1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Expression parsing implementation for C++.
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Basic/TokenKinds.h"
18 #include "clang/Lex/LiteralSupport.h"
19 #include "clang/Parse/ParseDiagnostic.h"
20 #include "clang/Parse/Parser.h"
21 #include "clang/Parse/RAIIObjectsForParser.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/EnterExpressionEvaluationContext.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/Scope.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/ErrorHandling.h"
30 using namespace clang
;
32 static int SelectDigraphErrorMessage(tok::TokenKind Kind
) {
35 case tok::unknown
: return 0;
37 case tok::kw_addrspace_cast
: return 1;
38 case tok::kw_const_cast
: return 2;
39 case tok::kw_dynamic_cast
: return 3;
40 case tok::kw_reinterpret_cast
: return 4;
41 case tok::kw_static_cast
: return 5;
43 llvm_unreachable("Unknown type for digraph error message.");
47 // Are the two tokens adjacent in the same source file?
48 bool Parser::areTokensAdjacent(const Token
&First
, const Token
&Second
) {
49 SourceManager
&SM
= PP
.getSourceManager();
50 SourceLocation FirstLoc
= SM
.getSpellingLoc(First
.getLocation());
51 SourceLocation FirstEnd
= FirstLoc
.getLocWithOffset(First
.getLength());
52 return FirstEnd
== SM
.getSpellingLoc(Second
.getLocation());
55 // Suggest fixit for "<::" after a cast.
56 static void FixDigraph(Parser
&P
, Preprocessor
&PP
, Token
&DigraphToken
,
57 Token
&ColonToken
, tok::TokenKind Kind
, bool AtDigraph
) {
58 // Pull '<:' and ':' off token stream.
64 Range
.setBegin(DigraphToken
.getLocation());
65 Range
.setEnd(ColonToken
.getLocation());
66 P
.Diag(DigraphToken
.getLocation(), diag::err_missing_whitespace_digraph
)
67 << SelectDigraphErrorMessage(Kind
)
68 << FixItHint::CreateReplacement(Range
, "< ::");
70 // Update token information to reflect their change in token type.
71 ColonToken
.setKind(tok::coloncolon
);
72 ColonToken
.setLocation(ColonToken
.getLocation().getLocWithOffset(-1));
73 ColonToken
.setLength(2);
74 DigraphToken
.setKind(tok::less
);
75 DigraphToken
.setLength(1);
77 // Push new tokens back to token stream.
78 PP
.EnterToken(ColonToken
, /*IsReinject*/ true);
80 PP
.EnterToken(DigraphToken
, /*IsReinject*/ true);
83 // Check for '<::' which should be '< ::' instead of '[:' when following
85 void Parser::CheckForTemplateAndDigraph(Token
&Next
, ParsedType ObjectType
,
87 IdentifierInfo
&II
, CXXScopeSpec
&SS
) {
88 if (!Next
.is(tok::l_square
) || Next
.getLength() != 2)
91 Token SecondToken
= GetLookAheadToken(2);
92 if (!SecondToken
.is(tok::colon
) || !areTokensAdjacent(Next
, SecondToken
))
96 UnqualifiedId TemplateName
;
97 TemplateName
.setIdentifier(&II
, Tok
.getLocation());
98 bool MemberOfUnknownSpecialization
;
99 if (!Actions
.isTemplateName(getCurScope(), SS
, /*hasTemplateKeyword=*/false,
100 TemplateName
, ObjectType
, EnteringContext
,
101 Template
, MemberOfUnknownSpecialization
))
104 FixDigraph(*this, PP
, Next
, SecondToken
, tok::unknown
,
108 /// Parse global scope or nested-name-specifier if present.
110 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
111 /// may be preceded by '::'). Note that this routine will not parse ::new or
112 /// ::delete; it will just leave them in the token stream.
114 /// '::'[opt] nested-name-specifier
117 /// nested-name-specifier:
119 /// namespace-name '::'
120 /// nested-name-specifier identifier '::'
121 /// nested-name-specifier 'template'[opt] simple-template-id '::'
124 /// \param SS the scope specifier that will be set to the parsed
125 /// nested-name-specifier (or empty)
127 /// \param ObjectType if this nested-name-specifier is being parsed following
128 /// the "." or "->" of a member access expression, this parameter provides the
129 /// type of the object whose members are being accessed.
131 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
132 /// expression, indicates whether the original subexpressions had any errors.
133 /// When true, diagnostics for missing 'template' keyword will be supressed.
135 /// \param EnteringContext whether we will be entering into the context of
136 /// the nested-name-specifier after parsing it.
138 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
139 /// indicates whether this nested-name-specifier may be part of a
140 /// pseudo-destructor name. In this case, the flag will be set false
141 /// if we don't actually end up parsing a destructor name. Moreover,
142 /// if we do end up determining that we are parsing a destructor name,
143 /// the last component of the nested-name-specifier is not parsed as
144 /// part of the scope specifier.
146 /// \param IsTypename If \c true, this nested-name-specifier is known to be
147 /// part of a type name. This is used to improve error recovery.
149 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
150 /// filled in with the leading identifier in the last component of the
151 /// nested-name-specifier, if any.
153 /// \param OnlyNamespace If true, only considers namespaces in lookup.
156 /// \returns true if there was an error parsing a scope specifier
157 bool Parser::ParseOptionalCXXScopeSpecifier(
158 CXXScopeSpec
&SS
, ParsedType ObjectType
, bool ObjectHadErrors
,
159 bool EnteringContext
, bool *MayBePseudoDestructor
, bool IsTypename
,
160 IdentifierInfo
**LastII
, bool OnlyNamespace
, bool InUsingDeclaration
) {
161 assert(getLangOpts().CPlusPlus
&&
162 "Call sites of this function should be guarded by checking for C++");
164 if (Tok
.is(tok::annot_cxxscope
)) {
165 assert(!LastII
&& "want last identifier but have already annotated scope");
166 assert(!MayBePseudoDestructor
&& "unexpected annot_cxxscope");
167 Actions
.RestoreNestedNameSpecifierAnnotation(Tok
.getAnnotationValue(),
168 Tok
.getAnnotationRange(),
170 ConsumeAnnotationToken();
174 // Has to happen before any "return false"s in this function.
175 bool CheckForDestructor
= false;
176 if (MayBePseudoDestructor
&& *MayBePseudoDestructor
) {
177 CheckForDestructor
= true;
178 *MayBePseudoDestructor
= false;
184 bool HasScopeSpecifier
= false;
186 if (Tok
.is(tok::coloncolon
)) {
187 // ::new and ::delete aren't nested-name-specifiers.
188 tok::TokenKind NextKind
= NextToken().getKind();
189 if (NextKind
== tok::kw_new
|| NextKind
== tok::kw_delete
)
192 if (NextKind
== tok::l_brace
) {
193 // It is invalid to have :: {, consume the scope qualifier and pretend
194 // like we never saw it.
195 Diag(ConsumeToken(), diag::err_expected
) << tok::identifier
;
197 // '::' - Global scope qualifier.
198 if (Actions
.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS
))
201 HasScopeSpecifier
= true;
205 if (Tok
.is(tok::kw___super
)) {
206 SourceLocation SuperLoc
= ConsumeToken();
207 if (!Tok
.is(tok::coloncolon
)) {
208 Diag(Tok
.getLocation(), diag::err_expected_coloncolon_after_super
);
212 return Actions
.ActOnSuperScopeSpecifier(SuperLoc
, ConsumeToken(), SS
);
215 if (!HasScopeSpecifier
&&
216 Tok
.isOneOf(tok::kw_decltype
, tok::annot_decltype
)) {
217 DeclSpec
DS(AttrFactory
);
218 SourceLocation DeclLoc
= Tok
.getLocation();
219 SourceLocation EndLoc
= ParseDecltypeSpecifier(DS
);
221 SourceLocation CCLoc
;
222 // Work around a standard defect: 'decltype(auto)::' is not a
223 // nested-name-specifier.
224 if (DS
.getTypeSpecType() == DeclSpec::TST_decltype_auto
||
225 !TryConsumeToken(tok::coloncolon
, CCLoc
)) {
226 AnnotateExistingDecltypeSpecifier(DS
, DeclLoc
, EndLoc
);
230 if (Actions
.ActOnCXXNestedNameSpecifierDecltype(SS
, DS
, CCLoc
))
231 SS
.SetInvalid(SourceRange(DeclLoc
, CCLoc
));
233 HasScopeSpecifier
= true;
236 // Preferred type might change when parsing qualifiers, we need the original.
237 auto SavedType
= PreferredType
;
239 if (HasScopeSpecifier
) {
240 if (Tok
.is(tok::code_completion
)) {
242 // Code completion for a nested-name-specifier, where the code
243 // completion token follows the '::'.
244 Actions
.CodeCompleteQualifiedId(getCurScope(), SS
, EnteringContext
,
245 InUsingDeclaration
, ObjectType
.get(),
246 SavedType
.get(SS
.getBeginLoc()));
247 // Include code completion token into the range of the scope otherwise
248 // when we try to annotate the scope tokens the dangling code completion
249 // token will cause assertion in
250 // Preprocessor::AnnotatePreviousCachedTokens.
251 SS
.setEndLoc(Tok
.getLocation());
255 // C++ [basic.lookup.classref]p5:
256 // If the qualified-id has the form
258 // ::class-name-or-namespace-name::...
260 // the class-name-or-namespace-name is looked up in global scope as a
261 // class-name or namespace-name.
263 // To implement this, we clear out the object type as soon as we've
264 // seen a leading '::' or part of a nested-name-specifier.
265 ObjectType
= nullptr;
268 // nested-name-specifier:
269 // nested-name-specifier 'template'[opt] simple-template-id '::'
271 // Parse the optional 'template' keyword, then make sure we have
272 // 'identifier <' after it.
273 if (Tok
.is(tok::kw_template
)) {
274 // If we don't have a scope specifier or an object type, this isn't a
275 // nested-name-specifier, since they aren't allowed to start with
277 if (!HasScopeSpecifier
&& !ObjectType
)
280 TentativeParsingAction
TPA(*this);
281 SourceLocation TemplateKWLoc
= ConsumeToken();
283 UnqualifiedId TemplateName
;
284 if (Tok
.is(tok::identifier
)) {
285 // Consume the identifier.
286 TemplateName
.setIdentifier(Tok
.getIdentifierInfo(), Tok
.getLocation());
288 } else if (Tok
.is(tok::kw_operator
)) {
289 // We don't need to actually parse the unqualified-id in this case,
290 // because a simple-template-id cannot start with 'operator', but
291 // go ahead and parse it anyway for consistency with the case where
292 // we already annotated the template-id.
293 if (ParseUnqualifiedIdOperator(SS
, EnteringContext
, ObjectType
,
299 if (TemplateName
.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId
&&
300 TemplateName
.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId
) {
301 Diag(TemplateName
.getSourceRange().getBegin(),
302 diag::err_id_after_template_in_nested_name_spec
)
303 << TemplateName
.getSourceRange();
312 // If the next token is not '<', we have a qualified-id that refers
313 // to a template name, such as T::template apply, but is not a
315 if (Tok
.isNot(tok::less
)) {
320 // Commit to parsing the template-id.
323 TemplateNameKind TNK
= Actions
.ActOnTemplateName(
324 getCurScope(), SS
, TemplateKWLoc
, TemplateName
, ObjectType
,
325 EnteringContext
, Template
, /*AllowInjectedClassName*/ true);
326 if (AnnotateTemplateIdToken(Template
, TNK
, SS
, TemplateKWLoc
,
327 TemplateName
, false))
333 if (Tok
.is(tok::annot_template_id
) && NextToken().is(tok::coloncolon
)) {
338 // So we need to check whether the template-id is a simple-template-id of
339 // the right kind (it should name a type or be dependent), and then
340 // convert it into a type within the nested-name-specifier.
341 TemplateIdAnnotation
*TemplateId
= takeTemplateIdAnnotation(Tok
);
342 if (CheckForDestructor
&& GetLookAheadToken(2).is(tok::tilde
)) {
343 *MayBePseudoDestructor
= true;
348 *LastII
= TemplateId
->Name
;
350 // Consume the template-id token.
351 ConsumeAnnotationToken();
353 assert(Tok
.is(tok::coloncolon
) && "NextToken() not working properly!");
354 SourceLocation CCLoc
= ConsumeToken();
356 HasScopeSpecifier
= true;
358 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
359 TemplateId
->NumArgs
);
361 if (TemplateId
->isInvalid() ||
362 Actions
.ActOnCXXNestedNameSpecifier(getCurScope(),
364 TemplateId
->TemplateKWLoc
,
365 TemplateId
->Template
,
366 TemplateId
->TemplateNameLoc
,
367 TemplateId
->LAngleLoc
,
369 TemplateId
->RAngleLoc
,
372 SourceLocation StartLoc
373 = SS
.getBeginLoc().isValid()? SS
.getBeginLoc()
374 : TemplateId
->TemplateNameLoc
;
375 SS
.SetInvalid(SourceRange(StartLoc
, CCLoc
));
381 // The rest of the nested-name-specifier possibilities start with
383 if (Tok
.isNot(tok::identifier
))
386 IdentifierInfo
&II
= *Tok
.getIdentifierInfo();
388 // nested-name-specifier:
390 // namespace-name '::'
391 // nested-name-specifier identifier '::'
392 Token Next
= NextToken();
393 Sema::NestedNameSpecInfo
IdInfo(&II
, Tok
.getLocation(), Next
.getLocation(),
396 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
397 // and emit a fixit hint for it.
398 if (Next
.is(tok::colon
) && !ColonIsSacred
) {
399 if (Actions
.IsInvalidUnlessNestedName(getCurScope(), SS
, IdInfo
,
401 // If the token after the colon isn't an identifier, it's still an
402 // error, but they probably meant something else strange so don't
403 // recover like this.
404 PP
.LookAhead(1).is(tok::identifier
)) {
405 Diag(Next
, diag::err_unexpected_colon_in_nested_name_spec
)
406 << FixItHint::CreateReplacement(Next
.getLocation(), "::");
407 // Recover as if the user wrote '::'.
408 Next
.setKind(tok::coloncolon
);
412 if (Next
.is(tok::coloncolon
) && GetLookAheadToken(2).is(tok::l_brace
)) {
413 // It is invalid to have :: {, consume the scope qualifier and pretend
414 // like we never saw it.
415 Token Identifier
= Tok
; // Stash away the identifier.
416 ConsumeToken(); // Eat the identifier, current token is now '::'.
417 Diag(PP
.getLocForEndOfToken(ConsumeToken()), diag::err_expected
)
419 UnconsumeToken(Identifier
); // Stick the identifier back.
420 Next
= NextToken(); // Point Next at the '{' token.
423 if (Next
.is(tok::coloncolon
)) {
424 if (CheckForDestructor
&& GetLookAheadToken(2).is(tok::tilde
)) {
425 *MayBePseudoDestructor
= true;
430 const Token
&Next2
= GetLookAheadToken(2);
431 if (Next2
.is(tok::kw_private
) || Next2
.is(tok::kw_protected
) ||
432 Next2
.is(tok::kw_public
) || Next2
.is(tok::kw_virtual
)) {
433 Diag(Next2
, diag::err_unexpected_token_in_nested_name_spec
)
435 << FixItHint::CreateReplacement(Next
.getLocation(), ":");
438 ColonColon
.setKind(tok::colon
);
439 PP
.EnterToken(ColonColon
, /*IsReinject*/ true);
447 // We have an identifier followed by a '::'. Lookup this name
448 // as the name in a nested-name-specifier.
449 Token Identifier
= Tok
;
450 SourceLocation IdLoc
= ConsumeToken();
451 assert(Tok
.isOneOf(tok::coloncolon
, tok::colon
) &&
452 "NextToken() not working properly!");
453 Token ColonColon
= Tok
;
454 SourceLocation CCLoc
= ConsumeToken();
456 bool IsCorrectedToColon
= false;
457 bool *CorrectionFlagPtr
= ColonIsSacred
? &IsCorrectedToColon
: nullptr;
458 if (Actions
.ActOnCXXNestedNameSpecifier(
459 getCurScope(), IdInfo
, EnteringContext
, SS
, CorrectionFlagPtr
,
461 // Identifier is not recognized as a nested name, but we can have
462 // mistyped '::' instead of ':'.
463 if (CorrectionFlagPtr
&& IsCorrectedToColon
) {
464 ColonColon
.setKind(tok::colon
);
465 PP
.EnterToken(Tok
, /*IsReinject*/ true);
466 PP
.EnterToken(ColonColon
, /*IsReinject*/ true);
470 SS
.SetInvalid(SourceRange(IdLoc
, CCLoc
));
472 HasScopeSpecifier
= true;
476 CheckForTemplateAndDigraph(Next
, ObjectType
, EnteringContext
, II
, SS
);
478 // nested-name-specifier:
480 if (Next
.is(tok::less
)) {
483 UnqualifiedId TemplateName
;
484 TemplateName
.setIdentifier(&II
, Tok
.getLocation());
485 bool MemberOfUnknownSpecialization
;
486 if (TemplateNameKind TNK
= Actions
.isTemplateName(getCurScope(), SS
,
487 /*hasTemplateKeyword=*/false,
492 MemberOfUnknownSpecialization
)) {
493 // If lookup didn't find anything, we treat the name as a template-name
494 // anyway. C++20 requires this, and in prior language modes it improves
495 // error recovery. But before we commit to this, check that we actually
496 // have something that looks like a template-argument-list next.
497 if (!IsTypename
&& TNK
== TNK_Undeclared_template
&&
498 isTemplateArgumentList(1) == TPResult::False
)
501 // We have found a template name, so annotate this token
502 // with a template-id annotation. We do not permit the
503 // template-id to be translated into a type annotation,
504 // because some clients (e.g., the parsing of class template
505 // specializations) still want to see the original template-id
506 // token, and it might not be a type at all (e.g. a concept name in a
509 if (AnnotateTemplateIdToken(Template
, TNK
, SS
, SourceLocation(),
510 TemplateName
, false))
515 if (MemberOfUnknownSpecialization
&& (ObjectType
|| SS
.isSet()) &&
516 (IsTypename
|| isTemplateArgumentList(1) == TPResult::True
)) {
517 // If we had errors before, ObjectType can be dependent even without any
518 // templates. Do not report missing template keyword in that case.
519 if (!ObjectHadErrors
) {
520 // We have something like t::getAs<T>, where getAs is a
521 // member of an unknown specialization. However, this will only
522 // parse correctly as a template, so suggest the keyword 'template'
523 // before 'getAs' and treat this as a dependent template name.
524 unsigned DiagID
= diag::err_missing_dependent_template_keyword
;
525 if (getLangOpts().MicrosoftExt
)
526 DiagID
= diag::warn_missing_dependent_template_keyword
;
528 Diag(Tok
.getLocation(), DiagID
)
530 << FixItHint::CreateInsertion(Tok
.getLocation(), "template ");
533 SourceLocation TemplateNameLoc
= ConsumeToken();
535 TemplateNameKind TNK
= Actions
.ActOnTemplateName(
536 getCurScope(), SS
, TemplateNameLoc
, TemplateName
, ObjectType
,
537 EnteringContext
, Template
, /*AllowInjectedClassName*/ true);
538 if (AnnotateTemplateIdToken(Template
, TNK
, SS
, SourceLocation(),
539 TemplateName
, false))
546 // We don't have any tokens that form the beginning of a
547 // nested-name-specifier, so we're done.
