[msan][NFCI] Add tests for Arm NEON saturating extract narrow (#125331)
[llvm-project.git] / clang-tools-extra / clangd / XRefs.cpp
blob1a23f6cca7756161a6bd2c6042396569005b32b7
1 //===--- XRefs.cpp -----------------------------------------------*- C++-*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "XRefs.h"
9 #include "AST.h"
10 #include "FindSymbols.h"
11 #include "FindTarget.h"
12 #include "Headers.h"
13 #include "IncludeCleaner.h"
14 #include "ParsedAST.h"
15 #include "Protocol.h"
16 #include "Quality.h"
17 #include "Selection.h"
18 #include "SourceCode.h"
19 #include "URI.h"
20 #include "clang-include-cleaner/Analysis.h"
21 #include "clang-include-cleaner/Types.h"
22 #include "index/Index.h"
23 #include "index/Merge.h"
24 #include "index/Relation.h"
25 #include "index/SymbolCollector.h"
26 #include "index/SymbolID.h"
27 #include "index/SymbolLocation.h"
28 #include "support/Logger.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/ASTTypeTraits.h"
31 #include "clang/AST/Attr.h"
32 #include "clang/AST/Attrs.inc"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/DeclVisitor.h"
38 #include "clang/AST/ExprCXX.h"
39 #include "clang/AST/RecursiveASTVisitor.h"
40 #include "clang/AST/Stmt.h"
41 #include "clang/AST/StmtCXX.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/Type.h"
44 #include "clang/Basic/LLVM.h"
45 #include "clang/Basic/LangOptions.h"
46 #include "clang/Basic/SourceLocation.h"
47 #include "clang/Basic/SourceManager.h"
48 #include "clang/Basic/TokenKinds.h"
49 #include "clang/Index/IndexDataConsumer.h"
50 #include "clang/Index/IndexSymbol.h"
51 #include "clang/Index/IndexingAction.h"
52 #include "clang/Index/IndexingOptions.h"
53 #include "clang/Index/USRGeneration.h"
54 #include "clang/Lex/Lexer.h"
55 #include "clang/Sema/HeuristicResolver.h"
56 #include "clang/Tooling/Syntax/Tokens.h"
57 #include "llvm/ADT/ArrayRef.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/ScopeExit.h"
61 #include "llvm/ADT/SmallSet.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/StringRef.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/Path.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include <optional>
70 #include <string>
71 #include <vector>
73 namespace clang {
74 namespace clangd {
75 namespace {
77 // Returns the single definition of the entity declared by D, if visible.
78 // In particular:
79 // - for non-redeclarable kinds (e.g. local vars), return D
80 // - for kinds that allow multiple definitions (e.g. namespaces), return nullptr
81 // Kinds of nodes that always return nullptr here will not have definitions
82 // reported by locateSymbolAt().
83 const NamedDecl *getDefinition(const NamedDecl *D) {
84 assert(D);
85 // Decl has one definition that we can find.
86 if (const auto *TD = dyn_cast<TagDecl>(D))
87 return TD->getDefinition();
88 if (const auto *VD = dyn_cast<VarDecl>(D))
89 return VD->getDefinition();
90 if (const auto *FD = dyn_cast<FunctionDecl>(D))
91 return FD->getDefinition();
92 if (const auto *CTD = dyn_cast<ClassTemplateDecl>(D))
93 if (const auto *RD = CTD->getTemplatedDecl())
94 return RD->getDefinition();
95 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
96 if (MD->isThisDeclarationADefinition())
97 return MD;
98 // Look for the method definition inside the implementation decl.
99 auto *DeclCtx = cast<Decl>(MD->getDeclContext());
100 if (DeclCtx->isInvalidDecl())
101 return nullptr;
103 if (const auto *CD = dyn_cast<ObjCContainerDecl>(DeclCtx))
104 if (const auto *Impl = getCorrespondingObjCImpl(CD))
105 return Impl->getMethod(MD->getSelector(), MD->isInstanceMethod());
107 if (const auto *CD = dyn_cast<ObjCContainerDecl>(D))
108 return getCorrespondingObjCImpl(CD);
109 // Only a single declaration is allowed.
110 if (isa<ValueDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
111 isa<TemplateTemplateParmDecl>(D)) // except cases above
112 return D;
113 // Multiple definitions are allowed.
114 return nullptr; // except cases above
117 void logIfOverflow(const SymbolLocation &Loc) {
118 if (Loc.Start.hasOverflow() || Loc.End.hasOverflow())
119 log("Possible overflow in symbol location: {0}", Loc);
122 // Convert a SymbolLocation to LSP's Location.
123 // TUPath is used to resolve the path of URI.
124 std::optional<Location> toLSPLocation(const SymbolLocation &Loc,
125 llvm::StringRef TUPath) {
126 if (!Loc)
127 return std::nullopt;
128 auto LSPLoc = indexToLSPLocation(Loc, TUPath);
129 if (!LSPLoc) {
130 elog("{0}", LSPLoc.takeError());
131 return std::nullopt;
133 logIfOverflow(Loc);
134 return *LSPLoc;
137 SymbolLocation toIndexLocation(const Location &Loc, std::string &URIStorage) {
138 SymbolLocation SymLoc;
139 URIStorage = Loc.uri.uri();
140 SymLoc.FileURI = URIStorage.c_str();
141 SymLoc.Start.setLine(Loc.range.start.line);
142 SymLoc.Start.setColumn(Loc.range.start.character);
143 SymLoc.End.setLine(Loc.range.end.line);
144 SymLoc.End.setColumn(Loc.range.end.character);
145 return SymLoc;
148 // Returns the preferred location between an AST location and an index location.
149 SymbolLocation getPreferredLocation(const Location &ASTLoc,
150 const SymbolLocation &IdxLoc,
151 std::string &Scratch) {
152 // Also use a mock symbol for the index location so that other fields (e.g.
153 // definition) are not factored into the preference.
154 Symbol ASTSym, IdxSym;
155 ASTSym.ID = IdxSym.ID = SymbolID("mock_symbol_id");
156 ASTSym.CanonicalDeclaration = toIndexLocation(ASTLoc, Scratch);
157 IdxSym.CanonicalDeclaration = IdxLoc;
158 auto Merged = mergeSymbol(ASTSym, IdxSym);
159 return Merged.CanonicalDeclaration;
162 std::vector<std::pair<const NamedDecl *, DeclRelationSet>>
163 getDeclAtPositionWithRelations(ParsedAST &AST, SourceLocation Pos,
164 DeclRelationSet Relations,
165 ASTNodeKind *NodeKind = nullptr) {
166 unsigned Offset = AST.getSourceManager().getDecomposedSpellingLoc(Pos).second;
167 std::vector<std::pair<const NamedDecl *, DeclRelationSet>> Result;
168 auto ResultFromTree = [&](SelectionTree ST) {
169 if (const SelectionTree::Node *N = ST.commonAncestor()) {
170 if (NodeKind)
171 *NodeKind = N->ASTNode.getNodeKind();
172 // Attributes don't target decls, look at the
173 // thing it's attached to.
174 // We still report the original NodeKind!
175 // This makes the `override` hack work.
176 if (N->ASTNode.get<Attr>() && N->Parent)
177 N = N->Parent;
178 llvm::copy_if(allTargetDecls(N->ASTNode, AST.getHeuristicResolver()),
179 std::back_inserter(Result),
180 [&](auto &Entry) { return !(Entry.second & ~Relations); });
182 return !Result.empty();
184 SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), Offset,
185 Offset, ResultFromTree);
186 return Result;
189 std::vector<const NamedDecl *>
190 getDeclAtPosition(ParsedAST &AST, SourceLocation Pos, DeclRelationSet Relations,
191 ASTNodeKind *NodeKind = nullptr) {
192 std::vector<const NamedDecl *> Result;
193 for (auto &Entry :
194 getDeclAtPositionWithRelations(AST, Pos, Relations, NodeKind))
195 Result.push_back(Entry.first);
196 return Result;
199 // Expects Loc to be a SpellingLocation, will bail out otherwise as it can't
200 // figure out a filename.
201 std::optional<Location> makeLocation(const ASTContext &AST, SourceLocation Loc,
202 llvm::StringRef TUPath) {
203 const auto &SM = AST.getSourceManager();
204 const auto F = SM.getFileEntryRefForID(SM.getFileID(Loc));
205 if (!F)
206 return std::nullopt;
207 auto FilePath = getCanonicalPath(*F, SM.getFileManager());
208 if (!FilePath) {
209 log("failed to get path!");
210 return std::nullopt;
212 Location L;
213 L.uri = URIForFile::canonicalize(*FilePath, TUPath);
214 // We call MeasureTokenLength here as TokenBuffer doesn't store spelled tokens
215 // outside the main file.
216 auto TokLen = Lexer::MeasureTokenLength(Loc, SM, AST.getLangOpts());
217 L.range = halfOpenToRange(
218 SM, CharSourceRange::getCharRange(Loc, Loc.getLocWithOffset(TokLen)));
219 return L;
222 // Treat #included files as symbols, to enable go-to-definition on them.
223 std::optional<LocatedSymbol> locateFileReferent(const Position &Pos,
224 ParsedAST &AST,
225 llvm::StringRef MainFilePath) {
226 for (auto &Inc : AST.getIncludeStructure().MainFileIncludes) {
227 if (!Inc.Resolved.empty() && Inc.HashLine == Pos.line) {
228 LocatedSymbol File;
229 File.Name = std::string(llvm::sys::path::filename(Inc.Resolved));
230 File.PreferredDeclaration = {
231 URIForFile::canonicalize(Inc.Resolved, MainFilePath), Range{}};
232 File.Definition = File.PreferredDeclaration;
233 // We're not going to find any further symbols on #include lines.
234 return File;
237 return std::nullopt;
240 // Macros are simple: there's no declaration/definition distinction.
241 // As a consequence, there's no need to look them up in the index either.
242 std::optional<LocatedSymbol>
243 locateMacroReferent(const syntax::Token &TouchedIdentifier, ParsedAST &AST,
244 llvm::StringRef MainFilePath) {
245 if (auto M = locateMacroAt(TouchedIdentifier, AST.getPreprocessor())) {
246 if (auto Loc =
247 makeLocation(AST.getASTContext(), M->NameLoc, MainFilePath)) {
248 LocatedSymbol Macro;
249 Macro.Name = std::string(M->Name);
250 Macro.PreferredDeclaration = *Loc;
251 Macro.Definition = Loc;
252 Macro.ID = getSymbolID(M->Name, M->Info, AST.getSourceManager());
253 return Macro;
256 return std::nullopt;
259 // A wrapper around `Decl::getCanonicalDecl` to support cases where Clang's
260 // definition of a canonical declaration doesn't match up to what a programmer
261 // would expect. For example, Objective-C classes can have three types of
262 // declarations:
264 // - forward declaration(s): @class MyClass;
265 // - true declaration (interface definition): @interface MyClass ... @end
266 // - true definition (implementation): @implementation MyClass ... @end
268 // Clang will consider the forward declaration to be the canonical declaration
269 // because it is first. We actually want the class definition if it is
270 // available since that is what a programmer would consider the primary
271 // declaration to be.
272 const NamedDecl *getPreferredDecl(const NamedDecl *D) {
273 // FIXME: Canonical declarations of some symbols might refer to built-in
274 // decls with possibly-invalid source locations (e.g. global new operator).
275 // In such cases we should pick up a redecl with valid source location
276 // instead of failing.
277 D = llvm::cast<NamedDecl>(D->getCanonicalDecl());
279 // Prefer Objective-C class/protocol definitions over the forward declaration.
280 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
281 if (const auto *DefinitionID = ID->getDefinition())
282 return DefinitionID;
283 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
284 if (const auto *DefinitionID = PD->getDefinition())
285 return DefinitionID;
287 return D;
290 std::vector<LocatedSymbol> findImplementors(llvm::DenseSet<SymbolID> IDs,
291 RelationKind Predicate,
292 const SymbolIndex *Index,
293 llvm::StringRef MainFilePath) {
294 if (IDs.empty() || !Index)
295 return {};
296 static constexpr trace::Metric FindImplementorsMetric(
297 "find_implementors", trace::Metric::Counter, "case");
298 switch (Predicate) {
299 case RelationKind::BaseOf:
300 FindImplementorsMetric.record(1, "find-base");
301 break;
302 case RelationKind::OverriddenBy:
303 FindImplementorsMetric.record(1, "find-override");
304 break;
307 RelationsRequest Req;
308 Req.Predicate = Predicate;
309 Req.Subjects = std::move(IDs);
310 std::vector<LocatedSymbol> Results;
311 Index->relations(Req, [&](const SymbolID &Subject, const Symbol &Object) {
312 auto DeclLoc =
313 indexToLSPLocation(Object.CanonicalDeclaration, MainFilePath);
314 if (!DeclLoc) {
315 elog("Find overrides: {0}", DeclLoc.takeError());
316 return;
318 Results.emplace_back();
319 Results.back().Name = Object.Name.str();
320 Results.back().PreferredDeclaration = *DeclLoc;
321 auto DefLoc = indexToLSPLocation(Object.Definition, MainFilePath);
322 if (!DefLoc) {
323 elog("Failed to convert location: {0}", DefLoc.takeError());
324 return;
326 Results.back().Definition = *DefLoc;
328 return Results;
331 // Given LocatedSymbol results derived from the AST, query the index to obtain
332 // definitions and preferred declarations.
