2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
18 #include <isl/polynomial.h>
19 #include <isl/union_set.h>
23 #include <isl/schedule.h>
24 #include <isl/schedule_node.h>
25 #include <isl/options.h>
26 #include <isl/ast_build.h>
30 #include "gpu_array_tile.h"
31 #include "gpu_group.h"
32 #include "gpu_hybrid.h"
36 #include "ppcg_options.h"
40 struct gpu_array_info
;
42 /* Return the name of the outer array (of structs) accessed by "access".
44 static const char *get_outer_array_name(__isl_keep isl_map
*access
)
49 space
= isl_space_range(isl_map_get_space(access
));
50 while (space
&& isl_space_is_wrapping(space
))
51 space
= isl_space_domain(isl_space_unwrap(space
));
52 name
= isl_space_get_tuple_name(space
, isl_dim_set
);
53 isl_space_free(space
);
58 /* Collect all references to the given array and store pointers to them
61 void collect_references(struct gpu_prog
*prog
,
62 struct gpu_array_info
*array
)
68 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
69 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
70 struct gpu_stmt_access
*access
;
72 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
74 name
= get_outer_array_name(access
->access
);
75 if (name
&& !strcmp(array
->name
, name
))
81 array
->refs
= isl_alloc_array(prog
->ctx
, struct gpu_stmt_access
*, n
);
85 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
86 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
87 struct gpu_stmt_access
*access
;
89 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
91 name
= get_outer_array_name(access
->access
);
92 if (!name
|| strcmp(array
->name
, name
))
95 array
->refs
[n
++] = access
;
100 /* Compute and return the extent of "array", taking into account the set of
103 * In particular, the extent in the outer dimension is taken
104 * from "accessed", while the extents in the remaining dimensions
105 * are taken from array->extent.
107 * The extent in the outer dimension cannot be taken from array->extent
108 * because that may be unbounded. Furthermore, even if it is bounded,
109 * it may be larger than the piece of the array that is being accessed.
111 static __isl_give isl_set
*compute_extent(struct pet_array
*array
,
112 __isl_keep isl_set
*accessed
)
119 extent
= isl_set_copy(array
->extent
);
121 n_index
= isl_set_dim(accessed
, isl_dim_set
);
125 extent
= isl_set_project_out(extent
, isl_dim_set
, 0, 1);
126 outer
= isl_set_copy(accessed
);
127 outer
= isl_set_project_out(outer
, isl_dim_set
, 1, n_index
- 1);
128 extent
= isl_set_flat_product(outer
, extent
);
129 id
= isl_set_get_tuple_id(accessed
);
130 extent
= isl_set_set_tuple_id(extent
, id
);
135 /* Is the array "array" being extracted a read-only scalar?
137 * That is, is "array" a scalar that is never possibly written to.
138 * An array containing structures is never considered to be a scalar.
140 static int is_read_only_scalar(struct gpu_array_info
*array
,
141 struct gpu_prog
*prog
)
144 isl_union_map
*write
;
147 if (array
->has_compound_element
)
149 if (array
->n_index
!= 0)
152 write
= isl_union_map_copy(prog
->may_write
);
153 space
= isl_set_universe(isl_space_copy(array
->space
));
154 write
= isl_union_map_intersect_range(write
,
155 isl_union_set_from_set(space
));
156 empty
= isl_union_map_is_empty(write
);
157 isl_union_map_free(write
);
162 /* Is "array" only accessed as individual, fixed elements?
163 * That is, does each access to "array" access a single, fixed element?
165 isl_bool
only_fixed_element_accessed(struct gpu_array_info
*array
)
169 for (i
= 0; i
< array
->n_ref
; ++i
)
170 if (!array
->refs
[i
]->fixed_element
)
171 return isl_bool_false
;
173 return isl_bool_true
;
176 /* Compute bounds on the host array "pa" based on the corresponding
177 * accessed elements in "arrays"
178 * and collect all references to the array.
179 * Store the results in "info".
181 * If the array is zero-dimensional and does not contain structures,
182 * i.e., if the array is a scalar, we check whether it is read-only.
183 * We also check whether the array is accessed at all.
185 static int extract_array_info(struct gpu_prog
*prog
,
186 struct gpu_array_info
*info
, struct pet_array
*pa
,
187 __isl_keep isl_union_set
*arrays
)
192 isl_multi_pw_aff
*bounds
;
193 isl_set
*accessed
, *extent
;
195 n_index
= isl_set_dim(pa
->extent
, isl_dim_set
);
196 name
= isl_set_get_tuple_name(pa
->extent
);
198 info
->space
= isl_set_get_space(pa
->extent
);
199 info
->name
= strdup(name
);
200 info
->n_index
= n_index
;
201 info
->linearize
= prog
->scop
->options
->linearize_device_arrays
;
203 info
->type
= strdup(pa
->element_type
);
204 info
->size
= pa
->element_size
;
205 info
->local
= pa
->declared
&& !pa
->exposed
;
206 info
->has_compound_element
= pa
->element_is_record
;
207 info
->read_only_scalar
= is_read_only_scalar(info
, prog
);
209 info
->declared_extent
= isl_set_copy(pa
->extent
);
210 accessed
= isl_union_set_extract_set(arrays
,
211 isl_space_copy(info
->space
));
212 empty
= isl_set_is_empty(accessed
);
213 extent
= compute_extent(pa
, accessed
);
214 isl_set_free(accessed
);
215 info
->extent
= extent
;
218 info
->accessed
= !empty
;
219 bounds
= ppcg_size_from_extent(isl_set_copy(extent
));
220 bounds
= isl_multi_pw_aff_gist(bounds
, isl_set_copy(prog
->context
));
223 if (!isl_multi_pw_aff_is_cst(bounds
))
225 info
->bound
= bounds
;
227 collect_references(prog
, info
);
228 info
->only_fixed_element
= only_fixed_element_accessed(info
);
233 /* Remove independence from the order constraints "order" on array "array".
234 * Since the pairs of iterations in the filter relation of an independence
235 * are guaranteed to be completely independent by the user, there is
236 * no need to ensure that live ranges are ordered along those pairs.
237 * We make an exception for local variables, though, as the independence
238 * guarantee does not apply to those.
240 * The order constraints are used in two places.
241 * Those on scalars are used in check_scalar_live_ranges to check if
242 * we need to force the scalar to be private. Any non-local scalar
243 * should not be forced scalar if it only appears in independent loops.
244 * Those on non-scalars are added to the coincidence constraints
245 * in compute_schedule because we do not support any array expansion.
246 * Accesses to non-local arrays should not prevent a loop from being
247 * considered coincident so we should indeed remove those constraints
248 * from the order constraints.
250 static __isl_give isl_union_map
*remove_independences(struct gpu_prog
*prog
,
251 struct gpu_array_info
*array
, __isl_take isl_union_map
*order
)
253 // We do not have independence information in Polly. Hence, make this
258 for (i
= 0; i
< prog
->scop
->pet
->n_independence
; ++i
) {
259 struct pet_independence
*pi
= prog
->scop
->pet
->independences
[i
];
260 if (isl_union_set_contains(pi
->local
, array
->space
))
263 order
= isl_union_map_subtract(order
,
264 isl_union_map_copy(pi
->filter
));
270 /* For each array in "prog", store the (untagged) order dependences
271 * derived from the array in array->dep_order.
272 * In particular, consider all references that access the given array
273 * and take the order dependences that have one of these references
274 * as source. (Since an order dependence relates two references to
275 * the same array, the target of these order dependences will also
276 * be one of these references.)
277 * Additionally, store the union of these array->dep_order relations
278 * for all arrays that cannot be mapped to private memory in prog->array_order.
280 void collect_order_dependences(struct gpu_prog
*prog
)
284 isl_union_map
*accesses
;
286 space
= isl_union_map_get_space(prog
->read
);
287 prog
->array_order
= isl_union_map_empty(space
);
289 accesses
= isl_union_map_copy(prog
->scop
->tagged_reads
);
290 accesses
= isl_union_map_union(accesses
,
291 isl_union_map_copy(prog
->scop
->tagged_may_writes
));
292 accesses
= isl_union_map_universe(accesses
);
293 accesses
= isl_union_map_apply_range(accesses
,
294 isl_union_map_copy(prog
->to_outer
));
296 for (i
= 0; i
< prog
->n_array
; ++i
) {
297 struct gpu_array_info
*array
= &prog
->array
[i
];
300 isl_union_map
*order
;
302 set
= isl_set_universe(isl_space_copy(array
->space
));
303 uset
= isl_union_set_from_set(set
);
304 uset
= isl_union_map_domain(
305 isl_union_map_intersect_range(isl_union_map_copy(accesses
),
307 order
= isl_union_map_copy(prog
->scop
->tagged_dep_order
);
308 order
= isl_union_map_intersect_domain(order
, uset
);
309 order
= isl_union_map_zip(order
);
310 order
= isl_union_set_unwrap(isl_union_map_domain(order
));
311 order
= remove_independences(prog
, array
, order
);
312 array
->dep_order
= order
;
314 if (gpu_array_can_be_private(array
))
317 prog
->array_order
= isl_union_map_union(prog
->array_order
,
318 isl_union_map_copy(array
->dep_order
));
321 isl_union_map_free(accesses
);
324 /* Construct a gpu_array_info for each array referenced by prog->scop and
325 * collect them in prog->array.
327 * The sizes are based on the extents and the set of possibly accessed
328 * elements by "prog".
329 * If there are any member accesses involved, then they are first mapped
330 * to the outer arrays of structs.
331 * Only extract gpu_array_info entries for these outer arrays.
333 * If we are allowing live range reordering, then also set
334 * the dep_order field. Otherwise leave it NULL.
336 static int collect_array_info(struct gpu_prog
*prog
)
340 isl_union_set
*arrays
;
342 arrays
= isl_union_map_range(isl_union_map_copy(prog
->read
));
343 arrays
= isl_union_set_union(arrays
,
344 isl_union_map_range(isl_union_map_copy(prog
->may_write
)));
346 arrays
= isl_union_set_apply(arrays
,
347 isl_union_map_copy(prog
->to_outer
));
349 arrays
= isl_union_set_coalesce(arrays
);
351 prog
->n_array
= prog
->scop
->pet
->n_array
;
352 prog
->array
= isl_calloc_array(prog
->ctx
,
353 struct gpu_array_info
, prog
->n_array
);
356 for (i
= 0; i
< prog
->scop
->pet
->n_array
; ++i
) {
359 field
= isl_set_is_wrapping(prog
->scop
->pet
->arrays
[i
]->extent
);
364 if (extract_array_info(prog
, &prog
->array
[prog
->n_array
++],
365 prog
->scop
->pet
->arrays
[i
], arrays
) < 0)
368 if (i
< prog
->scop
->pet
->n_array
)
371 isl_union_set_free(arrays
);
373 if (prog
->scop
->options
->live_range_reordering
)
374 collect_order_dependences(prog
);
379 static void free_array_info(struct gpu_prog
*prog
)
383 for (i
= 0; i
< prog
->n_array
; ++i
) {
384 free(prog
->array
[i
].type
);
385 free(prog
->array
[i
].name
);
386 isl_multi_pw_aff_free(prog
->array
[i
].bound
);
387 isl_ast_expr_free(prog
->array
[i
].bound_expr
);
388 isl_space_free(prog
->array
[i
].space
);
389 isl_set_free(prog
->array
[i
].declared_extent
);
390 isl_set_free(prog
->array
[i
].extent
);
391 isl_ast_expr_free(prog
->array
[i
].declared_size
);
392 free(prog
->array
[i
].refs
);
393 isl_union_map_free(prog
->array
[i
].dep_order
);
398 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
399 * as an array or through a pointer reference, but as a single data element.
400 * At the moment, scalars are represented as zero-dimensional arrays.
401 * Note that the single data element may be an entire structure.
403 int gpu_array_is_scalar(struct gpu_array_info
*array
)
405 return array
->n_index
== 0;
408 /* Can "array" be mapped to private memory?
409 * That is, is it only accessed as individual elements with
410 * constant index expressions?
412 isl_bool
gpu_array_can_be_private(struct gpu_array_info
*array
)
415 return isl_bool_error
;
416 return array
->only_fixed_element
;
419 /* Is "array" a read-only scalar?
421 int gpu_array_is_read_only_scalar(struct gpu_array_info
*array
)
423 return array
->read_only_scalar
;
426 /* Does "array" need to be allocated on the device?
427 * If it is a read-only scalar, then it will be passed as an argument
428 * to the kernel and therefore does not require any allocation.
429 * If this device memory is not accessed at all, then it does not
430 * need to be allocated either.
432 int gpu_array_requires_device_allocation(struct gpu_array_info
*array
)
434 if (gpu_array_is_read_only_scalar(array
))
441 /* Return the set of parameter values for which the array has a positive
442 * size in all dimensions.
443 * If the sizes are only valid for some parameter values, then those
444 * constraints are also taken into account.
446 __isl_give isl_set
*gpu_array_positive_size_guard(struct gpu_array_info
*array
)
455 space
= isl_space_params(isl_space_copy(array
->space
));
456 guard
= isl_set_universe(space
);
458 for (i
= 0; i
< array
->n_index
; ++i
) {
460 isl_set
*guard_i
, *zero
;
462 bound
= isl_multi_pw_aff_get_pw_aff(array
->bound
, i
);
463 guard_i
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound
));
464 zero
= isl_pw_aff_zero_set(bound
);
465 guard_i
= isl_set_subtract(guard_i
, zero
);
466 guard
= isl_set_intersect(guard
, guard_i
);
472 /* Internal data structure for extract_size_of_type.
473 * "type" specifies the name of the space that we want to extract.
474 * "res" is used to store the subset of that space.
476 struct ppcg_extract_size_data
{
481 /* This function is called for each set in a union_set.
482 * If the name of the set matches data->type, we store the
485 static isl_stat
extract_size_of_type(__isl_take isl_set
*size
, void *user
)
487 struct ppcg_extract_size_data
*data
= user
;
490 name
= isl_set_get_tuple_name(size
);
491 if (name
&& !strcmp(name
, data
->type
)) {
493 return isl_stat_error
;
500 /* Given a union map { kernel[i] -> *[...] },
501 * return the range in the space called "type" for the kernel with
502 * sequence number "id".
504 static __isl_give isl_set
*extract_sizes(__isl_keep isl_union_map
*sizes
,
505 const char *type
, int id
)
509 isl_union_set
*local_sizes
;
510 struct ppcg_extract_size_data data
= { type
, NULL
};
515 space
= isl_union_map_get_space(sizes
);
516 space
= isl_space_set_from_params(space
);
517 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
518 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
519 dom
= isl_set_universe(space
);
520 dom
= isl_set_fix_si(dom
, isl_dim_set
, 0, id
);
522 local_sizes
= isl_union_set_apply(isl_union_set_from_set(dom
),
523 isl_union_map_copy(sizes
));
524 isl_union_set_foreach_set(local_sizes
, &extract_size_of_type
, &data
);
525 isl_union_set_free(local_sizes
);
529 /* Given a singleton set, extract the first (at most *len) elements
530 * of the single integer tuple into *sizes and update *len if needed.
532 static void read_sizes_from_set(__isl_take isl_set
*set
, int *sizes
, int *len
)
540 dim
= isl_set_dim(set
, isl_dim_set
);
544 for (i
= 0; i
< *len
; ++i
) {
547 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, i
);
550 sizes
[i
] = isl_val_get_num_si(v
);
557 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
558 * if the option debug->dump_sizes is set.
560 static void set_used_sizes(struct gpu_gen
*gen
, const char *type
, int id
,
567 if (!gen
->options
->debug
->dump_sizes
)
570 space
= isl_union_map_get_space(gen
->used_sizes
);
571 space
= isl_space_set_from_params(space
);
572 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
573 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
574 space
= isl_space_from_domain(space
);
575 space
= isl_space_add_dims(space
, isl_dim_out
, len
);
576 space
= isl_space_set_tuple_name(space
, isl_dim_out
, type
);
578 map
= isl_map_universe(space
);
579 map
= isl_map_fix_si(map
, isl_dim_in
, 0, id
);
580 for (i
= 0; i
< len
; ++i
)
581 map
= isl_map_fix_si(map
, isl_dim_out
, i
, sizes
[i
]);
583 gen
->used_sizes
= isl_union_map_add_map(gen
->used_sizes
, map
);
586 /* Extract user specified "tile" sizes from the "sizes" command line option,
587 * defaulting to option->tile_size in each dimension.
588 * *tile_len contains the maximum number of tile sizes needed.
589 * Update *tile_len to the number of specified tile sizes, if any, and
590 * return a pointer to the tile sizes (or NULL on error).
591 * Add the effectively used sizes to gen->used_sizes.
593 static int *read_tile_sizes(struct gpu_gen
*gen
, int *tile_len
)
599 tile_size
= isl_alloc_array(gen
->ctx
, int, *tile_len
);
602 for (n
= 0; n
< *tile_len
; ++n
)
603 tile_size
[n
] = gen
->options
->tile_size
;
605 size
= extract_sizes(gen
->sizes
, "tile", gen
->kernel_id
);
606 read_sizes_from_set(size
, tile_size
, tile_len
);
607 set_used_sizes(gen
, "tile", gen
->kernel_id
, tile_size
, *tile_len
);
612 /* Extract user specified "block" sizes from the "sizes" command line option,
613 * after filling in some potentially useful defaults.
615 static void read_block_sizes(struct ppcg_kernel
*kernel
,
616 __isl_keep isl_union_map
*sizes
)
620 if (kernel
->n_block
> 3)
622 switch (kernel
->n_block
) {
624 kernel
->block_dim
[0] = 512;
627 kernel
->block_dim
[0] = 32;
628 kernel
->block_dim
[1] = 16;
631 kernel
->block_dim
[0] = 32;
632 kernel
->block_dim
[1] = 4;
633 kernel
->block_dim
[2] = 4;
637 size
= extract_sizes(sizes
, "block", kernel
->id
);
638 read_sizes_from_set(size
, kernel
->block_dim
, &kernel
->n_block
);
641 /* Extract user specified "grid" sizes from the "sizes" command line option,
642 * after filling in some potentially useful defaults.
644 static void read_grid_sizes(struct ppcg_kernel
*kernel
,
645 __isl_keep isl_union_map
*sizes
)
649 if (kernel
->n_grid
> 2)
651 switch (kernel
->n_grid
) {
653 kernel
->grid_dim
[0] = 32768;
656 kernel
->grid_dim
[0] = 256;
657 kernel
->grid_dim
[1] = 256;
661 size
= extract_sizes(sizes
, "grid", kernel
->id
);
662 read_sizes_from_set(size
, kernel
->grid_dim
, &kernel
->n_grid
);
665 /* Extract user specified grid and block sizes from the gen->sizes
666 * command line option after filling in some potentially useful defaults.
667 * Store the extracted sizes in "kernel".
668 * Add the effectively used sizes to gen->used_sizes.
670 static void read_grid_and_block_sizes(struct ppcg_kernel
*kernel
,
673 read_block_sizes(kernel
, gen
->sizes
);
674 read_grid_sizes(kernel
, gen
->sizes
);
675 set_used_sizes(gen
, "block", kernel
->id
,
676 kernel
->block_dim
, kernel
->n_block
);
677 set_used_sizes(gen
, "grid", kernel
->id
,
678 kernel
->grid_dim
, kernel
->n_grid
);
681 static void *free_stmts(struct gpu_stmt
*stmts
, int n
)
688 for (i
= 0; i
< n
; ++i
) {
689 struct gpu_stmt_access
*access
, *next
;
691 for (access
= stmts
[i
].accesses
; access
; access
= next
) {
693 isl_id_free(access
->ref_id
);
694 isl_map_free(access
->access
);
695 isl_map_free(access
->tagged_access
);
699 isl_id_free(stmts
[i
].id
);
706 /* Add parameters p[i] with identifiers "ids" to "set",
707 * with bounds to 0 <= p[i] < size[i].
709 __isl_give isl_set
*add_bounded_parameters(__isl_take isl_set
*set
,
710 int *size
, __isl_keep isl_id_list
*ids
)
715 len
= isl_id_list_n_id(ids
);
716 nparam
= isl_set_dim(set
, isl_dim_param
);
717 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
719 for (i
= 0; i
< len
; ++i
) {
722 id
= isl_id_list_get_id(ids
, i
);
723 set
= isl_set_set_dim_id(set
, isl_dim_param
, nparam
+ i
, id
);
724 set
= isl_set_lower_bound_si(set
, isl_dim_param
, nparam
+ i
, 0);
725 set
= isl_set_upper_bound_si(set
, isl_dim_param
,
726 nparam
+ i
, size
[i
] - 1);
732 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
735 * { : 0 <= p[i] < size[i] }
737 * or an overapproximation.
739 static __isl_give isl_set
*add_bounded_parameters_dynamic(
740 __isl_take isl_set
*set
, __isl_keep isl_multi_pw_aff
*size
,
741 __isl_keep isl_id_list
*ids
)
748 len
= isl_multi_pw_aff_dim(size
, isl_dim_out
);
749 nparam
= isl_set_dim(set
, isl_dim_param
);
750 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
752 for (i
= 0; i
< len
; ++i
) {
755 id
= isl_id_list_get_id(ids
, i
);
756 set
= isl_set_set_dim_id(set
, isl_dim_param
, nparam
+ i
, id
);
759 space
= isl_space_params(isl_set_get_space(set
));
760 ls
= isl_local_space_from_space(space
);
761 for (i
= 0; i
< len
; ++i
) {
762 isl_pw_aff
*param
, *size_i
, *zero
;
765 param
= isl_pw_aff_var_on_domain(isl_local_space_copy(ls
),
766 isl_dim_param
, nparam
+ i
);
768 size_i
= isl_multi_pw_aff_get_pw_aff(size
, i
);
769 bound
= isl_pw_aff_lt_set(isl_pw_aff_copy(param
), size_i
);
770 bound
= isl_set_from_basic_set(isl_set_simple_hull(bound
));
771 set
= isl_set_intersect_params(set
, bound
);
773 zero
= isl_pw_aff_zero_on_domain(isl_local_space_copy(ls
));
774 bound
= isl_pw_aff_ge_set(param
, zero
);
775 set
= isl_set_intersect_params(set
, bound
);
777 isl_local_space_free(ls
);
782 /* Return the union of all tagged access relations in the group.
784 static __isl_give isl_union_map
*group_tagged_access_relation(
785 struct gpu_array_ref_group
*group
)
788 isl_union_map
*access
;
790 access
= isl_union_map_empty(isl_map_get_space(group
->access
));
791 for (i
= 0; i
< group
->n_ref
; ++i
) {
794 map_i
= isl_map_copy(group
->refs
[i
]->tagged_access
);
795 access
= isl_union_map_union(access
,
796 isl_union_map_from_map(map_i
));
802 /* Return the extent of "array", recomputed from the bounds.
803 * The recomputed extent may be simpler than the original extent.
805 static __isl_give isl_set
*array_extent(struct gpu_array_info
*array
)
813 id
= isl_set_get_tuple_id(array
->extent
);
814 space
= isl_set_get_space(array
->extent
);
815 extent
= isl_set_universe(isl_space_copy(space
));
816 ls
= isl_local_space_from_space(space
);
817 for (i
= 0; i
< array
->n_index
; ++i
) {
823 extent
= isl_set_lower_bound_si(extent
, isl_dim_set
, i
, 0);
825 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
827 index
= isl_pw_aff_from_aff(aff
);
828 bound
= isl_multi_pw_aff_get_pw_aff(array
->bound
, i
);
829 bound
= isl_pw_aff_from_range(bound
);
830 bound
= isl_pw_aff_add_dims(bound
, isl_dim_in
, array
->n_index
);
831 bound
= isl_pw_aff_set_tuple_id(bound
, isl_dim_in
,
833 lt
= isl_pw_aff_lt_set(index
, bound
);
834 extent
= isl_set_intersect(extent
, lt
);
836 isl_local_space_free(ls
);
842 /* Return a map from the first group->shared_tile->depth dimensions
843 * of the computed schedule to the array tile in
844 * global memory that corresponds to the shared memory copy.
846 * In particular, return a map
852 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
856 * 0 <= a <= array_size - 1 (2)
858 * Note that if some stride has been detected (i.e., when
859 * group->shared_tile->bound[i].shift is set), then a in (1) refers
860 * to the shifted and scaled down version.
862 * Constraints (1) are obtained by mapping the size constraints on the
863 * shared/private memory tile back to the access relation.
864 * Constraints (2) are obtained from the (recomputed) extent.
866 static __isl_give isl_map
*group_tile(struct gpu_array_ref_group
*group
)
869 int n_index
= group
->array
->n_index
;
875 space
= isl_multi_aff_get_space(group
->shared_tile
->tiling
);
876 space
= isl_space_range(space
);
877 local
= isl_set_universe(space
);
878 for (i
= 0; i
< n_index
; ++i
) {
881 local
= isl_set_lower_bound_si(local
, isl_dim_set
, i
, 0);
882 bound
= isl_val_copy(group
->shared_tile
->bound
[i
].size
);
883 bound
= isl_val_sub_ui(bound
, 1);
884 local
= isl_set_upper_bound_val(local
, isl_dim_set
, i
, bound
);
886 local
= isl_set_preimage_multi_aff(local
,
887 isl_multi_aff_copy(group
->shared_tile
->tiling
));
888 tile
= isl_set_unwrap(local
);
889 extent
= array_extent(group
->array
);
890 tile
= isl_map_intersect_range(tile
, extent
);
895 /* Given a mapping "iterator_map" from the AST schedule to a domain,
896 * return the corresponding mapping from the AST schedule to
897 * to the outer kernel->copy_schedule_dim dimensions of
898 * the schedule computed by PPCG for this kernel.
