1 //===- tools/dsymutil/DwarfLinkerForBinary.cpp ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "DwarfLinkerForBinary.h"
10 #include "BinaryHolder.h"
12 #include "DwarfStreamer.h"
13 #include "MachOUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringMap.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/BinaryFormat/MachO.h"
34 #include "llvm/CodeGen/AccelTable.h"
35 #include "llvm/CodeGen/AsmPrinter.h"
36 #include "llvm/CodeGen/DIE.h"
37 #include "llvm/CodeGen/NonRelocatableStringpool.h"
38 #include "llvm/Config/config.h"
39 #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
40 #include "llvm/DebugInfo/DIContext.h"
41 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
42 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
43 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
44 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
45 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
46 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
47 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
48 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
49 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
50 #include "llvm/MC/MCAsmBackend.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCCodeEmitter.h"
53 #include "llvm/MC/MCContext.h"
54 #include "llvm/MC/MCDwarf.h"
55 #include "llvm/MC/MCInstrInfo.h"
56 #include "llvm/MC/MCObjectFileInfo.h"
57 #include "llvm/MC/MCObjectWriter.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSection.h"
60 #include "llvm/MC/MCStreamer.h"
61 #include "llvm/MC/MCSubtargetInfo.h"
62 #include "llvm/MC/MCTargetOptions.h"
63 #include "llvm/Object/MachO.h"
64 #include "llvm/Object/ObjectFile.h"
65 #include "llvm/Object/SymbolicFile.h"
66 #include "llvm/Remarks/RemarkFormat.h"
67 #include "llvm/Remarks/RemarkLinker.h"
68 #include "llvm/Support/Allocator.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/DJB.h"
72 #include "llvm/Support/DataExtractor.h"
73 #include "llvm/Support/Error.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/ErrorOr.h"
76 #include "llvm/Support/FileSystem.h"
77 #include "llvm/Support/Format.h"
78 #include "llvm/Support/LEB128.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/MemoryBuffer.h"
81 #include "llvm/Support/Path.h"
82 #include "llvm/Support/TargetRegistry.h"
83 #include "llvm/Support/ThreadPool.h"
84 #include "llvm/Support/ToolOutputFile.h"
85 #include "llvm/Support/WithColor.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
100 #include <system_error>
108 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
109 /// CompileUnit object instead.
110 static CompileUnit
*getUnitForOffset(const UnitListTy
&Units
, uint64_t Offset
) {
111 auto CU
= std::upper_bound(
112 Units
.begin(), Units
.end(), Offset
,
113 [](uint64_t LHS
, const std::unique_ptr
<CompileUnit
> &RHS
) {
114 return LHS
< RHS
->getOrigUnit().getNextUnitOffset();
116 return CU
!= Units
.end() ? CU
->get() : nullptr;
119 /// Resolve the DIE attribute reference that has been extracted in \p RefValue.
120 /// The resulting DIE might be in another CompileUnit which is stored into \p
121 /// ReferencedCU. \returns null if resolving fails for any reason.
122 static DWARFDie
resolveDIEReference(const DwarfLinkerForBinary
&Linker
,
123 const DebugMapObject
&DMO
,
124 const UnitListTy
&Units
,
125 const DWARFFormValue
&RefValue
,
126 const DWARFDie
&DIE
, CompileUnit
*&RefCU
) {
127 assert(RefValue
.isFormClass(DWARFFormValue::FC_Reference
));
128 uint64_t RefOffset
= *RefValue
.getAsReference();
129 if ((RefCU
= getUnitForOffset(Units
, RefOffset
)))
130 if (const auto RefDie
= RefCU
->getOrigUnit().getDIEForOffset(RefOffset
)) {
131 // In a file with broken references, an attribute might point to a NULL
133 if (!RefDie
.isNULL())
137 Linker
.reportWarning("could not find referenced DIE", DMO
, &DIE
);
141 /// \returns whether the passed \a Attr type might contain a DIE reference
142 /// suitable for ODR uniquing.
143 static bool isODRAttribute(uint16_t Attr
) {
147 case dwarf::DW_AT_type
:
148 case dwarf::DW_AT_containing_type
:
149 case dwarf::DW_AT_specification
:
150 case dwarf::DW_AT_abstract_origin
:
151 case dwarf::DW_AT_import
:
154 llvm_unreachable("Improper attribute.");
157 static bool isTypeTag(uint16_t Tag
) {
159 case dwarf::DW_TAG_array_type
:
160 case dwarf::DW_TAG_class_type
:
161 case dwarf::DW_TAG_enumeration_type
:
162 case dwarf::DW_TAG_pointer_type
:
163 case dwarf::DW_TAG_reference_type
:
164 case dwarf::DW_TAG_string_type
:
165 case dwarf::DW_TAG_structure_type
:
166 case dwarf::DW_TAG_subroutine_type
:
167 case dwarf::DW_TAG_typedef
:
168 case dwarf::DW_TAG_union_type
:
169 case dwarf::DW_TAG_ptr_to_member_type
:
170 case dwarf::DW_TAG_set_type
:
171 case dwarf::DW_TAG_subrange_type
:
172 case dwarf::DW_TAG_base_type
:
173 case dwarf::DW_TAG_const_type
:
174 case dwarf::DW_TAG_constant
:
175 case dwarf::DW_TAG_file_type
:
176 case dwarf::DW_TAG_namelist
:
177 case dwarf::DW_TAG_packed_type
:
178 case dwarf::DW_TAG_volatile_type
:
179 case dwarf::DW_TAG_restrict_type
:
180 case dwarf::DW_TAG_atomic_type
:
181 case dwarf::DW_TAG_interface_type
:
182 case dwarf::DW_TAG_unspecified_type
:
183 case dwarf::DW_TAG_shared_type
:
191 static Error
remarksErrorHandler(const DebugMapObject
&DMO
,
192 DwarfLinkerForBinary
&Linker
,
193 std::unique_ptr
<FileError
> FE
) {
194 bool IsArchive
= DMO
.getObjectFilename().endswith(")");
195 // Don't report errors for missing remark files from static
198 return Error(std::move(FE
));
200 std::string Message
= FE
->message();
201 Error E
= FE
->takeError();
202 Error NewE
= handleErrors(std::move(E
), [&](std::unique_ptr
<ECError
> EC
) {
203 if (EC
->convertToErrorCode() != std::errc::no_such_file_or_directory
)
204 return Error(std::move(EC
));
206 Linker
.reportWarning(Message
, DMO
);
207 return Error(Error::success());
211 return Error::success();
213 return createFileError(FE
->getFileName(), std::move(NewE
));
216 bool DwarfLinkerForBinary::DIECloner::getDIENames(const DWARFDie
&Die
,
217 AttributesInfo
&Info
,
218 OffsetsStringPool
&StringPool
,
219 bool StripTemplate
) {
220 // This function will be called on DIEs having low_pcs and
221 // ranges. As getting the name might be more expansive, filter out
223 if (Die
.getTag() == dwarf::DW_TAG_lexical_block
)
226 // FIXME: a bit wasteful as the first getName might return the
228 if (!Info
.MangledName
)
229 if (const char *MangledName
= Die
.getName(DINameKind::LinkageName
))
230 Info
.MangledName
= StringPool
.getEntry(MangledName
);
233 if (const char *Name
= Die
.getName(DINameKind::ShortName
))
234 Info
.Name
= StringPool
.getEntry(Name
);
236 if (StripTemplate
&& Info
.Name
&& Info
.MangledName
!= Info
.Name
) {
237 // FIXME: dsymutil compatibility. This is wrong for operator<
238 auto Split
= Info
.Name
.getString().split('<');
239 if (!Split
.second
.empty())
240 Info
.NameWithoutTemplate
= StringPool
.getEntry(Split
.first
);
243 return Info
.Name
|| Info
.MangledName
;
246 /// Report a warning to the user, optionally including information about a
247 /// specific \p DIE related to the warning.
248 void DwarfLinkerForBinary::reportWarning(const Twine
&Warning
,
249 const DebugMapObject
&DMO
,
250 const DWARFDie
*DIE
) const {
251 StringRef Context
= DMO
.getObjectFilename();
252 warn(Warning
, Context
);
254 if (!Options
.Verbose
|| !DIE
)
257 DIDumpOptions DumpOpts
;
258 DumpOpts
.ChildRecurseDepth
= 0;
259 DumpOpts
.Verbose
= Options
.Verbose
;
261 WithColor::note() << " in DIE:\n";
262 DIE
->dump(errs(), 6 /* Indent */, DumpOpts
);
265 bool DwarfLinkerForBinary::createStreamer(const Triple
&TheTriple
,
266 raw_fd_ostream
&OutFile
) {
267 if (Options
.NoOutput
)
270 Streamer
= std::make_unique
<DwarfStreamer
>(OutFile
, Options
);
271 return Streamer
->init(TheTriple
);
274 /// Resolve the relative path to a build artifact referenced by DWARF by
275 /// applying DW_AT_comp_dir.
276 static void resolveRelativeObjectPath(SmallVectorImpl
<char> &Buf
, DWARFDie CU
) {
277 sys::path::append(Buf
, dwarf::toString(CU
.find(dwarf::DW_AT_comp_dir
), ""));
280 /// Collect references to parseable Swift interfaces in imported
281 /// DW_TAG_module blocks.
282 static void analyzeImportedModule(
283 const DWARFDie
&DIE
, CompileUnit
&CU
,
284 std::map
<std::string
, std::string
> &ParseableSwiftInterfaces
,
285 std::function
<void(const Twine
&, const DWARFDie
&)> ReportWarning
) {
286 if (CU
.getLanguage() != dwarf::DW_LANG_Swift
)
289 StringRef Path
= dwarf::toStringRef(DIE
.find(dwarf::DW_AT_LLVM_include_path
));
290 if (!Path
.endswith(".swiftinterface"))
292 if (Optional
<DWARFFormValue
> Val
= DIE
.find(dwarf::DW_AT_name
))
293 if (Optional
<const char *> Name
= Val
->getAsCString()) {
294 auto &Entry
= ParseableSwiftInterfaces
[*Name
];
295 // The prepend path is applied later when copying.
296 DWARFDie CUDie
= CU
.getOrigUnit().getUnitDIE();
297 SmallString
<128> ResolvedPath
;
298 if (sys::path::is_relative(Path
))
299 resolveRelativeObjectPath(ResolvedPath
, CUDie
);
300 sys::path::append(ResolvedPath
, Path
);
301 if (!Entry
.empty() && Entry
!= ResolvedPath
)
303 Twine("Conflicting parseable interfaces for Swift Module ") +
304 *Name
+ ": " + Entry
+ " and " + Path
,
306 Entry
= ResolvedPath
.str();
310 /// Recursive helper to build the global DeclContext information and
311 /// gather the child->parent relationships in the original compile unit.
313 /// \return true when this DIE and all of its children are only
314 /// forward declarations to types defined in external clang modules
315 /// (i.e., forward declarations that are children of a DW_TAG_module).
316 static bool analyzeContextInfo(
317 const DWARFDie
&DIE
, unsigned ParentIdx
, CompileUnit
&CU
,
318 DeclContext
*CurrentDeclContext
, UniquingStringPool
&StringPool
,
319 DeclContextTree
&Contexts
, uint64_t ModulesEndOffset
,
320 std::map
<std::string
, std::string
> &ParseableSwiftInterfaces
,
321 std::function
<void(const Twine
&, const DWARFDie
&)> ReportWarning
,
322 bool InImportedModule
= false) {
323 unsigned MyIdx
= CU
.getOrigUnit().getDIEIndex(DIE
);
324 CompileUnit::DIEInfo
&Info
= CU
.getInfo(MyIdx
);
326 // Clang imposes an ODR on modules(!) regardless of the language:
327 // "The module-id should consist of only a single identifier,
328 // which provides the name of the module being defined. Each
329 // module shall have a single definition."
331 // This does not extend to the types inside the modules:
332 // "[I]n C, this implies that if two structs are defined in
333 // different submodules with the same name, those two types are
334 // distinct types (but may be compatible types if their
335 // definitions match)."
337 // We treat non-C++ modules like namespaces for this reason.
338 if (DIE
.getTag() == dwarf::DW_TAG_module
&& ParentIdx
== 0 &&
339 dwarf::toString(DIE
.find(dwarf::DW_AT_name
), "") !=
340 CU
.getClangModuleName()) {
341 InImportedModule
= true;
342 analyzeImportedModule(DIE
, CU
, ParseableSwiftInterfaces
, ReportWarning
);
345 Info
.ParentIdx
= ParentIdx
;
346 bool InClangModule
= CU
.isClangModule() || InImportedModule
;
347 if (CU
.hasODR() || InClangModule
) {
348 if (CurrentDeclContext
) {
349 auto PtrInvalidPair
= Contexts
.getChildDeclContext(
350 *CurrentDeclContext
, DIE
, CU
, StringPool
, InClangModule
);
351 CurrentDeclContext
= PtrInvalidPair
.getPointer();
353 PtrInvalidPair
.getInt() ? nullptr : PtrInvalidPair
.getPointer();
355 Info
.Ctxt
->setDefinedInClangModule(InClangModule
);
357 Info
.Ctxt
= CurrentDeclContext
= nullptr;
360 Info
.Prune
= InImportedModule
;
361 if (DIE
.hasChildren())
362 for (auto Child
: DIE
.children())
363 Info
.Prune
&= analyzeContextInfo(Child
, MyIdx
, CU
, CurrentDeclContext
,
364 StringPool
, Contexts
, ModulesEndOffset
,
365 ParseableSwiftInterfaces
, ReportWarning
,
368 // Prune this DIE if it is either a forward declaration inside a
369 // DW_TAG_module or a DW_TAG_module that contains nothing but
370 // forward declarations.
371 Info
.Prune
&= (DIE
.getTag() == dwarf::DW_TAG_module
) ||
372 (isTypeTag(DIE
.getTag()) &&
373 dwarf::toUnsigned(DIE
.find(dwarf::DW_AT_declaration
), 0));
375 // Only prune forward declarations inside a DW_TAG_module for which a
376 // definition exists elsewhere.
377 if (ModulesEndOffset
== 0)
378 Info
.Prune
&= Info
.Ctxt
&& Info
.Ctxt
->getCanonicalDIEOffset();
380 Info
.Prune
&= Info
.Ctxt
&& Info
.Ctxt
->getCanonicalDIEOffset() > 0 &&
381 Info
.Ctxt
->getCanonicalDIEOffset() <= ModulesEndOffset
;
384 } // namespace dsymutil
386 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag
) {
390 case dwarf::DW_TAG_class_type
:
391 case dwarf::DW_TAG_common_block
:
392 case dwarf::DW_TAG_lexical_block
:
393 case dwarf::DW_TAG_structure_type
:
394 case dwarf::DW_TAG_subprogram
:
395 case dwarf::DW_TAG_subroutine_type
:
396 case dwarf::DW_TAG_union_type
:
399 llvm_unreachable("Invalid Tag");
402 void DwarfLinkerForBinary::startDebugObject(LinkContext
&Context
) {}
404 void DwarfLinkerForBinary::endDebugObject(LinkContext
&Context
) {
407 for (auto I
= DIEBlocks
.begin(), E
= DIEBlocks
.end(); I
!= E
; ++I
)
409 for (auto I
= DIELocs
.begin(), E
= DIELocs
.end(); I
!= E
; ++I
)
417 static bool isMachOPairedReloc(uint64_t RelocType
, uint64_t Arch
) {
420 return RelocType
== MachO::GENERIC_RELOC_SECTDIFF
||
421 RelocType
== MachO::GENERIC_RELOC_LOCAL_SECTDIFF
;
423 return RelocType
== MachO::X86_64_RELOC_SUBTRACTOR
;
426 return RelocType
== MachO::ARM_RELOC_SECTDIFF
||
427 RelocType
== MachO::ARM_RELOC_LOCAL_SECTDIFF
||
428 RelocType
== MachO::ARM_RELOC_HALF
||
429 RelocType
== MachO::ARM_RELOC_HALF_SECTDIFF
;
430 case Triple::aarch64
:
431 return RelocType
== MachO::ARM64_RELOC_SUBTRACTOR
;
437 /// Iterate over the relocations of the given \p Section and
438 /// store the ones that correspond to debug map entries into the
439 /// ValidRelocs array.
440 void DwarfLinkerForBinary::RelocationManager::findValidRelocsMachO(
441 const object::SectionRef
&Section
, const object::MachOObjectFile
&Obj
,
442 const DebugMapObject
&DMO
) {
443 Expected
<StringRef
> ContentsOrErr
= Section
.getContents();
444 if (!ContentsOrErr
) {
445 consumeError(ContentsOrErr
.takeError());
446 Linker
.reportWarning("error reading section", DMO
);
449 DataExtractor
Data(*ContentsOrErr
, Obj
.isLittleEndian(), 0);
450 bool SkipNext
= false;
452 for (const object::RelocationRef
&Reloc
: Section
.relocations()) {
458 object::DataRefImpl RelocDataRef
= Reloc
.getRawDataRefImpl();
459 MachO::any_relocation_info MachOReloc
= Obj
.getRelocation(RelocDataRef
);
461 if (isMachOPairedReloc(Obj
.getAnyRelocationType(MachOReloc
),
464 Linker
.reportWarning("unsupported relocation in debug_info section.",
469 unsigned RelocSize
= 1 << Obj
.getAnyRelocationLength(MachOReloc
);
470 uint64_t Offset64
= Reloc
.getOffset();
471 if ((RelocSize
!= 4 && RelocSize
!= 8)) {
472 Linker
.reportWarning("unsupported relocation in debug_info section.",
476 uint64_t OffsetCopy
= Offset64
;
477 // Mach-o uses REL relocations, the addend is at the relocation offset.
