1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis for declarations.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/NonTrivialTypeVisitor.h"
28 #include "clang/AST/Randstruct.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/HLSLRuntime.h"
33 #include "clang/Basic/PartialDiagnostic.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
37 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
38 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
39 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
40 #include "clang/Sema/CXXFieldCollector.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Initialization.h"
44 #include "clang/Sema/Lookup.h"
45 #include "clang/Sema/ParsedTemplate.h"
46 #include "clang/Sema/Scope.h"
47 #include "clang/Sema/ScopeInfo.h"
48 #include "clang/Sema/SemaInternal.h"
49 #include "clang/Sema/Template.h"
50 #include "llvm/ADT/SmallString.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/TargetParser/Triple.h"
57 #include <unordered_map>
59 using namespace clang
;
62 Sema::DeclGroupPtrTy
Sema::ConvertDeclToDeclGroup(Decl
*Ptr
, Decl
*OwnedType
) {
64 Decl
*Group
[2] = { OwnedType
, Ptr
};
65 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context
, Group
, 2));
68 return DeclGroupPtrTy::make(DeclGroupRef(Ptr
));
73 class TypeNameValidatorCCC final
: public CorrectionCandidateCallback
{
75 TypeNameValidatorCCC(bool AllowInvalid
, bool WantClass
= false,
76 bool AllowTemplates
= false,
77 bool AllowNonTemplates
= true)
78 : AllowInvalidDecl(AllowInvalid
), WantClassName(WantClass
),
79 AllowTemplates(AllowTemplates
), AllowNonTemplates(AllowNonTemplates
) {
80 WantExpressionKeywords
= false;
81 WantCXXNamedCasts
= false;
82 WantRemainingKeywords
= false;
85 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
86 if (NamedDecl
*ND
= candidate
.getCorrectionDecl()) {
87 if (!AllowInvalidDecl
&& ND
->isInvalidDecl())
90 if (getAsTypeTemplateDecl(ND
))
91 return AllowTemplates
;
93 bool IsType
= isa
<TypeDecl
>(ND
) || isa
<ObjCInterfaceDecl
>(ND
);
97 if (AllowNonTemplates
)
100 // An injected-class-name of a class template (specialization) is valid
101 // as a template or as a non-template.
102 if (AllowTemplates
) {
103 auto *RD
= dyn_cast
<CXXRecordDecl
>(ND
);
104 if (!RD
|| !RD
->isInjectedClassName())
106 RD
= cast
<CXXRecordDecl
>(RD
->getDeclContext());
107 return RD
->getDescribedClassTemplate() ||
108 isa
<ClassTemplateSpecializationDecl
>(RD
);
114 return !WantClassName
&& candidate
.isKeyword();
117 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
118 return std::make_unique
<TypeNameValidatorCCC
>(*this);
122 bool AllowInvalidDecl
;
125 bool AllowNonTemplates
;
128 } // end anonymous namespace
130 /// Determine whether the token kind starts a simple-type-specifier.
131 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind
) const {
133 // FIXME: Take into account the current language when deciding whether a
134 // token kind is a valid type specifier
137 case tok::kw___int64
:
138 case tok::kw___int128
:
140 case tok::kw_unsigned
:
148 case tok::kw__Float16
:
149 case tok::kw___float128
:
150 case tok::kw___ibm128
:
151 case tok::kw_wchar_t
:
156 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
157 #include "clang/Basic/TransformTypeTraits.def"
158 case tok::kw___auto_type
:
161 case tok::annot_typename
:
162 case tok::kw_char16_t
:
163 case tok::kw_char32_t
:
165 case tok::annot_decltype
:
166 case tok::kw_decltype
:
167 return getLangOpts().CPlusPlus
;
169 case tok::kw_char8_t
:
170 return getLangOpts().Char8
;
180 enum class UnqualifiedTypeNameLookupResult
{
185 } // end anonymous namespace
187 /// Tries to perform unqualified lookup of the type decls in bases for
189 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
190 /// type decl, \a FoundType if only type decls are found.
191 static UnqualifiedTypeNameLookupResult
192 lookupUnqualifiedTypeNameInBase(Sema
&S
, const IdentifierInfo
&II
,
193 SourceLocation NameLoc
,
194 const CXXRecordDecl
*RD
) {
195 if (!RD
->hasDefinition())
196 return UnqualifiedTypeNameLookupResult::NotFound
;
197 // Look for type decls in base classes.
198 UnqualifiedTypeNameLookupResult FoundTypeDecl
=
199 UnqualifiedTypeNameLookupResult::NotFound
;
200 for (const auto &Base
: RD
->bases()) {
201 const CXXRecordDecl
*BaseRD
= nullptr;
202 if (auto *BaseTT
= Base
.getType()->getAs
<TagType
>())
203 BaseRD
= BaseTT
->getAsCXXRecordDecl();
204 else if (auto *TST
= Base
.getType()->getAs
<TemplateSpecializationType
>()) {
205 // Look for type decls in dependent base classes that have known primary
207 if (!TST
|| !TST
->isDependentType())
209 auto *TD
= TST
->getTemplateName().getAsTemplateDecl();
212 if (auto *BasePrimaryTemplate
=
213 dyn_cast_or_null
<CXXRecordDecl
>(TD
->getTemplatedDecl())) {
214 if (BasePrimaryTemplate
->getCanonicalDecl() != RD
->getCanonicalDecl())
215 BaseRD
= BasePrimaryTemplate
;
216 else if (auto *CTD
= dyn_cast
<ClassTemplateDecl
>(TD
)) {
217 if (const ClassTemplatePartialSpecializationDecl
*PS
=
218 CTD
->findPartialSpecialization(Base
.getType()))
219 if (PS
->getCanonicalDecl() != RD
->getCanonicalDecl())
225 for (NamedDecl
*ND
: BaseRD
->lookup(&II
)) {
226 if (!isa
<TypeDecl
>(ND
))
227 return UnqualifiedTypeNameLookupResult::FoundNonType
;
228 FoundTypeDecl
= UnqualifiedTypeNameLookupResult::FoundType
;
230 if (FoundTypeDecl
== UnqualifiedTypeNameLookupResult::NotFound
) {
231 switch (lookupUnqualifiedTypeNameInBase(S
, II
, NameLoc
, BaseRD
)) {
232 case UnqualifiedTypeNameLookupResult::FoundNonType
:
233 return UnqualifiedTypeNameLookupResult::FoundNonType
;
234 case UnqualifiedTypeNameLookupResult::FoundType
:
235 FoundTypeDecl
= UnqualifiedTypeNameLookupResult::FoundType
;
237 case UnqualifiedTypeNameLookupResult::NotFound
:
244 return FoundTypeDecl
;
247 static ParsedType
recoverFromTypeInKnownDependentBase(Sema
&S
,
248 const IdentifierInfo
&II
,
249 SourceLocation NameLoc
) {
250 // Lookup in the parent class template context, if any.
251 const CXXRecordDecl
*RD
= nullptr;
252 UnqualifiedTypeNameLookupResult FoundTypeDecl
=
253 UnqualifiedTypeNameLookupResult::NotFound
;
254 for (DeclContext
*DC
= S
.CurContext
;
255 DC
&& FoundTypeDecl
== UnqualifiedTypeNameLookupResult::NotFound
;
256 DC
= DC
->getParent()) {
257 // Look for type decls in dependent base classes that have known primary
259 RD
= dyn_cast
<CXXRecordDecl
>(DC
);
260 if (RD
&& RD
->getDescribedClassTemplate())
261 FoundTypeDecl
= lookupUnqualifiedTypeNameInBase(S
, II
, NameLoc
, RD
);
263 if (FoundTypeDecl
!= UnqualifiedTypeNameLookupResult::FoundType
)
266 // We found some types in dependent base classes. Recover as if the user
267 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
268 // lookup during template instantiation.
269 S
.Diag(NameLoc
, diag::ext_found_in_dependent_base
) << &II
;
271 ASTContext
&Context
= S
.Context
;
272 auto *NNS
= NestedNameSpecifier::Create(Context
, nullptr, false,
273 cast
<Type
>(Context
.getRecordType(RD
)));
275 Context
.getDependentNameType(ElaboratedTypeKeyword::Typename
, NNS
, &II
);
278 SS
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
280 TypeLocBuilder Builder
;
281 DependentNameTypeLoc DepTL
= Builder
.push
<DependentNameTypeLoc
>(T
);
282 DepTL
.setNameLoc(NameLoc
);
283 DepTL
.setElaboratedKeywordLoc(SourceLocation());
284 DepTL
.setQualifierLoc(SS
.getWithLocInContext(Context
));
285 return S
.CreateParsedType(T
, Builder
.getTypeSourceInfo(Context
, T
));
288 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
289 static ParsedType
buildNamedType(Sema
&S
, const CXXScopeSpec
*SS
, QualType T
,
290 SourceLocation NameLoc
,
291 bool WantNontrivialTypeSourceInfo
= true) {
292 switch (T
->getTypeClass()) {
293 case Type::DeducedTemplateSpecialization
:
295 case Type::InjectedClassName
:
298 case Type::UnresolvedUsing
:
301 // These can never be qualified so an ElaboratedType node
302 // would carry no additional meaning.
303 case Type::ObjCInterface
:
304 case Type::ObjCTypeParam
:
305 case Type::TemplateTypeParm
:
306 return ParsedType::make(T
);
308 llvm_unreachable("Unexpected Type Class");
311 if (!SS
|| SS
->isEmpty())
312 return ParsedType::make(S
.Context
.getElaboratedType(
313 ElaboratedTypeKeyword::None
, nullptr, T
, nullptr));
315 QualType ElTy
= S
.getElaboratedType(ElaboratedTypeKeyword::None
, *SS
, T
);
316 if (!WantNontrivialTypeSourceInfo
)
317 return ParsedType::make(ElTy
);
319 TypeLocBuilder Builder
;
320 Builder
.pushTypeSpec(T
).setNameLoc(NameLoc
);
321 ElaboratedTypeLoc ElabTL
= Builder
.push
<ElaboratedTypeLoc
>(ElTy
);
322 ElabTL
.setElaboratedKeywordLoc(SourceLocation());
323 ElabTL
.setQualifierLoc(SS
->getWithLocInContext(S
.Context
));
324 return S
.CreateParsedType(ElTy
, Builder
.getTypeSourceInfo(S
.Context
, ElTy
));
327 /// If the identifier refers to a type name within this scope,
328 /// return the declaration of that type.
330 /// This routine performs ordinary name lookup of the identifier II
331 /// within the given scope, with optional C++ scope specifier SS, to
332 /// determine whether the name refers to a type. If so, returns an
333 /// opaque pointer (actually a QualType) corresponding to that
334 /// type. Otherwise, returns NULL.
335 ParsedType
Sema::getTypeName(const IdentifierInfo
&II
, SourceLocation NameLoc
,
336 Scope
*S
, CXXScopeSpec
*SS
, bool isClassName
,
337 bool HasTrailingDot
, ParsedType ObjectTypePtr
,
338 bool IsCtorOrDtorName
,
339 bool WantNontrivialTypeSourceInfo
,
340 bool IsClassTemplateDeductionContext
,
341 ImplicitTypenameContext AllowImplicitTypename
,
342 IdentifierInfo
**CorrectedII
) {
343 // FIXME: Consider allowing this outside C++1z mode as an extension.
344 bool AllowDeducedTemplate
= IsClassTemplateDeductionContext
&&
345 getLangOpts().CPlusPlus17
&& !IsCtorOrDtorName
&&
346 !isClassName
&& !HasTrailingDot
;
348 // Determine where we will perform name lookup.
349 DeclContext
*LookupCtx
= nullptr;
351 QualType ObjectType
= ObjectTypePtr
.get();
352 if (ObjectType
->isRecordType())
353 LookupCtx
= computeDeclContext(ObjectType
);
354 } else if (SS
&& SS
->isNotEmpty()) {
355 LookupCtx
= computeDeclContext(*SS
, false);
358 if (isDependentScopeSpecifier(*SS
)) {
360 // A qualified-id that refers to a type and in which the
361 // nested-name-specifier depends on a template-parameter (14.6.2)
362 // shall be prefixed by the keyword typename to indicate that the
363 // qualified-id denotes a type, forming an
364 // elaborated-type-specifier (7.1.5.3).
366 // We therefore do not perform any name lookup if the result would
367 // refer to a member of an unknown specialization.
368 // In C++2a, in several contexts a 'typename' is not required. Also
369 // allow this as an extension.
370 if (AllowImplicitTypename
== ImplicitTypenameContext::No
&&
371 !isClassName
&& !IsCtorOrDtorName
)
373 bool IsImplicitTypename
= !isClassName
&& !IsCtorOrDtorName
;
374 if (IsImplicitTypename
) {
375 SourceLocation QualifiedLoc
= SS
->getRange().getBegin();
376 if (getLangOpts().CPlusPlus20
)
377 Diag(QualifiedLoc
, diag::warn_cxx17_compat_implicit_typename
);
379 Diag(QualifiedLoc
, diag::ext_implicit_typename
)
380 << SS
->getScopeRep() << II
.getName()
381 << FixItHint::CreateInsertion(QualifiedLoc
, "typename ");
384 // We know from the grammar that this name refers to a type,
385 // so build a dependent node to describe the type.
386 if (WantNontrivialTypeSourceInfo
)
387 return ActOnTypenameType(S
, SourceLocation(), *SS
, II
, NameLoc
,
388 (ImplicitTypenameContext
)IsImplicitTypename
)
391 NestedNameSpecifierLoc QualifierLoc
= SS
->getWithLocInContext(Context
);
392 QualType T
= CheckTypenameType(
393 IsImplicitTypename
? ElaboratedTypeKeyword::Typename
394 : ElaboratedTypeKeyword::None
,
395 SourceLocation(), QualifierLoc
, II
, NameLoc
);
396 return ParsedType::make(T
);
402 if (!LookupCtx
->isDependentContext() &&
403 RequireCompleteDeclContext(*SS
, LookupCtx
))
407 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
408 // lookup for class-names.
409 LookupNameKind Kind
= isClassName
? LookupNestedNameSpecifierName
:
411 LookupResult
Result(*this, &II
, NameLoc
, Kind
);
413 // Perform "qualified" name lookup into the declaration context we
414 // computed, which is either the type of the base of a member access
415 // expression or the declaration context associated with a prior
416 // nested-name-specifier.
417 LookupQualifiedName(Result
, LookupCtx
);
419 if (ObjectTypePtr
&& Result
.empty()) {
420 // C++ [basic.lookup.classref]p3:
421 // If the unqualified-id is ~type-name, the type-name is looked up
422 // in the context of the entire postfix-expression. If the type T of
423 // the object expression is of a class type C, the type-name is also
424 // looked up in the scope of class C. At least one of the lookups shall
425 // find a name that refers to (possibly cv-qualified) T.
426 LookupName(Result
, S
);
429 // Perform unqualified name lookup.
430 LookupName(Result
, S
);
432 // For unqualified lookup in a class template in MSVC mode, look into
433 // dependent base classes where the primary class template is known.
434 if (Result
.empty() && getLangOpts().MSVCCompat
&& (!SS
|| SS
->isEmpty())) {
435 if (ParsedType TypeInBase
=
436 recoverFromTypeInKnownDependentBase(*this, II
, NameLoc
))
441 NamedDecl
*IIDecl
= nullptr;
442 UsingShadowDecl
*FoundUsingShadow
= nullptr;
443 switch (Result
.getResultKind()) {
444 case LookupResult::NotFound
:
446 TypeNameValidatorCCC
CCC(/*AllowInvalid=*/true, isClassName
,
447 AllowDeducedTemplate
);
448 TypoCorrection Correction
= CorrectTypo(Result
.getLookupNameInfo(), Kind
,
449 S
, SS
, CCC
, CTK_ErrorRecovery
);
450 IdentifierInfo
*NewII
= Correction
.getCorrectionAsIdentifierInfo();
452 bool MemberOfUnknownSpecialization
;
453 UnqualifiedId TemplateName
;
454 TemplateName
.setIdentifier(NewII
, NameLoc
);
455 NestedNameSpecifier
*NNS
= Correction
.getCorrectionSpecifier();
456 CXXScopeSpec NewSS
, *NewSSPtr
= SS
;
458 NewSS
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
461 if (Correction
&& (NNS
|| NewII
!= &II
) &&
462 // Ignore a correction to a template type as the to-be-corrected
463 // identifier is not a template (typo correction for template names
464 // is handled elsewhere).
465 !(getLangOpts().CPlusPlus
&& NewSSPtr
&&
466 isTemplateName(S
, *NewSSPtr
, false, TemplateName
, nullptr, false,
467 Template
, MemberOfUnknownSpecialization
))) {
468 ParsedType Ty
= getTypeName(*NewII
, NameLoc
, S
, NewSSPtr
,
469 isClassName
, HasTrailingDot
, ObjectTypePtr
,
471 WantNontrivialTypeSourceInfo
,
472 IsClassTemplateDeductionContext
);
474 diagnoseTypo(Correction
,
475 PDiag(diag::err_unknown_type_or_class_name_suggest
)
476 << Result
.getLookupName() << isClassName
);
478 SS
->MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
479 *CorrectedII
= NewII
;
484 Result
.suppressDiagnostics();
486 case LookupResult::NotFoundInCurrentInstantiation
:
487 if (AllowImplicitTypename
== ImplicitTypenameContext::Yes
) {
488 QualType T
= Context
.getDependentNameType(ElaboratedTypeKeyword::None
,
489 SS
->getScopeRep(), &II
);
491 DependentNameTypeLoc TL
= TLB
.push
<DependentNameTypeLoc
>(T
);
492 TL
.setElaboratedKeywordLoc(SourceLocation());
493 TL
.setQualifierLoc(SS
->getWithLocInContext(Context
));
494 TL
.setNameLoc(NameLoc
);
495 return CreateParsedType(T
, TLB
.getTypeSourceInfo(Context
, T
));
498 case LookupResult::FoundOverloaded
:
499 case LookupResult::FoundUnresolvedValue
:
500 Result
.suppressDiagnostics();
503 case LookupResult::Ambiguous
:
504 // Recover from type-hiding ambiguities by hiding the type. We'll
505 // do the lookup again when looking for an object, and we can
506 // diagnose the error then. If we don't do this, then the error
507 // about hiding the type will be immediately followed by an error
508 // that only makes sense if the identifier was treated like a type.
509 if (Result
.getAmbiguityKind() == LookupResult::AmbiguousTagHiding
) {
510 Result
.suppressDiagnostics();
514 // Look to see if we have a type anywhere in the list of results.
515 for (LookupResult::iterator Res
= Result
.begin(), ResEnd
= Result
.end();
516 Res
!= ResEnd
; ++Res
) {
517 NamedDecl
*RealRes
= (*Res
)->getUnderlyingDecl();
518 if (isa
<TypeDecl
, ObjCInterfaceDecl
, UnresolvedUsingIfExistsDecl
>(
520 (AllowDeducedTemplate
&& getAsTypeTemplateDecl(RealRes
))) {
522 // Make the selection of the recovery decl deterministic.
523 RealRes
->getLocation() < IIDecl
->getLocation()) {
525 FoundUsingShadow
= dyn_cast
<UsingShadowDecl
>(*Res
);
531 // None of the entities we found is a type, so there is no way
532 // to even assume that the result is a type. In this case, don't
533 // complain about the ambiguity. The parser will either try to
534 // perform this lookup again (e.g., as an object name), which
535 // will produce the ambiguity, or will complain that it expected
537 Result
.suppressDiagnostics();
541 // We found a type within the ambiguous lookup; diagnose the
542 // ambiguity and then return that type. This might be the right
543 // answer, or it might not be, but it suppresses any attempt to
544 // perform the name lookup again.
547 case LookupResult::Found
:
548 IIDecl
= Result
.getFoundDecl();
549 FoundUsingShadow
= dyn_cast
<UsingShadowDecl
>(*Result
.begin());
553 assert(IIDecl
&& "Didn't find decl");
556 if (TypeDecl
*TD
= dyn_cast
<TypeDecl
>(IIDecl
)) {
557 // C++ [class.qual]p2: A lookup that would find the injected-class-name
558 // instead names the constructors of the class, except when naming a class.
559 // This is ill-formed when we're not actually forming a ctor or dtor name.
560 auto *LookupRD
= dyn_cast_or_null
<CXXRecordDecl
>(LookupCtx
);
561 auto *FoundRD
= dyn_cast
<CXXRecordDecl
>(TD
);
562 if (!isClassName
&& !IsCtorOrDtorName
&& LookupRD
&& FoundRD
&&
563 FoundRD
->isInjectedClassName() &&
564 declaresSameEntity(LookupRD
, cast
<Decl
>(FoundRD
->getParent())))
565 Diag(NameLoc
, diag::err_out_of_line_qualified_id_type_names_constructor
)
568 DiagnoseUseOfDecl(IIDecl
, NameLoc
);
570 T
= Context
.getTypeDeclType(TD
);
571 MarkAnyDeclReferenced(TD
->getLocation(), TD
, /*OdrUse=*/false);
572 } else if (ObjCInterfaceDecl
*IDecl
= dyn_cast
<ObjCInterfaceDecl
>(IIDecl
)) {
573 (void)DiagnoseUseOfDecl(IDecl
, NameLoc
);
575 T
= Context
.getObjCInterfaceType(IDecl
);
576 FoundUsingShadow
= nullptr; // FIXME: Target must be a TypeDecl.
577 } else if (auto *UD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(IIDecl
)) {
578 (void)DiagnoseUseOfDecl(UD
, NameLoc
);
579 // Recover with 'int'
580 return ParsedType::make(Context
.IntTy
);
581 } else if (AllowDeducedTemplate
) {
582 if (auto *TD
= getAsTypeTemplateDecl(IIDecl
)) {
583 assert(!FoundUsingShadow
|| FoundUsingShadow
->getTargetDecl() == TD
);
584 TemplateName Template
=
585 FoundUsingShadow
? TemplateName(FoundUsingShadow
) : TemplateName(TD
);
586 T
= Context
.getDeducedTemplateSpecializationType(Template
, QualType(),
588 // Don't wrap in a further UsingType.
589 FoundUsingShadow
= nullptr;
594 // If it's not plausibly a type, suppress diagnostics.
595 Result
.suppressDiagnostics();
599 if (FoundUsingShadow
)
600 T
= Context
.getUsingType(FoundUsingShadow
, T
);
602 return buildNamedType(*this, SS
, T
, NameLoc
, WantNontrivialTypeSourceInfo
);
605 // Builds a fake NNS for the given decl context.
606 static NestedNameSpecifier
*
607 synthesizeCurrentNestedNameSpecifier(ASTContext
&Context
, DeclContext
*DC
) {
608 for (;; DC
= DC
->getLookupParent()) {
609 DC
= DC
->getPrimaryContext();
610 auto *ND
= dyn_cast
<NamespaceDecl
>(DC
);
611 if (ND
&& !ND
->isInline() && !ND
->isAnonymousNamespace())
612 return NestedNameSpecifier::Create(Context
, nullptr, ND
);
613 else if (auto *RD
= dyn_cast
<CXXRecordDecl
>(DC
))
614 return NestedNameSpecifier::Create(Context
, nullptr, RD
->isTemplateDecl(),
615 RD
->getTypeForDecl());
616 else if (isa
<TranslationUnitDecl
>(DC
))
617 return NestedNameSpecifier::GlobalSpecifier(Context
);
619 llvm_unreachable("something isn't in TU scope?");
622 /// Find the parent class with dependent bases of the innermost enclosing method
623 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
624 /// up allowing unqualified dependent type names at class-level, which MSVC
625 /// correctly rejects.
626 static const CXXRecordDecl
*
627 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext
*DC
) {
628 for (; DC
&& DC
->isDependentContext(); DC
= DC
->getLookupParent()) {
629 DC
= DC
->getPrimaryContext();
630 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(DC
))
631 if (MD
->getParent()->hasAnyDependentBases())
632 return MD
->getParent();
637 ParsedType
Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo
&II
,
638 SourceLocation NameLoc
,
639 bool IsTemplateTypeArg
) {
640 assert(getLangOpts().MSVCCompat
&& "shouldn't be called in non-MSVC mode");
642 NestedNameSpecifier
*NNS
= nullptr;
643 if (IsTemplateTypeArg
&& getCurScope()->isTemplateParamScope()) {
644 // If we weren't able to parse a default template argument, delay lookup
645 // until instantiation time by making a non-dependent DependentTypeName. We
646 // pretend we saw a NestedNameSpecifier referring to the current scope, and
647 // lookup is retried.
648 // FIXME: This hurts our diagnostic quality, since we get errors like "no
649 // type named 'Foo' in 'current_namespace'" when the user didn't write any
651 NNS
= synthesizeCurrentNestedNameSpecifier(Context
, CurContext
);
652 Diag(NameLoc
, diag::ext_ms_delayed_template_argument
) << &II
;
653 } else if (const CXXRecordDecl
*RD
=
654 findRecordWithDependentBasesOfEnclosingMethod(CurContext
)) {
655 // Build a DependentNameType that will perform lookup into RD at
656 // instantiation time.
657 NNS
= NestedNameSpecifier::Create(Context
, nullptr, RD
->isTemplateDecl(),
658 RD
->getTypeForDecl());
660 // Diagnose that this identifier was undeclared, and retry the lookup during
661 // template instantiation.
662 Diag(NameLoc
, diag::ext_undeclared_unqual_id_with_dependent_base
) << &II
665 // This is not a situation that we should recover from.
670 Context
.getDependentNameType(ElaboratedTypeKeyword::None
, NNS
, &II
);
672 // Build type location information. We synthesized the qualifier, so we have
673 // to build a fake NestedNameSpecifierLoc.
674 NestedNameSpecifierLocBuilder NNSLocBuilder
;
675 NNSLocBuilder
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
676 NestedNameSpecifierLoc QualifierLoc
= NNSLocBuilder
.getWithLocInContext(Context
);
678 TypeLocBuilder Builder
;
679 DependentNameTypeLoc DepTL
= Builder
.push
<DependentNameTypeLoc
>(T
);
680 DepTL
.setNameLoc(NameLoc
);
681 DepTL
.setElaboratedKeywordLoc(SourceLocation());
682 DepTL
.setQualifierLoc(QualifierLoc
);
683 return CreateParsedType(T
, Builder
.getTypeSourceInfo(Context
, T
));
686 /// isTagName() - This method is called *for error recovery purposes only*
687 /// to determine if the specified name is a valid tag name ("struct foo"). If
688 /// so, this returns the TST for the tag corresponding to it (TST_enum,
689 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
690 /// cases in C where the user forgot to specify the tag.
691 DeclSpec::TST
Sema::isTagName(IdentifierInfo
&II
, Scope
*S
) {
692 // Do a tag name lookup in this scope.
693 LookupResult
R(*this, &II
, SourceLocation(), LookupTagName
);
694 LookupName(R
, S
, false);
695 R
.suppressDiagnostics();
696 if (R
.getResultKind() == LookupResult::Found
)
697 if (const TagDecl
*TD
= R
.getAsSingle
<TagDecl
>()) {
698 switch (TD
->getTagKind()) {
699 case TagTypeKind::Struct
:
700 return DeclSpec::TST_struct
;
701 case TagTypeKind::Interface
:
702 return DeclSpec::TST_interface
;
703 case TagTypeKind::Union
:
704 return DeclSpec::TST_union
;
705 case TagTypeKind::Class
:
706 return DeclSpec::TST_class
;
707 case TagTypeKind::Enum
:
708 return DeclSpec::TST_enum
;
712 return DeclSpec::TST_unspecified
;
715 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
716 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
717 /// then downgrade the missing typename error to a warning.
718 /// This is needed for MSVC compatibility; Example:
720 /// template<class T> class A {
722 /// typedef int TYPE;
724 /// template<class T> class B : public A<T> {
726 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
729 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec
*SS
, Scope
*S
) {
730 if (CurContext
->isRecord()) {
731 if (SS
->getScopeRep()->getKind() == NestedNameSpecifier::Super
)
734 const Type
*Ty
= SS
->getScopeRep()->getAsType();
736 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(CurContext
);
737 for (const auto &Base
: RD
->bases())
738 if (Ty
&& Context
.hasSameUnqualifiedType(QualType(Ty
, 1), Base
.getType()))
740 return S
->isFunctionPrototypeScope();
742 return CurContext
->isFunctionOrMethod() || S
->isFunctionPrototypeScope();
745 void Sema::DiagnoseUnknownTypeName(IdentifierInfo
*&II
,
746 SourceLocation IILoc
,
749 ParsedType
&SuggestedType
,
750 bool IsTemplateName
) {
751 // Don't report typename errors for editor placeholders.
752 if (II
->isEditorPlaceholder())
754 // We don't have anything to suggest (yet).
755 SuggestedType
= nullptr;
757 // There may have been a typo in the name of the type. Look up typo
758 // results, in case we have something that we can suggest.
759 TypeNameValidatorCCC
CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
760 /*AllowTemplates=*/IsTemplateName
,
761 /*AllowNonTemplates=*/!IsTemplateName
);
762 if (TypoCorrection Corrected
=
763 CorrectTypo(DeclarationNameInfo(II
, IILoc
), LookupOrdinaryName
, S
, SS
,
764 CCC
, CTK_ErrorRecovery
)) {
765 // FIXME: Support error recovery for the template-name case.
766 bool CanRecover
= !IsTemplateName
;
767 if (Corrected
.isKeyword()) {
768 // We corrected to a keyword.
769 diagnoseTypo(Corrected
,
770 PDiag(IsTemplateName
? diag::err_no_template_suggest
771 : diag::err_unknown_typename_suggest
)
773 II
= Corrected
.getCorrectionAsIdentifierInfo();
775 // We found a similarly-named type or interface; suggest that.
