI
, SelectInst
*Select
) {
3581 // Check for constant integer values in the select.
3582 ConstantInt
*TrueVal
= dyn_cast
<ConstantInt
>(Select
->getTrueValue());
3583 ConstantInt
*FalseVal
= dyn_cast
<ConstantInt
>(Select
->getFalseValue());
3584 if (!TrueVal
|| !FalseVal
)
3587 // Find the relevant condition and destinations.
3588 Value
*Condition
= Select
->getCondition();
3589 BasicBlock
*TrueBB
= SI
->findCaseValue(TrueVal
)->getCaseSuccessor();
3590 BasicBlock
*FalseBB
= SI
->findCaseValue(FalseVal
)->getCaseSuccessor();
3592 // Get weight for TrueBB and FalseBB.
3593 uint32_t TrueWeight
= 0, FalseWeight
= 0;
3594 SmallVector
<uint64_t, 8> Weights
;
3595 bool HasWeights
= HasBranchWeights(SI
);
3597 GetBranchWeights(SI
, Weights
);
3598 if (Weights
.size() == 1 + SI
->getNumCases()) {
3600 (uint32_t)Weights
[SI
->findCaseValue(TrueVal
)->getSuccessorIndex()];
3602 (uint32_t)Weights
[SI
->findCaseValue(FalseVal
)->getSuccessorIndex()];
3606 // Perform the actual simplification.
3607 return SimplifyTerminatorOnSelect(SI
, Condition
, TrueBB
, FalseBB
, TrueWeight
,
3612 // (indirectbr (select cond, blockaddress(@fn, BlockA),
3613 // blockaddress(@fn, BlockB)))
3615 // (br cond, BlockA, BlockB).
3616 static bool SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
, SelectInst
*SI
) {
3617 // Check that both operands of the select are block addresses.
3618 BlockAddress
*TBA
= dyn_cast
<BlockAddress
>(SI
->getTrueValue());
3619 BlockAddress
*FBA
= dyn_cast
<BlockAddress
>(SI
->getFalseValue());
3623 // Extract the actual blocks.
3624 BasicBlock
*TrueBB
= TBA
->getBasicBlock();
3625 BasicBlock
*FalseBB
= FBA
->getBasicBlock();
3627 // Perform the actual simplification.
3628 return SimplifyTerminatorOnSelect(IBI
, SI
->getCondition(), TrueBB
, FalseBB
, 0,
3632 /// This is called when we find an icmp instruction
3633 /// (a seteq/setne with a constant) as the only instruction in a
3634 /// block that ends with an uncond branch. We are looking for a very specific
3635 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
3636 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3637 /// default value goes to an uncond block with a seteq in it, we get something
3640 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
3642 /// %tmp = icmp eq i8 %A, 92
3645 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3647 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3648 /// the PHI, merging the third icmp into the switch.
3649 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3650 ICmpInst
*ICI
, IRBuilder
<> &Builder
) {
3651 BasicBlock
*BB
= ICI
->getParent();
3653 // If the block has any PHIs in it or the icmp has multiple uses, it is too
3655 if (isa
<PHINode
>(BB
->begin()) || !ICI
->hasOneUse())
3658 Value
*V
= ICI
->getOperand(0);
3659 ConstantInt
*Cst
= cast
<ConstantInt
>(ICI
->getOperand(1));
3661 // The pattern we're looking for is where our only predecessor is a switch on
3662 // 'V' and this block is the default case for the switch. In this case we can
3663 // fold the compared value into the switch to simplify things.
3664 BasicBlock
*Pred
= BB
->getSinglePredecessor();
3665 if (!Pred
|| !isa
<SwitchInst
>(Pred
->getTerminator()))
3668 SwitchInst
*SI
= cast
<SwitchInst
>(Pred
->getTerminator());
3669 if (SI
->getCondition() != V
)
3672 // If BB is reachable on a non-default case, then we simply know the value of
3673 // V in this block. Substitute it and constant fold the icmp instruction
3675 if (SI
->getDefaultDest() != BB
) {
3676 ConstantInt
*VVal
= SI
->findCaseDest(BB
);
3677 assert(VVal
&& "Should have a unique destination value");
3678 ICI
->setOperand(0, VVal
);
3680 if (Value
*V
= SimplifyInstruction(ICI
, {DL
, ICI
})) {
3681 ICI
->replaceAllUsesWith(V
);
3682 ICI
->eraseFromParent();
3684 // BB is now empty, so it is likely to simplify away.
3685 return requestResimplify();
3688 // Ok, the block is reachable from the default dest. If the constant we're
3689 // comparing exists in one of the other edges, then we can constant fold ICI
3691 if (SI
->findCaseValue(Cst
) != SI
->case_default()) {
3693 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
3694 V
= ConstantInt::getFalse(BB
->getContext());
3696 V
= ConstantInt::getTrue(BB
->getContext());
3698 ICI
->replaceAllUsesWith(V
);
3699 ICI
->eraseFromParent();
3700 // BB is now empty, so it is likely to simplify away.
3701 return requestResimplify();
3704 // The use of the icmp has to be in the 'end' block, by the only PHI node in
3706 BasicBlock
*SuccBlock
= BB
->getTerminator()->getSuccessor(0);
3707 PHINode
*PHIUse
= dyn_cast
<PHINode
>(ICI
->user_back());
3708 if (PHIUse
== nullptr || PHIUse
!= &SuccBlock
->front() ||
3709 isa
<PHINode
>(++BasicBlock::iterator(PHIUse
)))
3712 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3714 Constant
*DefaultCst
= ConstantInt::getTrue(BB
->getContext());
3715 Constant
*NewCst
= ConstantInt::getFalse(BB
->getContext());
3717 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
3718 std::swap(DefaultCst
, NewCst
);
3720 // Replace ICI (which is used by the PHI for the default value) with true or
3721 // false depending on if it is EQ or NE.
3722 ICI
->replaceAllUsesWith(DefaultCst
);
3723 ICI
->eraseFromParent();
3725 // Okay, the switch goes to this block on a default value. Add an edge from
3726 // the switch to the merge point on the compared value.
3728 BasicBlock::Create(BB
->getContext(), "switch.edge", BB
->getParent(), BB
);
3730 SwitchInstProfUpdateWrapper
SIW(*SI
);
3731 auto W0
= SIW
.getSuccessorWeight(0);
3732 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW
;
3734 NewW
= ((uint64_t(*W0
) + 1) >> 1);
3735 SIW
.setSuccessorWeight(0, *NewW
);
3737 SIW
.addCase(Cst
, NewBB
, NewW
);
3740 // NewBB branches to the phi block, add the uncond branch and the phi entry.
3741 Builder
.SetInsertPoint(NewBB
);
3742 Builder
.SetCurrentDebugLocation(SI
->getDebugLoc());
3743 Builder
.CreateBr(SuccBlock
);
3744 PHIUse
->addIncoming(NewCst
, NewBB
);
3748 /// The specified branch is a conditional branch.
3749 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3750 /// fold it into a switch instruction if so.
3751 static bool SimplifyBranchOnICmpChain(BranchInst
*BI
, IRBuilder
<> &Builder
,
3752 const DataLayout
&DL
) {
3753 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
3757 // Change br (X == 0 | X == 1), T, F into a switch instruction.
3758 // If this is a bunch of seteq's or'd together, or if it's a bunch of
3759 // 'setne's and'ed together, collect them.
3761 // Try to gather values from a chain of and/or to be turned into a switch
3762 ConstantComparesGatherer
ConstantCompare(Cond
, DL
);
3763 // Unpack the result
3764 SmallVectorImpl
<ConstantInt
*> &Values
= ConstantCompare
.Vals
;
3765 Value
*CompVal
= ConstantCompare
.CompValue
;
3766 unsigned UsedICmps
= ConstantCompare
.UsedICmps
;
3767 Value
*ExtraCase
= ConstantCompare
.Extra
;
3769 // If we didn't have a multiply compared value, fail.
3773 // Avoid turning single icmps into a switch.
3777 bool TrueWhenEqual
= (Cond
->getOpcode() == Instruction::Or
);
3779 // There might be duplicate constants in the list, which the switch
3780 // instruction can't handle, remove them now.
3781 array_pod_sort(Values
.begin(), Values
.end(), ConstantIntSortPredicate
);
3782 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
3784 // If Extra was used, we require at least two switch values to do the
3785 // transformation. A switch with one value is just a conditional branch.
3786 if (ExtraCase
&& Values
.size() < 2)
3789 // TODO: Preserve branch weight metadata, similarly to how
3790 // FoldValueComparisonIntoPredecessors preserves it.
3792 // Figure out which block is which destination.
3793 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
3794 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
3796 std::swap(DefaultBB
, EdgeBB
);
3798 BasicBlock
*BB
= BI
->getParent();
3800 // MSAN does not like undefs as branch condition which can be introduced
3801 // with "explicit branch".
3802 if (ExtraCase
&& BB
->getParent()->hasFnAttribute(Attribute::SanitizeMemory
))
3805 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values
.size()
3806 << " cases into SWITCH. BB is:\n"
3809 // If there are any extra values that couldn't be folded into the switch
3810 // then we evaluate them with an explicit branch first. Split the block
3811 // right before the condbr to handle it.
3814 BB
->splitBasicBlock(BI
->getIterator(), "switch.early.test");
3815 // Remove the uncond branch added to the old block.
3816 Instruction
*OldTI
= BB
->getTerminator();
3817 Builder
.SetInsertPoint(OldTI
);
3820 Builder
.CreateCondBr(ExtraCase
, EdgeBB
, NewBB
);
3822 Builder
.CreateCondBr(ExtraCase
, NewBB
, EdgeBB
);
3824 OldTI
->eraseFromParent();
3826 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3827 // for the edge we just added.
3828 AddPredecessorToBlock(EdgeBB
, BB
, NewBB
);
3830 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
3831 << "\nEXTRABB = " << *BB
);
3835 Builder
.SetInsertPoint(BI
);
3836 // Convert pointer to int before we switch.
3837 if (CompVal
->getType()->isPointerTy()) {
3838 CompVal
= Builder
.CreatePtrToInt(
3839 CompVal
, DL
.getIntPtrType(CompVal
->getType()), "magicptr");
3842 // Create the new switch instruction now.
3843 SwitchInst
*New
= Builder
.CreateSwitch(CompVal
, DefaultBB
, Values
.size());
3845 // Add all of the 'cases' to the switch instruction.
3846 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
3847 New
->addCase(Values
[i
], EdgeBB
);
3849 // We added edges from PI to the EdgeBB. As such, if there were any
3850 // PHI nodes in EdgeBB, they need entries to be added corresponding to
3851 // the number of edges added.
3852 for (BasicBlock::iterator BBI
= EdgeBB
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
3853 PHINode
*PN
= cast
<PHINode
>(BBI
);
3854 Value
*InVal
= PN
->getIncomingValueForBlock(BB
);
3855 for (unsigned i
= 0, e
= Values
.size() - 1; i
!= e
; ++i
)
3856 PN
->addIncoming(InVal
, BB
);
3859 // Erase the old branch instruction.
3860 EraseTerminatorAndDCECond(BI
);
3862 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB
<< '\n');
3866 bool SimplifyCFGOpt::SimplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
) {
3867 if (isa
<PHINode
>(RI
->getValue()))
3868 return SimplifyCommonResume(RI
);
3869 else if (isa
<LandingPadInst
>(RI
->getParent()->getFirstNonPHI()) &&
3870 RI
->getValue() == RI
->getParent()->getFirstNonPHI())
3871 // The resume must unwind the exception that caused control to branch here.
3872 return SimplifySingleResume(RI
);
3877 // Simplify resume that is shared by several landing pads (phi of landing pad).
3878 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst
*RI
) {
3879 BasicBlock
*BB
= RI
->getParent();
3881 // Check that there are no other instructions except for debug intrinsics
3882 // between the phi of landing pads (RI->getValue()) and resume instruction.
3883 BasicBlock::iterator I
= cast
<Instruction
>(RI
->getValue())->getIterator(),
3884 E
= RI
->getIterator();
3886 if (!isa
<DbgInfoIntrinsic
>(I
))
3889 SmallSetVector
<BasicBlock
*, 4> TrivialUnwindBlocks
;
3890 auto *PhiLPInst
= cast
<PHINode
>(RI
->getValue());
3892 // Check incoming blocks to see if any of them are trivial.
3893 for (unsigned Idx
= 0, End
= PhiLPInst
->getNumIncomingValues(); Idx
!= End
;
3895 auto *IncomingBB
= PhiLPInst
->getIncomingBlock(Idx
);
3896 auto *IncomingValue
= PhiLPInst
->getIncomingValue(Idx
);
3898 // If the block has other successors, we can not delete it because
3899 // it has other dependents.