478 uint64_t Addend
= Data
.getUnsigned(&OffsetCopy
, RelocSize
);
482 if (Obj
.isRelocationScattered(MachOReloc
)) {
483 // The address of the base symbol for scattered relocations is
484 // stored in the reloc itself. The actual addend will store the
485 // base address plus the offset.
486 SymAddress
= Obj
.getScatteredRelocationValue(MachOReloc
);
487 SymOffset
= int64_t(Addend
) - SymAddress
;
493 auto Sym
= Reloc
.getSymbol();
494 if (Sym
!= Obj
.symbol_end()) {
495 Expected
<StringRef
> SymbolName
= Sym
->getName();
497 consumeError(SymbolName
.takeError());
498 Linker
.reportWarning("error getting relocation symbol name.", DMO
);
501 if (const auto *Mapping
= DMO
.lookupSymbol(*SymbolName
))
502 ValidRelocs
.emplace_back(Offset64
, RelocSize
, Addend
, Mapping
);
503 } else if (const auto *Mapping
= DMO
.lookupObjectAddress(SymAddress
)) {
504 // Do not store the addend. The addend was the address of the symbol in
505 // the object file, the address in the binary that is stored in the debug
506 // map doesn't need to be offset.
507 ValidRelocs
.emplace_back(Offset64
, RelocSize
, SymOffset
, Mapping
);
512 /// Dispatch the valid relocation finding logic to the
513 /// appropriate handler depending on the object file format.
514 bool DwarfLinkerForBinary::RelocationManager::findValidRelocs(
515 const object::SectionRef
&Section
, const object::ObjectFile
&Obj
,
516 const DebugMapObject
&DMO
) {
517 // Dispatch to the right handler depending on the file type.
518 if (auto *MachOObj
= dyn_cast
<object::MachOObjectFile
>(&Obj
))
519 findValidRelocsMachO(Section
, *MachOObj
, DMO
);
521 Linker
.reportWarning(
522 Twine("unsupported object file type: ") + Obj
.getFileName(), DMO
);
524 if (ValidRelocs
.empty())
527 // Sort the relocations by offset. We will walk the DIEs linearly in
528 // the file, this allows us to just keep an index in the relocation
529 // array that we advance during our walk, rather than resorting to
530 // some associative container. See DwarfLinker::NextValidReloc.
531 llvm::sort(ValidRelocs
);
535 /// Look for relocations in the debug_info section that match
536 /// entries in the debug map. These relocations will drive the Dwarf
537 /// link by indicating which DIEs refer to symbols present in the
539 /// \returns whether there are any valid relocations in the debug info.
540 bool DwarfLinkerForBinary::RelocationManager::findValidRelocsInDebugInfo(
541 const object::ObjectFile
&Obj
, const DebugMapObject
&DMO
) {
542 // Find the debug_info section.
543 for (const object::SectionRef
&Section
: Obj
.sections()) {
544 StringRef SectionName
;
545 if (Expected
<StringRef
> NameOrErr
= Section
.getName())
546 SectionName
= *NameOrErr
;
548 consumeError(NameOrErr
.takeError());
550 SectionName
= SectionName
.substr(SectionName
.find_first_not_of("._"));
551 if (SectionName
!= "debug_info")
553 return findValidRelocs(Section
, Obj
, DMO
);
558 /// Checks that there is a relocation against an actual debug
559 /// map entry between \p StartOffset and \p NextOffset.
561 /// This function must be called with offsets in strictly ascending
562 /// order because it never looks back at relocations it already 'went past'.
563 /// \returns true and sets Info.InDebugMap if it is the case.
564 bool DwarfLinkerForBinary::RelocationManager::hasValidRelocationAt(
565 uint64_t StartOffset
, uint64_t EndOffset
, CompileUnit::DIEInfo
&Info
) {
566 assert(NextValidReloc
== 0 ||
567 StartOffset
> ValidRelocs
[NextValidReloc
- 1].Offset
);
568 if (NextValidReloc
>= ValidRelocs
.size())
571 uint64_t RelocOffset
= ValidRelocs
[NextValidReloc
].Offset
;
573 // We might need to skip some relocs that we didn't consider. For
574 // example the high_pc of a discarded DIE might contain a reloc that
575 // is in the list because it actually corresponds to the start of a
576 // function that is in the debug map.
577 while (RelocOffset
< StartOffset
&& NextValidReloc
< ValidRelocs
.size() - 1)
578 RelocOffset
= ValidRelocs
[++NextValidReloc
].Offset
;
580 if (RelocOffset
< StartOffset
|| RelocOffset
>= EndOffset
)
583 const auto &ValidReloc
= ValidRelocs
[NextValidReloc
++];
584 const auto &Mapping
= ValidReloc
.Mapping
->getValue();
585 const uint64_t BinaryAddress
= Mapping
.BinaryAddress
;
586 const uint64_t ObjectAddress
= Mapping
.ObjectAddress
587 ? uint64_t(*Mapping
.ObjectAddress
)
588 : std::numeric_limits
<uint64_t>::max();
589 if (Linker
.Options
.Verbose
)
590 outs() << "Found valid debug map entry: " << ValidReloc
.Mapping
->getKey()
592 << format("0x%016" PRIx64
" => 0x%016" PRIx64
"\n", ObjectAddress
,
595 Info
.AddrAdjust
= BinaryAddress
+ ValidReloc
.Addend
;
596 if (Mapping
.ObjectAddress
)
597 Info
.AddrAdjust
-= ObjectAddress
;
598 Info
.InDebugMap
= true;
602 /// Get the starting and ending (exclusive) offset for the
603 /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
604 /// supposed to point to the position of the first attribute described
606 /// \return [StartOffset, EndOffset) as a pair.
607 static std::pair
<uint64_t, uint64_t>
608 getAttributeOffsets(const DWARFAbbreviationDeclaration
*Abbrev
, unsigned Idx
,
609 uint64_t Offset
, const DWARFUnit
&Unit
) {
610 DataExtractor Data
= Unit
.getDebugInfoExtractor();
612 for (unsigned i
= 0; i
< Idx
; ++i
)
613 DWARFFormValue::skipValue(Abbrev
->getFormByIndex(i
), Data
, &Offset
,
614 Unit
.getFormParams());
616 uint64_t End
= Offset
;
617 DWARFFormValue::skipValue(Abbrev
->getFormByIndex(Idx
), Data
, &End
,
618 Unit
.getFormParams());
620 return std::make_pair(Offset
, End
);
623 /// Check if a variable describing DIE should be kept.
624 /// \returns updated TraversalFlags.
625 unsigned DwarfLinkerForBinary::shouldKeepVariableDIE(
626 RelocationManager
&RelocMgr
, const DWARFDie
&DIE
, CompileUnit
&Unit
,
627 CompileUnit::DIEInfo
&MyInfo
, unsigned Flags
) {
628 const auto *Abbrev
= DIE
.getAbbreviationDeclarationPtr();
630 // Global variables with constant value can always be kept.
631 if (!(Flags
& TF_InFunctionScope
) &&
632 Abbrev
->findAttributeIndex(dwarf::DW_AT_const_value
)) {
633 MyInfo
.InDebugMap
= true;
634 return Flags
| TF_Keep
;
637 Optional
<uint32_t> LocationIdx
=
638 Abbrev
->findAttributeIndex(dwarf::DW_AT_location
);
642 uint64_t Offset
= DIE
.getOffset() + getULEB128Size(Abbrev
->getCode());
643 const DWARFUnit
&OrigUnit
= Unit
.getOrigUnit();
644 uint64_t LocationOffset
, LocationEndOffset
;
645 std::tie(LocationOffset
, LocationEndOffset
) =
646 getAttributeOffsets(Abbrev
, *LocationIdx
, Offset
, OrigUnit
);
648 // See if there is a relocation to a valid debug map entry inside
649 // this variable's location. The order is important here. We want to
650 // always check if the variable has a valid relocation, so that the
651 // DIEInfo is filled. However, we don't want a static variable in a
652 // function to force us to keep the enclosing function.
653 if (!RelocMgr
.hasValidRelocationAt(LocationOffset
, LocationEndOffset
,
655 (Flags
& TF_InFunctionScope
))
658 if (Options
.Verbose
) {
659 outs() << "Keeping variable DIE:";
660 DIDumpOptions DumpOpts
;
661 DumpOpts
.ChildRecurseDepth
= 0;
662 DumpOpts
.Verbose
= Options
.Verbose
;
663 DIE
.dump(outs(), 8 /* Indent */, DumpOpts
);
666 return Flags
| TF_Keep
;
669 /// Check if a function describing DIE should be kept.
670 /// \returns updated TraversalFlags.
671 unsigned DwarfLinkerForBinary::shouldKeepSubprogramDIE(
672 RelocationManager
&RelocMgr
, RangesTy
&Ranges
, const DWARFDie
&DIE
,
673 const DebugMapObject
&DMO
, CompileUnit
&Unit
, CompileUnit::DIEInfo
&MyInfo
,
675 const auto *Abbrev
= DIE
.getAbbreviationDeclarationPtr();
677 Flags
|= TF_InFunctionScope
;
679 Optional
<uint32_t> LowPcIdx
= Abbrev
->findAttributeIndex(dwarf::DW_AT_low_pc
);
683 uint64_t Offset
= DIE
.getOffset() + getULEB128Size(Abbrev
->getCode());
684 DWARFUnit
&OrigUnit
= Unit
.getOrigUnit();
685 uint64_t LowPcOffset
, LowPcEndOffset
;
686 std::tie(LowPcOffset
, LowPcEndOffset
) =
687 getAttributeOffsets(Abbrev
, *LowPcIdx
, Offset
, OrigUnit
);
689 auto LowPc
= dwarf::toAddress(DIE
.find(dwarf::DW_AT_low_pc
));
690 assert(LowPc
.hasValue() && "low_pc attribute is not an address.");
692 !RelocMgr
.hasValidRelocationAt(LowPcOffset
, LowPcEndOffset
, MyInfo
))
695 if (Options
.Verbose
) {
696 outs() << "Keeping subprogram DIE:";
697 DIDumpOptions DumpOpts
;
698 DumpOpts
.ChildRecurseDepth
= 0;
699 DumpOpts
.Verbose
= Options
.Verbose
;
700 DIE
.dump(outs(), 8 /* Indent */, DumpOpts
);
703 if (DIE
.getTag() == dwarf::DW_TAG_label
) {
704 if (Unit
.hasLabelAt(*LowPc
))
706 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
707 // that don't fall into the CU's aranges. This is wrong IMO. Debug info
708 // generation bugs aside, this is really wrong in the case of labels, where
709 // a label marking the end of a function will have a PC == CU's high_pc.
710 if (dwarf::toAddress(OrigUnit
.getUnitDIE().find(dwarf::DW_AT_high_pc
))
711 .getValueOr(UINT64_MAX
) <= LowPc
)
713 Unit
.addLabelLowPc(*LowPc
, MyInfo
.AddrAdjust
);
714 return Flags
| TF_Keep
;
719 Optional
<uint64_t> HighPc
= DIE
.getHighPC(*LowPc
);
721 reportWarning("Function without high_pc. Range will be discarded.\n", DMO
,
726 // Replace the debug map range with a more accurate one.
727 Ranges
[*LowPc
] = ObjFileAddressRange(*HighPc
, MyInfo
.AddrAdjust
);
728 Unit
.addFunctionRange(*LowPc
, *HighPc
, MyInfo
.AddrAdjust
);
732 /// Check if a DIE should be kept.
733 /// \returns updated TraversalFlags.
734 unsigned DwarfLinkerForBinary::shouldKeepDIE(
735 RelocationManager
&RelocMgr
, RangesTy
&Ranges
, const DWARFDie
&DIE
,
736 const DebugMapObject
&DMO
, CompileUnit
&Unit
, CompileUnit::DIEInfo
&MyInfo
,
738 switch (DIE
.getTag()) {
739 case dwarf::DW_TAG_constant
:
740 case dwarf::DW_TAG_variable
:
741 return shouldKeepVariableDIE(RelocMgr
, DIE
, Unit
, MyInfo
, Flags
);
742 case dwarf::DW_TAG_subprogram
:
743 case dwarf::DW_TAG_label
:
744 return shouldKeepSubprogramDIE(RelocMgr
, Ranges
, DIE
, DMO
, Unit
, MyInfo
,
746 case dwarf::DW_TAG_base_type
:
747 // DWARF Expressions may reference basic types, but scanning them
748 // is expensive. Basic types are tiny, so just keep all of them.
749 case dwarf::DW_TAG_imported_module
:
750 case dwarf::DW_TAG_imported_declaration
:
751 case dwarf::DW_TAG_imported_unit
:
752 // We always want to keep these.
753 return Flags
| TF_Keep
;
762 /// The distinct types of work performed by the work loop.
763 enum class WorklistItemType
{
764 /// Given a DIE, look for DIEs to be kept.
766 /// Given a DIE, look for children of this DIE to be kept.
767 LookForChildDIEsToKeep
,
768 /// Given a DIE, look for DIEs referencing this DIE to be kept.
769 LookForRefDIEsToKeep
,
770 /// Given a DIE, look for parent DIEs to be kept.
771 LookForParentDIEsToKeep
,
772 /// Given a DIE, update its incompleteness based on whether its children are
774 UpdateChildIncompleteness
,
775 /// Given a DIE, update its incompleteness based on whether the DIEs it
776 /// references are incomplete.
777 UpdateRefIncompleteness
,
780 /// This class represents an item in the work list. The type defines what kind
781 /// of work needs to be performed when processing the current item. The flags
782 /// and info fields are optional based on the type.
783 struct WorklistItem
{
784 WorklistItemType Type
;
788 unsigned AncestorIdx
= 0;
789 CompileUnit::DIEInfo
*OtherInfo
= nullptr;
791 WorklistItem(DWARFDie Die
, CompileUnit
&CU
, unsigned Flags
,
792 WorklistItemType T
= WorklistItemType::LookForDIEsToKeep
)
793 : Type(T
), Die(Die
), CU(CU
), Flags(Flags
){};
795 WorklistItem(DWARFDie Die
, CompileUnit
&CU
, WorklistItemType T
,
796 CompileUnit::DIEInfo
*OtherInfo
= nullptr)
797 : Type(T
), Die(Die
), CU(CU
), OtherInfo(OtherInfo
){};
799 WorklistItem(unsigned AncestorIdx
, CompileUnit
&CU
, unsigned Flags
)
800 : Type(WorklistItemType::LookForParentDIEsToKeep
), CU(CU
), Flags(Flags
),
801 AncestorIdx(AncestorIdx
){};
805 /// Helper that updates the completeness of the current DIE based on the
806 /// completeness of one of its children. It depends on the incompleteness of
807 /// the children already being computed.
808 static void updateChildIncompleteness(const DWARFDie
&Die
, CompileUnit
&CU
,
809 CompileUnit::DIEInfo
&ChildInfo
) {
810 switch (Die
.getTag()) {
811 case dwarf::DW_TAG_structure_type
:
812 case dwarf::DW_TAG_class_type
:
818 unsigned Idx
= CU
.getOrigUnit().getDIEIndex(Die
);
819 CompileUnit::DIEInfo
&MyInfo
= CU
.getInfo(Idx
);
821 if (ChildInfo
.Incomplete
|| ChildInfo
.Prune
)
822 MyInfo
.Incomplete
= true;
825 /// Helper that updates the completeness of the current DIE based on the
826 /// completeness of the DIEs it references. It depends on the incompleteness of
827 /// the referenced DIE already being computed.
828 static void updateRefIncompleteness(const DWARFDie
&Die
, CompileUnit
&CU
,
829 CompileUnit::DIEInfo
&RefInfo
) {
830 switch (Die
.getTag()) {
831 case dwarf::DW_TAG_typedef
:
832 case dwarf::DW_TAG_member
:
833 case dwarf::DW_TAG_reference_type
:
834 case dwarf::DW_TAG_ptr_to_member_type
:
835 case dwarf::DW_TAG_pointer_type
:
841 unsigned Idx
= CU
.getOrigUnit().getDIEIndex(Die
);
842 CompileUnit::DIEInfo
&MyInfo
= CU
.getInfo(Idx
);
844 if (MyInfo
.Incomplete
)
847 if (RefInfo
.Incomplete
)
848 MyInfo
.Incomplete
= true;
851 /// Look at the children of the given DIE and decide whether they should be
853 static void lookForChildDIEsToKeep(const DWARFDie
&Die
, CompileUnit
&CU
,
855 SmallVectorImpl
<WorklistItem
> &Worklist
) {
856 // The TF_ParentWalk flag tells us that we are currently walking up the
857 // parent chain of a required DIE, and we don't want to mark all the children
858 // of the parents as kept (consider for example a DW_TAG_namespace node in
859 // the parent chain). There are however a set of DIE types for which we want
860 // to ignore that directive and still walk their children.
861 if (dieNeedsChildrenToBeMeaningful(Die
.getTag()))
862 Flags
&= ~DwarfLinkerForBinary::TF_ParentWalk
;
864 // We're finished if this DIE has no children or we're walking the parent
866 if (!Die
.hasChildren() || (Flags
& DwarfLinkerForBinary::TF_ParentWalk
))
869 // Add children in reverse order to the worklist to effectively process them
871 for (auto Child
: reverse(Die
.children())) {
872 // Add a worklist item before every child to calculate incompleteness right
873 // after the current child is processed.