900 * Note that kernel->copy_schedule_dim is at least as large as
901 * the largest depth of any array reference group associated to the kernel.
902 * This is needed as the returned schedule is used to extract a mapping
903 * to the outer tile->depth dimensions in transform_index.
905 static __isl_give isl_pw_multi_aff
*compute_sched_to_copy(
906 struct ppcg_kernel
*kernel
, __isl_take isl_pw_multi_aff
*iterator_map
)
908 isl_union_pw_multi_aff
*upma
;
909 isl_pw_multi_aff
*pma
;
912 space
= isl_space_range(isl_pw_multi_aff_get_space(iterator_map
));
913 space
= isl_space_from_domain(space
);
914 space
= isl_space_add_dims(space
, isl_dim_out
,
915 kernel
->copy_schedule_dim
);
917 upma
= isl_union_pw_multi_aff_copy(kernel
->copy_schedule
);
918 pma
= isl_union_pw_multi_aff_extract_pw_multi_aff(upma
, space
);
919 isl_union_pw_multi_aff_free(upma
);
921 return isl_pw_multi_aff_pullback_pw_multi_aff(pma
, iterator_map
);
924 /* If max_shared_memory is not set to infinity (-1), then make
925 * sure that the total amount of shared memory required by the
926 * array reference groups mapped to shared memory by "kernel"
927 * is no larger than this maximum.
929 * We apply a greedy approach and discard (keep in global memory)
930 * those groups that would result in a total memory size that
931 * is larger than the maximum.
933 * This function should be called after any function that may
934 * affect the decision on whether to place a reference group
935 * in private, shared or global memory.
937 static void check_shared_memory_bound(struct ppcg_kernel
*kernel
)
940 isl_val
*left
, *size
;
942 if (kernel
->options
->max_shared_memory
< 0)
945 left
= isl_val_int_from_si(kernel
->ctx
,
946 kernel
->options
->max_shared_memory
);
948 for (i
= 0; i
< kernel
->n_array
; ++i
) {
949 struct gpu_local_array_info
*local
= &kernel
->array
[i
];
951 for (j
= 0; j
< local
->n_group
; ++j
) {
952 struct gpu_array_ref_group
*group
;
953 enum ppcg_group_access_type type
;
955 group
= local
->groups
[j
];
956 type
= gpu_array_ref_group_type(group
);
957 if (type
!= ppcg_access_shared
)
960 size
= gpu_array_tile_size(group
->shared_tile
);
961 size
= isl_val_mul_ui(size
, local
->array
->size
);
963 if (isl_val_le(size
, left
)) {
964 left
= isl_val_sub(left
, size
);
970 gpu_array_tile_free(group
->shared_tile
);
977 /* Mark all arrays of "kernel" that have an array reference group
978 * that is not mapped to private or shared memory as
979 * accessing the corresponding global device memory.
981 static void mark_global_arrays(struct ppcg_kernel
*kernel
)
985 for (i
= 0; i
< kernel
->n_array
; ++i
) {
986 struct gpu_local_array_info
*local
= &kernel
->array
[i
];
990 for (j
= 0; j
< local
->n_group
; ++j
) {
991 if (gpu_array_ref_group_tile(local
->groups
[j
]))
995 local
->array
->global
= 1;
1001 /* Compute a tiling for all the array reference groups in "kernel".
1003 static void compute_group_tilings(struct ppcg_kernel
*kernel
)
1007 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1008 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1010 for (j
= 0; j
< array
->n_group
; ++j
)
1011 gpu_array_ref_group_compute_tiling(array
->groups
[j
]);
1015 /* Compute the effective grid size as a list of the sizes in each dimension.
1017 * The grid size specified by the user or set by default
1018 * in read_grid_sizes() and applied by the block filter,
1019 * may be too large for the given code in the sense that
1020 * it may contain blocks that don't need to execute anything.
1021 * We therefore don't return this grid size, but instead the
1022 * smallest grid size that ensures that all blocks that actually
1023 * execute code are included in the grid.
1025 * We first extract a description of the grid, i.e., the possible values
1026 * of the block ids, from the domain elements in "domain" and
1027 * kernel->block_filter.
1028 * The block ids are parameters in kernel->block_filter.
1029 * We simply need to change them into set dimensions.
1031 * Then, for each block dimension, we compute the maximal value of the block id
1034 static __isl_give isl_multi_pw_aff
*extract_grid_size(
1035 struct ppcg_kernel
*kernel
, __isl_take isl_union_set
*domain
)
1040 isl_multi_pw_aff
*size
;
1042 domain
= isl_union_set_intersect(domain
,
1043 isl_union_set_copy(kernel
->block_filter
));
1044 grid
= isl_union_set_params(domain
);
1045 grid
= isl_set_from_params(grid
);
1046 grid
= isl_set_add_dims(grid
, isl_dim_set
, kernel
->n_grid
);
1047 for (i
= 0; i
< kernel
->n_grid
; ++i
) {
1051 id
= isl_id_list_get_id(kernel
->block_ids
, i
);
1052 pos
= isl_set_find_dim_by_id(grid
, isl_dim_param
, id
);
1055 grid
= isl_set_equate(grid
, isl_dim_param
, pos
, isl_dim_set
, i
);
1056 grid
= isl_set_project_out(grid
, isl_dim_param
, pos
, 1);
1059 grid
= isl_set_coalesce(grid
);
1060 size
= ppcg_size_from_extent(grid
);
1061 context
= isl_set_params(isl_set_copy(kernel
->context
));
1062 return isl_multi_pw_aff_gist(size
, context
);
1065 /* Compute the size of a fixed bounding box around the origin and "set",
1066 * where "set" is assumed to contain only non-negative elements,
1067 * and store the results in "size".
1068 * In particular, compute the maximal value of "set" in each direction
1071 static void extract_fixed_size(__isl_take isl_set
*set
, int *size
)
1074 isl_local_space
*ls
;
1077 n
= isl_set_dim(set
, isl_dim_set
);
1078 ls
= isl_local_space_from_space(isl_set_get_space(set
));
1079 obj
= isl_aff_zero_on_domain(ls
);
1080 for (i
= 0; i
< n
; ++i
) {
1083 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 1);
1084 max
= isl_set_max_val(set
, obj
);
1085 size
[i
] = isl_val_get_num_si(max
) + 1;
1087 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 0);
1093 /* Compute the effective block size as a list of the sizes in each dimension
1094 * and store the sizes in kernel->block_dim.
1096 * The block size specified by the user or set by default
1097 * in read_block_sizes() and applied by the thread filter,
1098 * may be too large for the given code in the sense that
1099 * it may contain threads that don't need to execute anything.
1100 * We therefore update this block size in kernel->block_dim
1101 * to the smallest block size that ensures that all threads
1102 * that actually execute code are included in the block.
1104 * The set of possible values of the thread ids is obtained from
1105 * the domain elements "domain" and kernel->thread_filter.
1106 * The current implementation eliminates all parameters, ensuring
1107 * that the size is a fixed constant in each dimension.
1108 * In principle we could also compute parametric sizes.
1109 * We would have to make sure to project out all b%d and t%d parameters,
1112 static isl_stat
extract_block_size(struct ppcg_kernel
*kernel
,
1113 __isl_take isl_union_set
*domain
)
1119 domain
= isl_union_set_intersect(domain
,
1120 isl_union_set_copy(kernel
->thread_filter
));
1121 block
= isl_union_set_params(domain
);
1122 block
= isl_set_from_params(block
);
1123 block
= isl_set_add_dims(block
, isl_dim_set
, kernel
->n_block
);
1124 for (i
= 0; i
< kernel
->n_block
; ++i
) {
1129 return isl_stat_error
;
1131 id
= isl_id_list_get_id(kernel
->thread_ids
, i
);
1132 pos
= isl_set_find_dim_by_id(block
, isl_dim_param
, id
);
1135 isl_die(isl_set_get_ctx(block
), isl_error_internal
,
1136 "missing constraints on thread identifier",
1137 block
= isl_set_free(block
));
1138 block
= isl_set_equate(block
, isl_dim_param
, pos
,
1141 nparam
= isl_set_dim(block
, isl_dim_param
);
1142 block
= isl_set_project_out(block
, isl_dim_param
, 0, nparam
);
1145 return isl_stat_error
;
1147 extract_fixed_size(block
, kernel
->block_dim
);
1152 struct ppcg_kernel
*ppcg_kernel_free(struct ppcg_kernel
*kernel
)
1159 isl_id_list_free(kernel
->block_ids
);
1160 isl_id_list_free(kernel
->thread_ids
);
1161 isl_multi_pw_aff_free(kernel
->grid_size
);
1162 isl_ast_expr_free(kernel
->grid_size_expr
);
1163 isl_set_free(kernel
->context
);
1164 isl_union_set_free(kernel
->core
);
1165 isl_union_set_free(kernel
->arrays
);
1166 isl_union_pw_multi_aff_free(kernel
->contraction
);
1167 isl_union_set_free(kernel
->expanded_domain
);
1168 isl_space_free(kernel
->space
);
1169 isl_ast_node_free(kernel
->tree
);
1170 isl_union_set_free(kernel
->block_filter
);
1171 isl_union_set_free(kernel
->thread_filter
);
1172 isl_union_pw_multi_aff_free(kernel
->copy_schedule
);
1173 isl_union_set_free(kernel
->sync_writes
);
1175 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1176 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1178 for (j
= 0; j
< array
->n_group
; ++j
)
1179 gpu_array_ref_group_free(array
->groups
[j
]);
1180 free(array
->groups
);
1182 isl_multi_pw_aff_free(array
->bound
);
1183 isl_ast_expr_free(array
->bound_expr
);
1185 free(kernel
->array
);
1187 for (i
= 0; i
< kernel
->n_var
; ++i
) {
1188 free(kernel
->var
[i
].name
);
1189 isl_vec_free(kernel
->var
[i
].size
);
1198 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1200 static void ppcg_kernel_free_wrap(void *user
)
1202 struct ppcg_kernel
*kernel
= user
;
1204 ppcg_kernel_free(kernel
);
1207 static void create_kernel_var(isl_ctx
*ctx
, struct gpu_array_ref_group
*group
,
1208 struct ppcg_kernel_var
*var
)
1211 struct gpu_array_tile
*tile
;
1214 var
->array
= group
->array
;
1216 var
->type
= gpu_array_ref_group_type(group
);
1217 tile
= gpu_array_ref_group_tile(group
);
1219 p
= isl_printer_to_str(ctx
);
1220 p
= gpu_array_ref_group_print_name(group
, p
);
1221 var
->name
= isl_printer_get_str(p
);
1222 isl_printer_free(p
);
1224 var
->size
= isl_vec_alloc(ctx
, group
->array
->n_index
);
1226 for (j
= 0; j
< group
->array
->n_index
; ++j
)
1227 var
->size
= isl_vec_set_element_val(var
->size
, j
,
1228 isl_val_copy(tile
->bound
[j
].size
));
1231 static int create_kernel_vars(struct ppcg_kernel
*kernel
)
1236 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1237 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1239 for (j
= 0; j
< array
->n_group
; ++j
) {
1240 struct gpu_array_ref_group
*group
= array
->groups
[j
];
1241 enum ppcg_group_access_type type
;
1243 type
= gpu_array_ref_group_type(group
);
1244 if (type
!= ppcg_access_global
)
1250 kernel
->var
= isl_calloc_array(kernel
->ctx
, struct ppcg_kernel_var
, n
);
1255 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1256 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1258 for (j
= 0; j
< array
->n_group
; ++j
) {
1259 struct gpu_array_ref_group
*group
= array
->groups
[j
];
1260 enum ppcg_group_access_type type
;
1262 type
= gpu_array_ref_group_type(group
);
1263 if (type
== ppcg_access_global
)
1265 create_kernel_var(kernel
->ctx
, group
, &kernel
->var
[n
]);
1273 /* Replace "pa" by the zero function defined over the universe domain
1274 * in the space of "pa".
1276 static __isl_give isl_pw_aff
*set_universally_zero(__isl_take isl_pw_aff
*pa
)
1281 space
= isl_space_domain(isl_pw_aff_get_space(pa
));
1282 isl_pw_aff_free(pa
);
1283 zero
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1285 return isl_pw_aff_from_aff(zero
);
1288 /* The sizes of the arrays on the host that have been computed by
1289 * extract_array_info may depend on the parameters. Use the extra
1290 * constraints on the parameters that are valid at "host_domain"
1291 * to simplify these expressions and store the results in kernel->array.
1293 * We only need these localized bounds for arrays that are accessed
1294 * by the current kernel. If we have found at least one reference group
1295 * then the array is accessed by the kernel.
1297 * The resulting sizes may be functions that are nowhere defined
1298 * in case the access function cannot possibly access anything inside
1299 * the kernel for some reason. If so, they are replaced by the zero
1300 * function. Since the access function cannot actually access anything,
1301 * there is no harm in printing the array sizes as zero.
1303 static void localize_bounds(struct ppcg_kernel
*kernel
,
1304 __isl_keep isl_set
*host_domain
)
1309 context
= isl_set_copy(host_domain
);
1310 context
= isl_set_params(context
);
1312 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1313 struct gpu_local_array_info
*local
= &kernel
->array
[i
];
1314 isl_multi_pw_aff
*bound
;
1317 if (local
->n_group
== 0)
1320 n_index
= local
->array
->n_index
;
1321 bound
= isl_multi_pw_aff_copy(local
->array
->bound
);
1323 for (j
= 0; j
< n_index
; ++j
) {
1327 pwaff
= isl_multi_pw_aff_get_pw_aff(bound
, j
);
1328 pwaff
= isl_pw_aff_gist(pwaff
, isl_set_copy(context
));
1329 empty
= isl_pw_aff_is_empty(pwaff
);
1331 pwaff
= isl_pw_aff_free(pwaff
);
1333 pwaff
= set_universally_zero(pwaff
);
1334 bound
= isl_multi_pw_aff_set_pw_aff(bound
, j
, pwaff
);
1337 local
->n_index
= n_index
;
1338 local
->bound
= bound
;
1340 isl_set_free(context
);
1343 /* Create the array of gpu_local_array_info structures "array"
1344 * inside "kernel". The number of elements in this array is
1345 * the same as the number of arrays in "prog".
1346 * Initialize the "array" field of each local array to point
1347 * to the corresponding array in "prog".
1349 static struct ppcg_kernel
*ppcg_kernel_create_local_arrays(
1350 struct ppcg_kernel
*kernel
, struct gpu_prog
*prog
)
1355 ctx
= isl_set_get_ctx(prog
->context
);
1356 kernel
->array
= isl_calloc_array(ctx
,
1357 struct gpu_local_array_info
, prog
->n_array
);
1359 return ppcg_kernel_free(kernel
);
1360 kernel
->n_array
= prog
->n_array
;
1362 for (i
= 0; i
< prog
->n_array
; ++i
)
1363 kernel
->array
[i
].array
= &prog
->array
[i
];
1368 /* Does "kernel" need to be passed an argument corresponding to array "i"?
1370 * The argument is only needed if the kernel accesses this device memory.
1372 int ppcg_kernel_requires_array_argument(struct ppcg_kernel
*kernel
, int i
)
1374 return kernel
->array
[i
].global
;
1377 /* Find the element in gen->stmt that has the given "id".
1378 * Return NULL if no such gpu_stmt can be found.
1380 static struct gpu_stmt
*find_stmt(struct gpu_prog
*prog
, __isl_keep isl_id
*id
)
1384 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
1385 if (id
== prog
->stmts
[i
].id
)
1389 return i
< prog
->n_stmts
? &prog
->stmts
[i
] : NULL
;
1392 void ppcg_kernel_stmt_free(void *user
)
1394 struct ppcg_kernel_stmt
*stmt
= user
;
1399 switch (stmt
->type
) {
1400 case ppcg_kernel_copy
:
1401 isl_ast_expr_free(stmt
->u
.c
.index
);
1402 isl_ast_expr_free(stmt
->u
.c
.local_index
);
1404 case ppcg_kernel_domain
:
1405 isl_id_to_ast_expr_free(stmt
->u
.d
.ref2expr
);
1407 case ppcg_kernel_sync
:
1414 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1417 static struct gpu_stmt_access
*find_access(struct gpu_stmt_access
*accesses
,
1418 __isl_keep isl_id
*ref_id
)
1420 struct gpu_stmt_access
*access
;
1422 for (access
= accesses
; access
; access
= access
->next
)
1423 if (access
->ref_id
== ref_id
)
1429 /* Return the index of the array called "name" in the list of arrays.
1431 static int find_array_index(struct ppcg_kernel
*kernel
, const char *name
)
1435 for (i
= 0; i
< kernel
->n_array
; ++i
)
1436 if (!strcmp(name
, kernel
->array
[i
].array
->name
))
1442 /* Internal data structure for the index and AST expression transformation
1443 * callbacks for pet_stmt_build_ast_exprs.
1445 * "kernel" is the kernel for which are computing AST expressions and
1446 * may be NULL if we are not inside a kernel.
1447 * "accesses" is the list of gpu_stmt_access in the statement.
1448 * "iterator_map" expresses the statement iterators in terms of
1449 * the AST loop iterators.
1450 * "sched2copy" expresses the outer copy_schedule_dim dimensions of
1451 * the kernel schedule in terms of the AST loop iterators and
1452 * may be NULL if we are not inside a kernel.
1454 * The following fields are set in transform_index and used in transform_expr.
1455 * "array" is the array that is being accessed.
1456 * "global" is set if the global array is accessed (rather than
1457 * shared/private memory).
1458 * "local_array" refers to information on the array specialized
1459 * to the current kernel.
1461 struct ppcg_transform_data
{
1462 struct ppcg_options
*options
;
1463 struct ppcg_kernel
*kernel
;
1464 struct gpu_stmt_access
*accesses
;
1465 isl_pw_multi_aff
*iterator_map
;
1466 isl_pw_multi_aff
*sched2copy
;
1468 struct gpu_array_info
*array
;
1470 struct gpu_local_array_info
*local_array
;
1473 /* Return a pointer to the gpu_array_ref_group in "local"
1474 * that contains the reference "access".
1475 * Return NULL if no such group can be found.
1477 static struct gpu_array_ref_group
*find_ref_group(
1478 struct gpu_local_array_info
*local
, struct gpu_stmt_access
*access
)
1482 for (i
= 0; i
< local
->n_group
; ++i
) {
1483 struct gpu_array_ref_group
*group
= local
->groups
[i
];
1485 for (j
= 0; j
< group
->n_ref
; ++j
)
1486 if (group
->refs
[j
] == access
)
1493 /* Given an index expression "index" of the form
1497 * with F(A) either A or some subfield of A and L the AST loop iterators,
1498 * and a tiling "tiling" of the form
1502 * apply the tiling to the outer array in the index expression to obtain
1506 * If F(A) is some subfield of A, then separate the member access
1507 * into the base index expression and the field index expression,
1508 * apply the tiling to the base index expression and combine the result
1509 * with the field index expression.
1511 * If F(A) is A, then modify index to keep track of the iterators
1515 * and combine the result with the tiling to obtain a tiled index expression
1516 * in terms of the AST loop iterators
1520 static __isl_give isl_multi_pw_aff
*tile_outer(
1521 __isl_take isl_multi_pw_aff
*index
, __isl_take isl_multi_pw_aff
*tiling
)
1523 isl_bool is_wrapping
;
1525 isl_multi_pw_aff
*mpa
;
1527 is_wrapping
= isl_multi_pw_aff_range_is_wrapping(index
);
1528 if (is_wrapping
< 0)
1531 isl_multi_pw_aff
*field
;
1533 field
= isl_multi_pw_aff_copy(index
);
1534 field
= isl_multi_pw_aff_range_factor_range(field
);
1535 index
= isl_multi_pw_aff_range_factor_domain(index
);
1536 index
= tile_outer(index
, tiling
);
1537 return isl_multi_pw_aff_range_product(index
, field
);
1540 space
= isl_space_domain(isl_multi_pw_aff_get_space(index
));
1541 space
= isl_space_map_from_set(space
);
1542 mpa
= isl_multi_pw_aff_identity(space
);
1543 index
= isl_multi_pw_aff_range_product(mpa
, index
);
1544 index
= isl_multi_pw_aff_pullback_multi_pw_aff(tiling
, index
);
1548 isl_multi_pw_aff_free(index
);
1549 isl_multi_pw_aff_free(tiling
);
1553 /* Index transformation callback for pet_stmt_build_ast_exprs.
1555 * "index" expresses the array indices in terms of statement iterators
1557 * We first reformulate "index" in terms of the AST loop iterators.
1558 * Then we check if we are accessing the global array or
1559 * a shared/private copy. In particular, if we are not inside a kernel
1560 * then we must be accessing a global array.
1561 * In the former case, we simply return
1562 * the updated index. If "index" is an affine expression rather
1563 * than an array access, then we also return the updated index here.
1565 * If no reference groups have been computed for the array,
1566 * then we can only be accessing the global array.
1568 * Otherwise, we apply the tiling to the index.
1569 * This tiling is of the form
1573 * where D corresponds to the outer tile->depth dimensions of
1574 * the kernel schedule.
1575 * The index is of the form
1579 * We update the tiling to refer to the AST loop iterators
1583 * and combine it with the index to obtain a tiled index expression in terms
1584 * of the AST loop iterators
1588 * Note that while the tiling applies directly to an outer array.
1589 * the index may refer to some subfield of this outer array.
1590 * In such cases, the result will refer to the same subfield of the tile.
1591 * That is, an index expression of the form L -> F(A) will be transformed
1592 * into an index expression of the form L -> F(T).
1594 static __isl_give isl_multi_pw_aff
*transform_index(
1595 __isl_take isl_multi_pw_aff
*index
, __isl_keep isl_id
*ref_id
,
1598 struct ppcg_transform_data
*data
= user
;
1599 struct gpu_stmt_access
*access
;
1600 struct gpu_array_ref_group
*group
;
1601 struct gpu_array_tile
*tile
;
1602 isl_pw_multi_aff
*iterator_map
;
1607 isl_multi_pw_aff
*tiling
;
1608 isl_pw_multi_aff
*pma
;
1609 isl_pw_multi_aff
*sched2depth
;
1613 iterator_map
= isl_pw_multi_aff_copy(data
->iterator_map
);
1614 index
= isl_multi_pw_aff_pullback_pw_multi_aff(index
, iterator_map
);
1619 access
= find_access(data
->accesses
, ref_id
);
1622 if (!isl_map_has_tuple_name(access
->access
, isl_dim_out
))
1625 name
= get_outer_array_name(access
->access
);
1626 i
= find_array_index(data
->kernel
, name
);
1628 isl_die(isl_multi_pw_aff_get_ctx(index
), isl_error_internal
,
1629 "cannot find array",
1630 return isl_multi_pw_aff_free(index
));
1631 data
->local_array
= &data
->kernel
->array
[i
];
1632 data
->array
= data
->local_array
->array
;
1634 group
= find_ref_group(data
->local_array
, access
);
1640 tile
= gpu_array_ref_group_tile(group
);
1641 data
->global
= !tile
;
1645 space
= isl_space_domain(isl_multi_aff_get_space(tile
->tiling
));
1646 space
= isl_space_range(isl_space_unwrap(space
));
1647 space
= isl_space_map_from_set(space
);
1648 pma
= isl_pw_multi_aff_identity(space
);
1649 sched2depth
= isl_pw_multi_aff_copy(data
->sched2copy
);
1650 dim
= isl_pw_multi_aff_dim(sched2depth
, isl_dim_out
);
1651 sched2depth
= isl_pw_multi_aff_drop_dims(sched2depth
, isl_dim_out
,
1652 tile
->depth
, dim
- tile
->depth
);
1653 pma
= isl_pw_multi_aff_product(sched2depth
, pma
);
1654 tiling
= isl_multi_pw_aff_from_multi_aff(
1655 isl_multi_aff_copy(tile
->tiling
));
1656 tiling
= isl_multi_pw_aff_pullback_pw_multi_aff(tiling
, pma
);
1658 index
= tile_outer(index
, tiling
);
1663 /* Dereference "expr" by adding an index [0].
1664 * The original "expr" is assumed not to have any indices.
1666 * If "expr" is a member access, then the dereferencing needs
1667 * to be applied to the structure argument of this member access.