333 void enhanceLocatedSymbolsFromIndex(llvm::MutableArrayRef<LocatedSymbol> Result,
334 const SymbolIndex *Index,
335 llvm::StringRef MainFilePath) {
336 LookupRequest QueryRequest;
337 llvm::DenseMap<SymbolID, unsigned> ResultIndex;
338 for (unsigned I = 0; I < Result.size(); ++I) {
339 if (auto ID = Result[I].ID) {
340 ResultIndex.try_emplace(ID, I);
341 QueryRequest.IDs.insert(ID);
344 if (!Index || QueryRequest.IDs.empty())
345 return;
346 std::string Scratch;
347 Index->lookup(QueryRequest, [&](const Symbol &Sym) {
348 auto &R = Result[ResultIndex.lookup(Sym.ID)];
350 if (R.Definition) { // from AST
351 // Special case: if the AST yielded a definition, then it may not be
352 // the right *declaration*. Prefer the one from the index.
353 if (auto Loc = toLSPLocation(Sym.CanonicalDeclaration, MainFilePath))
354 R.PreferredDeclaration = *Loc;
356 // We might still prefer the definition from the index, e.g. for
357 // generated symbols.
358 if (auto Loc = toLSPLocation(
359 getPreferredLocation(*R.Definition, Sym.Definition, Scratch),
360 MainFilePath))
361 R.Definition = *Loc;
362 } else {
363 R.Definition = toLSPLocation(Sym.Definition, MainFilePath);
365 // Use merge logic to choose AST or index declaration.
366 if (auto Loc = toLSPLocation(
367 getPreferredLocation(R.PreferredDeclaration,
368 Sym.CanonicalDeclaration, Scratch),
369 MainFilePath))
370 R.PreferredDeclaration = *Loc;
375 // Decls are more complicated.
376 // The AST contains at least a declaration, maybe a definition.
377 // These are up-to-date, and so generally preferred over index results.
378 // We perform a single batch index lookup to find additional definitions.
379 std::vector<LocatedSymbol>
380 locateASTReferent(SourceLocation CurLoc, const syntax::Token *TouchedIdentifier,
381 ParsedAST &AST, llvm::StringRef MainFilePath,
382 const SymbolIndex *Index, ASTNodeKind &NodeKind) {
383 const SourceManager &SM = AST.getSourceManager();
384 // Results follow the order of Symbols.Decls.
385 std::vector<LocatedSymbol> Result;
387 static constexpr trace::Metric LocateASTReferentMetric(
388 "locate_ast_referent", trace::Metric::Counter, "case");
389 auto AddResultDecl = [&](const NamedDecl *D) {
390 D = getPreferredDecl(D);
391 auto Loc =
392 makeLocation(AST.getASTContext(), nameLocation(*D, SM), MainFilePath);
393 if (!Loc)
394 return;
396 Result.emplace_back();
397 Result.back().Name = printName(AST.getASTContext(), *D);
398 Result.back().PreferredDeclaration = *Loc;
399 Result.back().ID = getSymbolID(D);
400 if (const NamedDecl *Def = getDefinition(D))
401 Result.back().Definition = makeLocation(
402 AST.getASTContext(), nameLocation(*Def, SM), MainFilePath);
405 // Emit all symbol locations (declaration or definition) from AST.
406 DeclRelationSet Relations =
407 DeclRelation::TemplatePattern | DeclRelation::Alias;
408 auto Candidates =
409 getDeclAtPositionWithRelations(AST, CurLoc, Relations, &NodeKind);
410 llvm::DenseSet<SymbolID> VirtualMethods;
411 for (const auto &E : Candidates) {
412 const NamedDecl *D = E.first;
413 if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D)) {
414 // Special case: virtual void ^method() = 0: jump to all overrides.
415 // FIXME: extend it to ^virtual, unfortunately, virtual location is not
416 // saved in the AST.
417 if (CMD->isPureVirtual()) {
418 if (TouchedIdentifier && SM.getSpellingLoc(CMD->getLocation()) ==
419 TouchedIdentifier->location()) {
420 VirtualMethods.insert(getSymbolID(CMD));
421 LocateASTReferentMetric.record(1, "method-to-override");
424 // Special case: void foo() ^override: jump to the overridden method.
425 if (NodeKind.isSame(ASTNodeKind::getFromNodeKind<OverrideAttr>()) ||
426 NodeKind.isSame(ASTNodeKind::getFromNodeKind<FinalAttr>())) {
427 // We may be overridding multiple methods - offer them all.
428 for (const NamedDecl *ND : CMD->overridden_methods())
429 AddResultDecl(ND);
430 continue;
434 // Special case: the cursor is on an alias, prefer other results.
435 // This targets "using ns::^Foo", where the target is more interesting.
436 // This does not trigger on renaming aliases:
437 // `using Foo = ^Bar` already targets Bar via a TypeLoc
438 // `using ^Foo = Bar` has no other results, as Underlying is filtered.
439 if (E.second & DeclRelation::Alias && Candidates.size() > 1 &&
440 // beginLoc/endLoc are a token range, so rewind the identifier we're in.
441 SM.isPointWithin(TouchedIdentifier ? TouchedIdentifier->location()
442 : CurLoc,
443 D->getBeginLoc(), D->getEndLoc()))
444 continue;
446 // Special case: the point of declaration of a template specialization,
447 // it's more useful to navigate to the template declaration.
448 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
449 if (TouchedIdentifier &&
450 D->getLocation() == TouchedIdentifier->location()) {
451 LocateASTReferentMetric.record(1, "template-specialization-to-primary");
452 AddResultDecl(CTSD->getSpecializedTemplate());
453 continue;
457 // Special case: if the class name is selected, also map Objective-C
458 // categories and category implementations back to their class interface.
460 // Since `TouchedIdentifier` might refer to the `ObjCCategoryImplDecl`
461 // instead of the `ObjCCategoryDecl` we intentionally check the contents
462 // of the locs when checking for class name equivalence.
463 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D))
464 if (const auto *ID = CD->getClassInterface())
465 if (TouchedIdentifier &&
466 (CD->getLocation() == TouchedIdentifier->location() ||
467 ID->getName() == TouchedIdentifier->text(SM))) {
468 LocateASTReferentMetric.record(1, "objc-category-to-class");
469 AddResultDecl(ID);
472 LocateASTReferentMetric.record(1, "regular");
473 // Otherwise the target declaration is the right one.
474 AddResultDecl(D);
476 enhanceLocatedSymbolsFromIndex(Result, Index, MainFilePath);
478 auto Overrides = findImplementors(VirtualMethods, RelationKind::OverriddenBy,
479 Index, MainFilePath);
480 Result.insert(Result.end(), Overrides.begin(), Overrides.end());
481 return Result;
484 std::vector<LocatedSymbol> locateSymbolForType(const ParsedAST &AST,
485 const QualType &Type,
486 const SymbolIndex *Index) {
487 const auto &SM = AST.getSourceManager();
488 auto MainFilePath = AST.tuPath();
490 // FIXME: this sends unique_ptr<Foo> to unique_ptr<T>.
491 // Likely it would be better to send it to Foo (heuristically) or to both.
492 auto Decls = targetDecl(DynTypedNode::create(Type.getNonReferenceType()),
493 DeclRelation::TemplatePattern | DeclRelation::Alias,
494 AST.getHeuristicResolver());
495 if (Decls.empty())
496 return {};
498 std::vector<LocatedSymbol> Results;
499 const auto &ASTContext = AST.getASTContext();
501 for (const NamedDecl *D : Decls) {
502 D = getPreferredDecl(D);
504 auto Loc = makeLocation(ASTContext, nameLocation(*D, SM), MainFilePath);
505 if (!Loc)
506 continue;
508 Results.emplace_back();
509 Results.back().Name = printName(ASTContext, *D);
510 Results.back().PreferredDeclaration = *Loc;
511 Results.back().ID = getSymbolID(D);
512 if (const NamedDecl *Def = getDefinition(D))
513 Results.back().Definition =
514 makeLocation(ASTContext, nameLocation(*Def, SM), MainFilePath);
516 enhanceLocatedSymbolsFromIndex(Results, Index, MainFilePath);
518 return Results;
521 bool tokenSpelledAt(SourceLocation SpellingLoc, const syntax::TokenBuffer &TB) {
522 auto ExpandedTokens = TB.expandedTokens(
523 TB.sourceManager().getMacroArgExpandedLocation(SpellingLoc));
524 return !ExpandedTokens.empty();
527 llvm::StringRef sourcePrefix(SourceLocation Loc, const SourceManager &SM) {
528 auto D = SM.getDecomposedLoc(Loc);
529 bool Invalid = false;
530 llvm::StringRef Buf = SM.getBufferData(D.first, &Invalid);
531 if (Invalid || D.second > Buf.size())
532 return "";
533 return Buf.substr(0, D.second);
536 bool isDependentName(ASTNodeKind NodeKind) {
537 return NodeKind.isSame(ASTNodeKind::getFromNodeKind<OverloadExpr>()) ||
538 NodeKind.isSame(
539 ASTNodeKind::getFromNodeKind<CXXDependentScopeMemberExpr>()) ||
540 NodeKind.isSame(
541 ASTNodeKind::getFromNodeKind<DependentScopeDeclRefExpr>());
544 } // namespace
546 std::vector<LocatedSymbol> locateSymbolTextually(const SpelledWord &Word,
547 ParsedAST &AST,
548 const SymbolIndex *Index,
549 llvm::StringRef MainFilePath,
550 ASTNodeKind NodeKind) {
551 // Don't use heuristics if this is a real identifier, or not an
552 // identifier.
553 // Exception: dependent names, because those may have useful textual
554 // matches that AST-based heuristics cannot find.
555 if ((Word.ExpandedToken && !isDependentName(NodeKind)) ||
556 !Word.LikelyIdentifier || !Index)
557 return {};
558 // We don't want to handle words in string literals. (It'd be nice to list
559 // *allowed* token kinds explicitly, but comment Tokens aren't retained).
560 if (Word.PartOfSpelledToken &&
561 isStringLiteral(Word.PartOfSpelledToken->kind()))
562 return {};
564 const auto &SM = AST.getSourceManager();
565 // Look up the selected word in the index.
566 FuzzyFindRequest Req;
567 Req.Query = Word.Text.str();
568 Req.ProximityPaths = {MainFilePath.str()};
569 // Find the namespaces to query by lexing the file.
570 Req.Scopes =
571 visibleNamespaces(sourcePrefix(Word.Location, SM), AST.getLangOpts());
572 // FIXME: For extra strictness, consider AnyScope=false.
573 Req.AnyScope = true;
574 // We limit the results to 3 further below. This limit is to avoid fetching
575 // too much data, while still likely having enough for 3 results to remain
576 // after additional filtering.
577 Req.Limit = 10;
578 bool TooMany = false;
579 using ScoredLocatedSymbol = std::pair<float, LocatedSymbol>;
580 std::vector<ScoredLocatedSymbol> ScoredResults;
581 Index->fuzzyFind(Req, [&](const Symbol &Sym) {
582 // Only consider exact name matches, including case.
583 // This is to avoid too many false positives.
584 // We could relax this in the future (e.g. to allow for typos) if we make
585 // the query more accurate by other means.
586 if (Sym.Name != Word.Text)
587 return;
589 // Exclude constructor results. They have the same name as the class,
590 // but we don't have enough context to prefer them over the class.
591 if (Sym.SymInfo.Kind == index::SymbolKind::Constructor)
592 return;
594 auto MaybeDeclLoc =
595 indexToLSPLocation(Sym.CanonicalDeclaration, MainFilePath);
596 if (!MaybeDeclLoc) {
597 log("locateSymbolNamedTextuallyAt: {0}", MaybeDeclLoc.takeError());
598 return;
600 LocatedSymbol Located;
601 Located.PreferredDeclaration = *MaybeDeclLoc;
602 Located.Name = (Sym.Name + Sym.TemplateSpecializationArgs).str();
603 Located.ID = Sym.ID;
604 if (Sym.Definition) {
605 auto MaybeDefLoc = indexToLSPLocation(Sym.Definition, MainFilePath);
606 if (!MaybeDefLoc) {
607 log("locateSymbolNamedTextuallyAt: {0}", MaybeDefLoc.takeError());
608 return;
610 Located.PreferredDeclaration = *MaybeDefLoc;
611 Located.Definition = *MaybeDefLoc;
614 if (ScoredResults.size() >= 5) {
615 // If we have more than 5 results, don't return anything,
616 // as confidence is too low.