874 unsigned Idx
= CU
.getOrigUnit().getDIEIndex(Child
);
875 CompileUnit::DIEInfo
&ChildInfo
= CU
.getInfo(Idx
);
876 Worklist
.emplace_back(Die
, CU
, WorklistItemType::UpdateChildIncompleteness
,
878 Worklist
.emplace_back(Child
, CU
, Flags
);
882 /// Look at DIEs referenced by the given DIE and decide whether they should be
883 /// kept. All DIEs referenced though attributes should be kept.
884 static void lookForRefDIEsToKeep(const DWARFDie
&Die
, CompileUnit
&CU
,
885 unsigned Flags
, DwarfLinkerForBinary
&Linker
,
886 const UnitListTy
&Units
,
887 const DebugMapObject
&DMO
,
888 SmallVectorImpl
<WorklistItem
> &Worklist
) {
889 bool UseOdr
= (Flags
& DwarfLinkerForBinary::TF_DependencyWalk
)
890 ? (Flags
& DwarfLinkerForBinary::TF_ODR
)
892 DWARFUnit
&Unit
= CU
.getOrigUnit();
893 DWARFDataExtractor Data
= Unit
.getDebugInfoExtractor();
894 const auto *Abbrev
= Die
.getAbbreviationDeclarationPtr();
895 uint64_t Offset
= Die
.getOffset() + getULEB128Size(Abbrev
->getCode());
897 SmallVector
<std::pair
<DWARFDie
, CompileUnit
&>, 4> ReferencedDIEs
;
898 for (const auto &AttrSpec
: Abbrev
->attributes()) {
899 DWARFFormValue
Val(AttrSpec
.Form
);
900 if (!Val
.isFormClass(DWARFFormValue::FC_Reference
) ||
901 AttrSpec
.Attr
== dwarf::DW_AT_sibling
) {
902 DWARFFormValue::skipValue(AttrSpec
.Form
, Data
, &Offset
,
903 Unit
.getFormParams());
907 Val
.extractValue(Data
, &Offset
, Unit
.getFormParams(), &Unit
);
908 CompileUnit
*ReferencedCU
;
910 resolveDIEReference(Linker
, DMO
, Units
, Val
, Die
, ReferencedCU
)) {
911 uint32_t RefIdx
= ReferencedCU
->getOrigUnit().getDIEIndex(RefDie
);
912 CompileUnit::DIEInfo
&Info
= ReferencedCU
->getInfo(RefIdx
);
913 bool IsModuleRef
= Info
.Ctxt
&& Info
.Ctxt
->getCanonicalDIEOffset() &&
914 Info
.Ctxt
->isDefinedInClangModule();
915 // If the referenced DIE has a DeclContext that has already been
916 // emitted, then do not keep the one in this CU. We'll link to
917 // the canonical DIE in cloneDieReferenceAttribute.
919 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
920 // be necessary and could be advantageously replaced by
921 // ReferencedCU->hasODR() && CU.hasODR().
923 // FIXME: compatibility with dsymutil-classic. There is no
924 // reason not to unique ref_addr references.
925 if (AttrSpec
.Form
!= dwarf::DW_FORM_ref_addr
&& (UseOdr
|| IsModuleRef
) &&
927 Info
.Ctxt
!= ReferencedCU
->getInfo(Info
.ParentIdx
).Ctxt
&&
928 Info
.Ctxt
->getCanonicalDIEOffset() && isODRAttribute(AttrSpec
.Attr
))
931 // Keep a module forward declaration if there is no definition.
932 if (!(isODRAttribute(AttrSpec
.Attr
) && Info
.Ctxt
&&
933 Info
.Ctxt
->getCanonicalDIEOffset()))
935 ReferencedDIEs
.emplace_back(RefDie
, *ReferencedCU
);
939 unsigned ODRFlag
= UseOdr
? DwarfLinkerForBinary::TF_ODR
: 0;
941 // Add referenced DIEs in reverse order to the worklist to effectively
942 // process them in order.
943 for (auto &P
: reverse(ReferencedDIEs
)) {
944 // Add a worklist item before every child to calculate incompleteness right
945 // after the current child is processed.
946 uint32_t RefIdx
= P
.second
.getOrigUnit().getDIEIndex(P
.first
);
947 CompileUnit::DIEInfo
&Info
= P
.second
.getInfo(RefIdx
);
948 Worklist
.emplace_back(Die
, CU
, WorklistItemType::UpdateRefIncompleteness
,
950 Worklist
.emplace_back(P
.first
, P
.second
,
951 DwarfLinkerForBinary::TF_Keep
|
952 DwarfLinkerForBinary::TF_DependencyWalk
|
957 /// Look at the parent of the given DIE and decide whether they should be kept.
958 static void lookForParentDIEsToKeep(unsigned AncestorIdx
, CompileUnit
&CU
,
960 SmallVectorImpl
<WorklistItem
> &Worklist
) {
961 // Stop if we encounter an ancestor that's already marked as kept.
962 if (CU
.getInfo(AncestorIdx
).Keep
)
965 DWARFUnit
&Unit
= CU
.getOrigUnit();
966 DWARFDie ParentDIE
= Unit
.getDIEAtIndex(AncestorIdx
);
967 Worklist
.emplace_back(CU
.getInfo(AncestorIdx
).ParentIdx
, CU
, Flags
);
968 Worklist
.emplace_back(ParentDIE
, CU
, Flags
);
971 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
972 /// information in \p CU's DIEInfo.
974 /// This function is the entry point of the DIE selection algorithm. It is
975 /// expected to walk the DIE tree in file order and (though the mediation of
976 /// its helper) call hasValidRelocation() on each DIE that might be a 'root
977 /// DIE' (See DwarfLinker class comment).
979 /// While walking the dependencies of root DIEs, this function is also called,
980 /// but during these dependency walks the file order is not respected. The
981 /// TF_DependencyWalk flag tells us which kind of traversal we are currently
984 /// The recursive algorithm is implemented iteratively as a work list because
985 /// very deep recursion could exhaust the stack for large projects. The work
986 /// list acts as a scheduler for different types of work that need to be
989 /// The recursive nature of the algorithm is simulated by running the "main"
990 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
991 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
992 /// fixing up a computed property (UpdateChildIncompleteness,
993 /// UpdateRefIncompleteness).
995 /// The return value indicates whether the DIE is incomplete.
996 void DwarfLinkerForBinary::lookForDIEsToKeep(RelocationManager
&RelocMgr
,
998 const UnitListTy
&Units
,
1000 const DebugMapObject
&DMO
,
1001 CompileUnit
&Cu
, unsigned Flags
) {
1003 SmallVector
<WorklistItem
, 4> Worklist
;
1004 Worklist
.emplace_back(Die
, Cu
, Flags
);
1006 while (!Worklist
.empty()) {
1007 WorklistItem Current
= Worklist
.back();
1008 Worklist
.pop_back();
1010 // Look at the worklist type to decide what kind of work to perform.
1011 switch (Current
.Type
) {
1012 case WorklistItemType::UpdateChildIncompleteness
:
1013 updateChildIncompleteness(Current
.Die
, Current
.CU
, *Current
.OtherInfo
);
1015 case WorklistItemType::UpdateRefIncompleteness
:
1016 updateRefIncompleteness(Current
.Die
, Current
.CU
, *Current
.OtherInfo
);
1018 case WorklistItemType::LookForChildDIEsToKeep
:
1019 lookForChildDIEsToKeep(Current
.Die
, Current
.CU
, Current
.Flags
, Worklist
);
1021 case WorklistItemType::LookForRefDIEsToKeep
:
1022 lookForRefDIEsToKeep(Current
.Die
, Current
.CU
, Current
.Flags
, *this, Units
,
1025 case WorklistItemType::LookForParentDIEsToKeep
:
1026 lookForParentDIEsToKeep(Current
.AncestorIdx
, Current
.CU
, Current
.Flags
,
1029 case WorklistItemType::LookForDIEsToKeep
:
1033 unsigned Idx
= Current
.CU
.getOrigUnit().getDIEIndex(Current
.Die
);
1034 CompileUnit::DIEInfo
&MyInfo
= Current
.CU
.getInfo(Idx
);
1039 // If the Keep flag is set, we are marking a required DIE's dependencies.
1040 // If our target is already marked as kept, we're all set.
1041 bool AlreadyKept
= MyInfo
.Keep
;
1042 if ((Current
.Flags
& TF_DependencyWalk
) && AlreadyKept
)
1045 // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
1046 // because it would screw up the relocation finding logic.
1047 if (!(Current
.Flags
& TF_DependencyWalk
))
1048 Current
.Flags
= shouldKeepDIE(RelocMgr
, Ranges
, Current
.Die
, DMO
,
1049 Current
.CU
, MyInfo
, Current
.Flags
);
1051 // Finish by looking for child DIEs. Because of the LIFO worklist we need
1052 // to schedule that work before any subsequent items are added to the
1054 Worklist
.emplace_back(Current
.Die
, Current
.CU
, Current
.Flags
,
1055 WorklistItemType::LookForChildDIEsToKeep
);
1057 if (AlreadyKept
|| !(Current
.Flags
& TF_Keep
))
1060 // If it is a newly kept DIE mark it as well as all its dependencies as
1064 // We're looking for incomplete types.
1066 Current
.Die
.getTag() != dwarf::DW_TAG_subprogram
&&
1067 Current
.Die
.getTag() != dwarf::DW_TAG_member
&&
1068 dwarf::toUnsigned(Current
.Die
.find(dwarf::DW_AT_declaration
), 0);
1070 // After looking at the parent chain, look for referenced DIEs. Because of
1071 // the LIFO worklist we need to schedule that work before any subsequent
1072 // items are added to the worklist.
1073 Worklist
.emplace_back(Current
.Die
, Current
.CU
, Current
.Flags
,
1074 WorklistItemType::LookForRefDIEsToKeep
);
1076 bool UseOdr
= (Current
.Flags
& TF_DependencyWalk
) ? (Current
.Flags
& TF_ODR
)
1077 : Current
.CU
.hasODR();
1078 unsigned ODRFlag
= UseOdr
? TF_ODR
: 0;
1079 unsigned ParFlags
= TF_ParentWalk
| TF_Keep
| TF_DependencyWalk
| ODRFlag
;
1081 // Now schedule the parent walk.
1082 Worklist
.emplace_back(MyInfo
.ParentIdx
, Current
.CU
, ParFlags
);
1086 /// Assign an abbreviation number to \p Abbrev.
1088 /// Our DIEs get freed after every DebugMapObject has been processed,
1089 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
1090 /// the instances hold by the DIEs. When we encounter an abbreviation
1091 /// that we don't know, we create a permanent copy of it.
1092 void DwarfLinkerForBinary::assignAbbrev(DIEAbbrev
&Abbrev
) {
1093 // Check the set for priors.
1094 FoldingSetNodeID ID
;
1097 DIEAbbrev
*InSet
= AbbreviationsSet
.FindNodeOrInsertPos(ID
, InsertToken
);
1099 // If it's newly added.
1101 // Assign existing abbreviation number.
1102 Abbrev
.setNumber(InSet
->getNumber());
1104 // Add to abbreviation list.
1105 Abbreviations
.push_back(
1106 std::make_unique
<DIEAbbrev
>(Abbrev
.getTag(), Abbrev
.hasChildren()));
1107 for (const auto &Attr
: Abbrev
.getData())
1108 Abbreviations
.back()->AddAttribute(Attr
.getAttribute(), Attr
.getForm());
1109 AbbreviationsSet
.InsertNode(Abbreviations
.back().get(), InsertToken
);
1110 // Assign the unique abbreviation number.
1111 Abbrev
.setNumber(Abbreviations
.size());
1112 Abbreviations
.back()->setNumber(Abbreviations
.size());
1116 unsigned DwarfLinkerForBinary::DIECloner::cloneStringAttribute(
1117 DIE
&Die
, AttributeSpec AttrSpec
, const DWARFFormValue
&Val
,
1118 const DWARFUnit
&U
, OffsetsStringPool
&StringPool
, AttributesInfo
&Info
) {
1119 // Switch everything to out of line strings.
1120 const char *String
= *Val
.getAsCString();
1121 auto StringEntry
= StringPool
.getEntry(String
);
1123 // Update attributes info.
1124 if (AttrSpec
.Attr
== dwarf::DW_AT_name
)
1125 Info
.Name
= StringEntry
;
1126 else if (AttrSpec
.Attr
== dwarf::DW_AT_MIPS_linkage_name
||
1127 AttrSpec
.Attr
== dwarf::DW_AT_linkage_name
)
1128 Info
.MangledName
= StringEntry
;
1130 Die
.addValue(DIEAlloc
, dwarf::Attribute(AttrSpec
.Attr
), dwarf::DW_FORM_strp
,
1131 DIEInteger(StringEntry
.getOffset()));
1136 unsigned DwarfLinkerForBinary::DIECloner::cloneDieReferenceAttribute(
1137 DIE
&Die
, const DWARFDie
&InputDIE
, AttributeSpec AttrSpec
,
1138 unsigned AttrSize
, const DWARFFormValue
&Val
, const DebugMapObject
&DMO
,
1139 CompileUnit
&Unit
) {
1140 const DWARFUnit
&U
= Unit
.getOrigUnit();
1141 uint64_t Ref
= *Val
.getAsReference();
1142 DIE
*NewRefDie
= nullptr;
1143 CompileUnit
*RefUnit
= nullptr;
1144 DeclContext
*Ctxt
= nullptr;
1147 resolveDIEReference(Linker
, DMO
, CompileUnits
, Val
, InputDIE
, RefUnit
);
1149 // If the referenced DIE is not found, drop the attribute.
1150 if (!RefDie
|| AttrSpec
.Attr
== dwarf::DW_AT_sibling
)
1153 unsigned Idx
= RefUnit
->getOrigUnit().getDIEIndex(RefDie
);
1154 CompileUnit::DIEInfo
&RefInfo
= RefUnit
->getInfo(Idx
);
1156 // If we already have emitted an equivalent DeclContext, just point
1158 if (isODRAttribute(AttrSpec
.Attr
)) {
1159 Ctxt
= RefInfo
.Ctxt
;
1160 if (Ctxt
&& Ctxt
->getCanonicalDIEOffset()) {
1161 DIEInteger
Attr(Ctxt
->getCanonicalDIEOffset());
1162 Die
.addValue(DIEAlloc
, dwarf::Attribute(AttrSpec
.Attr
),
1163 dwarf::DW_FORM_ref_addr
, Attr
);
1164 return U
.getRefAddrByteSize();
1168 if (!RefInfo
.Clone
) {
1169 assert(Ref
> InputDIE
.getOffset());
1170 // We haven't cloned this DIE yet. Just create an empty one and
1171 // store it. It'll get really cloned when we process it.
1172 RefInfo
.Clone
= DIE::get(DIEAlloc
, dwarf::Tag(RefDie
.getTag()));
1174 NewRefDie
= RefInfo
.Clone
;
1176 if (AttrSpec
.Form
== dwarf::DW_FORM_ref_addr
||
1177 (Unit
.hasODR() && isODRAttribute(AttrSpec
.Attr
))) {
1178 // We cannot currently rely on a DIEEntry to emit ref_addr
1179 // references, because the implementation calls back to DwarfDebug
1180 // to find the unit offset. (We don't have a DwarfDebug)
1181 // FIXME: we should be able to design DIEEntry reliance on
1184 if (Ref
< InputDIE
.getOffset()) {
1185 // We must have already cloned that DIE.
1186 uint32_t NewRefOffset
=
1187 RefUnit
->getStartOffset() + NewRefDie
->getOffset();
1188 Attr
= NewRefOffset
;
1189 Die
.addValue(DIEAlloc
, dwarf::Attribute(AttrSpec
.Attr
),
1190 dwarf::DW_FORM_ref_addr
, DIEInteger(Attr
));
1192 // A forward reference. Note and fixup later.
1194 Unit
.noteForwardReference(
1195 NewRefDie
, RefUnit
, Ctxt
,
1196 Die
.addValue(DIEAlloc
, dwarf::Attribute(AttrSpec
.Attr
),
1197 dwarf::DW_FORM_ref_addr
, DIEInteger(Attr
)));
1199 return U
.getRefAddrByteSize();
1202 Die
.addValue(DIEAlloc
, dwarf::Attribute(AttrSpec
.Attr
),
1203 dwarf::Form(AttrSpec
.Form
), DIEEntry(*NewRefDie
));
1207 void DwarfLinkerForBinary::DIECloner::cloneExpression(
1208 DataExtractor
&Data
, DWARFExpression Expression
, const DebugMapObject
&DMO
,
1209 CompileUnit
&Unit
, SmallVectorImpl
<uint8_t> &OutputBuffer
) {
1210 using Encoding
= DWARFExpression::Operation::Encoding
;
1212 uint64_t OpOffset
= 0;
1213 for (auto &Op
: Expression
) {
1214 auto Description
= Op
.getDescription();
1215 // DW_OP_const_type is variable-length and has 3
1216 // operands. DWARFExpression thus far only supports 2.