551 // Even if we didn't see any pieces of a nested-name-specifier, we
552 // still check whether there is a tilde in this position, which
553 // indicates a potential pseudo-destructor.
554 if (CheckForDestructor
&& !HasScopeSpecifier
&& Tok
.is(tok::tilde
))
555 *MayBePseudoDestructor
= true;
560 ExprResult
Parser::tryParseCXXIdExpression(CXXScopeSpec
&SS
,
561 bool isAddressOfOperand
,
562 Token
&Replacement
) {
565 // We may have already annotated this id-expression.
566 switch (Tok
.getKind()) {
567 case tok::annot_non_type
: {
568 NamedDecl
*ND
= getNonTypeAnnotation(Tok
);
569 SourceLocation Loc
= ConsumeAnnotationToken();
570 E
= Actions
.ActOnNameClassifiedAsNonType(getCurScope(), SS
, ND
, Loc
, Tok
);
574 case tok::annot_non_type_dependent
: {
575 IdentifierInfo
*II
= getIdentifierAnnotation(Tok
);
576 SourceLocation Loc
= ConsumeAnnotationToken();
578 // This is only the direct operand of an & operator if it is not
579 // followed by a postfix-expression suffix.
580 if (isAddressOfOperand
&& isPostfixExpressionSuffixStart())
581 isAddressOfOperand
= false;
583 E
= Actions
.ActOnNameClassifiedAsDependentNonType(SS
, II
, Loc
,
588 case tok::annot_non_type_undeclared
: {
589 assert(SS
.isEmpty() &&
590 "undeclared non-type annotation should be unqualified");
591 IdentifierInfo
*II
= getIdentifierAnnotation(Tok
);
592 SourceLocation Loc
= ConsumeAnnotationToken();
593 E
= Actions
.ActOnNameClassifiedAsUndeclaredNonType(II
, Loc
);
598 SourceLocation TemplateKWLoc
;
600 if (ParseUnqualifiedId(SS
, /*ObjectType=*/nullptr,
601 /*ObjectHadErrors=*/false,
602 /*EnteringContext=*/false,
603 /*AllowDestructorName=*/false,
604 /*AllowConstructorName=*/false,
605 /*AllowDeductionGuide=*/false, &TemplateKWLoc
, Name
))
608 // This is only the direct operand of an & operator if it is not
609 // followed by a postfix-expression suffix.
610 if (isAddressOfOperand
&& isPostfixExpressionSuffixStart())
611 isAddressOfOperand
= false;
613 E
= Actions
.ActOnIdExpression(
614 getCurScope(), SS
, TemplateKWLoc
, Name
, Tok
.is(tok::l_paren
),
615 isAddressOfOperand
, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
620 if (!E
.isInvalid() && !E
.isUnset() && Tok
.is(tok::less
))
621 checkPotentialAngleBracket(E
);
625 /// ParseCXXIdExpression - Handle id-expression.
632 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
634 /// '::' operator-function-id
637 /// NOTE: The standard specifies that, for qualified-id, the parser does not
640 /// '::' conversion-function-id
641 /// '::' '~' class-name
643 /// This may cause a slight inconsistency on diagnostics:
648 /// :: A :: ~ C(); // Some Sema error about using destructor with a
650 /// :: ~ C(); // Some Parser error like 'unexpected ~'.
653 /// We simplify the parser a bit and make it work like:
656 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
657 /// '::' unqualified-id
659 /// That way Sema can handle and report similar errors for namespaces and the
662 /// The isAddressOfOperand parameter indicates that this id-expression is a
663 /// direct operand of the address-of operator. This is, besides member contexts,
664 /// the only place where a qualified-id naming a non-static class member may
667 ExprResult
Parser::ParseCXXIdExpression(bool isAddressOfOperand
) {
669 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
670 // '::' unqualified-id
673 ParseOptionalCXXScopeSpecifier(SS
, /*ObjectType=*/nullptr,
674 /*ObjectHasErrors=*/false,
675 /*EnteringContext=*/false);
679 tryParseCXXIdExpression(SS
, isAddressOfOperand
, Replacement
);
680 if (Result
.isUnset()) {
681 // If the ExprResult is valid but null, then typo correction suggested a
682 // keyword replacement that needs to be reparsed.
683 UnconsumeToken(Replacement
);
684 Result
= tryParseCXXIdExpression(SS
, isAddressOfOperand
, Replacement
);
686 assert(!Result
.isUnset() && "Typo correction suggested a keyword replacement "
687 "for a previous keyword suggestion");
691 /// ParseLambdaExpression - Parse a C++11 lambda expression.
693 /// lambda-expression:
694 /// lambda-introducer lambda-declarator compound-statement
695 /// lambda-introducer '<' template-parameter-list '>'
696 /// requires-clause[opt] lambda-declarator compound-statement
698 /// lambda-introducer:
699 /// '[' lambda-capture[opt] ']'
704 /// capture-default ',' capture-list
712 /// capture-list ',' capture
716 /// init-capture [C++1y]
723 /// init-capture: [C++1y]
724 /// identifier initializer
725 /// '&' identifier initializer
727 /// lambda-declarator:
728 /// lambda-specifiers [C++23]
729 /// '(' parameter-declaration-clause ')' lambda-specifiers
730 /// requires-clause[opt]
732 /// lambda-specifiers:
733 /// decl-specifier-seq[opt] noexcept-specifier[opt]
734 /// attribute-specifier-seq[opt] trailing-return-type[opt]
736 ExprResult
Parser::ParseLambdaExpression() {
737 // Parse lambda-introducer.
738 LambdaIntroducer Intro
;
739 if (ParseLambdaIntroducer(Intro
)) {
740 SkipUntil(tok::r_square
, StopAtSemi
);
741 SkipUntil(tok::l_brace
, StopAtSemi
);
742 SkipUntil(tok::r_brace
, StopAtSemi
);
746 return ParseLambdaExpressionAfterIntroducer(Intro
);
749 /// Use lookahead and potentially tentative parsing to determine if we are
750 /// looking at a C++11 lambda expression, and parse it if we are.
752 /// If we are not looking at a lambda expression, returns ExprError().
753 ExprResult
Parser::TryParseLambdaExpression() {
754 assert(getLangOpts().CPlusPlus11
755 && Tok
.is(tok::l_square
)
756 && "Not at the start of a possible lambda expression.");
758 const Token Next
= NextToken();
759 if (Next
.is(tok::eof
)) // Nothing else to lookup here...
762 const Token After
= GetLookAheadToken(2);
763 // If lookahead indicates this is a lambda...
764 if (Next
.is(tok::r_square
) || // []
765 Next
.is(tok::equal
) || // [=
766 (Next
.is(tok::amp
) && // [&] or [&,
767 After
.isOneOf(tok::r_square
, tok::comma
)) ||
768 (Next
.is(tok::identifier
) && // [identifier]
769 After
.is(tok::r_square
)) ||
770 Next
.is(tok::ellipsis
)) { // [...
771 return ParseLambdaExpression();
774 // If lookahead indicates an ObjC message send...
775 // [identifier identifier
776 if (Next
.is(tok::identifier
) && After
.is(tok::identifier
))
779 // Here, we're stuck: lambda introducers and Objective-C message sends are
780 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
781 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
782 // writing two routines to parse a lambda introducer, just try to parse
783 // a lambda introducer first, and fall back if that fails.
784 LambdaIntroducer Intro
;
786 TentativeParsingAction
TPA(*this);
787 LambdaIntroducerTentativeParse Tentative
;
788 if (ParseLambdaIntroducer(Intro
, &Tentative
)) {
794 case LambdaIntroducerTentativeParse::Success
:
798 case LambdaIntroducerTentativeParse::Incomplete
:
799 // Didn't fully parse the lambda-introducer, try again with a
800 // non-tentative parse.
802 Intro
= LambdaIntroducer();
803 if (ParseLambdaIntroducer(Intro
))
807 case LambdaIntroducerTentativeParse::MessageSend
:
808 case LambdaIntroducerTentativeParse::Invalid
:
809 // Not a lambda-introducer, might be a message send.
815 return ParseLambdaExpressionAfterIntroducer(Intro
);
818 /// Parse a lambda introducer.
819 /// \param Intro A LambdaIntroducer filled in with information about the
820 /// contents of the lambda-introducer.
821 /// \param Tentative If non-null, we are disambiguating between a
822 /// lambda-introducer and some other construct. In this mode, we do not
823 /// produce any diagnostics or take any other irreversible action unless
824 /// we're sure that this is a lambda-expression.
825 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
826 /// the caller should bail out / recover.
827 bool Parser::ParseLambdaIntroducer(LambdaIntroducer
&Intro
,
828 LambdaIntroducerTentativeParse
*Tentative
) {
830 *Tentative
= LambdaIntroducerTentativeParse::Success
;
832 assert(Tok
.is(tok::l_square
) && "Lambda expressions begin with '['.");
833 BalancedDelimiterTracker
T(*this, tok::l_square
);
836 Intro
.Range
.setBegin(T
.getOpenLocation());
840 // Produce a diagnostic if we're not tentatively parsing; otherwise track
841 // that our parse has failed.
842 auto Invalid
= [&](llvm::function_ref
<void()> Action
) {
844 *Tentative
= LambdaIntroducerTentativeParse::Invalid
;
851 // Perform some irreversible action if this is a non-tentative parse;
852 // otherwise note that our actions were incomplete.
853 auto NonTentativeAction
= [&](llvm::function_ref
<void()> Action
) {
855 *Tentative
= LambdaIntroducerTentativeParse::Incomplete
;
860 // Parse capture-default.
861 if (Tok
.is(tok::amp
) &&
862 (NextToken().is(tok::comma
) || NextToken().is(tok::r_square
))) {
863 Intro
.Default
= LCD_ByRef
;
864 Intro
.DefaultLoc
= ConsumeToken();
866 if (!Tok
.getIdentifierInfo()) {
867 // This can only be a lambda; no need for tentative parsing any more.
868 // '[[and]]' can still be an attribute, though.
871 } else if (Tok
.is(tok::equal
)) {
872 Intro
.Default
= LCD_ByCopy
;
873 Intro
.DefaultLoc
= ConsumeToken();
878 while (Tok
.isNot(tok::r_square
)) {
880 if (Tok
.isNot(tok::comma
)) {
881 // Provide a completion for a lambda introducer here. Except
882 // in Objective-C, where this is Almost Surely meant to be a message
883 // send. In that case, fail here and let the ObjC message
884 // expression parser perform the completion.
885 if (Tok
.is(tok::code_completion
) &&
886 !(getLangOpts().ObjC
&& Tentative
)) {
888 Actions
.CodeCompleteLambdaIntroducer(getCurScope(), Intro
,
889 /*AfterAmpersand=*/false);
894 Diag(Tok
.getLocation(), diag::err_expected_comma_or_rsquare
);
900 if (Tok
.is(tok::code_completion
)) {
902 // If we're in Objective-C++ and we have a bare '[', then this is more
903 // likely to be a message receiver.
904 if (getLangOpts().ObjC
&& Tentative
&& First
)
905 Actions
.CodeCompleteObjCMessageReceiver(getCurScope());
907 Actions
.CodeCompleteLambdaIntroducer(getCurScope(), Intro
,
908 /*AfterAmpersand=*/false);
915 LambdaCaptureKind Kind
= LCK_ByCopy
;
916 LambdaCaptureInitKind InitKind
= LambdaCaptureInitKind::NoInit
;
918 IdentifierInfo
*Id
= nullptr;
919 SourceLocation EllipsisLocs
[4];
921 SourceLocation LocStart
= Tok
.getLocation();
923 if (Tok
.is(tok::star
)) {
924 Loc
= ConsumeToken();
925 if (Tok
.is(tok::kw_this
)) {
930 Diag(Tok
.getLocation(), diag::err_expected_star_this_capture
);
933 } else if (Tok
.is(tok::kw_this
)) {
935 Loc
= ConsumeToken();
936 } else if (Tok
.isOneOf(tok::amp
, tok::equal
) &&
937 NextToken().isOneOf(tok::comma
, tok::r_square
) &&
938 Intro
.Default
== LCD_None
) {
939 // We have a lone "&" or "=" which is either a misplaced capture-default
940 // or the start of a capture (in the "&" case) with the rest of the
941 // capture missing. Both are an error but a misplaced capture-default
942 // is more likely if we don't already have a capture default.
944 [&] { Diag(Tok
.getLocation(), diag::err_capture_default_first
); });
946 TryConsumeToken(tok::ellipsis
, EllipsisLocs
[0]);
948 if (Tok
.is(tok::amp
)) {
952 if (Tok
.is(tok::code_completion
)) {
954 Actions
.CodeCompleteLambdaIntroducer(getCurScope(), Intro
,
955 /*AfterAmpersand=*/true);
960 TryConsumeToken(tok::ellipsis
, EllipsisLocs
[1]);
962 if (Tok
.is(tok::identifier
)) {
963 Id
= Tok
.getIdentifierInfo();
964 Loc
= ConsumeToken();
965 } else if (Tok
.is(tok::kw_this
)) {
967 // FIXME: Suggest a fixit here.
968 Diag(Tok
.getLocation(), diag::err_this_captured_by_reference
);
972 Diag(Tok
.getLocation(), diag::err_expected_capture
);
976 TryConsumeToken(tok::ellipsis
, EllipsisLocs
[2]);
978 if (Tok
.is(tok::l_paren
)) {
979 BalancedDelimiterTracker
Parens(*this, tok::l_paren
);
980 Parens
.consumeOpen();
982 InitKind
= LambdaCaptureInitKind::DirectInit
;
987 *Tentative
= LambdaIntroducerTentativeParse::Incomplete
;
988 } else if (ParseExpressionList(Exprs
)) {
992 Parens
.consumeClose();
993 Init
= Actions
.ActOnParenListExpr(Parens
.getOpenLocation(),
994 Parens
.getCloseLocation(),
997 } else if (Tok
.isOneOf(tok::l_brace
, tok::equal
)) {
998 // Each lambda init-capture forms its own full expression, which clears
999 // Actions.MaybeODRUseExprs. So create an expression evaluation context
1000 // to save the necessary state, and restore it later.
1001 EnterExpressionEvaluationContext
EC(
1002 Actions
, Sema::ExpressionEvaluationContext::PotentiallyEvaluated
);
1004 if (TryConsumeToken(tok::equal
))
1005 InitKind
= LambdaCaptureInitKind::CopyInit
;
1007 InitKind
= LambdaCaptureInitKind::ListInit
;
1010 Init
= ParseInitializer();
1011 } else if (Tok
.is(tok::l_brace
)) {
1012 BalancedDelimiterTracker
Braces(*this, tok::l_brace
);
1013 Braces
.consumeOpen();
1015 *Tentative
= LambdaIntroducerTentativeParse::Incomplete
;
1017 // We're disambiguating this:
1021 // We need to find the end of the following expression in order to
1022 // determine whether this is an Obj-C message send's receiver, a
1023 // C99 designator, or a lambda init-capture.
1025 // Parse the expression to find where it ends, and annotate it back
1026 // onto the tokens. We would have parsed this expression the same way
1027 // in either case: both the RHS of an init-capture and the RHS of an
1028 // assignment expression are parsed as an initializer-clause, and in
1029 // neither case can anything be added to the scope between the '[' and
1032 // FIXME: This is horrible. Adding a mechanism to skip an expression
1033 // would be much cleaner.
1034 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1035 // that instead. (And if we see a ':' with no matching '?', we can
1036 // classify this as an Obj-C message send.)
1037 SourceLocation StartLoc
= Tok
.getLocation();
1038 InMessageExpressionRAIIObject
MaybeInMessageExpression(*this, true);
1039 Init
= ParseInitializer();
1040 if (!Init
.isInvalid())
1041 Init
= Actions
.CorrectDelayedTyposInExpr(Init
.get());
1043 if (Tok
.getLocation() != StartLoc
) {
1044 // Back out the lexing of the token after the initializer.
1045 PP
.RevertCachedTokens(1);
1047 // Replace the consumed tokens with an appropriate annotation.
1048 Tok
.setLocation(StartLoc
);
1049 Tok
.setKind(tok::annot_primary_expr
);
1050 setExprAnnotation(Tok
, Init
);
1051 Tok
.setAnnotationEndLoc(PP
.getLastCachedTokenLocation());
1052 PP
.AnnotateCachedTokens(Tok
);
1054 // Consume the annotated initializer.
1055 ConsumeAnnotationToken();
1060 TryConsumeToken(tok::ellipsis
, EllipsisLocs
[3]);
1063 // Check if this is a message send before we act on a possible init-capture.
1064 if (Tentative
&& Tok
.is(tok::identifier
) &&
1065 NextToken().isOneOf(tok::colon
, tok::r_square
)) {
1066 // This can only be a message send. We're done with disambiguation.
1067 *Tentative
= LambdaIntroducerTentativeParse::MessageSend
;
1071 // Ensure that any ellipsis was in the right place.
1072 SourceLocation EllipsisLoc
;
1073 if (llvm::any_of(EllipsisLocs
,
1074 [](SourceLocation Loc
) { return Loc
.isValid(); })) {
1075 // The '...' should appear before the identifier in an init-capture, and
1076 // after the identifier otherwise.
1077 bool InitCapture
= InitKind
!= LambdaCaptureInitKind::NoInit
;
1078 SourceLocation
*ExpectedEllipsisLoc
=
1079 !InitCapture
? &EllipsisLocs
[2] :
1080 Kind
== LCK_ByRef
? &EllipsisLocs
[1] :
1082 EllipsisLoc
= *ExpectedEllipsisLoc
;
1084 unsigned DiagID
= 0;
1085 if (EllipsisLoc
.isInvalid()) {
1086 DiagID
= diag::err_lambda_capture_misplaced_ellipsis
;
1087 for (SourceLocation Loc
: EllipsisLocs
) {
1092 unsigned NumEllipses
= std::accumulate(
1093 std::begin(EllipsisLocs
), std::end(EllipsisLocs
), 0,
1094 [](int N
, SourceLocation Loc
) { return N
+ Loc
.isValid(); });
1095 if (NumEllipses
> 1)
1096 DiagID
= diag::err_lambda_capture_multiple_ellipses
;
1099 NonTentativeAction([&] {
1100 // Point the diagnostic at the first misplaced ellipsis.
1101 SourceLocation DiagLoc
;
1102 for (SourceLocation
&Loc
: EllipsisLocs
) {
1103 if (&Loc
!= ExpectedEllipsisLoc
&& Loc
.isValid()) {
1108 assert(DiagLoc
.isValid() && "no location for diagnostic");
1110 // Issue the diagnostic and produce fixits showing where the ellipsis
1111 // should have been written.