617 // FIXME: Alternatively, try a stricter query?
618 TooMany = true;
619 return;
622 SymbolQualitySignals Quality;
623 Quality.merge(Sym);
624 SymbolRelevanceSignals Relevance;
625 Relevance.Name = Sym.Name;
626 Relevance.Query = SymbolRelevanceSignals::Generic;
627 Relevance.merge(Sym);
628 auto Score = evaluateSymbolAndRelevance(Quality.evaluateHeuristics(),
629 Relevance.evaluateHeuristics());
630 dlog("locateSymbolNamedTextuallyAt: {0}{1} = {2}\n{3}{4}\n", Sym.Scope,
631 Sym.Name, Score, Quality, Relevance);
633 ScoredResults.push_back({Score, std::move(Located)});
636 if (TooMany) {
637 vlog("Heuristic index lookup for {0} returned too many candidates, ignored",
638 Word.Text);
639 return {};
642 llvm::sort(ScoredResults,
643 [](const ScoredLocatedSymbol &A, const ScoredLocatedSymbol &B) {
644 return A.first > B.first;
646 std::vector<LocatedSymbol> Results;
647 for (auto &Res : std::move(ScoredResults))
648 Results.push_back(std::move(Res.second));
649 if (Results.empty())
650 vlog("No heuristic index definition for {0}", Word.Text);
651 else
652 log("Found definition heuristically in index for {0}", Word.Text);
653 return Results;
656 const syntax::Token *findNearbyIdentifier(const SpelledWord &Word,
657 const syntax::TokenBuffer &TB) {
658 // Don't use heuristics if this is a real identifier.
659 // Unlikely identifiers are OK if they were used as identifiers nearby.
660 if (Word.ExpandedToken)
661 return nullptr;
662 // We don't want to handle words in string literals. (It'd be nice to list
663 // *allowed* token kinds explicitly, but comment Tokens aren't retained).
664 if (Word.PartOfSpelledToken &&
665 isStringLiteral(Word.PartOfSpelledToken->kind()))
666 return {};
668 const SourceManager &SM = TB.sourceManager();
669 // We prefer the closest possible token, line-wise. Backwards is penalized.
670 // Ties are implicitly broken by traversal order (first-one-wins).
671 auto File = SM.getFileID(Word.Location);
672 unsigned WordLine = SM.getSpellingLineNumber(Word.Location);
673 auto Cost = [&](SourceLocation Loc) -> unsigned {
674 assert(SM.getFileID(Loc) == File && "spelled token in wrong file?");
675 unsigned Line = SM.getSpellingLineNumber(Loc);
676 return Line >= WordLine ? Line - WordLine : 2 * (WordLine - Line);
678 const syntax::Token *BestTok = nullptr;
679 unsigned BestCost = -1;
680 // Search bounds are based on word length:
681 // - forward: 2^N lines
682 // - backward: 2^(N-1) lines.
683 unsigned MaxDistance =
684 1U << std::min<unsigned>(Word.Text.size(),
685 std::numeric_limits<unsigned>::digits - 1);
686 // Line number for SM.translateLineCol() should be one-based, also
687 // SM.translateLineCol() can handle line number greater than
688 // number of lines in the file.
689 // - LineMin = max(1, WordLine + 1 - 2^(N-1))
690 // - LineMax = WordLine + 1 + 2^N
691 unsigned LineMin =
692 WordLine + 1 <= MaxDistance / 2 ? 1 : WordLine + 1 - MaxDistance / 2;
693 unsigned LineMax = WordLine + 1 + MaxDistance;
694 SourceLocation LocMin = SM.translateLineCol(File, LineMin, 1);
695 assert(LocMin.isValid());
696 SourceLocation LocMax = SM.translateLineCol(File, LineMax, 1);
697 assert(LocMax.isValid());
699 // Updates BestTok and BestCost if Tok is a good candidate.
700 // May return true if the cost is too high for this token.
701 auto Consider = [&](const syntax::Token &Tok) {
702 if (Tok.location() < LocMin || Tok.location() > LocMax)
703 return true; // we are too far from the word, break the outer loop.
704 if (!(Tok.kind() == tok::identifier && Tok.text(SM) == Word.Text))
705 return false;
706 // No point guessing the same location we started with.
707 if (Tok.location() == Word.Location)
708 return false;
709 // We've done cheap checks, compute cost so we can break the caller's loop.
710 unsigned TokCost = Cost(Tok.location());
711 if (TokCost >= BestCost)
712 return true; // causes the outer loop to break.
713 // Allow locations that might be part of the AST, and macros (even if empty)
714 // but not things like disabled preprocessor sections.
715 if (!(tokenSpelledAt(Tok.location(), TB) || TB.expansionStartingAt(&Tok)))
716 return false;
717 // We already verified this token is an improvement.
718 BestCost = TokCost;
719 BestTok = &Tok;
720 return false;
722 auto SpelledTokens = TB.spelledTokens(File);
723 // Find where the word occurred in the token stream, to search forward & back.
724 auto *I = llvm::partition_point(SpelledTokens, [&](const syntax::Token &T) {
725 assert(SM.getFileID(T.location()) == SM.getFileID(Word.Location));
726 return T.location() < Word.Location; // Comparison OK: same file.
728 // Search for matches after the cursor.
729 for (const syntax::Token &Tok : llvm::ArrayRef(I, SpelledTokens.end()))
730 if (Consider(Tok))
731 break; // costs of later tokens are greater...
732 // Search for matches before the cursor.
733 for (const syntax::Token &Tok :
734 llvm::reverse(llvm::ArrayRef(SpelledTokens.begin(), I)))
735 if (Consider(Tok))
736 break;
738 if (BestTok)
739 vlog(
740 "Word {0} under cursor {1} isn't a token (after PP), trying nearby {2}",
741 Word.Text, Word.Location.printToString(SM),
742 BestTok->location().printToString(SM));
744 return BestTok;
747 std::vector<LocatedSymbol> locateSymbolAt(ParsedAST &AST, Position Pos,
748 const SymbolIndex *Index) {
749 const auto &SM = AST.getSourceManager();
750 auto MainFilePath = AST.tuPath();
752 if (auto File = locateFileReferent(Pos, AST, MainFilePath))
753 return {std::move(*File)};
755 auto CurLoc = sourceLocationInMainFile(SM, Pos);
756 if (!CurLoc) {
757 elog("locateSymbolAt failed to convert position to source location: {0}",
758 CurLoc.takeError());
759 return {};
762 const syntax::Token *TouchedIdentifier = nullptr;
763 auto TokensTouchingCursor =
764 syntax::spelledTokensTouching(*CurLoc, AST.getTokens());
765 for (const syntax::Token &Tok : TokensTouchingCursor) {
766 if (Tok.kind() == tok::identifier) {
767 if (auto Macro = locateMacroReferent(Tok, AST, MainFilePath))
768 // Don't look at the AST or index if we have a macro result.
769 // (We'd just return declarations referenced from the macro's
770 // expansion.)
771 return {*std::move(Macro)};
773 TouchedIdentifier = &Tok;
774 break;
777 if (Tok.kind() == tok::kw_auto || Tok.kind() == tok::kw_decltype) {
778 // go-to-definition on auto should find the definition of the deduced
779 // type, if possible
780 if (auto Deduced = getDeducedType(AST.getASTContext(), Tok.location())) {
781 auto LocSym = locateSymbolForType(AST, *Deduced, Index);
782 if (!LocSym.empty())
783 return LocSym;
788 ASTNodeKind NodeKind;
789 auto ASTResults = locateASTReferent(*CurLoc, TouchedIdentifier, AST,
790 MainFilePath, Index, NodeKind);
791 if (!ASTResults.empty())
792 return ASTResults;
794 // If the cursor can't be resolved directly, try fallback strategies.
795 auto Word =
796 SpelledWord::touching(*CurLoc, AST.getTokens(), AST.getLangOpts());
797 if (Word) {
798 // Is the same word nearby a real identifier that might refer to something?
799 if (const syntax::Token *NearbyIdent =
800 findNearbyIdentifier(*Word, AST.getTokens())) {
801 if (auto Macro = locateMacroReferent(*NearbyIdent, AST, MainFilePath)) {
802 log("Found macro definition heuristically using nearby identifier {0}",
803 Word->Text);
804 return {*std::move(Macro)};
806 ASTResults = locateASTReferent(NearbyIdent->location(), NearbyIdent, AST,
807 MainFilePath, Index, NodeKind);
808 if (!ASTResults.empty()) {
809 log("Found definition heuristically using nearby identifier {0}",
810 NearbyIdent->text(SM));
811 return ASTResults;
813 vlog("No definition found using nearby identifier {0} at {1}", Word->Text,
814 Word->Location.printToString(SM));
816 // No nearby word, or it didn't refer to anything either. Try the index.
817 auto TextualResults =
818 locateSymbolTextually(*Word, AST, Index, MainFilePath, NodeKind);
819 if (!TextualResults.empty())
820 return TextualResults;
823 return {};
826 std::vector<DocumentLink> getDocumentLinks(ParsedAST &AST) {
827 const auto &SM = AST.getSourceManager();
829 std::vector<DocumentLink> Result;
830 for (auto &Inc : AST.getIncludeStructure().MainFileIncludes) {
831 if (Inc.Resolved.empty())
832 continue;
833 auto HashLoc = SM.getComposedLoc(SM.getMainFileID(), Inc.HashOffset);
834 const auto *HashTok = AST.getTokens().spelledTokenContaining(HashLoc);
835 assert(HashTok && "got inclusion at wrong offset");
836 const auto *IncludeTok = std::next(HashTok);
837 const auto *FileTok = std::next(IncludeTok);
838 // FileTok->range is not sufficient here, as raw lexing wouldn't yield
839 // correct tokens for angled filenames. Hence we explicitly use
840 // Inc.Written's length.
841 auto FileRange =
842 syntax::FileRange(SM, FileTok->location(), Inc.Written.length())
843 .toCharRange(SM);
845 Result.push_back(
846 DocumentLink({halfOpenToRange(SM, FileRange),
847 URIForFile::canonicalize(Inc.Resolved, AST.tuPath())}));
850 return Result;
853 namespace {
855 /// Collects references to symbols within the main file.
856 class ReferenceFinder : public index::IndexDataConsumer {
857 public:
858 struct Reference {
859 syntax::Token SpelledTok;
860 index::SymbolRoleSet Role;
861 const Decl *Container;
863 Range range(const SourceManager &SM) const {
864 return halfOpenToRange(SM, SpelledTok.range(SM).toCharRange(SM));
868 ReferenceFinder(const ParsedAST &AST,
869 const llvm::ArrayRef<const NamedDecl *> Targets,
870 bool PerToken)
871 : PerToken(PerToken), AST(AST) {
872 for (const NamedDecl *ND : Targets)
873 TargetDecls.insert(ND->getCanonicalDecl());
876 std::vector<Reference> take() && {
877 llvm::sort(References, [](const Reference &L, const Reference &R) {
878 auto LTok = L.SpelledTok.location();
879 auto RTok = R.SpelledTok.location();
880 return std::tie(LTok, L.Role) < std::tie(RTok, R.Role);
882 // We sometimes see duplicates when parts of the AST get traversed twice.
883 References.erase(std::unique(References.begin(), References.end(),
884 [](const Reference &L, const Reference &R) {
885 auto LTok = L.SpelledTok.location();
886 auto RTok = R.SpelledTok.location();
887 return std::tie(LTok, L.Role) ==
888 std::tie(RTok, R.Role);
890 References.end());
891 return std::move(References);
894 bool
895 handleDeclOccurrence(const Decl *D, index::SymbolRoleSet Roles,
896 llvm::ArrayRef<index::SymbolRelation> Relations,
897 SourceLocation Loc,
898 index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
899 if (!TargetDecls.contains(D->getCanonicalDecl()))
900 return true;
901 const SourceManager &SM = AST.getSourceManager();
902 if (!isInsideMainFile(Loc, SM))
903 return true;
904 const auto &TB = AST.getTokens();
906 llvm::SmallVector<SourceLocation, 1> Locs;
907 if (PerToken) {
908 // Check whether this is one of the few constructs where the reference
909 // can be split over several tokens.
910 if (auto *OME = llvm::dyn_cast_or_null<ObjCMessageExpr>(ASTNode.OrigE)) {
911 OME->getSelectorLocs(Locs);
912 } else if (auto *OMD =
913 llvm::dyn_cast_or_null<ObjCMethodDecl>(ASTNode.OrigD)) {
914 OMD->getSelectorLocs(Locs);
916 // Sanity check: we expect the *first* token to match the reported loc.
