Revert "Create overloads of debug intrinsic utilities for DPValues (#78313)"
[llvm-project.git] / llvm / lib / Transforms / Utils / Local.cpp
blobd1b42f28923f5ef739ddd38eb78cd2b71c082824
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumeBundleQueries.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/BinaryFormat/Dwarf.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DIBuilder.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/EHPersonalities.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/GlobalObject.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/IntrinsicsWebAssembly.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/ProfDataUtils.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/KnownBits.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cstdint>
82 #include <iterator>
83 #include <map>
84 #include <optional>
85 #include <utility>
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
90 extern cl::opt<bool> UseNewDbgInfoFormat;
92 #define DEBUG_TYPE "local"
94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
95 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
97 static cl::opt<bool> PHICSEDebugHash(
98 "phicse-debug-hash",
99 #ifdef EXPENSIVE_CHECKS
100 cl::init(true),
101 #else
102 cl::init(false),
103 #endif
104 cl::Hidden,
105 cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
106 "function is well-behaved w.r.t. its isEqual predicate"));
108 static cl::opt<unsigned> PHICSENumPHISmallSize(
109 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
110 cl::desc(
111 "When the basic block contains not more than this number of PHI nodes, "
112 "perform a (faster!) exhaustive search instead of set-driven one."));
114 // Max recursion depth for collectBitParts used when detecting bswap and
115 // bitreverse idioms.
116 static const unsigned BitPartRecursionMaxDepth = 48;
118 //===----------------------------------------------------------------------===//
119 // Local constant propagation.
122 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
123 /// constant value, convert it into an unconditional branch to the constant
124 /// destination. This is a nontrivial operation because the successors of this
125 /// basic block must have their PHI nodes updated.
126 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
127 /// conditions and indirectbr addresses this might make dead if
128 /// DeleteDeadConditions is true.
129 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
130 const TargetLibraryInfo *TLI,
131 DomTreeUpdater *DTU) {
132 Instruction *T = BB->getTerminator();
133 IRBuilder<> Builder(T);
135 // Branch - See if we are conditional jumping on constant
136 if (auto *BI = dyn_cast<BranchInst>(T)) {
137 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
139 BasicBlock *Dest1 = BI->getSuccessor(0);
140 BasicBlock *Dest2 = BI->getSuccessor(1);
142 if (Dest2 == Dest1) { // Conditional branch to same location?
143 // This branch matches something like this:
144 // br bool %cond, label %Dest, label %Dest
145 // and changes it into: br label %Dest
147 // Let the basic block know that we are letting go of one copy of it.
148 assert(BI->getParent() && "Terminator not inserted in block!");
149 Dest1->removePredecessor(BI->getParent());
151 // Replace the conditional branch with an unconditional one.
152 BranchInst *NewBI = Builder.CreateBr(Dest1);
154 // Transfer the metadata to the new branch instruction.
155 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
156 LLVMContext::MD_annotation});
158 Value *Cond = BI->getCondition();
159 BI->eraseFromParent();
160 if (DeleteDeadConditions)
161 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
162 return true;
165 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
166 // Are we branching on constant?
167 // YES. Change to unconditional branch...
168 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
169 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
171 // Let the basic block know that we are letting go of it. Based on this,
172 // it will adjust it's PHI nodes.
173 OldDest->removePredecessor(BB);
175 // Replace the conditional branch with an unconditional one.
176 BranchInst *NewBI = Builder.CreateBr(Destination);
178 // Transfer the metadata to the new branch instruction.
179 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
180 LLVMContext::MD_annotation});
182 BI->eraseFromParent();
183 if (DTU)
184 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
185 return true;
188 return false;
191 if (auto *SI = dyn_cast<SwitchInst>(T)) {
192 // If we are switching on a constant, we can convert the switch to an
193 // unconditional branch.
194 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
195 BasicBlock *DefaultDest = SI->getDefaultDest();
196 BasicBlock *TheOnlyDest = DefaultDest;
198 // If the default is unreachable, ignore it when searching for TheOnlyDest.
199 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
200 SI->getNumCases() > 0) {
201 TheOnlyDest = SI->case_begin()->getCaseSuccessor();
204 bool Changed = false;
206 // Figure out which case it goes to.
207 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) {
208 // Found case matching a constant operand?
209 if (It->getCaseValue() == CI) {
210 TheOnlyDest = It->getCaseSuccessor();
211 break;
214 // Check to see if this branch is going to the same place as the default
215 // dest. If so, eliminate it as an explicit compare.
216 if (It->getCaseSuccessor() == DefaultDest) {
217 MDNode *MD = getValidBranchWeightMDNode(*SI);
218 unsigned NCases = SI->getNumCases();
219 // Fold the case metadata into the default if there will be any branches
220 // left, unless the metadata doesn't match the switch.
221 if (NCases > 1 && MD) {
222 // Collect branch weights into a vector.
223 SmallVector<uint32_t, 8> Weights;
224 extractBranchWeights(MD, Weights);
226 // Merge weight of this case to the default weight.
227 unsigned Idx = It->getCaseIndex();
228 // TODO: Add overflow check.
229 Weights[0] += Weights[Idx + 1];
230 // Remove weight for this case.
231 std::swap(Weights[Idx + 1], Weights.back());
232 Weights.pop_back();
233 setBranchWeights(*SI, Weights);
235 // Remove this entry.
236 BasicBlock *ParentBB = SI->getParent();
237 DefaultDest->removePredecessor(ParentBB);
238 It = SI->removeCase(It);
239 End = SI->case_end();
241 // Removing this case may have made the condition constant. In that
242 // case, update CI and restart iteration through the cases.
243 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) {
244 CI = NewCI;
245 It = SI->case_begin();
248 Changed = true;
249 continue;
252 // Otherwise, check to see if the switch only branches to one destination.
253 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
254 // destinations.
255 if (It->getCaseSuccessor() != TheOnlyDest)
256 TheOnlyDest = nullptr;
258 // Increment this iterator as we haven't removed the case.
259 ++It;
262 if (CI && !TheOnlyDest) {
263 // Branching on a constant, but not any of the cases, go to the default
264 // successor.
265 TheOnlyDest = SI->getDefaultDest();
268 // If we found a single destination that we can fold the switch into, do so
269 // now.
270 if (TheOnlyDest) {
271 // Insert the new branch.
272 Builder.CreateBr(TheOnlyDest);
273 BasicBlock *BB = SI->getParent();
275 SmallSet<BasicBlock *, 8> RemovedSuccessors;
277 // Remove entries from PHI nodes which we no longer branch to...
278 BasicBlock *SuccToKeep = TheOnlyDest;
279 for (BasicBlock *Succ : successors(SI)) {
280 if (DTU && Succ != TheOnlyDest)
281 RemovedSuccessors.insert(Succ);
282 // Found case matching a constant operand?
283 if (Succ == SuccToKeep) {
284 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
285 } else {
286 Succ->removePredecessor(BB);
290 // Delete the old switch.
291 Value *Cond = SI->getCondition();
292 SI->eraseFromParent();
293 if (DeleteDeadConditions)
294 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
295 if (DTU) {
296 std::vector<DominatorTree::UpdateType> Updates;
297 Updates.reserve(RemovedSuccessors.size());
298 for (auto *RemovedSuccessor : RemovedSuccessors)
299 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
300 DTU->applyUpdates(Updates);
302 return true;
305 if (SI->getNumCases() == 1) {
306 // Otherwise, we can fold this switch into a conditional branch
307 // instruction if it has only one non-default destination.
308 auto FirstCase = *SI->case_begin();
309 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
310 FirstCase.getCaseValue(), "cond");
312 // Insert the new branch.
313 BranchInst *NewBr = Builder.CreateCondBr(Cond,
314 FirstCase.getCaseSuccessor(),
315 SI->getDefaultDest());
316 SmallVector<uint32_t> Weights;
317 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) {
318 uint32_t DefWeight = Weights[0];
319 uint32_t CaseWeight = Weights[1];
320 // The TrueWeight should be the weight for the single case of SI.
321 NewBr->setMetadata(LLVMContext::MD_prof,
322 MDBuilder(BB->getContext())
323 .createBranchWeights(CaseWeight, DefWeight));
326 // Update make.implicit metadata to the newly-created conditional branch.
327 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
328 if (MakeImplicitMD)
329 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
331 // Delete the old switch.
332 SI->eraseFromParent();
333 return true;
335 return Changed;
338 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
339 // indirectbr blockaddress(@F, @BB) -> br label @BB
340 if (auto *BA =
341 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
342 BasicBlock *TheOnlyDest = BA->getBasicBlock();
343 SmallSet<BasicBlock *, 8> RemovedSuccessors;
345 // Insert the new branch.
346 Builder.CreateBr(TheOnlyDest);
348 BasicBlock *SuccToKeep = TheOnlyDest;
349 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
350 BasicBlock *DestBB = IBI->getDestination(i);
351 if (DTU && DestBB != TheOnlyDest)
352 RemovedSuccessors.insert(DestBB);
353 if (IBI->getDestination(i) == SuccToKeep) {
354 SuccToKeep = nullptr;
355 } else {
356 DestBB->removePredecessor(BB);
359 Value *Address = IBI->getAddress();
360 IBI->eraseFromParent();
361 if (DeleteDeadConditions)
362 // Delete pointer cast instructions.
363 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
365 // Also zap the blockaddress constant if there are no users remaining,
366 // otherwise the destination is still marked as having its address taken.
367 if (BA->use_empty())
368 BA->destroyConstant();
370 // If we didn't find our destination in the IBI successor list, then we
371 // have undefined behavior. Replace the unconditional branch with an
372 // 'unreachable' instruction.
373 if (SuccToKeep) {
374 BB->getTerminator()->eraseFromParent();
375 new UnreachableInst(BB->getContext(), BB);
378 if (DTU) {
379 std::vector<DominatorTree::UpdateType> Updates;
380 Updates.reserve(RemovedSuccessors.size());
381 for (auto *RemovedSuccessor : RemovedSuccessors)
382 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
383 DTU->applyUpdates(Updates);
385 return true;
389 return false;
392 //===----------------------------------------------------------------------===//
393 // Local dead code elimination.
396 /// isInstructionTriviallyDead - Return true if the result produced by the
397 /// instruction is not used, and the instruction has no side effects.
399 bool llvm::isInstructionTriviallyDead(Instruction *I,
400 const TargetLibraryInfo *TLI) {
401 if (!I->use_empty())
402 return false;
403 return wouldInstructionBeTriviallyDead(I, TLI);
406 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
407 Instruction *I, const TargetLibraryInfo *TLI) {
408 // Instructions that are "markers" and have implied meaning on code around
409 // them (without explicit uses), are not dead on unused paths.
410 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
411 if (II->getIntrinsicID() == Intrinsic::stacksave ||
412 II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
413 II->isLifetimeStartOrEnd())
414 return false;
415 return wouldInstructionBeTriviallyDead(I, TLI);
418 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I,
419 const TargetLibraryInfo *TLI) {
420 if (I->isTerminator())
421 return false;
423 // We don't want the landingpad-like instructions removed by anything this
424 // general.
425 if (I->isEHPad())
426 return false;
428 // We don't want debug info removed by anything this general.
429 if (isa<DbgVariableIntrinsic>(I))
430 return false;
432 if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
433 if (DLI->getLabel())
434 return false;
435 return true;
438 if (auto *CB = dyn_cast<CallBase>(I))
439 if (isRemovableAlloc(CB, TLI))
440 return true;
442 if (!I->willReturn()) {
443 auto *II = dyn_cast<IntrinsicInst>(I);
444 if (!II)
445 return false;
447 switch (II->getIntrinsicID()) {
448 case Intrinsic::experimental_guard: {
449 // Guards on true are operationally no-ops. In the future we can
450 // consider more sophisticated tradeoffs for guards considering potential
451 // for check widening, but for now we keep things simple.
452 auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0));
453 return Cond && Cond->isOne();
455 // TODO: These intrinsics are not safe to remove, because this may remove
456 // a well-defined trap.
457 case Intrinsic::wasm_trunc_signed:
458 case Intrinsic::wasm_trunc_unsigned:
459 case Intrinsic::ptrauth_auth:
460 case Intrinsic::ptrauth_resign:
461 return true;
462 default:
463 return false;
467 if (!I->mayHaveSideEffects())
468 return true;
470 // Special case intrinsics that "may have side effects" but can be deleted
471 // when dead.
472 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
473 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
474 if (II->getIntrinsicID() == Intrinsic::stacksave ||
475 II->getIntrinsicID() == Intrinsic::launder_invariant_group)
476 return true;
478 if (II->isLifetimeStartOrEnd()) {
479 auto *Arg = II->getArgOperand(1);
480 // Lifetime intrinsics are dead when their right-hand is undef.
481 if (isa<UndefValue>(Arg))
482 return true;
483 // If the right-hand is an alloc, global, or argument and the only uses
484 // are lifetime intrinsics then the intrinsics are dead.
485 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
486 return llvm::all_of(Arg->uses(), [](Use &Use) {
487 if (IntrinsicInst *IntrinsicUse =
488 dyn_cast<IntrinsicInst>(Use.getUser()))
489 return IntrinsicUse->isLifetimeStartOrEnd();
490 return false;
492 return false;
495 // Assumptions are dead if their condition is trivially true.
496 if (II->getIntrinsicID() == Intrinsic::assume &&
497 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) {
498 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
499 return !Cond->isZero();
501 return false;
504 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
505 std::optional<fp::ExceptionBehavior> ExBehavior =
506 FPI->getExceptionBehavior();
507 return *ExBehavior != fp::ebStrict;
511 if (auto *Call = dyn_cast<CallBase>(I)) {
512 if (Value *FreedOp = getFreedOperand(Call, TLI))
513 if (Constant *C = dyn_cast<Constant>(FreedOp))
514 return C->isNullValue() || isa<UndefValue>(C);
515 if (isMathLibCallNoop(Call, TLI))
516 return true;
519 // Non-volatile atomic loads from constants can be removed.
520 if (auto *LI = dyn_cast<LoadInst>(I))
521 if (auto *GV = dyn_cast<GlobalVariable>(
522 LI->getPointerOperand()->stripPointerCasts()))
523 if (!LI->isVolatile() && GV->isConstant())
524 return true;
526 return false;
529 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
530 /// trivially dead instruction, delete it. If that makes any of its operands
531 /// trivially dead, delete them too, recursively. Return true if any
532 /// instructions were deleted.
533 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
534 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
535 std::function<void(Value *)> AboutToDeleteCallback) {
536 Instruction *I = dyn_cast<Instruction>(V);
537 if (!I || !isInstructionTriviallyDead(I, TLI))
538 return false;
540 SmallVector<WeakTrackingVH, 16> DeadInsts;
541 DeadInsts.push_back(I);
542 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
543 AboutToDeleteCallback);
545 return true;
548 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
549 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
550 MemorySSAUpdater *MSSAU,
551 std::function<void(Value *)> AboutToDeleteCallback) {
552 unsigned S = 0, E = DeadInsts.size(), Alive = 0;
553 for (; S != E; ++S) {
554 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]);
555 if (!I || !isInstructionTriviallyDead(I)) {
556 DeadInsts[S] = nullptr;
557 ++Alive;
560 if (Alive == E)
561 return false;
562 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
563 AboutToDeleteCallback);
564 return true;
567 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
568 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
569 MemorySSAUpdater *MSSAU,
570 std::function<void(Value *)> AboutToDeleteCallback) {
571 // Process the dead instruction list until empty.
572 while (!DeadInsts.empty()) {
573 Value *V = DeadInsts.pop_back_val();
574 Instruction *I = cast_or_null<Instruction>(V);
575 if (!I)
576 continue;
577 assert(isInstructionTriviallyDead(I, TLI) &&
578 "Live instruction found in dead worklist!");
579 assert(I->use_empty() && "Instructions with uses are not dead.");
581 // Don't lose the debug info while deleting the instructions.
582 salvageDebugInfo(*I);
584 if (AboutToDeleteCallback)
585 AboutToDeleteCallback(I);
587 // Null out all of the instruction's operands to see if any operand becomes
588 // dead as we go.
589 for (Use &OpU : I->operands()) {
590 Value *OpV = OpU.get();
591 OpU.set(nullptr);
593 if (!OpV->use_empty())
594 continue;
596 // If the operand is an instruction that became dead as we nulled out the
597 // operand, and if it is 'trivially' dead, delete it in a future loop
598 // iteration.
599 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
600 if (isInstructionTriviallyDead(OpI, TLI))
601 DeadInsts.push_back(OpI);
603 if (MSSAU)
604 MSSAU->removeMemoryAccess(I);
606 I->eraseFromParent();
610 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
611 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
612 SmallVector<DPValue *, 1> DPUsers;
613 findDbgUsers(DbgUsers, I, &DPUsers);
614 for (auto *DII : DbgUsers)
615 DII->setKillLocation();
616 for (auto *DPV : DPUsers)
617 DPV->setKillLocation();
618 return !DbgUsers.empty() || !DPUsers.empty();
621 /// areAllUsesEqual - Check whether the uses of a value are all the same.
622 /// This is similar to Instruction::hasOneUse() except this will also return
623 /// true when there are no uses or multiple uses that all refer to the same
624 /// value.