1112 auto &&D
= Diag(DiagLoc
, DiagID
);
1113 if (DiagID
== diag::err_lambda_capture_misplaced_ellipsis
) {
1114 SourceLocation ExpectedLoc
=
1116 : Lexer::getLocForEndOfToken(
1117 Loc
, 0, PP
.getSourceManager(), getLangOpts());
1118 D
<< InitCapture
<< FixItHint::CreateInsertion(ExpectedLoc
, "...");
1120 for (SourceLocation
&Loc
: EllipsisLocs
) {
1121 if (&Loc
!= ExpectedEllipsisLoc
&& Loc
.isValid())
1122 D
<< FixItHint::CreateRemoval(Loc
);
1128 // Process the init-capture initializers now rather than delaying until we
1129 // form the lambda-expression so that they can be handled in the context
1130 // enclosing the lambda-expression, rather than in the context of the
1131 // lambda-expression itself.
1132 ParsedType InitCaptureType
;
1133 if (Init
.isUsable())
1134 Init
= Actions
.CorrectDelayedTyposInExpr(Init
.get());
1135 if (Init
.isUsable()) {
1136 NonTentativeAction([&] {
1137 // Get the pointer and store it in an lvalue, so we can use it as an
1139 Expr
*InitExpr
= Init
.get();
1140 // This performs any lvalue-to-rvalue conversions if necessary, which
1141 // can affect what gets captured in the containing decl-context.
1142 InitCaptureType
= Actions
.actOnLambdaInitCaptureInitialization(
1143 Loc
, Kind
== LCK_ByRef
, EllipsisLoc
, Id
, InitKind
, InitExpr
);
1148 SourceLocation LocEnd
= PrevTokLocation
;
1150 Intro
.addCapture(Kind
, Loc
, Id
, EllipsisLoc
, InitKind
, Init
,
1151 InitCaptureType
, SourceRange(LocStart
, LocEnd
));
1155 Intro
.Range
.setEnd(T
.getCloseLocation());
1159 static void tryConsumeLambdaSpecifierToken(Parser
&P
,
1160 SourceLocation
&MutableLoc
,
1161 SourceLocation
&StaticLoc
,
1162 SourceLocation
&ConstexprLoc
,
1163 SourceLocation
&ConstevalLoc
,
1164 SourceLocation
&DeclEndLoc
) {
1165 assert(MutableLoc
.isInvalid());
1166 assert(StaticLoc
.isInvalid());
1167 assert(ConstexprLoc
.isInvalid());
1168 assert(ConstevalLoc
.isInvalid());
1169 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1170 // to the final of those locations. Emit an error if we have multiple
1171 // copies of those keywords and recover.
1173 auto ConsumeLocation
= [&P
, &DeclEndLoc
](SourceLocation
&SpecifierLoc
,
1175 if (SpecifierLoc
.isValid()) {
1176 P
.Diag(P
.getCurToken().getLocation(),
1177 diag::err_lambda_decl_specifier_repeated
)
1179 << FixItHint::CreateRemoval(P
.getCurToken().getLocation());
1181 SpecifierLoc
= P
.ConsumeToken();
1182 DeclEndLoc
= SpecifierLoc
;
1186 switch (P
.getCurToken().getKind()) {
1187 case tok::kw_mutable
:
1188 ConsumeLocation(MutableLoc
, 0);
1190 case tok::kw_static
:
1191 ConsumeLocation(StaticLoc
, 1);
1193 case tok::kw_constexpr
:
1194 ConsumeLocation(ConstexprLoc
, 2);
1196 case tok::kw_consteval
:
1197 ConsumeLocation(ConstevalLoc
, 3);
1205 static void addStaticToLambdaDeclSpecifier(Parser
&P
, SourceLocation StaticLoc
,
1207 if (StaticLoc
.isValid()) {
1208 P
.Diag(StaticLoc
, !P
.getLangOpts().CPlusPlus23
1209 ? diag::err_static_lambda
1210 : diag::warn_cxx20_compat_static_lambda
);
1211 const char *PrevSpec
= nullptr;
1212 unsigned DiagID
= 0;
1213 DS
.SetStorageClassSpec(P
.getActions(), DeclSpec::SCS_static
, StaticLoc
,
1215 P
.getActions().getASTContext().getPrintingPolicy());
1216 assert(PrevSpec
== nullptr && DiagID
== 0 &&
1217 "Static cannot have been set previously!");
1222 addConstexprToLambdaDeclSpecifier(Parser
&P
, SourceLocation ConstexprLoc
,
1224 if (ConstexprLoc
.isValid()) {
1225 P
.Diag(ConstexprLoc
, !P
.getLangOpts().CPlusPlus17
1226 ? diag::ext_constexpr_on_lambda_cxx17
1227 : diag::warn_cxx14_compat_constexpr_on_lambda
);
1228 const char *PrevSpec
= nullptr;
1229 unsigned DiagID
= 0;
1230 DS
.SetConstexprSpec(ConstexprSpecKind::Constexpr
, ConstexprLoc
, PrevSpec
,
1232 assert(PrevSpec
== nullptr && DiagID
== 0 &&
1233 "Constexpr cannot have been set previously!");
1237 static void addConstevalToLambdaDeclSpecifier(Parser
&P
,
1238 SourceLocation ConstevalLoc
,
1240 if (ConstevalLoc
.isValid()) {
1241 P
.Diag(ConstevalLoc
, diag::warn_cxx20_compat_consteval
);
1242 const char *PrevSpec
= nullptr;
1243 unsigned DiagID
= 0;
1244 DS
.SetConstexprSpec(ConstexprSpecKind::Consteval
, ConstevalLoc
, PrevSpec
,
1247 P
.Diag(ConstevalLoc
, DiagID
) << PrevSpec
;
1251 static void DiagnoseStaticSpecifierRestrictions(Parser
&P
,
1252 SourceLocation StaticLoc
,
1253 SourceLocation MutableLoc
,
1254 const LambdaIntroducer
&Intro
) {
1255 if (StaticLoc
.isInvalid())
1258 // [expr.prim.lambda.general] p4
1259 // The lambda-specifier-seq shall not contain both mutable and static.
1260 // If the lambda-specifier-seq contains static, there shall be no
1262 if (MutableLoc
.isValid())
1263 P
.Diag(StaticLoc
, diag::err_static_mutable_lambda
);
1264 if (Intro
.hasLambdaCapture()) {
1265 P
.Diag(StaticLoc
, diag::err_static_lambda_captures
);
1269 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1271 ExprResult
Parser::ParseLambdaExpressionAfterIntroducer(
1272 LambdaIntroducer
&Intro
) {
1273 SourceLocation LambdaBeginLoc
= Intro
.Range
.getBegin();
1274 Diag(LambdaBeginLoc
, diag::warn_cxx98_compat_lambda
);
1276 PrettyStackTraceLoc
CrashInfo(PP
.getSourceManager(), LambdaBeginLoc
,
1277 "lambda expression parsing");
1279 // Parse lambda-declarator[opt].
1280 DeclSpec
DS(AttrFactory
);
1281 Declarator
D(DS
, ParsedAttributesView::none(), DeclaratorContext::LambdaExpr
);
1282 TemplateParameterDepthRAII
CurTemplateDepthTracker(TemplateParameterDepth
);
1284 ParseScope
LambdaScope(this, Scope::LambdaScope
| Scope::DeclScope
|
1285 Scope::FunctionDeclarationScope
|
1286 Scope::FunctionPrototypeScope
);
1288 Actions
.PushLambdaScope();
1289 Actions
.ActOnLambdaExpressionAfterIntroducer(Intro
, getCurScope());
1291 ParsedAttributes
Attributes(AttrFactory
);
1292 if (getLangOpts().CUDA
) {
1293 // In CUDA code, GNU attributes are allowed to appear immediately after the
1294 // "[...]", even if there is no "(...)" before the lambda body.
1296 // Note that we support __noinline__ as a keyword in this mode and thus
1297 // it has to be separately handled.
1299 if (Tok
.is(tok::kw___noinline__
)) {
1300 IdentifierInfo
*AttrName
= Tok
.getIdentifierInfo();
1301 SourceLocation AttrNameLoc
= ConsumeToken();
1302 Attributes
.addNew(AttrName
, AttrNameLoc
, /*ScopeName=*/nullptr,
1303 AttrNameLoc
, /*ArgsUnion=*/nullptr,
1304 /*numArgs=*/0, tok::kw___noinline__
);
1305 } else if (Tok
.is(tok::kw___attribute
))
1306 ParseGNUAttributes(Attributes
, /*LatePArsedAttrList=*/nullptr, &D
);
1311 D
.takeAttributes(Attributes
);
1314 MultiParseScope
TemplateParamScope(*this);
1315 if (Tok
.is(tok::less
)) {
1316 Diag(Tok
, getLangOpts().CPlusPlus20
1317 ? diag::warn_cxx17_compat_lambda_template_parameter_list
1318 : diag::ext_lambda_template_parameter_list
);
1320 SmallVector
<NamedDecl
*, 4> TemplateParams
;
1321 SourceLocation LAngleLoc
, RAngleLoc
;
1322 if (ParseTemplateParameters(TemplateParamScope
,
1323 CurTemplateDepthTracker
.getDepth(),
1324 TemplateParams
, LAngleLoc
, RAngleLoc
)) {
1325 Actions
.ActOnLambdaError(LambdaBeginLoc
, getCurScope());
1329 if (TemplateParams
.empty()) {
1331 diag::err_lambda_template_parameter_list_empty
);
1333 ExprResult RequiresClause
;
1334 if (TryConsumeToken(tok::kw_requires
)) {
1336 Actions
.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1337 /*IsTrailingRequiresClause=*/false));
1338 if (RequiresClause
.isInvalid())
1339 SkipUntil({tok::l_brace
, tok::l_paren
}, StopAtSemi
| StopBeforeMatch
);
1342 Actions
.ActOnLambdaExplicitTemplateParameterList(
1343 Intro
, LAngleLoc
, TemplateParams
, RAngleLoc
, RequiresClause
);
1344 ++CurTemplateDepthTracker
;
1348 // Implement WG21 P2173, which allows attributes immediately before the
1349 // lambda declarator and applies them to the corresponding function operator
1350 // or operator template declaration. We accept this as a conforming extension
1351 // in all language modes that support lambdas.
1352 if (isCXX11AttributeSpecifier()) {
1353 Diag(Tok
, getLangOpts().CPlusPlus23
1354 ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1355 : diag::ext_decl_attrs_on_lambda
)
1356 << Tok
.getIdentifierInfo() << Tok
.isRegularKeywordAttribute();
1357 MaybeParseCXX11Attributes(D
);
1360 TypeResult TrailingReturnType
;
1361 SourceLocation TrailingReturnTypeLoc
;
1362 SourceLocation LParenLoc
, RParenLoc
;
1363 SourceLocation DeclEndLoc
;
1364 bool HasParentheses
= false;
1365 bool HasSpecifiers
= false;
1366 SourceLocation MutableLoc
;
1368 ParseScope
Prototype(this, Scope::FunctionPrototypeScope
|
1369 Scope::FunctionDeclarationScope
|
1372 // Parse parameter-declaration-clause.
1373 SmallVector
<DeclaratorChunk::ParamInfo
, 16> ParamInfo
;
1374 SourceLocation EllipsisLoc
;
1376 if (Tok
.is(tok::l_paren
)) {
1377 BalancedDelimiterTracker
T(*this, tok::l_paren
);
1379 LParenLoc
= T
.getOpenLocation();
1381 if (Tok
.isNot(tok::r_paren
)) {
1382 Actions
.RecordParsingTemplateParameterDepth(
1383 CurTemplateDepthTracker
.getOriginalDepth());
1385 ParseParameterDeclarationClause(D
, Attributes
, ParamInfo
, EllipsisLoc
);
1386 // For a generic lambda, each 'auto' within the parameter declaration
1387 // clause creates a template type parameter, so increment the depth.
1388 // If we've parsed any explicit template parameters, then the depth will
1389 // have already been incremented. So we make sure that at most a single
1390 // depth level is added.
1391 if (Actions
.getCurGenericLambda())
1392 CurTemplateDepthTracker
.setAddedDepth(1);
1396 DeclEndLoc
= RParenLoc
= T
.getCloseLocation();
1397 HasParentheses
= true;
1401 Tok
.isOneOf(tok::kw_mutable
, tok::arrow
, tok::kw___attribute
,
1402 tok::kw_constexpr
, tok::kw_consteval
, tok::kw_static
,
1403 tok::kw___private
, tok::kw___global
, tok::kw___local
,
1404 tok::kw___constant
, tok::kw___generic
, tok::kw_groupshared
,
1405 tok::kw_requires
, tok::kw_noexcept
) ||
1406 Tok
.isRegularKeywordAttribute() ||
1407 (Tok
.is(tok::l_square
) && NextToken().is(tok::l_square
));
1409 if (HasSpecifiers
&& !HasParentheses
&& !getLangOpts().CPlusPlus23
) {
1410 // It's common to forget that one needs '()' before 'mutable', an
1411 // attribute specifier, the result type, or the requires clause. Deal with
1413 Diag(Tok
, diag::ext_lambda_missing_parens
)
1414 << FixItHint::CreateInsertion(Tok
.getLocation(), "() ");
1417 if (HasParentheses
|| HasSpecifiers
) {
1418 // GNU-style attributes must be parsed before the mutable specifier to
1419 // be compatible with GCC. MSVC-style attributes must be parsed before
1420 // the mutable specifier to be compatible with MSVC.
1421 MaybeParseAttributes(PAKM_GNU
| PAKM_Declspec
, Attributes
);
1422 // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1424 SourceLocation ConstexprLoc
;
1425 SourceLocation ConstevalLoc
;
1426 SourceLocation StaticLoc
;
1428 tryConsumeLambdaSpecifierToken(*this, MutableLoc
, StaticLoc
, ConstexprLoc
,
1429 ConstevalLoc
, DeclEndLoc
);
1431 DiagnoseStaticSpecifierRestrictions(*this, StaticLoc
, MutableLoc
, Intro
);
1433 addStaticToLambdaDeclSpecifier(*this, StaticLoc
, DS
);
1434 addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc
, DS
);
1435 addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc
, DS
);
1438 Actions
.ActOnLambdaClosureParameters(getCurScope(), ParamInfo
);
1440 if (!HasParentheses
)
1441 Actions
.ActOnLambdaClosureQualifiers(Intro
, MutableLoc
);
1443 if (HasSpecifiers
|| HasParentheses
) {
1444 // Parse exception-specification[opt].
1445 ExceptionSpecificationType ESpecType
= EST_None
;
1446 SourceRange ESpecRange
;
1447 SmallVector
<ParsedType
, 2> DynamicExceptions
;
1448 SmallVector
<SourceRange
, 2> DynamicExceptionRanges
;
1449 ExprResult NoexceptExpr
;
1450 CachedTokens
*ExceptionSpecTokens
;
1452 ESpecType
= tryParseExceptionSpecification(
1453 /*Delayed=*/false, ESpecRange
, DynamicExceptions
,
1454 DynamicExceptionRanges
, NoexceptExpr
, ExceptionSpecTokens
);
1456 if (ESpecType
!= EST_None
)
1457 DeclEndLoc
= ESpecRange
.getEnd();
1459 // Parse attribute-specifier[opt].
1460 if (MaybeParseCXX11Attributes(Attributes
))
1461 DeclEndLoc
= Attributes
.Range
.getEnd();
1463 // Parse OpenCL addr space attribute.
1464 if (Tok
.isOneOf(tok::kw___private
, tok::kw___global
, tok::kw___local
,
1465 tok::kw___constant
, tok::kw___generic
)) {
1466 ParseOpenCLQualifiers(DS
.getAttributes());
1470 SourceLocation FunLocalRangeEnd
= DeclEndLoc
;
1472 // Parse trailing-return-type[opt].
1473 if (Tok
.is(tok::arrow
)) {
1474 FunLocalRangeEnd
= Tok
.getLocation();
1476 TrailingReturnType
=
1477 ParseTrailingReturnType(Range
, /*MayBeFollowedByDirectInit=*/false);
1478 TrailingReturnTypeLoc
= Range
.getBegin();
1479 if (Range
.getEnd().isValid())
1480 DeclEndLoc
= Range
.getEnd();
1483 SourceLocation NoLoc
;
1484 D
.AddTypeInfo(DeclaratorChunk::getFunction(
1486 /*IsAmbiguous=*/false, LParenLoc
, ParamInfo
.data(),
1487 ParamInfo
.size(), EllipsisLoc
, RParenLoc
,
1488 /*RefQualifierIsLvalueRef=*/true,
1489 /*RefQualifierLoc=*/NoLoc
, MutableLoc
, ESpecType
,
1490 ESpecRange
, DynamicExceptions
.data(),
1491 DynamicExceptionRanges
.data(), DynamicExceptions
.size(),
1492 NoexceptExpr
.isUsable() ? NoexceptExpr
.get() : nullptr,
1493 /*ExceptionSpecTokens*/ nullptr,
1494 /*DeclsInPrototype=*/std::nullopt
, LParenLoc
,
1495 FunLocalRangeEnd
, D
, TrailingReturnType
,
1496 TrailingReturnTypeLoc
, &DS
),
1497 std::move(Attributes
), DeclEndLoc
);
1499 Actions
.ActOnLambdaClosureQualifiers(Intro
, MutableLoc
);
1501 if (HasParentheses
&& Tok
.is(tok::kw_requires
))
1502 ParseTrailingRequiresClause(D
);
1505 // Emit a warning if we see a CUDA host/device/global attribute
1506 // after '(...)'. nvcc doesn't accept this.
1507 if (getLangOpts().CUDA
) {
1508 for (const ParsedAttr
&A
: Attributes
)
1509 if (A
.getKind() == ParsedAttr::AT_CUDADevice
||
1510 A
.getKind() == ParsedAttr::AT_CUDAHost
||
1511 A
.getKind() == ParsedAttr::AT_CUDAGlobal
)
1512 Diag(A
.getLoc(), diag::warn_cuda_attr_lambda_position
)
1513 << A
.getAttrName()->getName();
1518 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1520 unsigned ScopeFlags
= Scope::BlockScope
| Scope::FnScope
| Scope::DeclScope
|
1521 Scope::CompoundStmtScope
;
1522 ParseScope
BodyScope(this, ScopeFlags
);
1524 Actions
.ActOnStartOfLambdaDefinition(Intro
, D
, DS
);
1526 // Parse compound-statement.
1527 if (!Tok
.is(tok::l_brace
)) {
1528 Diag(Tok
, diag::err_expected_lambda_body
);
1529 Actions
.ActOnLambdaError(LambdaBeginLoc
, getCurScope());
1533 StmtResult
Stmt(ParseCompoundStatementBody());
1535 TemplateParamScope
.Exit();
1538 if (!Stmt
.isInvalid() && !TrailingReturnType
.isInvalid() &&
1540 return Actions
.ActOnLambdaExpr(LambdaBeginLoc
, Stmt
.get());
1542 Actions
.ActOnLambdaError(LambdaBeginLoc
, getCurScope());
1546 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1549 /// postfix-expression: [C++ 5.2p1]
1550 /// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1551 /// 'static_cast' '<' type-name '>' '(' expression ')'
1552 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1553 /// 'const_cast' '<' type-name '>' '(' expression ')'
1555 /// C++ for OpenCL s2.3.1 adds:
1556 /// 'addrspace_cast' '<' type-name '>' '(' expression ')'
1557 ExprResult
Parser::ParseCXXCasts() {
1558 tok::TokenKind Kind
= Tok
.getKind();
1559 const char *CastName
= nullptr; // For error messages
1562 default: llvm_unreachable("Unknown C++ cast!");
1563 case tok::kw_addrspace_cast
: CastName
= "addrspace_cast"; break;
1564 case tok::kw_const_cast
: CastName
= "const_cast"; break;
1565 case tok::kw_dynamic_cast
: CastName
= "dynamic_cast"; break;
1566 case tok::kw_reinterpret_cast
: CastName
= "reinterpret_cast"; break;
1567 case tok::kw_static_cast
: CastName
= "static_cast"; break;
1570 SourceLocation OpLoc
= ConsumeToken();
1571 SourceLocation LAngleBracketLoc
= Tok
.getLocation();
1573 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1574 // diagnose error, suggest fix, and recover parsing.