1669 static __isl_give isl_ast_expr
*dereference(__isl_take isl_ast_expr
*expr
)
1672 isl_ast_expr
*arg0
, *res
;
1673 isl_ast_expr_list
*list
;
1675 arg0
= isl_ast_expr_get_op_arg(expr
, 0);
1677 return isl_ast_expr_free(expr
);
1678 if (isl_ast_expr_get_type(arg0
) == isl_ast_expr_op
&&
1679 isl_ast_expr_get_op_type(arg0
) == isl_ast_op_member
) {
1682 arg
= isl_ast_expr_get_op_arg(arg0
, 0);
1683 arg
= dereference(arg
);
1684 arg0
= isl_ast_expr_set_op_arg(arg0
, 0, arg
);
1685 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
1689 isl_ast_expr_free(arg0
);
1691 ctx
= isl_ast_expr_get_ctx(expr
);
1692 res
= isl_ast_expr_from_val(isl_val_zero(ctx
));
1693 list
= isl_ast_expr_list_from_ast_expr(res
);
1694 res
= isl_ast_expr_get_op_arg(expr
, 0);
1695 res
= isl_ast_expr_access(res
, list
);
1696 isl_ast_expr_free(expr
);
1701 /* Linearize the index expression "expr" based on the array bounds
1704 * That is, transform expression
1706 * A[i_0][i_1]...[i_n]
1710 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
1712 * where b_0, b_1, ..., b_n are the bounds on the array.
1714 * If the base of "expr" is a member access, then the linearization needs
1715 * to be applied to the structure argument of this member access.
1717 * In the base case, if "expr" has no arguments (other than the name of
1718 * the array), then we are passing an entire array to a function.
1719 * In this case, there is nothing to linearize.
1720 * Note that at this point an expression with no arguments can
1721 * only be an entire array because the scalar case and
1722 * the case of single struct are handled by the caller.
1724 * If the number of specified index expressions in "expr"
1725 * is smaller than the dimension of the accessed array,
1726 * then the missing i_j also do not appear in the linearized expression.
1727 * Furthermore, since such an expression does not refer to a single
1728 * element while the default linearized expression would refer to
1729 * a single element, we return the expression
1731 * A + (..((i_0 * b_1 + i_1) ... ) * b_l + i_l)
1733 * instead. Note that because of the special case handling above,
1734 * we can assume here that there is at least one index expression.
1736 __isl_give isl_ast_expr
*gpu_local_array_info_linearize_index(
1737 struct gpu_local_array_info
*array
, __isl_take isl_ast_expr
*expr
)
1742 isl_ast_expr_list
*list
;
1744 arg0
= isl_ast_expr_get_op_arg(expr
, 0);
1745 if (isl_ast_expr_get_type(arg0
) == isl_ast_expr_op
&&
1746 isl_ast_expr_get_op_type(arg0
) == isl_ast_op_member
) {
1749 arg
= isl_ast_expr_get_op_arg(arg0
, 0);
1750 arg
= gpu_local_array_info_linearize_index(array
, arg
);
1751 arg0
= isl_ast_expr_set_op_arg(arg0
, 0, arg
);
1752 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
1756 isl_ast_expr_free(arg0
);
1758 if (isl_ast_expr_get_op_n_arg(expr
) == 1)
1761 n
= isl_ast_expr_get_op_n_arg(expr
);
1762 res
= isl_ast_expr_get_op_arg(expr
, 1);
1763 for (i
= 1; i
< array
->n_index
; ++i
) {
1764 isl_ast_expr
*expr_i
;
1766 expr_i
= isl_ast_expr_get_op_arg(array
->bound_expr
, 1 + i
);
1767 res
= isl_ast_expr_mul(res
, expr_i
);
1771 expr_i
= isl_ast_expr_get_op_arg(expr
, i
+ 1);
1772 res
= isl_ast_expr_add(res
, expr_i
);
1775 if (1 + array
->n_index
> n
) {
1776 res
= isl_ast_expr_add(isl_ast_expr_get_op_arg(expr
, 0), res
);
1778 list
= isl_ast_expr_list_from_ast_expr(res
);
1779 res
= isl_ast_expr_get_op_arg(expr
, 0);
1780 res
= isl_ast_expr_access(res
, list
);
1783 isl_ast_expr_free(expr
);
1788 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
1790 * If the AST expression refers to an array that is not accessed
1791 * at all, then this means the value of the expression is not used,
1792 * so we might as well print zero (NULL pointer) instead.
1794 * If the AST expression refers to a global scalar that is not
1795 * a read-only scalar, then its address was passed to the kernel and
1796 * we need to dereference it.
1798 * If the AST expression refers to an access to a global array,
1799 * then we linearize the access exploiting the bounds in data->local_array.
1801 static __isl_give isl_ast_expr
*transform_expr(__isl_take isl_ast_expr
*expr
,
1802 __isl_keep isl_id
*id
, void *user
)
1804 struct ppcg_transform_data
*data
= user
;
1808 if (!data
->array
->accessed
) {
1811 ctx
= isl_ast_expr_get_ctx(expr
);
1812 isl_ast_expr_free(expr
);
1813 return isl_ast_expr_from_val(isl_val_zero(ctx
));
1815 if (gpu_array_is_read_only_scalar(data
->array
))
1819 if (data
->array
->n_index
== 0)
1820 return dereference(expr
);
1821 if (!data
->array
->linearize
)
1824 return gpu_local_array_info_linearize_index(data
->local_array
, expr
);
1827 /* This function is called for each instance of a user statement
1828 * in the kernel "kernel", identified by "gpu_stmt".
1829 * "kernel" may be NULL if we are not inside a kernel.
1831 * We attach a struct ppcg_kernel_stmt to the "node", containing
1832 * a computed AST expression for each access, through an annotation
1834 * These AST expressions are computed from iterator_map,
1835 * which expresses the domain
1836 * elements in terms of the generated loops, and sched2copy,
1837 * which expresses the outer copy_schedule_dim dimensions of
1838 * the kernel schedule computed by PPCG in terms of the generated loops.
1840 static __isl_give isl_ast_node
*create_domain_leaf(
1841 struct ppcg_kernel
*kernel
, __isl_take isl_ast_node
*node
,
1842 __isl_keep isl_ast_build
*build
, struct gpu_stmt
*gpu_stmt
,
1843 struct gpu_gen
*gen
)
1845 struct ppcg_transform_data data
;
1846 struct ppcg_kernel_stmt
*stmt
;
1849 isl_pw_multi_aff
*sched2copy
;
1851 isl_pw_multi_aff
*iterator_map
;
1852 isl_union_map
*schedule
;
1856 ctx
= isl_ast_node_get_ctx(node
);
1858 stmt
= isl_calloc_type(ctx
, struct ppcg_kernel_stmt
);
1860 return isl_ast_node_free(node
);
1862 schedule
= isl_ast_build_get_schedule(build
);
1863 map
= isl_map_reverse(isl_map_from_union_map(schedule
));
1864 iterator_map
= isl_pw_multi_aff_from_map(map
);
1866 sched2copy
= compute_sched_to_copy(kernel
,
1867 isl_pw_multi_aff_copy(iterator_map
));
1871 stmt
->type
= ppcg_kernel_domain
;
1872 stmt
->u
.d
.stmt
= gpu_stmt
;
1874 data
.kernel
= kernel
;
1875 data
.accesses
= stmt
->u
.d
.stmt
->accesses
;
1876 data
.iterator_map
= iterator_map
;
1877 data
.sched2copy
= sched2copy
;
1878 stmt
->u
.d
.ref2expr
= gen
->build_ast_expr(stmt
->u
.d
.stmt
->stmt
,
1879 build
, &transform_index
, &data
,
1880 &transform_expr
, &data
);
1882 isl_pw_multi_aff_free(iterator_map
);
1883 isl_pw_multi_aff_free(sched2copy
);
1885 id
= isl_id_alloc(ctx
, "user", stmt
);
1886 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
1887 return isl_ast_node_set_annotation(node
, id
);
1890 /* This function is called for each statement node in the AST
1891 * for copying to or from shared/private memory.
1892 * Attach a pointer to a ppcg_kernel_stmt representing the copy
1893 * statement to the node.
1894 * The statement name is "read" or "write", depending on whether we are
1895 * reading from global memory or writing to global memory.
1897 * The schedule is of the form
1901 * where D corresponds to the outer tile->depth dimensions of
1902 * the kernel schedule, A to the global array and L to the outer
1903 * generated AST schedule.
1904 * We compute the inverse and strip off the type, resulting in
1908 * We combine this mapping with on the one hand the projection
1912 * and on the other hand the group tiling
1920 * and store the corresponding expressions in stmt->index and stmt->local_index,
1921 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
1922 * stmt->index is linearized if the global memory array is linearized.
1924 static __isl_give isl_ast_node
*create_access_leaf(struct ppcg_kernel
*kernel
,
1925 struct gpu_array_ref_group
*group
, __isl_take isl_ast_node
*node
,
1926 __isl_keep isl_ast_build
*build
)
1928 struct ppcg_kernel_stmt
*stmt
;
1929 struct gpu_array_tile
*tile
;
1934 isl_pw_multi_aff
*pma
, *pma2
;
1937 stmt
= isl_calloc_type(kernel
->ctx
, struct ppcg_kernel_stmt
);
1939 return isl_ast_node_free(node
);
1941 access
= isl_map_from_union_map(isl_ast_build_get_schedule(build
));
1942 type
= isl_map_get_tuple_name(access
, isl_dim_in
);
1943 stmt
->u
.c
.read
= !strcmp(type
, "read");
1944 access
= isl_map_reverse(access
);
1945 pma
= isl_pw_multi_aff_from_map(access
);
1946 pma
= isl_pw_multi_aff_reset_tuple_id(pma
, isl_dim_out
);
1948 space
= isl_space_range(isl_pw_multi_aff_get_space(pma
));
1949 space
= isl_space_unwrap(space
);
1950 pma2
= isl_pw_multi_aff_range_map(space
);
1951 pma2
= isl_pw_multi_aff_pullback_pw_multi_aff(pma2
,
1952 isl_pw_multi_aff_copy(pma
));
1953 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma2
);
1954 if (group
->array
->linearize
)
1955 expr
= gpu_local_array_info_linearize_index(group
->local_array
,
1957 stmt
->u
.c
.index
= expr
;
1959 tile
= gpu_array_ref_group_tile(group
);
1960 pma2
= isl_pw_multi_aff_from_multi_aff(
1961 isl_multi_aff_copy(tile
->tiling
));
1962 pma2
= isl_pw_multi_aff_pullback_pw_multi_aff(pma2
, pma
);
1963 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma2
);
1964 stmt
->u
.c
.local_index
= expr
;
1966 stmt
->u
.c
.array
= group
->array
;
1967 stmt
->u
.c
.local_array
= group
->local_array
;
1968 stmt
->type
= ppcg_kernel_copy
;
1970 id
= isl_id_alloc(kernel
->ctx
, "copy", stmt
);
1971 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
1972 return isl_ast_node_set_annotation(node
, id
);
1975 /* Create a synchronization ppcg_kernel_stmt and
1976 * attach it to the node "node" representing the synchronization.
1978 static __isl_give isl_ast_node
*create_sync_leaf(
1979 struct ppcg_kernel
*kernel
, __isl_take isl_ast_node
*node
,
1980 __isl_keep isl_ast_build
*build
)
1982 struct ppcg_kernel_stmt
*stmt
;
1985 stmt
= isl_calloc_type(kernel
->ctx
, struct ppcg_kernel_stmt
);
1987 return isl_ast_node_free(node
);
1989 stmt
->type
= ppcg_kernel_sync
;
1990 id
= isl_id_alloc(kernel
->ctx
, "sync", stmt
);
1991 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
1992 return isl_ast_node_set_annotation(node
, id
);
1995 /* Build AST expressions for the device array sizes of all arrays in "prog"
1996 * that require allocation on the device using "build", as well as
1997 * for the original array sizes of all arrays that need to be declared
1999 * "node" is freed in case of error.
2001 static __isl_give isl_ast_node
*build_array_bounds(
2002 __isl_take isl_ast_node
*node
, struct gpu_prog
*prog
,
2003 __isl_keep isl_ast_build
*build
)
2007 for (i
= 0; i
< prog
->n_array
; ++i
) {
2008 struct gpu_array_info
*array
= &prog
->array
[i
];
2009 isl_multi_pw_aff
*size
;
2012 if (!gpu_array_requires_device_allocation(array
))
2015 size
= isl_multi_pw_aff_copy(array
->bound
);
2016 expr
= ppcg_build_size_expr(size
, build
);
2017 array
->bound_expr
= expr
;
2019 return isl_ast_node_free(node
);
2022 for (i
= 0; i
< prog
->n_array
; ++i
) {
2023 struct gpu_array_info
*array
= &prog
->array
[i
];
2025 isl_multi_pw_aff
*size
;
2028 if (!array
->declare_local
)
2030 extent
= isl_set_copy(array
->declared_extent
);
2031 size
= ppcg_size_from_extent(extent
);
2032 expr
= ppcg_build_size_expr(size
, build
);
2033 array
->declared_size
= expr
;
2035 return isl_ast_node_free(node
);
2041 /* Internal data structure for at_domain.
2043 * "prog" represents the entire scop.
2044 * "kernel" points to the kernel to which the current schedule node
2045 * belongs. It is set by before_mark and reset by after_mark.
2046 * It may be NULL if we are outside any kernel.
2048 struct ppcg_at_domain_data
{
2049 struct gpu_prog
*prog
;
2050 struct gpu_gen
*gen
;
2051 struct ppcg_kernel
*kernel
;
2054 /* This function is called for each instance of a user statement
2055 * in the kernel. This may be one of the original user statements
2056 * or a statement introduced by PPCG.
2058 * We first check if the statement id corresponds to a gpu statement,
2059 * which indicates the statement is an original user statement. Any statement
2060 * that is not an original user statement has been introduced by PPCG and
2061 * requires special handling.
2063 * If the user statement is one of the original user statements, then we call
2064 * create_domain_leaf. If it is "init_device", then we call
2065 * build_array_bounds. Otherwise, we check if it is a copy or synchronization
2066 * statement and call the appropriate functions. Statements that copy an array
2067 * to/from the device do not need any further treatment.
2068 * Neither does "clear_device".
2070 static __isl_give isl_ast_node
*at_domain(__isl_take isl_ast_node
*node
,
2071 __isl_keep isl_ast_build
*build
, void *user
)
2073 struct ppcg_at_domain_data
*data
= user
;
2074 struct gpu_stmt
*gpu_stmt
;
2075 isl_ast_expr
*expr
, *arg
;
2081 expr
= isl_ast_node_user_get_expr(node
);
2082 arg
= isl_ast_expr_get_op_arg(expr
, 0);
2083 id
= isl_ast_expr_get_id(arg
);
2084 name
= isl_id_get_name(id
);
2085 p
= isl_id_get_user(id
);
2086 isl_ast_expr_free(expr
);
2087 isl_ast_expr_free(arg
);
2089 gpu_stmt
= find_stmt(data
->prog
, id
);
2090 is_sync
= gpu_tree_id_is_sync(id
, data
->kernel
);
2094 return create_domain_leaf(data
->kernel
, node
, build
, gpu_stmt
,
2097 if (!prefixcmp(name
, "to_device_") || !prefixcmp(name
, "from_device_"))
2099 if (!strcmp(name
, "init_device"))
2100 return build_array_bounds(node
, data
->prog
, build
);
2101 if (!strcmp(name
, "clear_device"))
2104 return isl_ast_node_free(node
);
2105 if (!strcmp(name
, "read") || !strcmp(name
, "write")) {
2106 struct gpu_array_ref_group
*group
= p
;
2107 return create_access_leaf(data
->kernel
, group
, node
, build
);
2110 isl_die(data
->prog
->ctx
, isl_error_internal
,
2111 "unknown statement type",
2112 return isl_ast_node_free(node
));
2113 return create_sync_leaf(data
->kernel
, node
, build
);
2116 /* Given a set of wrapped references "ref", return the corresponding
2117 * access relations based on the tagged access relations "tagged".
2119 * The elements of "ref" are of the form
2123 * with D an iteration domains and R a reference.
2124 * The elements of "tagged" are of the form
2130 * Extend "tagged" to include the iteration domain in the range, i.e.,
2132 * [D -> R] -> [D -> A]
2134 * apply the result to "ref" and then unwrap the resulting set
2135 * to obtain relations of the form
2139 static __isl_give isl_union_map
*wrapped_reference_to_access(
2140 __isl_take isl_union_set
*ref
, __isl_take isl_union_map
*tagged
)
2142 isl_union_map
*tag2access
;
2144 tag2access
= isl_union_map_copy(tagged
);
2145 tag2access
= isl_union_map_universe(tag2access
);
2146 tag2access
= isl_union_set_unwrap(isl_union_map_domain(tag2access
));
2147 tag2access
= isl_union_map_domain_map(tag2access
);
2148 tag2access
= isl_union_map_range_product(tag2access
, tagged
);
2150 ref
= isl_union_set_coalesce(ref
);
2151 ref
= isl_union_set_apply(ref
, tag2access
);
2153 return isl_union_set_unwrap(ref
);
2156 /* Given an access relation "access" from one or more array reference groups,
2157 * remove those reads if ("read" is 1) or writes (if "read" is 0)
2158 * that are only needed to communicate data within
2159 * the same iteration of "sched".
2160 * The domain of "sched" corresponds to the original statement instances,
2161 * i.e., those that appear in the domains of the access relations.
2162 * "tagged" contains all tagged access relations to all
2163 * the array reference groups accessed by "access" from statement
2164 * instances scheduled by "sched".
2166 * If the access is a read then it is either an element of
2168 * live_in union (range flow)
2170 * where live_in and flow may be overapproximations, or
2171 * it reads an uninitialized value (that is not live-in because
2172 * there is an intermediate kill) or it reads a value that was
2173 * written within the same (compound) statement instance.
2174 * If the access is a write then it is either an element of
2176 * live_out union (domain flow)
2178 * or it writes a value that is never read (and is not live-out
2179 * because of an intermediate kill) or only
2180 * within the same (compound) statement instance.
2181 * In both cases, the access relation is also a subset of
2182 * the group access relation.
2184 * The cases where an uninitialized value is read or a value is written
2185 * that is never read or where the dataflow occurs within a statement
2186 * instance are also considered local and may also be removed.
2188 * Essentially, we compute the intersection of "access" with either
2190 * live_in union (range non-local-flow)
2194 * live_out union (domain non-local-flow)
2196 * We first construct a relation "local"
2198 * [[D -> R] -> [D' -> R']]
2200 * of pairs of domain iterations accessing the reference group
2201 * and references in the group that are coscheduled by "sched".
2203 * If this relation does not intersect the dataflow dependences,
2204 * then there is nothing we can possibly remove, unless the dataflow
2205 * dependences themselves only relate a subset of the accesses.
2206 * In particular, the accesses may not be involved in any dataflow
2207 * dependences, either because they are uninitialized reads/dead writes
2208 * or because the dataflow occurs inside a statement instance.
2210 * Since the computation below may break up the access relation
2211 * into smaller pieces, we only perform the intersection with
2212 * the non-local dependent accesses if the local pairs
2213 * intersect the dataflow dependences. Otherwise, we intersect
2214 * with the universe of the non-local dependent accesses.
2215 * This should at least remove accesses from statements that
2216 * do not participate in any dependences.
2218 * In particular, we remove the "local" dataflow dependences from
2219 * the set of all dataflow dependences, or at least those
2220 * that may contribute to a domain/range that intersects
2221 * the domain of "access".
2222 * Note that if the potential dataflow dependences are an overapproximation
2223 * of the actual dataflow dependences, then the result remains an
2224 * overapproximation of the non-local dataflow dependences.
2225 * Copying to/from global memory is only needed for the references
2226 * in the domain/range of the result or for accesses that are live out/in
2227 * for the entire scop.
2229 * We therefore map the domain/range of the "external" relation
2230 * to the corresponding access relation and take the union with
2231 * the live out/in relation.
2233 static __isl_give isl_union_map
*remove_local_accesses(
2234 struct gpu_prog
*prog
, __isl_take isl_union_map
*tagged
,
2235 __isl_take isl_union_map
*access
, __isl_take isl_union_map
*sched
,
2239 isl_union_pw_multi_aff
*tagger
;
2240 isl_union_set
*domain
, *access_domain
;
2241 isl_union_map
*local
, *external
, *universe
;
2242 isl_union_set
*tag_set
;
2244 if (isl_union_map_is_empty(access
)) {
2245 isl_union_map_free(sched
);
2246 isl_union_map_free(tagged
);
2250 tagger
= isl_union_pw_multi_aff_copy(prog
->scop
->tagger
);
2251 domain
= isl_union_map_domain(isl_union_map_copy(tagged
));
2252 tagger
= isl_union_pw_multi_aff_intersect_domain(tagger
,
2253 isl_union_set_copy(domain
));
2254 sched
= isl_union_map_preimage_domain_union_pw_multi_aff(sched
, tagger
);
2256 local
= isl_union_map_apply_range(sched
,
2257 isl_union_map_reverse(isl_union_map_copy(sched
)));
2258 local
= isl_union_map_intersect(local
,
2259 isl_union_map_copy(prog
->scop
->tagged_dep_flow
));
2261 empty
= isl_union_map_is_empty(local
);
2263 external
= isl_union_map_copy(prog
->scop
->tagged_dep_flow
);
2264 universe
= isl_union_map_universe(isl_union_map_copy(access
));
2265 access_domain
= isl_union_map_domain(universe
);
2266 domain
= isl_union_set_universe(domain
);
2267 universe
= isl_union_set_unwrap(domain
);
2268 universe
= isl_union_map_intersect_domain(universe
, access_domain
);
2269 domain
= isl_union_map_wrap(universe
);
2271 external
= isl_union_map_intersect_range(external
, domain
);
2273 external
= isl_union_map_intersect_domain(external
, domain
);
2274 external
= isl_union_map_intersect_params(external
,
2275 isl_set_copy(prog
->scop
->context
));
2276 external
= isl_union_map_subtract(external
, local
);
2279 tag_set
= isl_union_map_range(external
);
2280 external
= wrapped_reference_to_access(tag_set
, tagged
);
2281 external
= isl_union_map_union(external
,
2282 isl_union_map_copy(prog
->scop
->live_in
));
2284 tag_set
= isl_union_map_domain(external
);
2285 external
= wrapped_reference_to_access(tag_set
, tagged
);
2286 external
= isl_union_map_union(external
,
2287 isl_union_map_copy(prog
->scop
->live_out
));
2291 external
= isl_union_map_free(external
);
2293 external
= isl_union_map_universe(external
);
2295 access
= isl_union_map_intersect(access
, external
);
2300 /* Given an access relation "access" from "group", remove those reads
2301 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2302 * communicate data within the same iteration of the schedule "prefix"
2303 * at the position where the copying of the group is inserted.
2304 * That is, the output dimension of "prefix"
2305 * is equal to tile->depth.
2306 * The domain of "prefix" corresponds to the original statement instances,
2307 * i.e., those that appear in the domains of the access relations.
2309 * Extract the tagged access relation of "group" and
2310 * then call remove_local_accesses.
2312 static __isl_give isl_union_map
*remove_local_accesses_group(
2313 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
2314 __isl_take isl_union_map
*access
, __isl_keep isl_union_map
*prefix
,
2317 isl_union_map
*sched
, *tagged
;
2319 if (isl_union_map_is_empty(access
))
2322 tagged
= group_tagged_access_relation(group
);
2323 sched
= isl_union_map_copy(prefix
);
2325 return remove_local_accesses(kernel
->prog
, tagged
, access
, sched
, read
);
2328 /* Build an access AST expression for the effective grid size using "build".
2329 * Store the result in kernel->grid_size_expr.
2331 static isl_stat
build_grid_size(struct ppcg_kernel
*kernel
,
2332 __isl_keep isl_ast_build
*build
)
2334 isl_multi_pw_aff
*size
;
2336 size
= isl_multi_pw_aff_copy(kernel
->grid_size
);
2337 size
= isl_multi_pw_aff_set_tuple_name(size
, isl_dim_out
, "grid");
2338 kernel
->grid_size_expr
= ppcg_build_size_expr(size
, build
);
2340 if (!kernel
->grid_size_expr
)
2341 return isl_stat_error
;
2345 /* Build access AST expressions for the localized array sizes using "build".
2346 * Store the result in local->bound_expr.
2347 * Only do this for arrays for which localized bounds have been computed.
2349 static isl_stat
build_local_array_sizes(struct ppcg_kernel
*kernel
,
2350 __isl_keep isl_ast_build
*build
)
2354 for (i
= 0; i
< kernel
->n_array
; ++i
) {
2355 struct gpu_local_array_info
*local
= &kernel
->array
[i
];
2356 isl_multi_pw_aff
*size
;
2358 if (local
->n_group
== 0)
2360 size
= isl_multi_pw_aff_copy(local
->bound
);
2361 local
->bound_expr
= ppcg_build_size_expr(size
, build
);
2362 if (!local
->bound_expr
)
2363 return isl_stat_error
;
2369 /* Build access AST expressions for the effective grid size and
2370 * the localized array sizes using "build".
2372 static isl_stat
build_grid_and_local_array_sizes(struct ppcg_kernel
*kernel
,
2373 __isl_keep isl_ast_build
*build
)
2375 if (build_grid_size(kernel
, build
) < 0)
2376 return isl_stat_error
;
2377 if (build_local_array_sizes(kernel
, build
) < 0)
2378 return isl_stat_error
;
2382 /* This function is called before the AST generator starts traversing
2383 * the schedule subtree of a node with mark "mark".
2385 * If the mark is called "kernel", store the kernel pointer in data->kernel
2386 * for use in at_domain and build AST expressions for the grid size and
2387 * the localized array sizes.