625 static bool areAllUsesEqual(Instruction *I) {
626 Value::user_iterator UI = I->user_begin();
627 Value::user_iterator UE = I->user_end();
628 if (UI == UE)
629 return true;
631 User *TheUse = *UI;
632 for (++UI; UI != UE; ++UI) {
633 if (*UI != TheUse)
634 return false;
636 return true;
639 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
640 /// dead PHI node, due to being a def-use chain of single-use nodes that
641 /// either forms a cycle or is terminated by a trivially dead instruction,
642 /// delete it. If that makes any of its operands trivially dead, delete them
643 /// too, recursively. Return true if a change was made.
644 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
645 const TargetLibraryInfo *TLI,
646 llvm::MemorySSAUpdater *MSSAU) {
647 SmallPtrSet<Instruction*, 4> Visited;
648 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
649 I = cast<Instruction>(*I->user_begin())) {
650 if (I->use_empty())
651 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
653 // If we find an instruction more than once, we're on a cycle that
654 // won't prove fruitful.
655 if (!Visited.insert(I).second) {
656 // Break the cycle and delete the instruction and its operands.
657 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
658 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
659 return true;
662 return false;
665 static bool
666 simplifyAndDCEInstruction(Instruction *I,
667 SmallSetVector<Instruction *, 16> &WorkList,
668 const DataLayout &DL,
669 const TargetLibraryInfo *TLI) {
670 if (isInstructionTriviallyDead(I, TLI)) {
671 salvageDebugInfo(*I);
673 // Null out all of the instruction's operands to see if any operand becomes
674 // dead as we go.
675 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
676 Value *OpV = I->getOperand(i);
677 I->setOperand(i, nullptr);
679 if (!OpV->use_empty() || I == OpV)
680 continue;
682 // If the operand is an instruction that became dead as we nulled out the
683 // operand, and if it is 'trivially' dead, delete it in a future loop
684 // iteration.
685 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
686 if (isInstructionTriviallyDead(OpI, TLI))
687 WorkList.insert(OpI);
690 I->eraseFromParent();
692 return true;
695 if (Value *SimpleV = simplifyInstruction(I, DL)) {
696 // Add the users to the worklist. CAREFUL: an instruction can use itself,
697 // in the case of a phi node.
698 for (User *U : I->users()) {
699 if (U != I) {
700 WorkList.insert(cast<Instruction>(U));
704 // Replace the instruction with its simplified value.
705 bool Changed = false;
706 if (!I->use_empty()) {
707 I->replaceAllUsesWith(SimpleV);
708 Changed = true;
710 if (isInstructionTriviallyDead(I, TLI)) {
711 I->eraseFromParent();
712 Changed = true;
714 return Changed;
716 return false;
719 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
720 /// simplify any instructions in it and recursively delete dead instructions.
722 /// This returns true if it changed the code, note that it can delete
723 /// instructions in other blocks as well in this block.
724 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
725 const TargetLibraryInfo *TLI) {
726 bool MadeChange = false;
727 const DataLayout &DL = BB->getModule()->getDataLayout();
729 #ifndef NDEBUG
730 // In debug builds, ensure that the terminator of the block is never replaced
731 // or deleted by these simplifications. The idea of simplification is that it
732 // cannot introduce new instructions, and there is no way to replace the
733 // terminator of a block without introducing a new instruction.
734 AssertingVH<Instruction> TerminatorVH(&BB->back());
735 #endif
737 SmallSetVector<Instruction *, 16> WorkList;
738 // Iterate over the original function, only adding insts to the worklist
739 // if they actually need to be revisited. This avoids having to pre-init
740 // the worklist with the entire function's worth of instructions.
741 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
742 BI != E;) {
743 assert(!BI->isTerminator());
744 Instruction *I = &*BI;
745 ++BI;
747 // We're visiting this instruction now, so make sure it's not in the
748 // worklist from an earlier visit.
749 if (!WorkList.count(I))
750 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
753 while (!WorkList.empty()) {
754 Instruction *I = WorkList.pop_back_val();
755 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
757 return MadeChange;
760 //===----------------------------------------------------------------------===//
761 // Control Flow Graph Restructuring.
764 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
765 DomTreeUpdater *DTU) {
767 // If BB has single-entry PHI nodes, fold them.
768 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
769 Value *NewVal = PN->getIncomingValue(0);
770 // Replace self referencing PHI with poison, it must be dead.
771 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType());
772 PN->replaceAllUsesWith(NewVal);
773 PN->eraseFromParent();
776 BasicBlock *PredBB = DestBB->getSinglePredecessor();
777 assert(PredBB && "Block doesn't have a single predecessor!");
779 bool ReplaceEntryBB = PredBB->isEntryBlock();
781 // DTU updates: Collect all the edges that enter
782 // PredBB. These dominator edges will be redirected to DestBB.
783 SmallVector<DominatorTree::UpdateType, 32> Updates;
785 if (DTU) {
786 // To avoid processing the same predecessor more than once.
787 SmallPtrSet<BasicBlock *, 2> SeenPreds;
788 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
789 for (BasicBlock *PredOfPredBB : predecessors(PredBB))
790 // This predecessor of PredBB may already have DestBB as a successor.
791 if (PredOfPredBB != PredBB)
792 if (SeenPreds.insert(PredOfPredBB).second)
793 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
794 SeenPreds.clear();
795 for (BasicBlock *PredOfPredBB : predecessors(PredBB))
796 if (SeenPreds.insert(PredOfPredBB).second)
797 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
798 Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
801 // Zap anything that took the address of DestBB. Not doing this will give the
802 // address an invalid value.
803 if (DestBB->hasAddressTaken()) {
804 BlockAddress *BA = BlockAddress::get(DestBB);
805 Constant *Replacement =
806 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
807 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
808 BA->getType()));
809 BA->destroyConstant();
812 // Anything that branched to PredBB now branches to DestBB.
813 PredBB->replaceAllUsesWith(DestBB);
815 // Splice all the instructions from PredBB to DestBB.
816 PredBB->getTerminator()->eraseFromParent();
817 DestBB->splice(DestBB->begin(), PredBB);
818 new UnreachableInst(PredBB->getContext(), PredBB);
820 // If the PredBB is the entry block of the function, move DestBB up to
821 // become the entry block after we erase PredBB.
822 if (ReplaceEntryBB)
823 DestBB->moveAfter(PredBB);
825 if (DTU) {
826 assert(PredBB->size() == 1 &&
827 isa<UnreachableInst>(PredBB->getTerminator()) &&
828 "The successor list of PredBB isn't empty before "
829 "applying corresponding DTU updates.");
830 DTU->applyUpdatesPermissive(Updates);
831 DTU->deleteBB(PredBB);
832 // Recalculation of DomTree is needed when updating a forward DomTree and
833 // the Entry BB is replaced.
834 if (ReplaceEntryBB && DTU->hasDomTree()) {
835 // The entry block was removed and there is no external interface for
836 // the dominator tree to be notified of this change. In this corner-case
837 // we recalculate the entire tree.
838 DTU->recalculate(*(DestBB->getParent()));
842 else {
843 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
847 /// Return true if we can choose one of these values to use in place of the
848 /// other. Note that we will always choose the non-undef value to keep.
849 static bool CanMergeValues(Value *First, Value *Second) {
850 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
853 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
854 /// branch to Succ, into Succ.
856 /// Assumption: Succ is the single successor for BB.
857 static bool
858 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ,
859 const SmallPtrSetImpl<BasicBlock *> &BBPreds) {
860 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
862 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
863 << Succ->getName() << "\n");
864 // Shortcut, if there is only a single predecessor it must be BB and merging
865 // is always safe
866 if (Succ->getSinglePredecessor())
867 return true;
869 // Look at all the phi nodes in Succ, to see if they present a conflict when
870 // merging these blocks
871 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
872 PHINode *PN = cast<PHINode>(I);
874 // If the incoming value from BB is again a PHINode in
875 // BB which has the same incoming value for *PI as PN does, we can
876 // merge the phi nodes and then the blocks can still be merged
877 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
878 if (BBPN && BBPN->getParent() == BB) {
879 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
880 BasicBlock *IBB = PN->getIncomingBlock(PI);
881 if (BBPreds.count(IBB) &&
882 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
883 PN->getIncomingValue(PI))) {
884 LLVM_DEBUG(dbgs()
885 << "Can't fold, phi node " << PN->getName() << " in "
886 << Succ->getName() << " is conflicting with "
887 << BBPN->getName() << " with regard to common predecessor "
888 << IBB->getName() << "\n");
889 return false;
892 } else {
893 Value* Val = PN->getIncomingValueForBlock(BB);
894 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
895 // See if the incoming value for the common predecessor is equal to the
896 // one for BB, in which case this phi node will not prevent the merging
897 // of the block.
898 BasicBlock *IBB = PN->getIncomingBlock(PI);
899 if (BBPreds.count(IBB) &&
900 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
901 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
902 << " in " << Succ->getName()
903 << " is conflicting with regard to common "
904 << "predecessor " << IBB->getName() << "\n");
905 return false;
911 return true;
914 using PredBlockVector = SmallVector<BasicBlock *, 16>;
915 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
917 /// Determines the value to use as the phi node input for a block.
919 /// Select between \p OldVal any value that we know flows from \p BB
920 /// to a particular phi on the basis of which one (if either) is not
921 /// undef. Update IncomingValues based on the selected value.
923 /// \param OldVal The value we are considering selecting.
924 /// \param BB The block that the value flows in from.
925 /// \param IncomingValues A map from block-to-value for other phi inputs
926 /// that we have examined.
928 /// \returns the selected value.
929 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
930 IncomingValueMap &IncomingValues) {
931 if (!isa<UndefValue>(OldVal)) {
932 assert((!IncomingValues.count(BB) ||
933 IncomingValues.find(BB)->second == OldVal) &&
934 "Expected OldVal to match incoming value from BB!");
936 IncomingValues.insert(std::make_pair(BB, OldVal));
937 return OldVal;
940 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
941 if (It != IncomingValues.end()) return It->second;
943 return OldVal;
946 /// Create a map from block to value for the operands of a
947 /// given phi.
949 /// Create a map from block to value for each non-undef value flowing
950 /// into \p PN.
952 /// \param PN The phi we are collecting the map for.
953 /// \param IncomingValues [out] The map from block to value for this phi.
954 static void gatherIncomingValuesToPhi(PHINode *PN,
955 IncomingValueMap &IncomingValues) {
956 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
957 BasicBlock *BB = PN->getIncomingBlock(i);
958 Value *V = PN->getIncomingValue(i);
960 if (!isa<UndefValue>(V))
961 IncomingValues.insert(std::make_pair(BB, V));
965 /// Replace the incoming undef values to a phi with the values
966 /// from a block-to-value map.
968 /// \param PN The phi we are replacing the undefs in.
969 /// \param IncomingValues A map from block to value.
970 static void replaceUndefValuesInPhi(PHINode *PN,
971 const IncomingValueMap &IncomingValues) {
972 SmallVector<unsigned> TrueUndefOps;
973 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
974 Value *V = PN->getIncomingValue(i);
976 if (!isa<UndefValue>(V)) continue;
978 BasicBlock *BB = PN->getIncomingBlock(i);
979 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
981 // Keep track of undef/poison incoming values. Those must match, so we fix
982 // them up below if needed.
983 // Note: this is conservatively correct, but we could try harder and group
984 // the undef values per incoming basic block.
985 if (It == IncomingValues.end()) {
986 TrueUndefOps.push_back(i);
987 continue;
990 // There is a defined value for this incoming block, so map this undef
991 // incoming value to the defined value.
992 PN->setIncomingValue(i, It->second);
995 // If there are both undef and poison values incoming, then convert those
996 // values to undef. It is invalid to have different values for the same
997 // incoming block.
998 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
999 return isa<PoisonValue>(PN->getIncomingValue(i));
1001 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
1002 for (unsigned i : TrueUndefOps)
1003 PN->setIncomingValue(i, UndefValue::get(PN->getType()));
1007 // Only when they shares a single common predecessor, return true.
1008 // Only handles cases when BB can't be merged while its predecessors can be
1009 // redirected.
1010 static bool
1011 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ,
1012 const SmallPtrSetImpl<BasicBlock *> &BBPreds,
1013 const SmallPtrSetImpl<BasicBlock *> &SuccPreds,
1014 BasicBlock *&CommonPred) {
1016 // There must be phis in BB, otherwise BB will be merged into Succ directly
1017 if (BB->phis().empty() || Succ->phis().empty())
1018 return false;
1020 // BB must have predecessors not shared that can be redirected to Succ
1021 if (!BB->hasNPredecessorsOrMore(2))
1022 return false;
1024 // Get single common predecessors of both BB and Succ
1025 for (BasicBlock *SuccPred : SuccPreds) {
1026 if (BBPreds.count(SuccPred)) {
1027 if (CommonPred)
1028 return false;
1029 CommonPred = SuccPred;
1033 return true;
1036 /// Replace a value flowing from a block to a phi with
1037 /// potentially multiple instances of that value flowing from the
1038 /// block's predecessors to the phi.
1040 /// \param BB The block with the value flowing into the phi.
1041 /// \param BBPreds The predecessors of BB.
1042 /// \param PN The phi that we are updating.
1043 /// \param CommonPred The common predecessor of BB and PN's BasicBlock
1044 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
1045 const PredBlockVector &BBPreds,
1046 PHINode *PN,
1047 BasicBlock *CommonPred) {
1048 Value *OldVal = PN->removeIncomingValue(BB, false);
1049 assert(OldVal && "No entry in PHI for Pred BB!");
1051 IncomingValueMap IncomingValues;
1053 // We are merging two blocks - BB, and the block containing PN - and
1054 // as a result we need to redirect edges from the predecessors of BB
1055 // to go to the block containing PN, and update PN
1056 // accordingly. Since we allow merging blocks in the case where the
1057 // predecessor and successor blocks both share some predecessors,
1058 // and where some of those common predecessors might have undef
1059 // values flowing into PN, we want to rewrite those values to be
1060 // consistent with the non-undef values.
1062 gatherIncomingValuesToPhi(PN, IncomingValues);
1064 // If this incoming value is one of the PHI nodes in BB, the new entries
1065 // in the PHI node are the entries from the old PHI.
1066 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
1067 PHINode *OldValPN = cast<PHINode>(OldVal);
1068 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
1069 // Note that, since we are merging phi nodes and BB and Succ might
1070 // have common predecessors, we could end up with a phi node with
1071 // identical incoming branches. This will be cleaned up later (and
1072 // will trigger asserts if we try to clean it up now, without also
1073 // simplifying the corresponding conditional branch).
1074 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1076 if (PredBB == CommonPred)
1077 continue;
1079 Value *PredVal = OldValPN->getIncomingValue(i);
1080 Value *Selected =
1081 selectIncomingValueForBlock(PredVal, PredBB, IncomingValues);
1083 // And add a new incoming value for this predecessor for the
1084 // newly retargeted branch.
1085 PN->addIncoming(Selected, PredBB);
1087 if (CommonPred)
1088 PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB);
1090 } else {
1091 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1092 // Update existing incoming values in PN for this
1093 // predecessor of BB.
1094 BasicBlock *PredBB = BBPreds[i];
1096 if (PredBB == CommonPred)
1097 continue;
1099 Value *Selected =
1100 selectIncomingValueForBlock(OldVal, PredBB, IncomingValues);
1102 // And add a new incoming value for this predecessor for the
1103 // newly retargeted branch.
1104 PN->addIncoming(Selected, PredBB);
1106 if (CommonPred)
1107 PN->addIncoming(OldVal, BB);
1110 replaceUndefValuesInPhi(PN, IncomingValues);
1113 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1114 DomTreeUpdater *DTU) {
1115 assert(BB != &BB->getParent()->getEntryBlock() &&
1116 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1118 // We can't simplify infinite loops.
1119 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1120 if (BB == Succ)
1121 return false;
1123 SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB));
1124 SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ));
1126 // The single common predecessor of BB and Succ when BB cannot be killed
1127 BasicBlock *CommonPred = nullptr;
1129 bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds);
1131 // Even if we can not fold bB into Succ, we may be able to redirect the
1132 // predecessors of BB to Succ.
1133 bool BBPhisMergeable =
1134 BBKillable ||
1135 CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred);
1137 if (!BBKillable && !BBPhisMergeable)
1138 return false;
1140 // Check to see if merging these blocks/phis would cause conflicts for any of
1141 // the phi nodes in BB or Succ. If not, we can safely merge.
1143 // Check for cases where Succ has multiple predecessors and a PHI node in BB
1144 // has uses which will not disappear when the PHI nodes are merged. It is
1145 // possible to handle such cases, but difficult: it requires checking whether
1146 // BB dominates Succ, which is non-trivial to calculate in the case where
1147 // Succ has multiple predecessors. Also, it requires checking whether
1148 // constructing the necessary self-referential PHI node doesn't introduce any
1149 // conflicts; this isn't too difficult, but the previous code for doing this
1150 // was incorrect.
1152 // Note that if this check finds a live use, BB dominates Succ, so BB is
1153 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1154 // folding the branch isn't profitable in that case anyway.