3900 if (IncomingBB
->getUniqueSuccessor() != BB
)
3903 auto *LandingPad
= dyn_cast
<LandingPadInst
>(IncomingBB
->getFirstNonPHI());
3904 // Not the landing pad that caused the control to branch here.
3905 if (IncomingValue
!= LandingPad
)
3908 bool isTrivial
= true;
3910 I
= IncomingBB
->getFirstNonPHI()->getIterator();
3911 E
= IncomingBB
->getTerminator()->getIterator();
3913 if (!isa
<DbgInfoIntrinsic
>(I
)) {
3919 TrivialUnwindBlocks
.insert(IncomingBB
);
3922 // If no trivial unwind blocks, don't do any simplifications.
3923 if (TrivialUnwindBlocks
.empty())
3926 // Turn all invokes that unwind here into calls.
3927 for (auto *TrivialBB
: TrivialUnwindBlocks
) {
3928 // Blocks that will be simplified should be removed from the phi node.
3929 // Note there could be multiple edges to the resume block, and we need
3930 // to remove them all.
3931 while (PhiLPInst
->getBasicBlockIndex(TrivialBB
) != -1)
3932 BB
->removePredecessor(TrivialBB
, true);
3934 for (pred_iterator PI
= pred_begin(TrivialBB
), PE
= pred_end(TrivialBB
);
3936 BasicBlock
*Pred
= *PI
++;
3937 removeUnwindEdge(Pred
);
3940 // In each SimplifyCFG run, only the current processed block can be erased.
3941 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3942 // of erasing TrivialBB, we only remove the branch to the common resume
3943 // block so that we can later erase the resume block since it has no
3945 TrivialBB
->getTerminator()->eraseFromParent();
3946 new UnreachableInst(RI
->getContext(), TrivialBB
);
3949 // Delete the resume block if all its predecessors have been removed.
3951 BB
->eraseFromParent();
3953 return !TrivialUnwindBlocks
.empty();
3956 // Simplify resume that is only used by a single (non-phi) landing pad.
3957 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst
*RI
) {
3958 BasicBlock
*BB
= RI
->getParent();
3959 auto *LPInst
= cast
<LandingPadInst
>(BB
->getFirstNonPHI());
3960 assert(RI
->getValue() == LPInst
&&
3961 "Resume must unwind the exception that caused control to here");
3963 // Check that there are no other instructions except for debug intrinsics.
3964 BasicBlock::iterator I
= LPInst
->getIterator(), E
= RI
->getIterator();
3966 if (!isa
<DbgInfoIntrinsic
>(I
))
3969 // Turn all invokes that unwind here into calls and delete the basic block.
3970 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
;) {
3971 BasicBlock
*Pred
= *PI
++;
3972 removeUnwindEdge(Pred
);
3975 // The landingpad is now unreachable. Zap it.
3977 LoopHeaders
->erase(BB
);
3978 BB
->eraseFromParent();
3982 static bool removeEmptyCleanup(CleanupReturnInst
*RI
) {
3983 // If this is a trivial cleanup pad that executes no instructions, it can be
3984 // eliminated. If the cleanup pad continues to the caller, any predecessor
3985 // that is an EH pad will be updated to continue to the caller and any
3986 // predecessor that terminates with an invoke instruction will have its invoke
3987 // instruction converted to a call instruction. If the cleanup pad being
3988 // simplified does not continue to the caller, each predecessor will be
3989 // updated to continue to the unwind destination of the cleanup pad being
3991 BasicBlock
*BB
= RI
->getParent();
3992 CleanupPadInst
*CPInst
= RI
->getCleanupPad();
3993 if (CPInst
->getParent() != BB
)
3994 // This isn't an empty cleanup.
3997 // We cannot kill the pad if it has multiple uses. This typically arises
3998 // from unreachable basic blocks.
3999 if (!CPInst
->hasOneUse())
4002 // Check that there are no other instructions except for benign intrinsics.
4003 BasicBlock::iterator I
= CPInst
->getIterator(), E
= RI
->getIterator();
4005 auto *II
= dyn_cast
<IntrinsicInst
>(I
);
4009 Intrinsic::ID IntrinsicID
= II
->getIntrinsicID();
4010 switch (IntrinsicID
) {
4011 case Intrinsic::dbg_declare
:
4012 case Intrinsic::dbg_value
:
4013 case Intrinsic::dbg_label
:
4014 case Intrinsic::lifetime_end
:
4021 // If the cleanup return we are simplifying unwinds to the caller, this will
4022 // set UnwindDest to nullptr.
4023 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
4024 Instruction
*DestEHPad
= UnwindDest
? UnwindDest
->getFirstNonPHI() : nullptr;
4026 // We're about to remove BB from the control flow. Before we do, sink any
4027 // PHINodes into the unwind destination. Doing this before changing the
4028 // control flow avoids some potentially slow checks, since we can currently
4029 // be certain that UnwindDest and BB have no common predecessors (since they
4030 // are both EH pads).
4032 // First, go through the PHI nodes in UnwindDest and update any nodes that
4033 // reference the block we are removing
4034 for (BasicBlock::iterator I
= UnwindDest
->begin(),
4035 IE
= DestEHPad
->getIterator();
4037 PHINode
*DestPN
= cast
<PHINode
>(I
);
4039 int Idx
= DestPN
->getBasicBlockIndex(BB
);
4040 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4042 // This PHI node has an incoming value that corresponds to a control
4043 // path through the cleanup pad we are removing. If the incoming
4044 // value is in the cleanup pad, it must be a PHINode (because we
4045 // verified above that the block is otherwise empty). Otherwise, the
4046 // value is either a constant or a value that dominates the cleanup
4047 // pad being removed.
4049 // Because BB and UnwindDest are both EH pads, all of their
4050 // predecessors must unwind to these blocks, and since no instruction
4051 // can have multiple unwind destinations, there will be no overlap in
4052 // incoming blocks between SrcPN and DestPN.
4053 Value
*SrcVal
= DestPN
->getIncomingValue(Idx
);
4054 PHINode
*SrcPN
= dyn_cast
<PHINode
>(SrcVal
);
4056 // Remove the entry for the block we are deleting.
4057 DestPN
->removeIncomingValue(Idx
, false);
4059 if (SrcPN
&& SrcPN
->getParent() == BB
) {
4060 // If the incoming value was a PHI node in the cleanup pad we are
4061 // removing, we need to merge that PHI node's incoming values into
4063 for (unsigned SrcIdx
= 0, SrcE
= SrcPN
->getNumIncomingValues();
4064 SrcIdx
!= SrcE
; ++SrcIdx
) {
4065 DestPN
->addIncoming(SrcPN
->getIncomingValue(SrcIdx
),
4066 SrcPN
->getIncomingBlock(SrcIdx
));
4069 // Otherwise, the incoming value came from above BB and
4070 // so we can just reuse it. We must associate all of BB's
4071 // predecessors with this value.
4072 for (auto *pred
: predecessors(BB
)) {
4073 DestPN
->addIncoming(SrcVal
, pred
);
4078 // Sink any remaining PHI nodes directly into UnwindDest.
4079 Instruction
*InsertPt
= DestEHPad
;
4080 for (BasicBlock::iterator I
= BB
->begin(),
4081 IE
= BB
->getFirstNonPHI()->getIterator();
4083 // The iterator must be incremented here because the instructions are
4084 // being moved to another block.
4085 PHINode
*PN
= cast
<PHINode
>(I
++);
4086 if (PN
->use_empty())
4087 // If the PHI node has no uses, just leave it. It will be erased
4088 // when we erase BB below.
4091 // Otherwise, sink this PHI node into UnwindDest.
4092 // Any predecessors to UnwindDest which are not already represented
4093 // must be back edges which inherit the value from the path through
4094 // BB. In this case, the PHI value must reference itself.
4095 for (auto *pred
: predecessors(UnwindDest
))
4097 PN
->addIncoming(PN
, pred
);
4098 PN
->moveBefore(InsertPt
);
4102 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
;) {
4103 // The iterator must be updated here because we are removing this pred.
4104 BasicBlock
*PredBB
= *PI
++;
4105 if (UnwindDest
== nullptr) {
4106 removeUnwindEdge(PredBB
);
4108 Instruction
*TI
= PredBB
->getTerminator();
4109 TI
->replaceUsesOfWith(BB
, UnwindDest
);
4113 // The cleanup pad is now unreachable. Zap it.
4114 BB
->eraseFromParent();
4118 // Try to merge two cleanuppads together.
4119 static bool mergeCleanupPad(CleanupReturnInst
*RI
) {
4120 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4122 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
4126 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4127 // be safe to merge without code duplication.
4128 if (UnwindDest
->getSinglePredecessor() != RI
->getParent())
4131 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4132 auto *SuccessorCleanupPad
= dyn_cast
<CleanupPadInst
>(&UnwindDest
->front());
4133 if (!SuccessorCleanupPad
)
4136 CleanupPadInst
*PredecessorCleanupPad
= RI
->getCleanupPad();
4137 // Replace any uses of the successor cleanupad with the predecessor pad
4138 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4139 // funclet bundle operands.
4140 SuccessorCleanupPad
->replaceAllUsesWith(PredecessorCleanupPad
);
4141 // Remove the old cleanuppad.
4142 SuccessorCleanupPad
->eraseFromParent();
4143 // Now, we simply replace the cleanupret with a branch to the unwind
4145 BranchInst::Create(UnwindDest
, RI
->getParent());
4146 RI
->eraseFromParent();
4151 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst
*RI
) {
4152 // It is possible to transiantly have an undef cleanuppad operand because we
4153 // have deleted some, but not all, dead blocks.
4154 // Eventually, this block will be deleted.
4155 if (isa
<UndefValue
>(RI
->getOperand(0)))
4158 if (mergeCleanupPad(RI
))
4161 if (removeEmptyCleanup(RI
))
4167 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
) {
4168 BasicBlock
*BB
= RI
->getParent();
4169 if (!BB
->getFirstNonPHIOrDbg()->isTerminator())
4172 // Find predecessors that end with branches.
4173 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
4174 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
4175 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
4176 BasicBlock
*P
= *PI
;
4177 Instruction
*PTI
= P
->getTerminator();
4178 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
4179 if (BI
->isUnconditional())
4180 UncondBranchPreds
.push_back(P
);
4182 CondBranchPreds
.push_back(BI
);
4186 // If we found some, do the transformation!
4187 if (!UncondBranchPreds
.empty() && DupRet
) {
4188 while (!UncondBranchPreds
.empty()) {
4189 BasicBlock
*Pred
= UncondBranchPreds
.pop_back_val();
4190 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4191 << "INTO UNCOND BRANCH PRED: " << *Pred
);
4192 (void)FoldReturnIntoUncondBranch(RI
, BB
, Pred
);
4195 // If we eliminated all predecessors of the block, delete the block now.
4196 if (pred_empty(BB
)) {
4197 // We know there are no successors, so just nuke the block.
4199 LoopHeaders
->erase(BB
);
4200 BB
->eraseFromParent();
4206 // Check out all of the conditional branches going to this return
4207 // instruction. If any of them just select between returns, change the
4208 // branch itself into a select/return pair.
4209 while (!CondBranchPreds
.empty()) {
4210 BranchInst
*BI
= CondBranchPreds
.pop_back_val();
4212 // Check to see if the non-BB successor is also a return block.
4213 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
4214 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
4215 SimplifyCondBranchToTwoReturns(BI
, Builder
))
4221 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst
*UI
) {
4222 BasicBlock
*BB
= UI
->getParent();
4224 bool Changed
= false;
4226 // If there are any instructions immediately before the unreachable that can
4227 // be removed, do so.
4228 while (UI
->getIterator() != BB
->begin()) {
4229 BasicBlock::iterator BBI
= UI
->getIterator();
4231 // Do not delete instructions that can have side effects which might cause
4232 // the unreachable to not be reachable; specifically, calls and volatile
4233 // operations may have this effect.
4234 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
))
4237 if (BBI
->mayHaveSideEffects()) {
4238 if (auto *SI
= dyn_cast
<StoreInst
>(BBI
)) {
4239 if (SI
->isVolatile())
4241 } else if (auto *LI
= dyn_cast
<LoadInst
>(BBI
)) {
4242 if (LI
->isVolatile())
4244 } else if (auto *RMWI
= dyn_cast
<AtomicRMWInst
>(BBI
)) {
4245 if (RMWI
->isVolatile())
4247 } else if (auto *CXI
= dyn_cast
<AtomicCmpXchgInst
>(BBI
)) {
4248 if (CXI
->isVolatile())
4250 } else if (isa
<CatchPadInst
>(BBI
)) {
4251 // A catchpad may invoke exception object constructors and such, which
4252 // in some languages can be arbitrary code, so be conservative by
4254 // For CoreCLR, it just involves a type test, so can be removed.