917 // Otherwise, maybe it was e.g. some other kind of reference to a Decl.
918 if (!Locs.empty() && Locs.front() != Loc)
919 Locs.clear(); // First token doesn't match, assume our guess was wrong.
921 if (Locs.empty())
922 Locs.push_back(Loc);
924 SymbolCollector::Options CollectorOpts;
925 CollectorOpts.CollectMainFileSymbols = true;
926 for (SourceLocation L : Locs) {
927 L = SM.getFileLoc(L);
928 if (const auto *Tok = TB.spelledTokenContaining(L))
929 References.push_back(
930 {*Tok, Roles,
931 SymbolCollector::getRefContainer(ASTNode.Parent, CollectorOpts)});
933 return true;
936 private:
937 bool PerToken; // If true, report 3 references for split ObjC selector names.
938 std::vector<Reference> References;
939 const ParsedAST &AST;
940 llvm::DenseSet<const Decl *> TargetDecls;
943 std::vector<ReferenceFinder::Reference>
944 findRefs(const llvm::ArrayRef<const NamedDecl *> TargetDecls, ParsedAST &AST,
945 bool PerToken) {
946 ReferenceFinder RefFinder(AST, TargetDecls, PerToken);
947 index::IndexingOptions IndexOpts;
948 IndexOpts.SystemSymbolFilter =
949 index::IndexingOptions::SystemSymbolFilterKind::All;
950 IndexOpts.IndexFunctionLocals = true;
951 IndexOpts.IndexParametersInDeclarations = true;
952 IndexOpts.IndexTemplateParameters = true;
953 indexTopLevelDecls(AST.getASTContext(), AST.getPreprocessor(),
954 AST.getLocalTopLevelDecls(), RefFinder, IndexOpts);
955 return std::move(RefFinder).take();
958 const Stmt *getFunctionBody(DynTypedNode N) {
959 if (const auto *FD = N.get<FunctionDecl>())
960 return FD->getBody();
961 if (const auto *FD = N.get<BlockDecl>())
962 return FD->getBody();
963 if (const auto *FD = N.get<LambdaExpr>())
964 return FD->getBody();
965 if (const auto *FD = N.get<ObjCMethodDecl>())
966 return FD->getBody();
967 return nullptr;
970 const Stmt *getLoopBody(DynTypedNode N) {
971 if (const auto *LS = N.get<ForStmt>())
972 return LS->getBody();
973 if (const auto *LS = N.get<CXXForRangeStmt>())
974 return LS->getBody();
975 if (const auto *LS = N.get<WhileStmt>())
976 return LS->getBody();
977 if (const auto *LS = N.get<DoStmt>())
978 return LS->getBody();
979 return nullptr;
982 // AST traversal to highlight control flow statements under some root.
983 // Once we hit further control flow we prune the tree (or at least restrict
984 // what we highlight) so we capture e.g. breaks from the outer loop only.
985 class FindControlFlow : public RecursiveASTVisitor<FindControlFlow> {
986 // Types of control-flow statements we might highlight.
987 enum Target {
988 Break = 1,
989 Continue = 2,
990 Return = 4,
991 Case = 8,
992 Throw = 16,
993 Goto = 32,
994 All = Break | Continue | Return | Case | Throw | Goto,
996 int Ignore = 0; // bitmask of Target - what are we *not* highlighting?
997 SourceRange Bounds; // Half-open, restricts reported targets.
998 std::vector<SourceLocation> &Result;
999 const SourceManager &SM;
1001 // Masks out targets for a traversal into D.
1002 // Traverses the subtree using Delegate() if any targets remain.
1003 template <typename Func>
1004 bool filterAndTraverse(DynTypedNode D, const Func &Delegate) {
1005 auto RestoreIgnore = llvm::make_scope_exit(
1006 [OldIgnore(Ignore), this] { Ignore = OldIgnore; });
1007 if (getFunctionBody(D))
1008 Ignore = All;
1009 else if (getLoopBody(D))
1010 Ignore |= Continue | Break;
1011 else if (D.get<SwitchStmt>())
1012 Ignore |= Break | Case;
1013 // Prune tree if we're not looking for anything.
1014 return (Ignore == All) ? true : Delegate();
1017 void found(Target T, SourceLocation Loc) {
1018 if (T & Ignore)
1019 return;
1020 if (SM.isBeforeInTranslationUnit(Loc, Bounds.getBegin()) ||
1021 SM.isBeforeInTranslationUnit(Bounds.getEnd(), Loc))
1022 return;
1023 Result.push_back(Loc);
1026 public:
1027 FindControlFlow(SourceRange Bounds, std::vector<SourceLocation> &Result,
1028 const SourceManager &SM)
1029 : Bounds(Bounds), Result(Result), SM(SM) {}
1031 // When traversing function or loops, limit targets to those that still
1032 // refer to the original root.
1033 bool TraverseDecl(Decl *D) {
1034 return !D || filterAndTraverse(DynTypedNode::create(*D), [&] {
1035 return RecursiveASTVisitor::TraverseDecl(D);
1038 bool TraverseStmt(Stmt *S) {
1039 return !S || filterAndTraverse(DynTypedNode::create(*S), [&] {
1040 return RecursiveASTVisitor::TraverseStmt(S);
1044 // Add leaves that we found and want.
1045 bool VisitReturnStmt(ReturnStmt *R) {
1046 found(Return, R->getReturnLoc());
1047 return true;
1049 bool VisitBreakStmt(BreakStmt *B) {
1050 found(Break, B->getBreakLoc());
1051 return true;
1053 bool VisitContinueStmt(ContinueStmt *C) {
1054 found(Continue, C->getContinueLoc());
1055 return true;
1057 bool VisitSwitchCase(SwitchCase *C) {
1058 found(Case, C->getKeywordLoc());
1059 return true;
1061 bool VisitCXXThrowExpr(CXXThrowExpr *T) {
1062 found(Throw, T->getThrowLoc());
1063 return true;
1065 bool VisitGotoStmt(GotoStmt *G) {
1066 // Goto is interesting if its target is outside the root.
1067 if (const auto *LD = G->getLabel()) {
1068 if (SM.isBeforeInTranslationUnit(LD->getLocation(), Bounds.getBegin()) ||
1069 SM.isBeforeInTranslationUnit(Bounds.getEnd(), LD->getLocation()))
1070 found(Goto, G->getGotoLoc());
1072 return true;
1076 // Given a location within a switch statement, return the half-open range that
1077 // covers the case it's contained in.
1078 // We treat `case X: case Y: ...` as one case, and assume no other fallthrough.
1079 SourceRange findCaseBounds(const SwitchStmt &Switch, SourceLocation Loc,
1080 const SourceManager &SM) {
1081 // Cases are not stored in order, sort them first.
1082 // (In fact they seem to be stored in reverse order, don't rely on this)
1083 std::vector<const SwitchCase *> Cases;
1084 for (const SwitchCase *Case = Switch.getSwitchCaseList(); Case;
1085 Case = Case->getNextSwitchCase())
1086 Cases.push_back(Case);
1087 llvm::sort(Cases, [&](const SwitchCase *L, const SwitchCase *R) {
1088 return SM.isBeforeInTranslationUnit(L->getKeywordLoc(), R->getKeywordLoc());
1091 // Find the first case after the target location, the end of our range.
1092 auto CaseAfter = llvm::partition_point(Cases, [&](const SwitchCase *C) {
1093 return !SM.isBeforeInTranslationUnit(Loc, C->getKeywordLoc());
1095 SourceLocation End = CaseAfter == Cases.end() ? Switch.getEndLoc()
1096 : (*CaseAfter)->getKeywordLoc();
1098 // Our target can be before the first case - cases are optional!
1099 if (CaseAfter == Cases.begin())
1100 return SourceRange(Switch.getBeginLoc(), End);
1101 // The start of our range is usually the previous case, but...
1102 auto CaseBefore = std::prev(CaseAfter);
1103 // ... rewind CaseBefore to the first in a `case A: case B: ...` sequence.
1104 while (CaseBefore != Cases.begin() &&
1105 (*std::prev(CaseBefore))->getSubStmt() == *CaseBefore)
1106 --CaseBefore;
1107 return SourceRange((*CaseBefore)->getKeywordLoc(), End);
1110 // Returns the locations of control flow statements related to N. e.g.:
1111 // for => branches: break/continue/return/throw
1112 // break => controlling loop (forwhile/do), and its related control flow
1113 // return => all returns/throws from the same function
1114 // When an inner block is selected, we include branches bound to outer blocks
1115 // as these are exits from the inner block. e.g. return in a for loop.
1116 // FIXME: We don't analyze catch blocks, throw is treated the same as return.
1117 std::vector<SourceLocation> relatedControlFlow(const SelectionTree::Node &N) {
1118 const SourceManager &SM =
1119 N.getDeclContext().getParentASTContext().getSourceManager();
1120 std::vector<SourceLocation> Result;
1122 // First, check if we're at a node that can resolve to a root.
1123 enum class Cur { None, Break, Continue, Return, Case, Throw } Cursor;
1124 if (N.ASTNode.get<BreakStmt>()) {
1125 Cursor = Cur::Break;
1126 } else if (N.ASTNode.get<ContinueStmt>()) {
1127 Cursor = Cur::Continue;
1128 } else if (N.ASTNode.get<ReturnStmt>()) {
1129 Cursor = Cur::Return;
1130 } else if (N.ASTNode.get<CXXThrowExpr>()) {
1131 Cursor = Cur::Throw;
1132 } else if (N.ASTNode.get<SwitchCase>()) {
1133 Cursor = Cur::Case;
1134 } else if (const GotoStmt *GS = N.ASTNode.get<GotoStmt>()) {
1135 // We don't know what root to associate with, but highlight the goto/label.
1136 Result.push_back(GS->getGotoLoc());
1137 if (const auto *LD = GS->getLabel())
1138 Result.push_back(LD->getLocation());
1139 Cursor = Cur::None;
1140 } else {
1141 Cursor = Cur::None;
1144 const Stmt *Root = nullptr; // Loop or function body to traverse.
1145 SourceRange Bounds;
1146 // Look up the tree for a root (or just at this node if we didn't find a leaf)
1147 for (const auto *P = &N; P; P = P->Parent) {
1148 // return associates with enclosing function
1149 if (const Stmt *FunctionBody = getFunctionBody(P->ASTNode)) {
1150 if (Cursor == Cur::Return || Cursor == Cur::Throw) {
1151 Root = FunctionBody;
1153 break; // other leaves don't cross functions.
1155 // break/continue associate with enclosing loop.
1156 if (const Stmt *LoopBody = getLoopBody(P->ASTNode)) {
1157 if (Cursor == Cur::None || Cursor == Cur::Break ||
1158 Cursor == Cur::Continue) {
1159 Root = LoopBody;
1160 // Highlight the loop keyword itself.
1161 // FIXME: for do-while, this only covers the `do`..
1162 Result.push_back(P->ASTNode.getSourceRange().getBegin());
1163 break;
1166 // For switches, users think of case statements as control flow blocks.
1167 // We highlight only occurrences surrounded by the same case.
1168 // We don't detect fallthrough (other than 'case X, case Y').
1169 if (const auto *SS = P->ASTNode.get<SwitchStmt>()) {
1170 if (Cursor == Cur::Break || Cursor == Cur::Case) {
1171 Result.push_back(SS->getSwitchLoc()); // Highlight the switch.
1172 Root = SS->getBody();
1173 // Limit to enclosing case, if there is one.
1174 Bounds = findCaseBounds(*SS, N.ASTNode.getSourceRange().getBegin(), SM);
1175 break;
1178 // If we didn't start at some interesting node, we're done.
1179 if (Cursor == Cur::None)
1180 break;
1182 if (Root) {
1183 if (!Bounds.isValid())
1184 Bounds = Root->getSourceRange();
1185 FindControlFlow(Bounds, Result, SM).TraverseStmt(const_cast<Stmt *>(Root));
1187 return Result;
1190 DocumentHighlight toHighlight(const ReferenceFinder::Reference &Ref,
1191 const SourceManager &SM) {
1192 DocumentHighlight DH;
1193 DH.range = Ref.range(SM);
1194 if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Write))
1195 DH.kind = DocumentHighlightKind::Write;
1196 else if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Read))
1197 DH.kind = DocumentHighlightKind::Read;
1198 else
1199 DH.kind = DocumentHighlightKind::Text;
1200 return DH;
1203 std::optional<DocumentHighlight> toHighlight(SourceLocation Loc,
1204 const syntax::TokenBuffer &TB) {
1205 Loc = TB.sourceManager().getFileLoc(Loc);
1206 if (const auto *Tok = TB.spelledTokenContaining(Loc)) {
1207 DocumentHighlight Result;
1208 Result.range = halfOpenToRange(
1209 TB.sourceManager(),
1210 CharSourceRange::getCharRange(Tok->location(), Tok->endLocation()));
1211 return Result;
1213 return std::nullopt;
1216 } // namespace
1218 std::vector<DocumentHighlight> findDocumentHighlights(ParsedAST &AST,
1219 Position Pos) {
1220 const SourceManager &SM = AST.getSourceManager();
1221 // FIXME: show references to macro within file?