1155 if (!Succ->getSinglePredecessor()) {
1156 BasicBlock::iterator BBI = BB->begin();
1157 while (isa<PHINode>(*BBI)) {
1158 for (Use &U : BBI->uses()) {
1159 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1160 if (PN->getIncomingBlock(U) != BB)
1161 return false;
1162 } else {
1163 return false;
1166 ++BBI;
1170 if (BBPhisMergeable && CommonPred)
1171 LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName()
1172 << " and " << Succ->getName() << " : "
1173 << CommonPred->getName() << "\n");
1175 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop
1176 // metadata.
1178 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given
1179 // current status (that loop metadata is implemented as metadata attached to
1180 // the branch instruction in the loop latch block). To quote from review
1181 // comments, "the current representation of loop metadata (using a loop latch
1182 // terminator attachment) is known to be fundamentally broken. Loop latches
1183 // are not uniquely associated with loops (both in that a latch can be part of
1184 // multiple loops and a loop may have multiple latches). Loop headers are. The
1185 // solution to this problem is also known: Add support for basic block
1186 // metadata, and attach loop metadata to the loop header."
1188 // Why bail out:
1189 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is
1190 // the latch for inner-loop (see reason below), so bail out to prerserve
1191 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata
1192 // to this inner-loop.
1193 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most
1194 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L,
1195 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of
1196 // one self-looping basic block, which is contradictory with the assumption.
1198 // To illustrate how inner-loop metadata is dropped:
1200 // CFG Before
1202 // BB is while.cond.exit, attached with loop metdata md2.
1203 // BB->Pred is for.body, attached with loop metadata md1.
1205 // entry
1206 // |
1207 // v
1208 // ---> while.cond -------------> while.end
1209 // | |
1210 // | v
1211 // | while.body
1212 // | |
1213 // | v
1214 // | for.body <---- (md1)
1215 // | | |______|
1216 // | v
1217 // | while.cond.exit (md2)
1218 // | |
1219 // |_______|
1221 // CFG After
1223 // while.cond1 is the merge of while.cond.exit and while.cond above.
1224 // for.body is attached with md2, and md1 is dropped.
1225 // If LoopSimplify runs later (as a part of loop pass), it could create
1226 // dedicated exits for inner-loop (essentially adding `while.cond.exit`
1227 // back), but won't it won't see 'md1' nor restore it for the inner-loop.
1229 // entry
1230 // |
1231 // v
1232 // ---> while.cond1 -------------> while.end
1233 // | |
1234 // | v
1235 // | while.body
1236 // | |
1237 // | v
1238 // | for.body <---- (md2)
1239 // |_______| |______|
1240 if (Instruction *TI = BB->getTerminator())
1241 if (TI->hasMetadata(LLVMContext::MD_loop))
1242 for (BasicBlock *Pred : predecessors(BB))
1243 if (Instruction *PredTI = Pred->getTerminator())
1244 if (PredTI->hasMetadata(LLVMContext::MD_loop))
1245 return false;
1247 if (BBKillable)
1248 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1249 else if (BBPhisMergeable)
1250 LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB);
1252 SmallVector<DominatorTree::UpdateType, 32> Updates;
1254 if (DTU) {
1255 // To avoid processing the same predecessor more than once.
1256 SmallPtrSet<BasicBlock *, 8> SeenPreds;
1257 // All predecessors of BB (except the common predecessor) will be moved to
1258 // Succ.
1259 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
1261 for (auto *PredOfBB : predecessors(BB)) {
1262 // Do not modify those common predecessors of BB and Succ
1263 if (!SuccPreds.contains(PredOfBB))
1264 if (SeenPreds.insert(PredOfBB).second)
1265 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1268 SeenPreds.clear();
1270 for (auto *PredOfBB : predecessors(BB))
1271 // When BB cannot be killed, do not remove the edge between BB and
1272 // CommonPred.
1273 if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred)
1274 Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1276 if (BBKillable)
1277 Updates.push_back({DominatorTree::Delete, BB, Succ});
1280 if (isa<PHINode>(Succ->begin())) {
1281 // If there is more than one pred of succ, and there are PHI nodes in
1282 // the successor, then we need to add incoming edges for the PHI nodes
1284 const PredBlockVector BBPreds(predecessors(BB));
1286 // Loop over all of the PHI nodes in the successor of BB.
1287 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1288 PHINode *PN = cast<PHINode>(I);
1289 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred);
1293 if (Succ->getSinglePredecessor()) {
1294 // BB is the only predecessor of Succ, so Succ will end up with exactly
1295 // the same predecessors BB had.
1296 // Copy over any phi, debug or lifetime instruction.
1297 BB->getTerminator()->eraseFromParent();
1298 Succ->splice(Succ->getFirstNonPHIIt(), BB);
1299 } else {
1300 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1301 // We explicitly check for such uses for merging phis.
1302 assert(PN->use_empty() && "There shouldn't be any uses here!");
1303 PN->eraseFromParent();
1307 // If the unconditional branch we replaced contains llvm.loop metadata, we
1308 // add the metadata to the branch instructions in the predecessors.
1309 if (Instruction *TI = BB->getTerminator())
1310 if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop))
1311 for (BasicBlock *Pred : predecessors(BB))
1312 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD);
1314 if (BBKillable) {
1315 // Everything that jumped to BB now goes to Succ.
1316 BB->replaceAllUsesWith(Succ);
1318 if (!Succ->hasName())
1319 Succ->takeName(BB);
1321 // Clear the successor list of BB to match updates applying to DTU later.
1322 if (BB->getTerminator())
1323 BB->back().eraseFromParent();
1325 new UnreachableInst(BB->getContext(), BB);
1326 assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1327 "applying corresponding DTU updates.");
1328 } else if (BBPhisMergeable) {
1329 // Everything except CommonPred that jumped to BB now goes to Succ.
1330 BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool {
1331 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser()))
1332 return UseInst->getParent() != CommonPred &&
1333 BBPreds.contains(UseInst->getParent());
1334 return false;
1338 if (DTU)
1339 DTU->applyUpdates(Updates);
1341 if (BBKillable)
1342 DeleteDeadBlock(BB, DTU);
1344 return true;
1347 static bool
1348 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB,
1349 SmallPtrSetImpl<PHINode *> &ToRemove) {
1350 // This implementation doesn't currently consider undef operands
1351 // specially. Theoretically, two phis which are identical except for
1352 // one having an undef where the other doesn't could be collapsed.
1354 bool Changed = false;
1356 // Examine each PHI.
1357 // Note that increment of I must *NOT* be in the iteration_expression, since
1358 // we don't want to immediately advance when we restart from the beginning.
1359 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1360 ++I;
1361 // Is there an identical PHI node in this basic block?
1362 // Note that we only look in the upper square's triangle,
1363 // we already checked that the lower triangle PHI's aren't identical.
1364 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1365 if (ToRemove.contains(DuplicatePN))
1366 continue;
1367 if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1368 continue;
1369 // A duplicate. Replace this PHI with the base PHI.
1370 ++NumPHICSEs;
1371 DuplicatePN->replaceAllUsesWith(PN);
1372 ToRemove.insert(DuplicatePN);
1373 Changed = true;
1375 // The RAUW can change PHIs that we already visited.
1376 I = BB->begin();
1377 break; // Start over from the beginning.
1380 return Changed;
1383 static bool
1384 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB,
1385 SmallPtrSetImpl<PHINode *> &ToRemove) {
1386 // This implementation doesn't currently consider undef operands
1387 // specially. Theoretically, two phis which are identical except for
1388 // one having an undef where the other doesn't could be collapsed.
1390 struct PHIDenseMapInfo {
1391 static PHINode *getEmptyKey() {
1392 return DenseMapInfo<PHINode *>::getEmptyKey();
1395 static PHINode *getTombstoneKey() {
1396 return DenseMapInfo<PHINode *>::getTombstoneKey();
1399 static bool isSentinel(PHINode *PN) {
1400 return PN == getEmptyKey() || PN == getTombstoneKey();
1403 // WARNING: this logic must be kept in sync with
1404 // Instruction::isIdenticalToWhenDefined()!
1405 static unsigned getHashValueImpl(PHINode *PN) {
1406 // Compute a hash value on the operands. Instcombine will likely have
1407 // sorted them, which helps expose duplicates, but we have to check all
1408 // the operands to be safe in case instcombine hasn't run.
1409 return static_cast<unsigned>(hash_combine(
1410 hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1411 hash_combine_range(PN->block_begin(), PN->block_end())));
1414 static unsigned getHashValue(PHINode *PN) {
1415 #ifndef NDEBUG
1416 // If -phicse-debug-hash was specified, return a constant -- this
1417 // will force all hashing to collide, so we'll exhaustively search
1418 // the table for a match, and the assertion in isEqual will fire if
1419 // there's a bug causing equal keys to hash differently.
1420 if (PHICSEDebugHash)
1421 return 0;
1422 #endif
1423 return getHashValueImpl(PN);
1426 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1427 if (isSentinel(LHS) || isSentinel(RHS))
1428 return LHS == RHS;
1429 return LHS->isIdenticalTo(RHS);
1432 static bool isEqual(PHINode *LHS, PHINode *RHS) {
1433 // These comparisons are nontrivial, so assert that equality implies
1434 // hash equality (DenseMap demands this as an invariant).
1435 bool Result = isEqualImpl(LHS, RHS);
1436 assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1437 getHashValueImpl(LHS) == getHashValueImpl(RHS));
1438 return Result;
1442 // Set of unique PHINodes.
1443 DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1444 PHISet.reserve(4 * PHICSENumPHISmallSize);
1446 // Examine each PHI.
1447 bool Changed = false;
1448 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1449 if (ToRemove.contains(PN))
1450 continue;
1451 auto Inserted = PHISet.insert(PN);
1452 if (!Inserted.second) {
1453 // A duplicate. Replace this PHI with its duplicate.
1454 ++NumPHICSEs;
1455 PN->replaceAllUsesWith(*Inserted.first);
1456 ToRemove.insert(PN);
1457 Changed = true;
1459 // The RAUW can change PHIs that we already visited. Start over from the
1460 // beginning.
1461 PHISet.clear();
1462 I = BB->begin();
1466 return Changed;
1469 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB,
1470 SmallPtrSetImpl<PHINode *> &ToRemove) {
1471 if (
1472 #ifndef NDEBUG
1473 !PHICSEDebugHash &&
1474 #endif
1475 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1476 return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove);
1477 return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove);
1480 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1481 SmallPtrSet<PHINode *, 8> ToRemove;
1482 bool Changed = EliminateDuplicatePHINodes(BB, ToRemove);
1483 for (PHINode *PN : ToRemove)
1484 PN->eraseFromParent();
1485 return Changed;
1488 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign,
1489 const DataLayout &DL) {
1490 V = V->stripPointerCasts();
1492 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1493 // TODO: Ideally, this function would not be called if PrefAlign is smaller
1494 // than the current alignment, as the known bits calculation should have
1495 // already taken it into account. However, this is not always the case,
1496 // as computeKnownBits() has a depth limit, while stripPointerCasts()
1497 // doesn't.
1498 Align CurrentAlign = AI->getAlign();
1499 if (PrefAlign <= CurrentAlign)
1500 return CurrentAlign;
1502 // If the preferred alignment is greater than the natural stack alignment
1503 // then don't round up. This avoids dynamic stack realignment.
1504 if (DL.exceedsNaturalStackAlignment(PrefAlign))
1505 return CurrentAlign;
1506 AI->setAlignment(PrefAlign);
1507 return PrefAlign;
1510 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1511 // TODO: as above, this shouldn't be necessary.
1512 Align CurrentAlign = GO->getPointerAlignment(DL);
1513 if (PrefAlign <= CurrentAlign)
1514 return CurrentAlign;
1516 // If there is a large requested alignment and we can, bump up the alignment
1517 // of the global. If the memory we set aside for the global may not be the
1518 // memory used by the final program then it is impossible for us to reliably
1519 // enforce the preferred alignment.
1520 if (!GO->canIncreaseAlignment())
1521 return CurrentAlign;
1523 if (GO->isThreadLocal()) {
1524 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT;
1525 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign))
1526 PrefAlign = Align(MaxTLSAlign);
1529 GO->setAlignment(PrefAlign);
1530 return PrefAlign;
1533 return Align(1);
1536 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1537 const DataLayout &DL,
1538 const Instruction *CxtI,
1539 AssumptionCache *AC,
1540 const DominatorTree *DT) {
1541 assert(V->getType()->isPointerTy() &&
1542 "getOrEnforceKnownAlignment expects a pointer!");
1544 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1545 unsigned TrailZ = Known.countMinTrailingZeros();
1547 // Avoid trouble with ridiculously large TrailZ values, such as
1548 // those computed from a null pointer.
1549 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1550 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1552 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1554 if (PrefAlign && *PrefAlign > Alignment)
1555 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1557 // We don't need to make any adjustment.
1558 return Alignment;
1561 ///===---------------------------------------------------------------------===//
1562 /// Dbg Intrinsic utilities
1565 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1566 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1567 DIExpression *DIExpr,
1568 PHINode *APN) {
1569 // Since we can't guarantee that the original dbg.declare intrinsic
1570 // is removed by LowerDbgDeclare(), we need to make sure that we are
1571 // not inserting the same dbg.value intrinsic over and over.
1572 SmallVector<DbgValueInst *, 1> DbgValues;
1573 SmallVector<DPValue *, 1> DPValues;
1574 findDbgValues(DbgValues, APN, &DPValues);
1575 for (auto *DVI : DbgValues) {
1576 assert(is_contained(DVI->getValues(), APN));
1577 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1578 return true;
1580 for (auto *DPV : DPValues) {
1581 assert(is_contained(DPV->location_ops(), APN));
1582 if ((DPV->getVariable() == DIVar) && (DPV->getExpression() == DIExpr))
1583 return true;
1585 return false;
1588 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1589 /// (or fragment of the variable) described by \p DII.
1591 /// This is primarily intended as a helper for the different
1592 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted
1593 /// describes an alloca'd variable, so we need to use the alloc size of the
1594 /// value when doing the comparison. E.g. an i1 value will be identified as
1595 /// covering an n-bit fragment, if the store size of i1 is at least n bits.
1596 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1597 const DataLayout &DL = DII->getModule()->getDataLayout();
1598 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1599 if (std::optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits())
1600 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
1602 // We can't always calculate the size of the DI variable (e.g. if it is a
1603 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1604 // intead.
1605 if (DII->isAddressOfVariable()) {
1606 // DII should have exactly 1 location when it is an address.
1607 assert(DII->getNumVariableLocationOps() == 1 &&
1608 "address of variable must have exactly 1 location operand.");
1609 if (auto *AI =
1610 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1611 if (std::optional<TypeSize> FragmentSize =
1612 AI->getAllocationSizeInBits(DL)) {
1613 return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1617 // Could not determine size of variable. Conservatively return false.
1618 return false;
1620 // RemoveDIs: duplicate implementation of the above, using DPValues, the
1621 // replacement for dbg.values.
1622 static bool valueCoversEntireFragment(Type *ValTy, DPValue *DPV) {
1623 const DataLayout &DL = DPV->getModule()->getDataLayout();
1624 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1625 if (std::optional<uint64_t> FragmentSize = DPV->getFragmentSizeInBits())
1626 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
1628 // We can't always calculate the size of the DI variable (e.g. if it is a
1629 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1630 // intead.
1631 if (DPV->isAddressOfVariable()) {
1632 // DPV should have exactly 1 location when it is an address.
1633 assert(DPV->getNumVariableLocationOps() == 1 &&
1634 "address of variable must have exactly 1 location operand.");
1635 if (auto *AI =
1636 dyn_cast_or_null<AllocaInst>(DPV->getVariableLocationOp(0))) {
1637 if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1638 return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1642 // Could not determine size of variable. Conservatively return false.
1643 return false;
1646 static void insertDbgValueOrDPValue(DIBuilder &Builder, Value *DV,
1647 DILocalVariable *DIVar,
1648 DIExpression *DIExpr,
1649 const DebugLoc &NewLoc,
1650 BasicBlock::iterator Instr) {
1651 if (!UseNewDbgInfoFormat) {
1652 auto *DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
1653 (Instruction *)nullptr);
1654 DbgVal->insertBefore(Instr);
1655 } else {
1656 // RemoveDIs: if we're using the new debug-info format, allocate a
1657 // DPValue directly instead of a dbg.value intrinsic.
1658 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1659 DPValue *DV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get());
1660 Instr->getParent()->insertDPValueBefore(DV, Instr);
1664 static void insertDbgValueOrDPValueAfter(DIBuilder &Builder, Value *DV,
1665 DILocalVariable *DIVar,
1666 DIExpression *DIExpr,
1667 const DebugLoc &NewLoc,
1668 BasicBlock::iterator Instr) {
1669 if (!UseNewDbgInfoFormat) {
1670 auto *DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
1671 (Instruction *)nullptr);
1672 DbgVal->insertAfter(&*Instr);
1673 } else {
1674 // RemoveDIs: if we're using the new debug-info format, allocate a
1675 // DPValue directly instead of a dbg.value intrinsic.
1676 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1677 DPValue *DV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get());
1678 Instr->getParent()->insertDPValueAfter(DV, &*Instr);
1682 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1683 /// that has an associated llvm.dbg.declare intrinsic.