4255 if (classifyEHPersonality(BB
->getParent()->getPersonalityFn()) !=
4256 EHPersonality::CoreCLR
)
4258 } else if (!isa
<FenceInst
>(BBI
) && !isa
<VAArgInst
>(BBI
) &&
4259 !isa
<LandingPadInst
>(BBI
)) {
4262 // Note that deleting LandingPad's here is in fact okay, although it
4263 // involves a bit of subtle reasoning. If this inst is a LandingPad,
4264 // all the predecessors of this block will be the unwind edges of Invokes,
4265 // and we can therefore guarantee this block will be erased.
4268 // Delete this instruction (any uses are guaranteed to be dead)
4269 if (!BBI
->use_empty())
4270 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
4271 BBI
->eraseFromParent();
4275 // If the unreachable instruction is the first in the block, take a gander
4276 // at all of the predecessors of this instruction, and simplify them.
4277 if (&BB
->front() != UI
)
4280 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
4281 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
4282 Instruction
*TI
= Preds
[i
]->getTerminator();
4283 IRBuilder
<> Builder(TI
);
4284 if (auto *BI
= dyn_cast
<BranchInst
>(TI
)) {
4285 if (BI
->isUnconditional()) {
4286 assert(BI
->getSuccessor(0) == BB
&& "Incorrect CFG");
4287 new UnreachableInst(TI
->getContext(), TI
);
4288 TI
->eraseFromParent();
4291 Value
* Cond
= BI
->getCondition();
4292 if (BI
->getSuccessor(0) == BB
) {
4293 Builder
.CreateAssumption(Builder
.CreateNot(Cond
));
4294 Builder
.CreateBr(BI
->getSuccessor(1));
4296 assert(BI
->getSuccessor(1) == BB
&& "Incorrect CFG");
4297 Builder
.CreateAssumption(Cond
);
4298 Builder
.CreateBr(BI
->getSuccessor(0));
4300 EraseTerminatorAndDCECond(BI
);
4303 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
4304 SwitchInstProfUpdateWrapper
SU(*SI
);
4305 for (auto i
= SU
->case_begin(), e
= SU
->case_end(); i
!= e
;) {
4306 if (i
->getCaseSuccessor() != BB
) {
4310 BB
->removePredecessor(SU
->getParent());
4311 i
= SU
.removeCase(i
);
4315 } else if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
4316 if (II
->getUnwindDest() == BB
) {
4317 removeUnwindEdge(TI
->getParent());
4320 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
4321 if (CSI
->getUnwindDest() == BB
) {
4322 removeUnwindEdge(TI
->getParent());
4327 for (CatchSwitchInst::handler_iterator I
= CSI
->handler_begin(),
4328 E
= CSI
->handler_end();
4331 CSI
->removeHandler(I
);
4337 if (CSI
->getNumHandlers() == 0) {
4338 BasicBlock
*CatchSwitchBB
= CSI
->getParent();
4339 if (CSI
->hasUnwindDest()) {
4340 // Redirect preds to the unwind dest
4341 CatchSwitchBB
->replaceAllUsesWith(CSI
->getUnwindDest());
4343 // Rewrite all preds to unwind to caller (or from invoke to call).
4344 SmallVector
<BasicBlock
*, 8> EHPreds(predecessors(CatchSwitchBB
));
4345 for (BasicBlock
*EHPred
: EHPreds
)
4346 removeUnwindEdge(EHPred
);
4348 // The catchswitch is no longer reachable.
4349 new UnreachableInst(CSI
->getContext(), CSI
);
4350 CSI
->eraseFromParent();
4353 } else if (isa
<CleanupReturnInst
>(TI
)) {
4354 new UnreachableInst(TI
->getContext(), TI
);
4355 TI
->eraseFromParent();
4360 // If this block is now dead, remove it.
4361 if (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) {
4362 // We know there are no successors, so just nuke the block.
4364 LoopHeaders
->erase(BB
);
4365 BB
->eraseFromParent();
4372 static bool CasesAreContiguous(SmallVectorImpl
<ConstantInt
*> &Cases
) {
4373 assert(Cases
.size() >= 1);
4375 array_pod_sort(Cases
.begin(), Cases
.end(), ConstantIntSortPredicate
);
4376 for (size_t I
= 1, E
= Cases
.size(); I
!= E
; ++I
) {
4377 if (Cases
[I
- 1]->getValue() != Cases
[I
]->getValue() + 1)
4383 static void createUnreachableSwitchDefault(SwitchInst
*Switch
) {
4384 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4385 BasicBlock
*NewDefaultBlock
=
4386 SplitBlockPredecessors(Switch
->getDefaultDest(), Switch
->getParent(), "");
4387 Switch
->setDefaultDest(&*NewDefaultBlock
);
4388 SplitBlock(&*NewDefaultBlock
, &NewDefaultBlock
->front());
4389 auto *NewTerminator
= NewDefaultBlock
->getTerminator();
4390 new UnreachableInst(Switch
->getContext(), NewTerminator
);
4391 EraseTerminatorAndDCECond(NewTerminator
);
4394 /// Turn a switch with two reachable destinations into an integer range
4395 /// comparison and branch.
4396 static bool TurnSwitchRangeIntoICmp(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
4397 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
4400 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4402 // Partition the cases into two sets with different destinations.
4403 BasicBlock
*DestA
= HasDefault
? SI
->getDefaultDest() : nullptr;
4404 BasicBlock
*DestB
= nullptr;
4405 SmallVector
<ConstantInt
*, 16> CasesA
;
4406 SmallVector
<ConstantInt
*, 16> CasesB
;
4408 for (auto Case
: SI
->cases()) {
4409 BasicBlock
*Dest
= Case
.getCaseSuccessor();
4412 if (Dest
== DestA
) {
4413 CasesA
.push_back(Case
.getCaseValue());
4418 if (Dest
== DestB
) {
4419 CasesB
.push_back(Case
.getCaseValue());
4422 return false; // More than two destinations.
4425 assert(DestA
&& DestB
&&
4426 "Single-destination switch should have been folded.");
4427 assert(DestA
!= DestB
);
4428 assert(DestB
!= SI
->getDefaultDest());
4429 assert(!CasesB
.empty() && "There must be non-default cases.");
4430 assert(!CasesA
.empty() || HasDefault
);
4432 // Figure out if one of the sets of cases form a contiguous range.
4433 SmallVectorImpl
<ConstantInt
*> *ContiguousCases
= nullptr;
4434 BasicBlock
*ContiguousDest
= nullptr;
4435 BasicBlock
*OtherDest
= nullptr;
4436 if (!CasesA
.empty() && CasesAreContiguous(CasesA
)) {
4437 ContiguousCases
= &CasesA
;
4438 ContiguousDest
= DestA
;
4440 } else if (CasesAreContiguous(CasesB
)) {
4441 ContiguousCases
= &CasesB
;
4442 ContiguousDest
= DestB
;
4447 // Start building the compare and branch.
4449 Constant
*Offset
= ConstantExpr::getNeg(ContiguousCases
->back());
4450 Constant
*NumCases
=
4451 ConstantInt::get(Offset
->getType(), ContiguousCases
->size());
4453 Value
*Sub
= SI
->getCondition();
4454 if (!Offset
->isNullValue())
4455 Sub
= Builder
.CreateAdd(Sub
, Offset
, Sub
->getName() + ".off");
4458 // If NumCases overflowed, then all possible values jump to the successor.
4459 if (NumCases
->isNullValue() && !ContiguousCases
->empty())
4460 Cmp
= ConstantInt::getTrue(SI
->getContext());
4462 Cmp
= Builder
.CreateICmpULT(Sub
, NumCases
, "switch");
4463 BranchInst
*NewBI
= Builder
.CreateCondBr(Cmp
, ContiguousDest
, OtherDest
);
4465 // Update weight for the newly-created conditional branch.
4466 if (HasBranchWeights(SI
)) {
4467 SmallVector
<uint64_t, 8> Weights
;
4468 GetBranchWeights(SI
, Weights
);
4469 if (Weights
.size() == 1 + SI
->getNumCases()) {
4470 uint64_t TrueWeight
= 0;
4471 uint64_t FalseWeight
= 0;
4472 for (size_t I
= 0, E
= Weights
.size(); I
!= E
; ++I
) {
4473 if (SI
->getSuccessor(I
) == ContiguousDest
)
4474 TrueWeight
+= Weights
[I
];
4476 FalseWeight
+= Weights
[I
];
4478 while (TrueWeight
> UINT32_MAX
|| FalseWeight
> UINT32_MAX
) {
4482 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
4486 // Prune obsolete incoming values off the successors' PHI nodes.
4487 for (auto BBI
= ContiguousDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4488 unsigned PreviousEdges
= ContiguousCases
->size();
4489 if (ContiguousDest
== SI
->getDefaultDest())
4491 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4492 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4494 for (auto BBI
= OtherDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4495 unsigned PreviousEdges
= SI
->getNumCases() - ContiguousCases
->size();
4496 if (OtherDest
== SI
->getDefaultDest())
4498 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4499 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4502 // Clean up the default block - it may have phis or other instructions before
4503 // the unreachable terminator.
4505 createUnreachableSwitchDefault(SI
);
4508 SI
->eraseFromParent();
4513 /// Compute masked bits for the condition of a switch
4514 /// and use it to remove dead cases.
4515 static bool eliminateDeadSwitchCases(SwitchInst
*SI
, AssumptionCache
*AC
,
4516 const DataLayout
&DL
) {
4517 Value
*Cond
= SI
->getCondition();
4518 unsigned Bits
= Cond
->getType()->getIntegerBitWidth();
4519 KnownBits Known
= computeKnownBits(Cond
, DL
, 0, AC
, SI
);
4521 // We can also eliminate cases by determining that their values are outside of
4522 // the limited range of the condition based on how many significant (non-sign)
4523 // bits are in the condition value.
4524 unsigned ExtraSignBits
= ComputeNumSignBits(Cond
, DL
, 0, AC
, SI
) - 1;
4525 unsigned MaxSignificantBitsInCond
= Bits
- ExtraSignBits
;
4527 // Gather dead cases.
4528 SmallVector
<ConstantInt
*, 8> DeadCases
;
4529 for (auto &Case
: SI
->cases()) {
4530 const APInt
&CaseVal
= Case
.getCaseValue()->getValue();
4531 if (Known
.Zero
.intersects(CaseVal
) || !Known
.One
.isSubsetOf(CaseVal
) ||
4532 (CaseVal
.getMinSignedBits() > MaxSignificantBitsInCond
)) {
4533 DeadCases
.push_back(Case
.getCaseValue());
4534 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4539 // If we can prove that the cases must cover all possible values, the
4540 // default destination becomes dead and we can remove it. If we know some
4541 // of the bits in the value, we can use that to more precisely compute the
4542 // number of possible unique case values.
4544 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4545 const unsigned NumUnknownBits
=
4546 Bits
- (Known
.Zero
| Known
.One
).countPopulation();
4547 assert(NumUnknownBits
<= Bits
);
4548 if (HasDefault
&& DeadCases
.empty() &&
4549 NumUnknownBits
< 64 /* avoid overflow */ &&
4550 SI
->getNumCases() == (1ULL << NumUnknownBits
)) {
4551 createUnreachableSwitchDefault(SI
);
4555 if (DeadCases
.empty())
4558 SwitchInstProfUpdateWrapper
SIW(*SI
);
4559 for (ConstantInt
*DeadCase
: DeadCases
) {
4560 SwitchInst::CaseIt CaseI
= SI
->findCaseValue(DeadCase
);
4561 assert(CaseI
!= SI
->case_default() &&
4562 "Case was not found. Probably mistake in DeadCases forming.");
4563 // Prune unused values from PHI nodes.
4564 CaseI
->getCaseSuccessor()->removePredecessor(SI
->getParent());
4565 SIW
.removeCase(CaseI
);
4571 /// If BB would be eligible for simplification by
4572 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4573 /// by an unconditional branch), look at the phi node for BB in the successor
4574 /// block and see if the incoming value is equal to CaseValue. If so, return
4575 /// the phi node, and set PhiIndex to BB's index in the phi node.
4576 static PHINode
*FindPHIForConditionForwarding(ConstantInt
*CaseValue
,
4577 BasicBlock
*BB
, int *PhiIndex
) {
4578 if (BB
->getFirstNonPHIOrDbg() != BB
->getTerminator())
4579 return nullptr; // BB must be empty to be a candidate for simplification.