2389 static isl_stat
before_mark(__isl_keep isl_id
*mark
,
2390 __isl_keep isl_ast_build
*build
, void *user
)
2392 struct ppcg_at_domain_data
*data
= user
;
2395 return isl_stat_error
;
2396 if (!strcmp(isl_id_get_name(mark
), "kernel")) {
2397 data
->kernel
= isl_id_get_user(mark
);
2398 if (build_grid_and_local_array_sizes(data
->kernel
, build
) < 0)
2399 return isl_stat_error
;
2404 /* This function is called after the AST generator has finished traversing
2405 * the schedule subtree of a mark node. "node" points to the corresponding
2408 * If the mark is called "kernel", then replace "node" by a user node
2409 * that "calls" the kernel, representing the launch of the kernel.
2410 * The original "node" is stored inside the kernel object so that
2411 * it can be used to print the device code.
2412 * Note that this assumes that a kernel is only launched once.
2413 * Also clear data->kernel.
2415 static __isl_give isl_ast_node
*after_mark(__isl_take isl_ast_node
*node
,
2416 __isl_keep isl_ast_build
*build
, void *user
)
2421 isl_ast_expr_list
*list
;
2422 struct ppcg_kernel
*kernel
;
2423 struct ppcg_at_domain_data
*data
= user
;
2425 ctx
= isl_ast_node_get_ctx(node
);
2426 id
= isl_ast_node_mark_get_id(node
);
2428 return isl_ast_node_free(node
);
2429 if (strcmp(isl_id_get_name(id
), "kernel") || !data
->kernel
) {
2433 kernel
= data
->kernel
;
2434 data
->kernel
= NULL
;
2435 kernel
->space
= isl_ast_build_get_schedule_space(build
);
2436 kernel
->tree
= isl_ast_node_mark_get_node(node
);
2437 isl_ast_node_free(node
);
2439 expr
= isl_ast_expr_from_id(isl_id_copy(id
));
2440 list
= isl_ast_expr_list_alloc(ctx
, 0);
2441 expr
= isl_ast_expr_call(expr
, list
);
2442 node
= isl_ast_node_alloc_user(expr
);
2443 node
= isl_ast_node_set_annotation(node
, id
);
2448 static isl_bool
update_depth(__isl_keep isl_schedule_node
*node
, void *user
)
2453 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2454 return isl_bool_true
;
2455 node_depth
= isl_schedule_node_get_schedule_depth(node
);
2456 if (node_depth
> *depth
)
2457 *depth
= node_depth
;
2459 return isl_bool_false
;
2462 /* Use isl to generate code for both the host and the device
2464 * The device code is marked by "kernel" mark nodes in the schedule tree,
2465 * containing a pointer to a ppcg_kernel object.
2466 * The returned AST only contains the AST for the host code.
2467 * The ASTs for the device code are embedded in ppcg_kernel objects
2468 * attached to the leaf nodes that call "kernel".
2470 __isl_give isl_ast_node
*generate_code(struct gpu_gen
*gen
,
2471 __isl_take isl_schedule
*schedule
)
2473 struct ppcg_at_domain_data data
;
2474 isl_ast_build
*build
;
2476 isl_id_list
*iterators
;
2479 data
.prog
= gen
->prog
;
2484 if (isl_schedule_foreach_schedule_node_top_down(schedule
, &update_depth
,
2487 build
= isl_ast_build_alloc(gen
->prog
->ctx
);
2488 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
, depth
, "c");
2489 build
= isl_ast_build_set_iterators(build
, iterators
);
2490 build
= isl_ast_build_set_at_each_domain(build
, &at_domain
, &data
);
2491 build
= isl_ast_build_set_before_each_mark(build
, &before_mark
, &data
);
2492 build
= isl_ast_build_set_after_each_mark(build
, &after_mark
, &data
);
2493 if (gen
->prog
->scop
->options
->debug
->dump_final_schedule
)
2494 isl_schedule_dump(schedule
);
2495 tree
= isl_ast_build_node_from_schedule(build
, schedule
);
2496 isl_ast_build_free(build
);
2501 __isl_give isl_union_map
*extract_sizes_from_str(isl_ctx
*ctx
, const char *str
)
2505 return isl_union_map_read_from_str(ctx
, str
);
2508 /* Can "node" be tiled and then mapped to block and thread identifiers?
2509 * That is, is it permutable with at least one coincident dimension?
2511 static int is_permutable(__isl_keep isl_schedule_node
*node
)
2516 if (isl_schedule_node_get_type(node
) != isl_schedule_node_band
)
2518 if (!isl_schedule_node_band_get_permutable(node
))
2520 if (isl_schedule_node_band_n_member(node
) < 1)
2522 if (!isl_schedule_node_band_member_get_coincident(node
, 0))
2528 /* A isl_schedule_foreach_schedule_node_top_down callback
2529 * for setting *any_permutable and aborting the search
2530 * if "node" is a permutable band with coincident dimensions.
2531 * Otherwise, continue searching.
2533 static isl_bool
set_permutable(__isl_keep isl_schedule_node
*node
, void *user
)
2535 int *any_permutable
= user
;
2538 permutable
= is_permutable(node
);
2540 return isl_bool_error
;
2542 return isl_bool_true
;
2544 *any_permutable
= 1;
2546 return isl_bool_error
;
2549 /* Does the subtree rooted at "node" have any suitably permutable band nodes?
2550 * That is, does it have any nodes that are permutable and that
2551 * have a least one coincident dimension?
2553 static int subtree_has_permutable_bands(__isl_keep isl_schedule_node
*node
)
2555 int any_parallelism
= 0;
2557 if (isl_schedule_node_foreach_descendant_top_down(node
, &set_permutable
,
2558 &any_parallelism
) < 0 &&
2562 return any_parallelism
;
2565 /* Does "schedule" contain any permutable band with at least one coincident
2568 int has_any_permutable_node(__isl_keep isl_schedule
*schedule
)
2570 isl_schedule_node
*root
;
2573 root
= isl_schedule_get_root(schedule
);
2574 any_permutable
= subtree_has_permutable_bands(root
);
2575 isl_schedule_node_free(root
);
2577 return any_permutable
;
2580 /* Is "node" a candidate for mapping to block and thread identifiers?
2581 * In particular, is it permutable with at least one coincident dimension?
2582 * Alternatively, does the subtree rooted at "node" not contain
2583 * any such permutable node? Filter nodes are skipped in this case,
2584 * because a band node will be inserted in front of the returned
2585 * node and this is not possible for filter nodes that are children
2586 * of set or sequence nodes.
2588 static int is_candidate(__isl_keep isl_schedule_node
*node
)
2592 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
)
2594 permutable
= is_permutable(node
);
2595 if (permutable
< 0 || permutable
)
2597 if (isl_schedule_node_get_type(node
) == isl_schedule_node_filter
)
2599 permutable
= subtree_has_permutable_bands(node
);
2605 /* Is "node" the outermost node in its branch that can be tiled
2606 * and then mapped to block and thread identifiers?
2607 * If there are no such nodes in the subtree at "node" and
2608 * if "node" is not a filter node, then it is accepted too.
2610 static int is_outer_tilable(__isl_keep isl_schedule_node
*node
)
2613 isl_schedule_node
*ancestor
;
2615 tilable
= is_candidate(node
);
2622 ancestor
= isl_schedule_node_copy(node
);
2623 while (isl_schedule_node_has_parent(ancestor
)) {
2624 ancestor
= isl_schedule_node_parent(ancestor
);
2626 tilable
= is_candidate(ancestor
);
2627 if (tilable
< 0 || tilable
)
2631 isl_schedule_node_free(ancestor
);
2632 return tilable
< 0 ? -1 : !tilable
;
2635 /* Collect the references to all writes in "group".
2636 * Each reference is represented by a universe set in a space
2640 * with S[i,j] the statement instance space and R[] the array reference.
2642 static __isl_give isl_union_set
*group_tagged_writes(
2643 struct gpu_array_ref_group
*group
)
2647 isl_union_set
*writes
;
2649 space
= isl_map_get_space(group
->access
);
2650 writes
= isl_union_set_empty(space
);
2651 for (i
= 0; i
< group
->n_ref
; ++i
) {
2655 if (!group
->refs
[i
]->write
)
2658 space
= isl_map_get_space(group
->refs
[i
]->tagged_access
);
2659 space
= isl_space_domain(space
);
2660 writes_i
= isl_set_universe(space
);
2661 writes
= isl_union_set_add_set(writes
, writes_i
);
2667 /* Is there any write access in "group" that requires synchronization
2668 * on a write to global memory?
2669 * We currently take into account all writes that would require
2670 * synchronization at the thread level depth, but if the copying
2671 * for this group is performed at an outer level, then we do not
2672 * actually need to take into account dependences at intermediate levels.
2674 static int any_sync_writes_in_group(struct ppcg_kernel
*kernel
,
2675 struct gpu_array_ref_group
*group
)
2677 isl_union_set
*writes
;
2678 int empty
, disjoint
;
2680 empty
= isl_union_set_is_empty(kernel
->sync_writes
);
2686 writes
= group_tagged_writes(group
);
2687 disjoint
= isl_union_set_is_disjoint(kernel
->sync_writes
, writes
);
2688 isl_union_set_free(writes
);
2690 return disjoint
< 0 ? -1 : !disjoint
;
2693 /* Collect the references to all writes in "kernel" that write directly
2694 * to global or shared memory, i.e., that are not mapped to private memory.
2695 * Each reference is represented by a universe set in a space
2699 * with S[i,j] the statement instance space and R[] the array reference.
2701 static __isl_give isl_union_set
*collect_non_private_tagged_writes(
2702 struct ppcg_kernel
*kernel
)
2704 isl_union_set
*writes
;
2707 writes
= isl_union_set_empty(isl_union_set_get_space(kernel
->arrays
));
2709 for (i
= 0; i
< kernel
->n_array
; ++i
) {
2710 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
2712 for (j
= 0; j
< array
->n_group
; ++j
) {
2713 struct gpu_array_ref_group
*group
= array
->groups
[j
];
2714 enum ppcg_group_access_type type
;
2715 isl_union_set
*writes_ij
;
2719 type
= gpu_array_ref_group_type(group
);
2720 if (type
== ppcg_access_private
)
2722 writes_ij
= group_tagged_writes(group
);
2723 writes
= isl_union_set_union(writes
, writes_ij
);
2730 /* Are there any direct writes to global memory that require
2733 static int any_global_or_shared_sync_writes(struct ppcg_kernel
*kernel
)
2735 isl_union_set
*writes
;
2736 int empty
, disjoint
;
2738 empty
= isl_union_set_is_empty(kernel
->sync_writes
);
2744 writes
= collect_non_private_tagged_writes(kernel
);
2745 disjoint
= isl_union_set_is_disjoint(kernel
->sync_writes
, writes
);
2746 isl_union_set_free(writes
);
2748 return disjoint
< 0 ? -1 : !disjoint
;
2751 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
2752 * from the elements in "tile_size".
2754 static __isl_give isl_multi_val
*construct_band_tiles_sizes(
2755 __isl_keep isl_schedule_node
*node
, int *tile_size
)
2762 space
= isl_schedule_node_band_get_space(node
);
2763 return ppcg_multi_val_from_int_list(space
, tile_size
);
2766 /* Replace the partial schedule S of the band node "node" by
2774 * if scale_tile_loops is set, with f the integers in "factor".
2775 * The list that "factor" points to is assumed to contain at least
2776 * as many elements as the number of members in the band.
2778 static __isl_give isl_schedule_node
*snap_band_to_sizes(
2779 __isl_take isl_schedule_node
*node
, int *factor
,
2780 struct ppcg_options
*options
)
2784 mv
= construct_band_tiles_sizes(node
, factor
);
2785 node
= isl_schedule_node_band_scale_down(node
, isl_multi_val_copy(mv
));
2786 if (options
->scale_tile_loops
)
2787 node
= isl_schedule_node_band_scale(node
,
2788 isl_multi_val_copy(mv
));
2789 isl_multi_val_free(mv
);
2794 /* Tile "band" with tile size specified by "sizes".
2796 * Since the tile loops will be mapped to block ids, we forcibly
2797 * turn off tile loop scaling. We may want to enable tile loop scaling
2798 * at some later point, but then we would have to support the detection
2799 * of strides during the mapping to block ids.
2800 * Similarly, since the point loops will be mapped to thread ids,
2801 * we forcibly shift the point loops so that they start at zero.
2803 static __isl_give isl_schedule_node
*tile_band(
2804 __isl_take isl_schedule_node
*node
, __isl_take isl_multi_val
*sizes
)
2806 isl_ctx
*ctx
= isl_schedule_node_get_ctx(node
);
2810 scale_tile
= isl_options_get_tile_scale_tile_loops(ctx
);
2811 isl_options_set_tile_scale_tile_loops(ctx
, 0);
2812 shift_point
= isl_options_get_tile_shift_point_loops(ctx
);
2813 isl_options_set_tile_shift_point_loops(ctx
, 1);
2815 node
= isl_schedule_node_band_tile(node
, sizes
);
2817 isl_options_set_tile_scale_tile_loops(ctx
, scale_tile
);
2818 isl_options_set_tile_shift_point_loops(ctx
, shift_point
);
2823 /* Extract the set of parameter values and outer schedule dimensions
2824 * for which any statement instance
2825 * in the kernel inserted at "node" needs to be executed.
2826 * Intersect the set of parameter values derived from the host schedule
2827 * relation with the context of "prog".
2829 static __isl_give isl_set
*extract_context(__isl_keep isl_schedule_node
*node
,
2830 struct gpu_prog
*prog
)
2832 isl_union_map
*schedule
;
2833 isl_union_set
*schedule_domain
;
2837 schedule
= isl_schedule_node_get_prefix_schedule_relation(node
);
2838 schedule_domain
= isl_union_map_range(schedule
);
2839 empty
= isl_union_set_is_empty(schedule_domain
);
2841 isl_union_set_free(schedule_domain
);
2848 space
= isl_union_set_get_space(schedule_domain
);
2849 isl_union_set_free(schedule_domain
);
2850 space
= isl_space_set_from_params(space
);
2851 depth
= isl_schedule_node_get_schedule_depth(node
);
2852 space
= isl_space_add_dims(space
, isl_dim_set
, depth
);
2853 context
= isl_set_empty(space
);
2855 context
= isl_set_from_union_set(schedule_domain
);
2857 context
= isl_set_intersect_params(context
,
2858 isl_set_copy(prog
->context
));
2863 /* Return the set of outer array elements accessed by
2864 * by the statement instances in "domain" in "prog".
2865 * The instances in "domain" are those that appear
2866 * in the domains of the access relations in "prog".
2868 static __isl_give isl_union_set
*accessed_by_domain(
2869 __isl_take isl_union_set
*domain
, struct gpu_prog
*prog
)
2871 isl_union_map
*access
;
2872 isl_union_set
*arrays
;
2874 access
= isl_union_map_union(isl_union_map_copy(prog
->read
),
2875 isl_union_map_copy(prog
->may_write
));
2876 access
= isl_union_map_intersect_domain(access
, domain
);
2877 arrays
= isl_union_map_range(access
);
2878 arrays
= isl_union_set_apply(arrays
,
2879 isl_union_map_copy(prog
->to_outer
));
2884 /* Return the number of outer band members of the band node "node"
2885 * that are marked coincident.
2887 static int n_outer_coincidence(__isl_keep isl_schedule_node
*node
)
2891 n
= isl_schedule_node_band_n_member(node
);
2893 for (i
= 0; i
< n
; ++i
)
2894 if (!isl_schedule_node_band_member_get_coincident(node
, i
))
2900 /* If the band node "node" has more than "n" members, then split off
2901 * the first "n" of them.
2903 static __isl_give isl_schedule_node
*split_band(
2904 __isl_take isl_schedule_node
*node
, int n
)
2908 dim
= isl_schedule_node_band_n_member(node
);
2910 node
= isl_schedule_node_band_split(node
, n
);
2915 /* Scale a band node that may have been split by split_band.
2916 * "sizes" are the scaling factors for the original node.
2917 * "node" either points to the original band node, or the outer
2918 * of the two pieces after splitting.
2920 * If the number of elements in "node" is smaller than the number of
2921 * elements in "sizes", then some splitting has occurred and we split
2922 * "sizes" in the same way.
2924 static __isl_give isl_schedule_node
*scale_band(
2925 __isl_take isl_schedule_node
*node
, __isl_take isl_multi_val
*sizes
)
2929 n
= isl_multi_val_dim(sizes
, isl_dim_set
);
2930 dim
= isl_schedule_node_band_n_member(node
);
2932 isl_multi_val
*sizes2
;
2934 sizes2
= isl_multi_val_copy(sizes
);
2935 sizes
= isl_multi_val_drop_dims(sizes
,
2936 isl_dim_set
, dim
, n
- dim
);
2937 sizes2
= isl_multi_val_drop_dims(sizes2
, isl_dim_set
, 0, dim
);
2938 node
= isl_schedule_node_child(node
, 0);
2939 node
= isl_schedule_node_band_scale(node
, sizes2
);
2940 node
= isl_schedule_node_parent(node
);
2943 return isl_schedule_node_band_scale(node
, sizes
);
2946 /* Return an isl_multi_aff, with as elements the parameters in "space"
2947 * that have the names specified by the elements in "names".
2948 * If (some of) these parameters do not already appear in "space",
2949 * then they are added first.
2951 static __isl_give isl_multi_aff
*parameter_vector(__isl_take isl_space
*space
,
2952 __isl_keep isl_id_list
*names
)
2955 isl_local_space
*ls
;
2959 space
= isl_space_free(space
);
2961 n
= isl_id_list_n_id(names
);
2962 for (i
= 0; i
< n
; ++i
) {
2966 id
= isl_id_list_get_id(names
, i
);
2967 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, id
);
2972 pos
= isl_space_dim(space
, isl_dim_param
);
2973 space
= isl_space_add_dims(space
, isl_dim_param
, 1);
2974 space
= isl_space_set_dim_id(space
, isl_dim_param
, pos
, id
);
2976 ma
= isl_multi_aff_zero(isl_space_copy(space
));
2977 ls
= isl_local_space_from_space(isl_space_domain(space
));
2978 for (i
= 0; i
< n
; ++i
) {
2983 id
= isl_id_list_get_id(names
, i
);
2984 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, id
);
2986 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
2987 isl_dim_param
, pos
);
2988 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
2990 isl_local_space_free(ls
);
2995 /* Return constraints on the domain elements that equate a sequence of
2996 * parameters called "names", to the partial schedule
2997 * of "node" modulo the integers in "size".
2998 * The number of elements in the array "size" should be equal
2999 * to the number of elements in "names".
3000 * The number of members of the band node "node" should be smaller
3001 * than or equal to this number. If it is smaller, then the first
3002 * elements of "names" are equated to zero.
3004 static __isl_give isl_union_set
*set_schedule_modulo(
3005 __isl_keep isl_schedule_node
*node
, __isl_keep isl_id_list
*names
,
3011 isl_multi_union_pw_aff
*mupa
, *mupa2
;
3013 isl_union_set
*domain
;
3017 n
= isl_id_list_n_id(names
);
3019 return isl_schedule_node_get_universe_domain(node
);
3020 n_zero
= n
- isl_schedule_node_band_n_member(node
);
3022 mupa
= isl_schedule_node_band_get_partial_schedule(node
);
3023 mv
= construct_band_tiles_sizes(node
, size
+ n_zero
);
3024 mupa
= isl_multi_union_pw_aff_mod_multi_val(mupa
, mv
);
3026 space
= isl_multi_union_pw_aff_get_space(mupa
);
3027 space
= isl_space_params(space
);
3028 space
= isl_space_set_from_params(space
);
3029 space
= isl_space_add_dims(space
, isl_dim_set
, n_zero
);
3030 ma
= isl_multi_aff_zero(space
);
3032 domain
= isl_schedule_node_get_universe_domain(node
);
3033 mupa2
= isl_multi_union_pw_aff_multi_aff_on_domain(
3034 isl_union_set_copy(domain
), ma
);
3035 mupa
= isl_multi_union_pw_aff_range_product(mupa2
, mupa
);
3037 space
= isl_multi_union_pw_aff_get_space(mupa
);
3038 ma
= parameter_vector(space
, names
);
3040 mupa2
= isl_multi_union_pw_aff_multi_aff_on_domain(domain
, ma
);
3041 mupa
= isl_multi_union_pw_aff_sub(mupa
, mupa2
);
3043 return isl_multi_union_pw_aff_zero_union_set(mupa
);
3046 /* Insert a context node at "node" introducing the block and thread
3047 * identifiers along with their bounds, which are stored in kernel->grid_size
3048 * and kernel->block_dim.
3049 * Note that the bounds on the block identifiers may implicitly impose
3050 * constraints on the parameters. A guard needs to be inserted
3051 * in the schedule tree to ensure that those bounds hold at "node".
3052 * This guard is inserted in insert_guard.
3054 static __isl_give isl_schedule_node
*insert_context(struct ppcg_kernel
*kernel
,
3055 __isl_take isl_schedule_node
*node
)
3059 context
= isl_set_universe(isl_set_get_space(kernel
->context
));
3061 context
= add_bounded_parameters_dynamic(context
,
3062 kernel
->grid_size
, kernel
->block_ids
);
3063 context
= add_bounded_parameters(context
,
3064 kernel
->block_dim
, kernel
->thread_ids
);
3066 node
= isl_schedule_node_insert_context(node
, context
);
3071 /* Insert a guard that eliminates kernel launches where the kernel
3072 * obviously does not have any work to do.
3074 * In particular, eliminate kernel launches where there are obviously
3076 * Use the same block size constraints that are used to create the context
3077 * to ensure that all constraints implicit in the constructed context
3078 * are imposed by the guard.
3080 * Additionally, add other constraints that are valid
3081 * for each executed instance ("context"), as long as this does not result
3084 static __isl_give isl_schedule_node
*insert_guard(
3085 __isl_take isl_schedule_node
*node
, __isl_keep isl_set
*context
,
3086 __isl_keep isl_multi_pw_aff
*size
, struct ppcg_scop
*scop
)
3092 guard
= isl_set_copy(context
);
3093 guard
= isl_set_compute_divs(guard
);
3094 guard
= isl_set_from_basic_set(isl_set_simple_hull(guard
));
3096 nparam
= isl_set_dim(guard
, isl_dim_param
);
3097 n
= isl_multi_pw_aff_dim(size
, isl_dim_out
);
3098 ids
= ppcg_scop_generate_names(scop
, n
, "__ppcg_tmp");
3099 guard
= add_bounded_parameters_dynamic(guard
, size
, ids
);
3100 isl_id_list_free(ids
);
3101 guard
= isl_set_project_out(guard
, isl_dim_param
, nparam
, n
);
3103 node
= isl_schedule_node_insert_guard(node
, guard
);
3108 /* Does any array reference group mapping require the band that is mapped
3109 * to threads to be unrolled?
3111 static int kernel_requires_unroll(struct ppcg_kernel
*kernel
)
3115 for (i
= 0; i
< kernel
->n_array
; ++i
) {
3116 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
3118 for (j
= 0; j
< array
->n_group
; ++j
) {
3119 struct gpu_array_ref_group
*group
= array
->groups
[j
];
3120 if (gpu_array_ref_group_requires_unroll(group
))
3128 /* Mark the given band node "node" for unrolling by the AST generator and
3129 * then sink it to the leaves of the schedule tree.
3130 * All dimensions of "node" are assumed to be coincident, such that this
3131 * sinking is a valid operation.
3133 static __isl_give isl_schedule_node
*unroll(__isl_take isl_schedule_node
*node
)
3135 node
= ppcg_set_schedule_node_type(node
, isl_ast_loop_unroll
);
3137 node
= isl_schedule_node_band_sink(node
);
3142 /* Insert a synchronization node in the schedule tree of "node"
3143 * after the core computation of "kernel" at the level of the band
3144 * that is mapped to threads, except if that level is equal to
3145 * that of the band that is mapped to blocks or if there are no writes
3146 * to global or shared memory in the core computation that require
3148 * If there are any writes to shared memory and the shared memory
3149 * copying is performed at the same level, then synchronization
3150 * is needed between the core and the copying anyway, so we might
3151 * as well add it here. If the copying is performed at a higher
3152 * level, then different iterations of intermediate schedule dimensions
3153 * may have a different mapping from between shared memory elements and
3154 * threads, such that synchronization is required after the core.
3155 * "node" is assumed to point to the kernel node.
3157 * If the shared and the thread mark point to the same node, then make
3158 * sure the synchronization is inserted outside of the shared mark.
3160 static __isl_give isl_schedule_node
*add_sync(struct ppcg_kernel
*kernel
,
3161 __isl_take isl_schedule_node
*node
)
3166 need_sync
= any_global_or_shared_sync_writes(kernel
);
3168 return isl_schedule_node_free(node
);
3172 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
3173 depth
= isl_schedule_node_get_schedule_depth(node
);
3174 node
= gpu_tree_move_up_to_kernel(node
);
3175 if (depth
== isl_schedule_node_get_schedule_depth(node
))
3178 node
= gpu_tree_move_down_to_depth(node
, depth
, kernel
->core
);
3179 node
= gpu_tree_ensure_following_sync(node
, kernel
);
3181 node
= gpu_tree_move_up_to_kernel(node
);
3186 /* Return a read ("read" is 1) or write access relation for "group"
3187 * with those accesses removed that are only needed to communicate data
3188 * within the subtree of the schedule rooted at "node".