1575 if (Tok
.is(tok::l_square
) && Tok
.getLength() == 2) {
1576 Token Next
= NextToken();
1577 if (Next
.is(tok::colon
) && areTokensAdjacent(Tok
, Next
))
1578 FixDigraph(*this, PP
, Tok
, Next
, Kind
, /*AtDigraph*/true);
1581 if (ExpectAndConsume(tok::less
, diag::err_expected_less_after
, CastName
))
1584 // Parse the common declaration-specifiers piece.
1585 DeclSpec
DS(AttrFactory
);
1586 ParseSpecifierQualifierList(DS
, /*AccessSpecifier=*/AS_none
,
1587 DeclSpecContext::DSC_type_specifier
);
1589 // Parse the abstract-declarator, if present.
1590 Declarator
DeclaratorInfo(DS
, ParsedAttributesView::none(),
1591 DeclaratorContext::TypeName
);
1592 ParseDeclarator(DeclaratorInfo
);
1594 SourceLocation RAngleBracketLoc
= Tok
.getLocation();
1596 if (ExpectAndConsume(tok::greater
))
1597 return ExprError(Diag(LAngleBracketLoc
, diag::note_matching
) << tok::less
);
1599 BalancedDelimiterTracker
T(*this, tok::l_paren
);
1601 if (T
.expectAndConsume(diag::err_expected_lparen_after
, CastName
))
1604 ExprResult Result
= ParseExpression();
1609 if (!Result
.isInvalid() && !DeclaratorInfo
.isInvalidType())
1610 Result
= Actions
.ActOnCXXNamedCast(OpLoc
, Kind
,
1611 LAngleBracketLoc
, DeclaratorInfo
,
1613 T
.getOpenLocation(), Result
.get(),
1614 T
.getCloseLocation());
1619 /// ParseCXXTypeid - This handles the C++ typeid expression.
1621 /// postfix-expression: [C++ 5.2p1]
1622 /// 'typeid' '(' expression ')'
1623 /// 'typeid' '(' type-id ')'
1625 ExprResult
Parser::ParseCXXTypeid() {
1626 assert(Tok
.is(tok::kw_typeid
) && "Not 'typeid'!");
1628 SourceLocation OpLoc
= ConsumeToken();
1629 SourceLocation LParenLoc
, RParenLoc
;
1630 BalancedDelimiterTracker
T(*this, tok::l_paren
);
1632 // typeid expressions are always parenthesized.
1633 if (T
.expectAndConsume(diag::err_expected_lparen_after
, "typeid"))
1635 LParenLoc
= T
.getOpenLocation();
1639 // C++0x [expr.typeid]p3:
1640 // When typeid is applied to an expression other than an lvalue of a
1641 // polymorphic class type [...] The expression is an unevaluated
1642 // operand (Clause 5).
1644 // Note that we can't tell whether the expression is an lvalue of a
1645 // polymorphic class type until after we've parsed the expression; we
1646 // speculatively assume the subexpression is unevaluated, and fix it up
1649 // We enter the unevaluated context before trying to determine whether we
1650 // have a type-id, because the tentative parse logic will try to resolve
1651 // names, and must treat them as unevaluated.
1652 EnterExpressionEvaluationContext
Unevaluated(
1653 Actions
, Sema::ExpressionEvaluationContext::Unevaluated
,
1654 Sema::ReuseLambdaContextDecl
);
1656 if (isTypeIdInParens()) {
1657 TypeResult Ty
= ParseTypeName();
1661 RParenLoc
= T
.getCloseLocation();
1662 if (Ty
.isInvalid() || RParenLoc
.isInvalid())
1665 Result
= Actions
.ActOnCXXTypeid(OpLoc
, LParenLoc
, /*isType=*/true,
1666 Ty
.get().getAsOpaquePtr(), RParenLoc
);
1668 Result
= ParseExpression();
1671 if (Result
.isInvalid())
1672 SkipUntil(tok::r_paren
, StopAtSemi
);
1675 RParenLoc
= T
.getCloseLocation();
1676 if (RParenLoc
.isInvalid())
1679 Result
= Actions
.ActOnCXXTypeid(OpLoc
, LParenLoc
, /*isType=*/false,
1680 Result
.get(), RParenLoc
);
1687 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1689 /// '__uuidof' '(' expression ')'
1690 /// '__uuidof' '(' type-id ')'
1692 ExprResult
Parser::ParseCXXUuidof() {
1693 assert(Tok
.is(tok::kw___uuidof
) && "Not '__uuidof'!");
1695 SourceLocation OpLoc
= ConsumeToken();
1696 BalancedDelimiterTracker
T(*this, tok::l_paren
);
1698 // __uuidof expressions are always parenthesized.
1699 if (T
.expectAndConsume(diag::err_expected_lparen_after
, "__uuidof"))
1704 if (isTypeIdInParens()) {
1705 TypeResult Ty
= ParseTypeName();
1713 Result
= Actions
.ActOnCXXUuidof(OpLoc
, T
.getOpenLocation(), /*isType=*/true,
1714 Ty
.get().getAsOpaquePtr(),
1715 T
.getCloseLocation());
1717 EnterExpressionEvaluationContext
Unevaluated(
1718 Actions
, Sema::ExpressionEvaluationContext::Unevaluated
);
1719 Result
= ParseExpression();
1722 if (Result
.isInvalid())
1723 SkipUntil(tok::r_paren
, StopAtSemi
);
1727 Result
= Actions
.ActOnCXXUuidof(OpLoc
, T
.getOpenLocation(),
1729 Result
.get(), T
.getCloseLocation());
1736 /// Parse a C++ pseudo-destructor expression after the base,
1737 /// . or -> operator, and nested-name-specifier have already been
1738 /// parsed. We're handling this fragment of the grammar:
1740 /// postfix-expression: [C++2a expr.post]
1741 /// postfix-expression . template[opt] id-expression
1742 /// postfix-expression -> template[opt] id-expression
1749 /// nested-name-specifier template[opt] unqualified-id
1751 /// nested-name-specifier:
1753 /// decltype-specifier :: FIXME: not implemented, but probably only
1754 /// allowed in C++ grammar by accident
1755 /// nested-name-specifier identifier ::
1756 /// nested-name-specifier template[opt] simple-template-id ::
1761 /// ~ decltype-specifier
1764 /// ... where the all but the last component of the nested-name-specifier
1765 /// has already been parsed, and the base expression is not of a non-dependent
1768 Parser::ParseCXXPseudoDestructor(Expr
*Base
, SourceLocation OpLoc
,
1769 tok::TokenKind OpKind
,
1771 ParsedType ObjectType
) {
1772 // If the last component of the (optional) nested-name-specifier is
1773 // template[opt] simple-template-id, it has already been annotated.
1774 UnqualifiedId FirstTypeName
;
1775 SourceLocation CCLoc
;
1776 if (Tok
.is(tok::identifier
)) {
1777 FirstTypeName
.setIdentifier(Tok
.getIdentifierInfo(), Tok
.getLocation());
1779 assert(Tok
.is(tok::coloncolon
) &&"ParseOptionalCXXScopeSpecifier fail");
1780 CCLoc
= ConsumeToken();
1781 } else if (Tok
.is(tok::annot_template_id
)) {
1782 TemplateIdAnnotation
*TemplateId
= takeTemplateIdAnnotation(Tok
);
1783 // FIXME: Carry on and build an AST representation for tooling.
1784 if (TemplateId
->isInvalid())
1786 FirstTypeName
.setTemplateId(TemplateId
);
1787 ConsumeAnnotationToken();
1788 assert(Tok
.is(tok::coloncolon
) &&"ParseOptionalCXXScopeSpecifier fail");
1789 CCLoc
= ConsumeToken();
1791 assert(SS
.isEmpty() && "missing last component of nested name specifier");
1792 FirstTypeName
.setIdentifier(nullptr, SourceLocation());
1796 assert(Tok
.is(tok::tilde
) && "ParseOptionalCXXScopeSpecifier fail");
1797 SourceLocation TildeLoc
= ConsumeToken();
1799 if (Tok
.is(tok::kw_decltype
) && !FirstTypeName
.isValid()) {
1800 DeclSpec
DS(AttrFactory
);
1801 ParseDecltypeSpecifier(DS
);
1802 if (DS
.getTypeSpecType() == TST_error
)
1804 return Actions
.ActOnPseudoDestructorExpr(getCurScope(), Base
, OpLoc
, OpKind
,
1808 if (!Tok
.is(tok::identifier
)) {
1809 Diag(Tok
, diag::err_destructor_tilde_identifier
);
1813 // Parse the second type.
1814 UnqualifiedId SecondTypeName
;
1815 IdentifierInfo
*Name
= Tok
.getIdentifierInfo();
1816 SourceLocation NameLoc
= ConsumeToken();
1817 SecondTypeName
.setIdentifier(Name
, NameLoc
);
1819 // If there is a '<', the second type name is a template-id. Parse
1822 // FIXME: This is not a context in which a '<' is assumed to start a template
1823 // argument list. This affects examples such as
1824 // void f(auto *p) { p->~X<int>(); }
1825 // ... but there's no ambiguity, and nowhere to write 'template' in such an
1826 // example, so we accept it anyway.
1827 if (Tok
.is(tok::less
) &&
1828 ParseUnqualifiedIdTemplateId(
1829 SS
, ObjectType
, Base
&& Base
->containsErrors(), SourceLocation(),
1830 Name
, NameLoc
, false, SecondTypeName
,
1831 /*AssumeTemplateId=*/true))
1834 return Actions
.ActOnPseudoDestructorExpr(getCurScope(), Base
, OpLoc
, OpKind
,
1835 SS
, FirstTypeName
, CCLoc
, TildeLoc
,
1839 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1841 /// boolean-literal: [C++ 2.13.5]
1844 ExprResult
Parser::ParseCXXBoolLiteral() {
1845 tok::TokenKind Kind
= Tok
.getKind();
1846 return Actions
.ActOnCXXBoolLiteral(ConsumeToken(), Kind
);
1849 /// ParseThrowExpression - This handles the C++ throw expression.
1851 /// throw-expression: [C++ 15]
1852 /// 'throw' assignment-expression[opt]
1853 ExprResult
Parser::ParseThrowExpression() {
1854 assert(Tok
.is(tok::kw_throw
) && "Not throw!");
1855 SourceLocation ThrowLoc
= ConsumeToken(); // Eat the throw token.
1857 // If the current token isn't the start of an assignment-expression,
1858 // then the expression is not present. This handles things like:
1859 // "C ? throw : (void)42", which is crazy but legal.
1860 switch (Tok
.getKind()) { // FIXME: move this predicate somewhere common.
1867 return Actions
.ActOnCXXThrow(getCurScope(), ThrowLoc
, nullptr);
1870 ExprResult
Expr(ParseAssignmentExpression());
1871 if (Expr
.isInvalid()) return Expr
;
1872 return Actions
.ActOnCXXThrow(getCurScope(), ThrowLoc
, Expr
.get());
1876 /// Parse the C++ Coroutines co_yield expression.
1878 /// co_yield-expression:
1879 /// 'co_yield' assignment-expression[opt]
1880 ExprResult
Parser::ParseCoyieldExpression() {
1881 assert(Tok
.is(tok::kw_co_yield
) && "Not co_yield!");
1883 SourceLocation Loc
= ConsumeToken();
1884 ExprResult Expr
= Tok
.is(tok::l_brace
) ? ParseBraceInitializer()
1885 : ParseAssignmentExpression();
1886 if (!Expr
.isInvalid())
1887 Expr
= Actions
.ActOnCoyieldExpr(getCurScope(), Loc
, Expr
.get());
1891 /// ParseCXXThis - This handles the C++ 'this' pointer.
1893 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1894 /// a non-lvalue expression whose value is the address of the object for which
1895 /// the function is called.
1896 ExprResult
Parser::ParseCXXThis() {
1897 assert(Tok
.is(tok::kw_this
) && "Not 'this'!");
1898 SourceLocation ThisLoc
= ConsumeToken();
1899 return Actions
.ActOnCXXThis(ThisLoc
);
1902 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1903 /// Can be interpreted either as function-style casting ("int(x)")
1904 /// or class type construction ("ClassType(x,y,z)")
1905 /// or creation of a value-initialized type ("int()").
1906 /// See [C++ 5.2.3].
1908 /// postfix-expression: [C++ 5.2p1]
1909 /// simple-type-specifier '(' expression-list[opt] ')'
1910 /// [C++0x] simple-type-specifier braced-init-list
1911 /// typename-specifier '(' expression-list[opt] ')'
1912 /// [C++0x] typename-specifier braced-init-list
1914 /// In C++1z onwards, the type specifier can also be a template-name.
1916 Parser::ParseCXXTypeConstructExpression(const DeclSpec
&DS
) {
1917 Declarator
DeclaratorInfo(DS
, ParsedAttributesView::none(),
1918 DeclaratorContext::FunctionalCast
);
1919 ParsedType TypeRep
= Actions
.ActOnTypeName(getCurScope(), DeclaratorInfo
).get();
1921 assert((Tok
.is(tok::l_paren
) ||
1922 (getLangOpts().CPlusPlus11
&& Tok
.is(tok::l_brace
)))
1923 && "Expected '(' or '{'!");
1925 if (Tok
.is(tok::l_brace
)) {
1926 PreferredType
.enterTypeCast(Tok
.getLocation(), TypeRep
.get());
1927 ExprResult Init
= ParseBraceInitializer();
1928 if (Init
.isInvalid())
1930 Expr
*InitList
= Init
.get();
1931 return Actions
.ActOnCXXTypeConstructExpr(
1932 TypeRep
, InitList
->getBeginLoc(), MultiExprArg(&InitList
, 1),
1933 InitList
->getEndLoc(), /*ListInitialization=*/true);
1935 BalancedDelimiterTracker
T(*this, tok::l_paren
);
1938 PreferredType
.enterTypeCast(Tok
.getLocation(), TypeRep
.get());
1942 auto RunSignatureHelp
= [&]() {
1943 QualType PreferredType
;
1945 PreferredType
= Actions
.ProduceConstructorSignatureHelp(
1946 TypeRep
.get()->getCanonicalTypeInternal(), DS
.getEndLoc(), Exprs
,
1947 T
.getOpenLocation(), /*Braced=*/false);
1948 CalledSignatureHelp
= true;
1949 return PreferredType
;
1952 if (Tok
.isNot(tok::r_paren
)) {
1953 if (ParseExpressionList(Exprs
, [&] {
1954 PreferredType
.enterFunctionArgument(Tok
.getLocation(),
1957 if (PP
.isCodeCompletionReached() && !CalledSignatureHelp
)
1959 SkipUntil(tok::r_paren
, StopAtSemi
);
1967 // TypeRep could be null, if it references an invalid typedef.
1971 return Actions
.ActOnCXXTypeConstructExpr(TypeRep
, T
.getOpenLocation(),
1972 Exprs
, T
.getCloseLocation(),
1973 /*ListInitialization=*/false);
1977 Parser::DeclGroupPtrTy
1978 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context
,
1979 ParsedAttributes
&Attrs
) {
1980 assert(Tok
.is(tok::kw_using
) && "Expected using");
1981 assert((Context
== DeclaratorContext::ForInit
||
1982 Context
== DeclaratorContext::SelectionInit
) &&
1983 "Unexpected Declarator Context");
1985 SourceLocation DeclStart
= ConsumeToken(), DeclEnd
;
1987 DG
= ParseUsingDeclaration(Context
, {}, DeclStart
, DeclEnd
, Attrs
, AS_none
);
1991 Diag(DeclStart
, !getLangOpts().CPlusPlus23
1992 ? diag::ext_alias_in_init_statement
1993 : diag::warn_cxx20_alias_in_init_statement
)
1994 << SourceRange(DeclStart
, DeclEnd
);
1999 /// ParseCXXCondition - if/switch/while condition expression.
2003 /// type-specifier-seq declarator '=' assignment-expression
2004 /// [C++11] type-specifier-seq declarator '=' initializer-clause
2005 /// [C++11] type-specifier-seq declarator braced-init-list
2006 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
2007 /// brace-or-equal-initializer
2008 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
2009 /// '=' assignment-expression
2011 /// In C++1z, a condition may in some contexts be preceded by an
2012 /// optional init-statement. This function will parse that too.
2014 /// \param InitStmt If non-null, an init-statement is permitted, and if present
2015 /// will be parsed and stored here.
2017 /// \param Loc The location of the start of the statement that requires this
2018 /// condition, e.g., the "for" in a for loop.
2020 /// \param MissingOK Whether an empty condition is acceptable here. Otherwise
2021 /// it is considered an error to be recovered from.
2023 /// \param FRI If non-null, a for range declaration is permitted, and if
2024 /// present will be parsed and stored here, and a null result will be returned.
2026 /// \param EnterForConditionScope If true, enter a continue/break scope at the
2027 /// appropriate moment for a 'for' loop.
2029 /// \returns The parsed condition.
2030 Sema::ConditionResult
2031 Parser::ParseCXXCondition(StmtResult
*InitStmt
, SourceLocation Loc
,
2032 Sema::ConditionKind CK
, bool MissingOK
,
2033 ForRangeInfo
*FRI
, bool EnterForConditionScope
) {
2034 // Helper to ensure we always enter a continue/break scope if requested.
2035 struct ForConditionScopeRAII
{
2037 void enter(bool IsConditionVariable
) {
2039 S
->AddFlags(Scope::BreakScope
| Scope::ContinueScope
);
2040 S
->setIsConditionVarScope(IsConditionVariable
);
2043 ~ForConditionScopeRAII() {
2045 S
->setIsConditionVarScope(false);
2047 } ForConditionScope
{EnterForConditionScope
? getCurScope() : nullptr};
2049 ParenBraceBracketBalancer
BalancerRAIIObj(*this);
2050 PreferredType
.enterCondition(Actions
, Tok
.getLocation());
2052 if (Tok
.is(tok::code_completion
)) {
2054 Actions
.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition
);
2055 return Sema::ConditionError();
2058 ParsedAttributes
attrs(AttrFactory
);
2059 MaybeParseCXX11Attributes(attrs
);
2061 const auto WarnOnInit
= [this, &CK
] {
2062 Diag(Tok
.getLocation(), getLangOpts().CPlusPlus17
2063 ? diag::warn_cxx14_compat_init_statement
2064 : diag::ext_init_statement
)
2065 << (CK
== Sema::ConditionKind::Switch
);
2068 // Determine what kind of thing we have.