776 if (!SS
|| !SS
->isSet()) {
777 diagnoseTypo(Corrected
,
778 PDiag(IsTemplateName
? diag::err_no_template_suggest
779 : diag::err_unknown_typename_suggest
)
781 } else if (DeclContext
*DC
= computeDeclContext(*SS
, false)) {
782 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
783 bool DroppedSpecifier
= Corrected
.WillReplaceSpecifier() &&
784 II
->getName().equals(CorrectedStr
);
785 diagnoseTypo(Corrected
,
787 ? diag::err_no_member_template_suggest
788 : diag::err_unknown_nested_typename_suggest
)
789 << II
<< DC
<< DroppedSpecifier
<< SS
->getRange(),
792 llvm_unreachable("could not have corrected a typo here");
799 if (Corrected
.getCorrectionSpecifier())
800 tmpSS
.MakeTrivial(Context
, Corrected
.getCorrectionSpecifier(),
802 // FIXME: Support class template argument deduction here.
804 getTypeName(*Corrected
.getCorrectionAsIdentifierInfo(), IILoc
, S
,
805 tmpSS
.isSet() ? &tmpSS
: SS
, false, false, nullptr,
806 /*IsCtorOrDtorName=*/false,
807 /*WantNontrivialTypeSourceInfo=*/true);
812 if (getLangOpts().CPlusPlus
&& !IsTemplateName
) {
813 // See if II is a class template that the user forgot to pass arguments to.
815 Name
.setIdentifier(II
, IILoc
);
816 CXXScopeSpec EmptySS
;
817 TemplateTy TemplateResult
;
818 bool MemberOfUnknownSpecialization
;
819 if (isTemplateName(S
, SS
? *SS
: EmptySS
, /*hasTemplateKeyword=*/false,
820 Name
, nullptr, true, TemplateResult
,
821 MemberOfUnknownSpecialization
) == TNK_Type_template
) {
822 diagnoseMissingTemplateArguments(TemplateResult
.get(), IILoc
);
827 // FIXME: Should we move the logic that tries to recover from a missing tag
828 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
830 if (!SS
|| (!SS
->isSet() && !SS
->isInvalid()))
831 Diag(IILoc
, IsTemplateName
? diag::err_no_template
832 : diag::err_unknown_typename
)
834 else if (DeclContext
*DC
= computeDeclContext(*SS
, false))
835 Diag(IILoc
, IsTemplateName
? diag::err_no_member_template
836 : diag::err_typename_nested_not_found
)
837 << II
<< DC
<< SS
->getRange();
838 else if (SS
->isValid() && SS
->getScopeRep()->containsErrors()) {
840 ActOnTypenameType(S
, SourceLocation(), *SS
, *II
, IILoc
).get();
841 } else if (isDependentScopeSpecifier(*SS
)) {
842 unsigned DiagID
= diag::err_typename_missing
;
843 if (getLangOpts().MSVCCompat
&& isMicrosoftMissingTypename(SS
, S
))
844 DiagID
= diag::ext_typename_missing
;
846 Diag(SS
->getRange().getBegin(), DiagID
)
847 << SS
->getScopeRep() << II
->getName()
848 << SourceRange(SS
->getRange().getBegin(), IILoc
)
849 << FixItHint::CreateInsertion(SS
->getRange().getBegin(), "typename ");
850 SuggestedType
= ActOnTypenameType(S
, SourceLocation(),
851 *SS
, *II
, IILoc
).get();
853 assert(SS
&& SS
->isInvalid() &&
854 "Invalid scope specifier has already been diagnosed");
858 /// Determine whether the given result set contains either a type name
860 static bool isResultTypeOrTemplate(LookupResult
&R
, const Token
&NextToken
) {
861 bool CheckTemplate
= R
.getSema().getLangOpts().CPlusPlus
&&
862 NextToken
.is(tok::less
);
864 for (LookupResult::iterator I
= R
.begin(), IEnd
= R
.end(); I
!= IEnd
; ++I
) {
865 if (isa
<TypeDecl
>(*I
) || isa
<ObjCInterfaceDecl
>(*I
))
868 if (CheckTemplate
&& isa
<TemplateDecl
>(*I
))
875 static bool isTagTypeWithMissingTag(Sema
&SemaRef
, LookupResult
&Result
,
876 Scope
*S
, CXXScopeSpec
&SS
,
877 IdentifierInfo
*&Name
,
878 SourceLocation NameLoc
) {
879 LookupResult
R(SemaRef
, Name
, NameLoc
, Sema::LookupTagName
);
880 SemaRef
.LookupParsedName(R
, S
, &SS
);
881 if (TagDecl
*Tag
= R
.getAsSingle
<TagDecl
>()) {
882 StringRef FixItTagName
;
883 switch (Tag
->getTagKind()) {
884 case TagTypeKind::Class
:
885 FixItTagName
= "class ";
888 case TagTypeKind::Enum
:
889 FixItTagName
= "enum ";
892 case TagTypeKind::Struct
:
893 FixItTagName
= "struct ";
896 case TagTypeKind::Interface
:
897 FixItTagName
= "__interface ";
900 case TagTypeKind::Union
:
901 FixItTagName
= "union ";
905 StringRef TagName
= FixItTagName
.drop_back();
906 SemaRef
.Diag(NameLoc
, diag::err_use_of_tag_name_without_tag
)
907 << Name
<< TagName
<< SemaRef
.getLangOpts().CPlusPlus
908 << FixItHint::CreateInsertion(NameLoc
, FixItTagName
);
910 for (LookupResult::iterator I
= Result
.begin(), IEnd
= Result
.end();
912 SemaRef
.Diag((*I
)->getLocation(), diag::note_decl_hiding_tag_type
)
915 // Replace lookup results with just the tag decl.
916 Result
.clear(Sema::LookupTagName
);
917 SemaRef
.LookupParsedName(Result
, S
, &SS
);
924 Sema::NameClassification
Sema::ClassifyName(Scope
*S
, CXXScopeSpec
&SS
,
925 IdentifierInfo
*&Name
,
926 SourceLocation NameLoc
,
927 const Token
&NextToken
,
928 CorrectionCandidateCallback
*CCC
) {
929 DeclarationNameInfo
NameInfo(Name
, NameLoc
);
930 ObjCMethodDecl
*CurMethod
= getCurMethodDecl();
932 assert(NextToken
.isNot(tok::coloncolon
) &&
933 "parse nested name specifiers before calling ClassifyName");
934 if (getLangOpts().CPlusPlus
&& SS
.isSet() &&
935 isCurrentClassName(*Name
, S
, &SS
)) {
936 // Per [class.qual]p2, this names the constructors of SS, not the
937 // injected-class-name. We don't have a classification for that.
938 // There's not much point caching this result, since the parser
939 // will reject it later.
940 return NameClassification::Unknown();
943 LookupResult
Result(*this, Name
, NameLoc
, LookupOrdinaryName
);
944 LookupParsedName(Result
, S
, &SS
, !CurMethod
);
947 return NameClassification::Error();
949 // For unqualified lookup in a class template in MSVC mode, look into
950 // dependent base classes where the primary class template is known.
951 if (Result
.empty() && SS
.isEmpty() && getLangOpts().MSVCCompat
) {
952 if (ParsedType TypeInBase
=
953 recoverFromTypeInKnownDependentBase(*this, *Name
, NameLoc
))
957 // Perform lookup for Objective-C instance variables (including automatically
958 // synthesized instance variables), if we're in an Objective-C method.
959 // FIXME: This lookup really, really needs to be folded in to the normal
960 // unqualified lookup mechanism.
961 if (SS
.isEmpty() && CurMethod
&& !isResultTypeOrTemplate(Result
, NextToken
)) {
962 DeclResult Ivar
= LookupIvarInObjCMethod(Result
, S
, Name
);
963 if (Ivar
.isInvalid())
964 return NameClassification::Error();
966 return NameClassification::NonType(cast
<NamedDecl
>(Ivar
.get()));
968 // We defer builtin creation until after ivar lookup inside ObjC methods.
970 LookupBuiltin(Result
);
973 bool SecondTry
= false;
974 bool IsFilteredTemplateName
= false;
977 switch (Result
.getResultKind()) {
978 case LookupResult::NotFound
:
979 // If an unqualified-id is followed by a '(', then we have a function
981 if (SS
.isEmpty() && NextToken
.is(tok::l_paren
)) {
982 // In C++, this is an ADL-only call.
984 if (getLangOpts().CPlusPlus
)
985 return NameClassification::UndeclaredNonType();
988 // If the expression that precedes the parenthesized argument list in a
989 // function call consists solely of an identifier, and if no
990 // declaration is visible for this identifier, the identifier is
991 // implicitly declared exactly as if, in the innermost block containing
992 // the function call, the declaration
994 // extern int identifier ();
998 // We also allow this in C99 as an extension. However, this is not
999 // allowed in all language modes as functions without prototypes may not
1001 if (getLangOpts().implicitFunctionsAllowed()) {
1002 if (NamedDecl
*D
= ImplicitlyDefineFunction(NameLoc
, *Name
, S
))
1003 return NameClassification::NonType(D
);
1007 if (getLangOpts().CPlusPlus20
&& SS
.isEmpty() && NextToken
.is(tok::less
)) {
1008 // In C++20 onwards, this could be an ADL-only call to a function
1009 // template, and we're required to assume that this is a template name.
1011 // FIXME: Find a way to still do typo correction in this case.
1012 TemplateName Template
=
1013 Context
.getAssumedTemplateName(NameInfo
.getName());
1014 return NameClassification::UndeclaredTemplate(Template
);
1017 // In C, we first see whether there is a tag type by the same name, in
1018 // which case it's likely that the user just forgot to write "enum",
1019 // "struct", or "union".
1020 if (!getLangOpts().CPlusPlus
&& !SecondTry
&&
1021 isTagTypeWithMissingTag(*this, Result
, S
, SS
, Name
, NameLoc
)) {
1025 // Perform typo correction to determine if there is another name that is
1026 // close to this name.
1027 if (!SecondTry
&& CCC
) {
1029 if (TypoCorrection Corrected
=
1030 CorrectTypo(Result
.getLookupNameInfo(), Result
.getLookupKind(), S
,
1031 &SS
, *CCC
, CTK_ErrorRecovery
)) {
1032 unsigned UnqualifiedDiag
= diag::err_undeclared_var_use_suggest
;
1033 unsigned QualifiedDiag
= diag::err_no_member_suggest
;
1035 NamedDecl
*FirstDecl
= Corrected
.getFoundDecl();
1036 NamedDecl
*UnderlyingFirstDecl
= Corrected
.getCorrectionDecl();
1037 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1038 UnderlyingFirstDecl
&& isa
<TemplateDecl
>(UnderlyingFirstDecl
)) {
1039 UnqualifiedDiag
= diag::err_no_template_suggest
;
1040 QualifiedDiag
= diag::err_no_member_template_suggest
;
1041 } else if (UnderlyingFirstDecl
&&
1042 (isa
<TypeDecl
>(UnderlyingFirstDecl
) ||
1043 isa
<ObjCInterfaceDecl
>(UnderlyingFirstDecl
) ||
1044 isa
<ObjCCompatibleAliasDecl
>(UnderlyingFirstDecl
))) {
1045 UnqualifiedDiag
= diag::err_unknown_typename_suggest
;
1046 QualifiedDiag
= diag::err_unknown_nested_typename_suggest
;
1050 diagnoseTypo(Corrected
, PDiag(UnqualifiedDiag
) << Name
);
1051 } else {// FIXME: is this even reachable? Test it.
1052 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
1053 bool DroppedSpecifier
= Corrected
.WillReplaceSpecifier() &&
1054 Name
->getName().equals(CorrectedStr
);
1055 diagnoseTypo(Corrected
, PDiag(QualifiedDiag
)
1056 << Name
<< computeDeclContext(SS
, false)
1057 << DroppedSpecifier
<< SS
.getRange());
1060 // Update the name, so that the caller has the new name.
1061 Name
= Corrected
.getCorrectionAsIdentifierInfo();
1063 // Typo correction corrected to a keyword.
1064 if (Corrected
.isKeyword())
1067 // Also update the LookupResult...
1068 // FIXME: This should probably go away at some point
1070 Result
.setLookupName(Corrected
.getCorrection());
1072 Result
.addDecl(FirstDecl
);
1074 // If we found an Objective-C instance variable, let
1075 // LookupInObjCMethod build the appropriate expression to
1076 // reference the ivar.
1077 // FIXME: This is a gross hack.
1078 if (ObjCIvarDecl
*Ivar
= Result
.getAsSingle
<ObjCIvarDecl
>()) {
1080 LookupIvarInObjCMethod(Result
, S
, Ivar
->getIdentifier());
1082 return NameClassification::Error();
1084 return NameClassification::NonType(Ivar
);
1091 // We failed to correct; just fall through and let the parser deal with it.
1092 Result
.suppressDiagnostics();
1093 return NameClassification::Unknown();
1095 case LookupResult::NotFoundInCurrentInstantiation
: {
1096 // We performed name lookup into the current instantiation, and there were
1097 // dependent bases, so we treat this result the same way as any other
1098 // dependent nested-name-specifier.
1100 // C++ [temp.res]p2:
1101 // A name used in a template declaration or definition and that is
1102 // dependent on a template-parameter is assumed not to name a type
1103 // unless the applicable name lookup finds a type name or the name is
1104 // qualified by the keyword typename.
1106 // FIXME: If the next token is '<', we might want to ask the parser to
1107 // perform some heroics to see if we actually have a
1108 // template-argument-list, which would indicate a missing 'template'
1110 return NameClassification::DependentNonType();
1113 case LookupResult::Found
:
1114 case LookupResult::FoundOverloaded
:
1115 case LookupResult::FoundUnresolvedValue
:
1118 case LookupResult::Ambiguous
:
1119 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1120 hasAnyAcceptableTemplateNames(Result
, /*AllowFunctionTemplates=*/true,
1121 /*AllowDependent=*/false)) {
1122 // C++ [temp.local]p3:
1123 // A lookup that finds an injected-class-name (10.2) can result in an
1124 // ambiguity in certain cases (for example, if it is found in more than
1125 // one base class). If all of the injected-class-names that are found
1126 // refer to specializations of the same class template, and if the name
1127 // is followed by a template-argument-list, the reference refers to the
1128 // class template itself and not a specialization thereof, and is not
1131 // This filtering can make an ambiguous result into an unambiguous one,
1132 // so try again after filtering out template names.
1133 FilterAcceptableTemplateNames(Result
);
1134 if (!Result
.isAmbiguous()) {
1135 IsFilteredTemplateName
= true;
1140 // Diagnose the ambiguity and return an error.
1141 return NameClassification::Error();
1144 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1145 (IsFilteredTemplateName
||
1146 hasAnyAcceptableTemplateNames(
1147 Result
, /*AllowFunctionTemplates=*/true,
1148 /*AllowDependent=*/false,
1149 /*AllowNonTemplateFunctions*/ SS
.isEmpty() &&
1150 getLangOpts().CPlusPlus20
))) {
1151 // C++ [temp.names]p3:
1152 // After name lookup (3.4) finds that a name is a template-name or that
1153 // an operator-function-id or a literal- operator-id refers to a set of
1154 // overloaded functions any member of which is a function template if
1155 // this is followed by a <, the < is always taken as the delimiter of a
1156 // template-argument-list and never as the less-than operator.
1157 // C++2a [temp.names]p2:
1158 // A name is also considered to refer to a template if it is an
1159 // unqualified-id followed by a < and name lookup finds either one
1160 // or more functions or finds nothing.
1161 if (!IsFilteredTemplateName
)
1162 FilterAcceptableTemplateNames(Result
);
1164 bool IsFunctionTemplate
;
1166 TemplateName Template
;
1167 if (Result
.end() - Result
.begin() > 1) {
1168 IsFunctionTemplate
= true;
1169 Template
= Context
.getOverloadedTemplateName(Result
.begin(),
1171 } else if (!Result
.empty()) {
1172 auto *TD
= cast
<TemplateDecl
>(getAsTemplateNameDecl(
1173 *Result
.begin(), /*AllowFunctionTemplates=*/true,
1174 /*AllowDependent=*/false));
1175 IsFunctionTemplate
= isa
<FunctionTemplateDecl
>(TD
);
1176 IsVarTemplate
= isa
<VarTemplateDecl
>(TD
);
1178 UsingShadowDecl
*FoundUsingShadow
=
1179 dyn_cast
<UsingShadowDecl
>(*Result
.begin());
1180 assert(!FoundUsingShadow
||
1181 TD
== cast
<TemplateDecl
>(FoundUsingShadow
->getTargetDecl()));
1183 FoundUsingShadow
? TemplateName(FoundUsingShadow
) : TemplateName(TD
);
1184 if (SS
.isNotEmpty())
1185 Template
= Context
.getQualifiedTemplateName(SS
.getScopeRep(),
1186 /*TemplateKeyword=*/false,
1189 // All results were non-template functions. This is a function template
1191 IsFunctionTemplate
= true;
1192 Template
= Context
.getAssumedTemplateName(NameInfo
.getName());
1195 if (IsFunctionTemplate
) {
1196 // Function templates always go through overload resolution, at which
1197 // point we'll perform the various checks (e.g., accessibility) we need
1198 // to based on which function we selected.
1199 Result
.suppressDiagnostics();
1201 return NameClassification::FunctionTemplate(Template
);
1204 return IsVarTemplate
? NameClassification::VarTemplate(Template
)
1205 : NameClassification::TypeTemplate(Template
);
1208 auto BuildTypeFor
= [&](TypeDecl
*Type
, NamedDecl
*Found
) {
1209 QualType T
= Context
.getTypeDeclType(Type
);
1210 if (const auto *USD
= dyn_cast
<UsingShadowDecl
>(Found
))
1211 T
= Context
.getUsingType(USD
, T
);
1212 return buildNamedType(*this, &SS
, T
, NameLoc
);
1215 NamedDecl
*FirstDecl
= (*Result
.begin())->getUnderlyingDecl();
1216 if (TypeDecl
*Type
= dyn_cast
<TypeDecl
>(FirstDecl
)) {
1217 DiagnoseUseOfDecl(Type
, NameLoc
);
1218 MarkAnyDeclReferenced(Type
->getLocation(), Type
, /*OdrUse=*/false);
1219 return BuildTypeFor(Type
, *Result
.begin());
1222 ObjCInterfaceDecl
*Class
= dyn_cast
<ObjCInterfaceDecl
>(FirstDecl
);
1224 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1225 if (ObjCCompatibleAliasDecl
*Alias
=
1226 dyn_cast
<ObjCCompatibleAliasDecl
>(FirstDecl
))
1227 Class
= Alias
->getClassInterface();
1231 DiagnoseUseOfDecl(Class
, NameLoc
);
1233 if (NextToken
.is(tok::period
)) {
1234 // Interface. <something> is parsed as a property reference expression.
1235 // Just return "unknown" as a fall-through for now.
1236 Result
.suppressDiagnostics();
1237 return NameClassification::Unknown();
1240 QualType T
= Context
.getObjCInterfaceType(Class
);
1241 return ParsedType::make(T
);
1244 if (isa
<ConceptDecl
>(FirstDecl
))
1245 return NameClassification::Concept(
1246 TemplateName(cast
<TemplateDecl
>(FirstDecl
)));
1248 if (auto *EmptyD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(FirstDecl
)) {
1249 (void)DiagnoseUseOfDecl(EmptyD
, NameLoc
);
1250 return NameClassification::Error();
1253 // We can have a type template here if we're classifying a template argument.
1254 if (isa
<TemplateDecl
>(FirstDecl
) && !isa
<FunctionTemplateDecl
>(FirstDecl
) &&
1255 !isa
<VarTemplateDecl
>(FirstDecl
))
1256 return NameClassification::TypeTemplate(
1257 TemplateName(cast
<TemplateDecl
>(FirstDecl
)));
1259 // Check for a tag type hidden by a non-type decl in a few cases where it
1260 // seems likely a type is wanted instead of the non-type that was found.
1261 bool NextIsOp
= NextToken
.isOneOf(tok::amp
, tok::star
);
1262 if ((NextToken
.is(tok::identifier
) ||
1264 FirstDecl
->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1265 isTagTypeWithMissingTag(*this, Result
, S
, SS
, Name
, NameLoc
)) {
1266 TypeDecl
*Type
= Result
.getAsSingle
<TypeDecl
>();
1267 DiagnoseUseOfDecl(Type
, NameLoc
);
1268 return BuildTypeFor(Type
, *Result
.begin());
1271 // If we already know which single declaration is referenced, just annotate
1272 // that declaration directly. Defer resolving even non-overloaded class
1273 // member accesses, as we need to defer certain access checks until we know
1275 bool ADL
= UseArgumentDependentLookup(SS
, Result
, NextToken
.is(tok::l_paren
));
1276 if (Result
.isSingleResult() && !ADL
&&
1277 (!FirstDecl
->isCXXClassMember() || isa
<EnumConstantDecl
>(FirstDecl
)))
1278 return NameClassification::NonType(Result
.getRepresentativeDecl());
1280 // Otherwise, this is an overload set that we will need to resolve later.
1281 Result
.suppressDiagnostics();
1282 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1283 Context
, Result
.getNamingClass(), SS
.getWithLocInContext(Context
),
1284 Result
.getLookupNameInfo(), ADL
, Result
.isOverloadedResult(),
1285 Result
.begin(), Result
.end()));
1289 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo
*Name
,
1290 SourceLocation NameLoc
) {
1291 assert(getLangOpts().CPlusPlus
&& "ADL-only call in C?");
1293 LookupResult
Result(*this, Name
, NameLoc
, LookupOrdinaryName
);
1294 return BuildDeclarationNameExpr(SS
, Result
, /*ADL=*/true);
1298 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec
&SS
,
1299 IdentifierInfo
*Name
,
1300 SourceLocation NameLoc
,
1301 bool IsAddressOfOperand
) {
1302 DeclarationNameInfo
NameInfo(Name
, NameLoc
);
1303 return ActOnDependentIdExpression(SS
, /*TemplateKWLoc=*/SourceLocation(),
1304 NameInfo
, IsAddressOfOperand
,
1305 /*TemplateArgs=*/nullptr);
1308 ExprResult
Sema::ActOnNameClassifiedAsNonType(Scope
*S
, const CXXScopeSpec
&SS
,
1310 SourceLocation NameLoc
,
1311 const Token
&NextToken
) {
1312 if (getCurMethodDecl() && SS
.isEmpty())
1313 if (auto *Ivar
= dyn_cast
<ObjCIvarDecl
>(Found
->getUnderlyingDecl()))
1314 return BuildIvarRefExpr(S
, NameLoc
, Ivar
);
1316 // Reconstruct the lookup result.
1317 LookupResult
Result(*this, Found
->getDeclName(), NameLoc
, LookupOrdinaryName
);
1318 Result
.addDecl(Found
);
1319 Result
.resolveKind();
1321 bool ADL
= UseArgumentDependentLookup(SS
, Result
, NextToken
.is(tok::l_paren
));
1322 return BuildDeclarationNameExpr(SS
, Result
, ADL
, /*AcceptInvalidDecl=*/true);
1325 ExprResult
Sema::ActOnNameClassifiedAsOverloadSet(Scope
*S
, Expr
*E
) {
1326 // For an implicit class member access, transform the result into a member
1327 // access expression if necessary.
1328 auto *ULE
= cast
<UnresolvedLookupExpr
>(E
);
1329 if ((*ULE
->decls_begin())->isCXXClassMember()) {
1331 SS
.Adopt(ULE
->getQualifierLoc());
1333 // Reconstruct the lookup result.
1334 LookupResult
Result(*this, ULE
->getName(), ULE
->getNameLoc(),
1335 LookupOrdinaryName
);
1336 Result
.setNamingClass(ULE
->getNamingClass());
1337 for (auto I
= ULE
->decls_begin(), E
= ULE
->decls_end(); I
!= E
; ++I
)
1338 Result
.addDecl(*I
, I
.getAccess());
1339 Result
.resolveKind();
1340 return BuildPossibleImplicitMemberExpr(SS
, SourceLocation(), Result
,
1344 // Otherwise, this is already in the form we needed, and no further checks
1349 Sema::TemplateNameKindForDiagnostics
1350 Sema::getTemplateNameKindForDiagnostics(TemplateName Name
) {
1351 auto *TD
= Name
.getAsTemplateDecl();
1353 return TemplateNameKindForDiagnostics::DependentTemplate
;
1354 if (isa
<ClassTemplateDecl
>(TD
))
1355 return TemplateNameKindForDiagnostics::ClassTemplate
;
1356 if (isa
<FunctionTemplateDecl
>(TD
))
1357 return TemplateNameKindForDiagnostics::FunctionTemplate
;
1358 if (isa
<VarTemplateDecl
>(TD
))
1359 return TemplateNameKindForDiagnostics::VarTemplate
;
1360 if (isa
<TypeAliasTemplateDecl
>(TD
))
1361 return TemplateNameKindForDiagnostics::AliasTemplate
;
1362 if (isa
<TemplateTemplateParmDecl
>(TD
))
1363 return TemplateNameKindForDiagnostics::TemplateTemplateParam
;
1364 if (isa
<ConceptDecl
>(TD
))
1365 return TemplateNameKindForDiagnostics::Concept
;
1366 return TemplateNameKindForDiagnostics::DependentTemplate
;
1369 void Sema::PushDeclContext(Scope
*S
, DeclContext
*DC
) {
1370 assert(DC
->getLexicalParent() == CurContext
&&
1371 "The next DeclContext should be lexically contained in the current one.");
1376 void Sema::PopDeclContext() {
1377 assert(CurContext
&& "DeclContext imbalance!");
1379 CurContext
= CurContext
->getLexicalParent();
1380 assert(CurContext
&& "Popped translation unit!");
1383 Sema::SkippedDefinitionContext
Sema::ActOnTagStartSkippedDefinition(Scope
*S
,
1385 // Unlike PushDeclContext, the context to which we return is not necessarily
1386 // the containing DC of TD, because the new context will be some pre-existing
1387 // TagDecl definition instead of a fresh one.
1388 auto Result
= static_cast<SkippedDefinitionContext
>(CurContext
);
1389 CurContext
= cast
<TagDecl
>(D
)->getDefinition();
1390 assert(CurContext
&& "skipping definition of undefined tag");
1391 // Start lookups from the parent of the current context; we don't want to look
1392 // into the pre-existing complete definition.
1393 S
->setEntity(CurContext
->getLookupParent());
1397 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context
) {
1398 CurContext
= static_cast<decltype(CurContext
)>(Context
);
1401 /// EnterDeclaratorContext - Used when we must lookup names in the context
1402 /// of a declarator's nested name specifier.
1404 void Sema::EnterDeclaratorContext(Scope
*S
, DeclContext
*DC
) {
1405 // C++0x [basic.lookup.unqual]p13:
1406 // A name used in the definition of a static data member of class
1407 // X (after the qualified-id of the static member) is looked up as
1408 // if the name was used in a member function of X.
1409 // C++0x [basic.lookup.unqual]p14:
1410 // If a variable member of a namespace is defined outside of the
1411 // scope of its namespace then any name used in the definition of
1412 // the variable member (after the declarator-id) is looked up as
1413 // if the definition of the variable member occurred in its
1415 // Both of these imply that we should push a scope whose context
1416 // is the semantic context of the declaration. We can't use
1417 // PushDeclContext here because that context is not necessarily
1418 // lexically contained in the current context. Fortunately,
1419 // the containing scope should have the appropriate information.
1421 assert(!S
->getEntity() && "scope already has entity");
1424 Scope
*Ancestor
= S
->getParent();
1425 while (!Ancestor
->getEntity()) Ancestor
= Ancestor
->getParent();
1426 assert(Ancestor
->getEntity() == CurContext
&& "ancestor context mismatch");
1432 if (S
->getParent()->isTemplateParamScope()) {
1433 // Also set the corresponding entities for all immediately-enclosing
1434 // template parameter scopes.
1435 EnterTemplatedContext(S
->getParent(), DC
);
1439 void Sema::ExitDeclaratorContext(Scope
*S
) {
1440 assert(S
->getEntity() == CurContext
&& "Context imbalance!");
1442 // Switch back to the lexical context. The safety of this is
1443 // enforced by an assert in EnterDeclaratorContext.
1444 Scope
*Ancestor
= S
->getParent();
1445 while (!Ancestor
->getEntity()) Ancestor
= Ancestor
->getParent();
1446 CurContext
= Ancestor
->getEntity();
1448 // We don't need to do anything with the scope, which is going to
1452 void Sema::EnterTemplatedContext(Scope
*S
, DeclContext
*DC
) {
1453 assert(S
->isTemplateParamScope() &&
1454 "expected to be initializing a template parameter scope");
1456 // C++20 [temp.local]p7:
1457 // In the definition of a member of a class template that appears outside
1458 // of the class template definition, the name of a member of the class
1459 // template hides the name of a template-parameter of any enclosing class
1460 // templates (but not a template-parameter of the member if the member is a
1461 // class or function template).
1462 // C++20 [temp.local]p9:
1463 // In the definition of a class template or in the definition of a member
1464 // of such a template that appears outside of the template definition, for
1465 // each non-dependent base class (13.8.2.1), if the name of the base class
1466 // or the name of a member of the base class is the same as the name of a
1467 // template-parameter, the base class name or member name hides the
1468 // template-parameter name (6.4.10).
1470 // This means that a template parameter scope should be searched immediately
1471 // after searching the DeclContext for which it is a template parameter
1472 // scope. For example, for
1473 // template<typename T> template<typename U> template<typename V>
1474 // void N::A<T>::B<U>::f(...)
1475 // we search V then B<U> (and base classes) then U then A<T> (and base
1476 // classes) then T then N then ::.
1477 unsigned ScopeDepth
= getTemplateDepth(S
);
1478 for (; S
&& S
->isTemplateParamScope(); S
= S
->getParent(), --ScopeDepth
) {
1479 DeclContext
*SearchDCAfterScope
= DC
;
1480 for (; DC
; DC
= DC
->getLookupParent()) {
1481 if (const TemplateParameterList
*TPL
=
1482 cast
<Decl
>(DC
)->getDescribedTemplateParams()) {
1483 unsigned DCDepth
= TPL
->getDepth() + 1;
1484 if (DCDepth
> ScopeDepth
)
1486 if (ScopeDepth
== DCDepth
)
1487 SearchDCAfterScope
= DC
= DC
->getLookupParent();
1491 S
->setLookupEntity(SearchDCAfterScope
);
1495 void Sema::ActOnReenterFunctionContext(Scope
* S
, Decl
*D
) {
1496 // We assume that the caller has already called
1497 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1498 FunctionDecl
*FD
= D
->getAsFunction();
1502 // Same implementation as PushDeclContext, but enters the context
1503 // from the lexical parent, rather than the top-level class.