1217 auto Op0
= Description
.Op
[0];
1218 auto Op1
= Description
.Op
[1];
1219 if ((Op0
== Encoding::BaseTypeRef
&& Op1
!= Encoding::SizeNA
) ||
1220 (Op1
== Encoding::BaseTypeRef
&& Op0
!= Encoding::Size1
))
1221 Linker
.reportWarning("Unsupported DW_OP encoding.", DMO
);
1223 if ((Op0
== Encoding::BaseTypeRef
&& Op1
== Encoding::SizeNA
) ||
1224 (Op1
== Encoding::BaseTypeRef
&& Op0
== Encoding::Size1
)) {
1225 // This code assumes that the other non-typeref operand fits into 1 byte.
1226 assert(OpOffset
< Op
.getEndOffset());
1227 uint32_t ULEBsize
= Op
.getEndOffset() - OpOffset
- 1;
1228 assert(ULEBsize
<= 16);
1230 // Copy over the operation.
1231 OutputBuffer
.push_back(Op
.getCode());
1233 if (Op1
== Encoding::SizeNA
) {
1234 RefOffset
= Op
.getRawOperand(0);
1236 OutputBuffer
.push_back(Op
.getRawOperand(0));
1237 RefOffset
= Op
.getRawOperand(1);
1239 auto RefDie
= Unit
.getOrigUnit().getDIEForOffset(RefOffset
);
1240 uint32_t RefIdx
= Unit
.getOrigUnit().getDIEIndex(RefDie
);
1241 CompileUnit::DIEInfo
&Info
= Unit
.getInfo(RefIdx
);
1242 uint32_t Offset
= 0;
1243 if (DIE
*Clone
= Info
.Clone
)
1244 Offset
= Clone
->getOffset();
1246 Linker
.reportWarning("base type ref doesn't point to DW_TAG_base_type.",
1249 unsigned RealSize
= encodeULEB128(Offset
, ULEB
, ULEBsize
);
1250 if (RealSize
> ULEBsize
) {
1251 // Emit the generic type as a fallback.
1252 RealSize
= encodeULEB128(0, ULEB
, ULEBsize
);
1253 Linker
.reportWarning("base type ref doesn't fit.", DMO
);
1255 assert(RealSize
== ULEBsize
&& "padding failed");
1256 ArrayRef
<uint8_t> ULEBbytes(ULEB
, ULEBsize
);
1257 OutputBuffer
.append(ULEBbytes
.begin(), ULEBbytes
.end());
1259 // Copy over everything else unmodified.
1260 StringRef Bytes
= Data
.getData().slice(OpOffset
, Op
.getEndOffset());
1261 OutputBuffer
.append(Bytes
.begin(), Bytes
.end());
1263 OpOffset
= Op
.getEndOffset();
1267 unsigned DwarfLinkerForBinary::DIECloner::cloneBlockAttribute(
1268 DIE
&Die
, const DebugMapObject
&DMO
, CompileUnit
&Unit
,
1269 AttributeSpec AttrSpec
, const DWARFFormValue
&Val
, unsigned AttrSize
,
1270 bool IsLittleEndian
) {
1273 DIELoc
*Loc
= nullptr;
1274 DIEBlock
*Block
= nullptr;
1275 if (AttrSpec
.Form
== dwarf::DW_FORM_exprloc
) {
1276 Loc
= new (DIEAlloc
) DIELoc
;
1277 Linker
.DIELocs
.push_back(Loc
);
1279 Block
= new (DIEAlloc
) DIEBlock
;
1280 Linker
.DIEBlocks
.push_back(Block
);
1282 Attr
= Loc
? static_cast<DIEValueList
*>(Loc
)
1283 : static_cast<DIEValueList
*>(Block
);
1286 Value
= DIEValue(dwarf::Attribute(AttrSpec
.Attr
),
1287 dwarf::Form(AttrSpec
.Form
), Loc
);
1289 Value
= DIEValue(dwarf::Attribute(AttrSpec
.Attr
),
1290 dwarf::Form(AttrSpec
.Form
), Block
);
1292 // If the block is a DWARF Expression, clone it into the temporary
1293 // buffer using cloneExpression(), otherwise copy the data directly.
1294 SmallVector
<uint8_t, 32> Buffer
;
1295 ArrayRef
<uint8_t> Bytes
= *Val
.getAsBlock();
1296 if (DWARFAttribute::mayHaveLocationDescription(AttrSpec
.Attr
) &&
1297 (Val
.isFormClass(DWARFFormValue::FC_Block
) ||
1298 Val
.isFormClass(DWARFFormValue::FC_Exprloc
))) {
1299 DWARFUnit
&OrigUnit
= Unit
.getOrigUnit();
1300 DataExtractor
Data(StringRef((const char *)Bytes
.data(), Bytes
.size()),
1301 IsLittleEndian
, OrigUnit
.getAddressByteSize());
1302 DWARFExpression
Expr(Data
, OrigUnit
.getVersion(),
1303 OrigUnit
.getAddressByteSize());
1304 cloneExpression(Data
, Expr
, DMO
, Unit
, Buffer
);
1307 for (auto Byte
: Bytes
)
1308 Attr
->addValue(DIEAlloc
, static_cast<dwarf::Attribute
>(0),
1309 dwarf::DW_FORM_data1
, DIEInteger(Byte
));
1311 // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1312 // the DIE class, this if could be replaced by
1313 // Attr->setSize(Bytes.size()).
1314 if (Linker
.Streamer
) {
1315 auto *AsmPrinter
= &Linker
.Streamer
->getAsmPrinter();
1317 Loc
->ComputeSize(AsmPrinter
);
1319 Block
->ComputeSize(AsmPrinter
);
1321 Die
.addValue(DIEAlloc
, Value
);
1325 unsigned DwarfLinkerForBinary::DIECloner::cloneAddressAttribute(
1326 DIE
&Die
, AttributeSpec AttrSpec
, const DWARFFormValue
&Val
,
1327 const CompileUnit
&Unit
, AttributesInfo
&Info
) {
1328 uint64_t Addr
= *Val
.getAsAddress();
1330 if (LLVM_UNLIKELY(Linker
.Options
.Update
)) {
1331 if (AttrSpec
.Attr
== dwarf::DW_AT_low_pc
)
1332 Info
.HasLowPc
= true;
1333 Die
.addValue(DIEAlloc
, dwarf::Attribute(AttrSpec
.Attr
),
1334 dwarf::Form(AttrSpec
.Form
), DIEInteger(Addr
));
1335 return Unit
.getOrigUnit().getAddressByteSize();
1338 if (AttrSpec
.Attr
== dwarf::DW_AT_low_pc
) {
1339 if (Die
.getTag() == dwarf::DW_TAG_inlined_subroutine
||
1340 Die
.getTag() == dwarf::DW_TAG_lexical_block
)
1341 // The low_pc of a block or inline subroutine might get
1342 // relocated because it happens to match the low_pc of the
1343 // enclosing subprogram. To prevent issues with that, always use
1344 // the low_pc from the input DIE if relocations have been applied.
1345 Addr
= (Info
.OrigLowPc
!= std::numeric_limits
<uint64_t>::max()
1349 else if (Die
.getTag() == dwarf::DW_TAG_compile_unit
) {
1350 Addr
= Unit
.getLowPc();
1351 if (Addr
== std::numeric_limits
<uint64_t>::max())
1354 Info
.HasLowPc
= true;
1355 } else if (AttrSpec
.Attr
== dwarf::DW_AT_high_pc
) {
1356 if (Die
.getTag() == dwarf::DW_TAG_compile_unit
) {
1357 if (uint64_t HighPc
= Unit
.getHighPc())
1362 // If we have a high_pc recorded for the input DIE, use
1363 // it. Otherwise (when no relocations where applied) just use the
1364 // one we just decoded.
1365 Addr
= (Info
.OrigHighPc
? Info
.OrigHighPc
: Addr
) + Info
.PCOffset
;
1366 } else if (AttrSpec
.Attr
== dwarf::DW_AT_call_return_pc
) {
1367 // Relocate a return PC address within a call site entry.
1368 if (Die
.getTag() == dwarf::DW_TAG_call_site
)
1369 Addr
+= Info
.PCOffset
;
1372 Die
.addValue(DIEAlloc
, static_cast<dwarf::Attribute
>(AttrSpec
.Attr
),
1373 static_cast<dwarf::Form
>(AttrSpec
.Form
), DIEInteger(Addr
));
1374 return Unit
.getOrigUnit().getAddressByteSize();
1377 unsigned DwarfLinkerForBinary::DIECloner::cloneScalarAttribute(
1378 DIE
&Die
, const DWARFDie
&InputDIE
, const DebugMapObject
&DMO
,
1379 CompileUnit
&Unit
, AttributeSpec AttrSpec
, const DWARFFormValue
&Val
,
1380 unsigned AttrSize
, AttributesInfo
&Info
) {
1383 if (LLVM_UNLIKELY(Linker
.Options
.Update
)) {
1384 if (auto OptionalValue
= Val
.getAsUnsignedConstant())
1385 Value
= *OptionalValue
;
1386 else if (auto OptionalValue
= Val
.getAsSignedConstant())
1387 Value
= *OptionalValue
;
1388 else if (auto OptionalValue
= Val
.getAsSectionOffset())
1389 Value
= *OptionalValue
;
1391 Linker
.reportWarning(
1392 "Unsupported scalar attribute form. Dropping attribute.", DMO
,
1396 if (AttrSpec
.Attr
== dwarf::DW_AT_declaration
&& Value
)
1397 Info
.IsDeclaration
= true;
1398 Die
.addValue(DIEAlloc
, dwarf::Attribute(AttrSpec
.Attr
),
1399 dwarf::Form(AttrSpec
.Form
), DIEInteger(Value
));
1403 if (AttrSpec
.Attr
== dwarf::DW_AT_high_pc
&&
1404 Die
.getTag() == dwarf::DW_TAG_compile_unit
) {
1405 if (Unit
.getLowPc() == -1ULL)
1407 // Dwarf >= 4 high_pc is an size, not an address.
1408 Value
= Unit
.getHighPc() - Unit
.getLowPc();
1409 } else if (AttrSpec
.Form
== dwarf::DW_FORM_sec_offset
)
1410 Value
= *Val
.getAsSectionOffset();
1411 else if (AttrSpec
.Form
== dwarf::DW_FORM_sdata
)
1412 Value
= *Val
.getAsSignedConstant();
1413 else if (auto OptionalValue
= Val
.getAsUnsignedConstant())
1414 Value
= *OptionalValue
;
1416 Linker
.reportWarning(
1417 "Unsupported scalar attribute form. Dropping attribute.", DMO
,
1421 PatchLocation Patch
=
1422 Die
.addValue(DIEAlloc
, dwarf::Attribute(AttrSpec
.Attr
),
1423 dwarf::Form(AttrSpec
.Form
), DIEInteger(Value
));
1424 if (AttrSpec
.Attr
== dwarf::DW_AT_ranges
) {
1425 Unit
.noteRangeAttribute(Die
, Patch
);
1426 Info
.HasRanges
= true;
1429 // A more generic way to check for location attributes would be
1430 // nice, but it's very unlikely that any other attribute needs a
1432 // FIXME: use DWARFAttribute::mayHaveLocationDescription().
1433 else if (AttrSpec
.Attr
== dwarf::DW_AT_location
||
1434 AttrSpec
.Attr
== dwarf::DW_AT_frame_base
)
1435 Unit
.noteLocationAttribute(Patch
, Info
.PCOffset
);
1436 else if (AttrSpec
.Attr
== dwarf::DW_AT_declaration
&& Value
)
1437 Info
.IsDeclaration
= true;
1442 /// Clone \p InputDIE's attribute described by \p AttrSpec with
1443 /// value \p Val, and add it to \p Die.
1444 /// \returns the size of the cloned attribute.
1445 unsigned DwarfLinkerForBinary::DIECloner::cloneAttribute(
1446 DIE
&Die
, const DWARFDie
&InputDIE
, const DebugMapObject
&DMO
,
1447 CompileUnit
&Unit
, OffsetsStringPool
&StringPool
, const DWARFFormValue
&Val
,
1448 const AttributeSpec AttrSpec
, unsigned AttrSize
, AttributesInfo
&Info
,
1449 bool IsLittleEndian
) {
1450 const DWARFUnit
&U
= Unit
.getOrigUnit();
1452 switch (AttrSpec
.Form
) {
1453 case dwarf::DW_FORM_strp
:
1454 case dwarf::DW_FORM_string
:
1455 return cloneStringAttribute(Die
, AttrSpec
, Val
, U
, StringPool
, Info
);
1456 case dwarf::DW_FORM_ref_addr
:
1457 case dwarf::DW_FORM_ref1
:
1458 case dwarf::DW_FORM_ref2
:
1459 case dwarf::DW_FORM_ref4
:
1460 case dwarf::DW_FORM_ref8
:
1461 return cloneDieReferenceAttribute(Die
, InputDIE
, AttrSpec
, AttrSize
, Val
,
1463 case dwarf::DW_FORM_block
:
1464 case dwarf::DW_FORM_block1
:
1465 case dwarf::DW_FORM_block2
:
1466 case dwarf::DW_FORM_block4
:
1467 case dwarf::DW_FORM_exprloc
:
1468 return cloneBlockAttribute(Die
, DMO
, Unit
, AttrSpec
, Val
, AttrSize
,
1470 case dwarf::DW_FORM_addr
:
1471 return cloneAddressAttribute(Die
, AttrSpec
, Val
, Unit
, Info
);
1472 case dwarf::DW_FORM_data1
:
1473 case dwarf::DW_FORM_data2
:
1474 case dwarf::DW_FORM_data4
:
1475 case dwarf::DW_FORM_data8
:
1476 case dwarf::DW_FORM_udata
:
1477 case dwarf::DW_FORM_sdata
:
1478 case dwarf::DW_FORM_sec_offset
:
1479 case dwarf::DW_FORM_flag
:
1480 case dwarf::DW_FORM_flag_present
:
1481 return cloneScalarAttribute(Die
, InputDIE
, DMO
, Unit
, AttrSpec
, Val
,
1484 Linker
.reportWarning(
1485 "Unsupported attribute form in cloneAttribute. Dropping.", DMO
,
1492 /// Apply the valid relocations found by findValidRelocs() to
1493 /// the buffer \p Data, taking into account that Data is at \p BaseOffset
1494 /// in the debug_info section.
1496 /// Like for findValidRelocs(), this function must be called with
1497 /// monotonic \p BaseOffset values.
1499 /// \returns whether any reloc has been applied.
1500 bool DwarfLinkerForBinary::RelocationManager::applyValidRelocs(
1501 MutableArrayRef
<char> Data
, uint64_t BaseOffset
, bool IsLittleEndian
) {
1502 assert((NextValidReloc
== 0 ||
1503 BaseOffset
> ValidRelocs
[NextValidReloc
- 1].Offset
) &&
1504 "BaseOffset should only be increasing.");
1505 if (NextValidReloc
>= ValidRelocs
.size())
1508 // Skip relocs that haven't been applied.
1509 while (NextValidReloc
< ValidRelocs
.size() &&
1510 ValidRelocs
[NextValidReloc
].Offset
< BaseOffset
)
1513 bool Applied
= false;
1514 uint64_t EndOffset
= BaseOffset
+ Data
.size();
1515 while (NextValidReloc
< ValidRelocs
.size() &&
1516 ValidRelocs
[NextValidReloc
].Offset
>= BaseOffset
&&
1517 ValidRelocs
[NextValidReloc
].Offset
< EndOffset
) {
1518 const auto &ValidReloc
= ValidRelocs
[NextValidReloc
++];
1519 assert(ValidReloc
.Offset
- BaseOffset
< Data
.size());
1520 assert(ValidReloc
.Offset
- BaseOffset
+ ValidReloc
.Size
<= Data
.size());
1522 uint64_t Value
= ValidReloc
.Mapping
->getValue().BinaryAddress
;
1523 Value
+= ValidReloc
.Addend
;
1524 for (unsigned i
= 0; i
!= ValidReloc
.Size
; ++i
) {
1525 unsigned Index
= IsLittleEndian
? i
: (ValidReloc
.Size
- i
- 1);
1526 Buf
[i
] = uint8_t(Value
>> (Index
* 8));
1528 assert(ValidReloc
.Size
<= sizeof(Buf
));
1529 memcpy(&Data
[ValidReloc
.Offset
- BaseOffset
], Buf
, ValidReloc
.Size
);
1536 static bool isObjCSelector(StringRef Name
) {
1537 return Name
.size() > 2 && (Name
[0] == '-' || Name
[0] == '+') &&
1541 void DwarfLinkerForBinary::DIECloner::addObjCAccelerator(
1542 CompileUnit
&Unit
, const DIE
*Die
, DwarfStringPoolEntryRef Name
,
1543 OffsetsStringPool
&StringPool
, bool SkipPubSection
) {
1544 assert(isObjCSelector(Name
.getString()) && "not an objc selector");
1545 // Objective C method or class function.
1546 // "- [Class(Category) selector :withArg ...]"
1547 StringRef
ClassNameStart(Name
.getString().drop_front(2));
1548 size_t FirstSpace
= ClassNameStart
.find(' ');
1549 if (FirstSpace
== StringRef::npos
)
1552 StringRef
SelectorStart(ClassNameStart
.data() + FirstSpace
+ 1);
1553 if (!SelectorStart
.size())
1556 StringRef
Selector(SelectorStart
.data(), SelectorStart
.size() - 1);
1557 Unit
.addNameAccelerator(Die
, StringPool
.getEntry(Selector
), SkipPubSection
);
1559 // Add an entry for the class name that points to this
1560 // method/class function.