2069 switch (isCXXConditionDeclarationOrInitStatement(InitStmt
, FRI
)) {
2070 case ConditionOrInitStatement::Expression
: {
2071 // If this is a for loop, we're entering its condition.
2072 ForConditionScope
.enter(/*IsConditionVariable=*/false);
2074 ProhibitAttributes(attrs
);
2076 // We can have an empty expression here.
2078 if (InitStmt
&& Tok
.is(tok::semi
)) {
2080 SourceLocation SemiLoc
= Tok
.getLocation();
2081 if (!Tok
.hasLeadingEmptyMacro() && !SemiLoc
.isMacroID()) {
2082 Diag(SemiLoc
, diag::warn_empty_init_statement
)
2083 << (CK
== Sema::ConditionKind::Switch
)
2084 << FixItHint::CreateRemoval(SemiLoc
);
2087 *InitStmt
= Actions
.ActOnNullStmt(SemiLoc
);
2088 return ParseCXXCondition(nullptr, Loc
, CK
, MissingOK
);
2091 // Parse the expression.
2092 ExprResult Expr
= ParseExpression(); // expression
2093 if (Expr
.isInvalid())
2094 return Sema::ConditionError();
2096 if (InitStmt
&& Tok
.is(tok::semi
)) {
2098 *InitStmt
= Actions
.ActOnExprStmt(Expr
.get());
2100 return ParseCXXCondition(nullptr, Loc
, CK
, MissingOK
);
2103 return Actions
.ActOnCondition(getCurScope(), Loc
, Expr
.get(), CK
,
2107 case ConditionOrInitStatement::InitStmtDecl
: {
2110 SourceLocation DeclStart
= Tok
.getLocation(), DeclEnd
;
2111 if (Tok
.is(tok::kw_using
))
2112 DG
= ParseAliasDeclarationInInitStatement(
2113 DeclaratorContext::SelectionInit
, attrs
);
2115 ParsedAttributes
DeclSpecAttrs(AttrFactory
);
2116 DG
= ParseSimpleDeclaration(DeclaratorContext::SelectionInit
, DeclEnd
,
2117 attrs
, DeclSpecAttrs
, /*RequireSemi=*/true);
2119 *InitStmt
= Actions
.ActOnDeclStmt(DG
, DeclStart
, DeclEnd
);
2120 return ParseCXXCondition(nullptr, Loc
, CK
, MissingOK
);
2123 case ConditionOrInitStatement::ForRangeDecl
: {
2124 // This is 'for (init-stmt; for-range-decl : range-expr)'.
2125 // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2127 assert(FRI
&& "should not parse a for range declaration here");
2128 SourceLocation DeclStart
= Tok
.getLocation(), DeclEnd
;
2129 ParsedAttributes
DeclSpecAttrs(AttrFactory
);
2130 DeclGroupPtrTy DG
= ParseSimpleDeclaration(
2131 DeclaratorContext::ForInit
, DeclEnd
, attrs
, DeclSpecAttrs
, false, FRI
);
2132 FRI
->LoopVar
= Actions
.ActOnDeclStmt(DG
, DeclStart
, Tok
.getLocation());
2133 return Sema::ConditionResult();
2136 case ConditionOrInitStatement::ConditionDecl
:
2137 case ConditionOrInitStatement::Error
:
2141 // If this is a for loop, we're entering its condition.
2142 ForConditionScope
.enter(/*IsConditionVariable=*/true);
2144 // type-specifier-seq
2145 DeclSpec
DS(AttrFactory
);
2146 ParseSpecifierQualifierList(DS
, AS_none
, DeclSpecContext::DSC_condition
);
2149 Declarator
DeclaratorInfo(DS
, attrs
, DeclaratorContext::Condition
);
2150 ParseDeclarator(DeclaratorInfo
);
2152 // simple-asm-expr[opt]
2153 if (Tok
.is(tok::kw_asm
)) {
2155 ExprResult
AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc
));
2156 if (AsmLabel
.isInvalid()) {
2157 SkipUntil(tok::semi
, StopAtSemi
);
2158 return Sema::ConditionError();
2160 DeclaratorInfo
.setAsmLabel(AsmLabel
.get());
2161 DeclaratorInfo
.SetRangeEnd(Loc
);
2164 // If attributes are present, parse them.
2165 MaybeParseGNUAttributes(DeclaratorInfo
);
2167 // Type-check the declaration itself.
2168 DeclResult Dcl
= Actions
.ActOnCXXConditionDeclaration(getCurScope(),
2170 if (Dcl
.isInvalid())
2171 return Sema::ConditionError();
2172 Decl
*DeclOut
= Dcl
.get();
2174 // '=' assignment-expression
2175 // If a '==' or '+=' is found, suggest a fixit to '='.
2176 bool CopyInitialization
= isTokenEqualOrEqualTypo();
2177 if (CopyInitialization
)
2180 ExprResult InitExpr
= ExprError();
2181 if (getLangOpts().CPlusPlus11
&& Tok
.is(tok::l_brace
)) {
2182 Diag(Tok
.getLocation(),
2183 diag::warn_cxx98_compat_generalized_initializer_lists
);
2184 InitExpr
= ParseBraceInitializer();
2185 } else if (CopyInitialization
) {
2186 PreferredType
.enterVariableInit(Tok
.getLocation(), DeclOut
);
2187 InitExpr
= ParseAssignmentExpression();
2188 } else if (Tok
.is(tok::l_paren
)) {
2189 // This was probably an attempt to initialize the variable.
2190 SourceLocation LParen
= ConsumeParen(), RParen
= LParen
;
2191 if (SkipUntil(tok::r_paren
, StopAtSemi
| StopBeforeMatch
))
2192 RParen
= ConsumeParen();
2193 Diag(DeclOut
->getLocation(),
2194 diag::err_expected_init_in_condition_lparen
)
2195 << SourceRange(LParen
, RParen
);
2197 Diag(DeclOut
->getLocation(), diag::err_expected_init_in_condition
);
2200 if (!InitExpr
.isInvalid())
2201 Actions
.AddInitializerToDecl(DeclOut
, InitExpr
.get(), !CopyInitialization
);
2203 Actions
.ActOnInitializerError(DeclOut
);
2205 Actions
.FinalizeDeclaration(DeclOut
);
2206 return Actions
.ActOnConditionVariable(DeclOut
, Loc
, CK
);
2209 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2210 /// This should only be called when the current token is known to be part of
2211 /// simple-type-specifier.
2213 /// simple-type-specifier:
2214 /// '::'[opt] nested-name-specifier[opt] type-name
2215 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2227 /// [GNU] typeof-specifier
2228 /// [C++0x] auto [TODO]
2235 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec
&DS
) {
2236 DS
.SetRangeStart(Tok
.getLocation());
2237 const char *PrevSpec
;
2239 SourceLocation Loc
= Tok
.getLocation();
2240 const clang::PrintingPolicy
&Policy
=
2241 Actions
.getASTContext().getPrintingPolicy();
2243 switch (Tok
.getKind()) {
2244 case tok::identifier
: // foo::bar
2245 case tok::coloncolon
: // ::foo::bar
2246 llvm_unreachable("Annotation token should already be formed!");
2248 llvm_unreachable("Not a simple-type-specifier token!");
2251 case tok::annot_typename
: {
2252 DS
.SetTypeSpecType(DeclSpec::TST_typename
, Loc
, PrevSpec
, DiagID
,
2253 getTypeAnnotation(Tok
), Policy
);
2254 DS
.SetRangeEnd(Tok
.getAnnotationEndLoc());
2255 ConsumeAnnotationToken();
2257 DS
.Finish(Actions
, Policy
);
2261 case tok::kw__ExtInt
:
2262 case tok::kw__BitInt
: {
2263 DiagnoseBitIntUse(Tok
);
2264 ExprResult ER
= ParseExtIntegerArgument();
2266 DS
.SetTypeSpecError();
2268 DS
.SetBitIntType(Loc
, ER
.get(), PrevSpec
, DiagID
, Policy
);
2270 // Do this here because we have already consumed the close paren.
2271 DS
.SetRangeEnd(PrevTokLocation
);
2272 DS
.Finish(Actions
, Policy
);
2278 DS
.SetTypeSpecWidth(TypeSpecifierWidth::Short
, Loc
, PrevSpec
, DiagID
,
2282 DS
.SetTypeSpecWidth(TypeSpecifierWidth::Long
, Loc
, PrevSpec
, DiagID
,
2285 case tok::kw___int64
:
2286 DS
.SetTypeSpecWidth(TypeSpecifierWidth::LongLong
, Loc
, PrevSpec
, DiagID
,
2289 case tok::kw_signed
:
2290 DS
.SetTypeSpecSign(TypeSpecifierSign::Signed
, Loc
, PrevSpec
, DiagID
);
2292 case tok::kw_unsigned
:
2293 DS
.SetTypeSpecSign(TypeSpecifierSign::Unsigned
, Loc
, PrevSpec
, DiagID
);
2296 DS
.SetTypeSpecType(DeclSpec::TST_void
, Loc
, PrevSpec
, DiagID
, Policy
);
2299 DS
.SetTypeSpecType(DeclSpec::TST_auto
, Loc
, PrevSpec
, DiagID
, Policy
);
2302 DS
.SetTypeSpecType(DeclSpec::TST_char
, Loc
, PrevSpec
, DiagID
, Policy
);
2305 DS
.SetTypeSpecType(DeclSpec::TST_int
, Loc
, PrevSpec
, DiagID
, Policy
);
2307 case tok::kw___int128
:
2308 DS
.SetTypeSpecType(DeclSpec::TST_int128
, Loc
, PrevSpec
, DiagID
, Policy
);
2310 case tok::kw___bf16
:
2311 DS
.SetTypeSpecType(DeclSpec::TST_BFloat16
, Loc
, PrevSpec
, DiagID
, Policy
);
2314 DS
.SetTypeSpecType(DeclSpec::TST_half
, Loc
, PrevSpec
, DiagID
, Policy
);
2317 DS
.SetTypeSpecType(DeclSpec::TST_float
, Loc
, PrevSpec
, DiagID
, Policy
);
2319 case tok::kw_double
:
2320 DS
.SetTypeSpecType(DeclSpec::TST_double
, Loc
, PrevSpec
, DiagID
, Policy
);
2322 case tok::kw__Float16
:
2323 DS
.SetTypeSpecType(DeclSpec::TST_float16
, Loc
, PrevSpec
, DiagID
, Policy
);
2325 case tok::kw___float128
:
2326 DS
.SetTypeSpecType(DeclSpec::TST_float128
, Loc
, PrevSpec
, DiagID
, Policy
);
2328 case tok::kw___ibm128
:
2329 DS
.SetTypeSpecType(DeclSpec::TST_ibm128
, Loc
, PrevSpec
, DiagID
, Policy
);
2331 case tok::kw_wchar_t
:
2332 DS
.SetTypeSpecType(DeclSpec::TST_wchar
, Loc
, PrevSpec
, DiagID
, Policy
);
2334 case tok::kw_char8_t
:
2335 DS
.SetTypeSpecType(DeclSpec::TST_char8
, Loc
, PrevSpec
, DiagID
, Policy
);
2337 case tok::kw_char16_t
:
2338 DS
.SetTypeSpecType(DeclSpec::TST_char16
, Loc
, PrevSpec
, DiagID
, Policy
);
2340 case tok::kw_char32_t
:
2341 DS
.SetTypeSpecType(DeclSpec::TST_char32
, Loc
, PrevSpec
, DiagID
, Policy
);
2344 DS
.SetTypeSpecType(DeclSpec::TST_bool
, Loc
, PrevSpec
, DiagID
, Policy
);
2346 case tok::kw__Accum
:
2347 DS
.SetTypeSpecType(DeclSpec::TST_accum
, Loc
, PrevSpec
, DiagID
, Policy
);
2349 case tok::kw__Fract
:
2350 DS
.SetTypeSpecType(DeclSpec::TST_fract
, Loc
, PrevSpec
, DiagID
, Policy
);
2353 DS
.SetTypeSpecSat(Loc
, PrevSpec
, DiagID
);
2355 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
2356 case tok::kw_##ImgType##_t: \
2357 DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
2360 #include "clang/Basic/OpenCLImageTypes.def"
2362 case tok::annot_decltype
:
2363 case tok::kw_decltype
:
2364 DS
.SetRangeEnd(ParseDecltypeSpecifier(DS
));
2365 return DS
.Finish(Actions
, Policy
);
2367 // GNU typeof support.
2368 case tok::kw_typeof
:
2369 ParseTypeofSpecifier(DS
);
2370 DS
.Finish(Actions
, Policy
);
2374 DS
.SetRangeEnd(PrevTokLocation
);
2375 DS
.Finish(Actions
, Policy
);
2378 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2379 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2380 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2381 /// by parsing the type-specifier-seq, because these sequences are
2382 /// typically followed by some form of declarator. Returns true and
2383 /// emits diagnostics if this is not a type-specifier-seq, false
2386 /// type-specifier-seq: [C++ 8.1]
2387 /// type-specifier type-specifier-seq[opt]
2389 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec
&DS
, DeclaratorContext Context
) {
2390 ParseSpecifierQualifierList(DS
, AS_none
,
2391 getDeclSpecContextFromDeclaratorContext(Context
));
2392 DS
.Finish(Actions
, Actions
.getASTContext().getPrintingPolicy());
2396 /// Finish parsing a C++ unqualified-id that is a template-id of
2399 /// This routine is invoked when a '<' is encountered after an identifier or
2400 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2401 /// whether the unqualified-id is actually a template-id. This routine will
2402 /// then parse the template arguments and form the appropriate template-id to
2403 /// return to the caller.
2405 /// \param SS the nested-name-specifier that precedes this template-id, if
2406 /// we're actually parsing a qualified-id.
2408 /// \param ObjectType if this unqualified-id occurs within a member access
2409 /// expression, the type of the base object whose member is being accessed.
2411 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2412 /// expression, indicates whether the original subexpressions had any errors.
2414 /// \param Name for constructor and destructor names, this is the actual
2415 /// identifier that may be a template-name.
2417 /// \param NameLoc the location of the class-name in a constructor or
2420 /// \param EnteringContext whether we're entering the scope of the
2421 /// nested-name-specifier.
2423 /// \param Id as input, describes the template-name or operator-function-id
2424 /// that precedes the '<'. If template arguments were parsed successfully,
2425 /// will be updated with the template-id.
2427 /// \param AssumeTemplateId When true, this routine will assume that the name
2428 /// refers to a template without performing name lookup to verify.
2430 /// \returns true if a parse error occurred, false otherwise.
2431 bool Parser::ParseUnqualifiedIdTemplateId(
2432 CXXScopeSpec
&SS
, ParsedType ObjectType
, bool ObjectHadErrors
,
2433 SourceLocation TemplateKWLoc
, IdentifierInfo
*Name
, SourceLocation NameLoc
,
2434 bool EnteringContext
, UnqualifiedId
&Id
, bool AssumeTemplateId
) {
2435 assert(Tok
.is(tok::less
) && "Expected '<' to finish parsing a template-id");
2437 TemplateTy Template
;
2438 TemplateNameKind TNK
= TNK_Non_template
;
2439 switch (Id
.getKind()) {
2440 case UnqualifiedIdKind::IK_Identifier
:
2441 case UnqualifiedIdKind::IK_OperatorFunctionId
:
2442 case UnqualifiedIdKind::IK_LiteralOperatorId
:
2443 if (AssumeTemplateId
) {
2444 // We defer the injected-class-name checks until we've found whether
2445 // this template-id is used to form a nested-name-specifier or not.
2446 TNK
= Actions
.ActOnTemplateName(getCurScope(), SS
, TemplateKWLoc
, Id
,
2447 ObjectType
, EnteringContext
, Template
,
2448 /*AllowInjectedClassName*/ true);
2450 bool MemberOfUnknownSpecialization
;
2451 TNK
= Actions
.isTemplateName(getCurScope(), SS
,
2452 TemplateKWLoc
.isValid(), Id
,
2453 ObjectType
, EnteringContext
, Template
,
2454 MemberOfUnknownSpecialization
);
2455 // If lookup found nothing but we're assuming that this is a template
2456 // name, double-check that makes sense syntactically before committing
2458 if (TNK
== TNK_Undeclared_template
&&
2459 isTemplateArgumentList(0) == TPResult::False
)
2462 if (TNK
== TNK_Non_template
&& MemberOfUnknownSpecialization
&&
2463 ObjectType
&& isTemplateArgumentList(0) == TPResult::True
) {
2464 // If we had errors before, ObjectType can be dependent even without any
2465 // templates, do not report missing template keyword in that case.
2466 if (!ObjectHadErrors
) {
2467 // We have something like t->getAs<T>(), where getAs is a
2468 // member of an unknown specialization. However, this will only
2469 // parse correctly as a template, so suggest the keyword 'template'
2470 // before 'getAs' and treat this as a dependent template name.
2472 if (Id
.getKind() == UnqualifiedIdKind::IK_Identifier
)
2473 Name
= std::string(Id
.Identifier
->getName());
2476 if (Id
.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId
)
2477 Name
+= getOperatorSpelling(Id
.OperatorFunctionId
.Operator
);
2479 Name
+= Id
.Identifier
->getName();
2481 Diag(Id
.StartLocation
, diag::err_missing_dependent_template_keyword
)
2483 << FixItHint::CreateInsertion(Id
.StartLocation
, "template ");
2485 TNK
= Actions
.ActOnTemplateName(
2486 getCurScope(), SS
, TemplateKWLoc
, Id
, ObjectType
, EnteringContext
,
2487 Template
, /*AllowInjectedClassName*/ true);
2488 } else if (TNK
== TNK_Non_template
) {
2494 case UnqualifiedIdKind::IK_ConstructorName
: {
2495 UnqualifiedId TemplateName
;
2496 bool MemberOfUnknownSpecialization
;
2497 TemplateName
.setIdentifier(Name
, NameLoc
);
2498 TNK
= Actions
.isTemplateName(getCurScope(), SS
, TemplateKWLoc
.isValid(),
2499 TemplateName
, ObjectType
,
2500 EnteringContext
, Template
,
2501 MemberOfUnknownSpecialization
);
2502 if (TNK
== TNK_Non_template
)
2507 case UnqualifiedIdKind::IK_DestructorName
: {
2508 UnqualifiedId TemplateName
;
2509 bool MemberOfUnknownSpecialization
;
2510 TemplateName
.setIdentifier(Name
, NameLoc
);
2512 TNK
= Actions
.ActOnTemplateName(
2513 getCurScope(), SS
, TemplateKWLoc
, TemplateName
, ObjectType
,
2514 EnteringContext
, Template
, /*AllowInjectedClassName*/ true);
2516 TNK
= Actions
.isTemplateName(getCurScope(), SS
, TemplateKWLoc
.isValid(),
2517 TemplateName
, ObjectType
,
2518 EnteringContext
, Template
,
2519 MemberOfUnknownSpecialization
);
2521 if (TNK
== TNK_Non_template
&& !Id
.DestructorName
.get()) {
2522 Diag(NameLoc
, diag::err_destructor_template_id
)
2523 << Name
<< SS
.getRange();
2524 // Carry on to parse the template arguments before bailing out.