1504 assert(CurContext
== FD
->getLexicalParent() &&
1505 "The next DeclContext should be lexically contained in the current one.");
1507 S
->setEntity(CurContext
);
1509 for (unsigned P
= 0, NumParams
= FD
->getNumParams(); P
< NumParams
; ++P
) {
1510 ParmVarDecl
*Param
= FD
->getParamDecl(P
);
1511 // If the parameter has an identifier, then add it to the scope
1512 if (Param
->getIdentifier()) {
1514 IdResolver
.AddDecl(Param
);
1519 void Sema::ActOnExitFunctionContext() {
1520 // Same implementation as PopDeclContext, but returns to the lexical parent,
1521 // rather than the top-level class.
1522 assert(CurContext
&& "DeclContext imbalance!");
1523 CurContext
= CurContext
->getLexicalParent();
1524 assert(CurContext
&& "Popped translation unit!");
1527 /// Determine whether overloading is allowed for a new function
1528 /// declaration considering prior declarations of the same name.
1530 /// This routine determines whether overloading is possible, not
1531 /// whether a new declaration actually overloads a previous one.
1532 /// It will return true in C++ (where overloads are alway permitted)
1533 /// or, as a C extension, when either the new declaration or a
1534 /// previous one is declared with the 'overloadable' attribute.
1535 static bool AllowOverloadingOfFunction(const LookupResult
&Previous
,
1536 ASTContext
&Context
,
1537 const FunctionDecl
*New
) {
1538 if (Context
.getLangOpts().CPlusPlus
|| New
->hasAttr
<OverloadableAttr
>())
1541 // Multiversion function declarations are not overloads in the
1542 // usual sense of that term, but lookup will report that an
1543 // overload set was found if more than one multiversion function
1544 // declaration is present for the same name. It is therefore
1545 // inadequate to assume that some prior declaration(s) had
1546 // the overloadable attribute; checking is required. Since one
1547 // declaration is permitted to omit the attribute, it is necessary
1548 // to check at least two; hence the 'any_of' check below. Note that
1549 // the overloadable attribute is implicitly added to declarations
1550 // that were required to have it but did not.
1551 if (Previous
.getResultKind() == LookupResult::FoundOverloaded
) {
1552 return llvm::any_of(Previous
, [](const NamedDecl
*ND
) {
1553 return ND
->hasAttr
<OverloadableAttr
>();
1555 } else if (Previous
.getResultKind() == LookupResult::Found
)
1556 return Previous
.getFoundDecl()->hasAttr
<OverloadableAttr
>();
1561 /// Add this decl to the scope shadowed decl chains.
1562 void Sema::PushOnScopeChains(NamedDecl
*D
, Scope
*S
, bool AddToContext
) {
1563 // Move up the scope chain until we find the nearest enclosing
1564 // non-transparent context. The declaration will be introduced into this
1566 while (S
->getEntity() && S
->getEntity()->isTransparentContext())
1569 // Add scoped declarations into their context, so that they can be
1570 // found later. Declarations without a context won't be inserted
1571 // into any context.
1573 CurContext
->addDecl(D
);
1575 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1576 // are function-local declarations.
1577 if (getLangOpts().CPlusPlus
&& D
->isOutOfLine() && !S
->getFnParent())
1580 // Template instantiations should also not be pushed into scope.
1581 if (isa
<FunctionDecl
>(D
) &&
1582 cast
<FunctionDecl
>(D
)->isFunctionTemplateSpecialization())
1585 // If this replaces anything in the current scope,
1586 IdentifierResolver::iterator I
= IdResolver
.begin(D
->getDeclName()),
1587 IEnd
= IdResolver
.end();
1588 for (; I
!= IEnd
; ++I
) {
1589 if (S
->isDeclScope(*I
) && D
->declarationReplaces(*I
)) {
1591 IdResolver
.RemoveDecl(*I
);
1593 // Should only need to replace one decl.
1600 if (isa
<LabelDecl
>(D
) && !cast
<LabelDecl
>(D
)->isGnuLocal()) {
1601 // Implicitly-generated labels may end up getting generated in an order that
1602 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1603 // the label at the appropriate place in the identifier chain.
1604 for (I
= IdResolver
.begin(D
->getDeclName()); I
!= IEnd
; ++I
) {
1605 DeclContext
*IDC
= (*I
)->getLexicalDeclContext()->getRedeclContext();
1606 if (IDC
== CurContext
) {
1607 if (!S
->isDeclScope(*I
))
1609 } else if (IDC
->Encloses(CurContext
))
1613 IdResolver
.InsertDeclAfter(I
, D
);
1615 IdResolver
.AddDecl(D
);
1617 warnOnReservedIdentifier(D
);
1620 bool Sema::isDeclInScope(NamedDecl
*D
, DeclContext
*Ctx
, Scope
*S
,
1621 bool AllowInlineNamespace
) const {
1622 return IdResolver
.isDeclInScope(D
, Ctx
, S
, AllowInlineNamespace
);
1625 Scope
*Sema::getScopeForDeclContext(Scope
*S
, DeclContext
*DC
) {
1626 DeclContext
*TargetDC
= DC
->getPrimaryContext();
1628 if (DeclContext
*ScopeDC
= S
->getEntity())
1629 if (ScopeDC
->getPrimaryContext() == TargetDC
)
1631 } while ((S
= S
->getParent()));
1636 static bool isOutOfScopePreviousDeclaration(NamedDecl
*,
1640 /// Filters out lookup results that don't fall within the given scope
1641 /// as determined by isDeclInScope.
1642 void Sema::FilterLookupForScope(LookupResult
&R
, DeclContext
*Ctx
, Scope
*S
,
1643 bool ConsiderLinkage
,
1644 bool AllowInlineNamespace
) {
1645 LookupResult::Filter F
= R
.makeFilter();
1646 while (F
.hasNext()) {
1647 NamedDecl
*D
= F
.next();
1649 if (isDeclInScope(D
, Ctx
, S
, AllowInlineNamespace
))
1652 if (ConsiderLinkage
&& isOutOfScopePreviousDeclaration(D
, Ctx
, Context
))
1661 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1662 /// have compatible owning modules.
1663 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl
*New
, NamedDecl
*Old
) {
1664 // [module.interface]p7:
1665 // A declaration is attached to a module as follows:
1666 // - If the declaration is a non-dependent friend declaration that nominates a
1667 // function with a declarator-id that is a qualified-id or template-id or that
1668 // nominates a class other than with an elaborated-type-specifier with neither
1669 // a nested-name-specifier nor a simple-template-id, it is attached to the
1670 // module to which the friend is attached ([basic.link]).
1671 if (New
->getFriendObjectKind() &&
1672 Old
->getOwningModuleForLinkage() != New
->getOwningModuleForLinkage()) {
1673 New
->setLocalOwningModule(Old
->getOwningModule());
1674 makeMergedDefinitionVisible(New
);
1678 Module
*NewM
= New
->getOwningModule();
1679 Module
*OldM
= Old
->getOwningModule();
1681 if (NewM
&& NewM
->isPrivateModule())
1682 NewM
= NewM
->Parent
;
1683 if (OldM
&& OldM
->isPrivateModule())
1684 OldM
= OldM
->Parent
;
1690 // A module implementation unit has visibility of the decls in its
1691 // implicitly imported interface.
1692 if (NewM
->isModuleImplementation() && OldM
== ThePrimaryInterface
)
1695 // Partitions are part of the module, but a partition could import another
1696 // module, so verify that the PMIs agree.
1697 if ((NewM
->isModulePartition() || OldM
->isModulePartition()) &&
1698 NewM
->getPrimaryModuleInterfaceName() ==
1699 OldM
->getPrimaryModuleInterfaceName())
1703 bool NewIsModuleInterface
= NewM
&& NewM
->isNamedModule();
1704 bool OldIsModuleInterface
= OldM
&& OldM
->isNamedModule();
1705 if (NewIsModuleInterface
|| OldIsModuleInterface
) {
1706 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1707 // if a declaration of D [...] appears in the purview of a module, all
1708 // other such declarations shall appear in the purview of the same module
1709 Diag(New
->getLocation(), diag::err_mismatched_owning_module
)
1711 << NewIsModuleInterface
1712 << (NewIsModuleInterface
? NewM
->getFullModuleName() : "")
1713 << OldIsModuleInterface
1714 << (OldIsModuleInterface
? OldM
->getFullModuleName() : "");
1715 Diag(Old
->getLocation(), diag::note_previous_declaration
);
1716 New
->setInvalidDecl();
1723 // [module.interface]p6:
1724 // A redeclaration of an entity X is implicitly exported if X was introduced by
1725 // an exported declaration; otherwise it shall not be exported.
1726 bool Sema::CheckRedeclarationExported(NamedDecl
*New
, NamedDecl
*Old
) {
1727 // [module.interface]p1:
1728 // An export-declaration shall inhabit a namespace scope.
1730 // So it is meaningless to talk about redeclaration which is not at namespace
1732 if (!New
->getLexicalDeclContext()
1733 ->getNonTransparentContext()
1734 ->isFileContext() ||
1735 !Old
->getLexicalDeclContext()
1736 ->getNonTransparentContext()
1740 bool IsNewExported
= New
->isInExportDeclContext();
1741 bool IsOldExported
= Old
->isInExportDeclContext();
1743 // It should be irrevelant if both of them are not exported.
1744 if (!IsNewExported
&& !IsOldExported
)
1750 assert(IsNewExported
);
1752 auto Lk
= Old
->getFormalLinkage();
1754 if (Lk
== Linkage::Internal
)
1756 else if (Lk
== Linkage::Module
)
1758 Diag(New
->getLocation(), diag::err_redeclaration_non_exported
) << New
<< S
;
1759 Diag(Old
->getLocation(), diag::note_previous_declaration
);
1763 // A wrapper function for checking the semantic restrictions of
1764 // a redeclaration within a module.
1765 bool Sema::CheckRedeclarationInModule(NamedDecl
*New
, NamedDecl
*Old
) {
1766 if (CheckRedeclarationModuleOwnership(New
, Old
))
1769 if (CheckRedeclarationExported(New
, Old
))
1775 // Check the redefinition in C++20 Modules.
1777 // [basic.def.odr]p14:
1778 // For any definable item D with definitions in multiple translation units,
1779 // - if D is a non-inline non-templated function or variable, or
1780 // - if the definitions in different translation units do not satisfy the
1781 // following requirements,
1782 // the program is ill-formed; a diagnostic is required only if the definable
1783 // item is attached to a named module and a prior definition is reachable at
1784 // the point where a later definition occurs.
1785 // - Each such definition shall not be attached to a named module
1787 // - Each such definition shall consist of the same sequence of tokens, ...
1790 // Return true if the redefinition is not allowed. Return false otherwise.
1791 bool Sema::IsRedefinitionInModule(const NamedDecl
*New
,
1792 const NamedDecl
*Old
) const {
1793 assert(getASTContext().isSameEntity(New
, Old
) &&
1794 "New and Old are not the same definition, we should diagnostic it "
1795 "immediately instead of checking it.");
1796 assert(const_cast<Sema
*>(this)->isReachable(New
) &&
1797 const_cast<Sema
*>(this)->isReachable(Old
) &&
1798 "We shouldn't see unreachable definitions here.");
1800 Module
*NewM
= New
->getOwningModule();
1801 Module
*OldM
= Old
->getOwningModule();
1803 // We only checks for named modules here. The header like modules is skipped.
1804 // FIXME: This is not right if we import the header like modules in the module
1807 // For example, assuming "header.h" provides definition for `D`.
1811 // import "header.h"; // or #include "header.h" but import it by clang modules
1816 // import "header.h"; // or uses clang modules.
1819 // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1820 // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1821 // reject it. But the current implementation couldn't detect the case since we
1822 // don't record the information about the importee modules.
1824 // But this might not be painful in practice. Since the design of C++20 Named
1825 // Modules suggests us to use headers in global module fragment instead of
1827 if (NewM
&& NewM
->isHeaderLikeModule())
1829 if (OldM
&& OldM
->isHeaderLikeModule())
1835 // [basic.def.odr]p14.3
1836 // Each such definition shall not be attached to a named module
1838 if ((NewM
&& NewM
->isNamedModule()) || (OldM
&& OldM
->isNamedModule()))
1841 // Then New and Old lives in the same TU if their share one same module unit.
1843 NewM
= NewM
->getTopLevelModule();
1845 OldM
= OldM
->getTopLevelModule();
1846 return OldM
== NewM
;
1849 static bool isUsingDeclNotAtClassScope(NamedDecl
*D
) {
1850 if (D
->getDeclContext()->isFileContext())
1853 return isa
<UsingShadowDecl
>(D
) ||
1854 isa
<UnresolvedUsingTypenameDecl
>(D
) ||
1855 isa
<UnresolvedUsingValueDecl
>(D
);
1858 /// Removes using shadow declarations not at class scope from the lookup
1860 static void RemoveUsingDecls(LookupResult
&R
) {
1861 LookupResult::Filter F
= R
.makeFilter();
1863 if (isUsingDeclNotAtClassScope(F
.next()))
1869 /// Check for this common pattern:
1872 /// S(const S&); // DO NOT IMPLEMENT
1873 /// void operator=(const S&); // DO NOT IMPLEMENT
1876 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl
*D
) {
1877 // FIXME: Should check for private access too but access is set after we get
1879 if (D
->doesThisDeclarationHaveABody())
1882 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(D
))
1883 return CD
->isCopyConstructor();
1884 return D
->isCopyAssignmentOperator();
1887 // We need this to handle
1890 // void *foo() { return 0; }
1893 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1894 // for example. If 'A', foo will have external linkage. If we have '*A',
1895 // foo will have no linkage. Since we can't know until we get to the end
1896 // of the typedef, this function finds out if D might have non-external linkage.
1897 // Callers should verify at the end of the TU if it D has external linkage or
1899 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl
*D
) {
1900 const DeclContext
*DC
= D
->getDeclContext();
1901 while (!DC
->isTranslationUnit()) {
1902 if (const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(DC
)){
1903 if (!RD
->hasNameForLinkage())
1906 DC
= DC
->getParent();
1909 return !D
->isExternallyVisible();
1912 // FIXME: This needs to be refactored; some other isInMainFile users want
1914 static bool isMainFileLoc(const Sema
&S
, SourceLocation Loc
) {
1915 if (S
.TUKind
!= TU_Complete
|| S
.getLangOpts().IsHeaderFile
)
1917 return S
.SourceMgr
.isInMainFile(Loc
);
1920 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl
*D
) const {
1923 if (D
->isInvalidDecl() || D
->isUsed() || D
->hasAttr
<UnusedAttr
>())
1926 // Ignore all entities declared within templates, and out-of-line definitions
1927 // of members of class templates.
1928 if (D
->getDeclContext()->isDependentContext() ||
1929 D
->getLexicalDeclContext()->isDependentContext())
1932 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
1933 if (FD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
1935 // A non-out-of-line declaration of a member specialization was implicitly
1936 // instantiated; it's the out-of-line declaration that we're interested in.
1937 if (FD
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
1938 FD
->getMemberSpecializationInfo() && !FD
->isOutOfLine())
1941 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
1942 if (MD
->isVirtual() || IsDisallowedCopyOrAssign(MD
))
1945 // 'static inline' functions are defined in headers; don't warn.
1946 if (FD
->isInlined() && !isMainFileLoc(*this, FD
->getLocation()))
1950 if (FD
->doesThisDeclarationHaveABody() &&
1951 Context
.DeclMustBeEmitted(FD
))
1953 } else if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
1954 // Constants and utility variables are defined in headers with internal
1955 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1957 if (!isMainFileLoc(*this, VD
->getLocation()))
1960 if (Context
.DeclMustBeEmitted(VD
))
1963 if (VD
->isStaticDataMember() &&
1964 VD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
1966 if (VD
->isStaticDataMember() &&
1967 VD
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
1968 VD
->getMemberSpecializationInfo() && !VD
->isOutOfLine())
1971 if (VD
->isInline() && !isMainFileLoc(*this, VD
->getLocation()))
1977 // Only warn for unused decls internal to the translation unit.
1978 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1979 // for inline functions defined in the main source file, for instance.
1980 return mightHaveNonExternalLinkage(D
);
1983 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl
*D
) {
1987 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
1988 const FunctionDecl
*First
= FD
->getFirstDecl();
1989 if (FD
!= First
&& ShouldWarnIfUnusedFileScopedDecl(First
))
1990 return; // First should already be in the vector.
1993 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
1994 const VarDecl
*First
= VD
->getFirstDecl();
1995 if (VD
!= First
&& ShouldWarnIfUnusedFileScopedDecl(First
))
1996 return; // First should already be in the vector.
1999 if (ShouldWarnIfUnusedFileScopedDecl(D
))
2000 UnusedFileScopedDecls
.push_back(D
);
2003 static bool ShouldDiagnoseUnusedDecl(const LangOptions
&LangOpts
,
2004 const NamedDecl
*D
) {
2005 if (D
->isInvalidDecl())
2008 if (const auto *DD
= dyn_cast
<DecompositionDecl
>(D
)) {
2009 // For a decomposition declaration, warn if none of the bindings are
2010 // referenced, instead of if the variable itself is referenced (which
2011 // it is, by the bindings' expressions).
2012 bool IsAllPlaceholders
= true;
2013 for (const auto *BD
: DD
->bindings()) {
2014 if (BD
->isReferenced())
2016 IsAllPlaceholders
= IsAllPlaceholders
&& BD
->isPlaceholderVar(LangOpts
);
2018 if (IsAllPlaceholders
)
2020 } else if (!D
->getDeclName()) {
2022 } else if (D
->isReferenced() || D
->isUsed()) {
2026 if (D
->isPlaceholderVar(LangOpts
))
2029 if (D
->hasAttr
<UnusedAttr
>() || D
->hasAttr
<ObjCPreciseLifetimeAttr
>() ||
2030 D
->hasAttr
<CleanupAttr
>())
2033 if (isa
<LabelDecl
>(D
))
2036 // Except for labels, we only care about unused decls that are local to
2038 bool WithinFunction
= D
->getDeclContext()->isFunctionOrMethod();
2039 if (const auto *R
= dyn_cast
<CXXRecordDecl
>(D
->getDeclContext()))
2040 // For dependent types, the diagnostic is deferred.
2042 WithinFunction
|| (R
->isLocalClass() && !R
->isDependentType());
2043 if (!WithinFunction
)
2046 if (isa
<TypedefNameDecl
>(D
))
2049 // White-list anything that isn't a local variable.
2050 if (!isa
<VarDecl
>(D
) || isa
<ParmVarDecl
>(D
) || isa
<ImplicitParamDecl
>(D
))
2053 // Types of valid local variables should be complete, so this should succeed.
2054 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2056 const Expr
*Init
= VD
->getInit();
2057 if (const auto *Cleanups
= dyn_cast_if_present
<ExprWithCleanups
>(Init
))
2058 Init
= Cleanups
->getSubExpr();
2060 const auto *Ty
= VD
->getType().getTypePtr();
2062 // Only look at the outermost level of typedef.
2063 if (const TypedefType
*TT
= Ty
->getAs
<TypedefType
>()) {
2064 // Allow anything marked with __attribute__((unused)).
2065 if (TT
->getDecl()->hasAttr
<UnusedAttr
>())
2069 // Warn for reference variables whose initializtion performs lifetime
2071 if (const auto *MTE
= dyn_cast_if_present
<MaterializeTemporaryExpr
>(Init
);
2072 MTE
&& MTE
->getExtendingDecl()) {
2073 Ty
= VD
->getType().getNonReferenceType().getTypePtr();
2074 Init
= MTE
->getSubExpr()->IgnoreImplicitAsWritten();
2077 // If we failed to complete the type for some reason, or if the type is
2078 // dependent, don't diagnose the variable.
2079 if (Ty
->isIncompleteType() || Ty
->isDependentType())
2082 // Look at the element type to ensure that the warning behaviour is
2083 // consistent for both scalars and arrays.
2084 Ty
= Ty
->getBaseElementTypeUnsafe();
2086 if (const TagType
*TT
= Ty
->getAs
<TagType
>()) {
2087 const TagDecl
*Tag
= TT
->getDecl();
2088 if (Tag
->hasAttr
<UnusedAttr
>())
2091 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
2092 if (!RD
->hasTrivialDestructor() && !RD
->hasAttr
<WarnUnusedAttr
>())
2096 const auto *Construct
= dyn_cast
<CXXConstructExpr
>(Init
);
2097 if (Construct
&& !Construct
->isElidable()) {
2098 const CXXConstructorDecl
*CD
= Construct
->getConstructor();
2099 if (!CD
->isTrivial() && !RD
->hasAttr
<WarnUnusedAttr
>() &&
2100 (VD
->getInit()->isValueDependent() || !VD
->evaluateValue()))
2104 // Suppress the warning if we don't know how this is constructed, and
2105 // it could possibly be non-trivial constructor.
2106 if (Init
->isTypeDependent()) {
2107 for (const CXXConstructorDecl
*Ctor
: RD
->ctors())
2108 if (!Ctor
->isTrivial())
2112 // Suppress the warning if the constructor is unresolved because
2113 // its arguments are dependent.
2114 if (isa
<CXXUnresolvedConstructExpr
>(Init
))
2120 // TODO: __attribute__((unused)) templates?
2126 static void GenerateFixForUnusedDecl(const NamedDecl
*D
, ASTContext
&Ctx
,
2128 if (isa
<LabelDecl
>(D
)) {
2129 SourceLocation AfterColon
= Lexer::findLocationAfterToken(
2130 D
->getEndLoc(), tok::colon
, Ctx
.getSourceManager(), Ctx
.getLangOpts(),
2131 /*SkipTrailingWhitespaceAndNewline=*/false);
2132 if (AfterColon
.isInvalid())
2134 Hint
= FixItHint::CreateRemoval(
2135 CharSourceRange::getCharRange(D
->getBeginLoc(), AfterColon
));
2139 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl
*D
) {
2140 DiagnoseUnusedNestedTypedefs(
2141 D
, [this](SourceLocation Loc
, PartialDiagnostic PD
) { Diag(Loc
, PD
); });
2144 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl
*D
,
2145 DiagReceiverTy DiagReceiver
) {
2146 if (D
->getTypeForDecl()->isDependentType())
2149 for (auto *TmpD
: D
->decls()) {
2150 if (const auto *T
= dyn_cast
<TypedefNameDecl
>(TmpD
))
2151 DiagnoseUnusedDecl(T
, DiagReceiver
);
2152 else if(const auto *R
= dyn_cast
<RecordDecl
>(TmpD
))
2153 DiagnoseUnusedNestedTypedefs(R
, DiagReceiver
);
2157 void Sema::DiagnoseUnusedDecl(const NamedDecl
*D
) {
2159 D
, [this](SourceLocation Loc
, PartialDiagnostic PD
) { Diag(Loc
, PD
); });
2162 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
2163 /// unless they are marked attr(unused).
2164 void Sema::DiagnoseUnusedDecl(const NamedDecl
*D
, DiagReceiverTy DiagReceiver
) {
2165 if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D
))
2168 if (auto *TD
= dyn_cast
<TypedefNameDecl
>(D
)) {
2169 // typedefs can be referenced later on, so the diagnostics are emitted
2170 // at end-of-translation-unit.
2171 UnusedLocalTypedefNameCandidates
.insert(TD
);
2176 GenerateFixForUnusedDecl(D
, Context
, Hint
);
2179 if (isa
<VarDecl
>(D
) && cast
<VarDecl
>(D
)->isExceptionVariable())
2180 DiagID
= diag::warn_unused_exception_param
;
2181 else if (isa
<LabelDecl
>(D
))
2182 DiagID
= diag::warn_unused_label
;
2184 DiagID
= diag::warn_unused_variable
;
2186 SourceLocation DiagLoc
= D
->getLocation();
2187 DiagReceiver(DiagLoc
, PDiag(DiagID
) << D
<< Hint
<< SourceRange(DiagLoc
));
2190 void Sema::DiagnoseUnusedButSetDecl(const VarDecl
*VD
,
2191 DiagReceiverTy DiagReceiver
) {
2192 // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2193 // it's not really unused.
2194 if (!VD
->isReferenced() || !VD
->getDeclName() || VD
->hasAttr
<CleanupAttr
>())
2197 // In C++, `_` variables behave as if they were maybe_unused
2198 if (VD
->hasAttr
<UnusedAttr
>() || VD
->isPlaceholderVar(getLangOpts()))
2201 const auto *Ty
= VD
->getType().getTypePtr()->getBaseElementTypeUnsafe();
2203 if (Ty
->isReferenceType() || Ty
->isDependentType())
2206 if (const TagType
*TT
= Ty
->getAs
<TagType
>()) {
2207 const TagDecl
*Tag
= TT
->getDecl();
2208 if (Tag
->hasAttr
<UnusedAttr
>())
2210 // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2211 // mimic gcc's behavior.
2212 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(Tag
);
2213 RD
&& !RD
->hasAttr
<WarnUnusedAttr
>())
2217 // Don't warn about __block Objective-C pointer variables, as they might
2218 // be assigned in the block but not used elsewhere for the purpose of lifetime
2220 if (VD
->hasAttr
<BlocksAttr
>() && Ty
->isObjCObjectPointerType())
2223 // Don't warn about Objective-C pointer variables with precise lifetime
2224 // semantics; they can be used to ensure ARC releases the object at a known
2225 // time, which may mean assignment but no other references.
2226 if (VD
->hasAttr
<ObjCPreciseLifetimeAttr
>() && Ty
->isObjCObjectPointerType())
2229 auto iter
= RefsMinusAssignments
.find(VD
);
2230 if (iter
== RefsMinusAssignments
.end())
2233 assert(iter
->getSecond() >= 0 &&
2234 "Found a negative number of references to a VarDecl");
2235 if (iter
->getSecond() != 0)
2237 unsigned DiagID
= isa
<ParmVarDecl
>(VD
) ? diag::warn_unused_but_set_parameter
2238 : diag::warn_unused_but_set_variable
;
2239 DiagReceiver(VD
->getLocation(), PDiag(DiagID
) << VD
);
2242 static void CheckPoppedLabel(LabelDecl
*L
, Sema
&S
,
2243 Sema::DiagReceiverTy DiagReceiver
) {
2244 // Verify that we have no forward references left. If so, there was a goto
2245 // or address of a label taken, but no definition of it. Label fwd
2246 // definitions are indicated with a null substmt which is also not a resolved
2247 // MS inline assembly label name.
2248 bool Diagnose
= false;
2249 if (L
->isMSAsmLabel())
2250 Diagnose
= !L
->isResolvedMSAsmLabel();
2252 Diagnose
= L
->getStmt() == nullptr;
2254 DiagReceiver(L
->getLocation(), S
.PDiag(diag::err_undeclared_label_use
)
2258 void Sema::ActOnPopScope(SourceLocation Loc
, Scope
*S
) {
2261 if (S
->decl_empty()) return;
2262 assert((S
->getFlags() & (Scope::DeclScope
| Scope::TemplateParamScope
)) &&
2263 "Scope shouldn't contain decls!");
2265 /// We visit the decls in non-deterministic order, but we want diagnostics
2266 /// emitted in deterministic order. Collect any diagnostic that may be emitted
2267 /// and sort the diagnostics before emitting them, after we visited all decls.
2270 std::optional
<SourceLocation
> PreviousDeclLoc
;
2271 PartialDiagnostic PD
;
2273 SmallVector
<LocAndDiag
, 16> DeclDiags
;
2274 auto addDiag
= [&DeclDiags
](SourceLocation Loc
, PartialDiagnostic PD
) {
2275 DeclDiags
.push_back(LocAndDiag
{Loc
, std::nullopt
, std::move(PD
)});
2277 auto addDiagWithPrev
= [&DeclDiags
](SourceLocation Loc
,
2278 SourceLocation PreviousDeclLoc
,
2279 PartialDiagnostic PD
) {
2280 DeclDiags
.push_back(LocAndDiag
{Loc
, PreviousDeclLoc
, std::move(PD
)});
2283 for (auto *TmpD
: S
->decls()) {
2284 assert(TmpD
&& "This decl didn't get pushed??");
2286 assert(isa
<NamedDecl
>(TmpD
) && "Decl isn't NamedDecl?");
2287 NamedDecl
*D
= cast
<NamedDecl
>(TmpD
);
2289 // Diagnose unused variables in this scope.
2290 if (!S
->hasUnrecoverableErrorOccurred()) {
2291 DiagnoseUnusedDecl(D
, addDiag
);
2292 if (const auto *RD
= dyn_cast
<RecordDecl
>(D
))
2293 DiagnoseUnusedNestedTypedefs(RD
, addDiag
);
2294 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2295 DiagnoseUnusedButSetDecl(VD
, addDiag
);
2296 RefsMinusAssignments
.erase(VD
);
2300 if (!D
->getDeclName()) continue;
2302 // If this was a forward reference to a label, verify it was defined.
2303 if (LabelDecl
*LD
= dyn_cast
<LabelDecl
>(D
))
2304 CheckPoppedLabel(LD
, *this, addDiag
);
2306 // Remove this name from our lexical scope, and warn on it if we haven't
2308 IdResolver
.RemoveDecl(D
);
2309 auto ShadowI
= ShadowingDecls
.find(D
);
2310 if (ShadowI
!= ShadowingDecls
.end()) {
2311 if (const auto *FD
= dyn_cast
<FieldDecl
>(ShadowI
->second
)) {
2312 addDiagWithPrev(D
->getLocation(), FD
->getLocation(),
2313 PDiag(diag::warn_ctor_parm_shadows_field
)
2314 << D
<< FD
<< FD
->getParent());
2316 ShadowingDecls
.erase(ShadowI
);
2320 llvm::sort(DeclDiags
,
2321 [](const LocAndDiag
&LHS
, const LocAndDiag
&RHS
) -> bool {
2322 // The particular order for diagnostics is not important, as long
2323 // as the order is deterministic. Using the raw location is going
2324 // to generally be in source order unless there are macro
2325 // expansions involved.