1222 auto CurLoc = sourceLocationInMainFile(SM, Pos);
1223 if (!CurLoc) {
1224 llvm::consumeError(CurLoc.takeError());
1225 return {};
1227 std::vector<DocumentHighlight> Result;
1228 auto TryTree = [&](SelectionTree ST) {
1229 if (const SelectionTree::Node *N = ST.commonAncestor()) {
1230 DeclRelationSet Relations =
1231 DeclRelation::TemplatePattern | DeclRelation::Alias;
1232 auto TargetDecls =
1233 targetDecl(N->ASTNode, Relations, AST.getHeuristicResolver());
1234 if (!TargetDecls.empty()) {
1235 // FIXME: we may get multiple DocumentHighlights with the same location
1236 // and different kinds, deduplicate them.
1237 for (const auto &Ref : findRefs(TargetDecls, AST, /*PerToken=*/true))
1238 Result.push_back(toHighlight(Ref, SM));
1239 return true;
1241 auto ControlFlow = relatedControlFlow(*N);
1242 if (!ControlFlow.empty()) {
1243 for (SourceLocation Loc : ControlFlow)
1244 if (auto Highlight = toHighlight(Loc, AST.getTokens()))
1245 Result.push_back(std::move(*Highlight));
1246 return true;
1249 return false;
1252 unsigned Offset =
1253 AST.getSourceManager().getDecomposedSpellingLoc(*CurLoc).second;
1254 SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), Offset,
1255 Offset, TryTree);
1256 return Result;
1259 std::vector<LocatedSymbol> findImplementations(ParsedAST &AST, Position Pos,
1260 const SymbolIndex *Index) {
1261 // We rely on index to find the implementations in subclasses.
1262 // FIXME: Index can be stale, so we may loose some latest results from the
1263 // main file.
1264 if (!Index)
1265 return {};
1266 const SourceManager &SM = AST.getSourceManager();
1267 auto CurLoc = sourceLocationInMainFile(SM, Pos);
1268 if (!CurLoc) {
1269 elog("Failed to convert position to source location: {0}",
1270 CurLoc.takeError());
1271 return {};
1273 DeclRelationSet Relations =
1274 DeclRelation::TemplatePattern | DeclRelation::Alias;
1275 llvm::DenseSet<SymbolID> IDs;
1276 RelationKind QueryKind = RelationKind::OverriddenBy;
1277 for (const NamedDecl *ND : getDeclAtPosition(AST, *CurLoc, Relations)) {
1278 if (const auto *CXXMD = llvm::dyn_cast<CXXMethodDecl>(ND)) {
1279 if (CXXMD->isVirtual()) {
1280 IDs.insert(getSymbolID(ND));
1281 QueryKind = RelationKind::OverriddenBy;
1283 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1284 IDs.insert(getSymbolID(RD));
1285 QueryKind = RelationKind::BaseOf;
1288 return findImplementors(std::move(IDs), QueryKind, Index, AST.tuPath());
1291 namespace {
1292 // Recursively finds all the overridden methods of `CMD` in complete type
1293 // hierarchy.
1294 void getOverriddenMethods(const CXXMethodDecl *CMD,
1295 llvm::DenseSet<SymbolID> &OverriddenMethods) {
1296 if (!CMD)
1297 return;
1298 for (const CXXMethodDecl *Base : CMD->overridden_methods()) {
1299 if (auto ID = getSymbolID(Base))
1300 OverriddenMethods.insert(ID);
1301 getOverriddenMethods(Base, OverriddenMethods);
1305 std::optional<std::string>
1306 stringifyContainerForMainFileRef(const Decl *Container) {
1307 // FIXME We might also want to display the signature here
1308 // When doing so, remember to also add the Signature to index results!
1309 if (auto *ND = llvm::dyn_cast_if_present<NamedDecl>(Container))
1310 return printQualifiedName(*ND);
1311 return {};
1314 std::optional<ReferencesResult>
1315 maybeFindIncludeReferences(ParsedAST &AST, Position Pos,
1316 URIForFile URIMainFile) {
1317 const auto &Includes = AST.getIncludeStructure().MainFileIncludes;
1318 auto IncludeOnLine = llvm::find_if(Includes, [&Pos](const Inclusion &Inc) {
1319 return Inc.HashLine == Pos.line;
1321 if (IncludeOnLine == Includes.end())
1322 return std::nullopt;
1324 const SourceManager &SM = AST.getSourceManager();
1325 ReferencesResult Results;
1326 auto Converted = convertIncludes(AST);
1327 include_cleaner::walkUsed(
1328 AST.getLocalTopLevelDecls(), collectMacroReferences(AST),
1329 &AST.getPragmaIncludes(), AST.getPreprocessor(),
1330 [&](const include_cleaner::SymbolReference &Ref,
1331 llvm::ArrayRef<include_cleaner::Header> Providers) {
1332 if (Ref.RT != include_cleaner::RefType::Explicit ||
1333 !isPreferredProvider(*IncludeOnLine, Converted, Providers))
1334 return;
1336 auto Loc = SM.getFileLoc(Ref.RefLocation);
1337 // File locations can be outside of the main file if macro is
1338 // expanded through an #include.
1339 while (SM.getFileID(Loc) != SM.getMainFileID())
1340 Loc = SM.getIncludeLoc(SM.getFileID(Loc));
1342 ReferencesResult::Reference Result;
1343 const auto *Token = AST.getTokens().spelledTokenContaining(Loc);
1344 assert(Token && "references expected token here");
1345 Result.Loc.range = Range{sourceLocToPosition(SM, Token->location()),
1346 sourceLocToPosition(SM, Token->endLocation())};
1347 Result.Loc.uri = URIMainFile;
1348 Results.References.push_back(std::move(Result));
1350 if (Results.References.empty())
1351 return std::nullopt;
1353 // Add the #include line to the references list.
1354 ReferencesResult::Reference Result;
1355 Result.Loc.range = rangeTillEOL(SM.getBufferData(SM.getMainFileID()),
1356 IncludeOnLine->HashOffset);
1357 Result.Loc.uri = URIMainFile;
1358 Results.References.push_back(std::move(Result));
1359 return Results;
1361 } // namespace
1363 ReferencesResult findReferences(ParsedAST &AST, Position Pos, uint32_t Limit,
1364 const SymbolIndex *Index, bool AddContext) {
1365 ReferencesResult Results;
1366 const SourceManager &SM = AST.getSourceManager();
1367 auto MainFilePath = AST.tuPath();
1368 auto URIMainFile = URIForFile::canonicalize(MainFilePath, MainFilePath);
1369 auto CurLoc = sourceLocationInMainFile(SM, Pos);
1370 if (!CurLoc) {
1371 llvm::consumeError(CurLoc.takeError());
1372 return {};
1375 const auto IncludeReferences =
1376 maybeFindIncludeReferences(AST, Pos, URIMainFile);
1377 if (IncludeReferences)
1378 return *IncludeReferences;
1380 llvm::DenseSet<SymbolID> IDsToQuery, OverriddenMethods;
1382 const auto *IdentifierAtCursor =
1383 syntax::spelledIdentifierTouching(*CurLoc, AST.getTokens());
1384 std::optional<DefinedMacro> Macro;
1385 if (IdentifierAtCursor)
1386 Macro = locateMacroAt(*IdentifierAtCursor, AST.getPreprocessor());
1387 if (Macro) {
1388 // Handle references to macro.
1389 if (auto MacroSID = getSymbolID(Macro->Name, Macro->Info, SM)) {
1390 // Collect macro references from main file.
1391 const auto &IDToRefs = AST.getMacros().MacroRefs;
1392 auto Refs = IDToRefs.find(MacroSID);
1393 if (Refs != IDToRefs.end()) {
1394 for (const auto &Ref : Refs->second) {
1395 ReferencesResult::Reference Result;
1396 Result.Loc.range = Ref.toRange(SM);
1397 Result.Loc.uri = URIMainFile;
1398 if (Ref.IsDefinition) {
1399 Result.Attributes |= ReferencesResult::Declaration;
1400 Result.Attributes |= ReferencesResult::Definition;
1402 Results.References.push_back(std::move(Result));
1405 IDsToQuery.insert(MacroSID);
1407 } else {
1408 // Handle references to Decls.
1410 DeclRelationSet Relations =
1411 DeclRelation::TemplatePattern | DeclRelation::Alias;
1412 std::vector<const NamedDecl *> Decls =
1413 getDeclAtPosition(AST, *CurLoc, Relations);
1414 llvm::SmallVector<const NamedDecl *> TargetsInMainFile;
1415 for (const NamedDecl *D : Decls) {
1416 auto ID = getSymbolID(D);
1417 if (!ID)
1418 continue;
1419 TargetsInMainFile.push_back(D);
1420 // Not all symbols can be referenced from outside (e.g. function-locals).
1421 // TODO: we could skip TU-scoped symbols here (e.g. static functions) if
1422 // we know this file isn't a header. The details might be tricky.
1423 if (D->getParentFunctionOrMethod())
1424 continue;
1425 IDsToQuery.insert(ID);
1428 RelationsRequest OverriddenBy;
1429 if (Index) {
1430 OverriddenBy.Predicate = RelationKind::OverriddenBy;
1431 for (const NamedDecl *ND : Decls) {
1432 // Special case: For virtual methods, report decl/def of overrides and
1433 // references to all overridden methods in complete type hierarchy.
1434 if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(ND)) {
1435 if (CMD->isVirtual()) {
1436 if (auto ID = getSymbolID(CMD))
1437 OverriddenBy.Subjects.insert(ID);
1438 getOverriddenMethods(CMD, OverriddenMethods);
1444 // We traverse the AST to find references in the main file.
1445 auto MainFileRefs = findRefs(TargetsInMainFile, AST, /*PerToken=*/false);
1446 // We may get multiple refs with the same location and different Roles, as
1447 // cross-reference is only interested in locations, we deduplicate them
1448 // by the location to avoid emitting duplicated locations.
1449 MainFileRefs.erase(std::unique(MainFileRefs.begin(), MainFileRefs.end(),
1450 [](const ReferenceFinder::Reference &L,
1451 const ReferenceFinder::Reference &R) {
1452 return L.SpelledTok.location() ==
1453 R.SpelledTok.location();
1455 MainFileRefs.end());
1456 for (const auto &Ref : MainFileRefs) {
1457 ReferencesResult::Reference Result;
1458 Result.Loc.range = Ref.range(SM);
1459 Result.Loc.uri = URIMainFile;
1460 if (AddContext)
1461 Result.Loc.containerName =
1462 stringifyContainerForMainFileRef(Ref.Container);
1463 if (Ref.Role & static_cast<unsigned>(index::SymbolRole::Declaration))
1464 Result.Attributes |= ReferencesResult::Declaration;
1465 // clang-index doesn't report definitions as declarations, but they are.
1466 if (Ref.Role & static_cast<unsigned>(index::SymbolRole::Definition))
1467 Result.Attributes |=
1468 ReferencesResult::Definition | ReferencesResult::Declaration;
1469 Results.References.push_back(std::move(Result));
1471 // Add decl/def of overridding methods.
1472 if (Index && !OverriddenBy.Subjects.empty()) {
1473 LookupRequest ContainerLookup;
1474 // Different overrides will always be contained in different classes, so
1475 // we have a one-to-one mapping between SymbolID and index here, thus we
1476 // don't need to use std::vector as the map's value type.