2534 // Parse the enclosed template argument list.
2535 SourceLocation LAngleLoc
, RAngleLoc
;
2536 TemplateArgList TemplateArgs
;
2537 if (ParseTemplateIdAfterTemplateName(true, LAngleLoc
, TemplateArgs
, RAngleLoc
,
2541 // If this is a non-template, we already issued a diagnostic.
2542 if (TNK
== TNK_Non_template
)
2545 if (Id
.getKind() == UnqualifiedIdKind::IK_Identifier
||
2546 Id
.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId
||
2547 Id
.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId
) {
2548 // Form a parsed representation of the template-id to be stored in the
2551 // FIXME: Store name for literal operator too.
2552 IdentifierInfo
*TemplateII
=
2553 Id
.getKind() == UnqualifiedIdKind::IK_Identifier
? Id
.Identifier
2555 OverloadedOperatorKind OpKind
=
2556 Id
.getKind() == UnqualifiedIdKind::IK_Identifier
2558 : Id
.OperatorFunctionId
.Operator
;
2560 TemplateIdAnnotation
*TemplateId
= TemplateIdAnnotation::Create(
2561 TemplateKWLoc
, Id
.StartLocation
, TemplateII
, OpKind
, Template
, TNK
,
2562 LAngleLoc
, RAngleLoc
, TemplateArgs
, /*ArgsInvalid*/false, TemplateIds
);
2564 Id
.setTemplateId(TemplateId
);
2568 // Bundle the template arguments together.
2569 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateArgs
);
2571 // Constructor and destructor names.
2572 TypeResult Type
= Actions
.ActOnTemplateIdType(
2573 getCurScope(), SS
, TemplateKWLoc
, Template
, Name
, NameLoc
, LAngleLoc
,
2574 TemplateArgsPtr
, RAngleLoc
, /*IsCtorOrDtorName=*/true);
2575 if (Type
.isInvalid())
2578 if (Id
.getKind() == UnqualifiedIdKind::IK_ConstructorName
)
2579 Id
.setConstructorName(Type
.get(), NameLoc
, RAngleLoc
);
2581 Id
.setDestructorName(Id
.StartLocation
, Type
.get(), RAngleLoc
);
2586 /// Parse an operator-function-id or conversion-function-id as part
2587 /// of a C++ unqualified-id.
2589 /// This routine is responsible only for parsing the operator-function-id or
2590 /// conversion-function-id; it does not handle template arguments in any way.
2593 /// operator-function-id: [C++ 13.5]
2594 /// 'operator' operator
2596 /// operator: one of
2597 /// new delete new[] delete[]
2598 /// + - * / % ^ & | ~
2599 /// ! = < > += -= *= /= %=
2600 /// ^= &= |= << >> >>= <<= == !=
2601 /// <= >= && || ++ -- , ->* ->
2604 /// conversion-function-id: [C++ 12.3.2]
2605 /// operator conversion-type-id
2607 /// conversion-type-id:
2608 /// type-specifier-seq conversion-declarator[opt]
2610 /// conversion-declarator:
2611 /// ptr-operator conversion-declarator[opt]
2614 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2615 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2617 /// \param EnteringContext whether we are entering the scope of the
2618 /// nested-name-specifier.
2620 /// \param ObjectType if this unqualified-id occurs within a member access
2621 /// expression, the type of the base object whose member is being accessed.
2623 /// \param Result on a successful parse, contains the parsed unqualified-id.
2625 /// \returns true if parsing fails, false otherwise.
2626 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec
&SS
, bool EnteringContext
,
2627 ParsedType ObjectType
,
2628 UnqualifiedId
&Result
) {
2629 assert(Tok
.is(tok::kw_operator
) && "Expected 'operator' keyword");
2631 // Consume the 'operator' keyword.
2632 SourceLocation KeywordLoc
= ConsumeToken();
2634 // Determine what kind of operator name we have.
2635 unsigned SymbolIdx
= 0;
2636 SourceLocation SymbolLocations
[3];
2637 OverloadedOperatorKind Op
= OO_None
;
2638 switch (Tok
.getKind()) {
2640 case tok::kw_delete
: {
2641 bool isNew
= Tok
.getKind() == tok::kw_new
;
2642 // Consume the 'new' or 'delete'.
2643 SymbolLocations
[SymbolIdx
++] = ConsumeToken();
2644 // Check for array new/delete.
2645 if (Tok
.is(tok::l_square
) &&
2646 (!getLangOpts().CPlusPlus11
|| NextToken().isNot(tok::l_square
))) {
2647 // Consume the '[' and ']'.
2648 BalancedDelimiterTracker
T(*this, tok::l_square
);
2651 if (T
.getCloseLocation().isInvalid())
2654 SymbolLocations
[SymbolIdx
++] = T
.getOpenLocation();
2655 SymbolLocations
[SymbolIdx
++] = T
.getCloseLocation();
2656 Op
= isNew
? OO_Array_New
: OO_Array_Delete
;
2658 Op
= isNew
? OO_New
: OO_Delete
;
2663 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2665 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2668 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2669 #include "clang/Basic/OperatorKinds.def"
2671 case tok::l_paren
: {
2672 // Consume the '(' and ')'.
2673 BalancedDelimiterTracker
T(*this, tok::l_paren
);
2676 if (T
.getCloseLocation().isInvalid())
2679 SymbolLocations
[SymbolIdx
++] = T
.getOpenLocation();
2680 SymbolLocations
[SymbolIdx
++] = T
.getCloseLocation();
2685 case tok::l_square
: {
2686 // Consume the '[' and ']'.
2687 BalancedDelimiterTracker
T(*this, tok::l_square
);
2690 if (T
.getCloseLocation().isInvalid())
2693 SymbolLocations
[SymbolIdx
++] = T
.getOpenLocation();
2694 SymbolLocations
[SymbolIdx
++] = T
.getCloseLocation();
2699 case tok::code_completion
: {
2700 // Don't try to parse any further.
2702 // Code completion for the operator name.
2703 Actions
.CodeCompleteOperatorName(getCurScope());
2711 if (Op
!= OO_None
) {
2712 // We have parsed an operator-function-id.
2713 Result
.setOperatorFunctionId(KeywordLoc
, Op
, SymbolLocations
);
2717 // Parse a literal-operator-id.
2719 // literal-operator-id: C++11 [over.literal]
2720 // operator string-literal identifier
2721 // operator user-defined-string-literal
2723 if (getLangOpts().CPlusPlus11
&& isTokenStringLiteral()) {
2724 Diag(Tok
.getLocation(), diag::warn_cxx98_compat_literal_operator
);
2726 SourceLocation DiagLoc
;
2727 unsigned DiagId
= 0;
2729 // We're past translation phase 6, so perform string literal concatenation
2730 // before checking for "".
2731 SmallVector
<Token
, 4> Toks
;
2732 SmallVector
<SourceLocation
, 4> TokLocs
;
2733 while (isTokenStringLiteral()) {
2734 if (!Tok
.is(tok::string_literal
) && !DiagId
) {
2735 // C++11 [over.literal]p1:
2736 // The string-literal or user-defined-string-literal in a
2737 // literal-operator-id shall have no encoding-prefix [...].
2738 DiagLoc
= Tok
.getLocation();
2739 DiagId
= diag::err_literal_operator_string_prefix
;
2741 Toks
.push_back(Tok
);
2742 TokLocs
.push_back(ConsumeStringToken());
2745 StringLiteralParser
Literal(Toks
, PP
);
2746 if (Literal
.hadError
)
2749 // Grab the literal operator's suffix, which will be either the next token
2750 // or a ud-suffix from the string literal.
2751 bool IsUDSuffix
= !Literal
.getUDSuffix().empty();
2752 IdentifierInfo
*II
= nullptr;
2753 SourceLocation SuffixLoc
;
2755 II
= &PP
.getIdentifierTable().get(Literal
.getUDSuffix());
2757 Lexer::AdvanceToTokenCharacter(TokLocs
[Literal
.getUDSuffixToken()],
2758 Literal
.getUDSuffixOffset(),
2759 PP
.getSourceManager(), getLangOpts());
2760 } else if (Tok
.is(tok::identifier
)) {
2761 II
= Tok
.getIdentifierInfo();
2762 SuffixLoc
= ConsumeToken();
2763 TokLocs
.push_back(SuffixLoc
);
2765 Diag(Tok
.getLocation(), diag::err_expected
) << tok::identifier
;
2769 // The string literal must be empty.
2770 if (!Literal
.GetString().empty() || Literal
.Pascal
) {
2771 // C++11 [over.literal]p1:
2772 // The string-literal or user-defined-string-literal in a
2773 // literal-operator-id shall [...] contain no characters
2774 // other than the implicit terminating '\0'.
2775 DiagLoc
= TokLocs
.front();
2776 DiagId
= diag::err_literal_operator_string_not_empty
;
2780 // This isn't a valid literal-operator-id, but we think we know
2781 // what the user meant. Tell them what they should have written.
2782 SmallString
<32> Str
;
2784 Str
+= II
->getName();
2785 Diag(DiagLoc
, DiagId
) << FixItHint::CreateReplacement(
2786 SourceRange(TokLocs
.front(), TokLocs
.back()), Str
);
2789 Result
.setLiteralOperatorId(II
, KeywordLoc
, SuffixLoc
);
2791 return Actions
.checkLiteralOperatorId(SS
, Result
, IsUDSuffix
);
2794 // Parse a conversion-function-id.
2796 // conversion-function-id: [C++ 12.3.2]
2797 // operator conversion-type-id
2799 // conversion-type-id:
2800 // type-specifier-seq conversion-declarator[opt]
2802 // conversion-declarator:
2803 // ptr-operator conversion-declarator[opt]
2805 // Parse the type-specifier-seq.
2806 DeclSpec
DS(AttrFactory
);
2807 if (ParseCXXTypeSpecifierSeq(
2808 DS
, DeclaratorContext::ConversionId
)) // FIXME: ObjectType?
2811 // Parse the conversion-declarator, which is merely a sequence of
2813 Declarator
D(DS
, ParsedAttributesView::none(),
2814 DeclaratorContext::ConversionId
);
2815 ParseDeclaratorInternal(D
, /*DirectDeclParser=*/nullptr);
2817 // Finish up the type.
2818 TypeResult Ty
= Actions
.ActOnTypeName(getCurScope(), D
);
2822 // Note that this is a conversion-function-id.
2823 Result
.setConversionFunctionId(KeywordLoc
, Ty
.get(),
2824 D
.getSourceRange().getEnd());
2828 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2829 /// name of an entity.
2832 /// unqualified-id: [C++ expr.prim.general]
2834 /// operator-function-id
2835 /// conversion-function-id
2836 /// [C++0x] literal-operator-id [TODO]
2842 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2843 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2845 /// \param ObjectType if this unqualified-id occurs within a member access
2846 /// expression, the type of the base object whose member is being accessed.
2848 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2849 /// expression, indicates whether the original subexpressions had any errors.
2850 /// When true, diagnostics for missing 'template' keyword will be supressed.
2852 /// \param EnteringContext whether we are entering the scope of the
2853 /// nested-name-specifier.
2855 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2857 /// \param AllowConstructorName whether we allow parsing a constructor name.
2859 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2861 /// \param Result on a successful parse, contains the parsed unqualified-id.
2863 /// \returns true if parsing fails, false otherwise.
2864 bool Parser::ParseUnqualifiedId(CXXScopeSpec
&SS
, ParsedType ObjectType
,
2865 bool ObjectHadErrors
, bool EnteringContext
,
2866 bool AllowDestructorName
,
2867 bool AllowConstructorName
,
2868 bool AllowDeductionGuide
,
2869 SourceLocation
*TemplateKWLoc
,
2870 UnqualifiedId
&Result
) {
2872 *TemplateKWLoc
= SourceLocation();
2874 // Handle 'A::template B'. This is for template-ids which have not
2875 // already been annotated by ParseOptionalCXXScopeSpecifier().
2876 bool TemplateSpecified
= false;
2877 if (Tok
.is(tok::kw_template
)) {
2878 if (TemplateKWLoc
&& (ObjectType
|| SS
.isSet())) {
2879 TemplateSpecified
= true;
2880 *TemplateKWLoc
= ConsumeToken();
2882 SourceLocation TemplateLoc
= ConsumeToken();
2883 Diag(TemplateLoc
, diag::err_unexpected_template_in_unqualified_id
)
2884 << FixItHint::CreateRemoval(TemplateLoc
);
2890 // template-id (when it hasn't already been annotated)
2891 if (Tok
.is(tok::identifier
)) {
2893 // Consume the identifier.
2894 IdentifierInfo
*Id
= Tok
.getIdentifierInfo();
2895 SourceLocation IdLoc
= ConsumeToken();
2897 if (!getLangOpts().CPlusPlus
) {
2898 // If we're not in C++, only identifiers matter. Record the
2899 // identifier and return.
2900 Result
.setIdentifier(Id
, IdLoc
);
2904 ParsedTemplateTy TemplateName
;
2905 if (AllowConstructorName
&&
2906 Actions
.isCurrentClassName(*Id
, getCurScope(), &SS
)) {
2907 // We have parsed a constructor name.
2908 ParsedType Ty
= Actions
.getConstructorName(*Id
, IdLoc
, getCurScope(), SS
,
2912 Result
.setConstructorName(Ty
, IdLoc
, IdLoc
);
2913 } else if (getLangOpts().CPlusPlus17
&& AllowDeductionGuide
&&
2915 Actions
.isDeductionGuideName(getCurScope(), *Id
, IdLoc
, SS
,
2917 // We have parsed a template-name naming a deduction guide.
2918 Result
.setDeductionGuideName(TemplateName
, IdLoc
);
2920 // We have parsed an identifier.
2921 Result
.setIdentifier(Id
, IdLoc
);
2924 // If the next token is a '<', we may have a template.
2925 TemplateTy Template
;
2926 if (Tok
.is(tok::less
))
2927 return ParseUnqualifiedIdTemplateId(
2928 SS
, ObjectType
, ObjectHadErrors
,
2929 TemplateKWLoc
? *TemplateKWLoc
: SourceLocation(), Id
, IdLoc
,
2930 EnteringContext
, Result
, TemplateSpecified
);
2931 else if (TemplateSpecified
&&
2932 Actions
.ActOnTemplateName(
2933 getCurScope(), SS
, *TemplateKWLoc
, Result
, ObjectType
,
2934 EnteringContext
, Template
,
2935 /*AllowInjectedClassName*/ true) == TNK_Non_template
)
2942 // template-id (already parsed and annotated)
2943 if (Tok
.is(tok::annot_template_id
)) {
2944 TemplateIdAnnotation
*TemplateId
= takeTemplateIdAnnotation(Tok
);
2946 // FIXME: Consider passing invalid template-ids on to callers; they may
2947 // be able to recover better than we can.
2948 if (TemplateId
->isInvalid()) {
2949 ConsumeAnnotationToken();
2953 // If the template-name names the current class, then this is a constructor
2954 if (AllowConstructorName
&& TemplateId
->Name
&&
2955 Actions
.isCurrentClassName(*TemplateId
->Name
, getCurScope(), &SS
)) {
2957 // C++ [class.qual]p2 specifies that a qualified template-name
2958 // is taken as the constructor name where a constructor can be
2959 // declared. Thus, the template arguments are extraneous, so
2960 // complain about them and remove them entirely.
2961 Diag(TemplateId
->TemplateNameLoc
,
2962 diag::err_out_of_line_constructor_template_id
)
2964 << FixItHint::CreateRemoval(
2965 SourceRange(TemplateId
->LAngleLoc
, TemplateId
->RAngleLoc
));
2966 ParsedType Ty
= Actions
.getConstructorName(
2967 *TemplateId
->Name
, TemplateId
->TemplateNameLoc
, getCurScope(), SS
,
2971 Result
.setConstructorName(Ty
, TemplateId
->TemplateNameLoc
,
2972 TemplateId
->RAngleLoc
);
2973 ConsumeAnnotationToken();
2977 Result
.setConstructorTemplateId(TemplateId
);
2978 ConsumeAnnotationToken();
2982 // We have already parsed a template-id; consume the annotation token as
2983 // our unqualified-id.
2984 Result
.setTemplateId(TemplateId
);
2985 SourceLocation TemplateLoc
= TemplateId
->TemplateKWLoc
;
2986 if (TemplateLoc
.isValid()) {
2987 if (TemplateKWLoc
&& (ObjectType
|| SS
.isSet()))
2988 *TemplateKWLoc
= TemplateLoc
;
2990 Diag(TemplateLoc
, diag::err_unexpected_template_in_unqualified_id
)
2991 << FixItHint::CreateRemoval(TemplateLoc
);
2993 ConsumeAnnotationToken();
2998 // operator-function-id
2999 // conversion-function-id
3000 if (Tok
.is(tok::kw_operator
)) {
3001 if (ParseUnqualifiedIdOperator(SS
, EnteringContext
, ObjectType
, Result
))
3004 // If we have an operator-function-id or a literal-operator-id and the next
3005 // token is a '<', we may have a
3008 // operator-function-id < template-argument-list[opt] >
3009 TemplateTy Template
;
3010 if ((Result
.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId
||
3011 Result
.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId
) &&
3013 return ParseUnqualifiedIdTemplateId(
3014 SS
, ObjectType
, ObjectHadErrors
,
3015 TemplateKWLoc
? *TemplateKWLoc
: SourceLocation(), nullptr,
3016 SourceLocation(), EnteringContext
, Result
, TemplateSpecified
);
3017 else if (TemplateSpecified
&&
3018 Actions
.ActOnTemplateName(
3019 getCurScope(), SS
, *TemplateKWLoc
, Result
, ObjectType
,
3020 EnteringContext
, Template
,
3021 /*AllowInjectedClassName*/ true) == TNK_Non_template
)
3027 if (getLangOpts().CPlusPlus
&&
3028 (AllowDestructorName
|| SS
.isSet()) && Tok
.is(tok::tilde
)) {
3029 // C++ [expr.unary.op]p10:
3030 // There is an ambiguity in the unary-expression ~X(), where X is a
3031 // class-name. The ambiguity is resolved in favor of treating ~ as a
3032 // unary complement rather than treating ~X as referring to a destructor.
3035 SourceLocation TildeLoc
= ConsumeToken();
3037 if (TemplateSpecified
) {
3038 // C++ [temp.names]p3:
3039 // A name prefixed by the keyword template shall be a template-id [...]
3041 // A template-id cannot begin with a '~' token. This would never work
3042 // anyway: x.~A<int>() would specify that the destructor is a template,
3043 // not that 'A' is a template.
3045 // FIXME: Suggest replacing the attempted destructor name with a correct
3046 // destructor name and recover. (This is not trivial if this would become
3047 // a pseudo-destructor name).
3048 Diag(*TemplateKWLoc
, diag::err_unexpected_template_in_destructor_name
)
3049 << Tok
.getLocation();
3053 if (SS
.isEmpty() && Tok
.is(tok::kw_decltype
)) {
3054 DeclSpec
DS(AttrFactory
);
3055 SourceLocation EndLoc
= ParseDecltypeSpecifier(DS
);
3056 if (ParsedType Type
=
3057 Actions
.getDestructorTypeForDecltype(DS
, ObjectType
)) {
3058 Result
.setDestructorName(TildeLoc
, Type
, EndLoc
);
3064 // Parse the class-name.