2326 return LHS
.Loc
.getRawEncoding() < RHS
.Loc
.getRawEncoding();
2328 for (const LocAndDiag
&D
: DeclDiags
) {
2330 if (D
.PreviousDeclLoc
)
2331 Diag(*D
.PreviousDeclLoc
, diag::note_previous_declaration
);
2335 /// Look for an Objective-C class in the translation unit.
2337 /// \param Id The name of the Objective-C class we're looking for. If
2338 /// typo-correction fixes this name, the Id will be updated
2339 /// to the fixed name.
2341 /// \param IdLoc The location of the name in the translation unit.
2343 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2344 /// if there is no class with the given name.
2346 /// \returns The declaration of the named Objective-C class, or NULL if the
2347 /// class could not be found.
2348 ObjCInterfaceDecl
*Sema::getObjCInterfaceDecl(IdentifierInfo
*&Id
,
2349 SourceLocation IdLoc
,
2350 bool DoTypoCorrection
) {
2351 // The third "scope" argument is 0 since we aren't enabling lazy built-in
2352 // creation from this context.
2353 NamedDecl
*IDecl
= LookupSingleName(TUScope
, Id
, IdLoc
, LookupOrdinaryName
);
2355 if (!IDecl
&& DoTypoCorrection
) {
2356 // Perform typo correction at the given location, but only if we
2357 // find an Objective-C class name.
2358 DeclFilterCCC
<ObjCInterfaceDecl
> CCC
{};
2359 if (TypoCorrection C
=
2360 CorrectTypo(DeclarationNameInfo(Id
, IdLoc
), LookupOrdinaryName
,
2361 TUScope
, nullptr, CCC
, CTK_ErrorRecovery
)) {
2362 diagnoseTypo(C
, PDiag(diag::err_undef_interface_suggest
) << Id
);
2363 IDecl
= C
.getCorrectionDeclAs
<ObjCInterfaceDecl
>();
2364 Id
= IDecl
->getIdentifier();
2367 ObjCInterfaceDecl
*Def
= dyn_cast_or_null
<ObjCInterfaceDecl
>(IDecl
);
2368 // This routine must always return a class definition, if any.
2369 if (Def
&& Def
->getDefinition())
2370 Def
= Def
->getDefinition();
2374 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2375 /// from S, where a non-field would be declared. This routine copes
2376 /// with the difference between C and C++ scoping rules in structs and
2377 /// unions. For example, the following code is well-formed in C but
2378 /// ill-formed in C++:
2384 /// void test_S6() {
2389 /// For the declaration of BAR, this routine will return a different
2390 /// scope. The scope S will be the scope of the unnamed enumeration
2391 /// within S6. In C++, this routine will return the scope associated
2392 /// with S6, because the enumeration's scope is a transparent
2393 /// context but structures can contain non-field names. In C, this
2394 /// routine will return the translation unit scope, since the
2395 /// enumeration's scope is a transparent context and structures cannot
2396 /// contain non-field names.
2397 Scope
*Sema::getNonFieldDeclScope(Scope
*S
) {
2398 while (((S
->getFlags() & Scope::DeclScope
) == 0) ||
2399 (S
->getEntity() && S
->getEntity()->isTransparentContext()) ||
2400 (S
->isClassScope() && !getLangOpts().CPlusPlus
))
2405 static StringRef
getHeaderName(Builtin::Context
&BuiltinInfo
, unsigned ID
,
2406 ASTContext::GetBuiltinTypeError Error
) {
2408 case ASTContext::GE_None
:
2410 case ASTContext::GE_Missing_type
:
2411 return BuiltinInfo
.getHeaderName(ID
);
2412 case ASTContext::GE_Missing_stdio
:
2414 case ASTContext::GE_Missing_setjmp
:
2416 case ASTContext::GE_Missing_ucontext
:
2417 return "ucontext.h";
2419 llvm_unreachable("unhandled error kind");
2422 FunctionDecl
*Sema::CreateBuiltin(IdentifierInfo
*II
, QualType Type
,
2423 unsigned ID
, SourceLocation Loc
) {
2424 DeclContext
*Parent
= Context
.getTranslationUnitDecl();
2426 if (getLangOpts().CPlusPlus
) {
2427 LinkageSpecDecl
*CLinkageDecl
= LinkageSpecDecl::Create(
2428 Context
, Parent
, Loc
, Loc
, LinkageSpecLanguageIDs::C
, false);
2429 CLinkageDecl
->setImplicit();
2430 Parent
->addDecl(CLinkageDecl
);
2431 Parent
= CLinkageDecl
;
2434 FunctionDecl
*New
= FunctionDecl::Create(Context
, Parent
, Loc
, Loc
, II
, Type
,
2435 /*TInfo=*/nullptr, SC_Extern
,
2436 getCurFPFeatures().isFPConstrained(),
2437 false, Type
->isFunctionProtoType());
2439 New
->addAttr(BuiltinAttr::CreateImplicit(Context
, ID
));
2441 // Create Decl objects for each parameter, adding them to the
2443 if (const FunctionProtoType
*FT
= dyn_cast
<FunctionProtoType
>(Type
)) {
2444 SmallVector
<ParmVarDecl
*, 16> Params
;
2445 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
2446 ParmVarDecl
*parm
= ParmVarDecl::Create(
2447 Context
, New
, SourceLocation(), SourceLocation(), nullptr,
2448 FT
->getParamType(i
), /*TInfo=*/nullptr, SC_None
, nullptr);
2449 parm
->setScopeInfo(0, i
);
2450 Params
.push_back(parm
);
2452 New
->setParams(Params
);
2455 AddKnownFunctionAttributes(New
);
2459 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2460 /// file scope. lazily create a decl for it. ForRedeclaration is true
2461 /// if we're creating this built-in in anticipation of redeclaring the
2463 NamedDecl
*Sema::LazilyCreateBuiltin(IdentifierInfo
*II
, unsigned ID
,
2464 Scope
*S
, bool ForRedeclaration
,
2465 SourceLocation Loc
) {
2466 LookupNecessaryTypesForBuiltin(S
, ID
);
2468 ASTContext::GetBuiltinTypeError Error
;
2469 QualType R
= Context
.GetBuiltinType(ID
, Error
);
2471 if (!ForRedeclaration
)
2474 // If we have a builtin without an associated type we should not emit a
2475 // warning when we were not able to find a type for it.
2476 if (Error
== ASTContext::GE_Missing_type
||
2477 Context
.BuiltinInfo
.allowTypeMismatch(ID
))
2480 // If we could not find a type for setjmp it is because the jmp_buf type was
2481 // not defined prior to the setjmp declaration.
2482 if (Error
== ASTContext::GE_Missing_setjmp
) {
2483 Diag(Loc
, diag::warn_implicit_decl_no_jmp_buf
)
2484 << Context
.BuiltinInfo
.getName(ID
);
2488 // Generally, we emit a warning that the declaration requires the
2489 // appropriate header.
2490 Diag(Loc
, diag::warn_implicit_decl_requires_sysheader
)
2491 << getHeaderName(Context
.BuiltinInfo
, ID
, Error
)
2492 << Context
.BuiltinInfo
.getName(ID
);
2496 if (!ForRedeclaration
&&
2497 (Context
.BuiltinInfo
.isPredefinedLibFunction(ID
) ||
2498 Context
.BuiltinInfo
.isHeaderDependentFunction(ID
))) {
2499 Diag(Loc
, LangOpts
.C99
? diag::ext_implicit_lib_function_decl_c99
2500 : diag::ext_implicit_lib_function_decl
)
2501 << Context
.BuiltinInfo
.getName(ID
) << R
;
2502 if (const char *Header
= Context
.BuiltinInfo
.getHeaderName(ID
))
2503 Diag(Loc
, diag::note_include_header_or_declare
)
2504 << Header
<< Context
.BuiltinInfo
.getName(ID
);
2510 FunctionDecl
*New
= CreateBuiltin(II
, R
, ID
, Loc
);
2511 RegisterLocallyScopedExternCDecl(New
, S
);
2513 // TUScope is the translation-unit scope to insert this function into.
2514 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2515 // relate Scopes to DeclContexts, and probably eliminate CurContext
2516 // entirely, but we're not there yet.
2517 DeclContext
*SavedContext
= CurContext
;
2518 CurContext
= New
->getDeclContext();
2519 PushOnScopeChains(New
, TUScope
);
2520 CurContext
= SavedContext
;
2524 /// Typedef declarations don't have linkage, but they still denote the same
2525 /// entity if their types are the same.
2526 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2528 static void filterNonConflictingPreviousTypedefDecls(Sema
&S
,
2529 TypedefNameDecl
*Decl
,
2530 LookupResult
&Previous
) {
2531 // This is only interesting when modules are enabled.
2532 if (!S
.getLangOpts().Modules
&& !S
.getLangOpts().ModulesLocalVisibility
)
2535 // Empty sets are uninteresting.
2536 if (Previous
.empty())
2539 LookupResult::Filter Filter
= Previous
.makeFilter();
2540 while (Filter
.hasNext()) {
2541 NamedDecl
*Old
= Filter
.next();
2543 // Non-hidden declarations are never ignored.
2544 if (S
.isVisible(Old
))
2547 // Declarations of the same entity are not ignored, even if they have
2548 // different linkages.
2549 if (auto *OldTD
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2550 if (S
.Context
.hasSameType(OldTD
->getUnderlyingType(),
2551 Decl
->getUnderlyingType()))
2554 // If both declarations give a tag declaration a typedef name for linkage
2555 // purposes, then they declare the same entity.
2556 if (OldTD
->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2557 Decl
->getAnonDeclWithTypedefName())
2567 bool Sema::isIncompatibleTypedef(TypeDecl
*Old
, TypedefNameDecl
*New
) {
2569 if (TypedefNameDecl
*OldTypedef
= dyn_cast
<TypedefNameDecl
>(Old
))
2570 OldType
= OldTypedef
->getUnderlyingType();
2572 OldType
= Context
.getTypeDeclType(Old
);
2573 QualType NewType
= New
->getUnderlyingType();
2575 if (NewType
->isVariablyModifiedType()) {
2576 // Must not redefine a typedef with a variably-modified type.
2577 int Kind
= isa
<TypeAliasDecl
>(Old
) ? 1 : 0;
2578 Diag(New
->getLocation(), diag::err_redefinition_variably_modified_typedef
)
2580 if (Old
->getLocation().isValid())
2581 notePreviousDefinition(Old
, New
->getLocation());
2582 New
->setInvalidDecl();
2586 if (OldType
!= NewType
&&
2587 !OldType
->isDependentType() &&
2588 !NewType
->isDependentType() &&
2589 !Context
.hasSameType(OldType
, NewType
)) {
2590 int Kind
= isa
<TypeAliasDecl
>(Old
) ? 1 : 0;
2591 Diag(New
->getLocation(), diag::err_redefinition_different_typedef
)
2592 << Kind
<< NewType
<< OldType
;
2593 if (Old
->getLocation().isValid())
2594 notePreviousDefinition(Old
, New
->getLocation());
2595 New
->setInvalidDecl();
2601 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2602 /// same name and scope as a previous declaration 'Old'. Figure out
2603 /// how to resolve this situation, merging decls or emitting
2604 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2606 void Sema::MergeTypedefNameDecl(Scope
*S
, TypedefNameDecl
*New
,
2607 LookupResult
&OldDecls
) {
2608 // If the new decl is known invalid already, don't bother doing any
2610 if (New
->isInvalidDecl()) return;
2612 // Allow multiple definitions for ObjC built-in typedefs.
2613 // FIXME: Verify the underlying types are equivalent!
2614 if (getLangOpts().ObjC
) {
2615 const IdentifierInfo
*TypeID
= New
->getIdentifier();
2616 switch (TypeID
->getLength()) {
2620 if (!TypeID
->isStr("id"))
2622 QualType T
= New
->getUnderlyingType();
2623 if (!T
->isPointerType())
2625 if (!T
->isVoidPointerType()) {
2626 QualType PT
= T
->castAs
<PointerType
>()->getPointeeType();
2627 if (!PT
->isStructureType())
2630 Context
.setObjCIdRedefinitionType(T
);
2631 // Install the built-in type for 'id', ignoring the current definition.
2632 New
->setTypeForDecl(Context
.getObjCIdType().getTypePtr());
2636 if (!TypeID
->isStr("Class"))
2638 Context
.setObjCClassRedefinitionType(New
->getUnderlyingType());
2639 // Install the built-in type for 'Class', ignoring the current definition.
2640 New
->setTypeForDecl(Context
.getObjCClassType().getTypePtr());
2643 if (!TypeID
->isStr("SEL"))
2645 Context
.setObjCSelRedefinitionType(New
->getUnderlyingType());
2646 // Install the built-in type for 'SEL', ignoring the current definition.
2647 New
->setTypeForDecl(Context
.getObjCSelType().getTypePtr());
2650 // Fall through - the typedef name was not a builtin type.
2653 // Verify the old decl was also a type.
2654 TypeDecl
*Old
= OldDecls
.getAsSingle
<TypeDecl
>();
2656 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
2657 << New
->getDeclName();
2659 NamedDecl
*OldD
= OldDecls
.getRepresentativeDecl();
2660 if (OldD
->getLocation().isValid())
2661 notePreviousDefinition(OldD
, New
->getLocation());
2663 return New
->setInvalidDecl();
2666 // If the old declaration is invalid, just give up here.
2667 if (Old
->isInvalidDecl())
2668 return New
->setInvalidDecl();
2670 if (auto *OldTD
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2671 auto *OldTag
= OldTD
->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2672 auto *NewTag
= New
->getAnonDeclWithTypedefName();
2673 NamedDecl
*Hidden
= nullptr;
2674 if (OldTag
&& NewTag
&&
2675 OldTag
->getCanonicalDecl() != NewTag
->getCanonicalDecl() &&
2676 !hasVisibleDefinition(OldTag
, &Hidden
)) {
2677 // There is a definition of this tag, but it is not visible. Use it
2678 // instead of our tag.
2679 New
->setTypeForDecl(OldTD
->getTypeForDecl());
2680 if (OldTD
->isModed())
2681 New
->setModedTypeSourceInfo(OldTD
->getTypeSourceInfo(),
2682 OldTD
->getUnderlyingType());
2684 New
->setTypeSourceInfo(OldTD
->getTypeSourceInfo());
2686 // Make the old tag definition visible.
2687 makeMergedDefinitionVisible(Hidden
);
2689 // If this was an unscoped enumeration, yank all of its enumerators
2690 // out of the scope.
2691 if (isa
<EnumDecl
>(NewTag
)) {
2692 Scope
*EnumScope
= getNonFieldDeclScope(S
);
2693 for (auto *D
: NewTag
->decls()) {
2694 auto *ED
= cast
<EnumConstantDecl
>(D
);
2695 assert(EnumScope
->isDeclScope(ED
));
2696 EnumScope
->RemoveDecl(ED
);
2697 IdResolver
.RemoveDecl(ED
);
2698 ED
->getLexicalDeclContext()->removeDecl(ED
);
2704 // If the typedef types are not identical, reject them in all languages and
2705 // with any extensions enabled.
2706 if (isIncompatibleTypedef(Old
, New
))
2709 // The types match. Link up the redeclaration chain and merge attributes if
2710 // the old declaration was a typedef.
2711 if (TypedefNameDecl
*Typedef
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2712 New
->setPreviousDecl(Typedef
);
2713 mergeDeclAttributes(New
, Old
);
2716 if (getLangOpts().MicrosoftExt
)
2719 if (getLangOpts().CPlusPlus
) {
2720 // C++ [dcl.typedef]p2:
2721 // In a given non-class scope, a typedef specifier can be used to
2722 // redefine the name of any type declared in that scope to refer
2723 // to the type to which it already refers.
2724 if (!isa
<CXXRecordDecl
>(CurContext
))
2727 // C++0x [dcl.typedef]p4:
2728 // In a given class scope, a typedef specifier can be used to redefine
2729 // any class-name declared in that scope that is not also a typedef-name
2730 // to refer to the type to which it already refers.
2732 // This wording came in via DR424, which was a correction to the
2733 // wording in DR56, which accidentally banned code like:
2736 // typedef struct A { } A;
2739 // in the C++03 standard. We implement the C++0x semantics, which
2740 // allow the above but disallow
2747 // since that was the intent of DR56.
2748 if (!isa
<TypedefNameDecl
>(Old
))
2751 Diag(New
->getLocation(), diag::err_redefinition
)
2752 << New
->getDeclName();
2753 notePreviousDefinition(Old
, New
->getLocation());
2754 return New
->setInvalidDecl();
2757 // Modules always permit redefinition of typedefs, as does C11.
2758 if (getLangOpts().Modules
|| getLangOpts().C11
)
2761 // If we have a redefinition of a typedef in C, emit a warning. This warning
2762 // is normally mapped to an error, but can be controlled with
2763 // -Wtypedef-redefinition. If either the original or the redefinition is
2764 // in a system header, don't emit this for compatibility with GCC.
2765 if (getDiagnostics().getSuppressSystemWarnings() &&
2766 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2767 (Old
->isImplicit() ||
2768 Context
.getSourceManager().isInSystemHeader(Old
->getLocation()) ||
2769 Context
.getSourceManager().isInSystemHeader(New
->getLocation())))
2772 Diag(New
->getLocation(), diag::ext_redefinition_of_typedef
)
2773 << New
->getDeclName();
2774 notePreviousDefinition(Old
, New
->getLocation());
2777 /// DeclhasAttr - returns true if decl Declaration already has the target
2779 static bool DeclHasAttr(const Decl
*D
, const Attr
*A
) {
2780 const OwnershipAttr
*OA
= dyn_cast
<OwnershipAttr
>(A
);
2781 const AnnotateAttr
*Ann
= dyn_cast
<AnnotateAttr
>(A
);
2782 for (const auto *i
: D
->attrs())
2783 if (i
->getKind() == A
->getKind()) {
2785 if (Ann
->getAnnotation() == cast
<AnnotateAttr
>(i
)->getAnnotation())
2789 // FIXME: Don't hardcode this check
2790 if (OA
&& isa
<OwnershipAttr
>(i
))
2791 return OA
->getOwnKind() == cast
<OwnershipAttr
>(i
)->getOwnKind();
2798 static bool isAttributeTargetADefinition(Decl
*D
) {
2799 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
2800 return VD
->isThisDeclarationADefinition();
2801 if (TagDecl
*TD
= dyn_cast
<TagDecl
>(D
))
2802 return TD
->isCompleteDefinition() || TD
->isBeingDefined();
2806 /// Merge alignment attributes from \p Old to \p New, taking into account the
2807 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2809 /// \return \c true if any attributes were added to \p New.
2810 static bool mergeAlignedAttrs(Sema
&S
, NamedDecl
*New
, Decl
*Old
) {
2811 // Look for alignas attributes on Old, and pick out whichever attribute
2812 // specifies the strictest alignment requirement.
2813 AlignedAttr
*OldAlignasAttr
= nullptr;
2814 AlignedAttr
*OldStrictestAlignAttr
= nullptr;
2815 unsigned OldAlign
= 0;
2816 for (auto *I
: Old
->specific_attrs
<AlignedAttr
>()) {
2817 // FIXME: We have no way of representing inherited dependent alignments
2819 // template<int A, int B> struct alignas(A) X;
2820 // template<int A, int B> struct alignas(B) X {};
2821 // For now, we just ignore any alignas attributes which are not on the
2822 // definition in such a case.
2823 if (I
->isAlignmentDependent())
2829 unsigned Align
= I
->getAlignment(S
.Context
);
2830 if (Align
> OldAlign
) {
2832 OldStrictestAlignAttr
= I
;
2836 // Look for alignas attributes on New.
2837 AlignedAttr
*NewAlignasAttr
= nullptr;
2838 unsigned NewAlign
= 0;
2839 for (auto *I
: New
->specific_attrs
<AlignedAttr
>()) {
2840 if (I
->isAlignmentDependent())
2846 unsigned Align
= I
->getAlignment(S
.Context
);
2847 if (Align
> NewAlign
)
2851 if (OldAlignasAttr
&& NewAlignasAttr
&& OldAlign
!= NewAlign
) {
2852 // Both declarations have 'alignas' attributes. We require them to match.
2853 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2854 // fall short. (If two declarations both have alignas, they must both match
2855 // every definition, and so must match each other if there is a definition.)
2857 // If either declaration only contains 'alignas(0)' specifiers, then it
2858 // specifies the natural alignment for the type.
2859 if (OldAlign
== 0 || NewAlign
== 0) {
2861 if (ValueDecl
*VD
= dyn_cast
<ValueDecl
>(New
))
2864 Ty
= S
.Context
.getTagDeclType(cast
<TagDecl
>(New
));
2867 OldAlign
= S
.Context
.getTypeAlign(Ty
);
2869 NewAlign
= S
.Context
.getTypeAlign(Ty
);
2872 if (OldAlign
!= NewAlign
) {
2873 S
.Diag(NewAlignasAttr
->getLocation(), diag::err_alignas_mismatch
)
2874 << (unsigned)S
.Context
.toCharUnitsFromBits(OldAlign
).getQuantity()
2875 << (unsigned)S
.Context
.toCharUnitsFromBits(NewAlign
).getQuantity();
2876 S
.Diag(OldAlignasAttr
->getLocation(), diag::note_previous_declaration
);
2880 if (OldAlignasAttr
&& !NewAlignasAttr
&& isAttributeTargetADefinition(New
)) {
2881 // C++11 [dcl.align]p6:
2882 // if any declaration of an entity has an alignment-specifier,
2883 // every defining declaration of that entity shall specify an
2884 // equivalent alignment.
2886 // If the definition of an object does not have an alignment
2887 // specifier, any other declaration of that object shall also
2888 // have no alignment specifier.
2889 S
.Diag(New
->getLocation(), diag::err_alignas_missing_on_definition
)
2891 S
.Diag(OldAlignasAttr
->getLocation(), diag::note_alignas_on_declaration
)
2895 bool AnyAdded
= false;
2897 // Ensure we have an attribute representing the strictest alignment.
2898 if (OldAlign
> NewAlign
) {
2899 AlignedAttr
*Clone
= OldStrictestAlignAttr
->clone(S
.Context
);
2900 Clone
->setInherited(true);
2901 New
->addAttr(Clone
);
2905 // Ensure we have an alignas attribute if the old declaration had one.
2906 if (OldAlignasAttr
&& !NewAlignasAttr
&&
2907 !(AnyAdded
&& OldStrictestAlignAttr
->isAlignas())) {
2908 AlignedAttr
*Clone
= OldAlignasAttr
->clone(S
.Context
);
2909 Clone
->setInherited(true);
2910 New
->addAttr(Clone
);
2917 #define WANT_DECL_MERGE_LOGIC
2918 #include "clang/Sema/AttrParsedAttrImpl.inc"
2919 #undef WANT_DECL_MERGE_LOGIC
2921 static bool mergeDeclAttribute(Sema
&S
, NamedDecl
*D
,
2922 const InheritableAttr
*Attr
,
2923 Sema::AvailabilityMergeKind AMK
) {
2924 // Diagnose any mutual exclusions between the attribute that we want to add
2925 // and attributes that already exist on the declaration.
2926 if (!DiagnoseMutualExclusions(S
, D
, Attr
))
2929 // This function copies an attribute Attr from a previous declaration to the
2930 // new declaration D if the new declaration doesn't itself have that attribute
2931 // yet or if that attribute allows duplicates.
2932 // If you're adding a new attribute that requires logic different from
2933 // "use explicit attribute on decl if present, else use attribute from
2934 // previous decl", for example if the attribute needs to be consistent
2935 // between redeclarations, you need to call a custom merge function here.
2936 InheritableAttr
*NewAttr
= nullptr;
2937 if (const auto *AA
= dyn_cast
<AvailabilityAttr
>(Attr
))
2938 NewAttr
= S
.mergeAvailabilityAttr(
2939 D
, *AA
, AA
->getPlatform(), AA
->isImplicit(), AA
->getIntroduced(),
2940 AA
->getDeprecated(), AA
->getObsoleted(), AA
->getUnavailable(),
2941 AA
->getMessage(), AA
->getStrict(), AA
->getReplacement(), AMK
,
2943 else if (const auto *VA
= dyn_cast
<VisibilityAttr
>(Attr
))
2944 NewAttr
= S
.mergeVisibilityAttr(D
, *VA
, VA
->getVisibility());
2945 else if (const auto *VA
= dyn_cast
<TypeVisibilityAttr
>(Attr
))
2946 NewAttr
= S
.mergeTypeVisibilityAttr(D
, *VA
, VA
->getVisibility());
2947 else if (const auto *ImportA
= dyn_cast
<DLLImportAttr
>(Attr
))
2948 NewAttr
= S
.mergeDLLImportAttr(D
, *ImportA
);
2949 else if (const auto *ExportA
= dyn_cast
<DLLExportAttr
>(Attr
))
2950 NewAttr
= S
.mergeDLLExportAttr(D
, *ExportA
);
2951 else if (const auto *EA
= dyn_cast
<ErrorAttr
>(Attr
))
2952 NewAttr
= S
.mergeErrorAttr(D
, *EA
, EA
->getUserDiagnostic());
2953 else if (const auto *FA
= dyn_cast
<FormatAttr
>(Attr
))
2954 NewAttr
= S
.mergeFormatAttr(D
, *FA
, FA
->getType(), FA
->getFormatIdx(),
2956 else if (const auto *SA
= dyn_cast
<SectionAttr
>(Attr
))
2957 NewAttr
= S
.mergeSectionAttr(D
, *SA
, SA
->getName());
2958 else if (const auto *CSA
= dyn_cast
<CodeSegAttr
>(Attr
))
2959 NewAttr
= S
.mergeCodeSegAttr(D
, *CSA
, CSA
->getName());
2960 else if (const auto *IA
= dyn_cast
<MSInheritanceAttr
>(Attr
))
2961 NewAttr
= S
.mergeMSInheritanceAttr(D
, *IA
, IA
->getBestCase(),
2962 IA
->getInheritanceModel());
2963 else if (const auto *AA
= dyn_cast
<AlwaysInlineAttr
>(Attr
))
2964 NewAttr
= S
.mergeAlwaysInlineAttr(D
, *AA
,
2965 &S
.Context
.Idents
.get(AA
->getSpelling()));
2966 else if (S
.getLangOpts().CUDA
&& isa
<FunctionDecl
>(D
) &&
2967 (isa
<CUDAHostAttr
>(Attr
) || isa
<CUDADeviceAttr
>(Attr
) ||
2968 isa
<CUDAGlobalAttr
>(Attr
))) {
2969 // CUDA target attributes are part of function signature for
2970 // overloading purposes and must not be merged.
2972 } else if (const auto *MA
= dyn_cast
<MinSizeAttr
>(Attr
))
2973 NewAttr
= S
.mergeMinSizeAttr(D
, *MA
);
2974 else if (const auto *SNA
= dyn_cast
<SwiftNameAttr
>(Attr
))
2975 NewAttr
= S
.mergeSwiftNameAttr(D
, *SNA
, SNA
->getName());
2976 else if (const auto *OA
= dyn_cast
<OptimizeNoneAttr
>(Attr
))
2977 NewAttr
= S
.mergeOptimizeNoneAttr(D
, *OA
);
2978 else if (const auto *InternalLinkageA
= dyn_cast
<InternalLinkageAttr
>(Attr
))
2979 NewAttr
= S
.mergeInternalLinkageAttr(D
, *InternalLinkageA
);
2980 else if (isa
<AlignedAttr
>(Attr
))
2981 // AlignedAttrs are handled separately, because we need to handle all
2982 // such attributes on a declaration at the same time.
2984 else if ((isa
<DeprecatedAttr
>(Attr
) || isa
<UnavailableAttr
>(Attr
)) &&
2985 (AMK
== Sema::AMK_Override
||
2986 AMK
== Sema::AMK_ProtocolImplementation
||
2987 AMK
== Sema::AMK_OptionalProtocolImplementation
))
2989 else if (const auto *UA
= dyn_cast
<UuidAttr
>(Attr
))
2990 NewAttr
= S
.mergeUuidAttr(D
, *UA
, UA
->getGuid(), UA
->getGuidDecl());
2991 else if (const auto *IMA
= dyn_cast
<WebAssemblyImportModuleAttr
>(Attr
))
2992 NewAttr
= S
.mergeImportModuleAttr(D
, *IMA
);
2993 else if (const auto *INA
= dyn_cast
<WebAssemblyImportNameAttr
>(Attr
))
2994 NewAttr
= S
.mergeImportNameAttr(D
, *INA
);
2995 else if (const auto *TCBA
= dyn_cast
<EnforceTCBAttr
>(Attr
))
2996 NewAttr
= S
.mergeEnforceTCBAttr(D
, *TCBA
);
2997 else if (const auto *TCBLA
= dyn_cast
<EnforceTCBLeafAttr
>(Attr
))
2998 NewAttr
= S
.mergeEnforceTCBLeafAttr(D
, *TCBLA
);
2999 else if (const auto *BTFA
= dyn_cast
<BTFDeclTagAttr
>(Attr
))
3000 NewAttr
= S
.mergeBTFDeclTagAttr(D
, *BTFA
);
3001 else if (const auto *NT
= dyn_cast
<HLSLNumThreadsAttr
>(Attr
))
3003 S
.mergeHLSLNumThreadsAttr(D
, *NT
, NT
->getX(), NT
->getY(), NT
->getZ());
3004 else if (const auto *SA
= dyn_cast
<HLSLShaderAttr
>(Attr
))
3005 NewAttr
= S
.mergeHLSLShaderAttr(D
, *SA
, SA
->getType());
3006 else if (Attr
->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D
, Attr
))
3007 NewAttr
= cast
<InheritableAttr
>(Attr
->clone(S
.Context
));
3010 NewAttr
->setInherited(true);
3011 D
->addAttr(NewAttr
);
3012 if (isa
<MSInheritanceAttr
>(NewAttr
))
3013 S
.Consumer
.AssignInheritanceModel(cast
<CXXRecordDecl
>(D
));
3020 static const NamedDecl
*getDefinition(const Decl
*D
) {
3021 if (const TagDecl
*TD
= dyn_cast
<TagDecl
>(D
))
3022 return TD
->getDefinition();
3023 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
3024 const VarDecl
*Def
= VD
->getDefinition();
3027 return VD
->getActingDefinition();
3029 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
3030 const FunctionDecl
*Def
= nullptr;
3031 if (FD
->isDefined(Def
, true))
3037 static bool hasAttribute(const Decl
*D
, attr::Kind Kind
) {
3038 for (const auto *Attribute
: D
->attrs())
3039 if (Attribute
->getKind() == Kind
)
3044 /// checkNewAttributesAfterDef - If we already have a definition, check that
3045 /// there are no new attributes in this declaration.