1684 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1685 StoreInst *SI, DIBuilder &Builder) {
1686 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII));
1687 auto *DIVar = DII->getVariable();
1688 assert(DIVar && "Missing variable");
1689 auto *DIExpr = DII->getExpression();
1690 Value *DV = SI->getValueOperand();
1692 DebugLoc NewLoc = getDebugValueLoc(DII);
1694 // If the alloca describes the variable itself, i.e. the expression in the
1695 // dbg.declare doesn't start with a dereference, we can perform the
1696 // conversion if the value covers the entire fragment of DII.
1697 // If the alloca describes the *address* of DIVar, i.e. DIExpr is
1698 // *just* a DW_OP_deref, we use DV as is for the dbg.value.
1699 // We conservatively ignore other dereferences, because the following two are
1700 // not equivalent:
1701 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
1702 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
1703 // The former is adding 2 to the address of the variable, whereas the latter
1704 // is adding 2 to the value of the variable. As such, we insist on just a
1705 // deref expression.
1706 bool CanConvert =
1707 DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
1708 valueCoversEntireFragment(DV->getType(), DII));
1709 if (CanConvert) {
1710 insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc,
1711 SI->getIterator());
1712 return;
1715 // FIXME: If storing to a part of the variable described by the dbg.declare,
1716 // then we want to insert a dbg.value for the corresponding fragment.
1717 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII
1718 << '\n');
1719 // For now, when there is a store to parts of the variable (but we do not
1720 // know which part) we insert an dbg.value intrinsic to indicate that we
1721 // know nothing about the variable's content.
1722 DV = UndefValue::get(DV->getType());
1723 insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc,
1724 SI->getIterator());
1727 namespace llvm {
1728 // RemoveDIs: duplicate the getDebugValueLoc method using DPValues instead of
1729 // dbg.value intrinsics. In llvm namespace so that it overloads the
1730 // DbgVariableIntrinsic version.
1731 static DebugLoc getDebugValueLoc(DPValue *DPV) {
1732 // Original dbg.declare must have a location.
1733 const DebugLoc &DeclareLoc = DPV->getDebugLoc();
1734 MDNode *Scope = DeclareLoc.getScope();
1735 DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1736 // Produce an unknown location with the correct scope / inlinedAt fields.
1737 return DILocation::get(DPV->getContext(), 0, 0, Scope, InlinedAt);
1739 } // namespace llvm
1741 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1742 /// that has an associated llvm.dbg.declare intrinsic.
1743 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1744 LoadInst *LI, DIBuilder &Builder) {
1745 auto *DIVar = DII->getVariable();
1746 auto *DIExpr = DII->getExpression();
1747 assert(DIVar && "Missing variable");
1749 if (!valueCoversEntireFragment(LI->getType(), DII)) {
1750 // FIXME: If only referring to a part of the variable described by the
1751 // dbg.declare, then we want to insert a dbg.value for the corresponding
1752 // fragment.
1753 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1754 << *DII << '\n');
1755 return;
1758 DebugLoc NewLoc = getDebugValueLoc(DII);
1760 // We are now tracking the loaded value instead of the address. In the
1761 // future if multi-location support is added to the IR, it might be
1762 // preferable to keep tracking both the loaded value and the original
1763 // address in case the alloca can not be elided.
1764 insertDbgValueOrDPValueAfter(Builder, LI, DIVar, DIExpr, NewLoc,
1765 LI->getIterator());
1768 void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, StoreInst *SI,
1769 DIBuilder &Builder) {
1770 assert(DPV->isAddressOfVariable());
1771 auto *DIVar = DPV->getVariable();
1772 assert(DIVar && "Missing variable");
1773 auto *DIExpr = DPV->getExpression();
1774 Value *DV = SI->getValueOperand();
1776 DebugLoc NewLoc = getDebugValueLoc(DPV);
1778 // If the alloca describes the variable itself, i.e. the expression in the
1779 // dbg.declare doesn't start with a dereference, we can perform the
1780 // conversion if the value covers the entire fragment of DII.
1781 // If the alloca describes the *address* of DIVar, i.e. DIExpr is
1782 // *just* a DW_OP_deref, we use DV as is for the dbg.value.
1783 // We conservatively ignore other dereferences, because the following two are
1784 // not equivalent:
1785 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
1786 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
1787 // The former is adding 2 to the address of the variable, whereas the latter
1788 // is adding 2 to the value of the variable. As such, we insist on just a
1789 // deref expression.
1790 bool CanConvert =
1791 DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
1792 valueCoversEntireFragment(DV->getType(), DPV));
1793 if (CanConvert) {
1794 insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc,
1795 SI->getIterator());
1796 return;
1799 // FIXME: If storing to a part of the variable described by the dbg.declare,
1800 // then we want to insert a dbg.value for the corresponding fragment.
1801 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DPV
1802 << '\n');
1803 assert(UseNewDbgInfoFormat);
1805 // For now, when there is a store to parts of the variable (but we do not
1806 // know which part) we insert an dbg.value intrinsic to indicate that we
1807 // know nothing about the variable's content.
1808 DV = UndefValue::get(DV->getType());
1809 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1810 DPValue *NewDPV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get());
1811 SI->getParent()->insertDPValueBefore(NewDPV, SI->getIterator());
1814 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1815 /// llvm.dbg.declare intrinsic.
1816 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1817 PHINode *APN, DIBuilder &Builder) {
1818 auto *DIVar = DII->getVariable();
1819 auto *DIExpr = DII->getExpression();
1820 assert(DIVar && "Missing variable");
1822 if (PhiHasDebugValue(DIVar, DIExpr, APN))
1823 return;
1825 if (!valueCoversEntireFragment(APN->getType(), DII)) {
1826 // FIXME: If only referring to a part of the variable described by the
1827 // dbg.declare, then we want to insert a dbg.value for the corresponding
1828 // fragment.
1829 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1830 << *DII << '\n');
1831 return;
1834 BasicBlock *BB = APN->getParent();
1835 auto InsertionPt = BB->getFirstInsertionPt();
1837 DebugLoc NewLoc = getDebugValueLoc(DII);
1839 // The block may be a catchswitch block, which does not have a valid
1840 // insertion point.
1841 // FIXME: Insert dbg.value markers in the successors when appropriate.
1842 if (InsertionPt != BB->end()) {
1843 insertDbgValueOrDPValue(Builder, APN, DIVar, DIExpr, NewLoc, InsertionPt);
1847 void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, LoadInst *LI,
1848 DIBuilder &Builder) {
1849 auto *DIVar = DPV->getVariable();
1850 auto *DIExpr = DPV->getExpression();
1851 assert(DIVar && "Missing variable");
1853 if (!valueCoversEntireFragment(LI->getType(), DPV)) {
1854 // FIXME: If only referring to a part of the variable described by the
1855 // dbg.declare, then we want to insert a DPValue for the corresponding
1856 // fragment.
1857 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DPValue: " << *DPV
1858 << '\n');
1859 return;
1862 DebugLoc NewLoc = getDebugValueLoc(DPV);
1864 // We are now tracking the loaded value instead of the address. In the
1865 // future if multi-location support is added to the IR, it might be
1866 // preferable to keep tracking both the loaded value and the original
1867 // address in case the alloca can not be elided.
1868 assert(UseNewDbgInfoFormat);
1870 // Create a DPValue directly and insert.
1871 ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI);
1872 DPValue *DV = new DPValue(LIVAM, DIVar, DIExpr, NewLoc.get());
1873 LI->getParent()->insertDPValueAfter(DV, LI);
1876 /// Determine whether this alloca is either a VLA or an array.
1877 static bool isArray(AllocaInst *AI) {
1878 return AI->isArrayAllocation() ||
1879 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1882 /// Determine whether this alloca is a structure.
1883 static bool isStructure(AllocaInst *AI) {
1884 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1886 void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, PHINode *APN,
1887 DIBuilder &Builder) {
1888 auto *DIVar = DPV->getVariable();
1889 auto *DIExpr = DPV->getExpression();
1890 assert(DIVar && "Missing variable");
1892 if (PhiHasDebugValue(DIVar, DIExpr, APN))
1893 return;
1895 if (!valueCoversEntireFragment(APN->getType(), DPV)) {
1896 // FIXME: If only referring to a part of the variable described by the
1897 // dbg.declare, then we want to insert a DPValue for the corresponding
1898 // fragment.
1899 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DPValue: " << *DPV
1900 << '\n');
1901 return;
1904 BasicBlock *BB = APN->getParent();
1905 auto InsertionPt = BB->getFirstInsertionPt();
1907 DebugLoc NewLoc = getDebugValueLoc(DPV);
1909 // The block may be a catchswitch block, which does not have a valid
1910 // insertion point.
1911 // FIXME: Insert DPValue markers in the successors when appropriate.
1912 if (InsertionPt != BB->end()) {
1913 insertDbgValueOrDPValue(Builder, APN, DIVar, DIExpr, NewLoc, InsertionPt);
1917 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1918 /// of llvm.dbg.value intrinsics.
1919 bool llvm::LowerDbgDeclare(Function &F) {
1920 bool Changed = false;
1921 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1922 SmallVector<DbgDeclareInst *, 4> Dbgs;
1923 SmallVector<DPValue *> DPVs;
1924 for (auto &FI : F) {
1925 for (Instruction &BI : FI) {
1926 if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI))
1927 Dbgs.push_back(DDI);
1928 for (DPValue &DPV : BI.getDbgValueRange()) {
1929 if (DPV.getType() == DPValue::LocationType::Declare)
1930 DPVs.push_back(&DPV);
1935 if (Dbgs.empty() && DPVs.empty())
1936 return Changed;
1938 auto LowerOne = [&](auto *DDI) {
1939 AllocaInst *AI =
1940 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0));
1941 // If this is an alloca for a scalar variable, insert a dbg.value
1942 // at each load and store to the alloca and erase the dbg.declare.
1943 // The dbg.values allow tracking a variable even if it is not
1944 // stored on the stack, while the dbg.declare can only describe
1945 // the stack slot (and at a lexical-scope granularity). Later
1946 // passes will attempt to elide the stack slot.
1947 if (!AI || isArray(AI) || isStructure(AI))
1948 return;
1950 // A volatile load/store means that the alloca can't be elided anyway.
1951 if (llvm::any_of(AI->users(), [](User *U) -> bool {
1952 if (LoadInst *LI = dyn_cast<LoadInst>(U))
1953 return LI->isVolatile();
1954 if (StoreInst *SI = dyn_cast<StoreInst>(U))
1955 return SI->isVolatile();
1956 return false;
1958 return;
1960 SmallVector<const Value *, 8> WorkList;
1961 WorkList.push_back(AI);
1962 while (!WorkList.empty()) {
1963 const Value *V = WorkList.pop_back_val();
1964 for (const auto &AIUse : V->uses()) {
1965 User *U = AIUse.getUser();
1966 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1967 if (AIUse.getOperandNo() == 1)
1968 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1969 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1970 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1971 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1972 // This is a call by-value or some other instruction that takes a
1973 // pointer to the variable. Insert a *value* intrinsic that describes
1974 // the variable by dereferencing the alloca.
1975 if (!CI->isLifetimeStartOrEnd()) {
1976 DebugLoc NewLoc = getDebugValueLoc(DDI);
1977 auto *DerefExpr =
1978 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1979 insertDbgValueOrDPValue(DIB, AI, DDI->getVariable(), DerefExpr,
1980 NewLoc, CI->getIterator());
1982 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1983 if (BI->getType()->isPointerTy())
1984 WorkList.push_back(BI);
1988 DDI->eraseFromParent();
1989 Changed = true;
1992 for_each(Dbgs, LowerOne);
1993 for_each(DPVs, LowerOne);
1995 if (Changed)
1996 for (BasicBlock &BB : F)
1997 RemoveRedundantDbgInstrs(&BB);
1999 return Changed;
2002 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the
2003 // debug-info out of the block's DPValues rather than dbg.value intrinsics.
2004 static void insertDPValuesForPHIs(BasicBlock *BB,
2005 SmallVectorImpl<PHINode *> &InsertedPHIs) {
2006 assert(BB && "No BasicBlock to clone DPValue(s) from.");
2007 if (InsertedPHIs.size() == 0)
2008 return;
2010 // Map existing PHI nodes to their DPValues.
2011 DenseMap<Value *, DPValue *> DbgValueMap;
2012 for (auto &I : *BB) {
2013 for (auto &DPV : I.getDbgValueRange()) {
2014 for (Value *V : DPV.location_ops())
2015 if (auto *Loc = dyn_cast_or_null<PHINode>(V))
2016 DbgValueMap.insert({Loc, &DPV});
2019 if (DbgValueMap.size() == 0)
2020 return;
2022 // Map a pair of the destination BB and old DPValue to the new DPValue,
2023 // so that if a DPValue is being rewritten to use more than one of the
2024 // inserted PHIs in the same destination BB, we can update the same DPValue
2025 // with all the new PHIs instead of creating one copy for each.
2026 MapVector<std::pair<BasicBlock *, DPValue *>, DPValue *> NewDbgValueMap;
2027 // Then iterate through the new PHIs and look to see if they use one of the
2028 // previously mapped PHIs. If so, create a new DPValue that will propagate
2029 // the info through the new PHI. If we use more than one new PHI in a single
2030 // destination BB with the same old dbg.value, merge the updates so that we
2031 // get a single new DPValue with all the new PHIs.
2032 for (auto PHI : InsertedPHIs) {
2033 BasicBlock *Parent = PHI->getParent();
2034 // Avoid inserting a debug-info record into an EH block.
2035 if (Parent->getFirstNonPHI()->isEHPad())
2036 continue;
2037 for (auto VI : PHI->operand_values()) {
2038 auto V = DbgValueMap.find(VI);
2039 if (V != DbgValueMap.end()) {
2040 DPValue *DbgII = cast<DPValue>(V->second);
2041 auto NewDI = NewDbgValueMap.find({Parent, DbgII});
2042 if (NewDI == NewDbgValueMap.end()) {
2043 DPValue *NewDbgII = DbgII->clone();
2044 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
2046 DPValue *NewDbgII = NewDI->second;
2047 // If PHI contains VI as an operand more than once, we may
2048 // replaced it in NewDbgII; confirm that it is present.
2049 if (is_contained(NewDbgII->location_ops(), VI))
2050 NewDbgII->replaceVariableLocationOp(VI, PHI);
2054 // Insert the new DPValues into their destination blocks.
2055 for (auto DI : NewDbgValueMap) {
2056 BasicBlock *Parent = DI.first.first;
2057 DPValue *NewDbgII = DI.second;
2058 auto InsertionPt = Parent->getFirstInsertionPt();
2059 assert(InsertionPt != Parent->end() && "Ill-formed basic block");
2061 InsertionPt->DbgMarker->insertDPValue(NewDbgII, true);
2065 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
2066 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
2067 SmallVectorImpl<PHINode *> &InsertedPHIs) {
2068 assert(BB && "No BasicBlock to clone dbg.value(s) from.");
2069 if (InsertedPHIs.size() == 0)
2070 return;
2072 insertDPValuesForPHIs(BB, InsertedPHIs);
2074 // Map existing PHI nodes to their dbg.values.
2075 ValueToValueMapTy DbgValueMap;
2076 for (auto &I : *BB) {
2077 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2078 for (Value *V : DbgII->location_ops())
2079 if (auto *Loc = dyn_cast_or_null<PHINode>(V))
2080 DbgValueMap.insert({Loc, DbgII});
2083 if (DbgValueMap.size() == 0)
2084 return;
2086 // Map a pair of the destination BB and old dbg.value to the new dbg.value,
2087 // so that if a dbg.value is being rewritten to use more than one of the
2088 // inserted PHIs in the same destination BB, we can update the same dbg.value
2089 // with all the new PHIs instead of creating one copy for each.
2090 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
2091 DbgVariableIntrinsic *>
2092 NewDbgValueMap;
2093 // Then iterate through the new PHIs and look to see if they use one of the
2094 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
2095 // propagate the info through the new PHI. If we use more than one new PHI in
2096 // a single destination BB with the same old dbg.value, merge the updates so
2097 // that we get a single new dbg.value with all the new PHIs.
2098 for (auto *PHI : InsertedPHIs) {
2099 BasicBlock *Parent = PHI->getParent();
2100 // Avoid inserting an intrinsic into an EH block.
2101 if (Parent->getFirstNonPHI()->isEHPad())
2102 continue;
2103 for (auto *VI : PHI->operand_values()) {
2104 auto V = DbgValueMap.find(VI);
2105 if (V != DbgValueMap.end()) {
2106 auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
2107 auto NewDI = NewDbgValueMap.find({Parent, DbgII});
2108 if (NewDI == NewDbgValueMap.end()) {
2109 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
2110 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
2112 DbgVariableIntrinsic *NewDbgII = NewDI->second;
2113 // If PHI contains VI as an operand more than once, we may
2114 // replaced it in NewDbgII; confirm that it is present.
2115 if (is_contained(NewDbgII->location_ops(), VI))
2116 NewDbgII->replaceVariableLocationOp(VI, PHI);
2120 // Insert thew new dbg.values into their destination blocks.