3065 if (Tok
.isNot(tok::identifier
)) {
3066 Diag(Tok
, diag::err_destructor_tilde_identifier
);
3070 // If the user wrote ~T::T, correct it to T::~T.
3071 DeclaratorScopeObj
DeclScopeObj(*this, SS
);
3072 if (NextToken().is(tok::coloncolon
)) {
3073 // Don't let ParseOptionalCXXScopeSpecifier() "correct"
3074 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
3075 // it will confuse this recovery logic.
3076 ColonProtectionRAIIObject
ColonRAII(*this, false);
3079 AnnotateScopeToken(SS
, /*NewAnnotation*/true);
3082 if (ParseOptionalCXXScopeSpecifier(SS
, ObjectType
, ObjectHadErrors
,
3085 if (SS
.isNotEmpty())
3086 ObjectType
= nullptr;
3087 if (Tok
.isNot(tok::identifier
) || NextToken().is(tok::coloncolon
) ||
3089 Diag(TildeLoc
, diag::err_destructor_tilde_scope
);
3093 // Recover as if the tilde had been written before the identifier.
3094 Diag(TildeLoc
, diag::err_destructor_tilde_scope
)
3095 << FixItHint::CreateRemoval(TildeLoc
)
3096 << FixItHint::CreateInsertion(Tok
.getLocation(), "~");
3098 // Temporarily enter the scope for the rest of this function.
3099 if (Actions
.ShouldEnterDeclaratorScope(getCurScope(), SS
))
3100 DeclScopeObj
.EnterDeclaratorScope();
3103 // Parse the class-name (or template-name in a simple-template-id).
3104 IdentifierInfo
*ClassName
= Tok
.getIdentifierInfo();
3105 SourceLocation ClassNameLoc
= ConsumeToken();
3107 if (Tok
.is(tok::less
)) {
3108 Result
.setDestructorName(TildeLoc
, nullptr, ClassNameLoc
);
3109 return ParseUnqualifiedIdTemplateId(
3110 SS
, ObjectType
, ObjectHadErrors
,
3111 TemplateKWLoc
? *TemplateKWLoc
: SourceLocation(), ClassName
,
3112 ClassNameLoc
, EnteringContext
, Result
, TemplateSpecified
);
3115 // Note that this is a destructor name.
3117 Actions
.getDestructorName(*ClassName
, ClassNameLoc
, getCurScope(), SS
,
3118 ObjectType
, EnteringContext
);
3122 Result
.setDestructorName(TildeLoc
, Ty
, ClassNameLoc
);
3126 switch (Tok
.getKind()) {
3127 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
3128 #include "clang/Basic/TransformTypeTraits.def"
3129 if (!NextToken().is(tok::l_paren
)) {
3130 Tok
.setKind(tok::identifier
);
3131 Diag(Tok
, diag::ext_keyword_as_ident
)
3132 << Tok
.getIdentifierInfo()->getName() << 0;
3133 goto ParseIdentifier
;
3137 Diag(Tok
, diag::err_expected_unqualified_id
) << getLangOpts().CPlusPlus
;
3142 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3143 /// memory in a typesafe manner and call constructors.
3145 /// This method is called to parse the new expression after the optional :: has
3146 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
3147 /// is its location. Otherwise, "Start" is the location of the 'new' token.
3150 /// '::'[opt] 'new' new-placement[opt] new-type-id
3151 /// new-initializer[opt]
3152 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3153 /// new-initializer[opt]
3156 /// '(' expression-list ')'
3159 /// type-specifier-seq new-declarator[opt]
3160 /// [GNU] attributes type-specifier-seq new-declarator[opt]
3163 /// ptr-operator new-declarator[opt]
3164 /// direct-new-declarator
3166 /// new-initializer:
3167 /// '(' expression-list[opt] ')'
3168 /// [C++0x] braced-init-list
3171 Parser::ParseCXXNewExpression(bool UseGlobal
, SourceLocation Start
) {
3172 assert(Tok
.is(tok::kw_new
) && "expected 'new' token");
3173 ConsumeToken(); // Consume 'new'
3175 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3176 // second form of new-expression. It can't be a new-type-id.
3178 ExprVector PlacementArgs
;
3179 SourceLocation PlacementLParen
, PlacementRParen
;
3181 SourceRange TypeIdParens
;
3182 DeclSpec
DS(AttrFactory
);
3183 Declarator
DeclaratorInfo(DS
, ParsedAttributesView::none(),
3184 DeclaratorContext::CXXNew
);
3185 if (Tok
.is(tok::l_paren
)) {
3186 // If it turns out to be a placement, we change the type location.
3187 BalancedDelimiterTracker
T(*this, tok::l_paren
);
3189 PlacementLParen
= T
.getOpenLocation();
3190 if (ParseExpressionListOrTypeId(PlacementArgs
, DeclaratorInfo
)) {
3191 SkipUntil(tok::semi
, StopAtSemi
| StopBeforeMatch
);
3196 PlacementRParen
= T
.getCloseLocation();
3197 if (PlacementRParen
.isInvalid()) {
3198 SkipUntil(tok::semi
, StopAtSemi
| StopBeforeMatch
);
3202 if (PlacementArgs
.empty()) {
3203 // Reset the placement locations. There was no placement.
3204 TypeIdParens
= T
.getRange();
3205 PlacementLParen
= PlacementRParen
= SourceLocation();
3207 // We still need the type.
3208 if (Tok
.is(tok::l_paren
)) {
3209 BalancedDelimiterTracker
T(*this, tok::l_paren
);
3211 MaybeParseGNUAttributes(DeclaratorInfo
);
3212 ParseSpecifierQualifierList(DS
);
3213 DeclaratorInfo
.SetSourceRange(DS
.getSourceRange());
3214 ParseDeclarator(DeclaratorInfo
);
3216 TypeIdParens
= T
.getRange();
3218 MaybeParseGNUAttributes(DeclaratorInfo
);
3219 if (ParseCXXTypeSpecifierSeq(DS
))
3220 DeclaratorInfo
.setInvalidType(true);
3222 DeclaratorInfo
.SetSourceRange(DS
.getSourceRange());
3223 ParseDeclaratorInternal(DeclaratorInfo
,
3224 &Parser::ParseDirectNewDeclarator
);
3229 // A new-type-id is a simplified type-id, where essentially the
3230 // direct-declarator is replaced by a direct-new-declarator.
3231 MaybeParseGNUAttributes(DeclaratorInfo
);
3232 if (ParseCXXTypeSpecifierSeq(DS
, DeclaratorContext::CXXNew
))
3233 DeclaratorInfo
.setInvalidType(true);
3235 DeclaratorInfo
.SetSourceRange(DS
.getSourceRange());
3236 ParseDeclaratorInternal(DeclaratorInfo
,
3237 &Parser::ParseDirectNewDeclarator
);
3240 if (DeclaratorInfo
.isInvalidType()) {
3241 SkipUntil(tok::semi
, StopAtSemi
| StopBeforeMatch
);
3245 ExprResult Initializer
;
3247 if (Tok
.is(tok::l_paren
)) {
3248 SourceLocation ConstructorLParen
, ConstructorRParen
;
3249 ExprVector ConstructorArgs
;
3250 BalancedDelimiterTracker
T(*this, tok::l_paren
);
3252 ConstructorLParen
= T
.getOpenLocation();
3253 if (Tok
.isNot(tok::r_paren
)) {
3254 auto RunSignatureHelp
= [&]() {
3255 ParsedType TypeRep
=
3256 Actions
.ActOnTypeName(getCurScope(), DeclaratorInfo
).get();
3257 QualType PreferredType
;
3258 // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3259 // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3260 // `new decltype(invalid) (^)`.
3262 PreferredType
= Actions
.ProduceConstructorSignatureHelp(
3263 TypeRep
.get()->getCanonicalTypeInternal(),
3264 DeclaratorInfo
.getEndLoc(), ConstructorArgs
, ConstructorLParen
,
3266 CalledSignatureHelp
= true;
3267 return PreferredType
;
3269 if (ParseExpressionList(ConstructorArgs
, [&] {
3270 PreferredType
.enterFunctionArgument(Tok
.getLocation(),
3273 if (PP
.isCodeCompletionReached() && !CalledSignatureHelp
)
3275 SkipUntil(tok::semi
, StopAtSemi
| StopBeforeMatch
);
3280 ConstructorRParen
= T
.getCloseLocation();
3281 if (ConstructorRParen
.isInvalid()) {
3282 SkipUntil(tok::semi
, StopAtSemi
| StopBeforeMatch
);
3285 Initializer
= Actions
.ActOnParenListExpr(ConstructorLParen
,
3288 } else if (Tok
.is(tok::l_brace
) && getLangOpts().CPlusPlus11
) {
3289 Diag(Tok
.getLocation(),
3290 diag::warn_cxx98_compat_generalized_initializer_lists
);
3291 Initializer
= ParseBraceInitializer();
3293 if (Initializer
.isInvalid())
3296 return Actions
.ActOnCXXNew(Start
, UseGlobal
, PlacementLParen
,
3297 PlacementArgs
, PlacementRParen
,
3298 TypeIdParens
, DeclaratorInfo
, Initializer
.get());
3301 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3302 /// passed to ParseDeclaratorInternal.
3304 /// direct-new-declarator:
3305 /// '[' expression[opt] ']'
3306 /// direct-new-declarator '[' constant-expression ']'
3308 void Parser::ParseDirectNewDeclarator(Declarator
&D
) {
3309 // Parse the array dimensions.
3311 while (Tok
.is(tok::l_square
)) {
3312 // An array-size expression can't start with a lambda.
3313 if (CheckProhibitedCXX11Attribute())
3316 BalancedDelimiterTracker
T(*this, tok::l_square
);
3320 First
? (Tok
.is(tok::r_square
) ? ExprResult() : ParseExpression())
3321 : ParseConstantExpression();
3322 if (Size
.isInvalid()) {
3324 SkipUntil(tok::r_square
, StopAtSemi
);
3331 // Attributes here appertain to the array type. C++11 [expr.new]p5.
3332 ParsedAttributes
Attrs(AttrFactory
);
3333 MaybeParseCXX11Attributes(Attrs
);
3335 D
.AddTypeInfo(DeclaratorChunk::getArray(0,
3336 /*isStatic=*/false, /*isStar=*/false,
3337 Size
.get(), T
.getOpenLocation(),
3338 T
.getCloseLocation()),
3339 std::move(Attrs
), T
.getCloseLocation());
3341 if (T
.getCloseLocation().isInvalid())
3346 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3347 /// This ambiguity appears in the syntax of the C++ new operator.
3350 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3351 /// new-initializer[opt]
3354 /// '(' expression-list ')'
3356 bool Parser::ParseExpressionListOrTypeId(
3357 SmallVectorImpl
<Expr
*> &PlacementArgs
,
3359 // The '(' was already consumed.
3360 if (isTypeIdInParens()) {
3361 ParseSpecifierQualifierList(D
.getMutableDeclSpec());
3362 D
.SetSourceRange(D
.getDeclSpec().getSourceRange());
3364 return D
.isInvalidType();
3367 // It's not a type, it has to be an expression list.
3368 return ParseExpressionList(PlacementArgs
);
3371 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3372 /// to free memory allocated by new.
3374 /// This method is called to parse the 'delete' expression after the optional
3375 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
3376 /// and "Start" is its location. Otherwise, "Start" is the location of the
3379 /// delete-expression:
3380 /// '::'[opt] 'delete' cast-expression
3381 /// '::'[opt] 'delete' '[' ']' cast-expression
3383 Parser::ParseCXXDeleteExpression(bool UseGlobal
, SourceLocation Start
) {
3384 assert(Tok
.is(tok::kw_delete
) && "Expected 'delete' keyword");
3385 ConsumeToken(); // Consume 'delete'
3388 bool ArrayDelete
= false;
3389 if (Tok
.is(tok::l_square
) && NextToken().is(tok::r_square
)) {
3390 // C++11 [expr.delete]p1:
3391 // Whenever the delete keyword is followed by empty square brackets, it
3392 // shall be interpreted as [array delete].
3393 // [Footnote: A lambda expression with a lambda-introducer that consists
3394 // of empty square brackets can follow the delete keyword if
3395 // the lambda expression is enclosed in parentheses.]
3397 const Token Next
= GetLookAheadToken(2);
3399 // Basic lookahead to check if we have a lambda expression.
3400 if (Next
.isOneOf(tok::l_brace
, tok::less
) ||
3401 (Next
.is(tok::l_paren
) &&
3402 (GetLookAheadToken(3).is(tok::r_paren
) ||
3403 (GetLookAheadToken(3).is(tok::identifier
) &&
3404 GetLookAheadToken(4).is(tok::identifier
))))) {
3405 TentativeParsingAction
TPA(*this);
3406 SourceLocation LSquareLoc
= Tok
.getLocation();
3407 SourceLocation RSquareLoc
= NextToken().getLocation();
3409 // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3411 SkipUntil({tok::l_brace
, tok::less
}, StopBeforeMatch
);
3412 SourceLocation RBraceLoc
;
3413 bool EmitFixIt
= false;
3414 if (Tok
.is(tok::l_brace
)) {
3416 SkipUntil(tok::r_brace
, StopBeforeMatch
);
3417 RBraceLoc
= Tok
.getLocation();
3424 Diag(Start
, diag::err_lambda_after_delete
)
3425 << SourceRange(Start
, RSquareLoc
)
3426 << FixItHint::CreateInsertion(LSquareLoc
, "(")
3427 << FixItHint::CreateInsertion(
3428 Lexer::getLocForEndOfToken(
3429 RBraceLoc
, 0, Actions
.getSourceManager(), getLangOpts()),
3432 Diag(Start
, diag::err_lambda_after_delete
)
3433 << SourceRange(Start
, RSquareLoc
);
3435 // Warn that the non-capturing lambda isn't surrounded by parentheses
3436 // to disambiguate it from 'delete[]'.
3437 ExprResult Lambda
= ParseLambdaExpression();
3438 if (Lambda
.isInvalid())
3441 // Evaluate any postfix expressions used on the lambda.
3442 Lambda
= ParsePostfixExpressionSuffix(Lambda
);
3443 if (Lambda
.isInvalid())
3445 return Actions
.ActOnCXXDelete(Start
, UseGlobal
, /*ArrayForm=*/false,
3450 BalancedDelimiterTracker
T(*this, tok::l_square
);
3454 if (T
.getCloseLocation().isInvalid())
3458 ExprResult
Operand(ParseCastExpression(AnyCastExpr
));
3459 if (Operand
.isInvalid())
3462 return Actions
.ActOnCXXDelete(Start
, UseGlobal
, ArrayDelete
, Operand
.get());
3465 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3466 /// C++2a [expr.prim.req]p1
3467 /// A requires-expression provides a concise way to express requirements on
3468 /// template arguments. A requirement is one that can be checked by name
3469 /// lookup (6.4) or by checking properties of types and expressions.
3471 /// requires-expression:
3472 /// 'requires' requirement-parameter-list[opt] requirement-body
3474 /// requirement-parameter-list:
3475 /// '(' parameter-declaration-clause[opt] ')'
3477 /// requirement-body:
3478 /// '{' requirement-seq '}'
3480 /// requirement-seq:
3482 /// requirement-seq requirement
3485 /// simple-requirement
3486 /// type-requirement
3487 /// compound-requirement
3488 /// nested-requirement
3489 ExprResult
Parser::ParseRequiresExpression() {
3490 assert(Tok
.is(tok::kw_requires
) && "Expected 'requires' keyword");
3491 SourceLocation RequiresKWLoc
= ConsumeToken(); // Consume 'requires'
3493 llvm::SmallVector
<ParmVarDecl
*, 2> LocalParameterDecls
;
3494 BalancedDelimiterTracker
Parens(*this, tok::l_paren
);
3495 if (Tok
.is(tok::l_paren
)) {
3496 // requirement parameter list is present.
3497 ParseScope
LocalParametersScope(this, Scope::FunctionPrototypeScope
|
3499 Parens
.consumeOpen();
3500 if (!Tok
.is(tok::r_paren
)) {
3501 ParsedAttributes
FirstArgAttrs(getAttrFactory());
3502 SourceLocation EllipsisLoc
;
3503 llvm::SmallVector
<DeclaratorChunk::ParamInfo
, 2> LocalParameters
;
3504 ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr
,
3505 FirstArgAttrs
, LocalParameters
,
3507 if (EllipsisLoc
.isValid())
3508 Diag(EllipsisLoc
, diag::err_requires_expr_parameter_list_ellipsis
);
3509 for (auto &ParamInfo
: LocalParameters
)
3510 LocalParameterDecls
.push_back(cast
<ParmVarDecl
>(ParamInfo
.Param
));
3512 Parens
.consumeClose();
3515 BalancedDelimiterTracker
Braces(*this, tok::l_brace
);
3516 if (Braces
.expectAndConsume())
3519 // Start of requirement list
3520 llvm::SmallVector
<concepts::Requirement
*, 2> Requirements
;
3522 // C++2a [expr.prim.req]p2
3523 // Expressions appearing within a requirement-body are unevaluated operands.
3524 EnterExpressionEvaluationContext
Ctx(
3525 Actions
, Sema::ExpressionEvaluationContext::Unevaluated
);
3527 ParseScope
BodyScope(this, Scope::DeclScope
);
3528 // Create a separate diagnostic pool for RequiresExprBodyDecl.
3529 // Dependent diagnostics are attached to this Decl and non-depenedent
3530 // diagnostics are surfaced after this parse.
3531 ParsingDeclRAIIObject
ParsingBodyDecl(*this, ParsingDeclRAIIObject::NoParent
);
3532 RequiresExprBodyDecl
*Body
= Actions
.ActOnStartRequiresExpr(
3533 RequiresKWLoc
, LocalParameterDecls
, getCurScope());
3535 if (Tok
.is(tok::r_brace
)) {
3536 // Grammar does not allow an empty body.
3537 // requirement-body:
3538 // { requirement-seq }
3541 // requirement-seq requirement
3542 Diag(Tok
, diag::err_empty_requires_expr
);
3543 // Continue anyway and produce a requires expr with no requirements.
3545 while (!Tok
.is(tok::r_brace
)) {
3546 switch (Tok
.getKind()) {
3547 case tok::l_brace
: {
3548 // Compound requirement
3549 // C++ [expr.prim.req.compound]
3550 // compound-requirement:
3551 // '{' expression '}' 'noexcept'[opt]
3552 // return-type-requirement[opt] ';'
3553 // return-type-requirement:
3554 // trailing-return-type
3555 // '->' cv-qualifier-seq[opt] constrained-parameter
3556 // cv-qualifier-seq[opt] abstract-declarator[opt]
3557 BalancedDelimiterTracker
ExprBraces(*this, tok::l_brace
);
3558 ExprBraces
.consumeOpen();
3559 ExprResult Expression
=
3560 Actions
.CorrectDelayedTyposInExpr(ParseExpression());
3561 if (!Expression
.isUsable()) {
3562 ExprBraces
.skipToEnd();
3563 SkipUntil(tok::semi
, tok::r_brace
, SkipUntilFlags::StopBeforeMatch
);
3566 if (ExprBraces
.consumeClose())
3567 ExprBraces
.skipToEnd();
3569 concepts::Requirement
*Req
= nullptr;
3570 SourceLocation NoexceptLoc
;
3571 TryConsumeToken(tok::kw_noexcept
, NoexceptLoc
);
3572 if (Tok
.is(tok::semi
)) {
3573 Req
= Actions
.ActOnCompoundRequirement(Expression
.get(), NoexceptLoc
);
3575 Requirements
.push_back(Req
);
3578 if (!TryConsumeToken(tok::arrow
))
3579 // User probably forgot the arrow, remind them and try to continue.