1561 StringRef
ClassName(ClassNameStart
.data(), FirstSpace
);
1562 Unit
.addObjCAccelerator(Die
, StringPool
.getEntry(ClassName
), SkipPubSection
);
1564 if (ClassName
[ClassName
.size() - 1] == ')') {
1565 size_t OpenParens
= ClassName
.find('(');
1566 if (OpenParens
!= StringRef::npos
) {
1567 StringRef
ClassNameNoCategory(ClassName
.data(), OpenParens
);
1568 Unit
.addObjCAccelerator(Die
, StringPool
.getEntry(ClassNameNoCategory
),
1571 std::string
MethodNameNoCategory(Name
.getString().data(), OpenParens
+ 2);
1572 // FIXME: The missing space here may be a bug, but
1573 // dsymutil-classic also does it this way.
1574 MethodNameNoCategory
.append(SelectorStart
);
1575 Unit
.addNameAccelerator(Die
, StringPool
.getEntry(MethodNameNoCategory
),
1582 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec
,
1583 uint16_t Tag
, bool InDebugMap
, bool SkipPC
,
1584 bool InFunctionScope
) {
1585 switch (AttrSpec
.Attr
) {
1588 case dwarf::DW_AT_low_pc
:
1589 case dwarf::DW_AT_high_pc
:
1590 case dwarf::DW_AT_ranges
:
1592 case dwarf::DW_AT_location
:
1593 case dwarf::DW_AT_frame_base
:
1594 // FIXME: for some reason dsymutil-classic keeps the location attributes
1595 // when they are of block type (i.e. not location lists). This is totally
1596 // wrong for globals where we will keep a wrong address. It is mostly
1597 // harmless for locals, but there is no point in keeping these anyway when
1598 // the function wasn't linked.
1599 return (SkipPC
|| (!InFunctionScope
&& Tag
== dwarf::DW_TAG_variable
&&
1601 !DWARFFormValue(AttrSpec
.Form
).isFormClass(DWARFFormValue::FC_Block
);
1605 DIE
*DwarfLinkerForBinary::DIECloner::cloneDIE(
1606 const DWARFDie
&InputDIE
, const DebugMapObject
&DMO
, CompileUnit
&Unit
,
1607 OffsetsStringPool
&StringPool
, int64_t PCOffset
, uint32_t OutOffset
,
1608 unsigned Flags
, bool IsLittleEndian
, DIE
*Die
) {
1609 DWARFUnit
&U
= Unit
.getOrigUnit();
1610 unsigned Idx
= U
.getDIEIndex(InputDIE
);
1611 CompileUnit::DIEInfo
&Info
= Unit
.getInfo(Idx
);
1613 // Should the DIE appear in the output?
1614 if (!Unit
.getInfo(Idx
).Keep
)
1617 uint64_t Offset
= InputDIE
.getOffset();
1618 assert(!(Die
&& Info
.Clone
) && "Can't supply a DIE and a cloned DIE");
1620 // The DIE might have been already created by a forward reference
1621 // (see cloneDieReferenceAttribute()).
1623 Info
.Clone
= DIE::get(DIEAlloc
, dwarf::Tag(InputDIE
.getTag()));
1627 assert(Die
->getTag() == InputDIE
.getTag());
1628 Die
->setOffset(OutOffset
);
1629 if ((Unit
.hasODR() || Unit
.isClangModule()) && !Info
.Incomplete
&&
1630 Die
->getTag() != dwarf::DW_TAG_namespace
&& Info
.Ctxt
&&
1631 Info
.Ctxt
!= Unit
.getInfo(Info
.ParentIdx
).Ctxt
&&
1632 !Info
.Ctxt
->getCanonicalDIEOffset()) {
1633 // We are about to emit a DIE that is the root of its own valid
1634 // DeclContext tree. Make the current offset the canonical offset
1635 // for this context.
1636 Info
.Ctxt
->setCanonicalDIEOffset(OutOffset
+ Unit
.getStartOffset());
1639 // Extract and clone every attribute.
1640 DWARFDataExtractor Data
= U
.getDebugInfoExtractor();
1641 // Point to the next DIE (generally there is always at least a NULL
1642 // entry after the current one). If this is a lone
1643 // DW_TAG_compile_unit without any children, point to the next unit.
1644 uint64_t NextOffset
= (Idx
+ 1 < U
.getNumDIEs())
1645 ? U
.getDIEAtIndex(Idx
+ 1).getOffset()
1646 : U
.getNextUnitOffset();
1647 AttributesInfo AttrInfo
;
1649 // We could copy the data only if we need to apply a relocation to it. After
1650 // testing, it seems there is no performance downside to doing the copy
1651 // unconditionally, and it makes the code simpler.
1652 SmallString
<40> DIECopy(Data
.getData().substr(Offset
, NextOffset
- Offset
));
1654 DWARFDataExtractor(DIECopy
, Data
.isLittleEndian(), Data
.getAddressSize());
1655 // Modify the copy with relocated addresses.
1656 if (RelocMgr
.areRelocationsResolved() &&
1657 RelocMgr
.applyValidRelocs(DIECopy
, Offset
, Data
.isLittleEndian())) {
1658 // If we applied relocations, we store the value of high_pc that was
1659 // potentially stored in the input DIE. If high_pc is an address
1660 // (Dwarf version == 2), then it might have been relocated to a
1661 // totally unrelated value (because the end address in the object
1662 // file might be start address of another function which got moved
1663 // independently by the linker). The computation of the actual
1664 // high_pc value is done in cloneAddressAttribute().
1665 AttrInfo
.OrigHighPc
=
1666 dwarf::toAddress(InputDIE
.find(dwarf::DW_AT_high_pc
), 0);
1667 // Also store the low_pc. It might get relocated in an
1668 // inline_subprogram that happens at the beginning of its
1669 // inlining function.
1670 AttrInfo
.OrigLowPc
= dwarf::toAddress(InputDIE
.find(dwarf::DW_AT_low_pc
),
1671 std::numeric_limits
<uint64_t>::max());
1674 // Reset the Offset to 0 as we will be working on the local copy of
1678 const auto *Abbrev
= InputDIE
.getAbbreviationDeclarationPtr();
1679 Offset
+= getULEB128Size(Abbrev
->getCode());
1681 // We are entering a subprogram. Get and propagate the PCOffset.
1682 if (Die
->getTag() == dwarf::DW_TAG_subprogram
)
1683 PCOffset
= Info
.AddrAdjust
;
1684 AttrInfo
.PCOffset
= PCOffset
;
1686 if (Abbrev
->getTag() == dwarf::DW_TAG_subprogram
) {
1687 Flags
|= TF_InFunctionScope
;
1688 if (!Info
.InDebugMap
&& LLVM_LIKELY(!Options
.Update
))
1692 bool Copied
= false;
1693 for (const auto &AttrSpec
: Abbrev
->attributes()) {
1694 if (LLVM_LIKELY(!Options
.Update
) &&
1695 shouldSkipAttribute(AttrSpec
, Die
->getTag(), Info
.InDebugMap
,
1696 Flags
& TF_SkipPC
, Flags
& TF_InFunctionScope
)) {
1697 DWARFFormValue::skipValue(AttrSpec
.Form
, Data
, &Offset
,
1699 // FIXME: dsymutil-classic keeps the old abbreviation around
1700 // even if it's not used. We can remove this (and the copyAbbrev
1701 // helper) as soon as bit-for-bit compatibility is not a goal anymore.
1703 copyAbbrev(*InputDIE
.getAbbreviationDeclarationPtr(), Unit
.hasODR());
1709 DWARFFormValue
Val(AttrSpec
.Form
);
1710 uint64_t AttrSize
= Offset
;
1711 Val
.extractValue(Data
, &Offset
, U
.getFormParams(), &U
);
1712 AttrSize
= Offset
- AttrSize
;
1714 OutOffset
+= cloneAttribute(*Die
, InputDIE
, DMO
, Unit
, StringPool
, Val
,
1715 AttrSpec
, AttrSize
, AttrInfo
, IsLittleEndian
);
1718 // Look for accelerator entries.
1719 uint16_t Tag
= InputDIE
.getTag();
1720 // FIXME: This is slightly wrong. An inline_subroutine without a
1721 // low_pc, but with AT_ranges might be interesting to get into the
1722 // accelerator tables too. For now stick with dsymutil's behavior.
1723 if ((Info
.InDebugMap
|| AttrInfo
.HasLowPc
|| AttrInfo
.HasRanges
) &&
1724 Tag
!= dwarf::DW_TAG_compile_unit
&&
1725 getDIENames(InputDIE
, AttrInfo
, StringPool
,
1726 Tag
!= dwarf::DW_TAG_inlined_subroutine
)) {
1727 if (AttrInfo
.MangledName
&& AttrInfo
.MangledName
!= AttrInfo
.Name
)
1728 Unit
.addNameAccelerator(Die
, AttrInfo
.MangledName
,
1729 Tag
== dwarf::DW_TAG_inlined_subroutine
);
1730 if (AttrInfo
.Name
) {
1731 if (AttrInfo
.NameWithoutTemplate
)
1732 Unit
.addNameAccelerator(Die
, AttrInfo
.NameWithoutTemplate
,
1733 /* SkipPubSection */ true);
1734 Unit
.addNameAccelerator(Die
, AttrInfo
.Name
,
1735 Tag
== dwarf::DW_TAG_inlined_subroutine
);
1737 if (AttrInfo
.Name
&& isObjCSelector(AttrInfo
.Name
.getString()))
1738 addObjCAccelerator(Unit
, Die
, AttrInfo
.Name
, StringPool
,
1739 /* SkipPubSection =*/true);
1741 } else if (Tag
== dwarf::DW_TAG_namespace
) {
1743 AttrInfo
.Name
= StringPool
.getEntry("(anonymous namespace)");
1744 Unit
.addNamespaceAccelerator(Die
, AttrInfo
.Name
);
1745 } else if (isTypeTag(Tag
) && !AttrInfo
.IsDeclaration
&&
1746 getDIENames(InputDIE
, AttrInfo
, StringPool
) && AttrInfo
.Name
&&
1747 AttrInfo
.Name
.getString()[0]) {
1748 uint32_t Hash
= hashFullyQualifiedName(InputDIE
, Unit
, DMO
);
1749 uint64_t RuntimeLang
=
1750 dwarf::toUnsigned(InputDIE
.find(dwarf::DW_AT_APPLE_runtime_class
))
1752 bool ObjCClassIsImplementation
=
1753 (RuntimeLang
== dwarf::DW_LANG_ObjC
||
1754 RuntimeLang
== dwarf::DW_LANG_ObjC_plus_plus
) &&
1755 dwarf::toUnsigned(InputDIE
.find(dwarf::DW_AT_APPLE_objc_complete_type
))
1757 Unit
.addTypeAccelerator(Die
, AttrInfo
.Name
, ObjCClassIsImplementation
,
1761 // Determine whether there are any children that we want to keep.
1762 bool HasChildren
= false;
1763 for (auto Child
: InputDIE
.children()) {
1764 unsigned Idx
= U
.getDIEIndex(Child
);
1765 if (Unit
.getInfo(Idx
).Keep
) {
1771 DIEAbbrev NewAbbrev
= Die
->generateAbbrev();
1773 NewAbbrev
.setChildrenFlag(dwarf::DW_CHILDREN_yes
);
1774 // Assign a permanent abbrev number
1775 Linker
.assignAbbrev(NewAbbrev
);
1776 Die
->setAbbrevNumber(NewAbbrev
.getNumber());
1778 // Add the size of the abbreviation number to the output offset.
1779 OutOffset
+= getULEB128Size(Die
->getAbbrevNumber());
1783 Die
->setSize(OutOffset
- Die
->getOffset());
1787 // Recursively clone children.
1788 for (auto Child
: InputDIE
.children()) {
1789 if (DIE
*Clone
= cloneDIE(Child
, DMO
, Unit
, StringPool
, PCOffset
, OutOffset
,
1790 Flags
, IsLittleEndian
)) {
1791 Die
->addChild(Clone
);
1792 OutOffset
= Clone
->getOffset() + Clone
->getSize();
1796 // Account for the end of children marker.
1797 OutOffset
+= sizeof(int8_t);
1799 Die
->setSize(OutOffset
- Die
->getOffset());
1803 /// Patch the input object file relevant debug_ranges entries
1804 /// and emit them in the output file. Update the relevant attributes
1805 /// to point at the new entries.
1806 void DwarfLinkerForBinary::patchRangesForUnit(const CompileUnit
&Unit
,
1807 DWARFContext
&OrigDwarf
,
1808 const DebugMapObject
&DMO
) const {
1809 DWARFDebugRangeList RangeList
;
1810 const auto &FunctionRanges
= Unit
.getFunctionRanges();
1811 unsigned AddressSize
= Unit
.getOrigUnit().getAddressByteSize();
1812 DWARFDataExtractor
RangeExtractor(OrigDwarf
.getDWARFObj(),
1813 OrigDwarf
.getDWARFObj().getRangesSection(),
1814 OrigDwarf
.isLittleEndian(), AddressSize
);
1815 auto InvalidRange
= FunctionRanges
.end(), CurrRange
= InvalidRange
;
1816 DWARFUnit
&OrigUnit
= Unit
.getOrigUnit();
1817 auto OrigUnitDie
= OrigUnit
.getUnitDIE(false);
1818 uint64_t OrigLowPc
=
1819 dwarf::toAddress(OrigUnitDie
.find(dwarf::DW_AT_low_pc
), -1ULL);
1820 // Ranges addresses are based on the unit's low_pc. Compute the
1821 // offset we need to apply to adapt to the new unit's low_pc.
1822 int64_t UnitPcOffset
= 0;
1823 if (OrigLowPc
!= -1ULL)
1824 UnitPcOffset
= int64_t(OrigLowPc
) - Unit
.getLowPc();
1826 for (const auto &RangeAttribute
: Unit
.getRangesAttributes()) {
1827 uint64_t Offset
= RangeAttribute
.get();
1828 RangeAttribute
.set(Streamer
->getRangesSectionSize());
1829 if (Error E
= RangeList
.extract(RangeExtractor
, &Offset
)) {
1830 llvm::consumeError(std::move(E
));
1831 reportWarning("invalid range list ignored.", DMO
);
1834 const auto &Entries
= RangeList
.getEntries();
1835 if (!Entries
.empty()) {
1836 const DWARFDebugRangeList::RangeListEntry
&First
= Entries
.front();
1838 if (CurrRange
== InvalidRange
||
1839 First
.StartAddress
+ OrigLowPc
< CurrRange
.start() ||
1840 First
.StartAddress
+ OrigLowPc
>= CurrRange
.stop()) {
1841 CurrRange
= FunctionRanges
.find(First
.StartAddress
+ OrigLowPc
);
1842 if (CurrRange
== InvalidRange
||
1843 CurrRange
.start() > First
.StartAddress
+ OrigLowPc
) {
1844 reportWarning("no mapping for range.", DMO
);
1850 Streamer
->emitRangesEntries(UnitPcOffset
, OrigLowPc
, CurrRange
, Entries
,
1855 /// Generate the debug_aranges entries for \p Unit and if the
1856 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
1857 /// contribution for this attribute.
1858 /// FIXME: this could actually be done right in patchRangesForUnit,
1859 /// but for the sake of initial bit-for-bit compatibility with legacy
1860 /// dsymutil, we have to do it in a delayed pass.
1861 void DwarfLinkerForBinary::generateUnitRanges(CompileUnit
&Unit
) const {
1862 auto Attr
= Unit
.getUnitRangesAttribute();
1864 Attr
->set(Streamer
->getRangesSectionSize());
1865 Streamer
->emitUnitRangesEntries(Unit
, static_cast<bool>(Attr
));
1868 /// Insert the new line info sequence \p Seq into the current
1869 /// set of already linked line info \p Rows.
1870 static void insertLineSequence(std::vector
<DWARFDebugLine::Row
> &Seq
,
1871 std::vector
<DWARFDebugLine::Row
> &Rows
) {
1875 if (!Rows
.empty() && Rows
.back().Address
< Seq
.front().Address
) {
1876 Rows
.insert(Rows
.end(), Seq
.begin(), Seq
.end());
1881 object::SectionedAddress Front
= Seq
.front().Address
;
1882 auto InsertPoint
= partition_point(
1883 Rows
, [=](const DWARFDebugLine::Row
&O
) { return O
.Address
< Front
; });
1885 // FIXME: this only removes the unneeded end_sequence if the
1886 // sequences have been inserted in order. Using a global sort like
1887 // described in patchLineTableForUnit() and delaying the end_sequene
1888 // elimination to emitLineTableForUnit() we can get rid of all of them.
1889 if (InsertPoint
!= Rows
.end() && InsertPoint
->Address
== Front
&&
1890 InsertPoint
->EndSequence
) {
1891 *InsertPoint
= Seq
.front();
1892 Rows
.insert(InsertPoint
+ 1, Seq
.begin() + 1, Seq
.end());
1894 Rows
.insert(InsertPoint
, Seq
.begin(), Seq
.end());
1900 static void patchStmtList(DIE
&Die
, DIEInteger Offset
) {
1901 for (auto &V
: Die
.values())
1902 if (V
.getAttribute() == dwarf::DW_AT_stmt_list
) {
1903 V
= DIEValue(V
.getAttribute(), V
.getForm(), Offset
);
1907 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
1910 /// Extract the line table for \p Unit from \p OrigDwarf, and
1911 /// recreate a relocated version of these for the address ranges that
1912 /// are present in the binary.