2121 for (auto DI : NewDbgValueMap) {
2122 BasicBlock *Parent = DI.first.first;
2123 auto *NewDbgII = DI.second;
2124 auto InsertionPt = Parent->getFirstInsertionPt();
2125 assert(InsertionPt != Parent->end() && "Ill-formed basic block");
2126 NewDbgII->insertBefore(&*InsertionPt);
2130 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
2131 DIBuilder &Builder, uint8_t DIExprFlags,
2132 int Offset) {
2133 TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address);
2134 TinyPtrVector<DPValue *> DPVDeclares = findDPVDeclares(Address);
2136 auto ReplaceOne = [&](auto *DII) {
2137 assert(DII->getVariable() && "Missing variable");
2138 auto *DIExpr = DII->getExpression();
2139 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
2140 DII->setExpression(DIExpr);
2141 DII->replaceVariableLocationOp(Address, NewAddress);
2144 for_each(DbgDeclares, ReplaceOne);
2145 for_each(DPVDeclares, ReplaceOne);
2147 return !DbgDeclares.empty() || !DPVDeclares.empty();
2150 static void updateOneDbgValueForAlloca(const DebugLoc &Loc,
2151 DILocalVariable *DIVar,
2152 DIExpression *DIExpr, Value *NewAddress,
2153 DbgValueInst *DVI, DPValue *DPV,
2154 DIBuilder &Builder, int Offset) {
2155 assert(DIVar && "Missing variable");
2157 // This is an alloca-based dbg.value/DPValue. The first thing it should do
2158 // with the alloca pointer is dereference it. Otherwise we don't know how to
2159 // handle it and give up.
2160 if (!DIExpr || DIExpr->getNumElements() < 1 ||
2161 DIExpr->getElement(0) != dwarf::DW_OP_deref)
2162 return;
2164 // Insert the offset before the first deref.
2165 if (Offset)
2166 DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
2168 if (DVI) {
2169 DVI->setExpression(DIExpr);
2170 DVI->replaceVariableLocationOp(0u, NewAddress);
2171 } else {
2172 assert(DPV);
2173 DPV->setExpression(DIExpr);
2174 DPV->replaceVariableLocationOp(0u, NewAddress);
2178 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
2179 DIBuilder &Builder, int Offset) {
2180 SmallVector<DbgValueInst *, 1> DbgUsers;
2181 SmallVector<DPValue *, 1> DPUsers;
2182 findDbgValues(DbgUsers, AI, &DPUsers);
2184 // Attempt to replace dbg.values that use this alloca.
2185 for (auto *DVI : DbgUsers)
2186 updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(),
2187 DVI->getExpression(), NewAllocaAddress, DVI,
2188 nullptr, Builder, Offset);
2190 // Replace any DPValues that use this alloca.
2191 for (DPValue *DPV : DPUsers)
2192 updateOneDbgValueForAlloca(DPV->getDebugLoc(), DPV->getVariable(),
2193 DPV->getExpression(), NewAllocaAddress, nullptr,
2194 DPV, Builder, Offset);
2197 /// Where possible to salvage debug information for \p I do so.
2198 /// If not possible mark undef.
2199 void llvm::salvageDebugInfo(Instruction &I) {
2200 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2201 SmallVector<DPValue *, 1> DPUsers;
2202 findDbgUsers(DbgUsers, &I, &DPUsers);
2203 salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers);
2206 /// Salvage the address component of \p DAI.
2207 static void salvageDbgAssignAddress(DbgAssignIntrinsic *DAI) {
2208 Instruction *I = dyn_cast<Instruction>(DAI->getAddress());
2209 // Only instructions can be salvaged at the moment.
2210 if (!I)
2211 return;
2213 assert(!DAI->getAddressExpression()->getFragmentInfo().has_value() &&
2214 "address-expression shouldn't have fragment info");
2216 // The address component of a dbg.assign cannot be variadic.
2217 uint64_t CurrentLocOps = 0;
2218 SmallVector<Value *, 4> AdditionalValues;
2219 SmallVector<uint64_t, 16> Ops;
2220 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues);
2222 // Check if the salvage failed.
2223 if (!NewV)
2224 return;
2226 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg(
2227 DAI->getAddressExpression(), Ops, 0, /*StackValue=*/false);
2228 assert(!SalvagedExpr->getFragmentInfo().has_value() &&
2229 "address-expression shouldn't have fragment info");
2231 // Salvage succeeds if no additional values are required.
2232 if (AdditionalValues.empty()) {
2233 DAI->setAddress(NewV);
2234 DAI->setAddressExpression(SalvagedExpr);
2235 } else {
2236 DAI->setKillAddress();
2240 void llvm::salvageDebugInfoForDbgValues(
2241 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers,
2242 ArrayRef<DPValue *> DPUsers) {
2243 // These are arbitrary chosen limits on the maximum number of values and the
2244 // maximum size of a debug expression we can salvage up to, used for
2245 // performance reasons.
2246 const unsigned MaxDebugArgs = 16;
2247 const unsigned MaxExpressionSize = 128;
2248 bool Salvaged = false;
2250 for (auto *DII : DbgUsers) {
2251 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) {
2252 if (DAI->getAddress() == &I) {
2253 salvageDbgAssignAddress(DAI);
2254 Salvaged = true;
2256 if (DAI->getValue() != &I)
2257 continue;
2260 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly
2261 // pointing out the value as a DWARF memory location description.
2262 bool StackValue = isa<DbgValueInst>(DII);
2263 auto DIILocation = DII->location_ops();
2264 assert(
2265 is_contained(DIILocation, &I) &&
2266 "DbgVariableIntrinsic must use salvaged instruction as its location");
2267 SmallVector<Value *, 4> AdditionalValues;
2268 // `I` may appear more than once in DII's location ops, and each use of `I`
2269 // must be updated in the DIExpression and potentially have additional
2270 // values added; thus we call salvageDebugInfoImpl for each `I` instance in
2271 // DIILocation.
2272 Value *Op0 = nullptr;
2273 DIExpression *SalvagedExpr = DII->getExpression();
2274 auto LocItr = find(DIILocation, &I);
2275 while (SalvagedExpr && LocItr != DIILocation.end()) {
2276 SmallVector<uint64_t, 16> Ops;
2277 unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
2278 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
2279 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
2280 if (!Op0)
2281 break;
2282 SalvagedExpr =
2283 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
2284 LocItr = std::find(++LocItr, DIILocation.end(), &I);
2286 // salvageDebugInfoImpl should fail on examining the first element of
2287 // DbgUsers, or none of them.
2288 if (!Op0)
2289 break;
2291 DII->replaceVariableLocationOp(&I, Op0);
2292 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
2293 if (AdditionalValues.empty() && IsValidSalvageExpr) {
2294 DII->setExpression(SalvagedExpr);
2295 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr &&
2296 DII->getNumVariableLocationOps() + AdditionalValues.size() <=
2297 MaxDebugArgs) {
2298 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
2299 } else {
2300 // Do not salvage using DIArgList for dbg.declare, as it is not currently
2301 // supported in those instructions. Also do not salvage if the resulting
2302 // DIArgList would contain an unreasonably large number of values.
2303 DII->setKillLocation();
2305 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
2306 Salvaged = true;
2308 // Duplicate of above block for DPValues.
2309 for (auto *DPV : DPUsers) {
2310 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
2311 // are implicitly pointing out the value as a DWARF memory location
2312 // description.
2313 bool StackValue = DPV->getType() == DPValue::LocationType::Value;
2314 auto DPVLocation = DPV->location_ops();
2315 assert(
2316 is_contained(DPVLocation, &I) &&
2317 "DbgVariableIntrinsic must use salvaged instruction as its location");
2318 SmallVector<Value *, 4> AdditionalValues;
2319 // 'I' may appear more than once in DPV's location ops, and each use of 'I'
2320 // must be updated in the DIExpression and potentially have additional
2321 // values added; thus we call salvageDebugInfoImpl for each 'I' instance in
2322 // DPVLocation.
2323 Value *Op0 = nullptr;
2324 DIExpression *SalvagedExpr = DPV->getExpression();
2325 auto LocItr = find(DPVLocation, &I);
2326 while (SalvagedExpr && LocItr != DPVLocation.end()) {
2327 SmallVector<uint64_t, 16> Ops;
2328 unsigned LocNo = std::distance(DPVLocation.begin(), LocItr);
2329 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
2330 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
2331 if (!Op0)
2332 break;
2333 SalvagedExpr =
2334 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
2335 LocItr = std::find(++LocItr, DPVLocation.end(), &I);
2337 // salvageDebugInfoImpl should fail on examining the first element of
2338 // DbgUsers, or none of them.
2339 if (!Op0)
2340 break;
2342 DPV->replaceVariableLocationOp(&I, Op0);
2343 bool IsValidSalvageExpr =
2344 SalvagedExpr->getNumElements() <= MaxExpressionSize;
2345 if (AdditionalValues.empty() && IsValidSalvageExpr) {
2346 DPV->setExpression(SalvagedExpr);
2347 } else if (DPV->getType() == DPValue::LocationType::Value &&
2348 IsValidSalvageExpr &&
2349 DPV->getNumVariableLocationOps() + AdditionalValues.size() <=
2350 MaxDebugArgs) {
2351 DPV->addVariableLocationOps(AdditionalValues, SalvagedExpr);
2352 } else {
2353 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
2354 // currently only valid for stack value expressions.
2355 // Also do not salvage if the resulting DIArgList would contain an
2356 // unreasonably large number of values.
2357 Value *Undef = UndefValue::get(I.getOperand(0)->getType());
2358 DPV->replaceVariableLocationOp(I.getOperand(0), Undef);
2360 LLVM_DEBUG(dbgs() << "SALVAGE: " << DPV << '\n');
2361 Salvaged = true;
2364 if (Salvaged)
2365 return;
2367 for (auto *DII : DbgUsers)
2368 DII->setKillLocation();
2370 for (auto *DPV : DPUsers)
2371 DPV->setKillLocation();
2374 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
2375 uint64_t CurrentLocOps,
2376 SmallVectorImpl<uint64_t> &Opcodes,
2377 SmallVectorImpl<Value *> &AdditionalValues) {
2378 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
2379 // Rewrite a GEP into a DIExpression.
2380 MapVector<Value *, APInt> VariableOffsets;
2381 APInt ConstantOffset(BitWidth, 0);
2382 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
2383 return nullptr;
2384 if (!VariableOffsets.empty() && !CurrentLocOps) {
2385 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
2386 CurrentLocOps = 1;
2388 for (const auto &Offset : VariableOffsets) {
2389 AdditionalValues.push_back(Offset.first);
2390 assert(Offset.second.isStrictlyPositive() &&
2391 "Expected strictly positive multiplier for offset.");
2392 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
2393 Offset.second.getZExtValue(), dwarf::DW_OP_mul,
2394 dwarf::DW_OP_plus});
2396 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
2397 return GEP->getOperand(0);
2400 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
2401 switch (Opcode) {
2402 case Instruction::Add:
2403 return dwarf::DW_OP_plus;
2404 case Instruction::Sub:
2405 return dwarf::DW_OP_minus;
2406 case Instruction::Mul:
2407 return dwarf::DW_OP_mul;
2408 case Instruction::SDiv:
2409 return dwarf::DW_OP_div;
2410 case Instruction::SRem:
2411 return dwarf::DW_OP_mod;
2412 case Instruction::Or:
2413 return dwarf::DW_OP_or;
2414 case Instruction::And:
2415 return dwarf::DW_OP_and;
2416 case Instruction::Xor:
2417 return dwarf::DW_OP_xor;
2418 case Instruction::Shl:
2419 return dwarf::DW_OP_shl;
2420 case Instruction::LShr:
2421 return dwarf::DW_OP_shr;
2422 case Instruction::AShr:
2423 return dwarf::DW_OP_shra;
2424 default:
2425 // TODO: Salvage from each kind of binop we know about.
2426 return 0;
2430 static void handleSSAValueOperands(uint64_t CurrentLocOps,
2431 SmallVectorImpl<uint64_t> &Opcodes,
2432 SmallVectorImpl<Value *> &AdditionalValues,
2433 Instruction *I) {
2434 if (!CurrentLocOps) {
2435 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
2436 CurrentLocOps = 1;
2438 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
2439 AdditionalValues.push_back(I->getOperand(1));
2442 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
2443 SmallVectorImpl<uint64_t> &Opcodes,
2444 SmallVectorImpl<Value *> &AdditionalValues) {
2445 // Handle binary operations with constant integer operands as a special case.
2446 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
2447 // Values wider than 64 bits cannot be represented within a DIExpression.
2448 if (ConstInt && ConstInt->getBitWidth() > 64)
2449 return nullptr;
2451 Instruction::BinaryOps BinOpcode = BI->getOpcode();
2452 // Push any Constant Int operand onto the expression stack.
2453 if (ConstInt) {
2454 uint64_t Val = ConstInt->getSExtValue();
2455 // Add or Sub Instructions with a constant operand can potentially be
2456 // simplified.
2457 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
2458 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
2459 DIExpression::appendOffset(Opcodes, Offset);
2460 return BI->getOperand(0);
2462 Opcodes.append({dwarf::DW_OP_constu, Val});
2463 } else {
2464 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI);
2467 // Add salvaged binary operator to expression stack, if it has a valid
2468 // representation in a DIExpression.
2469 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
2470 if (!DwarfBinOp)
2471 return nullptr;
2472 Opcodes.push_back(DwarfBinOp);
2473 return BI->getOperand(0);
2476 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) {
2477 // The signedness of the operation is implicit in the typed stack, signed and
2478 // unsigned instructions map to the same DWARF opcode.
2479 switch (Pred) {
2480 case CmpInst::ICMP_EQ:
2481 return dwarf::DW_OP_eq;
2482 case CmpInst::ICMP_NE:
2483 return dwarf::DW_OP_ne;
2484 case CmpInst::ICMP_UGT:
2485 case CmpInst::ICMP_SGT:
2486 return dwarf::DW_OP_gt;
2487 case CmpInst::ICMP_UGE:
2488 case CmpInst::ICMP_SGE:
2489 return dwarf::DW_OP_ge;
2490 case CmpInst::ICMP_ULT:
2491 case CmpInst::ICMP_SLT:
2492 return dwarf::DW_OP_lt;
2493 case CmpInst::ICMP_ULE:
2494 case CmpInst::ICMP_SLE:
2495 return dwarf::DW_OP_le;
2496 default:
2497 return 0;
2501 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps,
2502 SmallVectorImpl<uint64_t> &Opcodes,
2503 SmallVectorImpl<Value *> &AdditionalValues) {
2504 // Handle icmp operations with constant integer operands as a special case.
2505 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1));
2506 // Values wider than 64 bits cannot be represented within a DIExpression.
2507 if (ConstInt && ConstInt->getBitWidth() > 64)
2508 return nullptr;
2509 // Push any Constant Int operand onto the expression stack.
2510 if (ConstInt) {
2511 if (Icmp->isSigned())
2512 Opcodes.push_back(dwarf::DW_OP_consts);
2513 else
2514 Opcodes.push_back(dwarf::DW_OP_constu);
2515 uint64_t Val = ConstInt->getSExtValue();
2516 Opcodes.push_back(Val);
2517 } else {
2518 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp);
2521 // Add salvaged binary operator to expression stack, if it has a valid
2522 // representation in a DIExpression.
2523 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate());
2524 if (!DwarfIcmpOp)
2525 return nullptr;
2526 Opcodes.push_back(DwarfIcmpOp);
2527 return Icmp->getOperand(0);
2530 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
2531 SmallVectorImpl<uint64_t> &Ops,
2532 SmallVectorImpl<Value *> &AdditionalValues) {
2533 auto &M = *I.getModule();
2534 auto &DL = M.getDataLayout();
2536 if (auto *CI = dyn_cast<CastInst>(&I)) {
2537 Value *FromValue = CI->getOperand(0);
2538 // No-op casts are irrelevant for debug info.
2539 if (CI->isNoopCast(DL)) {
2540 return FromValue;
2543 Type *Type = CI->getType();
2544 if (Type->isPointerTy())
2545 Type = DL.getIntPtrType(Type);
2546 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
2547 if (Type->isVectorTy() ||
2548 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
2549 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
2550 return nullptr;
2552 llvm::Type *FromType = FromValue->getType();
2553 if (FromType->isPointerTy())
2554 FromType = DL.getIntPtrType(FromType);
2556 unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
2557 unsigned ToTypeBitSize = Type->getScalarSizeInBits();
2559 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
2560 isa<SExtInst>(&I));
2561 Ops.append(ExtOps.begin(), ExtOps.end());
2562 return FromValue;
2565 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
2566 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
2567 if (auto *BI = dyn_cast<BinaryOperator>(&I))
2568 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
2569 if (auto *IC = dyn_cast<ICmpInst>(&I))
2570 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues);
2572 // *Not* to do: we should not attempt to salvage load instructions,
2573 // because the validity and lifetime of a dbg.value containing
2574 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
2575 return nullptr;
2578 /// A replacement for a dbg.value expression.
2579 using DbgValReplacement = std::optional<DIExpression *>;
2581 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
2582 /// possibly moving/undefing users to prevent use-before-def. Returns true if
2583 /// changes are made.