3189 * Furthermore, include the prefix schedule at "node".
3190 * That is, return a relation of the form
3194 * with D the outer schedule dimensions at "node".
3196 static __isl_give isl_union_map
*anchored_non_local_accesses(
3197 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
3198 __isl_take isl_schedule_node
*node
, int read
)
3200 isl_union_map
*access
;
3201 isl_union_map
*prefix
;
3203 prefix
= isl_schedule_node_get_prefix_schedule_relation(node
);
3204 prefix
= isl_union_map_preimage_domain_union_pw_multi_aff(prefix
,
3205 isl_union_pw_multi_aff_copy(kernel
->contraction
));
3206 access
= gpu_array_ref_group_access_relation(group
, read
, !read
);
3207 access
= remove_local_accesses_group(kernel
, group
, access
, prefix
,
3209 access
= isl_union_map_range_product(prefix
, access
);
3214 /* Given an array reference group "group", create a mapping
3216 * read[D -> A] -> [D -> A]
3218 * if "read" is set or
3220 * write[D -> A] -> [D -> A]
3222 * if "read" is not set.
3223 * D corresponds to the outer tile->depth dimensions of
3224 * the kernel schedule.
3226 static __isl_give isl_multi_aff
*create_from_access(isl_ctx
*ctx
,
3227 struct gpu_array_ref_group
*group
, int read
)
3229 struct gpu_array_tile
*tile
;
3233 tile
= gpu_array_ref_group_tile(group
);
3234 space
= isl_space_copy(group
->array
->space
);
3235 space
= isl_space_from_range(space
);
3236 space
= isl_space_add_dims(space
, isl_dim_in
, tile
->depth
);
3237 space
= isl_space_wrap(space
);
3238 space
= isl_space_map_from_set(space
);
3240 id
= isl_id_alloc(ctx
, read
? "read" : "write", group
);
3241 space
= isl_space_set_tuple_id(space
, isl_dim_in
, id
);
3243 return isl_multi_aff_identity(space
);
3246 /* If any writes in "group" require synchronization, then make sure
3247 * that there is a synchronization node for "kernel" after the node
3248 * following "node" in a sequence.
3250 * If "shared" is set and no synchronization is needed for
3251 * the writes to global memory, then add synchronization before
3252 * the kernel to protect shared memory from being overwritten
3253 * by the next iteration of the core computation.
3254 * No additional synchronization is needed to protect against
3255 * the next copy into shared memory because each element of
3256 * the shared memory tile is always copied by the same thread.
3258 static __isl_give isl_schedule_node
*add_group_write_sync(
3259 __isl_take isl_schedule_node
*node
, struct ppcg_kernel
*kernel
,
3260 struct gpu_array_ref_group
*group
, int shared
)
3264 need_sync
= any_sync_writes_in_group(kernel
, group
);
3266 return isl_schedule_node_free(node
);
3268 node
= isl_schedule_node_parent(node
);
3269 node
= isl_schedule_node_next_sibling(node
);
3270 node
= isl_schedule_node_child(node
, 0);
3271 node
= gpu_tree_ensure_following_sync(node
, kernel
);
3272 } else if (shared
) {
3273 struct gpu_array_tile
*tile
;
3275 tile
= gpu_array_ref_group_tile(group
);
3276 node
= isl_schedule_node_parent(node
);
3277 node
= isl_schedule_node_parent(node
);
3278 node
= gpu_tree_move_down_to_depth(node
, tile
->depth
,
3280 node
= gpu_tree_move_left_to_sync(node
, kernel
);
3286 /* Add copy statements to the schedule tree of "node"
3287 * for reading from global memory to private memory (if "read" is set) or
3288 * for writing back from private memory to global memory
3289 * (if "read" is not set) for the array reference group "group" that
3290 * is mapped to private memory.
3291 * On input, "node" points to the kernel node, and it is moved
3292 * back there on output.
3294 * The copies are performed in the order of the array elements.
3295 * The copy statement instances include a reference to the outer
3296 * tile->depth dimensions of the kernel schedule for ease of
3297 * combining them with the group tiling.
3299 * That is, the extra schedule is of the form
3303 * where D corresponds to the outer tile->depth dimensions of
3304 * the kernel schedule and A to the global array.
3305 * This schedule is unrolled because registers are not addressable.
3307 * The copying is inserted in the schedule tree through an extension
3312 * where the extra domain elements type[D -> A] are those accessed
3314 * A filter is inserted on type[D -> A] to ensure that the element
3315 * is read/written by the same thread that needs the element.
3316 * This filter is obtained by applying
3320 * to the thread filter for the core statements.
3322 * The extension is inserted before the core computation in case of a read
3323 * and after the core computation in case of a write.
3324 * In the latter case, we also make sure that there is a synchronization
3325 * node after the write to global memory, unless this write is performed
3326 * at the outer level of the kernel.
3327 * In principle, this synchronization could be inserted higher
3328 * in the schedule tree depending on where the corresponding reads
3329 * from global memory are performed.
3331 static __isl_give isl_schedule_node
*add_copies_group_private(
3332 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
3333 __isl_take isl_schedule_node
*node
, int read
)
3335 struct gpu_array_tile
*tile
;
3336 isl_union_map
*access
;
3337 isl_union_set
*domain
;
3339 isl_multi_aff
*from_access
;
3340 isl_multi_pw_aff
*mpa
;
3341 isl_multi_union_pw_aff
*mupa
;
3342 isl_union_pw_multi_aff
*contraction
;
3343 isl_schedule_node
*graft
;
3344 isl_union_set
*filter
;
3348 kernel_depth
= isl_schedule_node_get_schedule_depth(node
);
3349 tile
= gpu_array_ref_group_tile(group
);
3350 node
= gpu_tree_move_down_to_depth(node
, tile
->depth
, kernel
->core
);
3352 access
= anchored_non_local_accesses(kernel
, group
, node
, read
);
3353 empty
= isl_union_map_is_empty(access
);
3354 if (empty
< 0 || empty
) {
3355 isl_union_map_free(access
);
3357 return isl_schedule_node_free(node
);
3358 return gpu_tree_move_up_to_kernel(node
);
3361 group
->array
->global
= 1;
3362 group
->local_array
->global
= 1;
3364 from_access
= create_from_access(kernel
->ctx
, group
, read
);
3365 space
= isl_space_domain(isl_multi_aff_get_space(from_access
));
3366 access
= isl_union_map_preimage_range_multi_aff(access
, from_access
);
3368 filter
= isl_union_set_copy(kernel
->thread_filter
);
3369 contraction
= isl_union_pw_multi_aff_copy(kernel
->contraction
);
3370 filter
= isl_union_set_preimage_union_pw_multi_aff(filter
, contraction
);
3371 filter
= isl_union_set_apply(filter
, isl_union_map_copy(access
));
3372 filter
= isl_union_set_detect_equalities(filter
);
3373 filter
= isl_union_set_coalesce(filter
);
3375 domain
= isl_union_map_range(access
);
3376 access
= isl_union_set_wrapped_domain_map(domain
);
3377 access
= isl_union_map_reverse(access
);
3378 access
= isl_union_map_coalesce(access
);
3379 graft
= isl_schedule_node_from_extension(access
);
3381 space
= isl_space_map_from_set(space
);
3382 mpa
= isl_multi_pw_aff_identity(space
);
3383 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
3384 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3386 graft
= isl_schedule_node_child(graft
, 0);
3387 graft
= isl_schedule_node_insert_partial_schedule(graft
, mupa
);
3388 graft
= unroll(graft
);
3390 graft
= isl_schedule_node_insert_filter(graft
, filter
);
3392 graft
= isl_schedule_node_parent(graft
);
3395 node
= isl_schedule_node_graft_before(node
, graft
);
3397 node
= isl_schedule_node_graft_after(node
, graft
);
3398 if (kernel_depth
< tile
->depth
)
3399 node
= add_group_write_sync(node
, kernel
, group
, 0);
3402 node
= gpu_tree_move_up_to_kernel(node
);
3407 /* Add copy statements to the schedule tree of "node"
3408 * for reading from global memory to shared memory (if "read" is set) or
3409 * for writing back from shared memory to global memory
3410 * (if "read" is not set) for the array reference group "group" that
3411 * is mapped to shared memory.
3412 * On input, "node" points to the kernel node, and it is moved
3413 * back there on output.
3415 * The copies are performed in the order of the corresponding shared
3417 * The copy statement instances include a reference to the outer
3418 * tile->depth dimensions of the kernel schedule for ease of
3419 * combining them with the group tiling.
3421 * If we are performing a read from global memory to shared memory and
3422 * if the array involved is not a scalar, then we copy
3423 * the entire tile to shared memory. This may result in some extra
3424 * elements getting copied, but it should lead to simpler code
3425 * (which means that fewer registers may be needed) and less divergence.
3427 * Otherwise, we only copy the elements that will be read or have been written
3430 * That is, the extra schedule is of the form
3434 * where D corresponds to the outer tile->depth dimensions of
3435 * the kernel schedule, A to the global array and T is the corresponding
3436 * shared memory tile.
3438 * The copying is inserted in the schedule tree through an extension
3443 * where the extra domain elements type[D -> A] are those accessed
3444 * by the group. In the case of read from a non-scalar, this set
3445 * is replaced by the entire shared memory tile.
3447 * If the "unroll_copy_shared" option is set, then the AST generator
3448 * is instructed to unroll the copying code.
3450 * A filter is inserted on type[D -> A] to map the copy instances
3451 * to the threads. In particular, the thread identifiers are
3452 * equated to the position inside the shared memory tile (T)
3453 * modulo the block size.
3454 * We try to align the innermost tile dimension with the innermost
3455 * thread identifier (x) as a heuristic to improve coalescing.
3456 * In particular, if the dimension of the tile is greater than
3457 * the dimension of the block, then the schedule mapping to the tile
3458 * is broken up into two pieces and the filter is applied to the inner part.
3459 * If, on the other hand, the dimension of the tile is smaller than
3460 * the dimension of the block, then the initial thread identifiers
3461 * are equated to zero and the remaining thread identifiers are
3462 * matched to the memory tile.
3464 * The extension is inserted before the core computation in case of a read
3465 * and after the core computation in case of a write.
3466 * In the case of a read, we first need to make sure there is some
3467 * synchronization before the core computation such that we can put the read
3468 * from global memory to shared memory before that synchronization.
3469 * This ensures that all threads have finished copying into shared memory
3470 * before the shared memory is used.
3471 * We also need to make sure that there is a synchronization node after
3472 * the core computation to ensure that the next load into shared memory
3473 * only happens after all data has been used. There is no need for
3474 * this synchronization if we are at the outer level since then there
3475 * won't be a next load.
3476 * In the case of a write, we need to make sure there is some synchronization
3477 * after the core computation such taht we can put the write from shared
3478 * memory to global memory after that synchronization.
3479 * Unless we are at the outer level, we also need a synchronization node
3480 * after the write to ensure the data is saved to global memory
3481 * before the next iteration write to the same shared memory.
3482 * It also makes sure the data has arrived in global memory before
3483 * it is read in a subsequent iteration.
3485 static __isl_give isl_schedule_node
*add_copies_group_shared(
3486 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
3487 __isl_take isl_schedule_node
*node
, int read
)
3489 struct gpu_array_tile
*tile
;
3490 isl_union_map
*access
;
3491 isl_union_set
*domain
;
3493 isl_multi_aff
*from_access
;
3494 isl_multi_pw_aff
*mpa
;
3495 isl_multi_union_pw_aff
*mupa
;
3496 isl_schedule_node
*graft
;
3497 isl_union_set
*filter
;
3502 tile
= gpu_array_ref_group_tile(group
);
3503 kernel_depth
= isl_schedule_node_get_schedule_depth(node
);
3504 node
= gpu_tree_move_down_to_depth(node
, tile
->depth
, kernel
->core
);
3506 access
= anchored_non_local_accesses(kernel
, group
, node
, read
);
3507 empty
= isl_union_map_is_empty(access
);
3508 if (empty
< 0 || empty
) {
3509 isl_union_map_free(access
);
3511 return isl_schedule_node_free(node
);
3512 return gpu_tree_move_up_to_kernel(node
);
3515 group
->array
->global
= 1;
3516 group
->local_array
->global
= 1;
3518 from_access
= create_from_access(kernel
->ctx
, group
, read
);
3520 ma
= isl_multi_aff_copy(tile
->tiling
);
3521 ma
= isl_multi_aff_pullback_multi_aff(ma
,
3522 isl_multi_aff_copy(from_access
));
3523 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3524 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3526 domain
= isl_union_map_range(access
);
3528 if (read
&& !gpu_array_is_scalar(group
->array
)) {
3530 isl_union_set_free(domain
);
3531 map
= group_tile(group
);
3532 domain
= isl_union_set_from_set(isl_map_wrap(map
));
3535 domain
= isl_union_set_preimage_multi_aff(domain
, from_access
);
3536 access
= isl_union_set_wrapped_domain_map(domain
);
3537 access
= isl_union_map_reverse(access
);
3538 access
= isl_union_map_coalesce(access
);
3539 graft
= isl_schedule_node_from_extension(access
);
3541 graft
= isl_schedule_node_child(graft
, 0);
3543 graft
= isl_schedule_node_insert_partial_schedule(graft
, mupa
);
3544 if (kernel
->options
->unroll_copy_shared
)
3545 graft
= ppcg_set_schedule_node_type(graft
, isl_ast_loop_unroll
);
3547 if (tile
->n
> kernel
->n_block
&& kernel
->n_block
> 0) {
3548 graft
= isl_schedule_node_band_split(graft
,
3549 tile
->n
- kernel
->n_block
);
3550 graft
= isl_schedule_node_child(graft
, 0);
3552 if (tile
->n
< kernel
->n_block
)
3553 skip
= kernel
->n_block
- tile
->n
;
3556 filter
= set_schedule_modulo(graft
, kernel
->thread_ids
,
3558 if (!kernel
->options
->wrap
)
3559 graft
= snap_band_to_sizes(graft
, kernel
->block_dim
+ skip
,
3561 if (tile
->n
> kernel
->n_block
&& kernel
->n_block
> 0)
3562 graft
= isl_schedule_node_parent(graft
);
3563 graft
= isl_schedule_node_insert_filter(graft
, filter
);
3565 while (graft
&& isl_schedule_node_has_parent(graft
))
3566 graft
= isl_schedule_node_parent(graft
);
3569 if (kernel_depth
< tile
->depth
)
3570 node
= gpu_tree_ensure_sync_after_core(node
, kernel
);
3571 node
= gpu_tree_move_left_to_sync(node
, kernel
);
3572 node
= isl_schedule_node_graft_before(node
, graft
);
3574 node
= gpu_tree_move_right_to_sync(node
, kernel
);
3575 node
= isl_schedule_node_graft_after(node
, graft
);
3576 if (kernel_depth
< tile
->depth
)
3577 node
= add_group_write_sync(node
, kernel
, group
, 1);
3580 node
= gpu_tree_move_up_to_kernel(node
);
3585 /* Check whether the array reference group "group" is mapped to
3586 * private or shared memory and, if so,
3587 * add copy statements to the schedule tree of "node"
3588 * for reading from global memory to private or shared memory
3589 * (if "read" is set) or for writing back from private or shared memory
3590 * to global memory (if "read" is not set) for this group.
3591 * On input, "node" points to the kernel node, and it is moved
3592 * back there on output.
3594 static __isl_give isl_schedule_node
*add_copies_group(
3595 struct ppcg_kernel
*kernel
, struct gpu_array_ref_group
*group
,
3596 __isl_take isl_schedule_node
*node
, int read
)
3598 enum ppcg_group_access_type type
;
3600 type
= gpu_array_ref_group_type(group
);
3601 if (type
== ppcg_access_private
)
3602 return add_copies_group_private(kernel
, group
, node
, read
);
3603 if (type
== ppcg_access_shared
)
3604 return add_copies_group_shared(kernel
, group
, node
, read
);
3608 /* For each array reference group that is mapped to private or shared memory,
3609 * add copy statements to the schedule tree of "node"
3610 * for reading from global memory to private or shared memory
3611 * and for writing back.
3612 * On input, "node" points to the kernel node, and it is moved
3613 * back there on output.
3615 static __isl_give isl_schedule_node
*add_copies(struct ppcg_kernel
*kernel
,
3616 __isl_take isl_schedule_node
*node
)
3620 for (i
= 0; i
< kernel
->n_array
; ++i
) {
3621 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
3623 for (j
= 0; j
< array
->n_group
; ++j
) {
3624 struct gpu_array_ref_group
*group
= array
->groups
[j
];
3626 node
= add_copies_group(kernel
, group
, node
, 1);
3629 node
= add_copies_group(kernel
, group
, node
, 0);
3638 /* Mark all dimensions in the current band node atomic.
3640 static __isl_give isl_schedule_node
*atomic(__isl_take isl_schedule_node
*node
)
3642 return ppcg_set_schedule_node_type(node
, isl_ast_loop_atomic
);
3645 /* Mark "node" atomic, if it is a band node.
3646 * Do the same for all ancestors.
3647 * Return a pointer to "node" (in the updated schedule tree).
3649 static __isl_give isl_schedule_node
*atomic_ancestors(
3650 __isl_take isl_schedule_node
*node
)
3656 if (!isl_schedule_node_has_parent(node
))
3659 pos
= isl_schedule_node_get_child_position(node
);
3660 node
= isl_schedule_node_parent(node
);
3661 if (isl_schedule_node_get_type(node
) == isl_schedule_node_band
)
3662 node
= atomic(node
);
3663 node
= atomic_ancestors(node
);
3664 node
= isl_schedule_node_child(node
, pos
);
3669 /* Collect all write references that require synchronization.
3670 * "node" is assumed to point to the kernel node.
3671 * Each reference is represented by a universe set in a space
3675 * with S[i,j] the statement instance space and R[] the array reference.
3677 * This function should be called before block and thread filters are added.
3679 * Synchronization is needed after a write if there is a subsequent read
3680 * within the same block that may not be performed by the same thread.
3681 * There should not be any dependences between different blocks,
3682 * so we start with the flow dependences within the same kernel invocation
3683 * and we subtract from these those dependences that are mapped
3684 * to the same iteration of the bands where synchronization is inserted.
3685 * We do not remove pairs of instances that are known to map to
3686 * the same thread across different iterations of the intermediate
3687 * bands because the read may be performed by a different thread
3688 * than the one that needs the value if shared memory is involved.
3690 * We also consider all pairs of possible writes that access the same
3691 * memory location and that may be mapped to the same block but not
3692 * to the same iteration of the intermediate bands.
3693 * In theory, it would be possible for one thread to still be in
3694 * a previous iteration of a loop in these bands.
3695 * A write to global memory in this delayed thread could then overwrite
3696 * a write from another thread that has already moved on to
3697 * the next iteration.
3699 * After computing the above writes paired off with reads or writes
3700 * that depend on them, we project onto the domain writes.
3701 * Sychronization is needed after writes to global memory
3702 * through these references.
3704 static __isl_give isl_union_set
*compute_sync_writes(
3705 struct ppcg_kernel
*kernel
, __isl_keep isl_schedule_node
*node
)
3707 isl_union_map
*local
;
3708 isl_union_map
*may_writes
, *shared_access
;
3709 isl_union_map
*kernel_prefix
, *thread_prefix
;
3710 isl_union_map
*equal
;
3711 isl_union_set
*wrap
;
3712 isl_union_set
*domain
;
3713 isl_union_pw_multi_aff
*contraction
;
3715 kernel_prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
3716 node
= isl_schedule_node_copy(node
);
3717 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
3718 thread_prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
3719 isl_schedule_node_free(node
);
3721 contraction
= kernel
->contraction
;
3722 kernel_prefix
= isl_union_map_preimage_domain_union_pw_multi_aff(
3723 kernel_prefix
, isl_union_pw_multi_aff_copy(contraction
));
3724 thread_prefix
= isl_union_map_preimage_domain_union_pw_multi_aff(
3725 thread_prefix
, isl_union_pw_multi_aff_copy(contraction
));
3726 domain
= isl_union_set_copy(kernel
->expanded_domain
);
3727 domain
= isl_union_set_universe(domain
);
3729 may_writes
= isl_union_map_copy(kernel
->prog
->scop
->tagged_may_writes
);
3730 may_writes
= isl_union_map_curry(may_writes
);
3731 may_writes
= isl_union_map_intersect_domain(may_writes
, domain
);
3732 may_writes
= isl_union_map_uncurry(may_writes
);
3733 shared_access
= isl_union_map_copy(may_writes
);
3734 shared_access
= isl_union_map_apply_range(shared_access
,
3735 isl_union_map_reverse(may_writes
));
3737 local
= isl_union_map_copy(kernel
->prog
->scop
->tagged_dep_flow
);
3738 local
= isl_union_map_union(local
, shared_access
);
3739 local
= isl_union_map_zip(local
);
3741 equal
= isl_union_map_apply_range(kernel_prefix
,
3742 isl_union_map_reverse(isl_union_map_copy(kernel_prefix
)));
3743 wrap
= isl_union_map_wrap(equal
);
3744 local
= isl_union_map_intersect_domain(local
, wrap
);
3745 equal
= isl_union_map_apply_range(thread_prefix
,
3746 isl_union_map_reverse(isl_union_map_copy(thread_prefix
)));
3747 wrap
= isl_union_map_wrap(equal
);
3748 local
= isl_union_map_subtract_domain(local
, wrap
);
3750 local
= isl_union_map_zip(local
);
3751 local
= isl_union_map_universe(local
);
3753 return isl_union_map_domain(local
);
3756 /* Group the domain elements into a single space, named kernelX,
3757 * with X the kernel sequence number "kernel_id".
3759 static __isl_give isl_schedule_node
*group_statements(
3760 __isl_take isl_schedule_node
*node
, int kernel_id
)
3768 snprintf(buffer
, sizeof(buffer
), "kernel%d", kernel_id
);
3769 id
= isl_id_alloc(isl_schedule_node_get_ctx(node
), buffer
, NULL
);
3770 return isl_schedule_node_group(node
, id
);
3773 /* Create a ppcg_kernel representing the domain instances that reach "node"
3774 * and insert a mark node pointing to the ppcg_kernel before "node".
3775 * The band that "node" points to is the band that needs to be mapped
3776 * to block identifiers. The band that needs to be mapped to thread
3777 * identifiers should be marked by a "thread" mark by the caller.
3778 * The linear branch between the current node and the "thread" mark
3779 * may also have a "shared" mark. If present, the mapping to shared
3780 * memory is computed at that point.
3781 * Both marks are removed by this function.
3782 * If "scale" is set, then the band that "node" points to is scaled
3785 * Mark all outer band nodes as atomic to ensure each kernel is only
3787 * If the domain elements that reach "node" live in more than one space,
3788 * then group the domain elements into a single space, named kernelX,
3789 * with X the kernel sequence number.
3791 * Insert a guard node governing the kernel node to ensure that
3792 * no kernels with zero blocks are launched.
3794 * Insert a context node describing the block and thread
3795 * identifiers inside the kernel mark.
3796 * The context node needs to be inserted after the effective block size
3797 * has been determined such that the bounds on the thread identifiers
3798 * would reflect the effective block size.
3799 * Insert a filter node inside the context node mapping the statement
3800 * instances to block identifiers. In particular, the block identifiers
3801 * are equated to the partial schedule of band that was marked for mapping
3802 * to blocks modulo the grid size.
3803 * Insert a filter node inside the "thread" mark mapping the statement
3804 * instances to thread identifiers. In particular, the thread identifiers
3805 * are equated to the partial schedule of band that was marked for mapping
3806 * to threads modulo the block size.
3808 * Compute array reference groups for all arrays, set the local
3809 * array bounds based on the set of domain instances that reach
3810 * the kernel node, check the total amount of shared memory used
3811 * and compute all group tilings.
3812 * The array reference groups are computed after the block filter
3813 * has been inserted because it affects the mapping to shared or
3814 * private memory. This computation also requires the thread filter
3815 * (in the ppcg_kernel object), but this thread filter should not
3816 * have been added to the schedule tree yet since the computation
3817 * requires the schedule of the band that needs to be mapped to
3818 * threads before the privatization is applied.
3820 * If any array reference group requires the band mapped to threads
3821 * to be unrolled, then we perform the required unrolling.
3823 * We save a copy of the schedule that may influence the mappings
3824 * to shared or private memory in kernel->copy_schedule.
3826 * Finally, we add synchronization and copy statements to the schedule tree,
3827 * remove the "thread" mark and create representations for the local
3828 * variables in the kernel.
3830 * We keep a copy of the isl_id that points to the kernel to ensure
3831 * that the kernel does not get destroyed if the schedule node
3832 * is freed due to some error condition.