1913 void DwarfLinkerForBinary::patchLineTableForUnit(CompileUnit
&Unit
,
1914 DWARFContext
&OrigDwarf
,
1916 const DebugMapObject
&DMO
) {
1917 DWARFDie CUDie
= Unit
.getOrigUnit().getUnitDIE();
1918 auto StmtList
= dwarf::toSectionOffset(CUDie
.find(dwarf::DW_AT_stmt_list
));
1922 // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
1923 if (auto *OutputDIE
= Unit
.getOutputUnitDIE())
1924 patchStmtList(*OutputDIE
, DIEInteger(Streamer
->getLineSectionSize()));
1926 // Parse the original line info for the unit.
1927 DWARFDebugLine::LineTable LineTable
;
1928 uint64_t StmtOffset
= *StmtList
;
1929 DWARFDataExtractor
LineExtractor(
1930 OrigDwarf
.getDWARFObj(), OrigDwarf
.getDWARFObj().getLineSection(),
1931 OrigDwarf
.isLittleEndian(), Unit
.getOrigUnit().getAddressByteSize());
1932 if (Options
.Translator
)
1933 return Streamer
->translateLineTable(LineExtractor
, StmtOffset
);
1935 Error Err
= LineTable
.parse(LineExtractor
, &StmtOffset
, OrigDwarf
,
1936 &Unit
.getOrigUnit(), DWARFContext::dumpWarning
);
1937 DWARFContext::dumpWarning(std::move(Err
));
1939 // This vector is the output line table.
1940 std::vector
<DWARFDebugLine::Row
> NewRows
;
1941 NewRows
.reserve(LineTable
.Rows
.size());
1943 // Current sequence of rows being extracted, before being inserted
1945 std::vector
<DWARFDebugLine::Row
> Seq
;
1946 const auto &FunctionRanges
= Unit
.getFunctionRanges();
1947 auto InvalidRange
= FunctionRanges
.end(), CurrRange
= InvalidRange
;
1949 // FIXME: This logic is meant to generate exactly the same output as
1950 // Darwin's classic dsymutil. There is a nicer way to implement this
1951 // by simply putting all the relocated line info in NewRows and simply
1952 // sorting NewRows before passing it to emitLineTableForUnit. This
1953 // should be correct as sequences for a function should stay
1954 // together in the sorted output. There are a few corner cases that
1955 // look suspicious though, and that required to implement the logic
1956 // this way. Revisit that once initial validation is finished.
1958 // Iterate over the object file line info and extract the sequences
1959 // that correspond to linked functions.
1960 for (auto &Row
: LineTable
.Rows
) {
1961 // Check whether we stepped out of the range. The range is
1962 // half-open, but consider accept the end address of the range if
1963 // it is marked as end_sequence in the input (because in that
1964 // case, the relocation offset is accurate and that entry won't
1965 // serve as the start of another function).
1966 if (CurrRange
== InvalidRange
|| Row
.Address
.Address
< CurrRange
.start() ||
1967 Row
.Address
.Address
> CurrRange
.stop() ||
1968 (Row
.Address
.Address
== CurrRange
.stop() && !Row
.EndSequence
)) {
1969 // We just stepped out of a known range. Insert a end_sequence
1970 // corresponding to the end of the range.
1971 uint64_t StopAddress
= CurrRange
!= InvalidRange
1972 ? CurrRange
.stop() + CurrRange
.value()
1974 CurrRange
= FunctionRanges
.find(Row
.Address
.Address
);
1975 bool CurrRangeValid
=
1976 CurrRange
!= InvalidRange
&& CurrRange
.start() <= Row
.Address
.Address
;
1977 if (!CurrRangeValid
) {
1978 CurrRange
= InvalidRange
;
1979 if (StopAddress
!= -1ULL) {
1980 // Try harder by looking in the DebugMapObject function
1981 // ranges map. There are corner cases where this finds a
1982 // valid entry. It's unclear if this is right or wrong, but
1983 // for now do as dsymutil.
1984 // FIXME: Understand exactly what cases this addresses and
1985 // potentially remove it along with the Ranges map.
1986 auto Range
= Ranges
.lower_bound(Row
.Address
.Address
);
1987 if (Range
!= Ranges
.begin() && Range
!= Ranges
.end())
1990 if (Range
!= Ranges
.end() && Range
->first
<= Row
.Address
.Address
&&
1991 Range
->second
.HighPC
>= Row
.Address
.Address
) {
1992 StopAddress
= Row
.Address
.Address
+ Range
->second
.Offset
;
1996 if (StopAddress
!= -1ULL && !Seq
.empty()) {
1997 // Insert end sequence row with the computed end address, but
1998 // the same line as the previous one.
1999 auto NextLine
= Seq
.back();
2000 NextLine
.Address
.Address
= StopAddress
;
2001 NextLine
.EndSequence
= 1;
2002 NextLine
.PrologueEnd
= 0;
2003 NextLine
.BasicBlock
= 0;
2004 NextLine
.EpilogueBegin
= 0;
2005 Seq
.push_back(NextLine
);
2006 insertLineSequence(Seq
, NewRows
);
2009 if (!CurrRangeValid
)
2013 // Ignore empty sequences.
2014 if (Row
.EndSequence
&& Seq
.empty())
2017 // Relocate row address and add it to the current sequence.
2018 Row
.Address
.Address
+= CurrRange
.value();
2019 Seq
.emplace_back(Row
);
2021 if (Row
.EndSequence
)
2022 insertLineSequence(Seq
, NewRows
);
2025 // Finished extracting, now emit the line tables.
2026 // FIXME: LLVM hard-codes its prologue values. We just copy the
2027 // prologue over and that works because we act as both producer and
2028 // consumer. It would be nicer to have a real configurable line
2030 if (LineTable
.Prologue
.getVersion() < 2 ||
2031 LineTable
.Prologue
.getVersion() > 5 ||
2032 LineTable
.Prologue
.DefaultIsStmt
!= DWARF2_LINE_DEFAULT_IS_STMT
||
2033 LineTable
.Prologue
.OpcodeBase
> 13)
2034 reportWarning("line table parameters mismatch. Cannot emit.", DMO
);
2036 uint32_t PrologueEnd
= *StmtList
+ 10 + LineTable
.Prologue
.PrologueLength
;
2037 // DWARF v5 has an extra 2 bytes of information before the header_length
2039 if (LineTable
.Prologue
.getVersion() == 5)
2041 StringRef LineData
= OrigDwarf
.getDWARFObj().getLineSection().Data
;
2042 MCDwarfLineTableParams Params
;
2043 Params
.DWARF2LineOpcodeBase
= LineTable
.Prologue
.OpcodeBase
;
2044 Params
.DWARF2LineBase
= LineTable
.Prologue
.LineBase
;
2045 Params
.DWARF2LineRange
= LineTable
.Prologue
.LineRange
;
2046 Streamer
->emitLineTableForUnit(Params
,
2047 LineData
.slice(*StmtList
+ 4, PrologueEnd
),
2048 LineTable
.Prologue
.MinInstLength
, NewRows
,
2049 Unit
.getOrigUnit().getAddressByteSize());
2053 void DwarfLinkerForBinary::emitAcceleratorEntriesForUnit(CompileUnit
&Unit
) {
2054 switch (Options
.TheAccelTableKind
) {
2055 case AccelTableKind::Apple
:
2056 emitAppleAcceleratorEntriesForUnit(Unit
);
2058 case AccelTableKind::Dwarf
:
2059 emitDwarfAcceleratorEntriesForUnit(Unit
);
2061 case AccelTableKind::Default
:
2062 llvm_unreachable("The default must be updated to a concrete value.");
2067 void DwarfLinkerForBinary::emitAppleAcceleratorEntriesForUnit(
2068 CompileUnit
&Unit
) {
2070 for (const auto &Namespace
: Unit
.getNamespaces())
2071 AppleNamespaces
.addName(Namespace
.Name
,
2072 Namespace
.Die
->getOffset() + Unit
.getStartOffset());
2075 if (!Options
.Minimize
)
2076 Streamer
->emitPubNamesForUnit(Unit
);
2077 for (const auto &Pubname
: Unit
.getPubnames())
2078 AppleNames
.addName(Pubname
.Name
,
2079 Pubname
.Die
->getOffset() + Unit
.getStartOffset());
2082 if (!Options
.Minimize
)
2083 Streamer
->emitPubTypesForUnit(Unit
);
2084 for (const auto &Pubtype
: Unit
.getPubtypes())
2086 Pubtype
.Name
, Pubtype
.Die
->getOffset() + Unit
.getStartOffset(),
2087 Pubtype
.Die
->getTag(),
2088 Pubtype
.ObjcClassImplementation
? dwarf::DW_FLAG_type_implementation
2090 Pubtype
.QualifiedNameHash
);
2093 for (const auto &ObjC
: Unit
.getObjC())
2094 AppleObjc
.addName(ObjC
.Name
, ObjC
.Die
->getOffset() + Unit
.getStartOffset());
2097 void DwarfLinkerForBinary::emitDwarfAcceleratorEntriesForUnit(
2098 CompileUnit
&Unit
) {
2099 for (const auto &Namespace
: Unit
.getNamespaces())
2100 DebugNames
.addName(Namespace
.Name
, Namespace
.Die
->getOffset(),
2101 Namespace
.Die
->getTag(), Unit
.getUniqueID());
2102 for (const auto &Pubname
: Unit
.getPubnames())
2103 DebugNames
.addName(Pubname
.Name
, Pubname
.Die
->getOffset(),
2104 Pubname
.Die
->getTag(), Unit
.getUniqueID());
2105 for (const auto &Pubtype
: Unit
.getPubtypes())
2106 DebugNames
.addName(Pubtype
.Name
, Pubtype
.Die
->getOffset(),
2107 Pubtype
.Die
->getTag(), Unit
.getUniqueID());
2110 /// Read the frame info stored in the object, and emit the
2111 /// patched frame descriptions for the linked binary.
2113 /// This is actually pretty easy as the data of the CIEs and FDEs can
2114 /// be considered as black boxes and moved as is. The only thing to do
2115 /// is to patch the addresses in the headers.
2116 void DwarfLinkerForBinary::patchFrameInfoForObject(const DebugMapObject
&DMO
,
2118 DWARFContext
&OrigDwarf
,
2119 unsigned AddrSize
) {
2120 StringRef FrameData
= OrigDwarf
.getDWARFObj().getFrameSection().Data
;
2121 if (FrameData
.empty())
2124 DataExtractor
Data(FrameData
, OrigDwarf
.isLittleEndian(), 0);
2125 uint64_t InputOffset
= 0;
2127 // Store the data of the CIEs defined in this object, keyed by their
2129 DenseMap
<uint64_t, StringRef
> LocalCIES
;
2131 while (Data
.isValidOffset(InputOffset
)) {
2132 uint64_t EntryOffset
= InputOffset
;
2133 uint32_t InitialLength
= Data
.getU32(&InputOffset
);
2134 if (InitialLength
== 0xFFFFFFFF)
2135 return reportWarning("Dwarf64 bits no supported", DMO
);
2137 uint32_t CIEId
= Data
.getU32(&InputOffset
);
2138 if (CIEId
== 0xFFFFFFFF) {
2139 // This is a CIE, store it.
2140 StringRef CIEData
= FrameData
.substr(EntryOffset
, InitialLength
+ 4);
2141 LocalCIES
[EntryOffset
] = CIEData
;
2142 // The -4 is to account for the CIEId we just read.
2143 InputOffset
+= InitialLength
- 4;
2147 uint32_t Loc
= Data
.getUnsigned(&InputOffset
, AddrSize
);
2149 // Some compilers seem to emit frame info that doesn't start at
2150 // the function entry point, thus we can't just lookup the address
2151 // in the debug map. Use the linker's range map to see if the FDE
2152 // describes something that we can relocate.
2153 auto Range
= Ranges
.upper_bound(Loc
);
2154 if (Range
!= Ranges
.begin())
2156 if (Range
== Ranges
.end() || Range
->first
> Loc
||
2157 Range
->second
.HighPC
<= Loc
) {
2158 // The +4 is to account for the size of the InitialLength field itself.
2159 InputOffset
= EntryOffset
+ InitialLength
+ 4;
2163 // This is an FDE, and we have a mapping.
2164 // Have we already emitted a corresponding CIE?
2165 StringRef CIEData
= LocalCIES
[CIEId
];
2166 if (CIEData
.empty())
2167 return reportWarning("Inconsistent debug_frame content. Dropping.", DMO
);
2169 // Look if we already emitted a CIE that corresponds to the
2170 // referenced one (the CIE data is the key of that lookup).
2171 auto IteratorInserted
= EmittedCIEs
.insert(
2172 std::make_pair(CIEData
, Streamer
->getFrameSectionSize()));
2173 // If there is no CIE yet for this ID, emit it.
2174 if (IteratorInserted
.second
||
2175 // FIXME: dsymutil-classic only caches the last used CIE for
2176 // reuse. Mimic that behavior for now. Just removing that
2177 // second half of the condition and the LastCIEOffset variable
2178 // makes the code DTRT.
2179 LastCIEOffset
!= IteratorInserted
.first
->getValue()) {
2180 LastCIEOffset
= Streamer
->getFrameSectionSize();
2181 IteratorInserted
.first
->getValue() = LastCIEOffset
;
2182 Streamer
->emitCIE(CIEData
);
2185 // Emit the FDE with updated address and CIE pointer.
2186 // (4 + AddrSize) is the size of the CIEId + initial_location
2187 // fields that will get reconstructed by emitFDE().
2188 unsigned FDERemainingBytes
= InitialLength
- (4 + AddrSize
);
2189 Streamer
->emitFDE(IteratorInserted
.first
->getValue(), AddrSize
,
2190 Loc
+ Range
->second
.Offset
,
2191 FrameData
.substr(InputOffset
, FDERemainingBytes
));
2192 InputOffset
+= FDERemainingBytes
;
2196 void DwarfLinkerForBinary::DIECloner::copyAbbrev(
2197 const DWARFAbbreviationDeclaration
&Abbrev
, bool HasODR
) {
2198 DIEAbbrev
Copy(dwarf::Tag(Abbrev
.getTag()),
2199 dwarf::Form(Abbrev
.hasChildren()));
2201 for (const auto &Attr
: Abbrev
.attributes()) {
2202 uint16_t Form
= Attr
.Form
;
2203 if (HasODR
&& isODRAttribute(Attr
.Attr
))
2204 Form
= dwarf::DW_FORM_ref_addr
;
2205 Copy
.AddAttribute(dwarf::Attribute(Attr
.Attr
), dwarf::Form(Form
));
2208 Linker
.assignAbbrev(Copy
);
2211 uint32_t DwarfLinkerForBinary::DIECloner::hashFullyQualifiedName(
2212 DWARFDie DIE
, CompileUnit
&U
, const DebugMapObject
&DMO
,
2213 int ChildRecurseDepth
) {
2214 const char *Name
= nullptr;
2215 DWARFUnit
*OrigUnit
= &U
.getOrigUnit();
2216 CompileUnit
*CU
= &U
;
2217 Optional
<DWARFFormValue
> Ref
;
2220 if (const char *CurrentName
= DIE
.getName(DINameKind::ShortName
))
2223 if (!(Ref
= DIE
.find(dwarf::DW_AT_specification
)) &&
2224 !(Ref
= DIE
.find(dwarf::DW_AT_abstract_origin
)))
2227 if (!Ref
->isFormClass(DWARFFormValue::FC_Reference
))
2232 resolveDIEReference(Linker
, DMO
, CompileUnits
, *Ref
, DIE
, RefCU
)) {
2234 OrigUnit
= &RefCU
->getOrigUnit();
2239 unsigned Idx
= OrigUnit
->getDIEIndex(DIE
);
2240 if (!Name
&& DIE
.getTag() == dwarf::DW_TAG_namespace
)
2241 Name
= "(anonymous namespace)";
2243 if (CU
->getInfo(Idx
).ParentIdx
== 0 ||
2244 // FIXME: dsymutil-classic compatibility. Ignore modules.
2245 CU
->getOrigUnit().getDIEAtIndex(CU
->getInfo(Idx
).ParentIdx
).getTag() ==
2246 dwarf::DW_TAG_module
)
2247 return djbHash(Name
? Name
: "", djbHash(ChildRecurseDepth
? "" : "::"));
2249 DWARFDie Die
= OrigUnit
->getDIEAtIndex(CU
->getInfo(Idx
).ParentIdx
);
2252 djbHash((Name
? "::" : ""),
2253 hashFullyQualifiedName(Die
, *CU
, DMO
, ++ChildRecurseDepth
)));
2256 static uint64_t getDwoId(const DWARFDie
&CUDie
, const DWARFUnit
&Unit
) {
2257 auto DwoId
= dwarf::toUnsigned(
2258 CUDie
.find({dwarf::DW_AT_dwo_id
, dwarf::DW_AT_GNU_dwo_id
}));
2264 bool DwarfLinkerForBinary::registerModuleReference(
2265 DWARFDie CUDie
, const DWARFUnit
&Unit
, DebugMap
&ModuleMap
,
2266 const DebugMapObject
&DMO
, RangesTy
&Ranges
, OffsetsStringPool
&StringPool
,
2267 UniquingStringPool
&UniquingStringPool
, DeclContextTree
&ODRContexts
,
2268 uint64_t ModulesEndOffset
, unsigned &UnitID
, bool IsLittleEndian
,
2269 unsigned Indent
, bool Quiet
) {
2270 std::string PCMfile
= dwarf::toString(
2271 CUDie
.find({dwarf::DW_AT_dwo_name
, dwarf::DW_AT_GNU_dwo_name
}), "");
2272 if (PCMfile
.empty())
2275 // Clang module DWARF skeleton CUs abuse this for the path to the module.