2584 static bool rewriteDebugUsers(
2585 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
2586 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr,
2587 function_ref<DbgValReplacement(DPValue &DPV)> RewriteDPVExpr) {
2588 // Find debug users of From.
2589 SmallVector<DbgVariableIntrinsic *, 1> Users;
2590 SmallVector<DPValue *, 1> DPUsers;
2591 findDbgUsers(Users, &From, &DPUsers);
2592 if (Users.empty() && DPUsers.empty())
2593 return false;
2595 // Prevent use-before-def of To.
2596 bool Changed = false;
2598 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
2599 SmallPtrSet<DPValue *, 1> UndefOrSalvageDPV;
2600 if (isa<Instruction>(&To)) {
2601 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
2603 for (auto *DII : Users) {
2604 // It's common to see a debug user between From and DomPoint. Move it
2605 // after DomPoint to preserve the variable update without any reordering.
2606 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
2607 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
2608 DII->moveAfter(&DomPoint);
2609 Changed = true;
2611 // Users which otherwise aren't dominated by the replacement value must
2612 // be salvaged or deleted.
2613 } else if (!DT.dominates(&DomPoint, DII)) {
2614 UndefOrSalvage.insert(DII);
2618 // DPValue implementation of the above.
2619 for (auto *DPV : DPUsers) {
2620 Instruction *MarkedInstr = DPV->getMarker()->MarkedInstr;
2621 Instruction *NextNonDebug = MarkedInstr;
2622 // The next instruction might still be a dbg.declare, skip over it.
2623 if (isa<DbgVariableIntrinsic>(NextNonDebug))
2624 NextNonDebug = NextNonDebug->getNextNonDebugInstruction();
2626 if (DomPointAfterFrom && NextNonDebug == &DomPoint) {
2627 LLVM_DEBUG(dbgs() << "MOVE: " << *DPV << '\n');
2628 DPV->removeFromParent();
2629 // Ensure there's a marker.
2630 DomPoint.getParent()->insertDPValueAfter(DPV, &DomPoint);
2631 Changed = true;
2632 } else if (!DT.dominates(&DomPoint, MarkedInstr)) {
2633 UndefOrSalvageDPV.insert(DPV);
2638 // Update debug users without use-before-def risk.
2639 for (auto *DII : Users) {
2640 if (UndefOrSalvage.count(DII))
2641 continue;
2643 DbgValReplacement DVR = RewriteExpr(*DII);
2644 if (!DVR)
2645 continue;
2647 DII->replaceVariableLocationOp(&From, &To);
2648 DII->setExpression(*DVR);
2649 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
2650 Changed = true;
2652 for (auto *DPV : DPUsers) {
2653 if (UndefOrSalvageDPV.count(DPV))
2654 continue;
2656 DbgValReplacement DVR = RewriteDPVExpr(*DPV);
2657 if (!DVR)
2658 continue;
2660 DPV->replaceVariableLocationOp(&From, &To);
2661 DPV->setExpression(*DVR);
2662 LLVM_DEBUG(dbgs() << "REWRITE: " << DPV << '\n');
2663 Changed = true;
2666 if (!UndefOrSalvage.empty() || !UndefOrSalvageDPV.empty()) {
2667 // Try to salvage the remaining debug users.
2668 salvageDebugInfo(From);
2669 Changed = true;
2672 return Changed;
2675 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2676 /// losslessly preserve the bits and semantics of the value. This predicate is
2677 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2679 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2680 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2681 /// and also does not allow lossless pointer <-> integer conversions.
2682 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2683 Type *ToTy) {
2684 // Trivially compatible types.
2685 if (FromTy == ToTy)
2686 return true;
2688 // Handle compatible pointer <-> integer conversions.
2689 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2690 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2691 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2692 !DL.isNonIntegralPointerType(ToTy);
2693 return SameSize && LosslessConversion;
2696 // TODO: This is not exhaustive.
2697 return false;
2700 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2701 Instruction &DomPoint, DominatorTree &DT) {
2702 // Exit early if From has no debug users.
2703 if (!From.isUsedByMetadata())
2704 return false;
2706 assert(&From != &To && "Can't replace something with itself");
2708 Type *FromTy = From.getType();
2709 Type *ToTy = To.getType();
2711 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2712 return DII.getExpression();
2714 auto IdentityDPV = [&](DPValue &DPV) -> DbgValReplacement {
2715 return DPV.getExpression();
2718 // Handle no-op conversions.
2719 Module &M = *From.getModule();
2720 const DataLayout &DL = M.getDataLayout();
2721 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2722 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDPV);
2724 // Handle integer-to-integer widening and narrowing.
2725 // FIXME: Use DW_OP_convert when it's available everywhere.
2726 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2727 uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2728 uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2729 assert(FromBits != ToBits && "Unexpected no-op conversion");
2731 // When the width of the result grows, assume that a debugger will only
2732 // access the low `FromBits` bits when inspecting the source variable.
2733 if (FromBits < ToBits)
2734 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDPV);
2736 // The width of the result has shrunk. Use sign/zero extension to describe
2737 // the source variable's high bits.
2738 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2739 DILocalVariable *Var = DII.getVariable();
2741 // Without knowing signedness, sign/zero extension isn't possible.
2742 auto Signedness = Var->getSignedness();
2743 if (!Signedness)
2744 return std::nullopt;
2746 bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2747 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2748 Signed);
2750 // RemoveDIs: duplicate implementation working on DPValues rather than on
2751 // dbg.value intrinsics.
2752 auto SignOrZeroExtDPV = [&](DPValue &DPV) -> DbgValReplacement {
2753 DILocalVariable *Var = DPV.getVariable();
2755 // Without knowing signedness, sign/zero extension isn't possible.
2756 auto Signedness = Var->getSignedness();
2757 if (!Signedness)
2758 return std::nullopt;
2760 bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2761 return DIExpression::appendExt(DPV.getExpression(), ToBits, FromBits,
2762 Signed);
2764 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt,
2765 SignOrZeroExtDPV);
2768 // TODO: Floating-point conversions, vectors.
2769 return false;
2772 std::pair<unsigned, unsigned>
2773 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2774 unsigned NumDeadInst = 0;
2775 unsigned NumDeadDbgInst = 0;
2776 // Delete the instructions backwards, as it has a reduced likelihood of
2777 // having to update as many def-use and use-def chains.
2778 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2779 // RemoveDIs: erasing debug-info must be done manually.
2780 EndInst->dropDbgValues();
2781 while (EndInst != &BB->front()) {
2782 // Delete the next to last instruction.
2783 Instruction *Inst = &*--EndInst->getIterator();
2784 if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2785 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
2786 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2787 // EHPads can't have DPValues attached to them, but it might be possible
2788 // for things with token type.
2789 Inst->dropDbgValues();
2790 EndInst = Inst;
2791 continue;
2793 if (isa<DbgInfoIntrinsic>(Inst))
2794 ++NumDeadDbgInst;
2795 else
2796 ++NumDeadInst;
2797 // RemoveDIs: erasing debug-info must be done manually.
2798 Inst->dropDbgValues();
2799 Inst->eraseFromParent();
2801 return {NumDeadInst, NumDeadDbgInst};
2804 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
2805 DomTreeUpdater *DTU,
2806 MemorySSAUpdater *MSSAU) {
2807 BasicBlock *BB = I->getParent();
2809 if (MSSAU)
2810 MSSAU->changeToUnreachable(I);
2812 SmallSet<BasicBlock *, 8> UniqueSuccessors;
2814 // Loop over all of the successors, removing BB's entry from any PHI
2815 // nodes.
2816 for (BasicBlock *Successor : successors(BB)) {
2817 Successor->removePredecessor(BB, PreserveLCSSA);
2818 if (DTU)
2819 UniqueSuccessors.insert(Successor);
2821 auto *UI = new UnreachableInst(I->getContext(), I);
2822 UI->setDebugLoc(I->getDebugLoc());
2824 // All instructions after this are dead.
2825 unsigned NumInstrsRemoved = 0;
2826 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2827 while (BBI != BBE) {
2828 if (!BBI->use_empty())
2829 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
2830 BBI++->eraseFromParent();
2831 ++NumInstrsRemoved;
2833 if (DTU) {
2834 SmallVector<DominatorTree::UpdateType, 8> Updates;
2835 Updates.reserve(UniqueSuccessors.size());
2836 for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2837 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2838 DTU->applyUpdates(Updates);
2840 BB->flushTerminatorDbgValues();
2841 return NumInstrsRemoved;
2844 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2845 SmallVector<Value *, 8> Args(II->args());
2846 SmallVector<OperandBundleDef, 1> OpBundles;
2847 II->getOperandBundlesAsDefs(OpBundles);
2848 CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2849 II->getCalledOperand(), Args, OpBundles);
2850 NewCall->setCallingConv(II->getCallingConv());
2851 NewCall->setAttributes(II->getAttributes());
2852 NewCall->setDebugLoc(II->getDebugLoc());
2853 NewCall->copyMetadata(*II);
2855 // If the invoke had profile metadata, try converting them for CallInst.
2856 uint64_t TotalWeight;
2857 if (NewCall->extractProfTotalWeight(TotalWeight)) {
2858 // Set the total weight if it fits into i32, otherwise reset.
2859 MDBuilder MDB(NewCall->getContext());
2860 auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2861 ? nullptr
2862 : MDB.createBranchWeights({uint32_t(TotalWeight)});
2863 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2866 return NewCall;
2869 // changeToCall - Convert the specified invoke into a normal call.
2870 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2871 CallInst *NewCall = createCallMatchingInvoke(II);
2872 NewCall->takeName(II);
2873 NewCall->insertBefore(II);
2874 II->replaceAllUsesWith(NewCall);
2876 // Follow the call by a branch to the normal destination.
2877 BasicBlock *NormalDestBB = II->getNormalDest();
2878 BranchInst::Create(NormalDestBB, II);
2880 // Update PHI nodes in the unwind destination
2881 BasicBlock *BB = II->getParent();
2882 BasicBlock *UnwindDestBB = II->getUnwindDest();
2883 UnwindDestBB->removePredecessor(BB);
2884 II->eraseFromParent();
2885 if (DTU)
2886 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2887 return NewCall;
2890 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2891 BasicBlock *UnwindEdge,
2892 DomTreeUpdater *DTU) {
2893 BasicBlock *BB = CI->getParent();
2895 // Convert this function call into an invoke instruction. First, split the
2896 // basic block.
2897 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2898 CI->getName() + ".noexc");
2900 // Delete the unconditional branch inserted by SplitBlock
2901 BB->back().eraseFromParent();
2903 // Create the new invoke instruction.
2904 SmallVector<Value *, 8> InvokeArgs(CI->args());
2905 SmallVector<OperandBundleDef, 1> OpBundles;
2907 CI->getOperandBundlesAsDefs(OpBundles);
2909 // Note: we're round tripping operand bundles through memory here, and that
2910 // can potentially be avoided with a cleverer API design that we do not have
2911 // as of this time.
2913 InvokeInst *II =
2914 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2915 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2916 II->setDebugLoc(CI->getDebugLoc());
2917 II->setCallingConv(CI->getCallingConv());
2918 II->setAttributes(CI->getAttributes());
2919 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof));
2921 if (DTU)
2922 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2924 // Make sure that anything using the call now uses the invoke! This also
2925 // updates the CallGraph if present, because it uses a WeakTrackingVH.
2926 CI->replaceAllUsesWith(II);
2928 // Delete the original call
2929 Split->front().eraseFromParent();
2930 return Split;
2933 static bool markAliveBlocks(Function &F,
2934 SmallPtrSetImpl<BasicBlock *> &Reachable,
2935 DomTreeUpdater *DTU = nullptr) {
2936 SmallVector<BasicBlock*, 128> Worklist;
2937 BasicBlock *BB = &F.front();
2938 Worklist.push_back(BB);
2939 Reachable.insert(BB);
2940 bool Changed = false;
2941 do {
2942 BB = Worklist.pop_back_val();
2944 // Do a quick scan of the basic block, turning any obviously unreachable
2945 // instructions into LLVM unreachable insts. The instruction combining pass
2946 // canonicalizes unreachable insts into stores to null or undef.
2947 for (Instruction &I : *BB) {
2948 if (auto *CI = dyn_cast<CallInst>(&I)) {
2949 Value *Callee = CI->getCalledOperand();
2950 // Handle intrinsic calls.
2951 if (Function *F = dyn_cast<Function>(Callee)) {
2952 auto IntrinsicID = F->getIntrinsicID();
2953 // Assumptions that are known to be false are equivalent to
2954 // unreachable. Also, if the condition is undefined, then we make the
2955 // choice most beneficial to the optimizer, and choose that to also be
2956 // unreachable.
2957 if (IntrinsicID == Intrinsic::assume) {
2958 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2959 // Don't insert a call to llvm.trap right before the unreachable.
2960 changeToUnreachable(CI, false, DTU);
2961 Changed = true;
2962 break;
2964 } else if (IntrinsicID == Intrinsic::experimental_guard) {
2965 // A call to the guard intrinsic bails out of the current
2966 // compilation unit if the predicate passed to it is false. If the
2967 // predicate is a constant false, then we know the guard will bail
2968 // out of the current compile unconditionally, so all code following
2969 // it is dead.
2971 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2972 // guards to treat `undef` as `false` since a guard on `undef` can
2973 // still be useful for widening.
2974 if (match(CI->getArgOperand(0), m_Zero()))
2975 if (!isa<UnreachableInst>(CI->getNextNode())) {
2976 changeToUnreachable(CI->getNextNode(), false, DTU);
2977 Changed = true;
2978 break;
2981 } else if ((isa<ConstantPointerNull>(Callee) &&
2982 !NullPointerIsDefined(CI->getFunction(),
2983 cast<PointerType>(Callee->getType())
2984 ->getAddressSpace())) ||
2985 isa<UndefValue>(Callee)) {
2986 changeToUnreachable(CI, false, DTU);
2987 Changed = true;
2988 break;
2990 if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2991 // If we found a call to a no-return function, insert an unreachable
2992 // instruction after it. Make sure there isn't *already* one there
2993 // though.
2994 if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) {
2995 // Don't insert a call to llvm.trap right before the unreachable.
2996 changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU);
2997 Changed = true;
2999 break;
3001 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
3002 // Store to undef and store to null are undefined and used to signal
3003 // that they should be changed to unreachable by passes that can't
3004 // modify the CFG.
3006 // Don't touch volatile stores.
3007 if (SI->isVolatile()) continue;
3009 Value *Ptr = SI->getOperand(1);
3011 if (isa<UndefValue>(Ptr) ||
3012 (isa<ConstantPointerNull>(Ptr) &&
3013 !NullPointerIsDefined(SI->getFunction(),
3014 SI->getPointerAddressSpace()))) {
3015 changeToUnreachable(SI, false, DTU);
3016 Changed = true;
3017 break;
3022 Instruction *Terminator = BB->getTerminator();
3023 if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
3024 // Turn invokes that call 'nounwind' functions into ordinary calls.
3025 Value *Callee = II->getCalledOperand();
3026 if ((isa<ConstantPointerNull>(Callee) &&
3027 !NullPointerIsDefined(BB->getParent())) ||
3028 isa<UndefValue>(Callee)) {
3029 changeToUnreachable(II, false, DTU);
3030 Changed = true;
3031 } else {
3032 if (II->doesNotReturn() &&
3033 !isa<UnreachableInst>(II->getNormalDest()->front())) {
3034 // If we found an invoke of a no-return function,
3035 // create a new empty basic block with an `unreachable` terminator,
3036 // and set it as the normal destination for the invoke,
3037 // unless that is already the case.
3038 // Note that the original normal destination could have other uses.
3039 BasicBlock *OrigNormalDest = II->getNormalDest();
3040 OrigNormalDest->removePredecessor(II->getParent());
3041 LLVMContext &Ctx = II->getContext();
3042 BasicBlock *UnreachableNormalDest = BasicBlock::Create(
3043 Ctx, OrigNormalDest->getName() + ".unreachable",
3044 II->getFunction(), OrigNormalDest);
3045 new UnreachableInst(Ctx, UnreachableNormalDest);
3046 II->setNormalDest(UnreachableNormalDest);
3047 if (DTU)
3048 DTU->applyUpdates(
3049 {{DominatorTree::Delete, BB, OrigNormalDest},
3050 {DominatorTree::Insert, BB, UnreachableNormalDest}});
3051 Changed = true;
3053 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
3054 if (II->use_empty() && !II->mayHaveSideEffects()) {
3055 // jump to the normal destination branch.
3056 BasicBlock *NormalDestBB = II->getNormalDest();
3057 BasicBlock *UnwindDestBB = II->getUnwindDest();
3058 BranchInst::Create(NormalDestBB, II);
3059 UnwindDestBB->removePredecessor(II->getParent());
3060 II->eraseFromParent();
3061 if (DTU)
3062 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
3063 } else
3064 changeToCall(II, DTU);
3065 Changed = true;
3068 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
3069 // Remove catchpads which cannot be reached.