3834 __isl_give isl_schedule_node
*gpu_create_kernel(struct gpu_gen
*gen
,
3835 __isl_take isl_schedule_node
*node
, int scale
,
3836 __isl_keep isl_multi_val
*sizes
)
3838 struct ppcg_kernel
*kernel
;
3840 isl_schedule_node
*node_thread
;
3841 isl_union_map
*host_schedule
;
3842 isl_union_pw_multi_aff
*contraction
;
3843 isl_set
*host_domain
;
3844 isl_union_set
*domain
, *expanded
;
3845 int single_statement
;
3847 node
= gpu_tree_insert_shared_before_thread(node
);
3851 kernel
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel
);
3852 kernel
= ppcg_kernel_create_local_arrays(kernel
, gen
->prog
);
3854 return isl_schedule_node_free(node
);
3856 domain
= isl_schedule_node_get_domain(node
);
3857 single_statement
= isl_union_set_n_set(domain
) == 1;
3859 kernel
->ctx
= gen
->ctx
;
3860 kernel
->prog
= gen
->prog
;
3861 kernel
->options
= gen
->options
;
3862 kernel
->context
= extract_context(node
, gen
->prog
);
3863 kernel
->core
= isl_union_set_universe(isl_union_set_copy(domain
));
3864 contraction
= isl_schedule_node_get_subtree_contraction(node
);
3865 kernel
->contraction
= isl_union_pw_multi_aff_copy(contraction
);
3866 expanded
= isl_union_set_copy(domain
);
3867 expanded
= isl_union_set_preimage_union_pw_multi_aff(expanded
,
3869 kernel
->expanded_domain
= isl_union_set_copy(expanded
);
3870 kernel
->arrays
= accessed_by_domain(expanded
, gen
->prog
);
3871 kernel
->n_grid
= n_outer_coincidence(node
);
3872 node_thread
= isl_schedule_node_copy(node
);
3873 node_thread
= gpu_tree_move_down_to_thread(node_thread
, kernel
->core
);
3874 node_thread
= isl_schedule_node_child(node_thread
, 0);
3875 kernel
->n_block
= n_outer_coincidence(node_thread
);
3876 isl_schedule_node_free(node_thread
);
3877 kernel
->id
= gen
->kernel_id
++;
3878 read_grid_and_block_sizes(kernel
, gen
);
3880 kernel
->sync_writes
= compute_sync_writes(kernel
, node
);
3882 host_schedule
= isl_schedule_node_get_prefix_schedule_union_map(node
);
3883 host_domain
= isl_set_from_union_set(isl_union_map_range(
3886 node
= atomic_ancestors(node
);
3888 id
= isl_id_alloc(gen
->ctx
, "kernel", kernel
);
3889 id
= isl_id_set_free_user(id
, &ppcg_kernel_free_wrap
);
3890 node
= isl_schedule_node_insert_mark(node
, isl_id_copy(id
));
3892 if (!single_statement
)
3893 node
= group_statements(node
, kernel
->id
);
3895 node
= isl_schedule_node_child(node
, 0);
3896 node
= split_band(node
, kernel
->n_grid
);
3897 kernel
->block_ids
= ppcg_scop_generate_names(gen
->prog
->scop
,
3898 kernel
->n_grid
, "b");
3899 kernel
->block_filter
= set_schedule_modulo(node
, kernel
->block_ids
,
3901 kernel
->grid_size
= extract_grid_size(kernel
,
3902 isl_union_set_copy(domain
));
3903 if (!kernel
->options
->wrap
)
3904 node
= snap_band_to_sizes(node
, kernel
->grid_dim
,
3907 node
= scale_band(node
, isl_multi_val_copy(sizes
));
3908 node
= isl_schedule_node_parent(node
);
3909 if (!single_statement
)
3910 node
= isl_schedule_node_parent(node
);
3911 node
= insert_guard(node
, kernel
->context
, kernel
->grid_size
,
3913 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
3914 node
= isl_schedule_node_child(node
, 0);
3915 node
= split_band(node
, kernel
->n_block
);
3916 kernel
->thread_ids
= ppcg_scop_generate_names(gen
->prog
->scop
,
3917 kernel
->n_block
, "t");
3918 kernel
->thread_filter
= set_schedule_modulo(node
, kernel
->thread_ids
,
3920 if (extract_block_size(kernel
, domain
) < 0)
3921 node
= isl_schedule_node_free(node
);
3923 node
= gpu_tree_move_up_to_kernel(node
);
3924 node
= isl_schedule_node_child(node
, 0);
3925 node
= insert_context(kernel
, node
);
3926 node
= isl_schedule_node_child(node
, 0);
3927 node
= isl_schedule_node_insert_filter(node
,
3928 isl_union_set_copy(kernel
->block_filter
));
3930 node
= gpu_tree_move_up_to_kernel(node
);
3932 if (gpu_group_references(kernel
, node
) < 0)
3933 node
= isl_schedule_node_free(node
);
3934 localize_bounds(kernel
, host_domain
);
3935 isl_set_free(host_domain
);
3937 check_shared_memory_bound(kernel
);
3938 mark_global_arrays(kernel
);
3939 compute_group_tilings(kernel
);
3941 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
3942 node
= isl_schedule_node_child(node
, 0);
3943 if (!kernel
->options
->wrap
)
3944 node
= snap_band_to_sizes(node
, kernel
->block_dim
,
3946 node
= isl_schedule_node_insert_filter(node
,
3947 isl_union_set_copy(kernel
->thread_filter
));
3948 if (kernel_requires_unroll(kernel
)) {
3949 node
= isl_schedule_node_child(node
, 0);
3950 node
= unroll(node
);
3953 node
= gpu_tree_move_up_to_thread(node
);
3954 kernel
->copy_schedule_dim
= isl_schedule_node_get_schedule_depth(node
);
3955 kernel
->copy_schedule
=
3956 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node
);
3957 contraction
= isl_union_pw_multi_aff_copy(kernel
->contraction
);
3958 kernel
->copy_schedule
=
3959 isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
3960 kernel
->copy_schedule
, contraction
);
3962 node
= gpu_tree_move_up_to_kernel(node
);
3964 node
= add_sync(kernel
, node
);
3965 node
= add_copies(kernel
, node
);
3967 node
= gpu_tree_move_down_to_shared(node
, kernel
->core
);
3968 node
= isl_schedule_node_delete(node
);
3970 node
= gpu_tree_move_down_to_thread(node
, kernel
->core
);
3971 node
= isl_schedule_node_delete(node
);
3973 node
= gpu_tree_move_up_to_kernel(node
);
3975 if (create_kernel_vars(kernel
) < 0)
3976 node
= isl_schedule_node_free(node
);
3978 if (!single_statement
)
3979 node
= isl_schedule_node_parent(node
);
3980 node
= isl_schedule_node_parent(node
);
3986 /* Insert a zero-dimensional permutable band at "node".
3988 static __isl_give isl_schedule_node
*insert_empty_permutable_band(
3989 __isl_take isl_schedule_node
*node
)
3992 isl_schedule
*schedule
;
3993 isl_union_set
*domain
;
3994 isl_multi_union_pw_aff
*mupa
;
3996 schedule
= isl_schedule_node_get_schedule(node
);
3997 domain
= isl_schedule_get_domain(schedule
);
3998 space
= isl_union_set_get_space(domain
);
3999 isl_union_set_free(domain
);
4000 isl_schedule_free(schedule
);
4002 space
= isl_space_set_from_params(space
);
4003 mupa
= isl_multi_union_pw_aff_zero(space
);
4004 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
4005 node
= isl_schedule_node_band_set_permutable(node
, 1);
4010 /* See if hybrid tiling can be performed on "node" and its parent.
4011 * If so, apply hybrid tiling and return the updated schedule tree.
4012 * If not, return the original schedule tree.
4013 * Return NULL on error.
4015 * First check if "node", together with its parent, meets
4016 * the basic requirements for hybrid tiling.
4017 * If so, compute the relative dependence distances of "node"
4018 * with respect to its parent and check if they are sufficiently bounded.
4019 * If so, apply hybrid tiling using user specified tile sizes.
4021 * The tile sizes are read before the dependence distance bounds are
4022 * computed, because the user may have specified fewer dimensions
4023 * than are available. In this case, the remaining schedule dimensions
4024 * are split off and the dependence distances should be computed
4025 * after these dimensions have been split off.
4027 static __isl_give isl_schedule_node
*try_hybrid_tile(struct gpu_gen
*gen
,
4028 __isl_take isl_schedule_node
*node
)
4033 isl_schedule_node
*orig
= node
;
4034 ppcg_ht_bounds
*bounds
;
4036 ok
= ppcg_ht_parent_has_input_pattern(node
);
4038 return isl_schedule_node_free(node
);
4042 tile_len
= 1 + isl_schedule_node_band_n_member(node
);
4043 tile_size
= read_tile_sizes(gen
, &tile_len
);
4045 return isl_schedule_node_free(node
);
4047 node
= isl_schedule_node_copy(node
);
4048 node
= split_band(node
, tile_len
- 1);
4049 node
= isl_schedule_node_parent(node
);
4050 bounds
= ppcg_ht_compute_bounds(gen
->prog
->scop
, node
);
4051 node
= isl_schedule_node_child(node
, 0);
4053 ok
= ppcg_ht_bounds_is_valid(bounds
);
4055 node
= gpu_hybrid_tile(gen
, node
, bounds
, tile_size
);
4057 ppcg_ht_bounds_free(bounds
);
4060 if (ok
>= 0 && !ok
) {
4061 isl_schedule_node_free(node
);
4064 isl_schedule_node_free(orig
);
4066 return isl_schedule_node_free(node
);
4070 /* If "node" is the outermost permutable band that can be mapped to block and
4071 * thread identifiers in its branch (or the root of a subtree with
4072 * no such outer bands),
4073 * then mark the band as such, attaching a ppcg_kernel to the mark.
4075 * If hybrid tiling is allowed, then first try and apply it
4076 * to "node" and its parent.
4078 * If "node" is the root of a subtree without permutable bands,
4079 * then insert a zero-dimensional permutable band such that
4080 * we can assume that "node" always points to a band node.
4081 * This includes the case where "node" already points to a band node,
4082 * but one without any coincident dimension. In this case,
4083 * the extra node ensures that this original node does not get tiled.
4085 * Tile "node" using user specified tile sizes, after splitting the band
4086 * if the number of specified tile sizes is smaller than the dimension
4087 * of the band. Mark the point band of this tiling as the band that
4088 * needs to be mapped to threads and instruct the AST generator to unroll
4089 * the band if the "unroll_gpu_tile" option is set.
4090 * Create a kernel representing the domain instances that reach "node" and
4091 * insert a mark node pointing to the ppcg_kernel before the band node.
4093 static __isl_give isl_schedule_node
*mark_outer_permutable(
4094 __isl_take isl_schedule_node
*node
, void *user
)
4096 struct gpu_gen
*gen
= user
;
4102 isl_multi_val
*sizes
;
4104 outer
= is_outer_tilable(node
);
4106 return isl_schedule_node_free(node
);
4110 if (gen
->options
->hybrid
) {
4111 isl_schedule_node
*saved
= isl_schedule_node_copy(node
);
4112 node
= try_hybrid_tile(gen
, node
);
4113 isl_schedule_node_free(saved
);
4118 if (isl_schedule_node_get_type(node
) != isl_schedule_node_band
||
4119 !isl_schedule_node_band_member_get_coincident(node
, 0))
4120 node
= insert_empty_permutable_band(node
);
4122 tile_len
= isl_schedule_node_band_n_member(node
);
4123 tile_size
= read_tile_sizes(gen
, &tile_len
);
4125 return isl_schedule_node_free(node
);
4126 if (tile_len
< isl_schedule_node_band_n_member(node
))
4127 node
= isl_schedule_node_band_split(node
, tile_len
);
4128 sizes
= construct_band_tiles_sizes(node
, tile_size
);
4129 node
= tile_band(node
, isl_multi_val_copy(sizes
));
4130 node
= isl_schedule_node_child(node
, 0);
4131 if (gen
->options
->unroll_gpu_tile
)
4132 node
= ppcg_set_schedule_node_type(node
, isl_ast_loop_unroll
);
4133 id
= isl_id_alloc(gen
->ctx
, "thread", NULL
);
4134 node
= isl_schedule_node_insert_mark(node
, id
);
4135 node
= isl_schedule_node_parent(node
);
4137 scale
= gen
->options
->scale_tile_loops
;
4138 node
= gpu_create_kernel(gen
, node
, scale
, sizes
);
4139 isl_multi_val_free(sizes
);
4145 /* Given a set or sequence node, return the union the filters of either all
4146 * (if "only_initial" is not set) or the initial (if "only_initial" is set)
4147 * direct subtrees that do not contain any suitably permutable bands
4148 * (according to subtree_has_permutable_bands).
4150 static __isl_give isl_union_set
*get_non_parallel_subtree_filters(
4151 __isl_keep isl_schedule_node
*node
, int only_initial
)
4154 isl_union_set
*filter
;
4157 n
= isl_schedule_node_n_children(node
);
4161 node
= isl_schedule_node_copy(node
);
4162 node
= isl_schedule_node_child(node
, 0);
4163 filter
= isl_schedule_node_filter_get_filter(node
);
4164 node
= isl_schedule_node_parent(node
);
4165 space
= isl_union_set_get_space(filter
);
4166 isl_union_set_free(filter
);
4167 filter
= isl_union_set_empty(space
);
4169 for (i
= 0; i
< n
; ++i
) {
4172 node
= isl_schedule_node_child(node
, i
);
4173 parallelism
= subtree_has_permutable_bands(node
);
4174 if (parallelism
< 0) {
4175 filter
= isl_union_set_free(filter
);
4176 } else if (!parallelism
) {
4177 isl_union_set
*filter_i
;
4178 filter_i
= isl_schedule_node_filter_get_filter(node
);
4179 filter
= isl_union_set_union(filter
, filter_i
);
4180 } else if (only_initial
)
4182 node
= isl_schedule_node_parent(node
);
4185 isl_schedule_node_free(node
);
4190 /* Given a set or sequence node, return the union of the filters of
4191 * the direct subtrees that do not contain any suitably permutable bands
4192 * (according to subtree_has_permutable_bands).
4194 static __isl_give isl_union_set
*get_all_non_parallel_subtree_filters(
4195 __isl_keep isl_schedule_node
*node
)
4197 return get_non_parallel_subtree_filters(node
, 0);
4200 /* Given a set or sequence node, return the union of the filters of
4201 * the initial direct subtrees that do not contain any suitably permutable
4202 * bands (according to subtree_has_permutable_bands).
4204 static __isl_give isl_union_set
*get_initial_non_parallel_subtree_filters(
4205 __isl_keep isl_schedule_node
*node
)
4207 return get_non_parallel_subtree_filters(node
, 1);
4210 /* Mark all variables that are accessed by the statement instances in "domain"
4211 * and that are local to "prog" as requiring a declaration in the host code.
4212 * The statement instances in "domain" correspond to (a subset of)
4213 * the active instances at "node".
4214 * "node" is not modified by this function, except that NULL is returned
4217 static __isl_give isl_schedule_node
*declare_accessed_local_variables(
4218 __isl_take isl_schedule_node
*node
, struct gpu_prog
*prog
,
4219 __isl_keep isl_union_set
*domain
)
4221 isl_union_pw_multi_aff
*contraction
;
4222 isl_union_set
*arrays
;
4225 if (!ppcg_scop_any_hidden_declarations(prog
->scop
))
4227 contraction
= isl_schedule_node_get_subtree_contraction(node
);
4228 domain
= isl_union_set_copy(domain
);
4229 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
, contraction
);
4230 arrays
= accessed_by_domain(domain
, prog
);
4232 for (i
= 0; i
< prog
->n_array
; ++i
) {
4237 if (!prog
->array
[i
].local
)
4239 space
= isl_set_get_space(prog
->array
[i
].extent
);
4240 set
= isl_union_set_extract_set(arrays
, space
);
4241 empty
= isl_set_plain_is_empty(set
);
4246 prog
->array
[i
].declare_local
= 1;
4249 isl_union_set_free(arrays
);
4252 isl_union_set_free(arrays
);
4253 return isl_schedule_node_free(node
);
4256 /* If "node" points to a set node, then separate its children
4257 * into subtrees that have suitably permutable bands and
4258 * those that do not.
4259 * Adjust the schedule tree in order to execute the second group
4260 * after the first group and return a pointer to the first group,
4261 * assuming there are any such subtrees.
4262 * If "node" points to a sequence node, then separate the initial
4263 * children that do not have suitably permutable bands and
4264 * return a pointer to the subsequence of children that do have such bands,
4265 * assuming there are any such subtrees.
4267 * In both cases, mark all local variables in "prog" that are accessed by
4268 * the group without permutable bands as requiring a declaration on the host.
4270 static __isl_give isl_schedule_node
*isolate_permutable_subtrees(
4271 __isl_take isl_schedule_node
*node
, struct gpu_prog
*prog
)
4273 isl_union_set
*filter
;
4274 enum isl_schedule_node_type type
;
4278 type
= isl_schedule_node_get_type(node
);
4279 if (type
== isl_schedule_node_set
) {
4280 filter
= get_all_non_parallel_subtree_filters(node
);
4281 node
= declare_accessed_local_variables(node
, prog
, filter
);
4282 node
= isl_schedule_node_order_after(node
, filter
);
4283 } else if (type
== isl_schedule_node_sequence
) {
4284 filter
= get_initial_non_parallel_subtree_filters(node
);
4285 node
= declare_accessed_local_variables(node
, prog
, filter
);
4286 node
= isl_schedule_node_order_before(node
, filter
);
4292 /* Replace any reference to an array element in the range of "copy"
4293 * by a reference to all array elements (defined by the extent of the array).
4295 static __isl_give isl_union_map
*approximate_copy_out(
4296 __isl_take isl_union_map
*copy
, struct gpu_prog
*prog
)
4301 res
= isl_union_map_empty(isl_union_map_get_space(copy
));
4303 for (i
= 0; i
< prog
->n_array
; ++i
) {
4306 isl_union_map
*copy_i
;
4307 isl_union_set
*extent
, *domain
;
4309 space
= isl_space_copy(prog
->array
[i
].space
);
4310 extent
= isl_union_set_from_set(isl_set_universe(space
));
4311 copy_i
= isl_union_map_copy(copy
);
4312 copy_i
= isl_union_map_intersect_range(copy_i
, extent
);
4313 set
= isl_set_copy(prog
->array
[i
].extent
);
4314 extent
= isl_union_set_from_set(set
);
4315 domain
= isl_union_map_domain(copy_i
);
4316 copy_i
= isl_union_map_from_domain_and_range(domain
, extent
);
4317 res
= isl_union_map_union(res
, copy_i
);
4320 isl_union_map_free(copy
);
4325 /* Insert "kernel" marks that point to a ppcg_kernel structure
4326 * in front of all outermost tilable band that (by construction)
4327 * have at least one parallel loop.
4329 static __isl_give isl_schedule_node
*mark_kernels(struct gpu_gen
*gen
,
4330 __isl_take isl_schedule_node
*node
)
4332 return isl_schedule_node_map_descendant_bottom_up(node
,
4333 &mark_outer_permutable
, gen
);
4336 /* Construct schedule constraints from the dependences in prog->scop and
4337 * the array order dependences in prog->array_order.
4339 * If live range reordering is allowed, then we need to make sure
4340 * that live ranges on arrays are not run in parallel since doing
4341 * so would require array expansion. We therefore add the array
4342 * order dependences to the coincidence dependences. Non-zero array
4343 * order dependences will then prevent a schedule dimension from being
4344 * considered parallel.
4345 * Live ranges derived from scalars are allowed to be run in parallel
4346 * since we force the scalars to be mapped to private memory in
4347 * check_scalar_live_ranges.
4348 * If live range reordering is allowed, then the false dependences
4349 * are not added to the validity constraints as that would prevent
4350 * reordering. Instead, the external false dependences that enforce that reads
4351 * from potentially live-in data precede any later write and
4352 * that writes of potentially live-out data follow any other earlier write
4353 * are added to the validity and the coincidence constraints.
4354 * The false dependences are still added to the proximity constraints
4355 * for consistency with the case where live range reordering is not allowed.
4356 * The coincidence constraints then consist of flow dependences,
4357 * external false dependences and array order dependences.
4358 * The independences can be filtered out from the first two sets.
4359 * They have already been filtered out from the array order dependences
4360 * on a per array basis in collect_order_dependences.
4361 * There is no need for a per array handling of the other two sets
4362 * as there should be no flow or external false dependence on local
4363 * variables that can be filtered out.
4365 static __isl_give isl_schedule_constraints
*construct_schedule_constraints(
4366 struct gpu_prog
*prog
)
4368 isl_union_set
*domain
;
4369 isl_union_map
*dep_raw
, *dep
;
4370 isl_union_map
*validity
, *proximity
, *coincidence
;
4371 isl_schedule_constraints
*sc
;
4373 domain
= isl_union_set_copy(prog
->scop
->domain
);
4374 sc
= isl_schedule_constraints_on_domain(domain
);
4375 sc
= isl_schedule_constraints_set_context(sc
,
4376 isl_set_copy(prog
->scop
->context
));
4377 if (prog
->scop
->options
->live_range_reordering
) {
4378 sc
= isl_schedule_constraints_set_conditional_validity(sc
,
4379 isl_union_map_copy(prog
->scop
->tagged_dep_flow
),
4380 isl_union_map_copy(prog
->scop
->tagged_dep_order
));
4381 proximity
= isl_union_map_copy(prog
->scop
->dep_flow
);
4382 validity
= isl_union_map_copy(proximity
);
4383 validity
= isl_union_map_union(validity
,
4384 isl_union_map_copy(prog
->scop
->dep_forced
));
4385 proximity
= isl_union_map_union(proximity
,
4386 isl_union_map_copy(prog
->scop
->dep_false
));
4387 coincidence
= isl_union_map_copy(validity
);
4388 coincidence
= isl_union_map_subtract(coincidence
,
4389 isl_union_map_copy(prog
->scop
->independence
));
4390 coincidence
= isl_union_map_union(coincidence
,
4391 isl_union_map_copy(prog
->array_order
));
4393 dep_raw
= isl_union_map_copy(prog
->scop
->dep_flow
);
4394 dep
= isl_union_map_copy(prog
->scop
->dep_false
);
4395 dep
= isl_union_map_union(dep
, dep_raw
);
4396 dep
= isl_union_map_coalesce(dep
);
4397 proximity
= isl_union_map_copy(dep
);
4398 coincidence
= isl_union_map_copy(dep
);
4401 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
4402 sc
= isl_schedule_constraints_set_coincidence(sc
, coincidence
);
4403 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
4405 if (prog
->scop
->options
->debug
->dump_schedule_constraints
)
4406 isl_schedule_constraints_dump(sc
);
4410 /* Compute an appropriate schedule based on the accesses in
4411 * gen->read and gen->write.
4413 * We derive schedule constraints from the dependences in gen->prog->scop
4414 * and then use isl to compute a schedule that has a parallel loop
4415 * in each tilable band.
4416 * During the schedule construction, some statement instances
4417 * may be grouped first based on the input schedule.
4419 static __isl_give isl_schedule
*compute_schedule(struct gpu_gen
*gen
)
4421 isl_schedule_constraints
*sc
;
4422 isl_schedule
*schedule
;
4424 sc
= construct_schedule_constraints(gen
->prog
);
4425 schedule
= gen
->prog
->scop
->schedule
;
4426 schedule
= ppcg_compute_schedule(sc
, schedule
, gen
->options
);
4431 /* If the band node "node" has exactly one member then mark it permutable.
4433 static __isl_give isl_schedule_node
*band_set_permutable(
4434 __isl_take isl_schedule_node
*node
,
4435 __isl_keep isl_schedule_constraints
*sc
)
4437 if (isl_schedule_node_band_n_member(node
) == 1)
4438 node
= isl_schedule_node_band_set_permutable(node
, 1);
4443 /* Return the coincidence constraints between pairs of instances
4444 * that are scheduled together by the ancestors of "node".
4445 * That is, select those coincidence constraints that relate
4446 * pairs of instances that have the same value for the prefix schedule.
4447 * If the schedule depth is zero, then the prefix schedule does not
4448 * contain any information, so we intersect domain and range
4449 * of the schedule constraints with the reaching domain elements instead.
4451 static __isl_give isl_union_map
*get_local_coincidence(
4452 __isl_keep isl_schedule_node
*node
,
4453 __isl_keep isl_schedule_constraints
*sc
)
4455 isl_union_map
*coincidence
;
4456 isl_multi_union_pw_aff
*prefix
;
4457 isl_union_pw_multi_aff
*contraction
;
4459 coincidence
= isl_schedule_constraints_get_coincidence(sc
);
4460 contraction
= isl_schedule_node_get_subtree_contraction(node
);
4461 if (isl_schedule_node_get_schedule_depth(node
) == 0) {
4462 isl_union_set
*domain
;
4464 domain
= isl_schedule_node_get_domain(node
);
4465 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
4467 coincidence
= isl_union_map_intersect_domain(coincidence
,
4468 isl_union_set_copy(domain
));
4469 coincidence
= isl_union_map_intersect_range(coincidence
,
4474 prefix
= isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node
);
4475 prefix
= isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix
,
4477 return isl_union_map_eq_at_multi_union_pw_aff(coincidence
, prefix
);
4480 /* For each member in the band node "node", determine whether
4481 * it is coincident with respect to the outer nodes and mark
4484 * That is, for each coincidence constraint between pairs
4485 * of instances that are scheduled together by the outer nodes,
4486 * check that domain and range are assigned the same value
4487 * by the band member. This test is performed by checking
4488 * that imposing the same value for the band member does not
4489 * remove any elements from the set of coincidence constraints.