1477 llvm::DenseMap<SymbolID, size_t> RefIndexForContainer;
1478 Index->relations(OverriddenBy, [&](const SymbolID &Subject,
1479 const Symbol &Object) {
1480 if (Limit && Results.References.size() >= Limit) {
1481 Results.HasMore = true;
1482 return;
1484 const auto LSPLocDecl =
1485 toLSPLocation(Object.CanonicalDeclaration, MainFilePath);
1486 const auto LSPLocDef = toLSPLocation(Object.Definition, MainFilePath);
1487 if (LSPLocDecl && LSPLocDecl != LSPLocDef) {
1488 ReferencesResult::Reference Result;
1489 Result.Loc = {std::move(*LSPLocDecl), std::nullopt};
1490 Result.Attributes =
1491 ReferencesResult::Declaration | ReferencesResult::Override;
1492 RefIndexForContainer.insert({Object.ID, Results.References.size()});
1493 ContainerLookup.IDs.insert(Object.ID);
1494 Results.References.push_back(std::move(Result));
1496 if (LSPLocDef) {
1497 ReferencesResult::Reference Result;
1498 Result.Loc = {std::move(*LSPLocDef), std::nullopt};
1499 Result.Attributes = ReferencesResult::Declaration |
1500 ReferencesResult::Definition |
1501 ReferencesResult::Override;
1502 RefIndexForContainer.insert({Object.ID, Results.References.size()});
1503 ContainerLookup.IDs.insert(Object.ID);
1504 Results.References.push_back(std::move(Result));
1508 if (!ContainerLookup.IDs.empty() && AddContext)
1509 Index->lookup(ContainerLookup, [&](const Symbol &Container) {
1510 auto Ref = RefIndexForContainer.find(Container.ID);
1511 assert(Ref != RefIndexForContainer.end());
1512 Results.References[Ref->getSecond()].Loc.containerName =
1513 Container.Scope.str() + Container.Name.str();
1517 // Now query the index for references from other files.
1518 auto QueryIndex = [&](llvm::DenseSet<SymbolID> IDs, bool AllowAttributes,
1519 bool AllowMainFileSymbols) {
1520 if (IDs.empty() || !Index || Results.HasMore)
1521 return;
1522 RefsRequest Req;
1523 Req.IDs = std::move(IDs);
1524 if (Limit) {
1525 if (Limit < Results.References.size()) {
1526 // We've already filled our quota, still check the index to correctly
1527 // return the `HasMore` info.
1528 Req.Limit = 0;
1529 } else {
1530 // Query index only for the remaining size.
1531 Req.Limit = Limit - Results.References.size();
1534 LookupRequest ContainerLookup;
1535 llvm::DenseMap<SymbolID, std::vector<size_t>> RefIndicesForContainer;
1536 Results.HasMore |= Index->refs(Req, [&](const Ref &R) {
1537 auto LSPLoc = toLSPLocation(R.Location, MainFilePath);
1538 // Avoid indexed results for the main file - the AST is authoritative.
1539 if (!LSPLoc ||
1540 (!AllowMainFileSymbols && LSPLoc->uri.file() == MainFilePath))
1541 return;
1542 ReferencesResult::Reference Result;
1543 Result.Loc = {std::move(*LSPLoc), std::nullopt};
1544 if (AllowAttributes) {
1545 if ((R.Kind & RefKind::Declaration) == RefKind::Declaration)
1546 Result.Attributes |= ReferencesResult::Declaration;
1547 // FIXME: our index should definitely store def | decl separately!
1548 if ((R.Kind & RefKind::Definition) == RefKind::Definition)
1549 Result.Attributes |=
1550 ReferencesResult::Declaration | ReferencesResult::Definition;
1552 if (AddContext) {
1553 SymbolID Container = R.Container;
1554 ContainerLookup.IDs.insert(Container);
1555 RefIndicesForContainer[Container].push_back(Results.References.size());
1557 Results.References.push_back(std::move(Result));
1560 if (!ContainerLookup.IDs.empty() && AddContext)
1561 Index->lookup(ContainerLookup, [&](const Symbol &Container) {
1562 auto Ref = RefIndicesForContainer.find(Container.ID);
1563 assert(Ref != RefIndicesForContainer.end());
1564 auto ContainerName = Container.Scope.str() + Container.Name.str();
1565 for (auto I : Ref->getSecond()) {
1566 Results.References[I].Loc.containerName = ContainerName;
1570 QueryIndex(std::move(IDsToQuery), /*AllowAttributes=*/true,
1571 /*AllowMainFileSymbols=*/false);
1572 // For a virtual method: Occurrences of BaseMethod should be treated as refs
1573 // and not as decl/def. Allow symbols from main file since AST does not report
1574 // these.
1575 QueryIndex(std::move(OverriddenMethods), /*AllowAttributes=*/false,
1576 /*AllowMainFileSymbols=*/true);
1577 return Results;
1580 std::vector<SymbolDetails> getSymbolInfo(ParsedAST &AST, Position Pos) {
1581 const SourceManager &SM = AST.getSourceManager();
1582 auto CurLoc = sourceLocationInMainFile(SM, Pos);
1583 if (!CurLoc) {
1584 llvm::consumeError(CurLoc.takeError());
1585 return {};
1587 auto MainFilePath = AST.tuPath();
1588 std::vector<SymbolDetails> Results;
1590 // We also want the targets of using-decls, so we include
1591 // DeclRelation::Underlying.
1592 DeclRelationSet Relations = DeclRelation::TemplatePattern |
1593 DeclRelation::Alias | DeclRelation::Underlying;
1594 for (const NamedDecl *D : getDeclAtPosition(AST, *CurLoc, Relations)) {
1595 D = getPreferredDecl(D);
1597 SymbolDetails NewSymbol;
1598 std::string QName = printQualifiedName(*D);
1599 auto SplitQName = splitQualifiedName(QName);
1600 NewSymbol.containerName = std::string(SplitQName.first);
1601 NewSymbol.name = std::string(SplitQName.second);
1603 if (NewSymbol.containerName.empty()) {
1604 if (const auto *ParentND =
1605 dyn_cast_or_null<NamedDecl>(D->getDeclContext()))
1606 NewSymbol.containerName = printQualifiedName(*ParentND);
1608 llvm::SmallString<32> USR;
1609 if (!index::generateUSRForDecl(D, USR)) {
1610 NewSymbol.USR = std::string(USR);
1611 NewSymbol.ID = SymbolID(NewSymbol.USR);
1613 if (const NamedDecl *Def = getDefinition(D))
1614 NewSymbol.definitionRange = makeLocation(
1615 AST.getASTContext(), nameLocation(*Def, SM), MainFilePath);
1616 NewSymbol.declarationRange =
1617 makeLocation(AST.getASTContext(), nameLocation(*D, SM), MainFilePath);
1619 Results.push_back(std::move(NewSymbol));
1622 const auto *IdentifierAtCursor =
1623 syntax::spelledIdentifierTouching(*CurLoc, AST.getTokens());
1624 if (!IdentifierAtCursor)
1625 return Results;
1627 if (auto M = locateMacroAt(*IdentifierAtCursor, AST.getPreprocessor())) {
1628 SymbolDetails NewMacro;
1629 NewMacro.name = std::string(M->Name);
1630 llvm::SmallString<32> USR;
1631 if (!index::generateUSRForMacro(NewMacro.name, M->Info->getDefinitionLoc(),
1632 SM, USR)) {
1633 NewMacro.USR = std::string(USR);
1634 NewMacro.ID = SymbolID(NewMacro.USR);
1636 Results.push_back(std::move(NewMacro));
1639 return Results;
1642 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const LocatedSymbol &S) {
1643 OS << S.Name << ": " << S.PreferredDeclaration;
1644 if (S.Definition)
1645 OS << " def=" << *S.Definition;
1646 return OS;
1649 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
1650 const ReferencesResult::Reference &R) {
1651 OS << R.Loc;
1652 if (R.Attributes & ReferencesResult::Declaration)
1653 OS << " [decl]";
1654 if (R.Attributes & ReferencesResult::Definition)
1655 OS << " [def]";
1656 if (R.Attributes & ReferencesResult::Override)
1657 OS << " [override]";
1658 return OS;
1661 template <typename HierarchyItem>
1662 static std::optional<HierarchyItem>
1663 declToHierarchyItem(const NamedDecl &ND, llvm::StringRef TUPath) {
1664 ASTContext &Ctx = ND.getASTContext();
1665 auto &SM = Ctx.getSourceManager();
1666 SourceLocation NameLoc = nameLocation(ND, Ctx.getSourceManager());
1667 SourceLocation BeginLoc = SM.getFileLoc(ND.getBeginLoc());
1668 SourceLocation EndLoc = SM.getFileLoc(ND.getEndLoc());
1669 const auto DeclRange =
1670 toHalfOpenFileRange(SM, Ctx.getLangOpts(), {BeginLoc, EndLoc});
1671 if (!DeclRange)
1672 return std::nullopt;
1673 const auto FE = SM.getFileEntryRefForID(SM.getFileID(NameLoc));
1674 if (!FE)
1675 return std::nullopt;
1676 auto FilePath = getCanonicalPath(*FE, SM.getFileManager());
1677 if (!FilePath)
1678 return std::nullopt; // Not useful without a uri.
1680 Position NameBegin = sourceLocToPosition(SM, NameLoc);
1681 Position NameEnd = sourceLocToPosition(
1682 SM, Lexer::getLocForEndOfToken(NameLoc, 0, SM, Ctx.getLangOpts()));
1684 index::SymbolInfo SymInfo = index::getSymbolInfo(&ND);
1685 // FIXME: This is not classifying constructors, destructors and operators
1686 // correctly.
1687 SymbolKind SK = indexSymbolKindToSymbolKind(SymInfo.Kind);
1689 HierarchyItem HI;
1690 HI.name = printName(Ctx, ND);
1691 // FIXME: Populate HI.detail the way we do in symbolToHierarchyItem?
1692 HI.kind = SK;
1693 HI.range = Range{sourceLocToPosition(SM, DeclRange->getBegin()),
1694 sourceLocToPosition(SM, DeclRange->getEnd())};
1695 HI.selectionRange = Range{NameBegin, NameEnd};
1696 if (!HI.range.contains(HI.selectionRange)) {
1697 // 'selectionRange' must be contained in 'range', so in cases where clang
1698 // reports unrelated ranges we need to reconcile somehow.
1699 HI.range = HI.selectionRange;
1702 HI.uri = URIForFile::canonicalize(*FilePath, TUPath);
1704 return HI;
1707 static std::optional<TypeHierarchyItem>
1708 declToTypeHierarchyItem(const NamedDecl &ND, llvm::StringRef TUPath) {
1709 auto Result = declToHierarchyItem<TypeHierarchyItem>(ND, TUPath);
1710 if (Result) {
1711 Result->deprecated = ND.isDeprecated();
1712 // Compute the SymbolID and store it in the 'data' field.
1713 // This allows typeHierarchy/resolve to be used to
1714 // resolve children of items returned in a previous request
1715 // for parents.
1716 Result->data.symbolID = getSymbolID(&ND);
1718 return Result;
1721 static std::optional<CallHierarchyItem>
1722 declToCallHierarchyItem(const NamedDecl &ND, llvm::StringRef TUPath) {
1723 auto Result = declToHierarchyItem<CallHierarchyItem>(ND, TUPath);
1724 if (!Result)
1725 return Result;
1726 if (ND.isDeprecated())
1727 Result->tags.push_back(SymbolTag::Deprecated);
1728 if (auto ID = getSymbolID(&ND))
1729 Result->data = ID.str();
1730 return Result;
1733 template <typename HierarchyItem>
1734 static std::optional<HierarchyItem> symbolToHierarchyItem(const Symbol &S,
1735 PathRef TUPath) {
1736 auto Loc = symbolToLocation(S, TUPath);
1737 if (!Loc) {
1738 elog("Failed to convert symbol to hierarchy item: {0}", Loc.takeError());
1739 return std::nullopt;
1741 HierarchyItem HI;
1742 HI.name = std::string(S.Name);
1743 HI.detail = (S.Scope + S.Name).str();
1744 HI.kind = indexSymbolKindToSymbolKind(S.SymInfo.Kind);
1745 HI.selectionRange = Loc->range;
1746 // FIXME: Populate 'range' correctly
1747 // (https://github.com/clangd/clangd/issues/59).
1748 HI.range = HI.selectionRange;
1749 HI.uri = Loc->uri;
1751 return HI;
1754 static std::optional<TypeHierarchyItem>
1755 symbolToTypeHierarchyItem(const Symbol &S, PathRef TUPath) {
1756 auto Result = symbolToHierarchyItem<TypeHierarchyItem>(S, TUPath);
1757 if (Result) {
1758 Result->deprecated = (S.Flags & Symbol::Deprecated);
1759 Result->data.symbolID = S.ID;
1761 return Result;
1764 static std::optional<CallHierarchyItem>
1765 symbolToCallHierarchyItem(const Symbol &S, PathRef TUPath) {
1766 auto Result = symbolToHierarchyItem<CallHierarchyItem>(S, TUPath);
1767 if (!Result)
1768 return Result;
1769 Result->data = S.ID.str();
1770 if (S.Flags & Symbol::Deprecated)
1771 Result->tags.push_back(SymbolTag::Deprecated);
1772 return Result;
1775 static void fillSubTypes(const SymbolID &ID,
1776 std::vector<TypeHierarchyItem> &SubTypes,
1777 const SymbolIndex *Index, int Levels, PathRef TUPath) {
1778 RelationsRequest Req;
1779 Req.Subjects.insert(ID);
1780 Req.Predicate = RelationKind::BaseOf;
1781 Index->relations(Req, [&](const SymbolID &Subject, const Symbol &Object) {
1782 if (std::optional<TypeHierarchyItem> ChildSym =
1783 symbolToTypeHierarchyItem(Object, TUPath)) {
1784 if (Levels > 1) {
1785 ChildSym->children.emplace();
1786 fillSubTypes(Object.ID, *ChildSym->children, Index, Levels - 1, TUPath);
1788 SubTypes.emplace_back(std::move(*ChildSym));
1793 using RecursionProtectionSet = llvm::SmallSet<const CXXRecordDecl *, 4>;
1795 // Extracts parents from AST and populates the type hierarchy item.