4580 if (!BB
->getSinglePredecessor())
4581 return nullptr; // BB must be dominated by the switch.
4583 BranchInst
*Branch
= dyn_cast
<BranchInst
>(BB
->getTerminator());
4584 if (!Branch
|| !Branch
->isUnconditional())
4585 return nullptr; // Terminator must be unconditional branch.
4587 BasicBlock
*Succ
= Branch
->getSuccessor(0);
4589 for (PHINode
&PHI
: Succ
->phis()) {
4590 int Idx
= PHI
.getBasicBlockIndex(BB
);
4591 assert(Idx
>= 0 && "PHI has no entry for predecessor?");
4593 Value
*InValue
= PHI
.getIncomingValue(Idx
);
4594 if (InValue
!= CaseValue
)
4604 /// Try to forward the condition of a switch instruction to a phi node
4605 /// dominated by the switch, if that would mean that some of the destination
4606 /// blocks of the switch can be folded away. Return true if a change is made.
4607 static bool ForwardSwitchConditionToPHI(SwitchInst
*SI
) {
4608 using ForwardingNodesMap
= DenseMap
<PHINode
*, SmallVector
<int, 4>>;
4610 ForwardingNodesMap ForwardingNodes
;
4611 BasicBlock
*SwitchBlock
= SI
->getParent();
4612 bool Changed
= false;
4613 for (auto &Case
: SI
->cases()) {
4614 ConstantInt
*CaseValue
= Case
.getCaseValue();
4615 BasicBlock
*CaseDest
= Case
.getCaseSuccessor();
4617 // Replace phi operands in successor blocks that are using the constant case
4618 // value rather than the switch condition variable:
4620 // switch i32 %x, label %default [
4621 // i32 17, label %succ
4624 // %r = phi i32 ... [ 17, %switchbb ] ...
4626 // %r = phi i32 ... [ %x, %switchbb ] ...
4628 for (PHINode
&Phi
: CaseDest
->phis()) {
4629 // This only works if there is exactly 1 incoming edge from the switch to
4630 // a phi. If there is >1, that means multiple cases of the switch map to 1
4631 // value in the phi, and that phi value is not the switch condition. Thus,
4632 // this transform would not make sense (the phi would be invalid because
4633 // a phi can't have different incoming values from the same block).
4634 int SwitchBBIdx
= Phi
.getBasicBlockIndex(SwitchBlock
);
4635 if (Phi
.getIncomingValue(SwitchBBIdx
) == CaseValue
&&
4636 count(Phi
.blocks(), SwitchBlock
) == 1) {
4637 Phi
.setIncomingValue(SwitchBBIdx
, SI
->getCondition());
4642 // Collect phi nodes that are indirectly using this switch's case constants.
4644 if (auto *Phi
= FindPHIForConditionForwarding(CaseValue
, CaseDest
, &PhiIdx
))
4645 ForwardingNodes
[Phi
].push_back(PhiIdx
);
4648 for (auto &ForwardingNode
: ForwardingNodes
) {
4649 PHINode
*Phi
= ForwardingNode
.first
;
4650 SmallVectorImpl
<int> &Indexes
= ForwardingNode
.second
;
4651 if (Indexes
.size() < 2)
4654 for (int Index
: Indexes
)
4655 Phi
->setIncomingValue(Index
, SI
->getCondition());
4662 /// Return true if the backend will be able to handle
4663 /// initializing an array of constants like C.
4664 static bool ValidLookupTableConstant(Constant
*C
, const TargetTransformInfo
&TTI
) {
4665 if (C
->isThreadDependent())
4667 if (C
->isDLLImportDependent())
4670 if (!isa
<ConstantFP
>(C
) && !isa
<ConstantInt
>(C
) &&
4671 !isa
<ConstantPointerNull
>(C
) && !isa
<GlobalValue
>(C
) &&
4672 !isa
<UndefValue
>(C
) && !isa
<ConstantExpr
>(C
))
4675 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
4676 if (!CE
->isGEPWithNoNotionalOverIndexing())
4678 if (!ValidLookupTableConstant(CE
->getOperand(0), TTI
))
4682 if (!TTI
.shouldBuildLookupTablesForConstant(C
))
4688 /// If V is a Constant, return it. Otherwise, try to look up
4689 /// its constant value in ConstantPool, returning 0 if it's not there.
4691 LookupConstant(Value
*V
,
4692 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
4693 if (Constant
*C
= dyn_cast
<Constant
>(V
))
4695 return ConstantPool
.lookup(V
);
4698 /// Try to fold instruction I into a constant. This works for
4699 /// simple instructions such as binary operations where both operands are
4700 /// constant or can be replaced by constants from the ConstantPool. Returns the
4701 /// resulting constant on success, 0 otherwise.
4703 ConstantFold(Instruction
*I
, const DataLayout
&DL
,
4704 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
4705 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(I
)) {
4706 Constant
*A
= LookupConstant(Select
->getCondition(), ConstantPool
);
4709 if (A
->isAllOnesValue())
4710 return LookupConstant(Select
->getTrueValue(), ConstantPool
);
4711 if (A
->isNullValue())
4712 return LookupConstant(Select
->getFalseValue(), ConstantPool
);
4716 SmallVector
<Constant
*, 4> COps
;
4717 for (unsigned N
= 0, E
= I
->getNumOperands(); N
!= E
; ++N
) {
4718 if (Constant
*A
= LookupConstant(I
->getOperand(N
), ConstantPool
))
4724 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
4725 return ConstantFoldCompareInstOperands(Cmp
->getPredicate(), COps
[0],
4729 return ConstantFoldInstOperands(I
, COps
, DL
);
4732 /// Try to determine the resulting constant values in phi nodes
4733 /// at the common destination basic block, *CommonDest, for one of the case
4734 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4735 /// case), of a switch instruction SI.
4737 GetCaseResults(SwitchInst
*SI
, ConstantInt
*CaseVal
, BasicBlock
*CaseDest
,
4738 BasicBlock
**CommonDest
,
4739 SmallVectorImpl
<std::pair
<PHINode
*, Constant
*>> &Res
,
4740 const DataLayout
&DL
, const TargetTransformInfo
&TTI
) {
4741 // The block from which we enter the common destination.
4742 BasicBlock
*Pred
= SI
->getParent();
4744 // If CaseDest is empty except for some side-effect free instructions through
4745 // which we can constant-propagate the CaseVal, continue to its successor.
4746 SmallDenseMap
<Value
*, Constant
*> ConstantPool
;
4747 ConstantPool
.insert(std::make_pair(SI
->getCondition(), CaseVal
));
4748 for (Instruction
&I
:CaseDest
->instructionsWithoutDebug()) {
4749 if (I
.isTerminator()) {
4750 // If the terminator is a simple branch, continue to the next block.
4751 if (I
.getNumSuccessors() != 1 || I
.isExceptionalTerminator())
4754 CaseDest
= I
.getSuccessor(0);
4755 } else if (Constant
*C
= ConstantFold(&I
, DL
, ConstantPool
)) {
4756 // Instruction is side-effect free and constant.
4758 // If the instruction has uses outside this block or a phi node slot for
4759 // the block, it is not safe to bypass the instruction since it would then
4760 // no longer dominate all its uses.
4761 for (auto &Use
: I
.uses()) {
4762 User
*User
= Use
.getUser();
4763 if (Instruction
*I
= dyn_cast
<Instruction
>(User
))
4764 if (I
->getParent() == CaseDest
)
4766 if (PHINode
*Phi
= dyn_cast
<PHINode
>(User
))
4767 if (Phi
->getIncomingBlock(Use
) == CaseDest
)
4772 ConstantPool
.insert(std::make_pair(&I
, C
));
4778 // If we did not have a CommonDest before, use the current one.
4780 *CommonDest
= CaseDest
;
4781 // If the destination isn't the common one, abort.
4782 if (CaseDest
!= *CommonDest
)
4785 // Get the values for this case from phi nodes in the destination block.
4786 for (PHINode
&PHI
: (*CommonDest
)->phis()) {
4787 int Idx
= PHI
.getBasicBlockIndex(Pred
);
4791 Constant
*ConstVal
=
4792 LookupConstant(PHI
.getIncomingValue(Idx
), ConstantPool
);
4796 // Be conservative about which kinds of constants we support.
4797 if (!ValidLookupTableConstant(ConstVal
, TTI
))
4800 Res
.push_back(std::make_pair(&PHI
, ConstVal
));
4803 return Res
.size() > 0;
4806 // Helper function used to add CaseVal to the list of cases that generate
4807 // Result. Returns the updated number of cases that generate this result.
4808 static uintptr_t MapCaseToResult(ConstantInt
*CaseVal
,
4809 SwitchCaseResultVectorTy
&UniqueResults
,
4811 for (auto &I
: UniqueResults
) {
4812 if (I
.first
== Result
) {
4813 I
.second
.push_back(CaseVal
);
4814 return I
.second
.size();
4817 UniqueResults
.push_back(
4818 std::make_pair(Result
, SmallVector
<ConstantInt
*, 4>(1, CaseVal
)));
4822 // Helper function that initializes a map containing
4823 // results for the PHI node of the common destination block for a switch
4824 // instruction. Returns false if multiple PHI nodes have been found or if
4825 // there is not a common destination block for the switch.
4827 InitializeUniqueCases(SwitchInst
*SI
, PHINode
*&PHI
, BasicBlock
*&CommonDest
,
4828 SwitchCaseResultVectorTy
&UniqueResults
,
4829 Constant
*&DefaultResult
, const DataLayout
&DL
,
4830 const TargetTransformInfo
&TTI
,
4831 uintptr_t MaxUniqueResults
, uintptr_t MaxCasesPerResult
) {
4832 for (auto &I
: SI
->cases()) {
4833 ConstantInt
*CaseVal
= I
.getCaseValue();
4835 // Resulting value at phi nodes for this case value.
4836 SwitchCaseResultsTy Results
;
4837 if (!GetCaseResults(SI
, CaseVal
, I
.getCaseSuccessor(), &CommonDest
, Results
,
4841 // Only one value per case is permitted.
4842 if (Results
.size() > 1)
4845 // Add the case->result mapping to UniqueResults.
4846 const uintptr_t NumCasesForResult
=
4847 MapCaseToResult(CaseVal
, UniqueResults
, Results
.begin()->second
);
4849 // Early out if there are too many cases for this result.
4850 if (NumCasesForResult
> MaxCasesPerResult
)
4853 // Early out if there are too many unique results.
4854 if (UniqueResults
.size() > MaxUniqueResults
)
4857 // Check the PHI consistency.
4859 PHI
= Results
[0].first
;
4860 else if (PHI
!= Results
[0].first
)
4863 // Find the default result value.
4864 SmallVector
<std::pair
<PHINode
*, Constant
*>, 1> DefaultResults
;
4865 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
4866 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
, DefaultResults
,
4868 // If the default value is not found abort unless the default destination
4871 DefaultResults
.size() == 1 ? DefaultResults
.begin()->second
: nullptr;
4872 if ((!DefaultResult
&&
4873 !isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg())))
4879 // Helper function that checks if it is possible to transform a switch with only
4880 // two cases (or two cases + default) that produces a result into a select.
4883 // case 10: %0 = icmp eq i32 %a, 10
4884 // return 10; %1 = select i1 %0, i32 10, i32 4
4885 // case 20: ----> %2 = icmp eq i32 %a, 20
4886 // return 2; %3 = select i1 %2, i32 2, i32 %1
4890 static Value
*ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy
&ResultVector
,
4891 Constant
*DefaultResult
, Value
*Condition
,
4892 IRBuilder
<> &Builder
) {
4893 assert(ResultVector
.size() == 2 &&
4894 "We should have exactly two unique results at this point");
4895 // If we are selecting between only two cases transform into a simple
4896 // select or a two-way select if default is possible.
4897 if (ResultVector
[0].second
.size() == 1 &&
4898 ResultVector
[1].second
.size() == 1) {
4899 ConstantInt
*const FirstCase
= ResultVector
[0].second
[0];
4900 ConstantInt
*const SecondCase
= ResultVector
[1].second
[0];
4902 bool DefaultCanTrigger
= DefaultResult
;
4903 Value
*SelectValue
= ResultVector
[1].first
;
4904 if (DefaultCanTrigger
) {
4905 Value
*const ValueCompare
=
4906 Builder
.CreateICmpEQ(Condition
, SecondCase
, "switch.selectcmp");
4907 SelectValue
= Builder
.CreateSelect(ValueCompare
, ResultVector
[1].first
,
4908 DefaultResult
, "switch.select");
4910 Value
*const ValueCompare
=
4911 Builder
.CreateICmpEQ(Condition
, FirstCase
, "switch.selectcmp");
4912 return Builder
.CreateSelect(ValueCompare
, ResultVector
[0].first
,
4913 SelectValue
, "switch.select");
4919 // Helper function to cleanup a switch instruction that has been converted into
4920 // a select, fixing up PHI nodes and basic blocks.