4491 static __isl_give isl_schedule_node
*band_set_coincident(
4492 __isl_take isl_schedule_node
*node
,
4493 __isl_keep isl_schedule_constraints
*sc
)
4495 isl_union_map
*coincidence
;
4496 isl_union_pw_multi_aff
*contraction
;
4497 isl_multi_union_pw_aff
*partial
;
4500 coincidence
= get_local_coincidence(node
, sc
);
4502 partial
= isl_schedule_node_band_get_partial_schedule(node
);
4503 contraction
= isl_schedule_node_get_subtree_contraction(node
);
4504 partial
= isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial
,
4506 n
= isl_schedule_node_band_n_member(node
);
4507 for (i
= 0; i
< n
; ++i
) {
4508 isl_union_map
*coincidence_i
;
4509 isl_union_pw_aff
*upa
;
4510 isl_multi_union_pw_aff
*partial_i
;
4513 upa
= isl_multi_union_pw_aff_get_union_pw_aff(partial
, i
);
4514 partial_i
= isl_multi_union_pw_aff_from_union_pw_aff(upa
);
4515 coincidence_i
= isl_union_map_copy(coincidence
);
4516 coincidence_i
= isl_union_map_eq_at_multi_union_pw_aff(
4517 coincidence_i
, partial_i
);
4518 subset
= isl_union_map_is_subset(coincidence
, coincidence_i
);
4519 isl_union_map_free(coincidence_i
);
4523 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
4527 node
= isl_schedule_node_free(node
);
4528 isl_multi_union_pw_aff_free(partial
);
4529 isl_union_map_free(coincidence
);
4534 /* If "node" is a band, then set its properties.
4536 * In particular, if the band has exactly one member, then mark it permutable.
4537 * Mark the band member coincident based on the coincidence constraints
4540 static __isl_give isl_schedule_node
*set_band_properties(
4541 __isl_take isl_schedule_node
*node
, void *user
)
4543 isl_schedule_constraints
*sc
= user
;
4545 if (isl_schedule_node_get_type(node
) != isl_schedule_node_band
)
4547 if (isl_schedule_node_band_n_member(node
) == 0)
4550 node
= band_set_permutable(node
, sc
);
4551 node
= band_set_coincident(node
, sc
);
4556 /* Return the original schedule with all bands marked permutable and
4557 * all band members marked coincident based on the coincidence constraints.
4558 * The bands are explicitly marked permutable so that they will be considered
4559 * by mark_outer_permutable.
4561 static __isl_give isl_schedule
*determine_properties_original_schedule(
4562 struct gpu_gen
*gen
)
4564 isl_schedule
*schedule
;
4565 isl_schedule_constraints
*sc
;
4567 schedule
= isl_schedule_copy(gen
->prog
->scop
->schedule
);
4568 sc
= construct_schedule_constraints(gen
->prog
);
4569 schedule
= isl_schedule_map_schedule_node_bottom_up(schedule
,
4570 &set_band_properties
, sc
);
4571 isl_schedule_constraints_free(sc
);
4576 /* Compute a schedule or determine the properties of the original schedule
4577 * depending on the value of the "reschedule" option.
4579 static __isl_give isl_schedule
*compute_or_set_properties(void *user
)
4581 struct gpu_gen
*gen
= user
;
4583 if (gen
->options
->reschedule
)
4584 return compute_schedule(gen
);
4586 return determine_properties_original_schedule(gen
);
4589 /* Obtain a schedule for the scop, by reading it from
4590 * a file, by computing one or by determining the properties
4591 * of the original schedule.
4593 __isl_give isl_schedule
*get_schedule(struct gpu_gen
*gen
)
4595 return ppcg_get_schedule(gen
->ctx
, gen
->options
,
4596 &compute_or_set_properties
, gen
);
4599 /* Construct the string "<a>_<b>".
4601 static char *concat(isl_ctx
*ctx
, const char *a
, const char *b
)
4606 p
= isl_printer_to_str(ctx
);
4607 p
= isl_printer_print_str(p
, a
);
4608 p
= isl_printer_print_str(p
, "_");
4609 p
= isl_printer_print_str(p
, b
);
4610 s
= isl_printer_get_str(p
);
4611 isl_printer_free(p
);
4616 /* For each array in "prog" of which an element appears in "accessed" and
4617 * that is not a read only scalar, create a zero-dimensional universe set
4618 * of which the tuple id has name "<prefix>_<name of array>" and a user
4619 * pointer pointing to the array (gpu_array_info).
4621 * If the array is local to "prog", then make sure it will be declared
4624 * Return the list of these universe sets.
4626 static __isl_give isl_union_set_list
*create_copy_filters(struct gpu_prog
*prog
,
4627 const char *prefix
, __isl_take isl_union_set
*accessed
)
4631 isl_union_set_list
*filters
;
4634 filters
= isl_union_set_list_alloc(ctx
, 0);
4635 for (i
= 0; i
< prog
->n_array
; ++i
) {
4636 struct gpu_array_info
*array
= &prog
->array
[i
];
4638 isl_set
*accessed_i
;
4642 isl_union_set
*uset
;
4644 if (gpu_array_is_read_only_scalar(array
))
4647 space
= isl_space_copy(array
->space
);
4648 accessed_i
= isl_union_set_extract_set(accessed
, space
);
4649 empty
= isl_set_plain_is_empty(accessed_i
);
4650 isl_set_free(accessed_i
);
4652 filters
= isl_union_set_list_free(filters
);
4660 array
->declare_local
= 1;
4662 name
= concat(ctx
, prefix
, array
->name
);
4663 id
= name
? isl_id_alloc(ctx
, name
, array
) : NULL
;
4665 space
= isl_space_set_alloc(ctx
, 0, 0);
4666 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
4667 uset
= isl_union_set_from_set(isl_set_universe(space
));
4669 filters
= isl_union_set_list_add(filters
, uset
);
4671 isl_union_set_free(accessed
);
4676 /* Make sure that code for the statements in "filters" that
4677 * copy arrays to or from the device is only generated when
4678 * the size of the corresponding array is positive.
4679 * That is, add a set node underneath "graft" with "filters" as children
4680 * and for each child add a guard that the selects the parameter
4681 * values for which the corresponding array has a positive size.
4682 * The array is available in the user pointer of the statement identifier.
4683 * "depth" is the schedule depth of the position where "graft"
4686 static __isl_give isl_schedule_node
*insert_positive_size_guards(
4687 __isl_take isl_schedule_node
*graft
,
4688 __isl_take isl_union_set_list
*filters
, int depth
)
4692 graft
= isl_schedule_node_child(graft
, 0);
4693 graft
= isl_schedule_node_insert_set(graft
, filters
);
4694 n
= isl_schedule_node_n_children(graft
);
4695 for (i
= 0; i
< n
; ++i
) {
4696 isl_union_set
*filter
;
4697 isl_set
*domain
, *guard
;
4699 struct gpu_array_info
*array
;
4701 graft
= isl_schedule_node_child(graft
, i
);
4702 filter
= isl_schedule_node_filter_get_filter(graft
);
4703 domain
= isl_set_from_union_set(filter
);
4704 id
= isl_set_get_tuple_id(domain
);
4705 array
= isl_id_get_user(id
);
4707 isl_set_free(domain
);
4708 guard
= gpu_array_positive_size_guard(array
);
4709 guard
= isl_set_from_params(guard
);
4710 guard
= isl_set_add_dims(guard
, isl_dim_set
, depth
);
4711 graft
= isl_schedule_node_child(graft
, 0);
4712 graft
= isl_schedule_node_insert_guard(graft
, guard
);
4713 graft
= isl_schedule_node_parent(graft
);
4714 graft
= isl_schedule_node_parent(graft
);
4716 graft
= isl_schedule_node_parent(graft
);
4721 /* Create a graft for copying arrays to or from the device,
4722 * whenever the size of the array is strictly positive.
4723 * Each statement is called "<prefix>_<name of array>" and
4724 * the identifier has a user pointer pointing to the array.
4725 * The graft will be added at the position specified by "node".
4726 * "copy" contains the array elements that need to be copied.
4727 * Only arrays of which some elements need to be copied
4728 * will have a corresponding statement in the graph.
4729 * Note though that each such statement will copy the entire array.
4731 static __isl_give isl_schedule_node
*create_copy_device(struct gpu_prog
*prog
,
4732 __isl_keep isl_schedule_node
*node
, const char *prefix
,
4733 __isl_take isl_union_set
*copy
)
4738 isl_union_set
*all
, *domain
;
4739 isl_union_set_list
*filters
;
4740 isl_union_map
*extension
;
4741 isl_schedule_node
*graft
;
4744 depth
= isl_schedule_node_get_schedule_depth(node
);
4745 filters
= create_copy_filters(prog
, prefix
, copy
);
4746 all
= isl_union_set_list_union(isl_union_set_list_copy(filters
));
4748 space
= depth
< 0 ? NULL
: isl_space_set_alloc(ctx
, 0, depth
);
4749 domain
= isl_union_set_from_set(isl_set_universe(space
));
4750 extension
= isl_union_map_from_domain_and_range(domain
, all
);
4751 graft
= isl_schedule_node_from_extension(extension
);
4754 return isl_schedule_node_free(graft
);
4755 if (isl_union_set_list_n_union_set(filters
) == 0) {
4756 isl_union_set_list_free(filters
);
4760 return insert_positive_size_guards(graft
, filters
, depth
);
4763 /* Return (the universe spaces of) the arrays that are declared
4764 * inside the scop corresponding to "prog" and for which all
4765 * potential writes inside the scop form a subset of "domain".
4767 static __isl_give isl_union_set
*extract_local_accesses(struct gpu_prog
*prog
,
4768 __isl_keep isl_union_set
*domain
)
4771 isl_union_set
*local
;
4773 local
= isl_union_set_empty(isl_union_set_get_space(domain
));
4775 for (i
= 0; i
< prog
->n_array
; ++i
) {
4777 isl_union_map
*to_outer
;
4778 isl_union_map
*may_write
;
4779 isl_union_set
*write_domain
;
4780 isl_union_set
*fields
;
4783 if (!prog
->array
[i
].local
)
4786 set
= isl_set_universe(isl_space_copy(prog
->array
[i
].space
));
4787 to_outer
= isl_union_map_copy(prog
->to_outer
);
4788 to_outer
= isl_union_map_intersect_range(to_outer
,
4789 isl_union_set_from_set(isl_set_copy(set
)));
4790 fields
= isl_union_map_domain(to_outer
);
4791 may_write
= isl_union_map_copy(prog
->may_write
);
4792 may_write
= isl_union_map_intersect_range(may_write
, fields
);
4793 write_domain
= isl_union_map_domain(may_write
);
4794 subset
= isl_union_set_is_subset(write_domain
, domain
);
4795 isl_union_set_free(write_domain
);
4799 return isl_union_set_free(local
);
4800 } else if (subset
) {
4801 local
= isl_union_set_add_set(local
, set
);
4810 /* Internal data structure for node_may_persist.
4812 * "tagger" maps tagged iteration domains to the corresponding untagged
4815 * "may_persist_flow" is the set of all tagged dataflow dependences
4816 * with those dependences removed that either precede or follow
4817 * the kernel launch in a sequence.
4818 * "inner_band_flow" is the set of all tagged dataflow dependences
4819 * that are local to a given iteration of the outer band nodes
4820 * with respect to the current node.
4821 * "local_flow" is equal to "inner_band_flow", except that the domain
4822 * and the range have been intersected with intermediate filters
4823 * on children of sets or sequences.
4825 struct ppcg_may_persist_data
{
4826 isl_union_pw_multi_aff
*tagger
;
4828 isl_union_map
*local_flow
;
4829 isl_union_map
*inner_band_flow
;
4830 isl_union_map
*may_persist_flow
;
4833 /* Update the information in "data" based on the band ancestor "node".
4835 * In particular, we restrict the dependences in data->local_flow
4836 * to those dependence where the source and the sink occur in
4837 * the same iteration of the given band node.
4838 * We also update data->inner_band_flow to the new value of
4841 static int update_may_persist_at_band(__isl_keep isl_schedule_node
*node
,
4842 struct ppcg_may_persist_data
*data
)
4844 isl_multi_union_pw_aff
*partial
;
4845 isl_union_pw_multi_aff
*contraction
;
4846 isl_union_map
*flow
;
4848 if (isl_schedule_node_band_n_member(node
) == 0)
4851 partial
= isl_schedule_node_band_get_partial_schedule(node
);
4852 contraction
= isl_schedule_node_get_subtree_contraction(node
);
4853 partial
= isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial
,
4855 partial
= isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial
,
4856 isl_union_pw_multi_aff_copy(data
->tagger
));
4858 flow
= data
->local_flow
;
4859 flow
= isl_union_map_eq_at_multi_union_pw_aff(flow
, partial
);
4860 data
->local_flow
= flow
;
4862 isl_union_map_free(data
->inner_band_flow
);
4863 data
->inner_band_flow
= isl_union_map_copy(data
->local_flow
);
4868 /* Given a set of local reaching domain elements "domain",
4869 * expand them to the corresponding leaf domain elements using "contraction"
4870 * and insert the array references tags using data->tagger.
4872 static __isl_give isl_union_set
*expand_and_tag(
4873 __isl_take isl_union_set
*domain
,
4874 __isl_take isl_union_pw_multi_aff
*contraction
,
4875 struct ppcg_may_persist_data
*data
)
4877 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
4879 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
4880 isl_union_pw_multi_aff_copy(data
->tagger
));
4884 /* Given a filter node that is the child of a set or sequence node,
4885 * restrict data->local_flow to refer only to those elements
4886 * in the filter of the node.
4887 * "contraction" maps the leaf domain elements of the schedule tree
4888 * to the corresponding domain elements at (the parent of) "node".
4890 static int filter_flow(__isl_keep isl_schedule_node
*node
,
4891 struct ppcg_may_persist_data
*data
,
4892 __isl_take isl_union_pw_multi_aff
*contraction
)
4894 isl_union_set
*filter
;
4895 isl_union_map
*flow
;
4897 flow
= data
->local_flow
;
4898 filter
= isl_schedule_node_filter_get_filter(node
);
4899 filter
= expand_and_tag(filter
, contraction
, data
);
4900 flow
= isl_union_map_intersect_domain(flow
, isl_union_set_copy(filter
));
4901 flow
= isl_union_map_intersect_range(flow
, filter
);
4902 data
->local_flow
= flow
;
4907 /* Given a filter node "node", collect the filters on all preceding siblings
4908 * (which are also filter nodes), add them to "filters" and return the result.
4910 static __isl_give isl_union_set
*add_previous_filters(
4911 __isl_take isl_union_set
*filters
, __isl_keep isl_schedule_node
*node
)
4913 isl_schedule_node
*sibling
;
4915 sibling
= isl_schedule_node_copy(node
);
4916 while (sibling
&& isl_schedule_node_has_previous_sibling(sibling
)) {
4917 isl_union_set
*filter
;
4919 sibling
= isl_schedule_node_previous_sibling(sibling
);
4920 filter
= isl_schedule_node_filter_get_filter(sibling
);
4921 filters
= isl_union_set_union(filters
, filter
);
4923 isl_schedule_node_free(sibling
);
4925 return isl_union_set_free(filters
);
4930 /* Given a filter node "node", collect the filters on all following siblings
4931 * (which are also filter nodes), add them to "filters" and return the result.
4933 static __isl_give isl_union_set
*add_next_filters(
4934 __isl_take isl_union_set
*filters
, __isl_keep isl_schedule_node
*node
)
4936 isl_schedule_node
*sibling
;
4938 sibling
= isl_schedule_node_copy(node
);
4939 while (sibling
&& isl_schedule_node_has_next_sibling(sibling
)) {
4940 isl_union_set
*filter
;
4942 sibling
= isl_schedule_node_next_sibling(sibling
);
4943 filter
= isl_schedule_node_filter_get_filter(sibling
);
4944 filters
= isl_union_set_union(filters
, filter
);
4946 isl_schedule_node_free(sibling
);
4948 return isl_union_set_free(filters
);
4953 /* Remove those flow dependences from data->may_persist_flow
4954 * that flow between elements of "domain" within the same iteration
4955 * of all outer band nodes.
4956 * "contraction" maps the leaf domain elements of the schedule tree
4957 * to the corresponding elements "domain".
4959 static void remove_external_flow(struct ppcg_may_persist_data
*data
,
4960 __isl_take isl_union_set
*domain
,
4961 __isl_keep isl_union_pw_multi_aff
*contraction
)
4963 isl_union_map
*flow
;
4965 contraction
= isl_union_pw_multi_aff_copy(contraction
);
4966 domain
= expand_and_tag(domain
, contraction
, data
);
4967 flow
= isl_union_map_copy(data
->local_flow
);
4968 flow
= isl_union_map_intersect_domain(flow
, isl_union_set_copy(domain
));
4969 flow
= isl_union_map_intersect_range(flow
, domain
);
4971 data
->may_persist_flow
= isl_union_map_subtract(data
->may_persist_flow
,
4975 /* Update the information in "data" based on the filter ancestor "node".
4976 * We only need to modify anything if the filter is the child
4977 * of a set or sequence node.
4979 * In the case of a sequence, we remove the dependences between
4980 * statement instances that are both executed either before or
4981 * after the subtree that will be mapped to a kernel, within
4982 * the same iteration of outer bands.
4984 * In both cases, we restrict data->local_flow to the current child.
4986 static int update_may_persist_at_filter(__isl_keep isl_schedule_node
*node
,
4987 struct ppcg_may_persist_data
*data
)
4989 enum isl_schedule_node_type type
;
4990 isl_schedule_node
*parent
;
4992 isl_union_pw_multi_aff
*contraction
;
4993 isl_union_set
*before
, *after
, *filter
;
4995 type
= isl_schedule_node_get_parent_type(node
);
4996 if (type
!= isl_schedule_node_sequence
&& type
!= isl_schedule_node_set
)
4999 parent
= isl_schedule_node_copy(node
);
5000 parent
= isl_schedule_node_parent(parent
);
5001 contraction
= isl_schedule_node_get_subtree_contraction(parent
);
5002 isl_schedule_node_free(parent
);
5004 if (type
== isl_schedule_node_set
)
5005 return filter_flow(node
, data
, contraction
);
5007 filter
= isl_schedule_node_filter_get_filter(node
);
5008 space
= isl_union_set_get_space(filter
);
5009 isl_union_set_free(filter
);
5010 before
= isl_union_set_empty(space
);
5011 after
= isl_union_set_copy(before
);
5012 before
= add_previous_filters(before
, node
);
5013 after
= add_next_filters(after
, node
);
5015 remove_external_flow(data
, before
, contraction
);
5016 remove_external_flow(data
, after
, contraction
);
5018 return filter_flow(node
, data
, contraction
);
5021 /* Update the information in "data" based on the ancestor "node".
5023 static isl_stat
update_may_persist_at(__isl_keep isl_schedule_node
*node
,
5026 struct ppcg_may_persist_data
*data
= user
;
5028 switch (isl_schedule_node_get_type(node
)) {
5029 case isl_schedule_node_error
:
5030 return isl_stat_error
;
5031 case isl_schedule_node_context
:
5032 case isl_schedule_node_domain
:
5033 case isl_schedule_node_expansion
:
5034 case isl_schedule_node_extension
:
5035 case isl_schedule_node_guard
:
5036 case isl_schedule_node_leaf
:
5037 case isl_schedule_node_mark
:
5038 case isl_schedule_node_sequence
:
5039 case isl_schedule_node_set
:
5041 case isl_schedule_node_band
:
5042 if (update_may_persist_at_band(node
, data
) < 0)
5043 return isl_stat_error
;
5045 case isl_schedule_node_filter
:
5046 if (update_may_persist_at_filter(node
, data
) < 0)
5047 return isl_stat_error
;
5054 /* Determine the set of array elements that may need to be perserved
5055 * by a kernel constructed from the subtree at "node".
5056 * This includes the set of array elements that may need to be preserved
5057 * by the entire scop (prog->may_persist) and the elements for which
5058 * there is a potential flow dependence that may cross a kernel launch.
5060 * To determine the second set, we start from all flow dependences.
5061 * From this set of dependences, we remove those that cannot possibly
5062 * require data to be preserved by a kernel launch.
5063 * In particular, we consider the following sets of dependences.
5064 * - dependences of which the write occurs inside the kernel.
5065 * If the data is needed outside the kernel, then it will
5066 * be copied out immediately after the kernel launch, so there
5067 * is no need for any special care.
5068 * - dependences of which the read occurs inside the kernel and the
5069 * corresponding write occurs inside the same iteration of the
5070 * outer band nodes. This means that the data is needed in
5071 * the first kernel launch after the write, which is already
5072 * taken care of by the standard copy-in. That is, the data
5073 * do not need to be preserved by any intermediate call to
5075 * - dependences of which the write and the read either both occur
5076 * before the kernel launch or both occur after the kernel launch,
5077 * within the same iteration of the outer band nodes with respect
5078 * to the sequence that determines the ordering of the dependence
5079 * and the kernel launch. Such flow dependences cannot cross
5080 * any kernel launch.
5082 * For the remaining (tagged) dependences, we take the domain
5083 * (i.e., the tagged writes) and apply the tagged access relation
5084 * to obtain the accessed data elements.
5085 * These are then combined with the elements that may need to be
5086 * preserved by the entire scop.
5088 static __isl_give isl_union_set
*node_may_persist(
5089 __isl_keep isl_schedule_node
*node
, struct gpu_prog
*prog
)
5091 struct ppcg_may_persist_data data
;
5092 isl_union_pw_multi_aff
*contraction
;
5093 isl_union_set
*domain
;
5094 isl_union_set
*persist
;
5095 isl_union_map
*flow
, *local_flow
;
5097 data
.tagger
= prog
->scop
->tagger
;
5099 flow
= isl_union_map_copy(prog
->scop
->tagged_dep_flow
);
5100 data
.local_flow
= isl_union_map_copy(flow
);
5101 data
.inner_band_flow
= isl_union_map_copy(flow
);
5102 data
.may_persist_flow
= flow
;
5103 if (isl_schedule_node_foreach_ancestor_top_down(node
,
5104 &update_may_persist_at
, &data
) < 0)
5105 data
.may_persist_flow
=
5106 isl_union_map_free(data
.may_persist_flow
);
5107 flow
= data
.may_persist_flow
;
5108 isl_union_map_free(data
.local_flow
);
5110 domain
= isl_schedule_node_get_domain(node
);
5111 contraction
= isl_schedule_node_get_subtree_contraction(node
);
5112 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
5114 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
5115 isl_union_pw_multi_aff_copy(data
.tagger
));
5116 flow
= isl_union_map_subtract_domain(flow
, isl_union_set_copy(domain
));
5117 local_flow
= data
.inner_band_flow
;
5118 local_flow
= isl_union_map_intersect_range(local_flow
, domain
);
5119 flow
= isl_union_map_subtract(flow
, local_flow
);
5121 persist
= isl_union_map_domain(flow
);
5122 persist
= isl_union_set_apply(persist
,
5123 isl_union_map_copy(prog
->scop
->tagged_may_writes
));
5124 persist
= isl_union_set_union(persist
,
5125 isl_union_set_copy(prog
->may_persist
));
5130 /* Add nodes for copying outer arrays in and out of the device
5131 * before and after the subtree "node", which contains one or more kernels.
5132 * "domain" contains the original statement instances, i.e.,
5133 * those that correspond to the domains of the access relations in "prog".
5134 * In particular, the domain has not been contracted in any way.
5135 * "prefix" contains the prefix schedule at that point, in terms
5136 * of the same original statement instances.
5138 * We first compute the sets of outer array elements that need
5139 * to be copied in and out and then graft in the nodes for
5140 * performing this copying.
5142 * In particular, for each array that is possibly written anywhere in
5143 * the subtree "node" and that may be used after "node"
5144 * or that may be visible outside the corresponding scop,
5145 * we copy out its entire extent.
5147 * Any array elements that is read without first being written inside
5148 * the subtree "node" needs to be copied in.
5149 * Furthermore, if there are any array elements that
5150 * are copied out, but that may not be written inside "node, then
5151 * they also need to be copied in to ensure that the value after execution
5152 * is the same as the value before execution, at least for those array
5153 * elements that may have their values preserved by the scop or that
5154 * may be written before "node" and read after "node".
5155 * In case the array elements are structures, we need to take into
5156 * account that all members of the structures need to be written
5157 * by "node" before we can avoid copying the data structure in.
5159 * Note that the may_write relation is intersected with the domain,
5160 * which has been intersected with the context.
5161 * This helps in those cases where the arrays are declared with a fixed size,
5162 * while the accesses are parametric and the context assigns a fixed value
5163 * to the parameters.
5165 * If an element from a local array is read without first being written,
5166 * then there is no point in copying it in since it cannot have been
5167 * written prior to the scop. Warn about the uninitialized read instead.