3046 static void checkNewAttributesAfterDef(Sema
&S
, Decl
*New
, const Decl
*Old
) {
3047 if (!New
->hasAttrs())
3050 const NamedDecl
*Def
= getDefinition(Old
);
3051 if (!Def
|| Def
== New
)
3054 AttrVec
&NewAttributes
= New
->getAttrs();
3055 for (unsigned I
= 0, E
= NewAttributes
.size(); I
!= E
;) {
3056 const Attr
*NewAttribute
= NewAttributes
[I
];
3058 if (isa
<AliasAttr
>(NewAttribute
) || isa
<IFuncAttr
>(NewAttribute
)) {
3059 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(New
)) {
3060 Sema::SkipBodyInfo SkipBody
;
3061 S
.CheckForFunctionRedefinition(FD
, cast
<FunctionDecl
>(Def
), &SkipBody
);
3063 // If we're skipping this definition, drop the "alias" attribute.
3064 if (SkipBody
.ShouldSkip
) {
3065 NewAttributes
.erase(NewAttributes
.begin() + I
);
3070 VarDecl
*VD
= cast
<VarDecl
>(New
);
3071 unsigned Diag
= cast
<VarDecl
>(Def
)->isThisDeclarationADefinition() ==
3072 VarDecl::TentativeDefinition
3073 ? diag::err_alias_after_tentative
3074 : diag::err_redefinition
;
3075 S
.Diag(VD
->getLocation(), Diag
) << VD
->getDeclName();
3076 if (Diag
== diag::err_redefinition
)
3077 S
.notePreviousDefinition(Def
, VD
->getLocation());
3079 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3080 VD
->setInvalidDecl();
3086 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(Def
)) {
3087 // Tentative definitions are only interesting for the alias check above.
3088 if (VD
->isThisDeclarationADefinition() != VarDecl::Definition
) {
3094 if (hasAttribute(Def
, NewAttribute
->getKind())) {
3096 continue; // regular attr merging will take care of validating this.
3099 if (isa
<C11NoReturnAttr
>(NewAttribute
)) {
3100 // C's _Noreturn is allowed to be added to a function after it is defined.
3103 } else if (isa
<UuidAttr
>(NewAttribute
)) {
3104 // msvc will allow a subsequent definition to add an uuid to a class
3107 } else if (const AlignedAttr
*AA
= dyn_cast
<AlignedAttr
>(NewAttribute
)) {
3108 if (AA
->isAlignas()) {
3109 // C++11 [dcl.align]p6:
3110 // if any declaration of an entity has an alignment-specifier,
3111 // every defining declaration of that entity shall specify an
3112 // equivalent alignment.
3114 // If the definition of an object does not have an alignment
3115 // specifier, any other declaration of that object shall also
3116 // have no alignment specifier.
3117 S
.Diag(Def
->getLocation(), diag::err_alignas_missing_on_definition
)
3119 S
.Diag(NewAttribute
->getLocation(), diag::note_alignas_on_declaration
)
3121 NewAttributes
.erase(NewAttributes
.begin() + I
);
3125 } else if (isa
<LoaderUninitializedAttr
>(NewAttribute
)) {
3126 // If there is a C definition followed by a redeclaration with this
3127 // attribute then there are two different definitions. In C++, prefer the
3128 // standard diagnostics.
3129 if (!S
.getLangOpts().CPlusPlus
) {
3130 S
.Diag(NewAttribute
->getLocation(),
3131 diag::err_loader_uninitialized_redeclaration
);
3132 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3133 NewAttributes
.erase(NewAttributes
.begin() + I
);
3137 } else if (isa
<SelectAnyAttr
>(NewAttribute
) &&
3138 cast
<VarDecl
>(New
)->isInline() &&
3139 !cast
<VarDecl
>(New
)->isInlineSpecified()) {
3140 // Don't warn about applying selectany to implicitly inline variables.
3141 // Older compilers and language modes would require the use of selectany
3142 // to make such variables inline, and it would have no effect if we
3146 } else if (isa
<OMPDeclareVariantAttr
>(NewAttribute
)) {
3147 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3148 // declarations after definitions.
3153 S
.Diag(NewAttribute
->getLocation(),
3154 diag::warn_attribute_precede_definition
);
3155 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3156 NewAttributes
.erase(NewAttributes
.begin() + I
);
3161 static void diagnoseMissingConstinit(Sema
&S
, const VarDecl
*InitDecl
,
3162 const ConstInitAttr
*CIAttr
,
3163 bool AttrBeforeInit
) {
3164 SourceLocation InsertLoc
= InitDecl
->getInnerLocStart();
3166 // Figure out a good way to write this specifier on the old declaration.
3167 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3168 // enough of the attribute list spelling information to extract that without
3170 std::string SuitableSpelling
;
3171 if (S
.getLangOpts().CPlusPlus20
)
3172 SuitableSpelling
= std::string(
3173 S
.PP
.getLastMacroWithSpelling(InsertLoc
, {tok::kw_constinit
}));
3174 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus11
)
3175 SuitableSpelling
= std::string(S
.PP
.getLastMacroWithSpelling(
3176 InsertLoc
, {tok::l_square
, tok::l_square
,
3177 S
.PP
.getIdentifierInfo("clang"), tok::coloncolon
,
3178 S
.PP
.getIdentifierInfo("require_constant_initialization"),
3179 tok::r_square
, tok::r_square
}));
3180 if (SuitableSpelling
.empty())
3181 SuitableSpelling
= std::string(S
.PP
.getLastMacroWithSpelling(
3182 InsertLoc
, {tok::kw___attribute
, tok::l_paren
, tok::r_paren
,
3183 S
.PP
.getIdentifierInfo("require_constant_initialization"),
3184 tok::r_paren
, tok::r_paren
}));
3185 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus20
)
3186 SuitableSpelling
= "constinit";
3187 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus11
)
3188 SuitableSpelling
= "[[clang::require_constant_initialization]]";
3189 if (SuitableSpelling
.empty())
3190 SuitableSpelling
= "__attribute__((require_constant_initialization))";
3191 SuitableSpelling
+= " ";
3193 if (AttrBeforeInit
) {
3194 // extern constinit int a;
3195 // int a = 0; // error (missing 'constinit'), accepted as extension
3196 assert(CIAttr
->isConstinit() && "should not diagnose this for attribute");
3197 S
.Diag(InitDecl
->getLocation(), diag::ext_constinit_missing
)
3198 << InitDecl
<< FixItHint::CreateInsertion(InsertLoc
, SuitableSpelling
);
3199 S
.Diag(CIAttr
->getLocation(), diag::note_constinit_specified_here
);
3202 // constinit extern int a; // error (missing 'constinit')
3203 S
.Diag(CIAttr
->getLocation(),
3204 CIAttr
->isConstinit() ? diag::err_constinit_added_too_late
3205 : diag::warn_require_const_init_added_too_late
)
3206 << FixItHint::CreateRemoval(SourceRange(CIAttr
->getLocation()));
3207 S
.Diag(InitDecl
->getLocation(), diag::note_constinit_missing_here
)
3208 << CIAttr
->isConstinit()
3209 << FixItHint::CreateInsertion(InsertLoc
, SuitableSpelling
);
3213 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
3214 void Sema::mergeDeclAttributes(NamedDecl
*New
, Decl
*Old
,
3215 AvailabilityMergeKind AMK
) {
3216 if (UsedAttr
*OldAttr
= Old
->getMostRecentDecl()->getAttr
<UsedAttr
>()) {
3217 UsedAttr
*NewAttr
= OldAttr
->clone(Context
);
3218 NewAttr
->setInherited(true);
3219 New
->addAttr(NewAttr
);
3221 if (RetainAttr
*OldAttr
= Old
->getMostRecentDecl()->getAttr
<RetainAttr
>()) {
3222 RetainAttr
*NewAttr
= OldAttr
->clone(Context
);
3223 NewAttr
->setInherited(true);
3224 New
->addAttr(NewAttr
);
3227 if (!Old
->hasAttrs() && !New
->hasAttrs())
3230 // [dcl.constinit]p1:
3231 // If the [constinit] specifier is applied to any declaration of a
3232 // variable, it shall be applied to the initializing declaration.
3233 const auto *OldConstInit
= Old
->getAttr
<ConstInitAttr
>();
3234 const auto *NewConstInit
= New
->getAttr
<ConstInitAttr
>();
3235 if (bool(OldConstInit
) != bool(NewConstInit
)) {
3236 const auto *OldVD
= cast
<VarDecl
>(Old
);
3237 auto *NewVD
= cast
<VarDecl
>(New
);
3239 // Find the initializing declaration. Note that we might not have linked
3240 // the new declaration into the redeclaration chain yet.
3241 const VarDecl
*InitDecl
= OldVD
->getInitializingDeclaration();
3243 (NewVD
->hasInit() || NewVD
->isThisDeclarationADefinition()))
3246 if (InitDecl
== NewVD
) {
3247 // This is the initializing declaration. If it would inherit 'constinit',
3248 // that's ill-formed. (Note that we do not apply this to the attribute
3250 if (OldConstInit
&& OldConstInit
->isConstinit())
3251 diagnoseMissingConstinit(*this, NewVD
, OldConstInit
,
3252 /*AttrBeforeInit=*/true);
3253 } else if (NewConstInit
) {
3254 // This is the first time we've been told that this declaration should
3255 // have a constant initializer. If we already saw the initializing
3256 // declaration, this is too late.
3257 if (InitDecl
&& InitDecl
!= NewVD
) {
3258 diagnoseMissingConstinit(*this, InitDecl
, NewConstInit
,
3259 /*AttrBeforeInit=*/false);
3260 NewVD
->dropAttr
<ConstInitAttr
>();
3265 // Attributes declared post-definition are currently ignored.
3266 checkNewAttributesAfterDef(*this, New
, Old
);
3268 if (AsmLabelAttr
*NewA
= New
->getAttr
<AsmLabelAttr
>()) {
3269 if (AsmLabelAttr
*OldA
= Old
->getAttr
<AsmLabelAttr
>()) {
3270 if (!OldA
->isEquivalent(NewA
)) {
3271 // This redeclaration changes __asm__ label.
3272 Diag(New
->getLocation(), diag::err_different_asm_label
);
3273 Diag(OldA
->getLocation(), diag::note_previous_declaration
);
3275 } else if (Old
->isUsed()) {
3276 // This redeclaration adds an __asm__ label to a declaration that has
3277 // already been ODR-used.
3278 Diag(New
->getLocation(), diag::err_late_asm_label_name
)
3279 << isa
<FunctionDecl
>(Old
) << New
->getAttr
<AsmLabelAttr
>()->getRange();
3283 // Re-declaration cannot add abi_tag's.
3284 if (const auto *NewAbiTagAttr
= New
->getAttr
<AbiTagAttr
>()) {
3285 if (const auto *OldAbiTagAttr
= Old
->getAttr
<AbiTagAttr
>()) {
3286 for (const auto &NewTag
: NewAbiTagAttr
->tags()) {
3287 if (!llvm::is_contained(OldAbiTagAttr
->tags(), NewTag
)) {
3288 Diag(NewAbiTagAttr
->getLocation(),
3289 diag::err_new_abi_tag_on_redeclaration
)
3291 Diag(OldAbiTagAttr
->getLocation(), diag::note_previous_declaration
);
3295 Diag(NewAbiTagAttr
->getLocation(), diag::err_abi_tag_on_redeclaration
);
3296 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3300 // This redeclaration adds a section attribute.
3301 if (New
->hasAttr
<SectionAttr
>() && !Old
->hasAttr
<SectionAttr
>()) {
3302 if (auto *VD
= dyn_cast
<VarDecl
>(New
)) {
3303 if (VD
->isThisDeclarationADefinition() == VarDecl::DeclarationOnly
) {
3304 Diag(New
->getLocation(), diag::warn_attribute_section_on_redeclaration
);
3305 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3310 // Redeclaration adds code-seg attribute.
3311 const auto *NewCSA
= New
->getAttr
<CodeSegAttr
>();
3312 if (NewCSA
&& !Old
->hasAttr
<CodeSegAttr
>() &&
3313 !NewCSA
->isImplicit() && isa
<CXXMethodDecl
>(New
)) {
3314 Diag(New
->getLocation(), diag::warn_mismatched_section
)
3316 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3319 if (!Old
->hasAttrs())
3322 bool foundAny
= New
->hasAttrs();
3324 // Ensure that any moving of objects within the allocated map is done before
3326 if (!foundAny
) New
->setAttrs(AttrVec());
3328 for (auto *I
: Old
->specific_attrs
<InheritableAttr
>()) {
3329 // Ignore deprecated/unavailable/availability attributes if requested.
3330 AvailabilityMergeKind LocalAMK
= AMK_None
;
3331 if (isa
<DeprecatedAttr
>(I
) ||
3332 isa
<UnavailableAttr
>(I
) ||
3333 isa
<AvailabilityAttr
>(I
)) {
3338 case AMK_Redeclaration
:
3340 case AMK_ProtocolImplementation
:
3341 case AMK_OptionalProtocolImplementation
:
3348 if (isa
<UsedAttr
>(I
) || isa
<RetainAttr
>(I
))
3351 if (mergeDeclAttribute(*this, New
, I
, LocalAMK
))
3355 if (mergeAlignedAttrs(*this, New
, Old
))
3358 if (!foundAny
) New
->dropAttrs();
3361 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3363 static void mergeParamDeclAttributes(ParmVarDecl
*newDecl
,
3364 const ParmVarDecl
*oldDecl
,
3366 // C++11 [dcl.attr.depend]p2:
3367 // The first declaration of a function shall specify the
3368 // carries_dependency attribute for its declarator-id if any declaration
3369 // of the function specifies the carries_dependency attribute.
3370 const CarriesDependencyAttr
*CDA
= newDecl
->getAttr
<CarriesDependencyAttr
>();
3371 if (CDA
&& !oldDecl
->hasAttr
<CarriesDependencyAttr
>()) {
3372 S
.Diag(CDA
->getLocation(),
3373 diag::err_carries_dependency_missing_on_first_decl
) << 1/*Param*/;
3374 // Find the first declaration of the parameter.
3375 // FIXME: Should we build redeclaration chains for function parameters?
3376 const FunctionDecl
*FirstFD
=
3377 cast
<FunctionDecl
>(oldDecl
->getDeclContext())->getFirstDecl();
3378 const ParmVarDecl
*FirstVD
=
3379 FirstFD
->getParamDecl(oldDecl
->getFunctionScopeIndex());
3380 S
.Diag(FirstVD
->getLocation(),
3381 diag::note_carries_dependency_missing_first_decl
) << 1/*Param*/;
3384 // HLSL parameter declarations for inout and out must match between
3385 // declarations. In HLSL inout and out are ambiguous at the call site, but
3386 // have different calling behavior, so you cannot overload a method based on a
3387 // difference between inout and out annotations.
3388 if (S
.getLangOpts().HLSL
) {
3389 const auto *NDAttr
= newDecl
->getAttr
<HLSLParamModifierAttr
>();
3390 const auto *ODAttr
= oldDecl
->getAttr
<HLSLParamModifierAttr
>();
3391 // We don't need to cover the case where one declaration doesn't have an
3392 // attribute. The only possible case there is if one declaration has an `in`
3393 // attribute and the other declaration has no attribute. This case is
3394 // allowed since parameters are `in` by default.
3395 if (NDAttr
&& ODAttr
&&
3396 NDAttr
->getSpellingListIndex() != ODAttr
->getSpellingListIndex()) {
3397 S
.Diag(newDecl
->getLocation(), diag::err_hlsl_param_qualifier_mismatch
)
3398 << NDAttr
<< newDecl
;
3399 S
.Diag(oldDecl
->getLocation(), diag::note_previous_declaration_as
)
3404 if (!oldDecl
->hasAttrs())
3407 bool foundAny
= newDecl
->hasAttrs();
3409 // Ensure that any moving of objects within the allocated map is
3410 // done before we process them.
3411 if (!foundAny
) newDecl
->setAttrs(AttrVec());
3413 for (const auto *I
: oldDecl
->specific_attrs
<InheritableParamAttr
>()) {
3414 if (!DeclHasAttr(newDecl
, I
)) {
3415 InheritableAttr
*newAttr
=
3416 cast
<InheritableParamAttr
>(I
->clone(S
.Context
));
3417 newAttr
->setInherited(true);
3418 newDecl
->addAttr(newAttr
);
3423 if (!foundAny
) newDecl
->dropAttrs();
3426 static bool EquivalentArrayTypes(QualType Old
, QualType New
,
3427 const ASTContext
&Ctx
) {
3429 auto NoSizeInfo
= [&Ctx
](QualType Ty
) {
3430 if (Ty
->isIncompleteArrayType() || Ty
->isPointerType())
3432 if (const auto *VAT
= Ctx
.getAsVariableArrayType(Ty
))
3433 return VAT
->getSizeModifier() == ArraySizeModifier::Star
;
3437 // `type[]` is equivalent to `type *` and `type[*]`.
3438 if (NoSizeInfo(Old
) && NoSizeInfo(New
))
3441 // Don't try to compare VLA sizes, unless one of them has the star modifier.
3442 if (Old
->isVariableArrayType() && New
->isVariableArrayType()) {
3443 const auto *OldVAT
= Ctx
.getAsVariableArrayType(Old
);
3444 const auto *NewVAT
= Ctx
.getAsVariableArrayType(New
);
3445 if ((OldVAT
->getSizeModifier() == ArraySizeModifier::Star
) ^
3446 (NewVAT
->getSizeModifier() == ArraySizeModifier::Star
))
3451 // Only compare size, ignore Size modifiers and CVR.
3452 if (Old
->isConstantArrayType() && New
->isConstantArrayType()) {
3453 return Ctx
.getAsConstantArrayType(Old
)->getSize() ==
3454 Ctx
.getAsConstantArrayType(New
)->getSize();
3457 // Don't try to compare dependent sized array
3458 if (Old
->isDependentSizedArrayType() && New
->isDependentSizedArrayType()) {
3465 static void mergeParamDeclTypes(ParmVarDecl
*NewParam
,
3466 const ParmVarDecl
*OldParam
,
3468 if (auto Oldnullability
= OldParam
->getType()->getNullability()) {
3469 if (auto Newnullability
= NewParam
->getType()->getNullability()) {
3470 if (*Oldnullability
!= *Newnullability
) {
3471 S
.Diag(NewParam
->getLocation(), diag::warn_mismatched_nullability_attr
)
3472 << DiagNullabilityKind(
3474 ((NewParam
->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability
)
3476 << DiagNullabilityKind(
3478 ((OldParam
->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability
)
3480 S
.Diag(OldParam
->getLocation(), diag::note_previous_declaration
);
3483 QualType NewT
= NewParam
->getType();
3484 NewT
= S
.Context
.getAttributedType(
3485 AttributedType::getNullabilityAttrKind(*Oldnullability
),
3487 NewParam
->setType(NewT
);
3490 const auto *OldParamDT
= dyn_cast
<DecayedType
>(OldParam
->getType());
3491 const auto *NewParamDT
= dyn_cast
<DecayedType
>(NewParam
->getType());
3492 if (OldParamDT
&& NewParamDT
&&
3493 OldParamDT
->getPointeeType() == NewParamDT
->getPointeeType()) {
3494 QualType OldParamOT
= OldParamDT
->getOriginalType();
3495 QualType NewParamOT
= NewParamDT
->getOriginalType();
3496 if (!EquivalentArrayTypes(OldParamOT
, NewParamOT
, S
.getASTContext())) {
3497 S
.Diag(NewParam
->getLocation(), diag::warn_inconsistent_array_form
)
3498 << NewParam
<< NewParamOT
;
3499 S
.Diag(OldParam
->getLocation(), diag::note_previous_declaration_as
)
3507 /// Used in MergeFunctionDecl to keep track of function parameters in
3509 struct GNUCompatibleParamWarning
{
3510 ParmVarDecl
*OldParm
;
3511 ParmVarDecl
*NewParm
;
3512 QualType PromotedType
;
3515 } // end anonymous namespace
3517 // Determine whether the previous declaration was a definition, implicit
3518 // declaration, or a declaration.
3519 template <typename T
>
3520 static std::pair
<diag::kind
, SourceLocation
>
3521 getNoteDiagForInvalidRedeclaration(const T
*Old
, const T
*New
) {
3522 diag::kind PrevDiag
;
3523 SourceLocation OldLocation
= Old
->getLocation();
3524 if (Old
->isThisDeclarationADefinition())
3525 PrevDiag
= diag::note_previous_definition
;
3526 else if (Old
->isImplicit()) {
3527 PrevDiag
= diag::note_previous_implicit_declaration
;
3528 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Old
)) {
3529 if (FD
->getBuiltinID())
3530 PrevDiag
= diag::note_previous_builtin_declaration
;
3532 if (OldLocation
.isInvalid())
3533 OldLocation
= New
->getLocation();
3535 PrevDiag
= diag::note_previous_declaration
;
3536 return std::make_pair(PrevDiag
, OldLocation
);
3539 /// canRedefineFunction - checks if a function can be redefined. Currently,
3540 /// only extern inline functions can be redefined, and even then only in
3542 static bool canRedefineFunction(const FunctionDecl
*FD
,
3543 const LangOptions
& LangOpts
) {
3544 return ((FD
->hasAttr
<GNUInlineAttr
>() || LangOpts
.GNUInline
) &&
3545 !LangOpts
.CPlusPlus
&&
3546 FD
->isInlineSpecified() &&
3547 FD
->getStorageClass() == SC_Extern
);
3550 const AttributedType
*Sema::getCallingConvAttributedType(QualType T
) const {
3551 const AttributedType
*AT
= T
->getAs
<AttributedType
>();
3552 while (AT
&& !AT
->isCallingConv())
3553 AT
= AT
->getModifiedType()->getAs
<AttributedType
>();
3557 template <typename T
>
3558 static bool haveIncompatibleLanguageLinkages(const T
*Old
, const T
*New
) {
3559 const DeclContext
*DC
= Old
->getDeclContext();
3563 LanguageLinkage OldLinkage
= Old
->getLanguageLinkage();
3564 if (OldLinkage
== CXXLanguageLinkage
&& New
->isInExternCContext())
3566 if (OldLinkage
== CLanguageLinkage
&& New
->isInExternCXXContext())
3571 template<typename T
> static bool isExternC(T
*D
) { return D
->isExternC(); }
3572 static bool isExternC(VarTemplateDecl
*) { return false; }
3573 static bool isExternC(FunctionTemplateDecl
*) { return false; }
3575 /// Check whether a redeclaration of an entity introduced by a
3576 /// using-declaration is valid, given that we know it's not an overload
3577 /// (nor a hidden tag declaration).
3578 template<typename ExpectedDecl
>
3579 static bool checkUsingShadowRedecl(Sema
&S
, UsingShadowDecl
*OldS
,
3580 ExpectedDecl
*New
) {
3581 // C++11 [basic.scope.declarative]p4:
3582 // Given a set of declarations in a single declarative region, each of
3583 // which specifies the same unqualified name,
3584 // -- they shall all refer to the same entity, or all refer to functions
3585 // and function templates; or
3586 // -- exactly one declaration shall declare a class name or enumeration
3587 // name that is not a typedef name and the other declarations shall all
3588 // refer to the same variable or enumerator, or all refer to functions
3589 // and function templates; in this case the class name or enumeration
3590 // name is hidden (3.3.10).
3592 // C++11 [namespace.udecl]p14:
3593 // If a function declaration in namespace scope or block scope has the
3594 // same name and the same parameter-type-list as a function introduced
3595 // by a using-declaration, and the declarations do not declare the same
3596 // function, the program is ill-formed.
3598 auto *Old
= dyn_cast
<ExpectedDecl
>(OldS
->getTargetDecl());
3600 !Old
->getDeclContext()->getRedeclContext()->Equals(
3601 New
->getDeclContext()->getRedeclContext()) &&
3602 !(isExternC(Old
) && isExternC(New
)))
3606 S
.Diag(New
->getLocation(), diag::err_using_decl_conflict_reverse
);
3607 S
.Diag(OldS
->getTargetDecl()->getLocation(), diag::note_using_decl_target
);
3608 S
.Diag(OldS
->getIntroducer()->getLocation(), diag::note_using_decl
) << 0;
3614 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl
*A
,
3615 const FunctionDecl
*B
) {
3616 assert(A
->getNumParams() == B
->getNumParams());
3618 auto AttrEq
= [](const ParmVarDecl
*A
, const ParmVarDecl
*B
) {
3619 const auto *AttrA
= A
->getAttr
<PassObjectSizeAttr
>();
3620 const auto *AttrB
= B
->getAttr
<PassObjectSizeAttr
>();
3623 return AttrA
&& AttrB
&& AttrA
->getType() == AttrB
->getType() &&
3624 AttrA
->isDynamic() == AttrB
->isDynamic();
3627 return std::equal(A
->param_begin(), A
->param_end(), B
->param_begin(), AttrEq
);
3630 /// If necessary, adjust the semantic declaration context for a qualified
3631 /// declaration to name the correct inline namespace within the qualifier.
3632 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl
*NewD
,
3633 DeclaratorDecl
*OldD
) {
3634 // The only case where we need to update the DeclContext is when
3635 // redeclaration lookup for a qualified name finds a declaration
3636 // in an inline namespace within the context named by the qualifier:
3638 // inline namespace N { int f(); }
3639 // int ::f(); // Sema DC needs adjusting from :: to N::.
3641 // For unqualified declarations, the semantic context *can* change
3642 // along the redeclaration chain (for local extern declarations,
3643 // extern "C" declarations, and friend declarations in particular).
3644 if (!NewD
->getQualifier())
3647 // NewD is probably already in the right context.
3648 auto *NamedDC
= NewD
->getDeclContext()->getRedeclContext();
3649 auto *SemaDC
= OldD
->getDeclContext()->getRedeclContext();
3650 if (NamedDC
->Equals(SemaDC
))
3653 assert((NamedDC
->InEnclosingNamespaceSetOf(SemaDC
) ||
3654 NewD
->isInvalidDecl() || OldD
->isInvalidDecl()) &&
3655 "unexpected context for redeclaration");
3657 auto *LexDC
= NewD
->getLexicalDeclContext();
3658 auto FixSemaDC
= [=](NamedDecl
*D
) {
3661 D
->setDeclContext(SemaDC
);
3662 D
->setLexicalDeclContext(LexDC
);
3666 if (auto *FD
= dyn_cast
<FunctionDecl
>(NewD
))
3667 FixSemaDC(FD
->getDescribedFunctionTemplate());
3668 else if (auto *VD
= dyn_cast
<VarDecl
>(NewD
))
3669 FixSemaDC(VD
->getDescribedVarTemplate());
3672 /// MergeFunctionDecl - We just parsed a function 'New' from
3673 /// declarator D which has the same name and scope as a previous
3674 /// declaration 'Old'. Figure out how to resolve this situation,
3675 /// merging decls or emitting diagnostics as appropriate.
3677 /// In C++, New and Old must be declarations that are not
3678 /// overloaded. Use IsOverload to determine whether New and Old are
3679 /// overloaded, and to select the Old declaration that New should be
3682 /// Returns true if there was an error, false otherwise.
3683 bool Sema::MergeFunctionDecl(FunctionDecl
*New
, NamedDecl
*&OldD
, Scope
*S
,
3684 bool MergeTypeWithOld
, bool NewDeclIsDefn
) {
3685 // Verify the old decl was also a function.
3686 FunctionDecl
*Old
= OldD
->getAsFunction();
3688 if (UsingShadowDecl
*Shadow
= dyn_cast
<UsingShadowDecl
>(OldD
)) {
3689 if (New
->getFriendObjectKind()) {
3690 Diag(New
->getLocation(), diag::err_using_decl_friend
);
3691 Diag(Shadow
->getTargetDecl()->getLocation(),
3692 diag::note_using_decl_target
);
3693 Diag(Shadow
->getIntroducer()->getLocation(), diag::note_using_decl
)
3698 // Check whether the two declarations might declare the same function or
3699 // function template.
3700 if (FunctionTemplateDecl
*NewTemplate
=
3701 New
->getDescribedFunctionTemplate()) {
3702 if (checkUsingShadowRedecl
<FunctionTemplateDecl
>(*this, Shadow
,
3705 OldD
= Old
= cast
<FunctionTemplateDecl
>(Shadow
->getTargetDecl())
3708 if (checkUsingShadowRedecl
<FunctionDecl
>(*this, Shadow
, New
))
3710 OldD
= Old
= cast
<FunctionDecl
>(Shadow
->getTargetDecl());
3713 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
3714 << New
->getDeclName();
3715 notePreviousDefinition(OldD
, New
->getLocation());
3720 // If the old declaration was found in an inline namespace and the new
3721 // declaration was qualified, update the DeclContext to match.
3722 adjustDeclContextForDeclaratorDecl(New
, Old
);
3724 // If the old declaration is invalid, just give up here.
3725 if (Old
->isInvalidDecl())
3728 // Disallow redeclaration of some builtins.
3729 if (!getASTContext().canBuiltinBeRedeclared(Old
)) {
3730 Diag(New
->getLocation(), diag::err_builtin_redeclare
) << Old
->getDeclName();
3731 Diag(Old
->getLocation(), diag::note_previous_builtin_declaration
)
3732 << Old
<< Old
->getType();
3736 diag::kind PrevDiag
;
3737 SourceLocation OldLocation
;
3738 std::tie(PrevDiag
, OldLocation
) =
3739 getNoteDiagForInvalidRedeclaration(Old
, New
);
3741 // Don't complain about this if we're in GNU89 mode and the old function
3742 // is an extern inline function.