3580 Diag(Tok
, diag::err_requires_expr_missing_arrow
)
3581 << FixItHint::CreateInsertion(Tok
.getLocation(), "->");
3582 // Try to parse a 'type-constraint'
3583 if (TryAnnotateTypeConstraint()) {
3584 SkipUntil(tok::semi
, tok::r_brace
, SkipUntilFlags::StopBeforeMatch
);
3587 if (!isTypeConstraintAnnotation()) {
3588 Diag(Tok
, diag::err_requires_expr_expected_type_constraint
);
3589 SkipUntil(tok::semi
, tok::r_brace
, SkipUntilFlags::StopBeforeMatch
);
3593 if (Tok
.is(tok::annot_cxxscope
)) {
3594 Actions
.RestoreNestedNameSpecifierAnnotation(Tok
.getAnnotationValue(),
3595 Tok
.getAnnotationRange(),
3597 ConsumeAnnotationToken();
3600 Req
= Actions
.ActOnCompoundRequirement(
3601 Expression
.get(), NoexceptLoc
, SS
, takeTemplateIdAnnotation(Tok
),
3602 TemplateParameterDepth
);
3603 ConsumeAnnotationToken();
3605 Requirements
.push_back(Req
);
3609 bool PossibleRequiresExprInSimpleRequirement
= false;
3610 if (Tok
.is(tok::kw_requires
)) {
3611 auto IsNestedRequirement
= [&] {
3612 RevertingTentativeParsingAction
TPA(*this);
3613 ConsumeToken(); // 'requires'
3614 if (Tok
.is(tok::l_brace
))
3615 // This is a requires expression
3617 // requires { t++; };
3621 if (Tok
.is(tok::l_paren
)) {
3622 // This might be the parameter list of a requires expression
3624 auto Res
= TryParseParameterDeclarationClause();
3625 if (Res
!= TPResult::False
) {
3626 // Skip to the closing parenthesis
3628 while (Depth
!= 0) {
3629 bool FoundParen
= SkipUntil(tok::l_paren
, tok::r_paren
,
3630 SkipUntilFlags::StopBeforeMatch
);
3633 if (Tok
.is(tok::l_paren
))
3635 else if (Tok
.is(tok::r_paren
))
3643 // requires (int x) ?
3646 if (Tok
.is(tok::l_brace
))
3648 // ^ - a requires expression as a
3649 // simple-requirement.
3655 if (IsNestedRequirement()) {
3657 // Nested requirement
3658 // C++ [expr.prim.req.nested]
3659 // nested-requirement:
3660 // 'requires' constraint-expression ';'
3661 ExprResult ConstraintExpr
=
3662 Actions
.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3663 if (ConstraintExpr
.isInvalid() || !ConstraintExpr
.isUsable()) {
3664 SkipUntil(tok::semi
, tok::r_brace
,
3665 SkipUntilFlags::StopBeforeMatch
);
3669 Actions
.ActOnNestedRequirement(ConstraintExpr
.get()))
3670 Requirements
.push_back(Req
);
3672 SkipUntil(tok::semi
, tok::r_brace
,
3673 SkipUntilFlags::StopBeforeMatch
);
3678 PossibleRequiresExprInSimpleRequirement
= true;
3679 } else if (Tok
.is(tok::kw_typename
)) {
3680 // This might be 'typename T::value_type;' (a type requirement) or
3681 // 'typename T::value_type{};' (a simple requirement).
3682 TentativeParsingAction
TPA(*this);
3684 // We need to consume the typename to allow 'requires { typename a; }'
3685 SourceLocation TypenameKWLoc
= ConsumeToken();
3686 if (TryAnnotateOptionalCXXScopeToken()) {
3688 SkipUntil(tok::semi
, tok::r_brace
, SkipUntilFlags::StopBeforeMatch
);
3692 if (Tok
.is(tok::annot_cxxscope
)) {
3693 Actions
.RestoreNestedNameSpecifierAnnotation(
3694 Tok
.getAnnotationValue(), Tok
.getAnnotationRange(), SS
);
3695 ConsumeAnnotationToken();
3698 if (Tok
.isOneOf(tok::identifier
, tok::annot_template_id
) &&
3699 !NextToken().isOneOf(tok::l_brace
, tok::l_paren
)) {
3701 SourceLocation NameLoc
= Tok
.getLocation();
3702 IdentifierInfo
*II
= nullptr;
3703 TemplateIdAnnotation
*TemplateId
= nullptr;
3704 if (Tok
.is(tok::identifier
)) {
3705 II
= Tok
.getIdentifierInfo();
3708 TemplateId
= takeTemplateIdAnnotation(Tok
);
3709 ConsumeAnnotationToken();
3710 if (TemplateId
->isInvalid())
3714 if (auto *Req
= Actions
.ActOnTypeRequirement(TypenameKWLoc
, SS
,
3717 Requirements
.push_back(Req
);
3723 // Simple requirement
3724 // C++ [expr.prim.req.simple]
3725 // simple-requirement:
3727 SourceLocation StartLoc
= Tok
.getLocation();
3728 ExprResult Expression
=
3729 Actions
.CorrectDelayedTyposInExpr(ParseExpression());
3730 if (!Expression
.isUsable()) {
3731 SkipUntil(tok::semi
, tok::r_brace
, SkipUntilFlags::StopBeforeMatch
);
3734 if (!Expression
.isInvalid() && PossibleRequiresExprInSimpleRequirement
)
3735 Diag(StartLoc
, diag::err_requires_expr_in_simple_requirement
)
3736 << FixItHint::CreateInsertion(StartLoc
, "requires");
3737 if (auto *Req
= Actions
.ActOnSimpleRequirement(Expression
.get()))
3738 Requirements
.push_back(Req
);
3740 SkipUntil(tok::semi
, tok::r_brace
, SkipUntilFlags::StopBeforeMatch
);
3743 // User may have tried to put some compound requirement stuff here
3744 if (Tok
.is(tok::kw_noexcept
)) {
3745 Diag(Tok
, diag::err_requires_expr_simple_requirement_noexcept
)
3746 << FixItHint::CreateInsertion(StartLoc
, "{")
3747 << FixItHint::CreateInsertion(Tok
.getLocation(), "}");
3748 SkipUntil(tok::semi
, tok::r_brace
, SkipUntilFlags::StopBeforeMatch
);
3754 if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement
)) {
3755 SkipUntil(tok::semi
, tok::r_brace
, SkipUntilFlags::StopBeforeMatch
);
3756 TryConsumeToken(tok::semi
);
3760 if (Requirements
.empty()) {
3761 // Don't emit an empty requires expr here to avoid confusing the user with
3762 // other diagnostics quoting an empty requires expression they never
3764 Braces
.consumeClose();
3765 Actions
.ActOnFinishRequiresExpr();
3769 Braces
.consumeClose();
3770 Actions
.ActOnFinishRequiresExpr();
3771 ParsingBodyDecl
.complete(Body
);
3772 return Actions
.ActOnRequiresExpr(
3773 RequiresKWLoc
, Body
, Parens
.getOpenLocation(), LocalParameterDecls
,
3774 Parens
.getCloseLocation(), Requirements
, Braces
.getCloseLocation());
3777 static TypeTrait
TypeTraitFromTokKind(tok::TokenKind kind
) {
3779 default: llvm_unreachable("Not a known type trait");
3780 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3781 case tok::kw_ ## Spelling: return UTT_ ## Name;
3782 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3783 case tok::kw_ ## Spelling: return BTT_ ## Name;
3784 #include "clang/Basic/TokenKinds.def"
3785 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3786 case tok::kw_ ## Spelling: return TT_ ## Name;
3787 #include "clang/Basic/TokenKinds.def"
3791 static ArrayTypeTrait
ArrayTypeTraitFromTokKind(tok::TokenKind kind
) {
3794 llvm_unreachable("Not a known array type trait");
3795 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
3796 case tok::kw_##Spelling: \
3798 #include "clang/Basic/TokenKinds.def"
3802 static ExpressionTrait
ExpressionTraitFromTokKind(tok::TokenKind kind
) {
3805 llvm_unreachable("Not a known unary expression trait.");
3806 #define EXPRESSION_TRAIT(Spelling, Name, Key) \
3807 case tok::kw_##Spelling: \
3809 #include "clang/Basic/TokenKinds.def"
3813 /// Parse the built-in type-trait pseudo-functions that allow
3814 /// implementation of the TR1/C++11 type traits templates.
3816 /// primary-expression:
3817 /// unary-type-trait '(' type-id ')'
3818 /// binary-type-trait '(' type-id ',' type-id ')'
3819 /// type-trait '(' type-id-seq ')'
3822 /// type-id ...[opt] type-id-seq[opt]
3824 ExprResult
Parser::ParseTypeTrait() {
3825 tok::TokenKind Kind
= Tok
.getKind();
3827 SourceLocation Loc
= ConsumeToken();
3829 BalancedDelimiterTracker
Parens(*this, tok::l_paren
);
3830 if (Parens
.expectAndConsume())
3833 SmallVector
<ParsedType
, 2> Args
;
3835 // Parse the next type.
3836 TypeResult Ty
= ParseTypeName();
3837 if (Ty
.isInvalid()) {
3842 // Parse the ellipsis, if present.
3843 if (Tok
.is(tok::ellipsis
)) {
3844 Ty
= Actions
.ActOnPackExpansion(Ty
.get(), ConsumeToken());
3845 if (Ty
.isInvalid()) {
3851 // Add this type to the list of arguments.
3852 Args
.push_back(Ty
.get());
3853 } while (TryConsumeToken(tok::comma
));
3855 if (Parens
.consumeClose())
3858 SourceLocation EndLoc
= Parens
.getCloseLocation();
3860 return Actions
.ActOnTypeTrait(TypeTraitFromTokKind(Kind
), Loc
, Args
, EndLoc
);
3863 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3864 /// pseudo-functions.
3866 /// primary-expression:
3867 /// [Embarcadero] '__array_rank' '(' type-id ')'
3868 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
3870 ExprResult
Parser::ParseArrayTypeTrait() {
3871 ArrayTypeTrait ATT
= ArrayTypeTraitFromTokKind(Tok
.getKind());
3872 SourceLocation Loc
= ConsumeToken();
3874 BalancedDelimiterTracker
T(*this, tok::l_paren
);
3875 if (T
.expectAndConsume())
3878 TypeResult Ty
= ParseTypeName();
3879 if (Ty
.isInvalid()) {
3880 SkipUntil(tok::comma
, StopAtSemi
);
3881 SkipUntil(tok::r_paren
, StopAtSemi
);
3886 case ATT_ArrayRank
: {
3888 return Actions
.ActOnArrayTypeTrait(ATT
, Loc
, Ty
.get(), nullptr,
3889 T
.getCloseLocation());
3891 case ATT_ArrayExtent
: {
3892 if (ExpectAndConsume(tok::comma
)) {
3893 SkipUntil(tok::r_paren
, StopAtSemi
);
3897 ExprResult DimExpr
= ParseExpression();
3900 return Actions
.ActOnArrayTypeTrait(ATT
, Loc
, Ty
.get(), DimExpr
.get(),
3901 T
.getCloseLocation());
3904 llvm_unreachable("Invalid ArrayTypeTrait!");
3907 /// ParseExpressionTrait - Parse built-in expression-trait
3908 /// pseudo-functions like __is_lvalue_expr( xxx ).
3910 /// primary-expression:
3911 /// [Embarcadero] expression-trait '(' expression ')'
3913 ExprResult
Parser::ParseExpressionTrait() {
3914 ExpressionTrait ET
= ExpressionTraitFromTokKind(Tok
.getKind());
3915 SourceLocation Loc
= ConsumeToken();
3917 BalancedDelimiterTracker
T(*this, tok::l_paren
);
3918 if (T
.expectAndConsume())
3921 ExprResult Expr
= ParseExpression();
3925 return Actions
.ActOnExpressionTrait(ET
, Loc
, Expr
.get(),
3926 T
.getCloseLocation());
3930 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3931 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3932 /// based on the context past the parens.
3934 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption
&ExprType
,
3936 BalancedDelimiterTracker
&Tracker
,
3937 ColonProtectionRAIIObject
&ColonProt
) {
3938 assert(getLangOpts().CPlusPlus
&& "Should only be called for C++!");
3939 assert(ExprType
== CastExpr
&& "Compound literals are not ambiguous!");
3940 assert(isTypeIdInParens() && "Not a type-id!");
3942 ExprResult
Result(true);
3945 // We need to disambiguate a very ugly part of the C++ syntax:
3947 // (T())x; - type-id
3948 // (T())*x; - type-id
3949 // (T())/x; - expression
3950 // (T()); - expression
3952 // The bad news is that we cannot use the specialized tentative parser, since
3953 // it can only verify that the thing inside the parens can be parsed as
3954 // type-id, it is not useful for determining the context past the parens.
3956 // The good news is that the parser can disambiguate this part without
3957 // making any unnecessary Action calls.
3959 // It uses a scheme similar to parsing inline methods. The parenthesized
3960 // tokens are cached, the context that follows is determined (possibly by
3961 // parsing a cast-expression), and then we re-introduce the cached tokens
3962 // into the token stream and parse them appropriately.
3964 ParenParseOption ParseAs
;
3967 // Store the tokens of the parentheses. We will parse them after we determine
3968 // the context that follows them.
3969 if (!ConsumeAndStoreUntil(tok::r_paren
, Toks
)) {
3970 // We didn't find the ')' we expected.
3971 Tracker
.consumeClose();
3975 if (Tok
.is(tok::l_brace
)) {
3976 ParseAs
= CompoundLiteral
;
3979 if (Tok
.is(tok::l_paren
) && NextToken().is(tok::r_paren
)) {
3982 // Try parsing the cast-expression that may follow.
3983 // If it is not a cast-expression, NotCastExpr will be true and no token
3984 // will be consumed.
3985 ColonProt
.restore();
3986 Result
= ParseCastExpression(AnyCastExpr
,
3987 false/*isAddressofOperand*/,
3989 // type-id has priority.
3993 // If we parsed a cast-expression, it's really a type-id, otherwise it's
3995 ParseAs
= NotCastExpr
? SimpleExpr
: CastExpr
;
3998 // Create a fake EOF to mark end of Toks buffer.
4000 AttrEnd
.startToken();
4001 AttrEnd
.setKind(tok::eof
);
4002 AttrEnd
.setLocation(Tok
.getLocation());
4003 AttrEnd
.setEofData(Toks
.data());
4004 Toks
.push_back(AttrEnd
);
4006 // The current token should go after the cached tokens.
4007 Toks
.push_back(Tok
);
4008 // Re-enter the stored parenthesized tokens into the token stream, so we may
4010 PP
.EnterTokenStream(Toks
, /*DisableMacroExpansion*/ true,
4011 /*IsReinject*/ true);
4012 // Drop the current token and bring the first cached one. It's the same token
4013 // as when we entered this function.
4016 if (ParseAs
>= CompoundLiteral
) {
4017 // Parse the type declarator.
4018 DeclSpec
DS(AttrFactory
);
4019 Declarator
DeclaratorInfo(DS
, ParsedAttributesView::none(),
4020 DeclaratorContext::TypeName
);
4022 ColonProtectionRAIIObject
InnerColonProtection(*this);
4023 ParseSpecifierQualifierList(DS
);
4024 ParseDeclarator(DeclaratorInfo
);
4028 Tracker
.consumeClose();
4029 ColonProt
.restore();
4031 // Consume EOF marker for Toks buffer.
4032 assert(Tok
.is(tok::eof
) && Tok
.getEofData() == AttrEnd
.getEofData());
4035 if (ParseAs
== CompoundLiteral
) {
4036 ExprType
= CompoundLiteral
;
4037 if (DeclaratorInfo
.isInvalidType())
4040 TypeResult Ty
= Actions
.ActOnTypeName(getCurScope(), DeclaratorInfo
);
4041 return ParseCompoundLiteralExpression(Ty
.get(),
4042 Tracker
.getOpenLocation(),
4043 Tracker
.getCloseLocation());
4046 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
4047 assert(ParseAs
== CastExpr
);
4049 if (DeclaratorInfo
.isInvalidType())
4052 // Result is what ParseCastExpression returned earlier.
4053 if (!Result
.isInvalid())
4054 Result
= Actions
.ActOnCastExpr(getCurScope(), Tracker
.getOpenLocation(),
4055 DeclaratorInfo
, CastTy
,
4056 Tracker
.getCloseLocation(), Result
.get());
4060 // Not a compound literal, and not followed by a cast-expression.
4061 assert(ParseAs
== SimpleExpr
);
4063 ExprType
= SimpleExpr
;
4064 Result
= ParseExpression();
4065 if (!Result
.isInvalid() && Tok
.is(tok::r_paren
))
4066 Result
= Actions
.ActOnParenExpr(Tracker
.getOpenLocation(),
4067 Tok
.getLocation(), Result
.get());
4070 if (Result
.isInvalid()) {
4071 while (Tok
.isNot(tok::eof
))
4073 assert(Tok
.getEofData() == AttrEnd
.getEofData());
4078 Tracker
.consumeClose();
4079 // Consume EOF marker for Toks buffer.
4080 assert(Tok
.is(tok::eof
) && Tok
.getEofData() == AttrEnd
.getEofData());
4085 /// Parse a __builtin_bit_cast(T, E).
4086 ExprResult
Parser::ParseBuiltinBitCast() {
4087 SourceLocation KWLoc
= ConsumeToken();
4089 BalancedDelimiterTracker
T(*this, tok::l_paren
);
4090 if (T
.expectAndConsume(diag::err_expected_lparen_after
, "__builtin_bit_cast"))
4093 // Parse the common declaration-specifiers piece.
4094 DeclSpec
DS(AttrFactory
);
4095 ParseSpecifierQualifierList(DS
);
4097 // Parse the abstract-declarator, if present.
4098 Declarator
DeclaratorInfo(DS
, ParsedAttributesView::none(),
4099 DeclaratorContext::TypeName
);
4100 ParseDeclarator(DeclaratorInfo
);
4102 if (ExpectAndConsume(tok::comma
)) {
4103 Diag(Tok
.getLocation(), diag::err_expected
) << tok::comma
;
4104 SkipUntil(tok::r_paren
, StopAtSemi
);
4108 ExprResult Operand
= ParseExpression();
4110 if (T
.consumeClose())
4113 if (Operand
.isInvalid() || DeclaratorInfo
.isInvalidType())
4116 return Actions
.ActOnBuiltinBitCastExpr(KWLoc
, DeclaratorInfo
, Operand
,
4117 T
.getCloseLocation());