4921 static void RemoveSwitchAfterSelectConversion(SwitchInst
*SI
, PHINode
*PHI
,
4923 IRBuilder
<> &Builder
) {
4924 BasicBlock
*SelectBB
= SI
->getParent();
4925 while (PHI
->getBasicBlockIndex(SelectBB
) >= 0)
4926 PHI
->removeIncomingValue(SelectBB
);
4927 PHI
->addIncoming(SelectValue
, SelectBB
);
4929 Builder
.CreateBr(PHI
->getParent());
4931 // Remove the switch.
4932 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
4933 BasicBlock
*Succ
= SI
->getSuccessor(i
);
4935 if (Succ
== PHI
->getParent())
4937 Succ
->removePredecessor(SelectBB
);
4939 SI
->eraseFromParent();
4942 /// If the switch is only used to initialize one or more
4943 /// phi nodes in a common successor block with only two different
4944 /// constant values, replace the switch with select.
4945 static bool switchToSelect(SwitchInst
*SI
, IRBuilder
<> &Builder
,
4946 const DataLayout
&DL
,
4947 const TargetTransformInfo
&TTI
) {
4948 Value
*const Cond
= SI
->getCondition();
4949 PHINode
*PHI
= nullptr;
4950 BasicBlock
*CommonDest
= nullptr;
4951 Constant
*DefaultResult
;
4952 SwitchCaseResultVectorTy UniqueResults
;
4953 // Collect all the cases that will deliver the same value from the switch.
4954 if (!InitializeUniqueCases(SI
, PHI
, CommonDest
, UniqueResults
, DefaultResult
,
4957 // Selects choose between maximum two values.
4958 if (UniqueResults
.size() != 2)
4960 assert(PHI
!= nullptr && "PHI for value select not found");
4962 Builder
.SetInsertPoint(SI
);
4963 Value
*SelectValue
=
4964 ConvertTwoCaseSwitch(UniqueResults
, DefaultResult
, Cond
, Builder
);
4966 RemoveSwitchAfterSelectConversion(SI
, PHI
, SelectValue
, Builder
);
4969 // The switch couldn't be converted into a select.
4975 /// This class represents a lookup table that can be used to replace a switch.
4976 class SwitchLookupTable
{
4978 /// Create a lookup table to use as a switch replacement with the contents
4979 /// of Values, using DefaultValue to fill any holes in the table.
4981 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
4982 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
4983 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
);
4985 /// Build instructions with Builder to retrieve the value at
4986 /// the position given by Index in the lookup table.
4987 Value
*BuildLookup(Value
*Index
, IRBuilder
<> &Builder
);
4989 /// Return true if a table with TableSize elements of
4990 /// type ElementType would fit in a target-legal register.
4991 static bool WouldFitInRegister(const DataLayout
&DL
, uint64_t TableSize
,
4995 // Depending on the contents of the table, it can be represented in
4998 // For tables where each element contains the same value, we just have to
4999 // store that single value and return it for each lookup.
5002 // For tables where there is a linear relationship between table index
5003 // and values. We calculate the result with a simple multiplication
5004 // and addition instead of a table lookup.
5007 // For small tables with integer elements, we can pack them into a bitmap
5008 // that fits into a target-legal register. Values are retrieved by
5009 // shift and mask operations.
5012 // The table is stored as an array of values. Values are retrieved by load
5013 // instructions from the table.
5017 // For SingleValueKind, this is the single value.
5018 Constant
*SingleValue
= nullptr;
5020 // For BitMapKind, this is the bitmap.
5021 ConstantInt
*BitMap
= nullptr;
5022 IntegerType
*BitMapElementTy
= nullptr;
5024 // For LinearMapKind, these are the constants used to derive the value.
5025 ConstantInt
*LinearOffset
= nullptr;
5026 ConstantInt
*LinearMultiplier
= nullptr;
5028 // For ArrayKind, this is the array.
5029 GlobalVariable
*Array
= nullptr;
5032 } // end anonymous namespace
5034 SwitchLookupTable::SwitchLookupTable(
5035 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
5036 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
5037 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
) {
5038 assert(Values
.size() && "Can't build lookup table without values!");
5039 assert(TableSize
>= Values
.size() && "Can't fit values in table!");
5041 // If all values in the table are equal, this is that value.
5042 SingleValue
= Values
.begin()->second
;
5044 Type
*ValueType
= Values
.begin()->second
->getType();
5046 // Build up the table contents.
5047 SmallVector
<Constant
*, 64> TableContents(TableSize
);
5048 for (size_t I
= 0, E
= Values
.size(); I
!= E
; ++I
) {
5049 ConstantInt
*CaseVal
= Values
[I
].first
;
5050 Constant
*CaseRes
= Values
[I
].second
;
5051 assert(CaseRes
->getType() == ValueType
);
5053 uint64_t Idx
= (CaseVal
->getValue() - Offset
->getValue()).getLimitedValue();
5054 TableContents
[Idx
] = CaseRes
;
5056 if (CaseRes
!= SingleValue
)
5057 SingleValue
= nullptr;
5060 // Fill in any holes in the table with the default result.
5061 if (Values
.size() < TableSize
) {
5062 assert(DefaultValue
&&
5063 "Need a default value to fill the lookup table holes.");
5064 assert(DefaultValue
->getType() == ValueType
);
5065 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
5066 if (!TableContents
[I
])
5067 TableContents
[I
] = DefaultValue
;
5070 if (DefaultValue
!= SingleValue
)
5071 SingleValue
= nullptr;
5074 // If each element in the table contains the same value, we only need to store
5075 // that single value.
5077 Kind
= SingleValueKind
;
5081 // Check if we can derive the value with a linear transformation from the
5083 if (isa
<IntegerType
>(ValueType
)) {
5084 bool LinearMappingPossible
= true;
5087 assert(TableSize
>= 2 && "Should be a SingleValue table.");
5088 // Check if there is the same distance between two consecutive values.
5089 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
5090 ConstantInt
*ConstVal
= dyn_cast
<ConstantInt
>(TableContents
[I
]);
5092 // This is an undef. We could deal with it, but undefs in lookup tables
5093 // are very seldom. It's probably not worth the additional complexity.
5094 LinearMappingPossible
= false;
5097 const APInt
&Val
= ConstVal
->getValue();
5099 APInt Dist
= Val
- PrevVal
;
5102 } else if (Dist
!= DistToPrev
) {
5103 LinearMappingPossible
= false;
5109 if (LinearMappingPossible
) {
5110 LinearOffset
= cast
<ConstantInt
>(TableContents
[0]);
5111 LinearMultiplier
= ConstantInt::get(M
.getContext(), DistToPrev
);
5112 Kind
= LinearMapKind
;
5118 // If the type is integer and the table fits in a register, build a bitmap.
5119 if (WouldFitInRegister(DL
, TableSize
, ValueType
)) {
5120 IntegerType
*IT
= cast
<IntegerType
>(ValueType
);
5121 APInt
TableInt(TableSize
* IT
->getBitWidth(), 0);
5122 for (uint64_t I
= TableSize
; I
> 0; --I
) {
5123 TableInt
<<= IT
->getBitWidth();
5124 // Insert values into the bitmap. Undef values are set to zero.
5125 if (!isa
<UndefValue
>(TableContents
[I
- 1])) {
5126 ConstantInt
*Val
= cast
<ConstantInt
>(TableContents
[I
- 1]);
5127 TableInt
|= Val
->getValue().zext(TableInt
.getBitWidth());
5130 BitMap
= ConstantInt::get(M
.getContext(), TableInt
);
5131 BitMapElementTy
= IT
;
5137 // Store the table in an array.
5138 ArrayType
*ArrayTy
= ArrayType::get(ValueType
, TableSize
);
5139 Constant
*Initializer
= ConstantArray::get(ArrayTy
, TableContents
);
5141 Array
= new GlobalVariable(M
, ArrayTy
, /*isConstant=*/true,
5142 GlobalVariable::PrivateLinkage
, Initializer
,
5143 "switch.table." + FuncName
);
5144 Array
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
5145 // Set the alignment to that of an array items. We will be only loading one
5147 Array
->setAlignment(Align(DL
.getPrefTypeAlignment(ValueType
)));
5151 Value
*SwitchLookupTable::BuildLookup(Value
*Index
, IRBuilder
<> &Builder
) {
5153 case SingleValueKind
:
5155 case LinearMapKind
: {
5156 // Derive the result value from the input value.
5157 Value
*Result
= Builder
.CreateIntCast(Index
, LinearMultiplier
->getType(),
5158 false, "switch.idx.cast");
5159 if (!LinearMultiplier
->isOne())
5160 Result
= Builder
.CreateMul(Result
, LinearMultiplier
, "switch.idx.mult");
5161 if (!LinearOffset
->isZero())
5162 Result
= Builder
.CreateAdd(Result
, LinearOffset
, "switch.offset");
5166 // Type of the bitmap (e.g. i59).
5167 IntegerType
*MapTy
= BitMap
->getType();
5169 // Cast Index to the same type as the bitmap.
5170 // Note: The Index is <= the number of elements in the table, so
5171 // truncating it to the width of the bitmask is safe.
5172 Value
*ShiftAmt
= Builder
.CreateZExtOrTrunc(Index
, MapTy
, "switch.cast");
5174 // Multiply the shift amount by the element width.
5175 ShiftAmt
= Builder
.CreateMul(
5176 ShiftAmt
, ConstantInt::get(MapTy
, BitMapElementTy
->getBitWidth()),
5180 Value
*DownShifted
=
5181 Builder
.CreateLShr(BitMap
, ShiftAmt
, "switch.downshift");
5183 return Builder
.CreateTrunc(DownShifted
, BitMapElementTy
, "switch.masked");
5186 // Make sure the table index will not overflow when treated as signed.
5187 IntegerType
*IT
= cast
<IntegerType
>(Index
->getType());
5188 uint64_t TableSize
=
5189 Array
->getInitializer()->getType()->getArrayNumElements();
5190 if (TableSize
> (1ULL << (IT
->getBitWidth() - 1)))
5191 Index
= Builder
.CreateZExt(
5192 Index
, IntegerType::get(IT
->getContext(), IT
->getBitWidth() + 1),
5193 "switch.tableidx.zext");
5195 Value
*GEPIndices
[] = {Builder
.getInt32(0), Index
};
5196 Value
*GEP
= Builder
.CreateInBoundsGEP(Array
->getValueType(), Array
,
5197 GEPIndices
, "switch.gep");
5198 return Builder
.CreateLoad(
5199 cast
<ArrayType
>(Array
->getValueType())->getElementType(), GEP
,
5203 llvm_unreachable("Unknown lookup table kind!");
5206 bool SwitchLookupTable::WouldFitInRegister(const DataLayout
&DL
,
5208 Type
*ElementType
) {
5209 auto *IT
= dyn_cast
<IntegerType
>(ElementType
);
5212 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5213 // are <= 15, we could try to narrow the type.
5215 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5216 if (TableSize
>= UINT_MAX
/ IT
->getBitWidth())
5218 return DL
.fitsInLegalInteger(TableSize
* IT
->getBitWidth());
5221 /// Determine whether a lookup table should be built for this switch, based on
5222 /// the number of cases, size of the table, and the types of the results.
5224 ShouldBuildLookupTable(SwitchInst
*SI
, uint64_t TableSize
,
5225 const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
5226 const SmallDenseMap
<PHINode
*, Type
*> &ResultTypes
) {
5227 if (SI
->getNumCases() > TableSize
|| TableSize
>= UINT64_MAX
/ 10)
5228 return false; // TableSize overflowed, or mul below might overflow.
5230 bool AllTablesFitInRegister
= true;
5231 bool HasIllegalType
= false;
5232 for (const auto &I
: ResultTypes
) {
5233 Type
*Ty
= I
.second
;
5235 // Saturate this flag to true.
5236 HasIllegalType
= HasIllegalType
|| !TTI
.isTypeLegal(Ty
);
5238 // Saturate this flag to false.
5239 AllTablesFitInRegister
=
5240 AllTablesFitInRegister
&&
5241 SwitchLookupTable::WouldFitInRegister(DL
, TableSize
, Ty
);
5243 // If both flags saturate, we're done. NOTE: This *only* works with
5244 // saturating flags, and all flags have to saturate first due to the
5245 // non-deterministic behavior of iterating over a dense map.