3743 // Don't complain about specializations. They are not supposed to have
3745 if (!isa
<CXXMethodDecl
>(New
) && !isa
<CXXMethodDecl
>(Old
) &&
3746 New
->getStorageClass() == SC_Static
&&
3747 Old
->hasExternalFormalLinkage() &&
3748 !New
->getTemplateSpecializationInfo() &&
3749 !canRedefineFunction(Old
, getLangOpts())) {
3750 if (getLangOpts().MicrosoftExt
) {
3751 Diag(New
->getLocation(), diag::ext_static_non_static
) << New
;
3752 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3754 Diag(New
->getLocation(), diag::err_static_non_static
) << New
;
3755 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3760 if (const auto *ILA
= New
->getAttr
<InternalLinkageAttr
>())
3761 if (!Old
->hasAttr
<InternalLinkageAttr
>()) {
3762 Diag(New
->getLocation(), diag::err_attribute_missing_on_first_decl
)
3764 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3765 New
->dropAttr
<InternalLinkageAttr
>();
3768 if (auto *EA
= New
->getAttr
<ErrorAttr
>()) {
3769 if (!Old
->hasAttr
<ErrorAttr
>()) {
3770 Diag(EA
->getLocation(), diag::err_attribute_missing_on_first_decl
) << EA
;
3771 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3772 New
->dropAttr
<ErrorAttr
>();
3776 if (CheckRedeclarationInModule(New
, Old
))
3779 if (!getLangOpts().CPlusPlus
) {
3780 bool OldOvl
= Old
->hasAttr
<OverloadableAttr
>();
3781 if (OldOvl
!= New
->hasAttr
<OverloadableAttr
>() && !Old
->isImplicit()) {
3782 Diag(New
->getLocation(), diag::err_attribute_overloadable_mismatch
)
3785 // Try our best to find a decl that actually has the overloadable
3786 // attribute for the note. In most cases (e.g. programs with only one
3787 // broken declaration/definition), this won't matter.
3789 // FIXME: We could do this if we juggled some extra state in
3790 // OverloadableAttr, rather than just removing it.
3791 const Decl
*DiagOld
= Old
;
3793 auto OldIter
= llvm::find_if(Old
->redecls(), [](const Decl
*D
) {
3794 const auto *A
= D
->getAttr
<OverloadableAttr
>();
3795 return A
&& !A
->isImplicit();
3797 // If we've implicitly added *all* of the overloadable attrs to this
3798 // chain, emitting a "previous redecl" note is pointless.
3799 DiagOld
= OldIter
== Old
->redecls_end() ? nullptr : *OldIter
;
3803 Diag(DiagOld
->getLocation(),
3804 diag::note_attribute_overloadable_prev_overload
)
3808 New
->addAttr(OverloadableAttr::CreateImplicit(Context
));
3810 New
->dropAttr
<OverloadableAttr
>();
3814 // It is not permitted to redeclare an SME function with different SME
3816 if (IsInvalidSMECallConversion(Old
->getType(), New
->getType(),
3817 AArch64SMECallConversionKind::MatchExactly
)) {
3818 Diag(New
->getLocation(), diag::err_sme_attr_mismatch
)
3819 << New
->getType() << Old
->getType();
3820 Diag(OldLocation
, diag::note_previous_declaration
);
3824 // If a function is first declared with a calling convention, but is later
3825 // declared or defined without one, all following decls assume the calling
3826 // convention of the first.
3828 // It's OK if a function is first declared without a calling convention,
3829 // but is later declared or defined with the default calling convention.
3831 // To test if either decl has an explicit calling convention, we look for
3832 // AttributedType sugar nodes on the type as written. If they are missing or
3833 // were canonicalized away, we assume the calling convention was implicit.
3835 // Note also that we DO NOT return at this point, because we still have
3836 // other tests to run.
3837 QualType OldQType
= Context
.getCanonicalType(Old
->getType());
3838 QualType NewQType
= Context
.getCanonicalType(New
->getType());
3839 const FunctionType
*OldType
= cast
<FunctionType
>(OldQType
);
3840 const FunctionType
*NewType
= cast
<FunctionType
>(NewQType
);
3841 FunctionType::ExtInfo OldTypeInfo
= OldType
->getExtInfo();
3842 FunctionType::ExtInfo NewTypeInfo
= NewType
->getExtInfo();
3843 bool RequiresAdjustment
= false;
3845 if (OldTypeInfo
.getCC() != NewTypeInfo
.getCC()) {
3846 FunctionDecl
*First
= Old
->getFirstDecl();
3847 const FunctionType
*FT
=
3848 First
->getType().getCanonicalType()->castAs
<FunctionType
>();
3849 FunctionType::ExtInfo FI
= FT
->getExtInfo();
3850 bool NewCCExplicit
= getCallingConvAttributedType(New
->getType());
3851 if (!NewCCExplicit
) {
3852 // Inherit the CC from the previous declaration if it was specified
3853 // there but not here.
3854 NewTypeInfo
= NewTypeInfo
.withCallingConv(OldTypeInfo
.getCC());
3855 RequiresAdjustment
= true;
3856 } else if (Old
->getBuiltinID()) {
3857 // Builtin attribute isn't propagated to the new one yet at this point,
3858 // so we check if the old one is a builtin.
3860 // Calling Conventions on a Builtin aren't really useful and setting a
3861 // default calling convention and cdecl'ing some builtin redeclarations is
3862 // common, so warn and ignore the calling convention on the redeclaration.
3863 Diag(New
->getLocation(), diag::warn_cconv_unsupported
)
3864 << FunctionType::getNameForCallConv(NewTypeInfo
.getCC())
3865 << (int)CallingConventionIgnoredReason::BuiltinFunction
;
3866 NewTypeInfo
= NewTypeInfo
.withCallingConv(OldTypeInfo
.getCC());
3867 RequiresAdjustment
= true;
3869 // Calling conventions aren't compatible, so complain.
3870 bool FirstCCExplicit
= getCallingConvAttributedType(First
->getType());
3871 Diag(New
->getLocation(), diag::err_cconv_change
)
3872 << FunctionType::getNameForCallConv(NewTypeInfo
.getCC())
3874 << (!FirstCCExplicit
? "" :
3875 FunctionType::getNameForCallConv(FI
.getCC()));
3877 // Put the note on the first decl, since it is the one that matters.
3878 Diag(First
->getLocation(), diag::note_previous_declaration
);
3883 // FIXME: diagnose the other way around?
3884 if (OldTypeInfo
.getNoReturn() && !NewTypeInfo
.getNoReturn()) {
3885 NewTypeInfo
= NewTypeInfo
.withNoReturn(true);
3886 RequiresAdjustment
= true;
3889 // Merge regparm attribute.
3890 if (OldTypeInfo
.getHasRegParm() != NewTypeInfo
.getHasRegParm() ||
3891 OldTypeInfo
.getRegParm() != NewTypeInfo
.getRegParm()) {
3892 if (NewTypeInfo
.getHasRegParm()) {
3893 Diag(New
->getLocation(), diag::err_regparm_mismatch
)
3894 << NewType
->getRegParmType()
3895 << OldType
->getRegParmType();
3896 Diag(OldLocation
, diag::note_previous_declaration
);
3900 NewTypeInfo
= NewTypeInfo
.withRegParm(OldTypeInfo
.getRegParm());
3901 RequiresAdjustment
= true;
3904 // Merge ns_returns_retained attribute.
3905 if (OldTypeInfo
.getProducesResult() != NewTypeInfo
.getProducesResult()) {
3906 if (NewTypeInfo
.getProducesResult()) {
3907 Diag(New
->getLocation(), diag::err_function_attribute_mismatch
)
3908 << "'ns_returns_retained'";
3909 Diag(OldLocation
, diag::note_previous_declaration
);
3913 NewTypeInfo
= NewTypeInfo
.withProducesResult(true);
3914 RequiresAdjustment
= true;
3917 if (OldTypeInfo
.getNoCallerSavedRegs() !=
3918 NewTypeInfo
.getNoCallerSavedRegs()) {
3919 if (NewTypeInfo
.getNoCallerSavedRegs()) {
3920 AnyX86NoCallerSavedRegistersAttr
*Attr
=
3921 New
->getAttr
<AnyX86NoCallerSavedRegistersAttr
>();
3922 Diag(New
->getLocation(), diag::err_function_attribute_mismatch
) << Attr
;
3923 Diag(OldLocation
, diag::note_previous_declaration
);
3927 NewTypeInfo
= NewTypeInfo
.withNoCallerSavedRegs(true);
3928 RequiresAdjustment
= true;
3931 if (RequiresAdjustment
) {
3932 const FunctionType
*AdjustedType
= New
->getType()->getAs
<FunctionType
>();
3933 AdjustedType
= Context
.adjustFunctionType(AdjustedType
, NewTypeInfo
);
3934 New
->setType(QualType(AdjustedType
, 0));
3935 NewQType
= Context
.getCanonicalType(New
->getType());
3938 // If this redeclaration makes the function inline, we may need to add it to
3939 // UndefinedButUsed.
3940 if (!Old
->isInlined() && New
->isInlined() &&
3941 !New
->hasAttr
<GNUInlineAttr
>() &&
3942 !getLangOpts().GNUInline
&&
3943 Old
->isUsed(false) &&
3944 !Old
->isDefined() && !New
->isThisDeclarationADefinition())
3945 UndefinedButUsed
.insert(std::make_pair(Old
->getCanonicalDecl(),
3948 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3950 if (New
->hasAttr
<GNUInlineAttr
>() &&
3951 Old
->isInlined() && !Old
->hasAttr
<GNUInlineAttr
>()) {
3952 UndefinedButUsed
.erase(Old
->getCanonicalDecl());
3955 // If pass_object_size params don't match up perfectly, this isn't a valid
3957 if (Old
->getNumParams() > 0 && Old
->getNumParams() == New
->getNumParams() &&
3958 !hasIdenticalPassObjectSizeAttrs(Old
, New
)) {
3959 Diag(New
->getLocation(), diag::err_different_pass_object_size_params
)
3960 << New
->getDeclName();
3961 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3965 if (getLangOpts().CPlusPlus
) {
3966 OldQType
= Context
.getCanonicalType(Old
->getType());
3967 NewQType
= Context
.getCanonicalType(New
->getType());
3969 // Go back to the type source info to compare the declared return types,
3970 // per C++1y [dcl.type.auto]p13:
3971 // Redeclarations or specializations of a function or function template
3972 // with a declared return type that uses a placeholder type shall also
3973 // use that placeholder, not a deduced type.
3974 QualType OldDeclaredReturnType
= Old
->getDeclaredReturnType();
3975 QualType NewDeclaredReturnType
= New
->getDeclaredReturnType();
3976 if (!Context
.hasSameType(OldDeclaredReturnType
, NewDeclaredReturnType
) &&
3977 canFullyTypeCheckRedeclaration(New
, Old
, NewDeclaredReturnType
,
3978 OldDeclaredReturnType
)) {
3980 if (NewDeclaredReturnType
->isObjCObjectPointerType() &&
3981 OldDeclaredReturnType
->isObjCObjectPointerType())
3982 // FIXME: This does the wrong thing for a deduced return type.
3983 ResQT
= Context
.mergeObjCGCQualifiers(NewQType
, OldQType
);
3984 if (ResQT
.isNull()) {
3985 if (New
->isCXXClassMember() && New
->isOutOfLine())
3986 Diag(New
->getLocation(), diag::err_member_def_does_not_match_ret_type
)
3987 << New
<< New
->getReturnTypeSourceRange();
3989 Diag(New
->getLocation(), diag::err_ovl_diff_return_type
)
3990 << New
->getReturnTypeSourceRange();
3991 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType()
3992 << Old
->getReturnTypeSourceRange();
3999 QualType OldReturnType
= OldType
->getReturnType();
4000 QualType NewReturnType
= cast
<FunctionType
>(NewQType
)->getReturnType();
4001 if (OldReturnType
!= NewReturnType
) {
4002 // If this function has a deduced return type and has already been
4003 // defined, copy the deduced value from the old declaration.
4004 AutoType
*OldAT
= Old
->getReturnType()->getContainedAutoType();
4005 if (OldAT
&& OldAT
->isDeduced()) {
4006 QualType DT
= OldAT
->getDeducedType();
4008 New
->setType(SubstAutoTypeDependent(New
->getType()));
4009 NewQType
= Context
.getCanonicalType(SubstAutoTypeDependent(NewQType
));
4011 New
->setType(SubstAutoType(New
->getType(), DT
));
4012 NewQType
= Context
.getCanonicalType(SubstAutoType(NewQType
, DT
));
4017 const CXXMethodDecl
*OldMethod
= dyn_cast
<CXXMethodDecl
>(Old
);
4018 CXXMethodDecl
*NewMethod
= dyn_cast
<CXXMethodDecl
>(New
);
4019 if (OldMethod
&& NewMethod
) {
4020 // Preserve triviality.
4021 NewMethod
->setTrivial(OldMethod
->isTrivial());
4023 // MSVC allows explicit template specialization at class scope:
4024 // 2 CXXMethodDecls referring to the same function will be injected.
4025 // We don't want a redeclaration error.
4026 bool IsClassScopeExplicitSpecialization
=
4027 OldMethod
->isFunctionTemplateSpecialization() &&
4028 NewMethod
->isFunctionTemplateSpecialization();
4029 bool isFriend
= NewMethod
->getFriendObjectKind();
4031 if (!isFriend
&& NewMethod
->getLexicalDeclContext()->isRecord() &&
4032 !IsClassScopeExplicitSpecialization
) {
4033 // -- Member function declarations with the same name and the
4034 // same parameter types cannot be overloaded if any of them
4035 // is a static member function declaration.
4036 if (OldMethod
->isStatic() != NewMethod
->isStatic()) {
4037 Diag(New
->getLocation(), diag::err_ovl_static_nonstatic_member
);
4038 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4042 // C++ [class.mem]p1:
4043 // [...] A member shall not be declared twice in the
4044 // member-specification, except that a nested class or member
4045 // class template can be declared and then later defined.
4046 if (!inTemplateInstantiation()) {
4048 if (isa
<CXXConstructorDecl
>(OldMethod
))
4049 NewDiag
= diag::err_constructor_redeclared
;
4050 else if (isa
<CXXDestructorDecl
>(NewMethod
))
4051 NewDiag
= diag::err_destructor_redeclared
;
4052 else if (isa
<CXXConversionDecl
>(NewMethod
))
4053 NewDiag
= diag::err_conv_function_redeclared
;
4055 NewDiag
= diag::err_member_redeclared
;
4057 Diag(New
->getLocation(), NewDiag
);
4059 Diag(New
->getLocation(), diag::err_member_redeclared_in_instantiation
)
4060 << New
<< New
->getType();
4062 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4065 // Complain if this is an explicit declaration of a special
4066 // member that was initially declared implicitly.
4068 // As an exception, it's okay to befriend such methods in order
4069 // to permit the implicit constructor/destructor/operator calls.
4070 } else if (OldMethod
->isImplicit()) {
4072 NewMethod
->setImplicit();
4074 Diag(NewMethod
->getLocation(),
4075 diag::err_definition_of_implicitly_declared_member
)
4076 << New
<< getSpecialMember(OldMethod
);
4079 } else if (OldMethod
->getFirstDecl()->isExplicitlyDefaulted() && !isFriend
) {
4080 Diag(NewMethod
->getLocation(),
4081 diag::err_definition_of_explicitly_defaulted_member
)
4082 << getSpecialMember(OldMethod
);
4087 // C++1z [over.load]p2
4088 // Certain function declarations cannot be overloaded:
4089 // -- Function declarations that differ only in the return type,
4090 // the exception specification, or both cannot be overloaded.
4092 // Check the exception specifications match. This may recompute the type of
4093 // both Old and New if it resolved exception specifications, so grab the
4094 // types again after this. Because this updates the type, we do this before
4095 // any of the other checks below, which may update the "de facto" NewQType
4096 // but do not necessarily update the type of New.
4097 if (CheckEquivalentExceptionSpec(Old
, New
))
4100 // C++11 [dcl.attr.noreturn]p1:
4101 // The first declaration of a function shall specify the noreturn
4102 // attribute if any declaration of that function specifies the noreturn
4104 if (const auto *NRA
= New
->getAttr
<CXX11NoReturnAttr
>())
4105 if (!Old
->hasAttr
<CXX11NoReturnAttr
>()) {
4106 Diag(NRA
->getLocation(), diag::err_attribute_missing_on_first_decl
)
4108 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4111 // C++11 [dcl.attr.depend]p2:
4112 // The first declaration of a function shall specify the
4113 // carries_dependency attribute for its declarator-id if any declaration
4114 // of the function specifies the carries_dependency attribute.
4115 const CarriesDependencyAttr
*CDA
= New
->getAttr
<CarriesDependencyAttr
>();
4116 if (CDA
&& !Old
->hasAttr
<CarriesDependencyAttr
>()) {
4117 Diag(CDA
->getLocation(),
4118 diag::err_carries_dependency_missing_on_first_decl
) << 0/*Function*/;
4119 Diag(Old
->getFirstDecl()->getLocation(),
4120 diag::note_carries_dependency_missing_first_decl
) << 0/*Function*/;
4124 // All declarations for a function shall agree exactly in both the
4125 // return type and the parameter-type-list.
4126 // We also want to respect all the extended bits except noreturn.
4128 // noreturn should now match unless the old type info didn't have it.
4129 QualType OldQTypeForComparison
= OldQType
;
4130 if (!OldTypeInfo
.getNoReturn() && NewTypeInfo
.getNoReturn()) {
4131 auto *OldType
= OldQType
->castAs
<FunctionProtoType
>();
4132 const FunctionType
*OldTypeForComparison
4133 = Context
.adjustFunctionType(OldType
, OldTypeInfo
.withNoReturn(true));
4134 OldQTypeForComparison
= QualType(OldTypeForComparison
, 0);
4135 assert(OldQTypeForComparison
.isCanonical());
4138 if (haveIncompatibleLanguageLinkages(Old
, New
)) {
4139 // As a special case, retain the language linkage from previous
4140 // declarations of a friend function as an extension.
4142 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
4143 // and is useful because there's otherwise no way to specify language
4144 // linkage within class scope.
4146 // Check cautiously as the friend object kind isn't yet complete.
4147 if (New
->getFriendObjectKind() != Decl::FOK_None
) {
4148 Diag(New
->getLocation(), diag::ext_retained_language_linkage
) << New
;
4149 Diag(OldLocation
, PrevDiag
);
4151 Diag(New
->getLocation(), diag::err_different_language_linkage
) << New
;
4152 Diag(OldLocation
, PrevDiag
);
4157 // If the function types are compatible, merge the declarations. Ignore the
4158 // exception specifier because it was already checked above in
4159 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4160 // about incompatible types under -fms-compatibility.
4161 if (Context
.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison
,
4163 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4165 // If the types are imprecise (due to dependent constructs in friends or
4166 // local extern declarations), it's OK if they differ. We'll check again
4167 // during instantiation.
4168 if (!canFullyTypeCheckRedeclaration(New
, Old
, NewQType
, OldQType
))
4171 // Fall through for conflicting redeclarations and redefinitions.
4174 // C: Function types need to be compatible, not identical. This handles
4175 // duplicate function decls like "void f(int); void f(enum X);" properly.
4176 if (!getLangOpts().CPlusPlus
) {
4177 // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4178 // type is specified by a function definition that contains a (possibly
4179 // empty) identifier list, both shall agree in the number of parameters
4180 // and the type of each parameter shall be compatible with the type that
4181 // results from the application of default argument promotions to the
4182 // type of the corresponding identifier. ...
4183 // This cannot be handled by ASTContext::typesAreCompatible() because that
4184 // doesn't know whether the function type is for a definition or not when
4185 // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4186 // we need to cover here is that the number of arguments agree as the
4187 // default argument promotion rules were already checked by
4188 // ASTContext::typesAreCompatible().
4189 if (Old
->hasPrototype() && !New
->hasWrittenPrototype() && NewDeclIsDefn
&&
4190 Old
->getNumParams() != New
->getNumParams() && !Old
->isImplicit()) {
4191 if (Old
->hasInheritedPrototype())
4192 Old
= Old
->getCanonicalDecl();
4193 Diag(New
->getLocation(), diag::err_conflicting_types
) << New
;
4194 Diag(Old
->getLocation(), PrevDiag
) << Old
<< Old
->getType();
4198 // If we are merging two functions where only one of them has a prototype,
4199 // we may have enough information to decide to issue a diagnostic that the
4200 // function without a protoype will change behavior in C23. This handles
4202 // void i(); void i(int j);
4203 // void i(int j); void i();
4204 // void i(); void i(int j) {}
4205 // See ActOnFinishFunctionBody() for other cases of the behavior change
4206 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4207 // type without a prototype.
4208 if (New
->hasWrittenPrototype() != Old
->hasWrittenPrototype() &&
4209 !New
->isImplicit() && !Old
->isImplicit()) {
4210 const FunctionDecl
*WithProto
, *WithoutProto
;
4211 if (New
->hasWrittenPrototype()) {
4219 if (WithProto
->getNumParams() != 0) {
4220 if (WithoutProto
->getBuiltinID() == 0 && !WithoutProto
->isImplicit()) {
4221 // The one without the prototype will be changing behavior in C23, so
4222 // warn about that one so long as it's a user-visible declaration.
4223 bool IsWithoutProtoADef
= false, IsWithProtoADef
= false;
4224 if (WithoutProto
== New
)
4225 IsWithoutProtoADef
= NewDeclIsDefn
;
4227 IsWithProtoADef
= NewDeclIsDefn
;
4228 Diag(WithoutProto
->getLocation(),
4229 diag::warn_non_prototype_changes_behavior
)
4230 << IsWithoutProtoADef
<< (WithoutProto
->getNumParams() ? 0 : 1)
4231 << (WithoutProto
== Old
) << IsWithProtoADef
;
4233 // The reason the one without the prototype will be changing behavior
4234 // is because of the one with the prototype, so note that so long as
4235 // it's a user-visible declaration. There is one exception to this:
4236 // when the new declaration is a definition without a prototype, the
4237 // old declaration with a prototype is not the cause of the issue,
4238 // and that does not need to be noted because the one with a
4239 // prototype will not change behavior in C23.
4240 if (WithProto
->getBuiltinID() == 0 && !WithProto
->isImplicit() &&
4241 !IsWithoutProtoADef
)
4242 Diag(WithProto
->getLocation(), diag::note_conflicting_prototype
);
4247 if (Context
.typesAreCompatible(OldQType
, NewQType
)) {
4248 const FunctionType
*OldFuncType
= OldQType
->getAs
<FunctionType
>();
4249 const FunctionType
*NewFuncType
= NewQType
->getAs
<FunctionType
>();
4250 const FunctionProtoType
*OldProto
= nullptr;
4251 if (MergeTypeWithOld
&& isa
<FunctionNoProtoType
>(NewFuncType
) &&
4252 (OldProto
= dyn_cast
<FunctionProtoType
>(OldFuncType
))) {
4253 // The old declaration provided a function prototype, but the
4254 // new declaration does not. Merge in the prototype.
4255 assert(!OldProto
->hasExceptionSpec() && "Exception spec in C");
4256 NewQType
= Context
.getFunctionType(NewFuncType
->getReturnType(),
4257 OldProto
->getParamTypes(),
4258 OldProto
->getExtProtoInfo());
4259 New
->setType(NewQType
);
4260 New
->setHasInheritedPrototype();
4262 // Synthesize parameters with the same types.
4263 SmallVector
<ParmVarDecl
*, 16> Params
;
4264 for (const auto &ParamType
: OldProto
->param_types()) {
4265 ParmVarDecl
*Param
= ParmVarDecl::Create(
4266 Context
, New
, SourceLocation(), SourceLocation(), nullptr,
4267 ParamType
, /*TInfo=*/nullptr, SC_None
, nullptr);
4268 Param
->setScopeInfo(0, Params
.size());
4269 Param
->setImplicit();
4270 Params
.push_back(Param
);
4273 New
->setParams(Params
);
4276 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4280 // Check if the function types are compatible when pointer size address
4281 // spaces are ignored.
4282 if (Context
.hasSameFunctionTypeIgnoringPtrSizes(OldQType
, NewQType
))
4285 // GNU C permits a K&R definition to follow a prototype declaration
4286 // if the declared types of the parameters in the K&R definition
4287 // match the types in the prototype declaration, even when the
4288 // promoted types of the parameters from the K&R definition differ
4289 // from the types in the prototype. GCC then keeps the types from
4292 // If a variadic prototype is followed by a non-variadic K&R definition,
4293 // the K&R definition becomes variadic. This is sort of an edge case, but
4294 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4296 if (!getLangOpts().CPlusPlus
&&
4297 Old
->hasPrototype() && !New
->hasPrototype() &&
4298 New
->getType()->getAs
<FunctionProtoType
>() &&
4299 Old
->getNumParams() == New
->getNumParams()) {
4300 SmallVector
<QualType
, 16> ArgTypes
;
4301 SmallVector
<GNUCompatibleParamWarning
, 16> Warnings
;
4302 const FunctionProtoType
*OldProto
4303 = Old
->getType()->getAs
<FunctionProtoType
>();
4304 const FunctionProtoType
*NewProto
4305 = New
->getType()->getAs
<FunctionProtoType
>();
4307 // Determine whether this is the GNU C extension.
4308 QualType MergedReturn
= Context
.mergeTypes(OldProto
->getReturnType(),
4309 NewProto
->getReturnType());
4310 bool LooseCompatible
= !MergedReturn
.isNull();
4311 for (unsigned Idx
= 0, End
= Old
->getNumParams();
4312 LooseCompatible
&& Idx
!= End
; ++Idx
) {
4313 ParmVarDecl
*OldParm
= Old
->getParamDecl(Idx
);
4314 ParmVarDecl
*NewParm
= New
->getParamDecl(Idx
);
4315 if (Context
.typesAreCompatible(OldParm
->getType(),
4316 NewProto
->getParamType(Idx
))) {
4317 ArgTypes
.push_back(NewParm
->getType());
4318 } else if (Context
.typesAreCompatible(OldParm
->getType(),
4320 /*CompareUnqualified=*/true)) {
4321 GNUCompatibleParamWarning Warn
= { OldParm
, NewParm
,
4322 NewProto
->getParamType(Idx
) };
4323 Warnings
.push_back(Warn
);
4324 ArgTypes
.push_back(NewParm
->getType());
4326 LooseCompatible
= false;
4329 if (LooseCompatible
) {
4330 for (unsigned Warn
= 0; Warn
< Warnings
.size(); ++Warn
) {
4331 Diag(Warnings
[Warn
].NewParm
->getLocation(),
4332 diag::ext_param_promoted_not_compatible_with_prototype
)
4333 << Warnings
[Warn
].PromotedType
4334 << Warnings
[Warn
].OldParm
->getType();
4335 if (Warnings
[Warn
].OldParm
->getLocation().isValid())
4336 Diag(Warnings
[Warn
].OldParm
->getLocation(),
4337 diag::note_previous_declaration
);
4340 if (MergeTypeWithOld
)
4341 New
->setType(Context
.getFunctionType(MergedReturn
, ArgTypes
,
4342 OldProto
->getExtProtoInfo()));
4343 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4346 // Fall through to diagnose conflicting types.
4349 // A function that has already been declared has been redeclared or
4350 // defined with a different type; show an appropriate diagnostic.
4352 // If the previous declaration was an implicitly-generated builtin
4353 // declaration, then at the very least we should use a specialized note.
4355 if (Old
->isImplicit() && (BuiltinID
= Old
->getBuiltinID())) {
4356 // If it's actually a library-defined builtin function like 'malloc'
4357 // or 'printf', just warn about the incompatible redeclaration.
4358 if (Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
)) {
4359 Diag(New
->getLocation(), diag::warn_redecl_library_builtin
) << New
;
4360 Diag(OldLocation
, diag::note_previous_builtin_declaration
)
4361 << Old
<< Old
->getType();
4365 PrevDiag
= diag::note_previous_builtin_declaration
;
4368 Diag(New
->getLocation(), diag::err_conflicting_types
) << New
->getDeclName();
4369 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4373 /// Completes the merge of two function declarations that are
4374 /// known to be compatible.
4376 /// This routine handles the merging of attributes and other
4377 /// properties of function declarations from the old declaration to
4378 /// the new declaration, once we know that New is in fact a
4379 /// redeclaration of Old.
4382 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl
*New
, FunctionDecl
*Old
,
4383 Scope
*S
, bool MergeTypeWithOld
) {
4384 // Merge the attributes
4385 mergeDeclAttributes(New
, Old
);
4387 // Merge "pure" flag.
4391 // Merge "used" flag.
4392 if (Old
->getMostRecentDecl()->isUsed(false))
4395 // Merge attributes from the parameters. These can mismatch with K&R
4397 if (New
->getNumParams() == Old
->getNumParams())
4398 for (unsigned i
= 0, e
= New
->getNumParams(); i
!= e
; ++i
) {
4399 ParmVarDecl
*NewParam
= New
->getParamDecl(i
);
4400 ParmVarDecl
*OldParam
= Old
->getParamDecl(i
);
4401 mergeParamDeclAttributes(NewParam
, OldParam
, *this);
4402 mergeParamDeclTypes(NewParam
, OldParam
, *this);
4405 if (getLangOpts().CPlusPlus
)
4406 return MergeCXXFunctionDecl(New
, Old
, S
);
4408 // Merge the function types so the we get the composite types for the return
4409 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4411 QualType Merged
= Context
.mergeTypes(Old
->getType(), New
->getType());
4412 if (!Merged
.isNull() && MergeTypeWithOld
)
4413 New
->setType(Merged
);
4418 void Sema::mergeObjCMethodDecls(ObjCMethodDecl
*newMethod
,
4419 ObjCMethodDecl
*oldMethod
) {
4420 // Merge the attributes, including deprecated/unavailable
4421 AvailabilityMergeKind MergeKind
=
4422 isa
<ObjCProtocolDecl
>(oldMethod
->getDeclContext())
4423 ? (oldMethod
->isOptional() ? AMK_OptionalProtocolImplementation
4424 : AMK_ProtocolImplementation
)
4425 : isa
<ObjCImplDecl
>(newMethod
->getDeclContext()) ? AMK_Redeclaration
4428 mergeDeclAttributes(newMethod
, oldMethod
, MergeKind
);
4430 // Merge attributes from the parameters.