2276 uint64_t DwoId
= getDwoId(CUDie
, Unit
);
2278 std::string Name
= dwarf::toString(CUDie
.find(dwarf::DW_AT_name
), "");
2281 reportWarning("Anonymous module skeleton CU for " + PCMfile
, DMO
);
2285 if (!Quiet
&& Options
.Verbose
) {
2286 outs().indent(Indent
);
2287 outs() << "Found clang module reference " << PCMfile
;
2290 auto Cached
= ClangModules
.find(PCMfile
);
2291 if (Cached
!= ClangModules
.end()) {
2292 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2293 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2294 // ASTFileSignatures will change randomly when a module is rebuilt.
2295 if (!Quiet
&& Options
.Verbose
&& (Cached
->second
!= DwoId
))
2296 reportWarning(Twine("hash mismatch: this object file was built against a "
2297 "different version of the module ") +
2300 if (!Quiet
&& Options
.Verbose
)
2301 outs() << " [cached].\n";
2304 if (!Quiet
&& Options
.Verbose
)
2307 // Cyclic dependencies are disallowed by Clang, but we still
2308 // shouldn't run into an infinite loop, so mark it as processed now.
2309 ClangModules
.insert({PCMfile
, DwoId
});
2311 if (Error E
= loadClangModule(CUDie
, PCMfile
, Name
, DwoId
, ModuleMap
, DMO
,
2312 Ranges
, StringPool
, UniquingStringPool
,
2313 ODRContexts
, ModulesEndOffset
, UnitID
,
2314 IsLittleEndian
, Indent
+ 2, Quiet
)) {
2315 consumeError(std::move(E
));
2321 ErrorOr
<const object::ObjectFile
&>
2322 DwarfLinkerForBinary::loadObject(const DebugMapObject
&Obj
,
2323 const DebugMap
&Map
) {
2325 BinHolder
.getObjectEntry(Obj
.getObjectFilename(), Obj
.getTimestamp());
2327 auto Err
= ObjectEntry
.takeError();
2329 Twine(Obj
.getObjectFilename()) + ": " + toString(std::move(Err
)), Obj
);
2330 return errorToErrorCode(std::move(Err
));
2333 auto Object
= ObjectEntry
->getObject(Map
.getTriple());
2335 auto Err
= Object
.takeError();
2337 Twine(Obj
.getObjectFilename()) + ": " + toString(std::move(Err
)), Obj
);
2338 return errorToErrorCode(std::move(Err
));
2344 Error
DwarfLinkerForBinary::loadClangModule(
2345 DWARFDie CUDie
, StringRef Filename
, StringRef ModuleName
, uint64_t DwoId
,
2346 DebugMap
&ModuleMap
, const DebugMapObject
&DMO
, RangesTy
&Ranges
,
2347 OffsetsStringPool
&StringPool
, UniquingStringPool
&UniquingStringPool
,
2348 DeclContextTree
&ODRContexts
, uint64_t ModulesEndOffset
, unsigned &UnitID
,
2349 bool IsLittleEndian
, unsigned Indent
, bool Quiet
) {
2350 /// Using a SmallString<0> because loadClangModule() is recursive.
2351 SmallString
<0> Path(Options
.PrependPath
);
2352 if (sys::path::is_relative(Filename
))
2353 resolveRelativeObjectPath(Path
, CUDie
);
2354 sys::path::append(Path
, Filename
);
2355 // Don't use the cached binary holder because we have no thread-safety
2356 // guarantee and the lifetime is limited.
2357 auto &Obj
= ModuleMap
.addDebugMapObject(
2358 Path
, sys::TimePoint
<std::chrono::seconds
>(), MachO::N_OSO
);
2359 auto ErrOrObj
= loadObject(Obj
, ModuleMap
);
2361 // Try and emit more helpful warnings by applying some heuristics.
2362 StringRef ObjFile
= DMO
.getObjectFilename();
2363 bool isClangModule
= sys::path::extension(Filename
).equals(".pcm");
2364 bool isArchive
= ObjFile
.endswith(")");
2365 if (isClangModule
) {
2366 StringRef ModuleCacheDir
= sys::path::parent_path(Path
);
2367 if (sys::fs::exists(ModuleCacheDir
)) {
2368 // If the module's parent directory exists, we assume that the module
2369 // cache has expired and was pruned by clang. A more adventurous
2370 // dsymutil would invoke clang to rebuild the module now.
2371 if (!ModuleCacheHintDisplayed
) {
2372 WithColor::note() << "The clang module cache may have expired since "
2373 "this object file was built. Rebuilding the "
2374 "object file will rebuild the module cache.\n";
2375 ModuleCacheHintDisplayed
= true;
2377 } else if (isArchive
) {
2378 // If the module cache directory doesn't exist at all and the object
2379 // file is inside a static library, we assume that the static library
2380 // was built on a different machine. We don't want to discourage module
2381 // debugging for convenience libraries within a project though.
2382 if (!ArchiveHintDisplayed
) {
2384 << "Linking a static library that was built with "
2385 "-gmodules, but the module cache was not found. "
2386 "Redistributable static libraries should never be "
2387 "built with module debugging enabled. The debug "
2388 "experience will be degraded due to incomplete "
2389 "debug information.\n";
2390 ArchiveHintDisplayed
= true;
2394 return Error::success();
2397 std::unique_ptr
<CompileUnit
> Unit
;
2399 // Setup access to the debug info.
2400 auto DwarfContext
= DWARFContext::create(*ErrOrObj
);
2401 RelocationManager
RelocMgr(*this, *ErrOrObj
, DMO
);
2403 for (const auto &CU
: DwarfContext
->compile_units()) {
2404 updateDwarfVersion(CU
->getVersion());
2405 // Recursively get all modules imported by this one.
2406 auto CUDie
= CU
->getUnitDIE(false);
2409 if (!registerModuleReference(CUDie
, *CU
, ModuleMap
, DMO
, Ranges
, StringPool
,
2410 UniquingStringPool
, ODRContexts
,
2411 ModulesEndOffset
, UnitID
, IsLittleEndian
,
2416 ": Clang modules are expected to have exactly 1 compile unit.\n")
2419 return make_error
<StringError
>(Err
, inconvertibleErrorCode());
2421 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2422 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2423 // ASTFileSignatures will change randomly when a module is rebuilt.
2424 uint64_t PCMDwoId
= getDwoId(CUDie
, *CU
);
2425 if (PCMDwoId
!= DwoId
) {
2426 if (!Quiet
&& Options
.Verbose
)
2428 Twine("hash mismatch: this object file was built against a "
2429 "different version of the module ") +
2432 // Update the cache entry with the DwoId of the module loaded from disk.
2433 ClangModules
[Filename
] = PCMDwoId
;
2437 Unit
= std::make_unique
<CompileUnit
>(*CU
, UnitID
++, !Options
.NoODR
,
2439 Unit
->setHasInterestingContent();
2440 analyzeContextInfo(CUDie
, 0, *Unit
, &ODRContexts
.getRoot(),
2441 UniquingStringPool
, ODRContexts
, ModulesEndOffset
,
2442 ParseableSwiftInterfaces
,
2443 [&](const Twine
&Warning
, const DWARFDie
&DIE
) {
2444 reportWarning(Warning
, DMO
, &DIE
);
2447 Unit
->markEverythingAsKept();
2450 if (!Unit
->getOrigUnit().getUnitDIE().hasChildren())
2451 return Error::success();
2452 if (!Quiet
&& Options
.Verbose
) {
2453 outs().indent(Indent
);
2454 outs() << "cloning .debug_info from " << Filename
<< "\n";
2457 UnitListTy CompileUnits
;
2458 CompileUnits
.push_back(std::move(Unit
));
2459 DIECloner(*this, RelocMgr
, DIEAlloc
, CompileUnits
, Options
)
2460 .cloneAllCompileUnits(*DwarfContext
, DMO
, Ranges
, StringPool
,
2462 return Error::success();
2465 void DwarfLinkerForBinary::DIECloner::cloneAllCompileUnits(
2466 DWARFContext
&DwarfContext
, const DebugMapObject
&DMO
, RangesTy
&Ranges
,
2467 OffsetsStringPool
&StringPool
, bool IsLittleEndian
) {
2468 if (!Linker
.Streamer
)
2471 uint64_t OutputDebugInfoSize
= Linker
.Streamer
->getDebugInfoSectionSize();
2472 for (auto &CurrentUnit
: CompileUnits
) {
2473 auto InputDIE
= CurrentUnit
->getOrigUnit().getUnitDIE();
2474 CurrentUnit
->setStartOffset(OutputDebugInfoSize
);
2476 OutputDebugInfoSize
= CurrentUnit
->computeNextUnitOffset();
2479 if (CurrentUnit
->getInfo(0).Keep
) {
2480 // Clone the InputDIE into your Unit DIE in our compile unit since it
2481 // already has a DIE inside of it.
2482 CurrentUnit
->createOutputDIE();
2483 cloneDIE(InputDIE
, DMO
, *CurrentUnit
, StringPool
, 0 /* PC offset */,
2484 11 /* Unit Header size */, 0, IsLittleEndian
,
2485 CurrentUnit
->getOutputUnitDIE());
2488 OutputDebugInfoSize
= CurrentUnit
->computeNextUnitOffset();
2490 if (Linker
.Options
.NoOutput
)
2493 // FIXME: for compatibility with the classic dsymutil, we emit
2494 // an empty line table for the unit, even if the unit doesn't
2495 // actually exist in the DIE tree.
2496 if (LLVM_LIKELY(!Linker
.Options
.Update
) || Linker
.Options
.Translator
)
2497 Linker
.patchLineTableForUnit(*CurrentUnit
, DwarfContext
, Ranges
, DMO
);
2499 Linker
.emitAcceleratorEntriesForUnit(*CurrentUnit
);
2501 if (LLVM_UNLIKELY(Linker
.Options
.Update
))
2504 Linker
.patchRangesForUnit(*CurrentUnit
, DwarfContext
, DMO
);
2505 auto ProcessExpr
= [&](StringRef Bytes
, SmallVectorImpl
<uint8_t> &Buffer
) {
2506 DWARFUnit
&OrigUnit
= CurrentUnit
->getOrigUnit();
2507 DataExtractor
Data(Bytes
, IsLittleEndian
, OrigUnit
.getAddressByteSize());
2508 cloneExpression(Data
,
2509 DWARFExpression(Data
, OrigUnit
.getVersion(),
2510 OrigUnit
.getAddressByteSize()),
2511 DMO
, *CurrentUnit
, Buffer
);
2513 Linker
.Streamer
->emitLocationsForUnit(*CurrentUnit
, DwarfContext
,
2517 if (Linker
.Options
.NoOutput
)
2520 // Emit all the compile unit's debug information.
2521 for (auto &CurrentUnit
: CompileUnits
) {
2522 if (LLVM_LIKELY(!Linker
.Options
.Update
))
2523 Linker
.generateUnitRanges(*CurrentUnit
);
2525 CurrentUnit
->fixupForwardReferences();
2527 if (!CurrentUnit
->getOutputUnitDIE())
2530 assert(Linker
.Streamer
->getDebugInfoSectionSize() ==
2531 CurrentUnit
->getStartOffset());
2532 Linker
.Streamer
->emitCompileUnitHeader(*CurrentUnit
);
2533 Linker
.Streamer
->emitDIE(*CurrentUnit
->getOutputUnitDIE());
2534 assert(Linker
.Streamer
->getDebugInfoSectionSize() ==
2535 CurrentUnit
->computeNextUnitOffset());
2539 void DwarfLinkerForBinary::updateAccelKind(DWARFContext
&Dwarf
) {
2540 if (Options
.TheAccelTableKind
!= AccelTableKind::Default
)
2543 auto &DwarfObj
= Dwarf
.getDWARFObj();
2545 if (!AtLeastOneDwarfAccelTable
&&
2546 (!DwarfObj
.getAppleNamesSection().Data
.empty() ||
2547 !DwarfObj
.getAppleTypesSection().Data
.empty() ||
2548 !DwarfObj
.getAppleNamespacesSection().Data
.empty() ||
2549 !DwarfObj
.getAppleObjCSection().Data
.empty())) {
2550 AtLeastOneAppleAccelTable
= true;
2553 if (!AtLeastOneDwarfAccelTable
&& !DwarfObj
.getNamesSection().Data
.empty()) {
2554 AtLeastOneDwarfAccelTable
= true;
2558 bool DwarfLinkerForBinary::emitPaperTrailWarnings(
2559 const DebugMapObject
&DMO
, const DebugMap
&Map
,
2560 OffsetsStringPool
&StringPool
) {
2561 if (DMO
.getWarnings().empty() || !DMO
.empty())
2564 Streamer
->switchToDebugInfoSection(/* Version */ 2);
2565 DIE
*CUDie
= DIE::get(DIEAlloc
, dwarf::DW_TAG_compile_unit
);
2566 CUDie
->setOffset(11);
2567 StringRef Producer
= StringPool
.internString("dsymutil");
2568 StringRef File
= StringPool
.internString(DMO
.getObjectFilename());
2569 CUDie
->addValue(DIEAlloc
, dwarf::DW_AT_producer
, dwarf::DW_FORM_strp
,
2570 DIEInteger(StringPool
.getStringOffset(Producer
)));
2571 DIEBlock
*String
= new (DIEAlloc
) DIEBlock();
2572 DIEBlocks
.push_back(String
);
2573 for (auto &C
: File
)
2574 String
->addValue(DIEAlloc
, dwarf::Attribute(0), dwarf::DW_FORM_data1
,
2576 String
->addValue(DIEAlloc
, dwarf::Attribute(0), dwarf::DW_FORM_data1
,
2579 CUDie
->addValue(DIEAlloc
, dwarf::DW_AT_name
, dwarf::DW_FORM_string
, String
);
2580 for (const auto &Warning
: DMO
.getWarnings()) {
2581 DIE
&ConstDie
= CUDie
->addChild(DIE::get(DIEAlloc
, dwarf::DW_TAG_constant
));
2583 DIEAlloc
, dwarf::DW_AT_name
, dwarf::DW_FORM_strp
,
2584 DIEInteger(StringPool
.getStringOffset("dsymutil_warning")));
2585 ConstDie
.addValue(DIEAlloc
, dwarf::DW_AT_artificial
, dwarf::DW_FORM_flag
,
2587 ConstDie
.addValue(DIEAlloc
, dwarf::DW_AT_const_value
, dwarf::DW_FORM_strp
,
2588 DIEInteger(StringPool
.getStringOffset(Warning
)));
2590 unsigned Size
= 4 /* FORM_strp */ + File
.size() + 1 +
2591 DMO
.getWarnings().size() * (4 + 1 + 4) +
2592 1 /* End of children */;
2593 DIEAbbrev Abbrev
= CUDie
->generateAbbrev();
2594 assignAbbrev(Abbrev
);
2595 CUDie
->setAbbrevNumber(Abbrev
.getNumber());
2596 Size
+= getULEB128Size(Abbrev
.getNumber());
2597 // Abbreviation ordering needed for classic compatibility.
2598 for (auto &Child
: CUDie
->children()) {
2599 Abbrev
= Child
.generateAbbrev();
2600 assignAbbrev(Abbrev
);
2601 Child
.setAbbrevNumber(Abbrev
.getNumber());
2602 Size
+= getULEB128Size(Abbrev
.getNumber());
2604 CUDie
->setSize(Size
);
2605 Streamer
->emitPaperTrailWarningsDie(Map
.getTriple(), *CUDie
);
2610 static Error
copySwiftInterfaces(
2611 const std::map
<std::string
, std::string
> &ParseableSwiftInterfaces
,
2612 StringRef Architecture
, const LinkOptions
&Options
) {
2614 SmallString
<128> InputPath
;
2615 SmallString
<128> Path
;
2616 sys::path::append(Path
, *Options
.ResourceDir
, "Swift", Architecture
);
2617 if ((EC
= sys::fs::create_directories(Path
.str(), true,
2618 sys::fs::perms::all_all
)))
2619 return make_error
<StringError
>(
2620 "cannot create directory: " + toString(errorCodeToError(EC
)), EC
);
2621 unsigned BaseLength
= Path
.size();
2623 for (auto &I
: ParseableSwiftInterfaces
) {
2624 StringRef ModuleName
= I
.first
;
2625 StringRef InterfaceFile
= I
.second
;
2626 if (!Options
.PrependPath
.empty()) {
2628 sys::path::append(InputPath
, Options
.PrependPath
, InterfaceFile
);
2629 InterfaceFile
= InputPath
;
2631 sys::path::append(Path
, ModuleName
);
2632 Path
.append(".swiftinterface");
2633 if (Options
.Verbose
)
2634 outs() << "copy parseable Swift interface " << InterfaceFile
<< " -> "
2635 << Path
.str() << '\n';
2637 // copy_file attempts an APFS clone first, so this should be cheap.
2638 if ((EC
= sys::fs::copy_file(InterfaceFile
, Path
.str())))
2639 warn(Twine("cannot copy parseable Swift interface ") + InterfaceFile
+
2640 ": " + toString(errorCodeToError(EC
)));
2641 Path
.resize(BaseLength
);
2643 return Error::success();
2646 static Error
emitRemarks(const LinkOptions
&Options
, StringRef BinaryPath
,
2647 StringRef ArchName
, const remarks::RemarkLinker
&RL
) {
2648 // Make sure we don't create the directories and the file if there is nothing
2651 return Error::success();
2653 SmallString
<128> InputPath
;
2654 SmallString
<128> Path
;
2655 // Create the "Remarks" directory in the "Resources" directory.