3070 struct CatchPadDenseMapInfo {
3071 static CatchPadInst *getEmptyKey() {
3072 return DenseMapInfo<CatchPadInst *>::getEmptyKey();
3075 static CatchPadInst *getTombstoneKey() {
3076 return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
3079 static unsigned getHashValue(CatchPadInst *CatchPad) {
3080 return static_cast<unsigned>(hash_combine_range(
3081 CatchPad->value_op_begin(), CatchPad->value_op_end()));
3084 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
3085 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
3086 RHS == getEmptyKey() || RHS == getTombstoneKey())
3087 return LHS == RHS;
3088 return LHS->isIdenticalTo(RHS);
3092 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
3093 // Set of unique CatchPads.
3094 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
3095 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
3096 HandlerSet;
3097 detail::DenseSetEmpty Empty;
3098 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
3099 E = CatchSwitch->handler_end();
3100 I != E; ++I) {
3101 BasicBlock *HandlerBB = *I;
3102 if (DTU)
3103 ++NumPerSuccessorCases[HandlerBB];
3104 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
3105 if (!HandlerSet.insert({CatchPad, Empty}).second) {
3106 if (DTU)
3107 --NumPerSuccessorCases[HandlerBB];
3108 CatchSwitch->removeHandler(I);
3109 --I;
3110 --E;
3111 Changed = true;
3114 if (DTU) {
3115 std::vector<DominatorTree::UpdateType> Updates;
3116 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
3117 if (I.second == 0)
3118 Updates.push_back({DominatorTree::Delete, BB, I.first});
3119 DTU->applyUpdates(Updates);
3123 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
3124 for (BasicBlock *Successor : successors(BB))
3125 if (Reachable.insert(Successor).second)
3126 Worklist.push_back(Successor);
3127 } while (!Worklist.empty());
3128 return Changed;
3131 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
3132 Instruction *TI = BB->getTerminator();
3134 if (auto *II = dyn_cast<InvokeInst>(TI))
3135 return changeToCall(II, DTU);
3137 Instruction *NewTI;
3138 BasicBlock *UnwindDest;
3140 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3141 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
3142 UnwindDest = CRI->getUnwindDest();
3143 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
3144 auto *NewCatchSwitch = CatchSwitchInst::Create(
3145 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
3146 CatchSwitch->getName(), CatchSwitch);
3147 for (BasicBlock *PadBB : CatchSwitch->handlers())
3148 NewCatchSwitch->addHandler(PadBB);
3150 NewTI = NewCatchSwitch;
3151 UnwindDest = CatchSwitch->getUnwindDest();
3152 } else {
3153 llvm_unreachable("Could not find unwind successor");
3156 NewTI->takeName(TI);
3157 NewTI->setDebugLoc(TI->getDebugLoc());
3158 UnwindDest->removePredecessor(BB);
3159 TI->replaceAllUsesWith(NewTI);
3160 TI->eraseFromParent();
3161 if (DTU)
3162 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
3163 return NewTI;
3166 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
3167 /// if they are in a dead cycle. Return true if a change was made, false
3168 /// otherwise.
3169 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
3170 MemorySSAUpdater *MSSAU) {
3171 SmallPtrSet<BasicBlock *, 16> Reachable;
3172 bool Changed = markAliveBlocks(F, Reachable, DTU);
3174 // If there are unreachable blocks in the CFG...
3175 if (Reachable.size() == F.size())
3176 return Changed;
3178 assert(Reachable.size() < F.size());
3180 // Are there any blocks left to actually delete?
3181 SmallSetVector<BasicBlock *, 8> BlocksToRemove;
3182 for (BasicBlock &BB : F) {
3183 // Skip reachable basic blocks
3184 if (Reachable.count(&BB))
3185 continue;
3186 // Skip already-deleted blocks
3187 if (DTU && DTU->isBBPendingDeletion(&BB))
3188 continue;
3189 BlocksToRemove.insert(&BB);
3192 if (BlocksToRemove.empty())
3193 return Changed;
3195 Changed = true;
3196 NumRemoved += BlocksToRemove.size();
3198 if (MSSAU)
3199 MSSAU->removeBlocks(BlocksToRemove);
3201 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
3203 return Changed;
3206 void llvm::combineMetadata(Instruction *K, const Instruction *J,
3207 ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
3208 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
3209 K->dropUnknownNonDebugMetadata(KnownIDs);
3210 K->getAllMetadataOtherThanDebugLoc(Metadata);
3211 for (const auto &MD : Metadata) {
3212 unsigned Kind = MD.first;
3213 MDNode *JMD = J->getMetadata(Kind);
3214 MDNode *KMD = MD.second;
3216 switch (Kind) {
3217 default:
3218 K->setMetadata(Kind, nullptr); // Remove unknown metadata
3219 break;
3220 case LLVMContext::MD_dbg:
3221 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
3222 case LLVMContext::MD_DIAssignID:
3223 K->mergeDIAssignID(J);
3224 break;
3225 case LLVMContext::MD_tbaa:
3226 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
3227 break;
3228 case LLVMContext::MD_alias_scope:
3229 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
3230 break;
3231 case LLVMContext::MD_noalias:
3232 case LLVMContext::MD_mem_parallel_loop_access:
3233 K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
3234 break;
3235 case LLVMContext::MD_access_group:
3236 K->setMetadata(LLVMContext::MD_access_group,
3237 intersectAccessGroups(K, J));
3238 break;
3239 case LLVMContext::MD_range:
3240 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3241 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
3242 break;
3243 case LLVMContext::MD_fpmath:
3244 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
3245 break;
3246 case LLVMContext::MD_invariant_load:
3247 // If K moves, only set the !invariant.load if it is present in both
3248 // instructions.
3249 if (DoesKMove)
3250 K->setMetadata(Kind, JMD);
3251 break;
3252 case LLVMContext::MD_nonnull:
3253 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3254 K->setMetadata(Kind, JMD);
3255 break;
3256 case LLVMContext::MD_invariant_group:
3257 // Preserve !invariant.group in K.
3258 break;
3259 case LLVMContext::MD_align:
3260 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3261 K->setMetadata(
3262 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
3263 break;
3264 case LLVMContext::MD_dereferenceable:
3265 case LLVMContext::MD_dereferenceable_or_null:
3266 if (DoesKMove)
3267 K->setMetadata(Kind,
3268 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
3269 break;
3270 case LLVMContext::MD_preserve_access_index:
3271 // Preserve !preserve.access.index in K.
3272 break;
3273 case LLVMContext::MD_noundef:
3274 // If K does move, keep noundef if it is present in both instructions.
3275 if (DoesKMove)
3276 K->setMetadata(Kind, JMD);
3277 break;
3278 case LLVMContext::MD_nontemporal:
3279 // Preserve !nontemporal if it is present on both instructions.
3280 K->setMetadata(Kind, JMD);
3281 break;
3282 case LLVMContext::MD_prof:
3283 if (DoesKMove)
3284 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J));
3285 break;
3288 // Set !invariant.group from J if J has it. If both instructions have it
3289 // then we will just pick it from J - even when they are different.
3290 // Also make sure that K is load or store - f.e. combining bitcast with load
3291 // could produce bitcast with invariant.group metadata, which is invalid.
3292 // FIXME: we should try to preserve both invariant.group md if they are
3293 // different, but right now instruction can only have one invariant.group.
3294 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
3295 if (isa<LoadInst>(K) || isa<StoreInst>(K))
3296 K->setMetadata(LLVMContext::MD_invariant_group, JMD);
3299 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
3300 bool KDominatesJ) {
3301 unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
3302 LLVMContext::MD_alias_scope,
3303 LLVMContext::MD_noalias,
3304 LLVMContext::MD_range,
3305 LLVMContext::MD_fpmath,
3306 LLVMContext::MD_invariant_load,
3307 LLVMContext::MD_nonnull,
3308 LLVMContext::MD_invariant_group,
3309 LLVMContext::MD_align,
3310 LLVMContext::MD_dereferenceable,
3311 LLVMContext::MD_dereferenceable_or_null,
3312 LLVMContext::MD_access_group,
3313 LLVMContext::MD_preserve_access_index,
3314 LLVMContext::MD_prof,
3315 LLVMContext::MD_nontemporal,
3316 LLVMContext::MD_noundef};
3317 combineMetadata(K, J, KnownIDs, KDominatesJ);
3320 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
3321 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
3322 Source.getAllMetadata(MD);
3323 MDBuilder MDB(Dest.getContext());
3324 Type *NewType = Dest.getType();
3325 const DataLayout &DL = Source.getModule()->getDataLayout();
3326 for (const auto &MDPair : MD) {
3327 unsigned ID = MDPair.first;
3328 MDNode *N = MDPair.second;
3329 // Note, essentially every kind of metadata should be preserved here! This
3330 // routine is supposed to clone a load instruction changing *only its type*.
3331 // The only metadata it makes sense to drop is metadata which is invalidated
3332 // when the pointer type changes. This should essentially never be the case
3333 // in LLVM, but we explicitly switch over only known metadata to be
3334 // conservatively correct. If you are adding metadata to LLVM which pertains
3335 // to loads, you almost certainly want to add it here.
3336 switch (ID) {
3337 case LLVMContext::MD_dbg:
3338 case LLVMContext::MD_tbaa:
3339 case LLVMContext::MD_prof:
3340 case LLVMContext::MD_fpmath:
3341 case LLVMContext::MD_tbaa_struct:
3342 case LLVMContext::MD_invariant_load:
3343 case LLVMContext::MD_alias_scope:
3344 case LLVMContext::MD_noalias:
3345 case LLVMContext::MD_nontemporal:
3346 case LLVMContext::MD_mem_parallel_loop_access:
3347 case LLVMContext::MD_access_group:
3348 case LLVMContext::MD_noundef:
3349 // All of these directly apply.
3350 Dest.setMetadata(ID, N);
3351 break;
3353 case LLVMContext::MD_nonnull:
3354 copyNonnullMetadata(Source, N, Dest);
3355 break;
3357 case LLVMContext::MD_align:
3358 case LLVMContext::MD_dereferenceable:
3359 case LLVMContext::MD_dereferenceable_or_null:
3360 // These only directly apply if the new type is also a pointer.
3361 if (NewType->isPointerTy())
3362 Dest.setMetadata(ID, N);
3363 break;
3365 case LLVMContext::MD_range:
3366 copyRangeMetadata(DL, Source, N, Dest);
3367 break;
3372 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
3373 auto *ReplInst = dyn_cast<Instruction>(Repl);
3374 if (!ReplInst)
3375 return;
3377 // Patch the replacement so that it is not more restrictive than the value
3378 // being replaced.
3379 // Note that if 'I' is a load being replaced by some operation,
3380 // for example, by an arithmetic operation, then andIRFlags()
3381 // would just erase all math flags from the original arithmetic
3382 // operation, which is clearly not wanted and not needed.
3383 if (!isa<LoadInst>(I))
3384 ReplInst->andIRFlags(I);
3386 // FIXME: If both the original and replacement value are part of the
3387 // same control-flow region (meaning that the execution of one
3388 // guarantees the execution of the other), then we can combine the
3389 // noalias scopes here and do better than the general conservative
3390 // answer used in combineMetadata().
3392 // In general, GVN unifies expressions over different control-flow
3393 // regions, and so we need a conservative combination of the noalias
3394 // scopes.
3395 combineMetadataForCSE(ReplInst, I, false);
3398 template <typename RootType, typename DominatesFn>
3399 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
3400 const RootType &Root,
3401 const DominatesFn &Dominates) {
3402 assert(From->getType() == To->getType());
3404 unsigned Count = 0;
3405 for (Use &U : llvm::make_early_inc_range(From->uses())) {
3406 if (!Dominates(Root, U))
3407 continue;
3408 LLVM_DEBUG(dbgs() << "Replace dominated use of '";
3409 From->printAsOperand(dbgs());
3410 dbgs() << "' with " << *To << " in " << *U.getUser() << "\n");
3411 U.set(To);
3412 ++Count;
3414 return Count;
3417 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
3418 assert(From->getType() == To->getType());
3419 auto *BB = From->getParent();
3420 unsigned Count = 0;
3422 for (Use &U : llvm::make_early_inc_range(From->uses())) {
3423 auto *I = cast<Instruction>(U.getUser());
3424 if (I->getParent() == BB)
3425 continue;
3426 U.set(To);
3427 ++Count;
3429 return Count;
3432 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
3433 DominatorTree &DT,
3434 const BasicBlockEdge &Root) {
3435 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
3436 return DT.dominates(Root, U);
3438 return ::replaceDominatedUsesWith(From, To, Root, Dominates);
3441 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
3442 DominatorTree &DT,
3443 const BasicBlock *BB) {
3444 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
3445 return DT.dominates(BB, U);
3447 return ::replaceDominatedUsesWith(From, To, BB, Dominates);
3450 bool llvm::callsGCLeafFunction(const CallBase *Call,
3451 const TargetLibraryInfo &TLI) {
3452 // Check if the function is specifically marked as a gc leaf function.
3453 if (Call->hasFnAttr("gc-leaf-function"))
3454 return true;
3455 if (const Function *F = Call->getCalledFunction()) {
3456 if (F->hasFnAttribute("gc-leaf-function"))
3457 return true;
3459 if (auto IID = F->getIntrinsicID()) {
3460 // Most LLVM intrinsics do not take safepoints.
3461 return IID != Intrinsic::experimental_gc_statepoint &&
3462 IID != Intrinsic::experimental_deoptimize &&
3463 IID != Intrinsic::memcpy_element_unordered_atomic &&
3464 IID != Intrinsic::memmove_element_unordered_atomic;
3468 // Lib calls can be materialized by some passes, and won't be
3469 // marked as 'gc-leaf-function.' All available Libcalls are
3470 // GC-leaf.
3471 LibFunc LF;
3472 if (TLI.getLibFunc(*Call, LF)) {
3473 return TLI.has(LF);
3476 return false;
3479 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
3480 LoadInst &NewLI) {
3481 auto *NewTy = NewLI.getType();
3483 // This only directly applies if the new type is also a pointer.
3484 if (NewTy->isPointerTy()) {
3485 NewLI.setMetadata(LLVMContext::MD_nonnull, N);
3486 return;
3489 // The only other translation we can do is to integral loads with !range
3490 // metadata.
3491 if (!NewTy->isIntegerTy())
3492 return;
3494 MDBuilder MDB(NewLI.getContext());
3495 const Value *Ptr = OldLI.getPointerOperand();
3496 auto *ITy = cast<IntegerType>(NewTy);
3497 auto *NullInt = ConstantExpr::getPtrToInt(
3498 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
3499 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
3500 NewLI.setMetadata(LLVMContext::MD_range,
3501 MDB.createRange(NonNullInt, NullInt));
3504 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
3505 MDNode *N, LoadInst &NewLI) {
3506 auto *NewTy = NewLI.getType();
3507 // Simply copy the metadata if the type did not change.
3508 if (NewTy == OldLI.getType()) {
3509 NewLI.setMetadata(LLVMContext::MD_range, N);
3510 return;
3513 // Give up unless it is converted to a pointer where there is a single very
3514 // valuable mapping we can do reliably.
3515 // FIXME: It would be nice to propagate this in more ways, but the type
3516 // conversions make it hard.
3517 if (!NewTy->isPointerTy())
3518 return;
3520 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
3521 if (BitWidth == OldLI.getType()->getScalarSizeInBits() &&
3522 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
3523 MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt);
3524 NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
3528 void llvm::dropDebugUsers(Instruction &I) {
3529 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
3530 SmallVector<DPValue *, 1> DPUsers;
3531 findDbgUsers(DbgUsers, &I, &DPUsers);
3532 for (auto *DII : DbgUsers)
3533 DII->eraseFromParent();
3534 for (auto *DPV : DPUsers)
3535 DPV->eraseFromParent();
3538 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
3539 BasicBlock *BB) {
3540 // Since we are moving the instructions out of its basic block, we do not
3541 // retain their original debug locations (DILocations) and debug intrinsic
3542 // instructions.
3544 // Doing so would degrade the debugging experience and adversely affect the
3545 // accuracy of profiling information.
3547 // Currently, when hoisting the instructions, we take the following actions:
3548 // - Remove their debug intrinsic instructions.
3549 // - Set their debug locations to the values from the insertion point.
3551 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
3552 // need to be deleted, is because there will not be any instructions with a
3553 // DILocation in either branch left after performing the transformation. We
3554 // can only insert a dbg.value after the two branches are joined again.
3556 // See PR38762, PR39243 for more details.
3558 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
3559 // encode predicated DIExpressions that yield different results on different
3560 // code paths.
3562 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
3563 Instruction *I = &*II;
3564 I->dropUBImplyingAttrsAndMetadata();
3565 if (I->isUsedByMetadata())
3566 dropDebugUsers(*I);
3567 // RemoveDIs: drop debug-info too as the following code does.
3568 I->dropDbgValues();
3569 if (I->isDebugOrPseudoInst()) {
3570 // Remove DbgInfo and pseudo probe Intrinsics.
3571 II = I->eraseFromParent();
3572 continue;
3574 I->setDebugLoc(InsertPt->getDebugLoc());
3575 ++II;
3577 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(),
3578 BB->getTerminator()->getIterator());
3581 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C,
3582 Type &Ty) {
3583 // Create integer constant expression.