4431 ObjCMethodDecl::param_const_iterator oi
= oldMethod
->param_begin(),
4432 oe
= oldMethod
->param_end();
4433 for (ObjCMethodDecl::param_iterator
4434 ni
= newMethod
->param_begin(), ne
= newMethod
->param_end();
4435 ni
!= ne
&& oi
!= oe
; ++ni
, ++oi
)
4436 mergeParamDeclAttributes(*ni
, *oi
, *this);
4438 CheckObjCMethodOverride(newMethod
, oldMethod
);
4441 static void diagnoseVarDeclTypeMismatch(Sema
&S
, VarDecl
*New
, VarDecl
* Old
) {
4442 assert(!S
.Context
.hasSameType(New
->getType(), Old
->getType()));
4444 S
.Diag(New
->getLocation(), New
->isThisDeclarationADefinition()
4445 ? diag::err_redefinition_different_type
4446 : diag::err_redeclaration_different_type
)
4447 << New
->getDeclName() << New
->getType() << Old
->getType();
4449 diag::kind PrevDiag
;
4450 SourceLocation OldLocation
;
4451 std::tie(PrevDiag
, OldLocation
)
4452 = getNoteDiagForInvalidRedeclaration(Old
, New
);
4453 S
.Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4454 New
->setInvalidDecl();
4457 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
4458 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
4459 /// emitting diagnostics as appropriate.
4461 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
4462 /// to here in AddInitializerToDecl. We can't check them before the initializer
4464 void Sema::MergeVarDeclTypes(VarDecl
*New
, VarDecl
*Old
,
4465 bool MergeTypeWithOld
) {
4466 if (New
->isInvalidDecl() || Old
->isInvalidDecl() || New
->getType()->containsErrors() || Old
->getType()->containsErrors())
4470 if (getLangOpts().CPlusPlus
) {
4471 if (New
->getType()->isUndeducedType()) {
4472 // We don't know what the new type is until the initializer is attached.
4474 } else if (Context
.hasSameType(New
->getType(), Old
->getType())) {
4475 // These could still be something that needs exception specs checked.
4476 return MergeVarDeclExceptionSpecs(New
, Old
);
4478 // C++ [basic.link]p10:
4479 // [...] the types specified by all declarations referring to a given
4480 // object or function shall be identical, except that declarations for an
4481 // array object can specify array types that differ by the presence or
4482 // absence of a major array bound (8.3.4).
4483 else if (Old
->getType()->isArrayType() && New
->getType()->isArrayType()) {
4484 const ArrayType
*OldArray
= Context
.getAsArrayType(Old
->getType());
4485 const ArrayType
*NewArray
= Context
.getAsArrayType(New
->getType());
4487 // We are merging a variable declaration New into Old. If it has an array
4488 // bound, and that bound differs from Old's bound, we should diagnose the
4490 if (!NewArray
->isIncompleteArrayType() && !NewArray
->isDependentType()) {
4491 for (VarDecl
*PrevVD
= Old
->getMostRecentDecl(); PrevVD
;
4492 PrevVD
= PrevVD
->getPreviousDecl()) {
4493 QualType PrevVDTy
= PrevVD
->getType();
4494 if (PrevVDTy
->isIncompleteArrayType() || PrevVDTy
->isDependentType())
4497 if (!Context
.hasSameType(New
->getType(), PrevVDTy
))
4498 return diagnoseVarDeclTypeMismatch(*this, New
, PrevVD
);
4502 if (OldArray
->isIncompleteArrayType() && NewArray
->isArrayType()) {
4503 if (Context
.hasSameType(OldArray
->getElementType(),
4504 NewArray
->getElementType()))
4505 MergedT
= New
->getType();
4507 // FIXME: Check visibility. New is hidden but has a complete type. If New
4508 // has no array bound, it should not inherit one from Old, if Old is not
4510 else if (OldArray
->isArrayType() && NewArray
->isIncompleteArrayType()) {
4511 if (Context
.hasSameType(OldArray
->getElementType(),
4512 NewArray
->getElementType()))
4513 MergedT
= Old
->getType();
4516 else if (New
->getType()->isObjCObjectPointerType() &&
4517 Old
->getType()->isObjCObjectPointerType()) {
4518 MergedT
= Context
.mergeObjCGCQualifiers(New
->getType(),
4523 // All declarations that refer to the same object or function shall have
4525 MergedT
= Context
.mergeTypes(New
->getType(), Old
->getType());
4527 if (MergedT
.isNull()) {
4528 // It's OK if we couldn't merge types if either type is dependent, for a
4529 // block-scope variable. In other cases (static data members of class
4530 // templates, variable templates, ...), we require the types to be
4532 // FIXME: The C++ standard doesn't say anything about this.
4533 if ((New
->getType()->isDependentType() ||
4534 Old
->getType()->isDependentType()) && New
->isLocalVarDecl()) {
4535 // If the old type was dependent, we can't merge with it, so the new type
4536 // becomes dependent for now. We'll reproduce the original type when we
4537 // instantiate the TypeSourceInfo for the variable.
4538 if (!New
->getType()->isDependentType() && MergeTypeWithOld
)
4539 New
->setType(Context
.DependentTy
);
4542 return diagnoseVarDeclTypeMismatch(*this, New
, Old
);
4545 // Don't actually update the type on the new declaration if the old
4546 // declaration was an extern declaration in a different scope.
4547 if (MergeTypeWithOld
)
4548 New
->setType(MergedT
);
4551 static bool mergeTypeWithPrevious(Sema
&S
, VarDecl
*NewVD
, VarDecl
*OldVD
,
4552 LookupResult
&Previous
) {
4554 // For an identifier with internal or external linkage declared
4555 // in a scope in which a prior declaration of that identifier is
4556 // visible, if the prior declaration specifies internal or
4557 // external linkage, the type of the identifier at the later
4558 // declaration becomes the composite type.
4560 // If the variable isn't visible, we do not merge with its type.
4561 if (Previous
.isShadowed())
4564 if (S
.getLangOpts().CPlusPlus
) {
4565 // C++11 [dcl.array]p3:
4566 // If there is a preceding declaration of the entity in the same
4567 // scope in which the bound was specified, an omitted array bound
4568 // is taken to be the same as in that earlier declaration.
4569 return NewVD
->isPreviousDeclInSameBlockScope() ||
4570 (!OldVD
->getLexicalDeclContext()->isFunctionOrMethod() &&
4571 !NewVD
->getLexicalDeclContext()->isFunctionOrMethod());
4573 // If the old declaration was function-local, don't merge with its
4574 // type unless we're in the same function.
4575 return !OldVD
->getLexicalDeclContext()->isFunctionOrMethod() ||
4576 OldVD
->getLexicalDeclContext() == NewVD
->getLexicalDeclContext();
4580 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4581 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
4582 /// situation, merging decls or emitting diagnostics as appropriate.
4584 /// Tentative definition rules (C99 6.9.2p2) are checked by
4585 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4586 /// definitions here, since the initializer hasn't been attached.
4588 void Sema::MergeVarDecl(VarDecl
*New
, LookupResult
&Previous
) {
4589 // If the new decl is already invalid, don't do any other checking.
4590 if (New
->isInvalidDecl())
4593 if (!shouldLinkPossiblyHiddenDecl(Previous
, New
))
4596 VarTemplateDecl
*NewTemplate
= New
->getDescribedVarTemplate();
4598 // Verify the old decl was also a variable or variable template.
4599 VarDecl
*Old
= nullptr;
4600 VarTemplateDecl
*OldTemplate
= nullptr;
4601 if (Previous
.isSingleResult()) {
4603 OldTemplate
= dyn_cast
<VarTemplateDecl
>(Previous
.getFoundDecl());
4604 Old
= OldTemplate
? OldTemplate
->getTemplatedDecl() : nullptr;
4607 dyn_cast
<UsingShadowDecl
>(Previous
.getRepresentativeDecl()))
4608 if (checkUsingShadowRedecl
<VarTemplateDecl
>(*this, Shadow
, NewTemplate
))
4609 return New
->setInvalidDecl();
4611 Old
= dyn_cast
<VarDecl
>(Previous
.getFoundDecl());
4614 dyn_cast
<UsingShadowDecl
>(Previous
.getRepresentativeDecl()))
4615 if (checkUsingShadowRedecl
<VarDecl
>(*this, Shadow
, New
))
4616 return New
->setInvalidDecl();
4620 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
4621 << New
->getDeclName();
4622 notePreviousDefinition(Previous
.getRepresentativeDecl(),
4623 New
->getLocation());
4624 return New
->setInvalidDecl();
4627 // If the old declaration was found in an inline namespace and the new
4628 // declaration was qualified, update the DeclContext to match.
4629 adjustDeclContextForDeclaratorDecl(New
, Old
);
4631 // Ensure the template parameters are compatible.
4633 !TemplateParameterListsAreEqual(NewTemplate
->getTemplateParameters(),
4634 OldTemplate
->getTemplateParameters(),
4635 /*Complain=*/true, TPL_TemplateMatch
))
4636 return New
->setInvalidDecl();
4638 // C++ [class.mem]p1:
4639 // A member shall not be declared twice in the member-specification [...]
4641 // Here, we need only consider static data members.
4642 if (Old
->isStaticDataMember() && !New
->isOutOfLine()) {
4643 Diag(New
->getLocation(), diag::err_duplicate_member
)
4644 << New
->getIdentifier();
4645 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4646 New
->setInvalidDecl();
4649 mergeDeclAttributes(New
, Old
);
4650 // Warn if an already-declared variable is made a weak_import in a subsequent
4652 if (New
->hasAttr
<WeakImportAttr
>() &&
4653 Old
->getStorageClass() == SC_None
&&
4654 !Old
->hasAttr
<WeakImportAttr
>()) {
4655 Diag(New
->getLocation(), diag::warn_weak_import
) << New
->getDeclName();
4656 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4657 // Remove weak_import attribute on new declaration.
4658 New
->dropAttr
<WeakImportAttr
>();
4661 if (const auto *ILA
= New
->getAttr
<InternalLinkageAttr
>())
4662 if (!Old
->hasAttr
<InternalLinkageAttr
>()) {
4663 Diag(New
->getLocation(), diag::err_attribute_missing_on_first_decl
)
4665 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4666 New
->dropAttr
<InternalLinkageAttr
>();
4670 VarDecl
*MostRecent
= Old
->getMostRecentDecl();
4671 if (MostRecent
!= Old
) {
4672 MergeVarDeclTypes(New
, MostRecent
,
4673 mergeTypeWithPrevious(*this, New
, MostRecent
, Previous
));
4674 if (New
->isInvalidDecl())
4678 MergeVarDeclTypes(New
, Old
, mergeTypeWithPrevious(*this, New
, Old
, Previous
));
4679 if (New
->isInvalidDecl())
4682 diag::kind PrevDiag
;
4683 SourceLocation OldLocation
;
4684 std::tie(PrevDiag
, OldLocation
) =
4685 getNoteDiagForInvalidRedeclaration(Old
, New
);
4687 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4688 if (New
->getStorageClass() == SC_Static
&&
4689 !New
->isStaticDataMember() &&
4690 Old
->hasExternalFormalLinkage()) {
4691 if (getLangOpts().MicrosoftExt
) {
4692 Diag(New
->getLocation(), diag::ext_static_non_static
)
4693 << New
->getDeclName();
4694 Diag(OldLocation
, PrevDiag
);
4696 Diag(New
->getLocation(), diag::err_static_non_static
)
4697 << New
->getDeclName();
4698 Diag(OldLocation
, PrevDiag
);
4699 return New
->setInvalidDecl();
4703 // For an identifier declared with the storage-class specifier
4704 // extern in a scope in which a prior declaration of that
4705 // identifier is visible,23) if the prior declaration specifies
4706 // internal or external linkage, the linkage of the identifier at
4707 // the later declaration is the same as the linkage specified at
4708 // the prior declaration. If no prior declaration is visible, or
4709 // if the prior declaration specifies no linkage, then the
4710 // identifier has external linkage.
4711 if (New
->hasExternalStorage() && Old
->hasLinkage())
4713 else if (New
->getCanonicalDecl()->getStorageClass() != SC_Static
&&
4714 !New
->isStaticDataMember() &&
4715 Old
->getCanonicalDecl()->getStorageClass() == SC_Static
) {
4716 Diag(New
->getLocation(), diag::err_non_static_static
) << New
->getDeclName();
4717 Diag(OldLocation
, PrevDiag
);
4718 return New
->setInvalidDecl();
4721 // Check if extern is followed by non-extern and vice-versa.
4722 if (New
->hasExternalStorage() &&
4723 !Old
->hasLinkage() && Old
->isLocalVarDeclOrParm()) {
4724 Diag(New
->getLocation(), diag::err_extern_non_extern
) << New
->getDeclName();
4725 Diag(OldLocation
, PrevDiag
);
4726 return New
->setInvalidDecl();
4728 if (Old
->hasLinkage() && New
->isLocalVarDeclOrParm() &&
4729 !New
->hasExternalStorage()) {
4730 Diag(New
->getLocation(), diag::err_non_extern_extern
) << New
->getDeclName();
4731 Diag(OldLocation
, PrevDiag
);
4732 return New
->setInvalidDecl();
4735 if (CheckRedeclarationInModule(New
, Old
))
4738 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4740 // FIXME: The test for external storage here seems wrong? We still
4741 // need to check for mismatches.
4742 if (!New
->hasExternalStorage() && !New
->isFileVarDecl() &&
4743 // Don't complain about out-of-line definitions of static members.
4744 !(Old
->getLexicalDeclContext()->isRecord() &&
4745 !New
->getLexicalDeclContext()->isRecord())) {
4746 Diag(New
->getLocation(), diag::err_redefinition
) << New
->getDeclName();
4747 Diag(OldLocation
, PrevDiag
);
4748 return New
->setInvalidDecl();
4751 if (New
->isInline() && !Old
->getMostRecentDecl()->isInline()) {
4752 if (VarDecl
*Def
= Old
->getDefinition()) {
4753 // C++1z [dcl.fcn.spec]p4:
4754 // If the definition of a variable appears in a translation unit before
4755 // its first declaration as inline, the program is ill-formed.
4756 Diag(New
->getLocation(), diag::err_inline_decl_follows_def
) << New
;
4757 Diag(Def
->getLocation(), diag::note_previous_definition
);
4761 // If this redeclaration makes the variable inline, we may need to add it to
4762 // UndefinedButUsed.
4763 if (!Old
->isInline() && New
->isInline() && Old
->isUsed(false) &&
4764 !Old
->getDefinition() && !New
->isThisDeclarationADefinition())
4765 UndefinedButUsed
.insert(std::make_pair(Old
->getCanonicalDecl(),
4768 if (New
->getTLSKind() != Old
->getTLSKind()) {
4769 if (!Old
->getTLSKind()) {
4770 Diag(New
->getLocation(), diag::err_thread_non_thread
) << New
->getDeclName();
4771 Diag(OldLocation
, PrevDiag
);
4772 } else if (!New
->getTLSKind()) {
4773 Diag(New
->getLocation(), diag::err_non_thread_thread
) << New
->getDeclName();
4774 Diag(OldLocation
, PrevDiag
);
4776 // Do not allow redeclaration to change the variable between requiring
4777 // static and dynamic initialization.
4778 // FIXME: GCC allows this, but uses the TLS keyword on the first
4779 // declaration to determine the kind. Do we need to be compatible here?
4780 Diag(New
->getLocation(), diag::err_thread_thread_different_kind
)
4781 << New
->getDeclName() << (New
->getTLSKind() == VarDecl::TLS_Dynamic
);
4782 Diag(OldLocation
, PrevDiag
);
4786 // C++ doesn't have tentative definitions, so go right ahead and check here.
4787 if (getLangOpts().CPlusPlus
) {
4788 if (Old
->isStaticDataMember() && Old
->getCanonicalDecl()->isInline() &&
4789 Old
->getCanonicalDecl()->isConstexpr()) {
4790 // This definition won't be a definition any more once it's been merged.
4791 Diag(New
->getLocation(),
4792 diag::warn_deprecated_redundant_constexpr_static_def
);
4793 } else if (New
->isThisDeclarationADefinition() == VarDecl::Definition
) {
4794 VarDecl
*Def
= Old
->getDefinition();
4795 if (Def
&& checkVarDeclRedefinition(Def
, New
))
4800 if (haveIncompatibleLanguageLinkages(Old
, New
)) {
4801 Diag(New
->getLocation(), diag::err_different_language_linkage
) << New
;
4802 Diag(OldLocation
, PrevDiag
);
4803 New
->setInvalidDecl();
4807 // Merge "used" flag.
4808 if (Old
->getMostRecentDecl()->isUsed(false))
4811 // Keep a chain of previous declarations.
4812 New
->setPreviousDecl(Old
);
4814 NewTemplate
->setPreviousDecl(OldTemplate
);
4816 // Inherit access appropriately.
4817 New
->setAccess(Old
->getAccess());
4819 NewTemplate
->setAccess(New
->getAccess());
4821 if (Old
->isInline())
4822 New
->setImplicitlyInline();
4825 void Sema::notePreviousDefinition(const NamedDecl
*Old
, SourceLocation New
) {
4826 SourceManager
&SrcMgr
= getSourceManager();
4827 auto FNewDecLoc
= SrcMgr
.getDecomposedLoc(New
);
4828 auto FOldDecLoc
= SrcMgr
.getDecomposedLoc(Old
->getLocation());
4829 auto *FNew
= SrcMgr
.getFileEntryForID(FNewDecLoc
.first
);
4830 auto FOld
= SrcMgr
.getFileEntryRefForID(FOldDecLoc
.first
);
4831 auto &HSI
= PP
.getHeaderSearchInfo();
4832 StringRef HdrFilename
=
4833 SrcMgr
.getFilename(SrcMgr
.getSpellingLoc(Old
->getLocation()));
4835 auto noteFromModuleOrInclude
= [&](Module
*Mod
,
4836 SourceLocation IncLoc
) -> bool {
4837 // Redefinition errors with modules are common with non modular mapped
4838 // headers, example: a non-modular header H in module A that also gets
4839 // included directly in a TU. Pointing twice to the same header/definition
4840 // is confusing, try to get better diagnostics when modules is on.
4841 if (IncLoc
.isValid()) {
4843 Diag(IncLoc
, diag::note_redefinition_modules_same_file
)
4844 << HdrFilename
.str() << Mod
->getFullModuleName();
4845 if (!Mod
->DefinitionLoc
.isInvalid())
4846 Diag(Mod
->DefinitionLoc
, diag::note_defined_here
)
4847 << Mod
->getFullModuleName();
4849 Diag(IncLoc
, diag::note_redefinition_include_same_file
)
4850 << HdrFilename
.str();
4858 // Is it the same file and same offset? Provide more information on why
4859 // this leads to a redefinition error.
4860 if (FNew
== FOld
&& FNewDecLoc
.second
== FOldDecLoc
.second
) {
4861 SourceLocation OldIncLoc
= SrcMgr
.getIncludeLoc(FOldDecLoc
.first
);
4862 SourceLocation NewIncLoc
= SrcMgr
.getIncludeLoc(FNewDecLoc
.first
);
4864 noteFromModuleOrInclude(Old
->getOwningModule(), OldIncLoc
);
4865 EmittedDiag
|= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc
);
4867 // If the header has no guards, emit a note suggesting one.
4868 if (FOld
&& !HSI
.isFileMultipleIncludeGuarded(*FOld
))
4869 Diag(Old
->getLocation(), diag::note_use_ifdef_guards
);
4875 // Redefinition coming from different files or couldn't do better above.
4876 if (Old
->getLocation().isValid())
4877 Diag(Old
->getLocation(), diag::note_previous_definition
);
4880 /// We've just determined that \p Old and \p New both appear to be definitions
4881 /// of the same variable. Either diagnose or fix the problem.
4882 bool Sema::checkVarDeclRedefinition(VarDecl
*Old
, VarDecl
*New
) {
4883 if (!hasVisibleDefinition(Old
) &&
4884 (New
->getFormalLinkage() == Linkage::Internal
|| New
->isInline() ||
4885 isa
<VarTemplateSpecializationDecl
>(New
) ||
4886 New
->getDescribedVarTemplate() || New
->getNumTemplateParameterLists() ||
4887 New
->getDeclContext()->isDependentContext())) {
4888 // The previous definition is hidden, and multiple definitions are
4889 // permitted (in separate TUs). Demote this to a declaration.
4890 New
->demoteThisDefinitionToDeclaration();
4892 // Make the canonical definition visible.
4893 if (auto *OldTD
= Old
->getDescribedVarTemplate())
4894 makeMergedDefinitionVisible(OldTD
);
4895 makeMergedDefinitionVisible(Old
);
4898 Diag(New
->getLocation(), diag::err_redefinition
) << New
;
4899 notePreviousDefinition(Old
, New
->getLocation());
4900 New
->setInvalidDecl();
4905 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4906 /// no declarator (e.g. "struct foo;") is parsed.
4907 Decl
*Sema::ParsedFreeStandingDeclSpec(Scope
*S
, AccessSpecifier AS
,
4909 const ParsedAttributesView
&DeclAttrs
,
4910 RecordDecl
*&AnonRecord
) {
4911 return ParsedFreeStandingDeclSpec(
4912 S
, AS
, DS
, DeclAttrs
, MultiTemplateParamsArg(), false, AnonRecord
);
4915 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4916 // disambiguate entities defined in different scopes.
4917 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4919 // We will pick our mangling number depending on which version of MSVC is being
4921 static unsigned getMSManglingNumber(const LangOptions
&LO
, Scope
*S
) {
4922 return LO
.isCompatibleWithMSVC(LangOptions::MSVC2015
)
4923 ? S
->getMSCurManglingNumber()
4924 : S
->getMSLastManglingNumber();
4927 void Sema::handleTagNumbering(const TagDecl
*Tag
, Scope
*TagScope
) {
4928 if (!Context
.getLangOpts().CPlusPlus
)
4931 if (isa
<CXXRecordDecl
>(Tag
->getParent())) {
4932 // If this tag is the direct child of a class, number it if
4934 if (!Tag
->getName().empty() || Tag
->getTypedefNameForAnonDecl())
4936 MangleNumberingContext
&MCtx
=
4937 Context
.getManglingNumberContext(Tag
->getParent());
4938 Context
.setManglingNumber(
4939 Tag
, MCtx
.getManglingNumber(
4940 Tag
, getMSManglingNumber(getLangOpts(), TagScope
)));
4944 // If this tag isn't a direct child of a class, number it if it is local.
4945 MangleNumberingContext
*MCtx
;
4946 Decl
*ManglingContextDecl
;
4947 std::tie(MCtx
, ManglingContextDecl
) =
4948 getCurrentMangleNumberContext(Tag
->getDeclContext());
4950 Context
.setManglingNumber(
4951 Tag
, MCtx
->getManglingNumber(
4952 Tag
, getMSManglingNumber(getLangOpts(), TagScope
)));
4957 struct NonCLikeKind
{
4969 explicit operator bool() { return Kind
!= None
; }
4973 /// Determine whether a class is C-like, according to the rules of C++
4974 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4975 static NonCLikeKind
getNonCLikeKindForAnonymousStruct(const CXXRecordDecl
*RD
) {
4976 if (RD
->isInvalidDecl())
4977 return {NonCLikeKind::Invalid
, {}};
4979 // C++ [dcl.typedef]p9: [P1766R1]
4980 // An unnamed class with a typedef name for linkage purposes shall not
4982 // -- have any base classes
4983 if (RD
->getNumBases())
4984 return {NonCLikeKind::BaseClass
,
4985 SourceRange(RD
->bases_begin()->getBeginLoc(),
4986 RD
->bases_end()[-1].getEndLoc())};
4987 bool Invalid
= false;
4988 for (Decl
*D
: RD
->decls()) {
4989 // Don't complain about things we already diagnosed.
4990 if (D
->isInvalidDecl()) {
4995 // -- have any [...] default member initializers
4996 if (auto *FD
= dyn_cast
<FieldDecl
>(D
)) {
4997 if (FD
->hasInClassInitializer()) {
4998 auto *Init
= FD
->getInClassInitializer();
4999 return {NonCLikeKind::DefaultMemberInit
,
5000 Init
? Init
->getSourceRange() : D
->getSourceRange()};
5005 // FIXME: We don't allow friend declarations. This violates the wording of
5006 // P1766, but not the intent.
5007 if (isa
<FriendDecl
>(D
))
5008 return {NonCLikeKind::Friend
, D
->getSourceRange()};
5010 // -- declare any members other than non-static data members, member
5011 // enumerations, or member classes,
5012 if (isa
<StaticAssertDecl
>(D
) || isa
<IndirectFieldDecl
>(D
) ||
5015 auto *MemberRD
= dyn_cast
<CXXRecordDecl
>(D
);
5017 if (D
->isImplicit())
5019 return {NonCLikeKind::OtherMember
, D
->getSourceRange()};
5022 // -- contain a lambda-expression,
5023 if (MemberRD
->isLambda())
5024 return {NonCLikeKind::Lambda
, MemberRD
->getSourceRange()};
5026 // and all member classes shall also satisfy these requirements
5028 if (MemberRD
->isThisDeclarationADefinition()) {
5029 if (auto Kind
= getNonCLikeKindForAnonymousStruct(MemberRD
))
5034 return {Invalid
? NonCLikeKind::Invalid
: NonCLikeKind::None
, {}};
5037 void Sema::setTagNameForLinkagePurposes(TagDecl
*TagFromDeclSpec
,
5038 TypedefNameDecl
*NewTD
) {
5039 if (TagFromDeclSpec
->isInvalidDecl())
5042 // Do nothing if the tag already has a name for linkage purposes.
5043 if (TagFromDeclSpec
->hasNameForLinkage())
5046 // A well-formed anonymous tag must always be a TUK_Definition.
5047 assert(TagFromDeclSpec
->isThisDeclarationADefinition());
5049 // The type must match the tag exactly; no qualifiers allowed.
5050 if (!Context
.hasSameType(NewTD
->getUnderlyingType(),
5051 Context
.getTagDeclType(TagFromDeclSpec
))) {
5052 if (getLangOpts().CPlusPlus
)
5053 Context
.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec
, NewTD
);
5057 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
5058 // An unnamed class with a typedef name for linkage purposes shall [be
5061 // FIXME: Also diagnose if we've already computed the linkage. That ideally
5062 // shouldn't happen, but there are constructs that the language rule doesn't
5063 // disallow for which we can't reasonably avoid computing linkage early.
5064 const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(TagFromDeclSpec
);
5065 NonCLikeKind NonCLike
= RD
? getNonCLikeKindForAnonymousStruct(RD
)
5067 bool ChangesLinkage
= TagFromDeclSpec
->hasLinkageBeenComputed();
5068 if (NonCLike
|| ChangesLinkage
) {
5069 if (NonCLike
.Kind
== NonCLikeKind::Invalid
)
5072 unsigned DiagID
= diag::ext_non_c_like_anon_struct_in_typedef
;
5073 if (ChangesLinkage
) {
5074 // If the linkage changes, we can't accept this as an extension.
5075 if (NonCLike
.Kind
== NonCLikeKind::None
)
5076 DiagID
= diag::err_typedef_changes_linkage
;
5078 DiagID
= diag::err_non_c_like_anon_struct_in_typedef
;
5081 SourceLocation FixitLoc
=
5082 getLocForEndOfToken(TagFromDeclSpec
->getInnerLocStart());
5083 llvm::SmallString
<40> TextToInsert
;
5084 TextToInsert
+= ' ';
5085 TextToInsert
+= NewTD
->getIdentifier()->getName();
5087 Diag(FixitLoc
, DiagID
)
5088 << isa
<TypeAliasDecl
>(NewTD
)
5089 << FixItHint::CreateInsertion(FixitLoc
, TextToInsert
);
5090 if (NonCLike
.Kind
!= NonCLikeKind::None
) {
5091 Diag(NonCLike
.Range
.getBegin(), diag::note_non_c_like_anon_struct
)
5092 << NonCLike
.Kind
- 1 << NonCLike
.Range
;
5094 Diag(NewTD
->getLocation(), diag::note_typedef_for_linkage_here
)
5095 << NewTD
<< isa
<TypeAliasDecl
>(NewTD
);
5101 // Otherwise, set this as the anon-decl typedef for the tag.
5102 TagFromDeclSpec
->setTypedefNameForAnonDecl(NewTD
);
5105 static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec
&DS
) {
5106 DeclSpec::TST T
= DS
.getTypeSpecType();
5108 case DeclSpec::TST_class
:
5110 case DeclSpec::TST_struct
:
5112 case DeclSpec::TST_interface
:
5114 case DeclSpec::TST_union
:
5116 case DeclSpec::TST_enum
:
5117 if (const auto *ED
= dyn_cast
<EnumDecl
>(DS
.getRepAsDecl())) {
5118 if (ED
->isScopedUsingClassTag())
5125 llvm_unreachable("unexpected type specifier");
5128 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
5129 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
5130 /// parameters to cope with template friend declarations.