1796 static void fillSuperTypes(const CXXRecordDecl &CXXRD, llvm::StringRef TUPath,
1797 TypeHierarchyItem &Item,
1798 RecursionProtectionSet &RPSet) {
1799 Item.parents.emplace();
1800 Item.data.parents.emplace();
1801 // typeParents() will replace dependent template specializations
1802 // with their class template, so to avoid infinite recursion for
1803 // certain types of hierarchies, keep the templates encountered
1804 // along the parent chain in a set, and stop the recursion if one
1805 // starts to repeat.
1806 auto *Pattern = CXXRD.getDescribedTemplate() ? &CXXRD : nullptr;
1807 if (Pattern) {
1808 if (!RPSet.insert(Pattern).second) {
1809 return;
1813 for (const CXXRecordDecl *ParentDecl : typeParents(&CXXRD)) {
1814 if (std::optional<TypeHierarchyItem> ParentSym =
1815 declToTypeHierarchyItem(*ParentDecl, TUPath)) {
1816 fillSuperTypes(*ParentDecl, TUPath, *ParentSym, RPSet);
1817 Item.data.parents->emplace_back(ParentSym->data);
1818 Item.parents->emplace_back(std::move(*ParentSym));
1822 if (Pattern) {
1823 RPSet.erase(Pattern);
1827 std::vector<const CXXRecordDecl *> findRecordTypeAt(ParsedAST &AST,
1828 Position Pos) {
1829 auto RecordFromNode = [&AST](const SelectionTree::Node *N) {
1830 std::vector<const CXXRecordDecl *> Records;
1831 if (!N)
1832 return Records;
1834 // Note: explicitReferenceTargets() will search for both template
1835 // instantiations and template patterns, and prefer the former if available
1836 // (generally, one will be available for non-dependent specializations of a
1837 // class template).
1838 auto Decls = explicitReferenceTargets(N->ASTNode, DeclRelation::Underlying,
1839 AST.getHeuristicResolver());
1840 for (const NamedDecl *D : Decls) {
1842 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1843 // If this is a variable, use the type of the variable.
1844 if (const auto *RD = VD->getType().getTypePtr()->getAsCXXRecordDecl())
1845 Records.push_back(RD);
1846 continue;
1849 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1850 // If this is a method, use the type of the class.
1851 Records.push_back(Method->getParent());
1852 continue;
1855 // We don't handle FieldDecl because it's not clear what behaviour
1856 // the user would expect: the enclosing class type (as with a
1857 // method), or the field's type (as with a variable).
1859 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1860 Records.push_back(RD);
1862 return Records;
1865 const SourceManager &SM = AST.getSourceManager();
1866 std::vector<const CXXRecordDecl *> Result;
1867 auto Offset = positionToOffset(SM.getBufferData(SM.getMainFileID()), Pos);
1868 if (!Offset) {
1869 llvm::consumeError(Offset.takeError());
1870 return Result;
1872 SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), *Offset,
1873 *Offset, [&](SelectionTree ST) {
1874 Result = RecordFromNode(ST.commonAncestor());
1875 return !Result.empty();
1877 return Result;
1880 // Return the type most associated with an AST node.
1881 // This isn't precisely defined: we want "go to type" to do something useful.
1882 static QualType typeForNode(const SelectionTree::Node *N) {
1883 // If we're looking at a namespace qualifier, walk up to what it's qualifying.
1884 // (If we're pointing at a *class* inside a NNS, N will be a TypeLoc).
1885 while (N && N->ASTNode.get<NestedNameSpecifierLoc>())
1886 N = N->Parent;
1887 if (!N)
1888 return QualType();
1890 // If we're pointing at a type => return it.
1891 if (const TypeLoc *TL = N->ASTNode.get<TypeLoc>()) {
1892 if (llvm::isa<DeducedType>(TL->getTypePtr()))
1893 if (auto Deduced = getDeducedType(
1894 N->getDeclContext().getParentASTContext(), TL->getBeginLoc()))
1895 return *Deduced;
1896 // Exception: an alias => underlying type.
1897 if (llvm::isa<TypedefType>(TL->getTypePtr()))
1898 return TL->getTypePtr()->getLocallyUnqualifiedSingleStepDesugaredType();
1899 return TL->getType();
1902 // Constructor initializers => the type of thing being initialized.
1903 if (const auto *CCI = N->ASTNode.get<CXXCtorInitializer>()) {
1904 if (const FieldDecl *FD = CCI->getAnyMember())
1905 return FD->getType();
1906 if (const Type *Base = CCI->getBaseClass())
1907 return QualType(Base, 0);
1910 // Base specifier => the base type.
1911 if (const auto *CBS = N->ASTNode.get<CXXBaseSpecifier>())
1912 return CBS->getType();
1914 if (const Decl *D = N->ASTNode.get<Decl>()) {
1915 struct Visitor : ConstDeclVisitor<Visitor, QualType> {
1916 QualType VisitValueDecl(const ValueDecl *D) { return D->getType(); }
1917 // Declaration of a type => that type.
1918 QualType VisitTypeDecl(const TypeDecl *D) {
1919 return QualType(D->getTypeForDecl(), 0);
1921 // Exception: alias declaration => the underlying type, not the alias.
1922 QualType VisitTypedefNameDecl(const TypedefNameDecl *D) {
1923 return D->getUnderlyingType();
1925 // Look inside templates.
1926 QualType VisitTemplateDecl(const TemplateDecl *D) {
1927 return Visit(D->getTemplatedDecl());
1929 } V;
1930 return V.Visit(D);
1933 if (const Stmt *S = N->ASTNode.get<Stmt>()) {
1934 struct Visitor : ConstStmtVisitor<Visitor, QualType> {
1935 // Null-safe version of visit simplifies recursive calls below.
1936 QualType type(const Stmt *S) { return S ? Visit(S) : QualType(); }
1938 // In general, expressions => type of expression.
1939 QualType VisitExpr(const Expr *S) {
1940 return S->IgnoreImplicitAsWritten()->getType();
1942 QualType VisitMemberExpr(const MemberExpr *S) {
1943 // The `foo` in `s.foo()` pretends not to have a real type!
1944 if (S->getType()->isSpecificBuiltinType(BuiltinType::BoundMember))
1945 return Expr::findBoundMemberType(S);
1946 return VisitExpr(S);
1948 // Exceptions for void expressions that operate on a type in some way.
1949 QualType VisitCXXDeleteExpr(const CXXDeleteExpr *S) {
1950 return S->getDestroyedType();
1952 QualType VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *S) {
1953 return S->getDestroyedType();
1955 QualType VisitCXXThrowExpr(const CXXThrowExpr *S) {
1956 return S->getSubExpr()->getType();
1958 QualType VisitCoyieldExpr(const CoyieldExpr *S) {
1959 return type(S->getOperand());
1961 // Treat a designated initializer like a reference to the field.
1962 QualType VisitDesignatedInitExpr(const DesignatedInitExpr *S) {
1963 // In .foo.bar we want to jump to bar's type, so find *last* field.
1964 for (auto &D : llvm::reverse(S->designators()))
1965 if (D.isFieldDesignator())
1966 if (const auto *FD = D.getFieldDecl())
1967 return FD->getType();
1968 return QualType();
1971 // Control flow statements that operate on data: use the data type.
1972 QualType VisitSwitchStmt(const SwitchStmt *S) {
1973 return type(S->getCond());
1975 QualType VisitWhileStmt(const WhileStmt *S) { return type(S->getCond()); }
1976 QualType VisitDoStmt(const DoStmt *S) { return type(S->getCond()); }
1977 QualType VisitIfStmt(const IfStmt *S) { return type(S->getCond()); }
1978 QualType VisitCaseStmt(const CaseStmt *S) { return type(S->getLHS()); }
1979 QualType VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1980 return S->getLoopVariable()->getType();
1982 QualType VisitReturnStmt(const ReturnStmt *S) {
1983 return type(S->getRetValue());
1985 QualType VisitCoreturnStmt(const CoreturnStmt *S) {
1986 return type(S->getOperand());
1988 QualType VisitCXXCatchStmt(const CXXCatchStmt *S) {
1989 return S->getCaughtType();
1991 QualType VisitObjCAtThrowStmt(const ObjCAtThrowStmt *S) {
1992 return type(S->getThrowExpr());
1994 QualType VisitObjCAtCatchStmt(const ObjCAtCatchStmt *S) {
1995 return S->getCatchParamDecl() ? S->getCatchParamDecl()->getType()
1996 : QualType();
1998 } V;
1999 return V.Visit(S);
2002 return QualType();
2005 // Given a type targeted by the cursor, return one or more types that are more interesting
2006 // to target.
2007 static void unwrapFindType(
2008 QualType T, const HeuristicResolver* H, llvm::SmallVector<QualType>& Out) {
2009 if (T.isNull())
2010 return;
2012 // If there's a specific type alias, point at that rather than unwrapping.
2013 if (const auto* TDT = T->getAs<TypedefType>())
2014 return Out.push_back(QualType(TDT, 0));
2016 // Pointers etc => pointee type.
2017 if (const auto *PT = T->getAs<PointerType>())
2018 return unwrapFindType(PT->getPointeeType(), H, Out);
2019 if (const auto *RT = T->getAs<ReferenceType>())
2020 return unwrapFindType(RT->getPointeeType(), H, Out);
2021 if (const auto *AT = T->getAsArrayTypeUnsafe())
2022 return unwrapFindType(AT->getElementType(), H, Out);
2024 // Function type => return type.
2025 if (auto *FT = T->getAs<FunctionType>())
2026 return unwrapFindType(FT->getReturnType(), H, Out);
2027 if (auto *CRD = T->getAsCXXRecordDecl()) {
2028 if (CRD->isLambda())
2029 return unwrapFindType(CRD->getLambdaCallOperator()->getReturnType(), H,
2030 Out);
2031 // FIXME: more cases we'd prefer the return type of the call operator?
2032 // std::function etc?
2035 // For smart pointer types, add the underlying type
2036 if (H)
2037 if (auto PointeeType = H->getPointeeType(T.getNonReferenceType());
2038 !PointeeType.isNull()) {
2039 unwrapFindType(PointeeType, H, Out);
2040 return Out.push_back(T);
2043 return Out.push_back(T);
2046 // Convenience overload, to allow calling this without the out-parameter
2047 static llvm::SmallVector<QualType> unwrapFindType(
2048 QualType T, const HeuristicResolver* H) {
2049 llvm::SmallVector<QualType> Result;
2050 unwrapFindType(T, H, Result);
2051 return Result;
2054 std::vector<LocatedSymbol> findType(ParsedAST &AST, Position Pos,
2055 const SymbolIndex *Index) {
2056 const SourceManager &SM = AST.getSourceManager();
2057 auto Offset = positionToOffset(SM.getBufferData(SM.getMainFileID()), Pos);
2058 std::vector<LocatedSymbol> Result;
2059 if (!Offset) {
2060 elog("failed to convert position {0} for findTypes: {1}", Pos,
2061 Offset.takeError());
2062 return Result;
2064 // The general scheme is: position -> AST node -> type -> declaration.
2065 auto SymbolsFromNode =
2066 [&](const SelectionTree::Node *N) -> std::vector<LocatedSymbol> {
2067 std::vector<LocatedSymbol> LocatedSymbols;
2069 // NOTE: unwrapFindType might return duplicates for something like
2070 // unique_ptr<unique_ptr<T>>. Let's *not* remove them, because it gives you some
2071 // information about the type you may have not known before
2072 // (since unique_ptr<unique_ptr<T>> != unique_ptr<T>).
2073 for (const QualType& Type : unwrapFindType(typeForNode(N), AST.getHeuristicResolver()))
2074 llvm::copy(locateSymbolForType(AST, Type, Index),
2075 std::back_inserter(LocatedSymbols));
2077 return LocatedSymbols;
2079 SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), *Offset,
2080 *Offset, [&](SelectionTree ST) {
2081 Result = SymbolsFromNode(ST.commonAncestor());
2082 return !Result.empty();
2084 return Result;
2087 std::vector<const CXXRecordDecl *> typeParents(const CXXRecordDecl *CXXRD) {
2088 std::vector<const CXXRecordDecl *> Result;
2090 // If this is an invalid instantiation, instantiation of the bases
2091 // may not have succeeded, so fall back to the template pattern.