2656 sys::path::append(Path
, *Options
.ResourceDir
, "Remarks");
2657 if (std::error_code EC
= sys::fs::create_directories(Path
.str(), true,
2658 sys::fs::perms::all_all
))
2659 return errorCodeToError(EC
);
2661 // Append the file name.
2662 // For fat binaries, also append a dash and the architecture name.
2663 sys::path::append(Path
, sys::path::filename(BinaryPath
));
2664 if (Options
.NumDebugMaps
> 1) {
2665 // More than one debug map means we have a fat binary.
2671 raw_fd_ostream
OS(Options
.NoOutput
? "-" : Path
.str(), EC
, sys::fs::OF_None
);
2673 return errorCodeToError(EC
);
2675 if (Error E
= RL
.serialize(OS
, Options
.RemarksFormat
))
2678 return Error::success();
2681 bool DwarfLinkerForBinary::link(const DebugMap
&Map
) {
2682 if (!createStreamer(Map
.getTriple(), OutFile
))
2685 // Size of the DIEs (and headers) generated for the linked output.
2686 // A unique ID that identifies each compile unit.
2687 unsigned UnitID
= 0;
2688 DebugMap
ModuleMap(Map
.getTriple(), Map
.getBinaryPath());
2690 // First populate the data structure we need for each iteration of the
2692 unsigned NumObjects
= Map
.getNumberOfObjects();
2693 std::vector
<LinkContext
> ObjectContexts
;
2694 ObjectContexts
.reserve(NumObjects
);
2695 for (const auto &Obj
: Map
.objects()) {
2696 ObjectContexts
.emplace_back(Map
, *this, *Obj
.get());
2697 LinkContext
&LC
= ObjectContexts
.back();
2699 updateAccelKind(*LC
.DwarfContext
);
2702 // This Dwarf string pool which is only used for uniquing. This one should
2703 // never be used for offsets as its not thread-safe or predictable.
2704 UniquingStringPool
UniquingStringPool(nullptr, true);
2706 // This Dwarf string pool which is used for emission. It must be used
2707 // serially as the order of calling getStringOffset matters for
2709 OffsetsStringPool
OffsetsStringPool(Options
.Translator
, true);
2711 // ODR Contexts for the link.
2712 DeclContextTree ODRContexts
;
2714 // If we haven't decided on an accelerator table kind yet, we base ourselves
2715 // on the DWARF we have seen so far. At this point we haven't pulled in debug
2716 // information from modules yet, so it is technically possible that they
2717 // would affect the decision. However, as they're built with the same
2718 // compiler and flags, it is safe to assume that they will follow the
2719 // decision made here.
2720 if (Options
.TheAccelTableKind
== AccelTableKind::Default
) {
2721 if (AtLeastOneDwarfAccelTable
&& !AtLeastOneAppleAccelTable
)
2722 Options
.TheAccelTableKind
= AccelTableKind::Dwarf
;
2724 Options
.TheAccelTableKind
= AccelTableKind::Apple
;
2727 for (LinkContext
&LinkContext
: ObjectContexts
) {
2728 if (Options
.Verbose
)
2729 outs() << "DEBUG MAP OBJECT: " << LinkContext
.DMO
.getObjectFilename()
2732 // N_AST objects (swiftmodule files) should get dumped directly into the
2733 // appropriate DWARF section.
2734 if (LinkContext
.DMO
.getType() == MachO::N_AST
) {
2735 StringRef File
= LinkContext
.DMO
.getObjectFilename();
2736 auto ErrorOrMem
= MemoryBuffer::getFile(File
);
2738 warn("Could not open '" + File
+ "'\n");
2741 sys::fs::file_status Stat
;
2742 if (auto Err
= sys::fs::status(File
, Stat
)) {
2743 warn(Err
.message());
2746 if (!Options
.NoTimestamp
) {
2747 // The modification can have sub-second precision so we need to cast
2748 // away the extra precision that's not present in the debug map.
2749 auto ModificationTime
=
2750 std::chrono::time_point_cast
<std::chrono::seconds
>(
2751 Stat
.getLastModificationTime());
2752 if (ModificationTime
!= LinkContext
.DMO
.getTimestamp()) {
2753 // Not using the helper here as we can easily stream TimePoint<>.
2754 WithColor::warning()
2755 << "Timestamp mismatch for " << File
<< ": "
2756 << Stat
.getLastModificationTime() << " and "
2757 << sys::TimePoint
<>(LinkContext
.DMO
.getTimestamp()) << "\n";
2762 // Copy the module into the .swift_ast section.
2763 if (!Options
.NoOutput
)
2764 Streamer
->emitSwiftAST((*ErrorOrMem
)->getBuffer());
2768 if (emitPaperTrailWarnings(LinkContext
.DMO
, Map
, OffsetsStringPool
))
2771 if (!LinkContext
.ObjectFile
)
2774 // Look for relocations that correspond to debug map entries.
2776 if (LLVM_LIKELY(!Options
.Update
) &&
2777 !LinkContext
.RelocMgr
->hasValidRelocs()) {
2778 if (Options
.Verbose
)
2779 outs() << "No valid relocations found. Skipping.\n";
2781 // Clear this ObjFile entry as a signal to other loops that we should not
2782 // process this iteration.
2783 LinkContext
.ObjectFile
= nullptr;
2787 // Setup access to the debug info.
2788 if (!LinkContext
.DwarfContext
)
2791 startDebugObject(LinkContext
);
2793 // In a first phase, just read in the debug info and load all clang modules.
2794 LinkContext
.CompileUnits
.reserve(
2795 LinkContext
.DwarfContext
->getNumCompileUnits());
2797 for (const auto &CU
: LinkContext
.DwarfContext
->compile_units()) {
2798 updateDwarfVersion(CU
->getVersion());
2799 auto CUDie
= CU
->getUnitDIE(false);
2800 if (Options
.Verbose
) {
2801 outs() << "Input compilation unit:";
2802 DIDumpOptions DumpOpts
;
2803 DumpOpts
.ChildRecurseDepth
= 0;
2804 DumpOpts
.Verbose
= Options
.Verbose
;
2805 CUDie
.dump(outs(), 0, DumpOpts
);
2807 if (CUDie
&& !LLVM_UNLIKELY(Options
.Update
))
2808 registerModuleReference(CUDie
, *CU
, ModuleMap
, LinkContext
.DMO
,
2809 LinkContext
.Ranges
, OffsetsStringPool
,
2810 UniquingStringPool
, ODRContexts
, 0, UnitID
,
2811 LinkContext
.DwarfContext
->isLittleEndian());
2815 // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
2816 if (MaxDwarfVersion
== 0)
2817 MaxDwarfVersion
= 3;
2819 // At this point we know how much data we have emitted. We use this value to
2820 // compare canonical DIE offsets in analyzeContextInfo to see if a definition
2821 // is already emitted, without being affected by canonical die offsets set
2822 // later. This prevents undeterminism when analyze and clone execute
2823 // concurrently, as clone set the canonical DIE offset and analyze reads it.
2824 const uint64_t ModulesEndOffset
=
2825 Options
.NoOutput
? 0 : Streamer
->getDebugInfoSectionSize();
2827 // These variables manage the list of processed object files.
2828 // The mutex and condition variable are to ensure that this is thread safe.
2829 std::mutex ProcessedFilesMutex
;
2830 std::condition_variable ProcessedFilesConditionVariable
;
2831 BitVector
ProcessedFiles(NumObjects
, false);
2833 // Analyzing the context info is particularly expensive so it is executed in
2834 // parallel with emitting the previous compile unit.
2835 auto AnalyzeLambda
= [&](size_t i
) {
2836 auto &LinkContext
= ObjectContexts
[i
];
2838 if (!LinkContext
.ObjectFile
|| !LinkContext
.DwarfContext
)
2841 for (const auto &CU
: LinkContext
.DwarfContext
->compile_units()) {
2842 updateDwarfVersion(CU
->getVersion());
2843 // The !registerModuleReference() condition effectively skips
2844 // over fully resolved skeleton units. This second pass of
2845 // registerModuleReferences doesn't do any new work, but it
2846 // will collect top-level errors, which are suppressed. Module
2847 // warnings were already displayed in the first iteration.
2849 auto CUDie
= CU
->getUnitDIE(false);
2850 if (!CUDie
|| LLVM_UNLIKELY(Options
.Update
) ||
2851 !registerModuleReference(CUDie
, *CU
, ModuleMap
, LinkContext
.DMO
,
2852 LinkContext
.Ranges
, OffsetsStringPool
,
2853 UniquingStringPool
, ODRContexts
,
2854 ModulesEndOffset
, UnitID
, Quiet
)) {
2855 LinkContext
.CompileUnits
.push_back(std::make_unique
<CompileUnit
>(
2856 *CU
, UnitID
++, !Options
.NoODR
&& !Options
.Update
, ""));
2860 // Now build the DIE parent links that we will use during the next phase.
2861 for (auto &CurrentUnit
: LinkContext
.CompileUnits
) {
2862 auto CUDie
= CurrentUnit
->getOrigUnit().getUnitDIE();
2865 analyzeContextInfo(CurrentUnit
->getOrigUnit().getUnitDIE(), 0,
2866 *CurrentUnit
, &ODRContexts
.getRoot(),
2867 UniquingStringPool
, ODRContexts
, ModulesEndOffset
,
2868 ParseableSwiftInterfaces
,
2869 [&](const Twine
&Warning
, const DWARFDie
&DIE
) {
2870 reportWarning(Warning
, LinkContext
.DMO
, &DIE
);
2875 // And then the remaining work in serial again.
2876 // Note, although this loop runs in serial, it can run in parallel with
2877 // the analyzeContextInfo loop so long as we process files with indices >=
2878 // than those processed by analyzeContextInfo.
2879 auto CloneLambda
= [&](size_t i
) {
2880 auto &LinkContext
= ObjectContexts
[i
];
2881 if (!LinkContext
.ObjectFile
)
2884 // Then mark all the DIEs that need to be present in the linked output
2885 // and collect some information about them.
2886 // Note that this loop can not be merged with the previous one because
2887 // cross-cu references require the ParentIdx to be setup for every CU in
2888 // the object file before calling this.
2889 if (LLVM_UNLIKELY(Options
.Update
)) {
2890 for (auto &CurrentUnit
: LinkContext
.CompileUnits
)
2891 CurrentUnit
->markEverythingAsKept();
2892 Streamer
->copyInvariantDebugSection(*LinkContext
.ObjectFile
);
2894 for (auto &CurrentUnit
: LinkContext
.CompileUnits
)
2895 lookForDIEsToKeep(*LinkContext
.RelocMgr
, LinkContext
.Ranges
,
2896 LinkContext
.CompileUnits
,
2897 CurrentUnit
->getOrigUnit().getUnitDIE(),
2898 LinkContext
.DMO
, *CurrentUnit
, 0);
2901 // The calls to applyValidRelocs inside cloneDIE will walk the reloc
2902 // array again (in the same way findValidRelocsInDebugInfo() did). We
2903 // need to reset the NextValidReloc index to the beginning.
2904 if (LinkContext
.RelocMgr
->hasValidRelocs() || LLVM_UNLIKELY(Options
.Update
))
2905 DIECloner(*this, *LinkContext
.RelocMgr
, DIEAlloc
,
2906 LinkContext
.CompileUnits
, Options
)
2907 .cloneAllCompileUnits(*LinkContext
.DwarfContext
, LinkContext
.DMO
,
2908 LinkContext
.Ranges
, OffsetsStringPool
,
2909 LinkContext
.DwarfContext
->isLittleEndian());
2910 if (!Options
.NoOutput
&& !LinkContext
.CompileUnits
.empty() &&
2911 LLVM_LIKELY(!Options
.Update
))
2912 patchFrameInfoForObject(
2913 LinkContext
.DMO
, LinkContext
.Ranges
, *LinkContext
.DwarfContext
,
2914 LinkContext
.CompileUnits
[0]->getOrigUnit().getAddressByteSize());
2916 // Clean-up before starting working on the next object.
2917 endDebugObject(LinkContext
);
2920 auto EmitLambda
= [&]() {
2921 // Emit everything that's global.
2922 if (!Options
.NoOutput
) {
2923 Streamer
->emitAbbrevs(Abbreviations
, MaxDwarfVersion
);
2924 Streamer
->emitStrings(OffsetsStringPool
);
2925 switch (Options
.TheAccelTableKind
) {
2926 case AccelTableKind::Apple
:
2927 Streamer
->emitAppleNames(AppleNames
);
2928 Streamer
->emitAppleNamespaces(AppleNamespaces
);
2929 Streamer
->emitAppleTypes(AppleTypes
);
2930 Streamer
->emitAppleObjc(AppleObjc
);
2932 case AccelTableKind::Dwarf
:
2933 Streamer
->emitDebugNames(DebugNames
);
2935 case AccelTableKind::Default
:
2936 llvm_unreachable("Default should have already been resolved.");
2942 remarks::RemarkLinker RL
;
2943 if (!Options
.RemarksPrependPath
.empty())
2944 RL
.setExternalFilePrependPath(Options
.RemarksPrependPath
);
2945 auto RemarkLinkLambda
= [&](size_t i
) {
2946 // Link remarks from one object file.
2947 auto &LinkContext
= ObjectContexts
[i
];
2948 if (const object::ObjectFile
*Obj
= LinkContext
.ObjectFile
) {
2949 Error E
= RL
.link(*Obj
);
2950 if (Error NewE
= handleErrors(
2951 std::move(E
), [&](std::unique_ptr
<FileError
> EC
) -> Error
{
2952 return remarksErrorHandler(LinkContext
.DMO
, *this,
2957 return Error(Error::success());
2960 auto AnalyzeAll
= [&]() {
2961 for (unsigned i
= 0, e
= NumObjects
; i
!= e
; ++i
) {
2964 std::unique_lock
<std::mutex
> LockGuard(ProcessedFilesMutex
);
2965 ProcessedFiles
.set(i
);
2966 ProcessedFilesConditionVariable
.notify_one();
2970 auto CloneAll
= [&]() {
2971 for (unsigned i
= 0, e
= NumObjects
; i
!= e
; ++i
) {
2973 std::unique_lock
<std::mutex
> LockGuard(ProcessedFilesMutex
);
2974 if (!ProcessedFiles
[i
]) {
2975 ProcessedFilesConditionVariable
.wait(
2976 LockGuard
, [&]() { return ProcessedFiles
[i
]; });
2985 auto EmitRemarksLambda
= [&]() {
2986 StringRef ArchName
= Map
.getTriple().getArchName();
2987 return emitRemarks(Options
, Map
.getBinaryPath(), ArchName
, RL
);
2990 // Instead of making error handling a lot more complicated using futures,
2991 // write to one llvm::Error instance if something went wrong.
2992 // We're assuming RemarkLinkAllError is alive longer than the thread
2993 // executing RemarkLinkAll.
2994 auto RemarkLinkAll
= [&](Error
&RemarkLinkAllError
) {
2995 // Allow assigning to the error only within the lambda.
2996 ErrorAsOutParameter
EAO(&RemarkLinkAllError
);
2997 for (unsigned i
= 0, e
= NumObjects
; i
!= e
; ++i
)
2998 if ((RemarkLinkAllError
= RemarkLinkLambda(i
)))
3001 if ((RemarkLinkAllError
= EmitRemarksLambda()))
3005 // To limit memory usage in the single threaded case, analyze and clone are
3006 // run sequentially so the LinkContext is freed after processing each object
3007 // in endDebugObject.
3008 if (Options
.Threads
== 1) {
3009 for (unsigned i
= 0, e
= NumObjects
; i
!= e
; ++i
) {
3013 if (Error E
= RemarkLinkLambda(i
))
3014 return error(toString(std::move(E
)));
3018 if (Error E
= EmitRemarksLambda())
3019 return error(toString(std::move(E
)));
3022 // This should not be constructed on the single-threaded path to avoid fatal
3023 // errors from unchecked llvm::Error objects.
3024 Error RemarkLinkAllError
= Error::success();
3027 pool
.async(AnalyzeAll
);
3028 pool
.async(CloneAll
);
3029 pool
.async(RemarkLinkAll
, std::ref(RemarkLinkAllError
));
3032 // Report errors from RemarkLinkAll, if any.
3033 if (Error E
= std::move(RemarkLinkAllError
))
3034 return error(toString(std::move(E
)));
3037 if (Options
.NoOutput
)
3040 if (Options
.ResourceDir
&& !ParseableSwiftInterfaces
.empty()) {
3041 StringRef ArchName
= Triple::getArchTypeName(Map
.getTriple().getArch());
3043 copySwiftInterfaces(ParseableSwiftInterfaces
, ArchName
, Options
))
3044 return error(toString(std::move(E
)));
3047 return Streamer
->finish(Map
, Options
.Translator
);
3048 } // namespace dsymutil
3050 bool linkDwarf(raw_fd_ostream
&OutFile
, BinaryHolder
&BinHolder
,
3051 const DebugMap
&DM
, LinkOptions Options
) {
3052 DwarfLinkerForBinary
Linker(OutFile
, BinHolder
, std::move(Options
));
3053 return Linker
.link(DM
);
3056 } // namespace dsymutil