3584 auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * {
3585 const APInt &API = cast<ConstantInt>(&CV)->getValue();
3586 std::optional<int64_t> InitIntOpt = API.trySExtValue();
3587 return InitIntOpt ? DIB.createConstantValueExpression(
3588 static_cast<uint64_t>(*InitIntOpt))
3589 : nullptr;
3592 if (isa<ConstantInt>(C))
3593 return createIntegerExpression(C);
3595 auto *FP = dyn_cast<ConstantFP>(&C);
3596 if (FP && (Ty.isFloatTy() || Ty.isDoubleTy())) {
3597 const APFloat &APF = FP->getValueAPF();
3598 return DIB.createConstantValueExpression(
3599 APF.bitcastToAPInt().getZExtValue());
3602 if (!Ty.isPointerTy())
3603 return nullptr;
3605 if (isa<ConstantPointerNull>(C))
3606 return DIB.createConstantValueExpression(0);
3608 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C))
3609 if (CE->getOpcode() == Instruction::IntToPtr) {
3610 const Value *V = CE->getOperand(0);
3611 if (auto CI = dyn_cast_or_null<ConstantInt>(V))
3612 return createIntegerExpression(*CI);
3614 return nullptr;
3617 namespace {
3619 /// A potential constituent of a bitreverse or bswap expression. See
3620 /// collectBitParts for a fuller explanation.
3621 struct BitPart {
3622 BitPart(Value *P, unsigned BW) : Provider(P) {
3623 Provenance.resize(BW);
3626 /// The Value that this is a bitreverse/bswap of.
3627 Value *Provider;
3629 /// The "provenance" of each bit. Provenance[A] = B means that bit A
3630 /// in Provider becomes bit B in the result of this expression.
3631 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
3633 enum { Unset = -1 };
3636 } // end anonymous namespace
3638 /// Analyze the specified subexpression and see if it is capable of providing
3639 /// pieces of a bswap or bitreverse. The subexpression provides a potential
3640 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
3641 /// the output of the expression came from a corresponding bit in some other
3642 /// value. This function is recursive, and the end result is a mapping of
3643 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
3644 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
3646 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
3647 /// that the expression deposits the low byte of %X into the high byte of the
3648 /// result and that all other bits are zero. This expression is accepted and a
3649 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
3650 /// [0-7].
3652 /// For vector types, all analysis is performed at the per-element level. No
3653 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
3654 /// constant masks must be splatted across all elements.
3656 /// To avoid revisiting values, the BitPart results are memoized into the
3657 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
3658 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
3659 /// store BitParts objects, not pointers. As we need the concept of a nullptr
3660 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
3661 /// type instead to provide the same functionality.
3663 /// Because we pass around references into \c BPS, we must use a container that
3664 /// does not invalidate internal references (std::map instead of DenseMap).
3665 static const std::optional<BitPart> &
3666 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
3667 std::map<Value *, std::optional<BitPart>> &BPS, int Depth,
3668 bool &FoundRoot) {
3669 auto I = BPS.find(V);
3670 if (I != BPS.end())
3671 return I->second;
3673 auto &Result = BPS[V] = std::nullopt;
3674 auto BitWidth = V->getType()->getScalarSizeInBits();
3676 // Can't do integer/elements > 128 bits.
3677 if (BitWidth > 128)
3678 return Result;
3680 // Prevent stack overflow by limiting the recursion depth
3681 if (Depth == BitPartRecursionMaxDepth) {
3682 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
3683 return Result;
3686 if (auto *I = dyn_cast<Instruction>(V)) {
3687 Value *X, *Y;
3688 const APInt *C;
3690 // If this is an or instruction, it may be an inner node of the bswap.
3691 if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
3692 // Check we have both sources and they are from the same provider.
3693 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3694 Depth + 1, FoundRoot);
3695 if (!A || !A->Provider)
3696 return Result;
3698 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3699 Depth + 1, FoundRoot);
3700 if (!B || A->Provider != B->Provider)
3701 return Result;
3703 // Try and merge the two together.
3704 Result = BitPart(A->Provider, BitWidth);
3705 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
3706 if (A->Provenance[BitIdx] != BitPart::Unset &&
3707 B->Provenance[BitIdx] != BitPart::Unset &&
3708 A->Provenance[BitIdx] != B->Provenance[BitIdx])
3709 return Result = std::nullopt;
3711 if (A->Provenance[BitIdx] == BitPart::Unset)
3712 Result->Provenance[BitIdx] = B->Provenance[BitIdx];
3713 else
3714 Result->Provenance[BitIdx] = A->Provenance[BitIdx];
3717 return Result;
3720 // If this is a logical shift by a constant, recurse then shift the result.
3721 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
3722 const APInt &BitShift = *C;
3724 // Ensure the shift amount is defined.
3725 if (BitShift.uge(BitWidth))
3726 return Result;
3728 // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3729 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
3730 return Result;
3732 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3733 Depth + 1, FoundRoot);
3734 if (!Res)
3735 return Result;
3736 Result = Res;
3738 // Perform the "shift" on BitProvenance.
3739 auto &P = Result->Provenance;
3740 if (I->getOpcode() == Instruction::Shl) {
3741 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
3742 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
3743 } else {
3744 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
3745 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
3748 return Result;
3751 // If this is a logical 'and' with a mask that clears bits, recurse then
3752 // unset the appropriate bits.
3753 if (match(V, m_And(m_Value(X), m_APInt(C)))) {
3754 const APInt &AndMask = *C;
3756 // Check that the mask allows a multiple of 8 bits for a bswap, for an
3757 // early exit.
3758 unsigned NumMaskedBits = AndMask.popcount();
3759 if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
3760 return Result;
3762 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3763 Depth + 1, FoundRoot);
3764 if (!Res)
3765 return Result;
3766 Result = Res;
3768 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3769 // If the AndMask is zero for this bit, clear the bit.
3770 if (AndMask[BitIdx] == 0)
3771 Result->Provenance[BitIdx] = BitPart::Unset;
3772 return Result;
3775 // If this is a zext instruction zero extend the result.
3776 if (match(V, m_ZExt(m_Value(X)))) {
3777 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3778 Depth + 1, FoundRoot);
3779 if (!Res)
3780 return Result;
3782 Result = BitPart(Res->Provider, BitWidth);
3783 auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3784 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3785 Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3786 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3787 Result->Provenance[BitIdx] = BitPart::Unset;
3788 return Result;
3791 // If this is a truncate instruction, extract the lower bits.
3792 if (match(V, m_Trunc(m_Value(X)))) {
3793 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3794 Depth + 1, FoundRoot);
3795 if (!Res)
3796 return Result;
3798 Result = BitPart(Res->Provider, BitWidth);
3799 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3800 Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3801 return Result;
3804 // BITREVERSE - most likely due to us previous matching a partial
3805 // bitreverse.
3806 if (match(V, m_BitReverse(m_Value(X)))) {
3807 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3808 Depth + 1, FoundRoot);
3809 if (!Res)
3810 return Result;
3812 Result = BitPart(Res->Provider, BitWidth);
3813 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3814 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3815 return Result;
3818 // BSWAP - most likely due to us previous matching a partial bswap.
3819 if (match(V, m_BSwap(m_Value(X)))) {
3820 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3821 Depth + 1, FoundRoot);
3822 if (!Res)
3823 return Result;
3825 unsigned ByteWidth = BitWidth / 8;
3826 Result = BitPart(Res->Provider, BitWidth);
3827 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3828 unsigned ByteBitOfs = ByteIdx * 8;
3829 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3830 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3831 Res->Provenance[ByteBitOfs + BitIdx];
3833 return Result;
3836 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3837 // amount (modulo).
3838 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3839 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3840 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3841 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3842 // We can treat fshr as a fshl by flipping the modulo amount.
3843 unsigned ModAmt = C->urem(BitWidth);
3844 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3845 ModAmt = BitWidth - ModAmt;
3847 // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3848 if (!MatchBitReversals && (ModAmt % 8) != 0)
3849 return Result;
3851 // Check we have both sources and they are from the same provider.
3852 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3853 Depth + 1, FoundRoot);
3854 if (!LHS || !LHS->Provider)
3855 return Result;
3857 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3858 Depth + 1, FoundRoot);
3859 if (!RHS || LHS->Provider != RHS->Provider)
3860 return Result;
3862 unsigned StartBitRHS = BitWidth - ModAmt;
3863 Result = BitPart(LHS->Provider, BitWidth);
3864 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3865 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3866 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3867 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3868 return Result;
3872 // If we've already found a root input value then we're never going to merge
3873 // these back together.
3874 if (FoundRoot)
3875 return Result;
3877 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
3878 // be the root input value to the bswap/bitreverse.
3879 FoundRoot = true;
3880 Result = BitPart(V, BitWidth);
3881 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3882 Result->Provenance[BitIdx] = BitIdx;
3883 return Result;
3886 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3887 unsigned BitWidth) {
3888 if (From % 8 != To % 8)
3889 return false;
3890 // Convert from bit indices to byte indices and check for a byte reversal.
3891 From >>= 3;
3892 To >>= 3;
3893 BitWidth >>= 3;
3894 return From == BitWidth - To - 1;
3897 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3898 unsigned BitWidth) {
3899 return From == BitWidth - To - 1;
3902 bool llvm::recognizeBSwapOrBitReverseIdiom(
3903 Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3904 SmallVectorImpl<Instruction *> &InsertedInsts) {
3905 if (!match(I, m_Or(m_Value(), m_Value())) &&
3906 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
3907 !match(I, m_FShr(m_Value(), m_Value(), m_Value())) &&
3908 !match(I, m_BSwap(m_Value())))
3909 return false;
3910 if (!MatchBSwaps && !MatchBitReversals)
3911 return false;
3912 Type *ITy = I->getType();
3913 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3914 return false; // Can't do integer/elements > 128 bits.
3916 // Try to find all the pieces corresponding to the bswap.
3917 bool FoundRoot = false;
3918 std::map<Value *, std::optional<BitPart>> BPS;
3919 const auto &Res =
3920 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
3921 if (!Res)
3922 return false;
3923 ArrayRef<int8_t> BitProvenance = Res->Provenance;
3924 assert(all_of(BitProvenance,
3925 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3926 "Illegal bit provenance index");
3928 // If the upper bits are zero, then attempt to perform as a truncated op.
3929 Type *DemandedTy = ITy;
3930 if (BitProvenance.back() == BitPart::Unset) {
3931 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3932 BitProvenance = BitProvenance.drop_back();
3933 if (BitProvenance.empty())
3934 return false; // TODO - handle null value?
3935 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3936 if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3937 DemandedTy = VectorType::get(DemandedTy, IVecTy);
3940 // Check BitProvenance hasn't found a source larger than the result type.
3941 unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3942 if (DemandedBW > ITy->getScalarSizeInBits())
3943 return false;
3945 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3946 // only byteswap values with an even number of bytes.
3947 APInt DemandedMask = APInt::getAllOnes(DemandedBW);
3948 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3949 bool OKForBitReverse = MatchBitReversals;
3950 for (unsigned BitIdx = 0;
3951 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3952 if (BitProvenance[BitIdx] == BitPart::Unset) {
3953 DemandedMask.clearBit(BitIdx);
3954 continue;
3956 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3957 DemandedBW);
3958 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3959 BitIdx, DemandedBW);
3962 Intrinsic::ID Intrin;
3963 if (OKForBSwap)
3964 Intrin = Intrinsic::bswap;
3965 else if (OKForBitReverse)
3966 Intrin = Intrinsic::bitreverse;
3967 else
3968 return false;
3970 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3971 Value *Provider = Res->Provider;
3973 // We may need to truncate the provider.
3974 if (DemandedTy != Provider->getType()) {
3975 auto *Trunc =
3976 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3977 InsertedInsts.push_back(Trunc);
3978 Provider = Trunc;
3981 Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3982 InsertedInsts.push_back(Result);
3984 if (!DemandedMask.isAllOnes()) {
3985 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3986 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3987 InsertedInsts.push_back(Result);
3990 // We may need to zeroextend back to the result type.
3991 if (ITy != Result->getType()) {
3992 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3993 InsertedInsts.push_back(ExtInst);
3996 return true;
3999 // CodeGen has special handling for some string functions that may replace
4000 // them with target-specific intrinsics. Since that'd skip our interceptors
4001 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
4002 // we mark affected calls as NoBuiltin, which will disable optimization
4003 // in CodeGen.
4004 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
4005 CallInst *CI, const TargetLibraryInfo *TLI) {
4006 Function *F = CI->getCalledFunction();
4007 LibFunc Func;
4008 if (F && !F->hasLocalLinkage() && F->hasName() &&
4009 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
4010 !F->doesNotAccessMemory())
4011 CI->addFnAttr(Attribute::NoBuiltin);
4014 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
4015 // We can't have a PHI with a metadata type.
4016 if (I->getOperand(OpIdx)->getType()->isMetadataTy())
4017 return false;
4019 // Early exit.
4020 if (!isa<Constant>(I->getOperand(OpIdx)))
4021 return true;
4023 switch (I->getOpcode()) {
4024 default:
4025 return true;
4026 case Instruction::Call:
4027 case Instruction::Invoke: {
4028 const auto &CB = cast<CallBase>(*I);
4030 // Can't handle inline asm. Skip it.
4031 if (CB.isInlineAsm())
4032 return false;
4034 // Constant bundle operands may need to retain their constant-ness for
4035 // correctness.
4036 if (CB.isBundleOperand(OpIdx))
4037 return false;
4039 if (OpIdx < CB.arg_size()) {
4040 // Some variadic intrinsics require constants in the variadic arguments,
4041 // which currently aren't markable as immarg.
4042 if (isa<IntrinsicInst>(CB) &&
4043 OpIdx >= CB.getFunctionType()->getNumParams()) {
4044 // This is known to be OK for stackmap.
4045 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
4048 // gcroot is a special case, since it requires a constant argument which
4049 // isn't also required to be a simple ConstantInt.
4050 if (CB.getIntrinsicID() == Intrinsic::gcroot)
4051 return false;
4053 // Some intrinsic operands are required to be immediates.
4054 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
4057 // It is never allowed to replace the call argument to an intrinsic, but it
4058 // may be possible for a call.
4059 return !isa<IntrinsicInst>(CB);
4061 case Instruction::ShuffleVector:
4062 // Shufflevector masks are constant.
4063 return OpIdx != 2;
4064 case Instruction::Switch:
4065 case Instruction::ExtractValue:
4066 // All operands apart from the first are constant.
4067 return OpIdx == 0;
4068 case Instruction::InsertValue:
4069 // All operands apart from the first and the second are constant.
4070 return OpIdx < 2;
4071 case Instruction::Alloca:
4072 // Static allocas (constant size in the entry block) are handled by
4073 // prologue/epilogue insertion so they're free anyway. We definitely don't
4074 // want to make them non-constant.
4075 return !cast<AllocaInst>(I)->isStaticAlloca();
4076 case Instruction::GetElementPtr:
4077 if (OpIdx == 0)
4078 return true;
4079 gep_type_iterator It = gep_type_begin(I);
4080 for (auto E = std::next(It, OpIdx); It != E; ++It)
4081 if (It.isStruct())
4082 return false;
4083 return true;
4087 Value *llvm::invertCondition(Value *Condition) {
4088 // First: Check if it's a constant
4089 if (Constant *C = dyn_cast<Constant>(Condition))
4090 return ConstantExpr::getNot(C);
4092 // Second: If the condition is already inverted, return the original value
4093 Value *NotCondition;
4094 if (match(Condition, m_Not(m_Value(NotCondition))))
4095 return NotCondition;
4097 BasicBlock *Parent = nullptr;
4098 Instruction *Inst = dyn_cast<Instruction>(Condition);
4099 if (Inst)
4100 Parent = Inst->getParent();
4101 else if (Argument *Arg = dyn_cast<Argument>(Condition))
4102 Parent = &Arg->getParent()->getEntryBlock();
4103 assert(Parent && "Unsupported condition to invert");
4105 // Third: Check all the users for an invert
4106 for (User *U : Condition->users())
4107 if (Instruction *I = dyn_cast<Instruction>(U))
4108 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
4109 return I;
4111 // Last option: Create a new instruction
4112 auto *Inverted =
4113 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
4114 if (Inst && !isa<PHINode>(Inst))
4115 Inverted->insertAfter(Inst);
4116 else
4117 Inverted->insertBefore(&*Parent->getFirstInsertionPt());
4118 return Inverted;
4121 bool llvm::inferAttributesFromOthers(Function &F) {
4122 // Note: We explicitly check for attributes rather than using cover functions
4123 // because some of the cover functions include the logic being implemented.
4125 bool Changed = false;
4126 // readnone + not convergent implies nosync
4127 if (!F.hasFnAttribute(Attribute::NoSync) &&
4128 F.doesNotAccessMemory() && !F.isConvergent()) {
4129 F.setNoSync();
4130 Changed = true;
4133 // readonly implies nofree
4134 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
4135 F.setDoesNotFreeMemory();
4136 Changed = true;
4139 // willreturn implies mustprogress
4140 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
4141 F.setMustProgress();
4142 Changed = true;
4145 // TODO: There are a bunch of cases of restrictive memory effects we
4146 // can infer by inspecting arguments of argmemonly-ish functions.
4148 return Changed;