2092 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CXXRD)) {
2093 if (CTSD->isInvalidDecl())
2094 CXXRD = CTSD->getSpecializedTemplate()->getTemplatedDecl();
2097 // Can't query bases without a definition.
2098 if (!CXXRD->hasDefinition())
2099 return Result;
2101 for (auto Base : CXXRD->bases()) {
2102 const CXXRecordDecl *ParentDecl = nullptr;
2104 const Type *Type = Base.getType().getTypePtr();
2105 if (const RecordType *RT = Type->getAs<RecordType>()) {
2106 ParentDecl = RT->getAsCXXRecordDecl();
2109 if (!ParentDecl) {
2110 // Handle a dependent base such as "Base<T>" by using the primary
2111 // template.
2112 if (const TemplateSpecializationType *TS =
2113 Type->getAs<TemplateSpecializationType>()) {
2114 TemplateName TN = TS->getTemplateName();
2115 if (TemplateDecl *TD = TN.getAsTemplateDecl()) {
2116 ParentDecl = dyn_cast<CXXRecordDecl>(TD->getTemplatedDecl());
2121 if (ParentDecl)
2122 Result.push_back(ParentDecl);
2125 return Result;
2128 std::vector<TypeHierarchyItem>
2129 getTypeHierarchy(ParsedAST &AST, Position Pos, int ResolveLevels,
2130 TypeHierarchyDirection Direction, const SymbolIndex *Index,
2131 PathRef TUPath) {
2132 std::vector<TypeHierarchyItem> Results;
2133 for (const auto *CXXRD : findRecordTypeAt(AST, Pos)) {
2135 bool WantChildren = Direction == TypeHierarchyDirection::Children ||
2136 Direction == TypeHierarchyDirection::Both;
2138 // If we're looking for children, we're doing the lookup in the index.
2139 // The index does not store relationships between implicit
2140 // specializations, so if we have one, use the template pattern instead.
2141 // Note that this needs to be done before the declToTypeHierarchyItem(),
2142 // otherwise the type hierarchy item would misleadingly contain the
2143 // specialization parameters, while the children would involve classes
2144 // that derive from other specializations of the template.
2145 if (WantChildren) {
2146 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CXXRD))
2147 CXXRD = CTSD->getTemplateInstantiationPattern();
2150 std::optional<TypeHierarchyItem> Result =
2151 declToTypeHierarchyItem(*CXXRD, AST.tuPath());
2152 if (!Result)
2153 continue;
2155 RecursionProtectionSet RPSet;
2156 fillSuperTypes(*CXXRD, AST.tuPath(), *Result, RPSet);
2158 if (WantChildren && ResolveLevels > 0) {
2159 Result->children.emplace();
2161 if (Index) {
2162 if (auto ID = getSymbolID(CXXRD))
2163 fillSubTypes(ID, *Result->children, Index, ResolveLevels, TUPath);
2166 Results.emplace_back(std::move(*Result));
2169 return Results;
2172 std::optional<std::vector<TypeHierarchyItem>>
2173 superTypes(const TypeHierarchyItem &Item, const SymbolIndex *Index) {
2174 std::vector<TypeHierarchyItem> Results;
2175 if (!Item.data.parents)
2176 return std::nullopt;
2177 if (Item.data.parents->empty())
2178 return Results;
2179 LookupRequest Req;
2180 llvm::DenseMap<SymbolID, const TypeHierarchyItem::ResolveParams *> IDToData;
2181 for (const auto &Parent : *Item.data.parents) {
2182 Req.IDs.insert(Parent.symbolID);
2183 IDToData[Parent.symbolID] = &Parent;
2185 Index->lookup(Req, [&Item, &Results, &IDToData](const Symbol &S) {
2186 if (auto THI = symbolToTypeHierarchyItem(S, Item.uri.file())) {
2187 THI->data = *IDToData.lookup(S.ID);
2188 Results.emplace_back(std::move(*THI));
2191 return Results;
2194 std::vector<TypeHierarchyItem> subTypes(const TypeHierarchyItem &Item,
2195 const SymbolIndex *Index) {
2196 std::vector<TypeHierarchyItem> Results;
2197 fillSubTypes(Item.data.symbolID, Results, Index, 1, Item.uri.file());
2198 for (auto &ChildSym : Results)
2199 ChildSym.data.parents = {Item.data};
2200 return Results;
2203 void resolveTypeHierarchy(TypeHierarchyItem &Item, int ResolveLevels,
2204 TypeHierarchyDirection Direction,
2205 const SymbolIndex *Index) {
2206 // We only support typeHierarchy/resolve for children, because for parents
2207 // we ignore ResolveLevels and return all levels of parents eagerly.
2208 if (!Index || Direction == TypeHierarchyDirection::Parents ||
2209 ResolveLevels == 0)
2210 return;
2212 Item.children.emplace();
2213 fillSubTypes(Item.data.symbolID, *Item.children, Index, ResolveLevels,
2214 Item.uri.file());
2217 std::vector<CallHierarchyItem>
2218 prepareCallHierarchy(ParsedAST &AST, Position Pos, PathRef TUPath) {
2219 std::vector<CallHierarchyItem> Result;
2220 const auto &SM = AST.getSourceManager();
2221 auto Loc = sourceLocationInMainFile(SM, Pos);
2222 if (!Loc) {
2223 elog("prepareCallHierarchy failed to convert position to source location: "
2224 "{0}",
2225 Loc.takeError());
2226 return Result;
2228 for (const NamedDecl *Decl : getDeclAtPosition(AST, *Loc, {})) {
2229 if (!(isa<DeclContext>(Decl) &&
2230 cast<DeclContext>(Decl)->isFunctionOrMethod()) &&
2231 Decl->getKind() != Decl::Kind::FunctionTemplate &&
2232 !(Decl->getKind() == Decl::Kind::Var &&
2233 !cast<VarDecl>(Decl)->isLocalVarDecl()) &&
2234 Decl->getKind() != Decl::Kind::Field)
2235 continue;
2236 if (auto CHI = declToCallHierarchyItem(*Decl, AST.tuPath()))
2237 Result.emplace_back(std::move(*CHI));
2239 return Result;
2242 std::vector<CallHierarchyIncomingCall>
2243 incomingCalls(const CallHierarchyItem &Item, const SymbolIndex *Index) {
2244 std::vector<CallHierarchyIncomingCall> Results;
2245 if (!Index || Item.data.empty())
2246 return Results;
2247 auto ID = SymbolID::fromStr(Item.data);
2248 if (!ID) {
2249 elog("incomingCalls failed to find symbol: {0}", ID.takeError());
2250 return Results;
2252 // In this function, we find incoming calls based on the index only.
2253 // In principle, the AST could have more up-to-date information about
2254 // occurrences within the current file. However, going from a SymbolID
2255 // to an AST node isn't cheap, particularly when the declaration isn't
2256 // in the main file.
2257 // FIXME: Consider also using AST information when feasible.
2258 RefsRequest Request;
2259 Request.IDs.insert(*ID);
2260 Request.WantContainer = true;
2261 // We could restrict more specifically to calls by introducing a new RefKind,
2262 // but non-call references (such as address-of-function) can still be
2263 // interesting as they can indicate indirect calls.
2264 Request.Filter = RefKind::Reference;
2265 // Initially store the ranges in a map keyed by SymbolID of the caller.
2266 // This allows us to group different calls with the same caller
2267 // into the same CallHierarchyIncomingCall.
2268 llvm::DenseMap<SymbolID, std::vector<Location>> CallsIn;
2269 // We can populate the ranges based on a refs request only. As we do so, we
2270 // also accumulate the container IDs into a lookup request.
2271 LookupRequest ContainerLookup;
2272 Index->refs(Request, [&](const Ref &R) {
2273 auto Loc = indexToLSPLocation(R.Location, Item.uri.file());
2274 if (!Loc) {
2275 elog("incomingCalls failed to convert location: {0}", Loc.takeError());
2276 return;
2278 CallsIn[R.Container].push_back(*Loc);
2280 ContainerLookup.IDs.insert(R.Container);
2282 // Perform the lookup request and combine its results with CallsIn to
2283 // get complete CallHierarchyIncomingCall objects.
2284 Index->lookup(ContainerLookup, [&](const Symbol &Caller) {
2285 auto It = CallsIn.find(Caller.ID);
2286 assert(It != CallsIn.end());
2287 if (auto CHI = symbolToCallHierarchyItem(Caller, Item.uri.file())) {
2288 std::vector<Range> FromRanges;
2289 for (const Location &L : It->second) {
2290 if (L.uri != CHI->uri) {
2291 // Call location not in same file as caller.
2292 // This can happen in some edge cases. There's not much we can do,
2293 // since the protocol only allows returning ranges interpreted as
2294 // being in the caller's file.
2295 continue;
2297 FromRanges.push_back(L.range);
2299 Results.push_back(
2300 CallHierarchyIncomingCall{std::move(*CHI), std::move(FromRanges)});
2303 // Sort results by name of container.
2304 llvm::sort(Results, [](const CallHierarchyIncomingCall &A,
2305 const CallHierarchyIncomingCall &B) {
2306 return A.from.name < B.from.name;
2308 return Results;
2311 std::vector<CallHierarchyOutgoingCall>
2312 outgoingCalls(const CallHierarchyItem &Item, const SymbolIndex *Index) {
2313 std::vector<CallHierarchyOutgoingCall> Results;
2314 if (!Index || Item.data.empty())
2315 return Results;
2316 auto ID = SymbolID::fromStr(Item.data);
2317 if (!ID) {
2318 elog("outgoingCalls failed to find symbol: {0}", ID.takeError());
2319 return Results;
2321 // In this function, we find outgoing calls based on the index only.
2322 ContainedRefsRequest Request;
2323 Request.ID = *ID;
2324 // Initially store the ranges in a map keyed by SymbolID of the callee.
2325 // This allows us to group different calls to the same function
2326 // into the same CallHierarchyOutgoingCall.
2327 llvm::DenseMap<SymbolID, std::vector<Range>> CallsOut;
2328 // We can populate the ranges based on a refs request only. As we do so, we
2329 // also accumulate the callee IDs into a lookup request.
2330 LookupRequest CallsOutLookup;
2331 Index->containedRefs(Request, [&](const auto &R) {
2332 auto Loc = indexToLSPLocation(R.Location, Item.uri.file());
2333 if (!Loc) {
2334 elog("outgoingCalls failed to convert location: {0}", Loc.takeError());
2335 return;
2337 auto It = CallsOut.try_emplace(R.Symbol, std::vector<Range>{}).first;
2338 It->second.push_back(Loc->range);
2340 CallsOutLookup.IDs.insert(R.Symbol);
2342 // Perform the lookup request and combine its results with CallsOut to
2343 // get complete CallHierarchyOutgoingCall objects.
2344 Index->lookup(CallsOutLookup, [&](const Symbol &Callee) {
2345 // The containedRefs request should only return symbols which are
2346 // function-like, i.e. symbols for which references to them can be "calls".
2347 using SK = index::SymbolKind;
2348 auto Kind = Callee.SymInfo.Kind;
2349 assert(Kind == SK::Function || Kind == SK::InstanceMethod ||
2350 Kind == SK::ClassMethod || Kind == SK::StaticMethod ||
2351 Kind == SK::Constructor || Kind == SK::Destructor ||
2352 Kind == SK::ConversionFunction);
2353 (void)Kind;
2354 (void)SK::Function;
2356 auto It = CallsOut.find(Callee.ID);
2357 assert(It != CallsOut.end());
2358 if (auto CHI = symbolToCallHierarchyItem(Callee, Item.uri.file()))
2359 Results.push_back(
2360 CallHierarchyOutgoingCall{std::move(*CHI), std::move(It->second)});
2362 // Sort results by name of the callee.
2363 llvm::sort(Results, [](const CallHierarchyOutgoingCall &A,
2364 const CallHierarchyOutgoingCall &B) {
2365 return A.to.name < B.to.name;
2367 return Results;
2370 llvm::DenseSet<const Decl *> getNonLocalDeclRefs(ParsedAST &AST,
2371 const FunctionDecl *FD) {
2372 if (!FD->hasBody())
2373 return {};
2374 llvm::DenseSet<const Decl *> DeclRefs;
2375 findExplicitReferences(
2377 [&](ReferenceLoc Ref) {
2378 for (const Decl *D : Ref.Targets) {
2379 if (!index::isFunctionLocalSymbol(D) && !D->isTemplateParameter() &&
2380 !Ref.IsDecl)
2381 DeclRefs.insert(D);
2384 AST.getHeuristicResolver());
2385 return DeclRefs;
2388 } // namespace clangd
2389 } // namespace clang