5246 if (HasIllegalType
&& !AllTablesFitInRegister
)
5250 // If each table would fit in a register, we should build it anyway.
5251 if (AllTablesFitInRegister
)
5254 // Don't build a table that doesn't fit in-register if it has illegal types.
5258 // The table density should be at least 40%. This is the same criterion as for
5259 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5260 // FIXME: Find the best cut-off.
5261 return SI
->getNumCases() * 10 >= TableSize
* 4;
5264 /// Try to reuse the switch table index compare. Following pattern:
5266 /// if (idx < tablesize)
5267 /// r = table[idx]; // table does not contain default_value
5269 /// r = default_value;
5270 /// if (r != default_value)
5273 /// Is optimized to:
5275 /// cond = idx < tablesize;
5279 /// r = default_value;
5283 /// Jump threading will then eliminate the second if(cond).
5284 static void reuseTableCompare(
5285 User
*PhiUser
, BasicBlock
*PhiBlock
, BranchInst
*RangeCheckBranch
,
5286 Constant
*DefaultValue
,
5287 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
) {
5288 ICmpInst
*CmpInst
= dyn_cast
<ICmpInst
>(PhiUser
);
5292 // We require that the compare is in the same block as the phi so that jump
5293 // threading can do its work afterwards.
5294 if (CmpInst
->getParent() != PhiBlock
)
5297 Constant
*CmpOp1
= dyn_cast
<Constant
>(CmpInst
->getOperand(1));
5301 Value
*RangeCmp
= RangeCheckBranch
->getCondition();
5302 Constant
*TrueConst
= ConstantInt::getTrue(RangeCmp
->getType());
5303 Constant
*FalseConst
= ConstantInt::getFalse(RangeCmp
->getType());
5305 // Check if the compare with the default value is constant true or false.
5306 Constant
*DefaultConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5307 DefaultValue
, CmpOp1
, true);
5308 if (DefaultConst
!= TrueConst
&& DefaultConst
!= FalseConst
)
5311 // Check if the compare with the case values is distinct from the default
5313 for (auto ValuePair
: Values
) {
5314 Constant
*CaseConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5315 ValuePair
.second
, CmpOp1
, true);
5316 if (!CaseConst
|| CaseConst
== DefaultConst
|| isa
<UndefValue
>(CaseConst
))
5318 assert((CaseConst
== TrueConst
|| CaseConst
== FalseConst
) &&
5319 "Expect true or false as compare result.");
5322 // Check if the branch instruction dominates the phi node. It's a simple
5323 // dominance check, but sufficient for our needs.
5324 // Although this check is invariant in the calling loops, it's better to do it
5325 // at this late stage. Practically we do it at most once for a switch.
5326 BasicBlock
*BranchBlock
= RangeCheckBranch
->getParent();
5327 for (auto PI
= pred_begin(PhiBlock
), E
= pred_end(PhiBlock
); PI
!= E
; ++PI
) {
5328 BasicBlock
*Pred
= *PI
;
5329 if (Pred
!= BranchBlock
&& Pred
->getUniquePredecessor() != BranchBlock
)
5333 if (DefaultConst
== FalseConst
) {
5334 // The compare yields the same result. We can replace it.
5335 CmpInst
->replaceAllUsesWith(RangeCmp
);
5336 ++NumTableCmpReuses
;
5338 // The compare yields the same result, just inverted. We can replace it.
5339 Value
*InvertedTableCmp
= BinaryOperator::CreateXor(
5340 RangeCmp
, ConstantInt::get(RangeCmp
->getType(), 1), "inverted.cmp",
5342 CmpInst
->replaceAllUsesWith(InvertedTableCmp
);
5343 ++NumTableCmpReuses
;
5347 /// If the switch is only used to initialize one or more phi nodes in a common
5348 /// successor block with different constant values, replace the switch with
5350 static bool SwitchToLookupTable(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5351 const DataLayout
&DL
,
5352 const TargetTransformInfo
&TTI
) {
5353 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
5355 Function
*Fn
= SI
->getParent()->getParent();
5356 // Only build lookup table when we have a target that supports it or the
5357 // attribute is not set.
5358 if (!TTI
.shouldBuildLookupTables() ||
5359 (Fn
->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5362 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5363 // split off a dense part and build a lookup table for that.
5365 // FIXME: This creates arrays of GEPs to constant strings, which means each
5366 // GEP needs a runtime relocation in PIC code. We should just build one big
5367 // string and lookup indices into that.
5369 // Ignore switches with less than three cases. Lookup tables will not make
5370 // them faster, so we don't analyze them.
5371 if (SI
->getNumCases() < 3)
5374 // Figure out the corresponding result for each case value and phi node in the
5375 // common destination, as well as the min and max case values.
5376 assert(!SI
->cases().empty());
5377 SwitchInst::CaseIt CI
= SI
->case_begin();
5378 ConstantInt
*MinCaseVal
= CI
->getCaseValue();
5379 ConstantInt
*MaxCaseVal
= CI
->getCaseValue();
5381 BasicBlock
*CommonDest
= nullptr;
5383 using ResultListTy
= SmallVector
<std::pair
<ConstantInt
*, Constant
*>, 4>;
5384 SmallDenseMap
<PHINode
*, ResultListTy
> ResultLists
;
5386 SmallDenseMap
<PHINode
*, Constant
*> DefaultResults
;
5387 SmallDenseMap
<PHINode
*, Type
*> ResultTypes
;
5388 SmallVector
<PHINode
*, 4> PHIs
;
5390 for (SwitchInst::CaseIt E
= SI
->case_end(); CI
!= E
; ++CI
) {
5391 ConstantInt
*CaseVal
= CI
->getCaseValue();
5392 if (CaseVal
->getValue().slt(MinCaseVal
->getValue()))
5393 MinCaseVal
= CaseVal
;
5394 if (CaseVal
->getValue().sgt(MaxCaseVal
->getValue()))
5395 MaxCaseVal
= CaseVal
;
5397 // Resulting value at phi nodes for this case value.
5398 using ResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
5400 if (!GetCaseResults(SI
, CaseVal
, CI
->getCaseSuccessor(), &CommonDest
,
5404 // Append the result from this case to the list for each phi.
5405 for (const auto &I
: Results
) {
5406 PHINode
*PHI
= I
.first
;
5407 Constant
*Value
= I
.second
;
5408 if (!ResultLists
.count(PHI
))
5409 PHIs
.push_back(PHI
);
5410 ResultLists
[PHI
].push_back(std::make_pair(CaseVal
, Value
));
5414 // Keep track of the result types.
5415 for (PHINode
*PHI
: PHIs
) {
5416 ResultTypes
[PHI
] = ResultLists
[PHI
][0].second
->getType();
5419 uint64_t NumResults
= ResultLists
[PHIs
[0]].size();
5420 APInt RangeSpread
= MaxCaseVal
->getValue() - MinCaseVal
->getValue();
5421 uint64_t TableSize
= RangeSpread
.getLimitedValue() + 1;
5422 bool TableHasHoles
= (NumResults
< TableSize
);
5424 // If the table has holes, we need a constant result for the default case
5425 // or a bitmask that fits in a register.
5426 SmallVector
<std::pair
<PHINode
*, Constant
*>, 4> DefaultResultsList
;
5427 bool HasDefaultResults
=
5428 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
,
5429 DefaultResultsList
, DL
, TTI
);
5431 bool NeedMask
= (TableHasHoles
&& !HasDefaultResults
);
5433 // As an extra penalty for the validity test we require more cases.
5434 if (SI
->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5436 if (!DL
.fitsInLegalInteger(TableSize
))
5440 for (const auto &I
: DefaultResultsList
) {
5441 PHINode
*PHI
= I
.first
;
5442 Constant
*Result
= I
.second
;
5443 DefaultResults
[PHI
] = Result
;
5446 if (!ShouldBuildLookupTable(SI
, TableSize
, TTI
, DL
, ResultTypes
))
5449 // Create the BB that does the lookups.
5450 Module
&Mod
= *CommonDest
->getParent()->getParent();
5451 BasicBlock
*LookupBB
= BasicBlock::Create(
5452 Mod
.getContext(), "switch.lookup", CommonDest
->getParent(), CommonDest
);
5454 // Compute the table index value.
5455 Builder
.SetInsertPoint(SI
);
5457 if (MinCaseVal
->isNullValue())
5458 TableIndex
= SI
->getCondition();
5460 TableIndex
= Builder
.CreateSub(SI
->getCondition(), MinCaseVal
,
5463 // Compute the maximum table size representable by the integer type we are
5465 unsigned CaseSize
= MinCaseVal
->getType()->getPrimitiveSizeInBits();
5466 uint64_t MaxTableSize
= CaseSize
> 63 ? UINT64_MAX
: 1ULL << CaseSize
;
5467 assert(MaxTableSize
>= TableSize
&&
5468 "It is impossible for a switch to have more entries than the max "
5469 "representable value of its input integer type's size.");
5471 // If the default destination is unreachable, or if the lookup table covers
5472 // all values of the conditional variable, branch directly to the lookup table
5473 // BB. Otherwise, check that the condition is within the case range.
5474 const bool DefaultIsReachable
=
5475 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
5476 const bool GeneratingCoveredLookupTable
= (MaxTableSize
== TableSize
);
5477 BranchInst
*RangeCheckBranch
= nullptr;
5479 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5480 Builder
.CreateBr(LookupBB
);
5481 // Note: We call removeProdecessor later since we need to be able to get the
5482 // PHI value for the default case in case we're using a bit mask.
5484 Value
*Cmp
= Builder
.CreateICmpULT(
5485 TableIndex
, ConstantInt::get(MinCaseVal
->getType(), TableSize
));
5487 Builder
.CreateCondBr(Cmp
, LookupBB
, SI
->getDefaultDest());
5490 // Populate the BB that does the lookups.
5491 Builder
.SetInsertPoint(LookupBB
);
5494 // Before doing the lookup, we do the hole check. The LookupBB is therefore
5495 // re-purposed to do the hole check, and we create a new LookupBB.
5496 BasicBlock
*MaskBB
= LookupBB
;
5497 MaskBB
->setName("switch.hole_check");
5498 LookupBB
= BasicBlock::Create(Mod
.getContext(), "switch.lookup",
5499 CommonDest
->getParent(), CommonDest
);
5501 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5502 // unnecessary illegal types.
5503 uint64_t TableSizePowOf2
= NextPowerOf2(std::max(7ULL, TableSize
- 1ULL));
5504 APInt
MaskInt(TableSizePowOf2
, 0);
5505 APInt
One(TableSizePowOf2
, 1);
5506 // Build bitmask; fill in a 1 bit for every case.
5507 const ResultListTy
&ResultList
= ResultLists
[PHIs
[0]];
5508 for (size_t I
= 0, E
= ResultList
.size(); I
!= E
; ++I
) {
5509 uint64_t Idx
= (ResultList
[I
].first
->getValue() - MinCaseVal
->getValue())
5511 MaskInt
|= One
<< Idx
;
5513 ConstantInt
*TableMask
= ConstantInt::get(Mod
.getContext(), MaskInt
);
5515 // Get the TableIndex'th bit of the bitmask.
5516 // If this bit is 0 (meaning hole) jump to the default destination,
5517 // else continue with table lookup.
5518 IntegerType
*MapTy
= TableMask
->getType();
5520 Builder
.CreateZExtOrTrunc(TableIndex
, MapTy
, "switch.maskindex");
5521 Value
*Shifted
= Builder
.CreateLShr(TableMask
, MaskIndex
, "switch.shifted");
5522 Value
*LoBit
= Builder
.CreateTrunc(
5523 Shifted
, Type::getInt1Ty(Mod
.getContext()), "switch.lobit");
5524 Builder
.CreateCondBr(LoBit
, LookupBB
, SI
->getDefaultDest());
5526 Builder
.SetInsertPoint(LookupBB
);
5527 AddPredecessorToBlock(SI
->getDefaultDest(), MaskBB
, SI
->getParent());
5530 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5531 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5532 // do not delete PHINodes here.
5533 SI
->getDefaultDest()->removePredecessor(SI
->getParent(),
5534 /*KeepOneInputPHIs=*/true);
5537 bool ReturnedEarly
= false;
5538 for (PHINode
*PHI
: PHIs
) {
5539 const ResultListTy
&ResultList
= ResultLists
[PHI
];
5541 // If using a bitmask, use any value to fill the lookup table holes.