5169 static __isl_give isl_schedule_node
*add_to_from_device(
5170 __isl_take isl_schedule_node
*node
, __isl_take isl_union_set
*domain
,
5171 __isl_take isl_union_map
*prefix
, struct gpu_prog
*prog
)
5173 isl_union_set
*local
;
5174 isl_union_set
*may_persist
;
5175 isl_union_map
*may_write
, *must_write
, *copy_out
, *not_written
;
5176 isl_union_map
*read
, *copy_in
;
5177 isl_union_map
*tagged
;
5178 isl_union_map
*local_uninitialized
;
5179 isl_schedule_node
*graft
;
5181 tagged
= isl_union_map_copy(prog
->scop
->tagged_reads
);
5182 tagged
= isl_union_map_union(tagged
,
5183 isl_union_map_copy(prog
->scop
->tagged_may_writes
));
5185 may_write
= isl_union_map_copy(prog
->may_write
);
5186 may_write
= isl_union_map_intersect_domain(may_write
,
5187 isl_union_set_copy(domain
));
5188 may_write
= remove_local_accesses(prog
,
5189 isl_union_map_copy(tagged
), may_write
,
5190 isl_union_map_copy(prefix
), 0);
5191 may_write
= isl_union_map_apply_range(may_write
,
5192 isl_union_map_copy(prog
->to_outer
));
5193 may_write
= isl_union_map_apply_domain(may_write
,
5194 isl_union_map_copy(prefix
));
5195 may_write
= approximate_copy_out(may_write
, prog
);
5196 copy_out
= isl_union_map_copy(may_write
);
5197 may_write
= isl_union_map_apply_range(may_write
,
5198 isl_union_map_copy(prog
->to_inner
));
5199 must_write
= isl_union_map_copy(prog
->must_write
);
5200 must_write
= isl_union_map_apply_domain(must_write
,
5201 isl_union_map_copy(prefix
));
5202 may_persist
= node_may_persist(node
, prog
);
5203 may_write
= isl_union_map_intersect_range(may_write
, may_persist
);
5204 not_written
= isl_union_map_subtract(may_write
, must_write
);
5206 local
= extract_local_accesses(prog
, domain
);
5207 read
= isl_union_map_copy(prog
->read
);
5208 read
= isl_union_map_intersect_domain(read
, domain
);
5209 read
= remove_local_accesses(prog
, tagged
, read
,
5210 isl_union_map_copy(prefix
), 1);
5211 local
= isl_union_set_apply(local
, isl_union_map_copy(prog
->to_inner
));
5212 local_uninitialized
= isl_union_map_copy(prog
->scop
->live_in
);
5213 local_uninitialized
= isl_union_map_intersect_range(local_uninitialized
,
5215 local_uninitialized
= isl_union_map_intersect(local_uninitialized
,
5216 isl_union_map_copy(read
));
5217 if (!isl_union_map_is_empty(local_uninitialized
)) {
5219 "possibly uninitialized reads (not copied in):\n");
5220 isl_union_map_dump(local_uninitialized
);
5222 read
= isl_union_map_subtract(read
, local_uninitialized
);
5223 read
= isl_union_map_apply_domain(read
, prefix
);
5224 copy_in
= isl_union_map_union(read
, not_written
);
5225 copy_in
= isl_union_map_apply_range(copy_in
,
5226 isl_union_map_copy(prog
->to_outer
));
5228 graft
= create_copy_device(prog
, node
, "to_device",
5229 isl_union_map_range(copy_in
));
5230 node
= isl_schedule_node_graft_before(node
, graft
);
5231 graft
= create_copy_device(prog
, node
, "from_device",
5232 isl_union_map_range(copy_out
));
5233 node
= isl_schedule_node_graft_after(node
, graft
);
5238 /* Add nodes for initializing ("init_device") and clearing ("clear_device")
5239 * the device before and after "node".
5241 static __isl_give isl_schedule_node
*add_init_clear_device(
5242 __isl_take isl_schedule_node
*node
)
5246 isl_union_set
*domain
;
5247 isl_schedule_node
*graft
;
5249 ctx
= isl_schedule_node_get_ctx(node
);
5251 space
= isl_space_set_alloc(ctx
, 0, 0);
5252 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "init_device");
5253 domain
= isl_union_set_from_set(isl_set_universe(space
));
5254 graft
= isl_schedule_node_from_domain(domain
);
5256 node
= isl_schedule_node_graft_before(node
, graft
);
5258 space
= isl_space_set_alloc(ctx
, 0, 0);
5259 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "clear_device");
5260 domain
= isl_union_set_from_set(isl_set_universe(space
));
5261 graft
= isl_schedule_node_from_domain(domain
);
5263 node
= isl_schedule_node_graft_after(node
, graft
);
5268 /* Update "schedule" for mapping to a GPU device.
5270 * In particular, insert a context node, create kernels for
5271 * each outermost tilable band and introduce nodes for copying arrays
5272 * in and out of the device and for initializing and clearing the device.
5273 * If the child of the initial root points to a set node,
5274 * then children of this node that do not contain any tilable bands
5275 * are separated from the other children and are not mapped to
5278 * The GPU code is generated in a context where at least one
5279 * statement instance is executed. The corresponding guard is inserted
5280 * around the entire schedule.
5282 __isl_give isl_schedule
*map_to_device(struct gpu_gen
*gen
,
5283 __isl_take isl_schedule
*schedule
, int to_from_device
)
5285 isl_schedule_node
*node
;
5288 isl_union_set
*domain
;
5289 isl_union_map
*prefix
;
5290 isl_union_pw_multi_aff
*contraction
;
5291 struct gpu_prog
*prog
;
5293 context
= isl_set_copy(gen
->prog
->context
);
5294 context
= isl_set_from_params(context
);
5295 schedule
= isl_schedule_insert_context(schedule
, context
);
5298 guard
= isl_union_set_params(isl_union_set_copy(prog
->scop
->domain
));
5299 prog
->context
= isl_set_intersect(prog
->context
, isl_set_copy(guard
));
5300 guard
= isl_set_from_params(guard
);
5302 node
= isl_schedule_get_root(schedule
);
5303 isl_schedule_free(schedule
);
5304 node
= isl_schedule_node_child(node
, 0);
5305 node
= isl_schedule_node_child(node
, 0);
5306 node
= isolate_permutable_subtrees(node
, gen
->prog
);
5307 domain
= isl_schedule_node_get_domain(node
);
5308 contraction
= isl_schedule_node_get_subtree_contraction(node
);
5309 domain
= isl_union_set_preimage_union_pw_multi_aff(domain
,
5310 isl_union_pw_multi_aff_copy(contraction
));
5311 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
5312 prefix
= isl_union_map_preimage_domain_union_pw_multi_aff(prefix
,
5314 node
= mark_kernels(gen
, node
);
5315 if (to_from_device
) {
5316 node
= add_to_from_device(node
, domain
, prefix
, gen
->prog
);
5318 isl_union_set_free(domain
);
5319 isl_union_map_free(prefix
);
5321 node
= isl_schedule_node_root(node
);
5322 node
= isl_schedule_node_child(node
, 0);
5323 node
= isl_schedule_node_child(node
, 0);
5324 node
= isl_schedule_node_insert_guard(node
, guard
);
5325 node
= isl_schedule_node_child(node
, 0);
5326 node
= add_init_clear_device(node
);
5327 schedule
= isl_schedule_node_get_schedule(node
);
5328 isl_schedule_node_free(node
);
5333 /* Internal data structure for extract_access.
5334 * "next_access" points to the end of a linked list that is extended
5335 * by extract_access.
5336 * "single_expression" is set if the access expressions belong to
5337 * an expression statement (i.e., a statement without internal control).
5338 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5340 struct ppcg_extract_access_data
{
5341 struct gpu_stmt_access
**next_access
;
5342 int single_expression
;
5343 isl_union_map
*any_to_outer
;
5346 /* Given a tagged access relation to a single array "tagged", extract it
5347 * as a map, taking into account that the input may be empty.
5348 * If the access relation is empty, then it does not contain
5349 * any space information, so we try to recover it from the index
5351 * The space of the index expression is of the form I -> A,
5352 * with I the statement instances and A the array, or [I -> F] -> A,
5353 * with F the filters corresponding to arguments.
5354 * We first drop F, if present, obtaining I -> A.
5355 * Then we construct I -> R, with R the reference tag,
5356 * combine the two into I -> [R -> A] and uncurry to obtain
5357 * the final result [I -> R] -> A.
5358 * Note that the index expression may have a lower dimension
5359 * than that of the array, but this dimension is not used
5360 * if the access relation is empty.
5362 static __isl_give isl_map
*extract_single_tagged_access(
5363 __isl_take isl_union_map
*tagged
, __isl_keep pet_expr
*expr
)
5367 isl_space
*space
, *space2
;
5368 isl_multi_pw_aff
*index
;
5370 empty
= isl_union_map_is_empty(tagged
);
5374 return isl_map_from_union_map(tagged
);
5375 isl_union_map_free(tagged
);
5377 index
= pet_expr_access_get_index(expr
);
5378 space
= isl_multi_pw_aff_get_space(index
);
5379 isl_multi_pw_aff_free(index
);
5380 if (isl_space_domain_is_wrapping(space
))
5381 space
= isl_space_domain_factor_domain(space
);
5382 space2
= isl_space_copy(space
);
5383 space2
= isl_space_from_domain(isl_space_domain(space
));
5384 id
= pet_expr_access_get_ref_id(expr
);
5385 space2
= isl_space_set_tuple_id(space2
, isl_dim_out
, id
);
5386 space
= isl_space_range_product(space2
, space
);
5387 space
= isl_space_uncurry(space
);
5389 return isl_map_empty(space
);
5391 isl_union_map_free(tagged
);
5395 /* Does the index expression "index" of "expr" represent an access
5396 * to a single element?
5397 * That is, is "index" completely specified?
5399 * If "expr" accesses elements from different spaces (i.e., fields
5400 * of a structure), then it does not access a single element.
5401 * Otherwise, if the single space of the access matches the space
5402 * of "index", then the index expression is completely specified
5403 * (no pointer to a lower-dimensional slice of the accessed array)
5404 * and a single element is being accessed.
5406 static isl_bool
complete_index(__isl_keep pet_expr
*expr
,
5407 __isl_keep isl_multi_pw_aff
*index
)
5409 isl_union_map
*read
, *write
, *all
;
5411 isl_space
*space1
, *space2
;
5414 read
= pet_expr_access_get_may_read(expr
);
5415 write
= pet_expr_access_get_may_write(expr
);
5416 all
= isl_union_map_union(read
, write
);
5418 return isl_bool_error
;
5419 if (isl_union_map_n_map(all
) != 1) {
5420 isl_union_map_free(all
);
5421 return isl_bool_false
;
5423 map
= isl_map_from_union_map(all
);
5424 space1
= isl_map_get_space(map
);
5426 space2
= isl_multi_pw_aff_get_space(index
);
5427 complete
= isl_space_tuple_is_equal(space1
, isl_dim_out
,
5428 space2
, isl_dim_out
);
5429 isl_space_free(space1
);
5430 isl_space_free(space2
);
5435 /* Does "expr" access a single, fixed element (independently of the statement
5437 * That is, does it have a completely specified constant index expression?
5439 * Note that it is not sufficient for the index expression to be
5440 * piecewise constant. isl_multi_pw_aff_is_cst can therefore not be used.
5442 static isl_bool
accesses_fixed_element(__isl_keep pet_expr
*expr
)
5445 isl_multi_pw_aff
*index
;
5446 isl_bool fixed
= isl_bool_true
;
5448 index
= pet_expr_access_get_index(expr
);
5450 return isl_bool_error
;
5451 n
= isl_multi_pw_aff_dim(index
, isl_dim_out
);
5452 for (i
= 0; i
< n
; ++i
) {
5455 pa
= isl_multi_pw_aff_get_pw_aff(index
, 0);
5456 fixed
= isl_pw_aff_n_piece(pa
) == 1;
5458 fixed
= isl_pw_aff_is_cst(pa
);
5459 isl_pw_aff_free(pa
);
5460 if (fixed
< 0 || !fixed
)
5463 if (fixed
>= 0 && fixed
)
5464 fixed
= complete_index(expr
, index
);
5465 isl_multi_pw_aff_free(index
);
5470 /* Extract a gpu_stmt_access from "expr", append it to the list
5471 * that ends in *data->next_access and update the end of the list.
5472 * If the access expression performs a write, then it is considered
5473 * exact only if it appears in a single expression statement and
5474 * if its may access relation is equal to its must access relation.
5476 * The combined set of may accesses may be a union if member accesses
5477 * are involved, but the entire set is derived from a single reference and
5478 * therefore from a single index expression. These accesses therefore
5479 * all map to the same outer array.
5481 static int extract_access(__isl_keep pet_expr
*expr
, void *user
)
5483 struct ppcg_extract_access_data
*data
= user
;
5484 isl_union_map
*tagged
;
5485 struct gpu_stmt_access
*access
;
5486 isl_ctx
*ctx
= pet_expr_get_ctx(expr
);
5487 isl_multi_pw_aff
*index
;
5489 access
= isl_alloc_type(ctx
, struct gpu_stmt_access
);
5491 access
->next
= NULL
;
5492 access
->read
= pet_expr_access_is_read(expr
);
5493 access
->write
= pet_expr_access_is_write(expr
);
5494 tagged
= pet_expr_access_get_tagged_may_read(expr
);
5495 tagged
= isl_union_map_union(tagged
,
5496 pet_expr_access_get_tagged_may_write(expr
));
5497 tagged
= isl_union_map_apply_range(tagged
,
5498 isl_union_map_copy(data
->any_to_outer
));
5499 if (!access
->write
) {
5500 access
->exact_write
= 1;
5501 } else if (!data
->single_expression
) {
5502 access
->exact_write
= 0;
5504 isl_union_map
*must
, *may
;
5505 may
= isl_union_map_copy(tagged
);
5506 may
= isl_union_map_domain_factor_domain(may
);
5507 must
= pet_expr_access_get_must_write(expr
);
5508 access
->exact_write
= isl_union_map_is_equal(must
, may
);
5509 isl_union_map_free(must
);
5510 isl_union_map_free(may
);
5512 index
= pet_expr_access_get_index(expr
);
5513 access
->n_index
= isl_multi_pw_aff_dim(index
, isl_dim_out
);
5514 isl_multi_pw_aff_free(index
);
5515 access
->ref_id
= pet_expr_access_get_ref_id(expr
);
5516 access
->tagged_access
= extract_single_tagged_access(tagged
, expr
);
5517 access
->access
= isl_map_copy(access
->tagged_access
);
5518 access
->access
= isl_map_domain_factor_domain(access
->access
);
5519 access
->fixed_element
= accesses_fixed_element(expr
);
5521 *data
->next_access
= access
;
5522 data
->next_access
= &(*data
->next_access
)->next
;
5524 if (!access
->access
|| access
->fixed_element
< 0)
5530 /* Construct a linked list of gpu_stmt_access objects,
5531 * one for each access expression in the statement body.
5532 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5534 static int pet_stmt_extract_accesses(struct gpu_stmt
*stmt
,
5535 __isl_keep isl_union_map
*any_to_outer
)
5537 struct ppcg_extract_access_data data
;
5539 stmt
->accesses
= NULL
;
5540 data
.next_access
= &stmt
->accesses
;
5541 data
.single_expression
=
5542 pet_tree_get_type(stmt
->stmt
->body
) == pet_tree_expr
;
5543 data
.any_to_outer
= any_to_outer
;
5544 return pet_tree_foreach_access_expr(stmt
->stmt
->body
,
5545 &extract_access
, &data
);
5548 /* Has statement "stmt" been killed from "scop"?
5549 * That is, is the instance set of "scop" free from any
5550 * instances of "stmt"?
5552 static isl_bool
is_stmt_killed(struct ppcg_scop
*scop
, struct pet_stmt
*stmt
)
5559 return isl_bool_error
;
5560 space
= isl_set_get_space(stmt
->domain
);
5561 left
= isl_union_set_extract_set(scop
->domain
, space
);
5562 empty
= isl_set_plain_is_empty(left
);
5568 /* Return an array of gpu_stmt representing the statements in "scop".
5569 * Do not collect array accesses for statements that have been killed.
5571 static struct gpu_stmt
*extract_stmts(isl_ctx
*ctx
, struct ppcg_scop
*scop
,
5572 __isl_keep isl_union_map
*any_to_outer
)
5575 struct gpu_stmt
*stmts
;
5577 stmts
= isl_calloc_array(ctx
, struct gpu_stmt
, scop
->pet
->n_stmt
);
5581 for (i
= 0; i
< scop
->pet
->n_stmt
; ++i
) {
5582 struct gpu_stmt
*s
= &stmts
[i
];
5585 s
->id
= isl_set_get_tuple_id(scop
->pet
->stmts
[i
]->domain
);
5586 s
->stmt
= scop
->pet
->stmts
[i
];
5587 killed
= is_stmt_killed(scop
, scop
->pet
->stmts
[i
]);
5589 return free_stmts(stmts
, i
+ 1);
5592 if (pet_stmt_extract_accesses(s
, any_to_outer
) < 0)
5593 return free_stmts(stmts
, i
+ 1);
5599 /* Generate CUDA code for "scop" and print it to "p".
5600 * After generating an AST for the transformed scop as explained below,
5601 * we call "gen->print" to print the AST in the desired output format
5604 * If it turns out that it does not make sense to generate GPU code,
5605 * then we generate CPU code instead.
5607 * The declarations of the arrays that are visible outside of the scop
5608 * are printed outside of the code generated from the schedule,
5609 * because the generated code may involve a guard around the entire code.
5611 * We first compute a schedule that respects the dependences
5612 * of the original program and select the outermost bands
5613 * of tilable dimensions that have at least one parallel loop.
5614 * If the --load-schedule is specified, then the loaded schedule
5615 * is used instead of a computed schedule.
5617 * Each of these bands B is then tiled according to "tile" sizes, resulting
5618 * in two nested bands, with a kernel marker on top
5626 * We then split off at most 2 parallel dimensions from the T band and
5627 * at most 3 parallel dimension from the P band
5640 * A filter is introduced in front of T1 that maps the domain instances
5641 * to block identifiers. Similarly, a filter is introduced in front of P1
5642 * that maps the domain instances to thread identifiers.
5644 * For each iteration of the T2 band and for each array, we compute
5645 * the array elements accessed by that iteration, construct a rectangular
5646 * box around it and shift it to the origin. The result is used
5647 * as shared memory for the array.
5649 * Copying and synchronization statements are added to this schedule tree.
5650 * In principle, these are added in front of the P1 band, but some of
5651 * them may get hoisted up to higher levels.
5653 * The entire AST is then generated from the single resulting schedule tree.
5654 * During the generation the subtrees at kernel nodes (K) are saved
5655 * aside and replaced by kernel calls. The result is printed as host code
5656 * while the saved subtrees are printed as device code.
5658 static __isl_give isl_printer
*generate(__isl_take isl_printer
*p
,
5659 struct gpu_gen
*gen
, struct ppcg_scop
*scop
,
5660 struct ppcg_options
*options
)
5662 struct gpu_prog
*prog
;
5664 isl_schedule
*schedule
;
5668 return isl_printer_free(p
);
5670 ctx
= isl_printer_get_ctx(p
);
5671 prog
= gpu_prog_alloc(ctx
, scop
);
5673 return isl_printer_free(p
);
5676 schedule
= get_schedule(gen
);
5678 any_permutable
= has_any_permutable_node(schedule
);
5679 if (any_permutable
< 0 || !any_permutable
) {
5680 if (any_permutable
< 0)
5681 p
= isl_printer_free(p
);
5683 p
= print_cpu(p
, scop
, options
);
5684 isl_schedule_free(schedule
);
5686 const int create_to_from_device
= 1;
5687 schedule
= map_to_device(gen
, schedule
, create_to_from_device
);
5688 gen
->tree
= generate_code(gen
, schedule
);
5689 p
= ppcg_set_macro_names(p
);
5690 p
= ppcg_print_exposed_declarations(p
, prog
->scop
);
5691 p
= gen
->print(p
, gen
->prog
, gen
->tree
, &gen
->types
,
5693 isl_ast_node_free(gen
->tree
);
5696 gpu_prog_free(prog
);
5701 /* Wrapper around generate for use as a ppcg_transform callback.
5703 static __isl_give isl_printer
*generate_wrap(__isl_take isl_printer
*p
,
5704 struct ppcg_scop
*scop
, void *user
)
5706 struct gpu_gen
*gen
= user
;
5708 return generate(p
, gen
, scop
, gen
->options
);
5711 /* Transform the code in the file called "input" by replacing
5712 * all scops by corresponding GPU code and write the results to "out".
5714 int generate_gpu(isl_ctx
*ctx
, const char *input
, FILE *out
,
5715 struct ppcg_options
*options
,
5716 __isl_give isl_printer
*(*print
)(__isl_take isl_printer
*p
,
5717 struct gpu_prog
*prog
, __isl_keep isl_ast_node
*tree
,
5718 struct gpu_types
*types
, void *user
), void *user
)
5725 gen
.sizes
= extract_sizes_from_str(ctx
, options
->sizes
);
5726 gen
.options
= options
;
5729 gen
.print_user
= user
;
5731 gen
.types
.name
= NULL
;
5733 if (options
->debug
->dump_sizes
) {
5734 isl_space
*space
= isl_space_params_alloc(ctx
, 0);
5735 gen
.used_sizes
= isl_union_map_empty(space
);
5738 r
= ppcg_transform(ctx
, input
, out
, options
, &generate_wrap
, &gen
);
5740 if (options
->debug
->dump_sizes
) {
5741 isl_union_map_dump(gen
.used_sizes
);
5742 isl_union_map_free(gen
.used_sizes
);
5745 isl_union_map_free(gen
.sizes
);
5746 for (i
= 0; i
< gen
.types
.n
; ++i
)
5747 free(gen
.types
.name
[i
]);
5748 free(gen
.types
.name
);
5753 /* Compute the set of inner array elements that may have their values
5754 * preserved by "prog". In particular, collect the array elements of
5755 * arrays that are not local to "prog" and remove those elements that
5756 * are definitely killed or definitely written by "prog".
5758 __isl_give isl_union_set
*compute_may_persist(struct gpu_prog
*prog
)
5761 isl_union_set
*may_persist
, *killed
;
5762 isl_union_map
*must_kill
;
5764 may_persist
= isl_union_set_empty(isl_set_get_space(prog
->context
));
5765 for (i
= 0; i
< prog
->n_array
; ++i
) {
5768 if (prog
->array
[i
].local
)
5771 extent
= isl_set_copy(prog
->array
[i
].extent
);
5772 may_persist
= isl_union_set_add_set(may_persist
, extent
);
5775 may_persist
= isl_union_set_intersect_params(may_persist
,
5776 isl_set_copy(prog
->context
));
5777 may_persist
= isl_union_set_apply(may_persist
,
5778 isl_union_map_copy(prog
->to_inner
));
5779 must_kill
= isl_union_map_copy(prog
->tagged_must_kill
);
5780 killed
= isl_union_map_range(must_kill
);
5781 must_kill
= isl_union_map_copy(prog
->must_write
);
5782 killed
= isl_union_set_union(killed
, isl_union_map_range(must_kill
));
5784 may_persist
= isl_union_set_subtract(may_persist
, killed
);
5788 struct gpu_prog
*gpu_prog_alloc(isl_ctx
*ctx
, struct ppcg_scop
*scop
)
5790 struct gpu_prog
*prog
;
5797 prog
= isl_calloc_type(ctx
, struct gpu_prog
);
5802 prog
->context
= isl_set_copy(scop
->context
);
5803 prog
->n_stmts
= scop
->pet
->n_stmt
;
5804 prog
->any_to_outer
= pet_scop_compute_outer_to_any(scop
->pet
);
5805 prog
->any_to_outer
= isl_union_map_reverse(prog
->any_to_outer
);
5806 space
= isl_union_map_get_space(prog
->any_to_outer
);
5807 space
= isl_space_set_from_params(space
);
5808 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
5809 space
= isl_space_map_from_set(space
);
5810 id
= isl_map_identity(space
);
5811 prog
->any_to_outer
= isl_union_map_add_map(prog
->any_to_outer
, id
);
5812 prog
->stmts
= extract_stmts(ctx
, scop
, prog
->any_to_outer
);
5813 prog
->read
= isl_union_map_copy(scop
->reads
);
5814 prog
->may_write
= isl_union_map_copy(scop
->may_writes
);
5815 prog
->must_write
= isl_union_map_copy(scop
->must_writes
);
5816 prog
->tagged_must_kill
= isl_union_map_copy(scop
->tagged_must_kills
);
5817 prog
->to_inner
= pet_scop_compute_outer_to_inner(scop
->pet
);
5818 prog
->to_outer
= isl_union_map_copy(prog
->to_inner
);
5819 prog
->to_outer
= isl_union_map_reverse(prog
->to_outer
);
5822 return gpu_prog_free(prog
);
5824 if (collect_array_info(prog
) < 0)
5825 return gpu_prog_free(prog
);
5826 prog
->may_persist
= compute_may_persist(prog
);
5831 void *gpu_prog_free(struct gpu_prog
*prog
)
5835 free_array_info(prog
);
5836 free_stmts(prog
->stmts
, prog
->n_stmts
);
5837 isl_union_map_free(prog
->any_to_outer
);
5838 isl_union_map_free(prog
->to_outer
);
5839 isl_union_map_free(prog
->to_inner
);
5840 isl_union_map_free(prog
->read
);
5841 isl_union_map_free(prog
->may_write
);
5842 isl_union_map_free(prog
->must_write
);
5843 isl_union_map_free(prog
->tagged_must_kill
);
5844 isl_union_map_free(prog
->array_order
);
5845 isl_union_set_free(prog
->may_persist
);
5846 isl_set_free(prog
->context
);