5542 Constant
*DV
= NeedMask
? ResultLists
[PHI
][0].second
: DefaultResults
[PHI
];
5543 StringRef FuncName
= Fn
->getName();
5544 SwitchLookupTable
Table(Mod
, TableSize
, MinCaseVal
, ResultList
, DV
, DL
,
5547 Value
*Result
= Table
.BuildLookup(TableIndex
, Builder
);
5549 // If the result is used to return immediately from the function, we want to
5550 // do that right here.
5551 if (PHI
->hasOneUse() && isa
<ReturnInst
>(*PHI
->user_begin()) &&
5552 PHI
->user_back() == CommonDest
->getFirstNonPHIOrDbg()) {
5553 Builder
.CreateRet(Result
);
5554 ReturnedEarly
= true;
5558 // Do a small peephole optimization: re-use the switch table compare if
5560 if (!TableHasHoles
&& HasDefaultResults
&& RangeCheckBranch
) {
5561 BasicBlock
*PhiBlock
= PHI
->getParent();
5562 // Search for compare instructions which use the phi.
5563 for (auto *User
: PHI
->users()) {
5564 reuseTableCompare(User
, PhiBlock
, RangeCheckBranch
, DV
, ResultList
);
5568 PHI
->addIncoming(Result
, LookupBB
);
5572 Builder
.CreateBr(CommonDest
);
5574 // Remove the switch.
5575 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
5576 BasicBlock
*Succ
= SI
->getSuccessor(i
);
5578 if (Succ
== SI
->getDefaultDest())
5580 Succ
->removePredecessor(SI
->getParent());
5582 SI
->eraseFromParent();
5586 ++NumLookupTablesHoles
;
5590 static bool isSwitchDense(ArrayRef
<int64_t> Values
) {
5591 // See also SelectionDAGBuilder::isDense(), which this function was based on.
5592 uint64_t Diff
= (uint64_t)Values
.back() - (uint64_t)Values
.front();
5593 uint64_t Range
= Diff
+ 1;
5594 uint64_t NumCases
= Values
.size();
5595 // 40% is the default density for building a jump table in optsize/minsize mode.
5596 uint64_t MinDensity
= 40;
5598 return NumCases
* 100 >= Range
* MinDensity
;
5601 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5604 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5605 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5607 /// This converts a sparse switch into a dense switch which allows better
5608 /// lowering and could also allow transforming into a lookup table.
5609 static bool ReduceSwitchRange(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5610 const DataLayout
&DL
,
5611 const TargetTransformInfo
&TTI
) {
5612 auto *CondTy
= cast
<IntegerType
>(SI
->getCondition()->getType());
5613 if (CondTy
->getIntegerBitWidth() > 64 ||
5614 !DL
.fitsInLegalInteger(CondTy
->getIntegerBitWidth()))
5616 // Only bother with this optimization if there are more than 3 switch cases;
5617 // SDAG will only bother creating jump tables for 4 or more cases.
5618 if (SI
->getNumCases() < 4)
5621 // This transform is agnostic to the signedness of the input or case values. We
5622 // can treat the case values as signed or unsigned. We can optimize more common
5623 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5625 SmallVector
<int64_t,4> Values
;
5626 for (auto &C
: SI
->cases())
5627 Values
.push_back(C
.getCaseValue()->getValue().getSExtValue());
5630 // If the switch is already dense, there's nothing useful to do here.
5631 if (isSwitchDense(Values
))
5634 // First, transform the values such that they start at zero and ascend.
5635 int64_t Base
= Values
[0];
5636 for (auto &V
: Values
)
5637 V
-= (uint64_t)(Base
);
5639 // Now we have signed numbers that have been shifted so that, given enough
5640 // precision, there are no negative values. Since the rest of the transform
5641 // is bitwise only, we switch now to an unsigned representation.
5643 // This transform can be done speculatively because it is so cheap - it
5644 // results in a single rotate operation being inserted.
5645 // FIXME: It's possible that optimizing a switch on powers of two might also
5646 // be beneficial - flag values are often powers of two and we could use a CLZ
5647 // as the key function.
5649 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5650 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5652 unsigned Shift
= 64;
5653 for (auto &V
: Values
)
5654 Shift
= std::min(Shift
, countTrailingZeros((uint64_t)V
));
5657 for (auto &V
: Values
)
5658 V
= (int64_t)((uint64_t)V
>> Shift
);
5660 if (!isSwitchDense(Values
))
5661 // Transform didn't create a dense switch.
5664 // The obvious transform is to shift the switch condition right and emit a
5665 // check that the condition actually cleanly divided by GCD, i.e.
5666 // C & (1 << Shift - 1) == 0
5667 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5669 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5670 // shift and puts the shifted-off bits in the uppermost bits. If any of these
5671 // are nonzero then the switch condition will be very large and will hit the
5674 auto *Ty
= cast
<IntegerType
>(SI
->getCondition()->getType());
5675 Builder
.SetInsertPoint(SI
);
5676 auto *ShiftC
= ConstantInt::get(Ty
, Shift
);
5677 auto *Sub
= Builder
.CreateSub(SI
->getCondition(), ConstantInt::get(Ty
, Base
));
5678 auto *LShr
= Builder
.CreateLShr(Sub
, ShiftC
);
5679 auto *Shl
= Builder
.CreateShl(Sub
, Ty
->getBitWidth() - Shift
);
5680 auto *Rot
= Builder
.CreateOr(LShr
, Shl
);
5681 SI
->replaceUsesOfWith(SI
->getCondition(), Rot
);
5683 for (auto Case
: SI
->cases()) {
5684 auto *Orig
= Case
.getCaseValue();
5685 auto Sub
= Orig
->getValue() - APInt(Ty
->getBitWidth(), Base
);
5687 cast
<ConstantInt
>(ConstantInt::get(Ty
, Sub
.lshr(ShiftC
->getValue()))));
5692 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
5693 BasicBlock
*BB
= SI
->getParent();
5695 if (isValueEqualityComparison(SI
)) {
5696 // If we only have one predecessor, and if it is a branch on this value,
5697 // see if that predecessor totally determines the outcome of this switch.
5698 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
5699 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
, Builder
))
5700 return requestResimplify();
5702 Value
*Cond
= SI
->getCondition();
5703 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(Cond
))
5704 if (SimplifySwitchOnSelect(SI
, Select
))
5705 return requestResimplify();
5707 // If the block only contains the switch, see if we can fold the block
5708 // away into any preds.
5709 if (SI
== &*BB
->instructionsWithoutDebug().begin())
5710 if (FoldValueComparisonIntoPredecessors(SI
, Builder
))
5711 return requestResimplify();
5714 // Try to transform the switch into an icmp and a branch.
5715 if (TurnSwitchRangeIntoICmp(SI
, Builder
))
5716 return requestResimplify();
5718 // Remove unreachable cases.
5719 if (eliminateDeadSwitchCases(SI
, Options
.AC
, DL
))
5720 return requestResimplify();
5722 if (switchToSelect(SI
, Builder
, DL
, TTI
))
5723 return requestResimplify();
5725 if (Options
.ForwardSwitchCondToPhi
&& ForwardSwitchConditionToPHI(SI
))
5726 return requestResimplify();
5728 // The conversion from switch to lookup tables results in difficult-to-analyze
5729 // code and makes pruning branches much harder. This is a problem if the
5730 // switch expression itself can still be restricted as a result of inlining or
5731 // CVP. Therefore, only apply this transformation during late stages of the
5732 // optimisation pipeline.
5733 if (Options
.ConvertSwitchToLookupTable
&&
5734 SwitchToLookupTable(SI
, Builder
, DL
, TTI
))
5735 return requestResimplify();
5737 if (ReduceSwitchRange(SI
, Builder
, DL
, TTI
))
5738 return requestResimplify();
5743 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst
*IBI
) {
5744 BasicBlock
*BB
= IBI
->getParent();
5745 bool Changed
= false;
5747 // Eliminate redundant destinations.
5748 SmallPtrSet
<Value
*, 8> Succs
;
5749 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
5750 BasicBlock
*Dest
= IBI
->getDestination(i
);
5751 if (!Dest
->hasAddressTaken() || !Succs
.insert(Dest
).second
) {
5752 Dest
->removePredecessor(BB
);
5753 IBI
->removeDestination(i
);
5760 if (IBI
->getNumDestinations() == 0) {
5761 // If the indirectbr has no successors, change it to unreachable.
5762 new UnreachableInst(IBI
->getContext(), IBI
);
5763 EraseTerminatorAndDCECond(IBI
);
5767 if (IBI
->getNumDestinations() == 1) {
5768 // If the indirectbr has one successor, change it to a direct branch.
5769 BranchInst::Create(IBI
->getDestination(0), IBI
);
5770 EraseTerminatorAndDCECond(IBI
);
5774 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(IBI
->getAddress())) {
5775 if (SimplifyIndirectBrOnSelect(IBI
, SI
))
5776 return requestResimplify();
5781 /// Given an block with only a single landing pad and a unconditional branch
5782 /// try to find another basic block which this one can be merged with. This
5783 /// handles cases where we have multiple invokes with unique landing pads, but
5784 /// a shared handler.
5786 /// We specifically choose to not worry about merging non-empty blocks
5787 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
5788 /// practice, the optimizer produces empty landing pad blocks quite frequently
5789 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
5790 /// sinking in this file)
5792 /// This is primarily a code size optimization. We need to avoid performing
5793 /// any transform which might inhibit optimization (such as our ability to
5794 /// specialize a particular handler via tail commoning). We do this by not
5795 /// merging any blocks which require us to introduce a phi. Since the same
5796 /// values are flowing through both blocks, we don't lose any ability to
5797 /// specialize. If anything, we make such specialization more likely.
5799 /// TODO - This transformation could remove entries from a phi in the target
5800 /// block when the inputs in the phi are the same for the two blocks being
5801 /// merged. In some cases, this could result in removal of the PHI entirely.
5802 static bool TryToMergeLandingPad(LandingPadInst
*LPad
, BranchInst
*BI
,
5804 auto Succ
= BB
->getUniqueSuccessor();
5806 // If there's a phi in the successor block, we'd likely have to introduce
5807 // a phi into the merged landing pad block.
5808 if (isa
<PHINode
>(*Succ
->begin()))
5811 for (BasicBlock
*OtherPred
: predecessors(Succ
)) {
5812 if (BB
== OtherPred
)
5814 BasicBlock::iterator I
= OtherPred
->begin();
5815 LandingPadInst
*LPad2
= dyn_cast
<LandingPadInst
>(I
);
5816 if (!LPad2
|| !LPad2
->isIdenticalTo(LPad
))
5818 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5820 BranchInst
*BI2
= dyn_cast
<BranchInst
>(I
);
5821 if (!BI2
|| !BI2
->isIdenticalTo(BI
))
5824 // We've found an identical block. Update our predecessors to take that
5825 // path instead and make ourselves dead.
5826 SmallPtrSet
<BasicBlock
*, 16> Preds
;
5827 Preds
.insert(pred_begin(BB
), pred_end(BB
));
5828 for (BasicBlock
*Pred
: Preds
) {
5829 InvokeInst
*II
= cast
<InvokeInst
>(Pred
->getTerminator());
5830 assert(II
->getNormalDest() != BB
&& II
->getUnwindDest() == BB
&&
5831 "unexpected successor");
5832 II
->setUnwindDest(OtherPred
);
5835 // The debug info in OtherPred doesn't cover the merged control flow that
5836 // used to go through BB. We need to delete it or update it.
5837 for (auto I
= OtherPred
->begin(), E
= OtherPred
->end(); I
!= E
;) {
5838 Instruction
&Inst
= *I
;
5840 if (isa
<DbgInfoIntrinsic
>(Inst
))
5841 Inst
.eraseFromParent();
5844 SmallPtrSet
<BasicBlock
*, 16> Succs
;
5845 Succs
.insert(succ_begin(BB
), succ_end(BB
));
5846 for (BasicBlock
*Succ
: Succs
) {
5847 Succ
->removePredecessor(BB
);
5850 IRBuilder
<> Builder(BI
);
5851 Builder
.CreateUnreachable();
5852 BI
->eraseFromParent();
5858 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst
*BI
,
5859 IRBuilder
<> &Builder
) {
5860 BasicBlock
*BB
= BI
->getParent();
5861 BasicBlock
*Succ
= BI
->getSuccessor(0);
5863 // If the Terminator is the only non-phi instruction, simplify the block.
5864 // If LoopHeader is provided, check if the block or its successor is a loop
5865 // header. (This is for early invocations before loop simplify and
5866 // vectorization to keep canonical loop forms for nested loops. These blocks
5867 // can be eliminated when the pass is invoked later in the back-end.)
5868 // Note that if BB has only one predecessor then we do not introduce new
5869 // backedge, so we can eliminate BB.
5870 bool NeedCanonicalLoop
=
5871 Options
.NeedCanonicalLoop
&&
5872 (LoopHeaders
&& BB
->hasNPredecessorsOrMore(2) &&
5873 (LoopHeaders
->count(BB
) || LoopHeaders
->count(Succ
)));
5874 BasicBlock::iterator I
= BB
->getFirstNonPHIOrDbg()->getIterator();
5875 if (I
->isTerminator() && BB
!= &BB
->getParent()->getEntryBlock() &&
5876 !NeedCanonicalLoop
&& TryToSimplifyUncondBranchFromEmptyBlock(BB
))
5879 // If the only instruction in the block is a seteq/setne comparison against a
5880 // constant, try to simplify the block.
5881 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
))
5882 if (ICI
->isEquality() && isa
<ConstantInt
>(ICI
->getOperand(1))) {
5883 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5885 if (I
->isTerminator() &&
5886 tryToSimplifyUncondBranchWithICmpInIt(ICI
, Builder
))
5890 // See if we can merge an empty landing pad block with another which is
5892 if (LandingPadInst
*LPad
= dyn_cast
<LandingPadInst
>(I
)) {
5893 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5895 if (I
->isTerminator() && TryToMergeLandingPad(LPad
, BI
, BB
))
5899 // If this basic block is ONLY a compare and a branch, and if a predecessor
5900 // branches to us and our successor, fold the comparison into the
5901 // predecessor and use logical operations to update the incoming value
5902 // for PHI nodes in common successor.
5903 if (FoldBranchToCommonDest(BI
, nullptr, Options
.BonusInstThreshold
))
5904 return requestResimplify();
5908 static BasicBlock
*allPredecessorsComeFromSameSource(BasicBlock
*BB
) {
5909 BasicBlock
*PredPred
= nullptr;
5910 for (auto *P
: predecessors(BB
)) {
5911 BasicBlock
*PPred
= P
->getSinglePredecessor();
5912 if (!PPred
|| (PredPred
&& PredPred
!= PPred
))
5919 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
) {
5920 BasicBlock
*BB
= BI
->getParent();
5921 const Function
*Fn
= BB
->getParent();
5922 if (Fn
&& Fn
->hasFnAttribute(Attribute::OptForFuzzing
))
5925 // Conditional branch
5926 if (isValueEqualityComparison(BI
)) {
5927 // If we only have one predecessor, and if it is a branch on this value,
5928 // see if that predecessor totally determines the outcome of this
5930 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
5931 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
, Builder
))
5932 return requestResimplify();
5934 // This block must be empty, except for the setcond inst, if it exists.
5935 // Ignore dbg intrinsics.
5936 auto I
= BB
->instructionsWithoutDebug().begin();
5938 if (FoldValueComparisonIntoPredecessors(BI
, Builder
))
5939 return requestResimplify();
5940 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())) {
5942 if (&*I
== BI
&& FoldValueComparisonIntoPredecessors(BI
, Builder
))
5943 return requestResimplify();
5947 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5948 if (SimplifyBranchOnICmpChain(BI
, Builder
, DL
))
5951 // If this basic block has dominating predecessor blocks and the dominating
5952 // blocks' conditions imply BI's condition, we know the direction of BI.
5953 Optional
<bool> Imp
= isImpliedByDomCondition(BI
->getCondition(), BI
, DL
);
5955 // Turn this into a branch on constant.
5956 auto *OldCond
= BI
->getCondition();
5957 ConstantInt
*TorF
= *Imp
? ConstantInt::getTrue(BB
->getContext())
5958 : ConstantInt::getFalse(BB
->getContext());
5959 BI
->setCondition(TorF
);
5960 RecursivelyDeleteTriviallyDeadInstructions(OldCond
);
5961 return requestResimplify();
5964 // If this basic block is ONLY a compare and a branch, and if a predecessor
5965 // branches to us and one of our successors, fold the comparison into the
5966 // predecessor and use logical operations to pick the right destination.
5967 if (FoldBranchToCommonDest(BI
, nullptr, Options
.BonusInstThreshold
))
5968 return requestResimplify();
5970 // We have a conditional branch to two blocks that are only reachable
5971 // from BI. We know that the condbr dominates the two blocks, so see if
5972 // there is any identical code in the "then" and "else" blocks. If so, we
5973 // can hoist it up to the branching block.
5974 if (BI
->getSuccessor(0)->getSinglePredecessor()) {
5975 if (BI
->getSuccessor(1)->getSinglePredecessor()) {
5976 if (HoistThenElseCodeToIf(BI
, TTI
))
5977 return requestResimplify();
5979 // If Successor #1 has multiple preds, we may be able to conditionally
5980 // execute Successor #0 if it branches to Successor #1.
5981 Instruction
*Succ0TI
= BI
->getSuccessor(0)->getTerminator();
5982 if (Succ0TI
->getNumSuccessors() == 1 &&
5983 Succ0TI
->getSuccessor(0) == BI
->getSuccessor(1))
5984 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(0), TTI
))
5985 return requestResimplify();
5987 } else if (BI
->getSuccessor(1)->getSinglePredecessor()) {
5988 // If Successor #0 has multiple preds, we may be able to conditionally
5989 // execute Successor #1 if it branches to Successor #0.
5990 Instruction
*Succ1TI
= BI
->getSuccessor(1)->getTerminator();
5991 if (Succ1TI
->getNumSuccessors() == 1 &&
5992 Succ1TI
->getSuccessor(0) == BI
->getSuccessor(0))
5993 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(1), TTI
))
5994 return requestResimplify();
5997 // If this is a branch on a phi node in the current block, thread control
5998 // through this block if any PHI node entries are constants.
5999 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
6000 if (PN
->getParent() == BI
->getParent())
6001 if (FoldCondBranchOnPHI(BI
, DL
, Options
.AC
))
6002 return requestResimplify();
6004 // Scan predecessor blocks for conditional branches.
6005 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
6006 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
6007 if (PBI
!= BI
&& PBI
->isConditional())
6008 if (SimplifyCondBranchToCondBranch(PBI
, BI
, DL
, TTI
))
6009 return requestResimplify();
6011 // Look for diamond patterns.
6012 if (MergeCondStores
)
6013 if (BasicBlock
*PrevBB
= allPredecessorsComeFromSameSource(BB
))
6014 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PrevBB
->getTerminator()))
6015 if (PBI
!= BI
&& PBI
->isConditional())
6016 if (mergeConditionalStores(PBI
, BI
, DL
, TTI
))
6017 return requestResimplify();
6022 /// Check if passing a value to an instruction will cause undefined behavior.
6023 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
) {
6024 Constant
*C
= dyn_cast
<Constant
>(V
);
6031 if (C
->isNullValue() || isa
<UndefValue
>(C
)) {
6032 // Only look at the first use, avoid hurting compile time with long uselists
6033 User
*Use
= *I
->user_begin();
6035 // Now make sure that there are no instructions in between that can alter
6036 // control flow (eg. calls)
6037 for (BasicBlock::iterator
6038 i
= ++BasicBlock::iterator(I
),
6039 UI
= BasicBlock::iterator(dyn_cast
<Instruction
>(Use
));
6041 if (i
== I
->getParent()->end() || i
->mayHaveSideEffects())
6044 // Look through GEPs. A load from a GEP derived from NULL is still undefined
6045 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Use
))
6046 if (GEP
->getPointerOperand() == I
)
6047 return passingValueIsAlwaysUndefined(V
, GEP
);
6049 // Look through bitcasts.
6050 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Use
))
6051 return passingValueIsAlwaysUndefined(V
, BC
);
6053 // Load from null is undefined.
6054 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Use
))
6055 if (!LI
->isVolatile())
6056 return !NullPointerIsDefined(LI
->getFunction(),
6057 LI
->getPointerAddressSpace());
6059 // Store to null is undefined.
6060 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Use
))
6061 if (!SI
->isVolatile())
6062 return (!NullPointerIsDefined(SI
->getFunction(),
6063 SI
->getPointerAddressSpace())) &&
6064 SI
->getPointerOperand() == I
;
6066 // A call to null is undefined.
6067 if (auto CS
= CallSite(Use
))
6068 return !NullPointerIsDefined(CS
->getFunction()) &&
6069 CS
.getCalledValue() == I
;
6074 /// If BB has an incoming value that will always trigger undefined behavior
6075 /// (eg. null pointer dereference), remove the branch leading here.
6076 static bool removeUndefIntroducingPredecessor(BasicBlock
*BB
) {
6077 for (PHINode
&PHI
: BB
->phis())
6078 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
)
6079 if (passingValueIsAlwaysUndefined(PHI
.getIncomingValue(i
), &PHI
)) {
6080 Instruction
*T
= PHI
.getIncomingBlock(i
)->getTerminator();
6081 IRBuilder
<> Builder(T
);
6082 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
6083 BB
->removePredecessor(PHI
.getIncomingBlock(i
));
6084 // Turn uncoditional branches into unreachables and remove the dead
6085 // destination from conditional branches.
6086 if (BI
->isUnconditional())
6087 Builder
.CreateUnreachable();
6089 Builder
.CreateBr(BI
->getSuccessor(0) == BB
? BI
->getSuccessor(1)
6090 : BI
->getSuccessor(0));
6091 BI
->eraseFromParent();
6094 // TODO: SwitchInst.
6100 bool SimplifyCFGOpt::simplifyOnce(BasicBlock
*BB
) {
6101 bool Changed
= false;
6103 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
6104 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
6106 // Remove basic blocks that have no predecessors (except the entry block)...
6107 // or that just have themself as a predecessor. These are unreachable.
6108 if ((pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) ||
6109 BB
->getSinglePredecessor() == BB
) {
6110 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB
);
6111 DeleteDeadBlock(BB
);
6115 // Check to see if we can constant propagate this terminator instruction
6117 Changed
|= ConstantFoldTerminator(BB
, true);
6119 // Check for and eliminate duplicate PHI nodes in this block.
6120 Changed
|= EliminateDuplicatePHINodes(BB
);
6122 // Check for and remove branches that will always cause undefined behavior.
6123 Changed
|= removeUndefIntroducingPredecessor(BB
);
6125 // Merge basic blocks into their predecessor if there is only one distinct
6126 // pred, and if there is only one distinct successor of the predecessor, and
6127 // if there are no PHI nodes.
6128 if (MergeBlockIntoPredecessor(BB
))
6131 if (SinkCommon
&& Options
.SinkCommonInsts
)
6132 Changed
|= SinkCommonCodeFromPredecessors(BB
);
6134 IRBuilder
<> Builder(BB
);
6136 // If there is a trivial two-entry PHI node in this basic block, and we can
6137 // eliminate it, do so now.
6138 if (auto *PN
= dyn_cast
<PHINode
>(BB
->begin()))
6139 if (PN
->getNumIncomingValues() == 2)
6140 Changed
|= FoldTwoEntryPHINode(PN
, TTI
, DL
);
6142 Builder
.SetInsertPoint(BB
->getTerminator());
6143 if (auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
6144 if (BI
->isUnconditional()) {
6145 if (SimplifyUncondBranch(BI
, Builder
))
6148 if (SimplifyCondBranch(BI
, Builder
))
6151 } else if (auto *RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
6152 if (SimplifyReturn(RI
, Builder
))
6154 } else if (auto *RI
= dyn_cast
<ResumeInst
>(BB
->getTerminator())) {
6155 if (SimplifyResume(RI
, Builder
))
6157 } else if (auto *RI
= dyn_cast
<CleanupReturnInst
>(BB
->getTerminator())) {
6158 if (SimplifyCleanupReturn(RI
))
6160 } else if (auto *SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
6161 if (SimplifySwitch(SI
, Builder
))
6163 } else if (auto *UI
= dyn_cast
<UnreachableInst
>(BB
->getTerminator())) {
6164 if (SimplifyUnreachable(UI
))
6166 } else if (auto *IBI
= dyn_cast
<IndirectBrInst
>(BB
->getTerminator())) {
6167 if (SimplifyIndirectBr(IBI
))
6174 bool SimplifyCFGOpt::run(BasicBlock
*BB
) {
6175 bool Changed
= false;
6177 // Repeated simplify BB as long as resimplification is requested.
6181 // Perform one round of simplifcation. Resimplify flag will be set if
6182 // another iteration is requested.
6183 Changed
|= simplifyOnce(BB
);
6184 } while (Resimplify
);
6189 bool llvm::simplifyCFG(BasicBlock
*BB
, const TargetTransformInfo
&TTI
,
6190 const SimplifyCFGOptions
&Options
,
6191 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
) {
6192 return SimplifyCFGOpt(TTI
, BB
->getModule()->getDataLayout(), LoopHeaders
,