5131 Decl
*Sema::ParsedFreeStandingDeclSpec(Scope
*S
, AccessSpecifier AS
,
5133 const ParsedAttributesView
&DeclAttrs
,
5134 MultiTemplateParamsArg TemplateParams
,
5135 bool IsExplicitInstantiation
,
5136 RecordDecl
*&AnonRecord
) {
5137 Decl
*TagD
= nullptr;
5138 TagDecl
*Tag
= nullptr;
5139 if (DS
.getTypeSpecType() == DeclSpec::TST_class
||
5140 DS
.getTypeSpecType() == DeclSpec::TST_struct
||
5141 DS
.getTypeSpecType() == DeclSpec::TST_interface
||
5142 DS
.getTypeSpecType() == DeclSpec::TST_union
||
5143 DS
.getTypeSpecType() == DeclSpec::TST_enum
) {
5144 TagD
= DS
.getRepAsDecl();
5146 if (!TagD
) // We probably had an error
5149 // Note that the above type specs guarantee that the
5150 // type rep is a Decl, whereas in many of the others
5152 if (isa
<TagDecl
>(TagD
))
5153 Tag
= cast
<TagDecl
>(TagD
);
5154 else if (ClassTemplateDecl
*CTD
= dyn_cast
<ClassTemplateDecl
>(TagD
))
5155 Tag
= CTD
->getTemplatedDecl();
5159 handleTagNumbering(Tag
, S
);
5160 Tag
->setFreeStanding();
5161 if (Tag
->isInvalidDecl())
5165 if (unsigned TypeQuals
= DS
.getTypeQualifiers()) {
5166 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5167 // or incomplete types shall not be restrict-qualified."
5168 if (TypeQuals
& DeclSpec::TQ_restrict
)
5169 Diag(DS
.getRestrictSpecLoc(),
5170 diag::err_typecheck_invalid_restrict_not_pointer_noarg
)
5171 << DS
.getSourceRange();
5174 if (DS
.isInlineSpecified())
5175 Diag(DS
.getInlineSpecLoc(), diag::err_inline_non_function
)
5176 << getLangOpts().CPlusPlus17
;
5178 if (DS
.hasConstexprSpecifier()) {
5179 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5180 // and definitions of functions and variables.
5181 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5182 // the declaration of a function or function template
5184 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_tag
)
5185 << GetDiagnosticTypeSpecifierID(DS
)
5186 << static_cast<int>(DS
.getConstexprSpecifier());
5188 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind
)
5189 << static_cast<int>(DS
.getConstexprSpecifier());
5190 // Don't emit warnings after this error.
5194 DiagnoseFunctionSpecifiers(DS
);
5196 if (DS
.isFriendSpecified()) {
5197 // If we're dealing with a decl but not a TagDecl, assume that
5198 // whatever routines created it handled the friendship aspect.
5201 return ActOnFriendTypeDecl(S
, DS
, TemplateParams
);
5204 const CXXScopeSpec
&SS
= DS
.getTypeSpecScope();
5205 bool IsExplicitSpecialization
=
5206 !TemplateParams
.empty() && TemplateParams
.back()->size() == 0;
5207 if (Tag
&& SS
.isNotEmpty() && !Tag
->isCompleteDefinition() &&
5208 !IsExplicitInstantiation
&& !IsExplicitSpecialization
&&
5209 !isa
<ClassTemplatePartialSpecializationDecl
>(Tag
)) {
5210 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
5211 // nested-name-specifier unless it is an explicit instantiation
5212 // or an explicit specialization.
5214 // FIXME: We allow class template partial specializations here too, per the
5215 // obvious intent of DR1819.
5217 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
5218 Diag(SS
.getBeginLoc(), diag::err_standalone_class_nested_name_specifier
)
5219 << GetDiagnosticTypeSpecifierID(DS
) << SS
.getRange();
5223 // Track whether this decl-specifier declares anything.
5224 bool DeclaresAnything
= true;
5226 // Handle anonymous struct definitions.
5227 if (RecordDecl
*Record
= dyn_cast_or_null
<RecordDecl
>(Tag
)) {
5228 if (!Record
->getDeclName() && Record
->isCompleteDefinition() &&
5229 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
) {
5230 if (getLangOpts().CPlusPlus
||
5231 Record
->getDeclContext()->isRecord()) {
5232 // If CurContext is a DeclContext that can contain statements,
5233 // RecursiveASTVisitor won't visit the decls that
5234 // BuildAnonymousStructOrUnion() will put into CurContext.
5235 // Also store them here so that they can be part of the
5236 // DeclStmt that gets created in this case.
5237 // FIXME: Also return the IndirectFieldDecls created by
5238 // BuildAnonymousStructOr union, for the same reason?
5239 if (CurContext
->isFunctionOrMethod())
5240 AnonRecord
= Record
;
5241 return BuildAnonymousStructOrUnion(S
, DS
, AS
, Record
,
5242 Context
.getPrintingPolicy());
5245 DeclaresAnything
= false;
5250 // A struct-declaration that does not declare an anonymous structure or
5251 // anonymous union shall contain a struct-declarator-list.
5253 // This rule also existed in C89 and C99; the grammar for struct-declaration
5254 // did not permit a struct-declaration without a struct-declarator-list.
5255 if (!getLangOpts().CPlusPlus
&& CurContext
->isRecord() &&
5256 DS
.getStorageClassSpec() == DeclSpec::SCS_unspecified
) {
5257 // Check for Microsoft C extension: anonymous struct/union member.
5258 // Handle 2 kinds of anonymous struct/union:
5262 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
5263 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
5264 if ((Tag
&& Tag
->getDeclName()) ||
5265 DS
.getTypeSpecType() == DeclSpec::TST_typename
) {
5266 RecordDecl
*Record
= nullptr;
5268 Record
= dyn_cast
<RecordDecl
>(Tag
);
5269 else if (const RecordType
*RT
=
5270 DS
.getRepAsType().get()->getAsStructureType())
5271 Record
= RT
->getDecl();
5272 else if (const RecordType
*UT
= DS
.getRepAsType().get()->getAsUnionType())
5273 Record
= UT
->getDecl();
5275 if (Record
&& getLangOpts().MicrosoftExt
) {
5276 Diag(DS
.getBeginLoc(), diag::ext_ms_anonymous_record
)
5277 << Record
->isUnion() << DS
.getSourceRange();
5278 return BuildMicrosoftCAnonymousStruct(S
, DS
, Record
);
5281 DeclaresAnything
= false;
5285 // Skip all the checks below if we have a type error.
5286 if (DS
.getTypeSpecType() == DeclSpec::TST_error
||
5287 (TagD
&& TagD
->isInvalidDecl()))
5290 if (getLangOpts().CPlusPlus
&&
5291 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
)
5292 if (EnumDecl
*Enum
= dyn_cast_or_null
<EnumDecl
>(Tag
))
5293 if (Enum
->enumerator_begin() == Enum
->enumerator_end() &&
5294 !Enum
->getIdentifier() && !Enum
->isInvalidDecl())
5295 DeclaresAnything
= false;
5297 if (!DS
.isMissingDeclaratorOk()) {
5298 // Customize diagnostic for a typedef missing a name.
5299 if (DS
.getStorageClassSpec() == DeclSpec::SCS_typedef
)
5300 Diag(DS
.getBeginLoc(), diag::ext_typedef_without_a_name
)
5301 << DS
.getSourceRange();
5303 DeclaresAnything
= false;
5306 if (DS
.isModulePrivateSpecified() &&
5307 Tag
&& Tag
->getDeclContext()->isFunctionOrMethod())
5308 Diag(DS
.getModulePrivateSpecLoc(), diag::err_module_private_local_class
)
5309 << llvm::to_underlying(Tag
->getTagKind())
5310 << FixItHint::CreateRemoval(DS
.getModulePrivateSpecLoc());
5312 ActOnDocumentableDecl(TagD
);
5315 // A declaration [...] shall declare at least a declarator [...], a tag,
5316 // or the members of an enumeration.
5318 // [If there are no declarators], and except for the declaration of an
5319 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5320 // names into the program, or shall redeclare a name introduced by a
5321 // previous declaration.
5322 if (!DeclaresAnything
) {
5323 // In C, we allow this as a (popular) extension / bug. Don't bother
5324 // producing further diagnostics for redundant qualifiers after this.
5325 Diag(DS
.getBeginLoc(), (IsExplicitInstantiation
|| !TemplateParams
.empty())
5326 ? diag::err_no_declarators
5327 : diag::ext_no_declarators
)
5328 << DS
.getSourceRange();
5333 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5334 // init-declarator-list of the declaration shall not be empty.
5335 // C++ [dcl.fct.spec]p1:
5336 // If a cv-qualifier appears in a decl-specifier-seq, the
5337 // init-declarator-list of the declaration shall not be empty.
5339 // Spurious qualifiers here appear to be valid in C.
5340 unsigned DiagID
= diag::warn_standalone_specifier
;
5341 if (getLangOpts().CPlusPlus
)
5342 DiagID
= diag::ext_standalone_specifier
;
5344 // Note that a linkage-specification sets a storage class, but
5345 // 'extern "C" struct foo;' is actually valid and not theoretically
5347 if (DeclSpec::SCS SCS
= DS
.getStorageClassSpec()) {
5348 if (SCS
== DeclSpec::SCS_mutable
)
5349 // Since mutable is not a viable storage class specifier in C, there is
5350 // no reason to treat it as an extension. Instead, diagnose as an error.
5351 Diag(DS
.getStorageClassSpecLoc(), diag::err_mutable_nonmember
);
5352 else if (!DS
.isExternInLinkageSpec() && SCS
!= DeclSpec::SCS_typedef
)
5353 Diag(DS
.getStorageClassSpecLoc(), DiagID
)
5354 << DeclSpec::getSpecifierName(SCS
);
5357 if (DeclSpec::TSCS TSCS
= DS
.getThreadStorageClassSpec())
5358 Diag(DS
.getThreadStorageClassSpecLoc(), DiagID
)
5359 << DeclSpec::getSpecifierName(TSCS
);
5360 if (DS
.getTypeQualifiers()) {
5361 if (DS
.getTypeQualifiers() & DeclSpec::TQ_const
)
5362 Diag(DS
.getConstSpecLoc(), DiagID
) << "const";
5363 if (DS
.getTypeQualifiers() & DeclSpec::TQ_volatile
)
5364 Diag(DS
.getConstSpecLoc(), DiagID
) << "volatile";
5365 // Restrict is covered above.
5366 if (DS
.getTypeQualifiers() & DeclSpec::TQ_atomic
)
5367 Diag(DS
.getAtomicSpecLoc(), DiagID
) << "_Atomic";
5368 if (DS
.getTypeQualifiers() & DeclSpec::TQ_unaligned
)
5369 Diag(DS
.getUnalignedSpecLoc(), DiagID
) << "__unaligned";
5372 // Warn about ignored type attributes, for example:
5373 // __attribute__((aligned)) struct A;
5374 // Attributes should be placed after tag to apply to type declaration.
5375 if (!DS
.getAttributes().empty() || !DeclAttrs
.empty()) {
5376 DeclSpec::TST TypeSpecType
= DS
.getTypeSpecType();
5377 if (TypeSpecType
== DeclSpec::TST_class
||
5378 TypeSpecType
== DeclSpec::TST_struct
||
5379 TypeSpecType
== DeclSpec::TST_interface
||
5380 TypeSpecType
== DeclSpec::TST_union
||
5381 TypeSpecType
== DeclSpec::TST_enum
) {
5383 auto EmitAttributeDiagnostic
= [this, &DS
](const ParsedAttr
&AL
) {
5384 unsigned DiagnosticId
= diag::warn_declspec_attribute_ignored
;
5385 if (AL
.isAlignas() && !getLangOpts().CPlusPlus
)
5386 DiagnosticId
= diag::warn_attribute_ignored
;
5387 else if (AL
.isRegularKeywordAttribute())
5388 DiagnosticId
= diag::err_declspec_keyword_has_no_effect
;
5390 DiagnosticId
= diag::warn_declspec_attribute_ignored
;
5391 Diag(AL
.getLoc(), DiagnosticId
)
5392 << AL
<< GetDiagnosticTypeSpecifierID(DS
);
5395 llvm::for_each(DS
.getAttributes(), EmitAttributeDiagnostic
);
5396 llvm::for_each(DeclAttrs
, EmitAttributeDiagnostic
);
5403 /// We are trying to inject an anonymous member into the given scope;
5404 /// check if there's an existing declaration that can't be overloaded.
5406 /// \return true if this is a forbidden redeclaration
5407 static bool CheckAnonMemberRedeclaration(Sema
&SemaRef
, Scope
*S
,
5409 DeclarationName Name
,
5410 SourceLocation NameLoc
, bool IsUnion
,
5412 LookupResult
R(SemaRef
, Name
, NameLoc
,
5413 Owner
->isRecord() ? Sema::LookupMemberName
5414 : Sema::LookupOrdinaryName
,
5415 Sema::ForVisibleRedeclaration
);
5416 if (!SemaRef
.LookupName(R
, S
)) return false;
5418 // Pick a representative declaration.
5419 NamedDecl
*PrevDecl
= R
.getRepresentativeDecl()->getUnderlyingDecl();
5420 assert(PrevDecl
&& "Expected a non-null Decl");
5422 if (!SemaRef
.isDeclInScope(PrevDecl
, Owner
, S
))
5425 if (SC
== StorageClass::SC_None
&&
5426 PrevDecl
->isPlaceholderVar(SemaRef
.getLangOpts()) &&
5427 (Owner
->isFunctionOrMethod() || Owner
->isRecord())) {
5428 if (!Owner
->isRecord())
5429 SemaRef
.DiagPlaceholderVariableDefinition(NameLoc
);
5433 SemaRef
.Diag(NameLoc
, diag::err_anonymous_record_member_redecl
)
5435 SemaRef
.Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
5440 void Sema::ActOnDefinedDeclarationSpecifier(Decl
*D
) {
5441 if (auto *RD
= dyn_cast_if_present
<RecordDecl
>(D
))
5442 DiagPlaceholderFieldDeclDefinitions(RD
);
5445 /// Emit diagnostic warnings for placeholder members.
5446 /// We can only do that after the class is fully constructed,
5447 /// as anonymous union/structs can insert placeholders
5448 /// in their parent scope (which might be a Record).
5449 void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl
*Record
) {
5450 if (!getLangOpts().CPlusPlus
)
5453 // This function can be parsed before we have validated the
5454 // structure as an anonymous struct
5455 if (Record
->isAnonymousStructOrUnion())
5458 const NamedDecl
*First
= 0;
5459 for (const Decl
*D
: Record
->decls()) {
5460 const NamedDecl
*ND
= dyn_cast
<NamedDecl
>(D
);
5461 if (!ND
|| !ND
->isPlaceholderVar(getLangOpts()))
5466 DiagPlaceholderVariableDefinition(ND
->getLocation());
5470 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5471 /// anonymous struct or union AnonRecord into the owning context Owner
5472 /// and scope S. This routine will be invoked just after we realize
5473 /// that an unnamed union or struct is actually an anonymous union or
5480 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5481 /// // f into the surrounding scope.x
5484 /// This routine is recursive, injecting the names of nested anonymous
5485 /// structs/unions into the owning context and scope as well.
5487 InjectAnonymousStructOrUnionMembers(Sema
&SemaRef
, Scope
*S
, DeclContext
*Owner
,
5488 RecordDecl
*AnonRecord
, AccessSpecifier AS
,
5490 SmallVectorImpl
<NamedDecl
*> &Chaining
) {
5491 bool Invalid
= false;
5493 // Look every FieldDecl and IndirectFieldDecl with a name.
5494 for (auto *D
: AnonRecord
->decls()) {
5495 if ((isa
<FieldDecl
>(D
) || isa
<IndirectFieldDecl
>(D
)) &&
5496 cast
<NamedDecl
>(D
)->getDeclName()) {
5497 ValueDecl
*VD
= cast
<ValueDecl
>(D
);
5498 if (CheckAnonMemberRedeclaration(SemaRef
, S
, Owner
, VD
->getDeclName(),
5499 VD
->getLocation(), AnonRecord
->isUnion(),
5501 // C++ [class.union]p2:
5502 // The names of the members of an anonymous union shall be
5503 // distinct from the names of any other entity in the
5504 // scope in which the anonymous union is declared.
5507 // C++ [class.union]p2:
5508 // For the purpose of name lookup, after the anonymous union
5509 // definition, the members of the anonymous union are
5510 // considered to have been defined in the scope in which the
5511 // anonymous union is declared.
5512 unsigned OldChainingSize
= Chaining
.size();
5513 if (IndirectFieldDecl
*IF
= dyn_cast
<IndirectFieldDecl
>(VD
))
5514 Chaining
.append(IF
->chain_begin(), IF
->chain_end());
5516 Chaining
.push_back(VD
);
5518 assert(Chaining
.size() >= 2);
5519 NamedDecl
**NamedChain
=
5520 new (SemaRef
.Context
)NamedDecl
*[Chaining
.size()];
5521 for (unsigned i
= 0; i
< Chaining
.size(); i
++)
5522 NamedChain
[i
] = Chaining
[i
];
5524 IndirectFieldDecl
*IndirectField
= IndirectFieldDecl::Create(
5525 SemaRef
.Context
, Owner
, VD
->getLocation(), VD
->getIdentifier(),
5526 VD
->getType(), {NamedChain
, Chaining
.size()});
5528 for (const auto *Attr
: VD
->attrs())
5529 IndirectField
->addAttr(Attr
->clone(SemaRef
.Context
));
5531 IndirectField
->setAccess(AS
);
5532 IndirectField
->setImplicit();
5533 SemaRef
.PushOnScopeChains(IndirectField
, S
);
5535 // That includes picking up the appropriate access specifier.
5536 if (AS
!= AS_none
) IndirectField
->setAccess(AS
);
5538 Chaining
.resize(OldChainingSize
);
5546 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5547 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5548 /// illegal input values are mapped to SC_None.
5550 StorageClassSpecToVarDeclStorageClass(const DeclSpec
&DS
) {
5551 DeclSpec::SCS StorageClassSpec
= DS
.getStorageClassSpec();
5552 assert(StorageClassSpec
!= DeclSpec::SCS_typedef
&&
5553 "Parser allowed 'typedef' as storage class VarDecl.");
5554 switch (StorageClassSpec
) {
5555 case DeclSpec::SCS_unspecified
: return SC_None
;
5556 case DeclSpec::SCS_extern
:
5557 if (DS
.isExternInLinkageSpec())
5560 case DeclSpec::SCS_static
: return SC_Static
;
5561 case DeclSpec::SCS_auto
: return SC_Auto
;
5562 case DeclSpec::SCS_register
: return SC_Register
;
5563 case DeclSpec::SCS_private_extern
: return SC_PrivateExtern
;
5564 // Illegal SCSs map to None: error reporting is up to the caller.
5565 case DeclSpec::SCS_mutable
: // Fall through.
5566 case DeclSpec::SCS_typedef
: return SC_None
;
5568 llvm_unreachable("unknown storage class specifier");
5571 static SourceLocation
findDefaultInitializer(const CXXRecordDecl
*Record
) {
5572 assert(Record
->hasInClassInitializer());
5574 for (const auto *I
: Record
->decls()) {
5575 const auto *FD
= dyn_cast
<FieldDecl
>(I
);
5576 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(I
))
5577 FD
= IFD
->getAnonField();
5578 if (FD
&& FD
->hasInClassInitializer())
5579 return FD
->getLocation();
5582 llvm_unreachable("couldn't find in-class initializer");
5585 static void checkDuplicateDefaultInit(Sema
&S
, CXXRecordDecl
*Parent
,
5586 SourceLocation DefaultInitLoc
) {
5587 if (!Parent
->isUnion() || !Parent
->hasInClassInitializer())
5590 S
.Diag(DefaultInitLoc
, diag::err_multiple_mem_union_initialization
);
5591 S
.Diag(findDefaultInitializer(Parent
), diag::note_previous_initializer
) << 0;
5594 static void checkDuplicateDefaultInit(Sema
&S
, CXXRecordDecl
*Parent
,
5595 CXXRecordDecl
*AnonUnion
) {
5596 if (!Parent
->isUnion() || !Parent
->hasInClassInitializer())
5599 checkDuplicateDefaultInit(S
, Parent
, findDefaultInitializer(AnonUnion
));
5602 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5603 /// anonymous structure or union. Anonymous unions are a C++ feature
5604 /// (C++ [class.union]) and a C11 feature; anonymous structures
5605 /// are a C11 feature and GNU C++ extension.
5606 Decl
*Sema::BuildAnonymousStructOrUnion(Scope
*S
, DeclSpec
&DS
,
5609 const PrintingPolicy
&Policy
) {
5610 DeclContext
*Owner
= Record
->getDeclContext();
5612 // Diagnose whether this anonymous struct/union is an extension.
5613 if (Record
->isUnion() && !getLangOpts().CPlusPlus
&& !getLangOpts().C11
)
5614 Diag(Record
->getLocation(), diag::ext_anonymous_union
);
5615 else if (!Record
->isUnion() && getLangOpts().CPlusPlus
)
5616 Diag(Record
->getLocation(), diag::ext_gnu_anonymous_struct
);
5617 else if (!Record
->isUnion() && !getLangOpts().C11
)
5618 Diag(Record
->getLocation(), diag::ext_c11_anonymous_struct
);
5620 // C and C++ require different kinds of checks for anonymous
5622 bool Invalid
= false;
5623 if (getLangOpts().CPlusPlus
) {
5624 const char *PrevSpec
= nullptr;
5625 if (Record
->isUnion()) {
5626 // C++ [class.union]p6:
5627 // C++17 [class.union.anon]p2:
5628 // Anonymous unions declared in a named namespace or in the
5629 // global namespace shall be declared static.
5631 DeclContext
*OwnerScope
= Owner
->getRedeclContext();
5632 if (DS
.getStorageClassSpec() != DeclSpec::SCS_static
&&
5633 (OwnerScope
->isTranslationUnit() ||
5634 (OwnerScope
->isNamespace() &&
5635 !cast
<NamespaceDecl
>(OwnerScope
)->isAnonymousNamespace()))) {
5636 Diag(Record
->getLocation(), diag::err_anonymous_union_not_static
)
5637 << FixItHint::CreateInsertion(Record
->getLocation(), "static ");
5639 // Recover by adding 'static'.
5640 DS
.SetStorageClassSpec(*this, DeclSpec::SCS_static
, SourceLocation(),
5641 PrevSpec
, DiagID
, Policy
);
5643 // C++ [class.union]p6:
5644 // A storage class is not allowed in a declaration of an
5645 // anonymous union in a class scope.
5646 else if (DS
.getStorageClassSpec() != DeclSpec::SCS_unspecified
&&
5647 isa
<RecordDecl
>(Owner
)) {
5648 Diag(DS
.getStorageClassSpecLoc(),
5649 diag::err_anonymous_union_with_storage_spec
)
5650 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
5652 // Recover by removing the storage specifier.
5653 DS
.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified
,
5655 PrevSpec
, DiagID
, Context
.getPrintingPolicy());
5659 // Ignore const/volatile/restrict qualifiers.
5660 if (DS
.getTypeQualifiers()) {
5661 if (DS
.getTypeQualifiers() & DeclSpec::TQ_const
)
5662 Diag(DS
.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified
)
5663 << Record
->isUnion() << "const"
5664 << FixItHint::CreateRemoval(DS
.getConstSpecLoc());
5665 if (DS
.getTypeQualifiers() & DeclSpec::TQ_volatile
)
5666 Diag(DS
.getVolatileSpecLoc(),
5667 diag::ext_anonymous_struct_union_qualified
)
5668 << Record
->isUnion() << "volatile"
5669 << FixItHint::CreateRemoval(DS
.getVolatileSpecLoc());
5670 if (DS
.getTypeQualifiers() & DeclSpec::TQ_restrict
)
5671 Diag(DS
.getRestrictSpecLoc(),
5672 diag::ext_anonymous_struct_union_qualified
)
5673 << Record
->isUnion() << "restrict"
5674 << FixItHint::CreateRemoval(DS
.getRestrictSpecLoc());
5675 if (DS
.getTypeQualifiers() & DeclSpec::TQ_atomic
)
5676 Diag(DS
.getAtomicSpecLoc(),
5677 diag::ext_anonymous_struct_union_qualified
)
5678 << Record
->isUnion() << "_Atomic"
5679 << FixItHint::CreateRemoval(DS
.getAtomicSpecLoc());
5680 if (DS
.getTypeQualifiers() & DeclSpec::TQ_unaligned
)
5681 Diag(DS
.getUnalignedSpecLoc(),
5682 diag::ext_anonymous_struct_union_qualified
)
5683 << Record
->isUnion() << "__unaligned"
5684 << FixItHint::CreateRemoval(DS
.getUnalignedSpecLoc());
5686 DS
.ClearTypeQualifiers();
5689 // C++ [class.union]p2:
5690 // The member-specification of an anonymous union shall only
5691 // define non-static data members. [Note: nested types and
5692 // functions cannot be declared within an anonymous union. ]
5693 for (auto *Mem
: Record
->decls()) {
5694 // Ignore invalid declarations; we already diagnosed them.
5695 if (Mem
->isInvalidDecl())
5698 if (auto *FD
= dyn_cast
<FieldDecl
>(Mem
)) {
5699 // C++ [class.union]p3:
5700 // An anonymous union shall not have private or protected
5701 // members (clause 11).
5702 assert(FD
->getAccess() != AS_none
);
5703 if (FD
->getAccess() != AS_public
) {
5704 Diag(FD
->getLocation(), diag::err_anonymous_record_nonpublic_member
)
5705 << Record
->isUnion() << (FD
->getAccess() == AS_protected
);
5709 // C++ [class.union]p1
5710 // An object of a class with a non-trivial constructor, a non-trivial
5711 // copy constructor, a non-trivial destructor, or a non-trivial copy
5712 // assignment operator cannot be a member of a union, nor can an
5713 // array of such objects.
5714 if (CheckNontrivialField(FD
))
5716 } else if (Mem
->isImplicit()) {
5717 // Any implicit members are fine.
5718 } else if (isa
<TagDecl
>(Mem
) && Mem
->getDeclContext() != Record
) {
5719 // This is a type that showed up in an
5720 // elaborated-type-specifier inside the anonymous struct or
5721 // union, but which actually declares a type outside of the
5722 // anonymous struct or union. It's okay.
5723 } else if (auto *MemRecord
= dyn_cast
<RecordDecl
>(Mem
)) {
5724 if (!MemRecord
->isAnonymousStructOrUnion() &&
5725 MemRecord
->getDeclName()) {
5726 // Visual C++ allows type definition in anonymous struct or union.
5727 if (getLangOpts().MicrosoftExt
)
5728 Diag(MemRecord
->getLocation(), diag::ext_anonymous_record_with_type
)
5729 << Record
->isUnion();
5731 // This is a nested type declaration.
5732 Diag(MemRecord
->getLocation(), diag::err_anonymous_record_with_type
)
5733 << Record
->isUnion();
5737 // This is an anonymous type definition within another anonymous type.
5738 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5739 // not part of standard C++.
5740 Diag(MemRecord
->getLocation(),
5741 diag::ext_anonymous_record_with_anonymous_type
)
5742 << Record
->isUnion();
5744 } else if (isa
<AccessSpecDecl
>(Mem
)) {
5745 // Any access specifier is fine.
5746 } else if (isa
<StaticAssertDecl
>(Mem
)) {
5747 // In C++1z, static_assert declarations are also fine.
5749 // We have something that isn't a non-static data
5750 // member. Complain about it.
5751 unsigned DK
= diag::err_anonymous_record_bad_member
;
5752 if (isa
<TypeDecl
>(Mem
))
5753 DK
= diag::err_anonymous_record_with_type
;
5754 else if (isa
<FunctionDecl
>(Mem
))
5755 DK
= diag::err_anonymous_record_with_function
;
5756 else if (isa
<VarDecl
>(Mem
))
5757 DK
= diag::err_anonymous_record_with_static
;
5759 // Visual C++ allows type definition in anonymous struct or union.
5760 if (getLangOpts().MicrosoftExt
&&
5761 DK
== diag::err_anonymous_record_with_type
)
5762 Diag(Mem
->getLocation(), diag::ext_anonymous_record_with_type
)
5763 << Record
->isUnion();
5765 Diag(Mem
->getLocation(), DK
) << Record
->isUnion();
5771 // C++11 [class.union]p8 (DR1460):
5772 // At most one variant member of a union may have a
5773 // brace-or-equal-initializer.
5774 if (cast
<CXXRecordDecl
>(Record
)->hasInClassInitializer() &&
5776 checkDuplicateDefaultInit(*this, cast
<CXXRecordDecl
>(Owner
),
5777 cast
<CXXRecordDecl
>(Record
));
5780 if (!Record
->isUnion() && !Owner
->isRecord()) {
5781 Diag(Record
->getLocation(), diag::err_anonymous_struct_not_member
)
5782 << getLangOpts().CPlusPlus
;
5787 // [If there are no declarators], and except for the declaration of an
5788 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5789 // names into the program
5790 // C++ [class.mem]p2:
5791 // each such member-declaration shall either declare at least one member
5792 // name of the class or declare at least one unnamed bit-field
5794 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5795 if (getLangOpts().CPlusPlus
&& Record
->field_empty())
5796 Diag(DS
.getBeginLoc(), diag::ext_no_declarators
) << DS
.getSourceRange();
5798 // Mock up a declarator.
5799 Declarator
Dc(DS
, ParsedAttributesView::none(), DeclaratorContext::Member
);
5800 StorageClass SC
= StorageClassSpecToVarDeclStorageClass(DS
);
5801 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(Dc
, S
);
5802 assert(TInfo
&& "couldn't build declarator info for anonymous struct/union");
5804 // Create a declaration for this anonymous struct/union.
5805 NamedDecl
*Anon
= nullptr;
5806 if (RecordDecl
*OwningClass
= dyn_cast
<RecordDecl
>(Owner
)) {
5807 Anon
= FieldDecl::Create(
5808 Context
, OwningClass
, DS
.getBeginLoc(), Record
->getLocation(),
5809 /*IdentifierInfo=*/nullptr, Context
.getTypeDeclType(Record
), TInfo
,
5810 /*BitWidth=*/nullptr, /*Mutable=*/false,
5811 /*InitStyle=*/ICIS_NoInit
);
5812 Anon
->setAccess(AS
);
5813 ProcessDeclAttributes(S
, Anon
, Dc
);
5815 if (getLangOpts().CPlusPlus
)
5816 FieldCollector
->Add(cast
<FieldDecl
>(Anon
));
5818 DeclSpec::SCS SCSpec
= DS
.getStorageClassSpec();
5819 if (SCSpec
== DeclSpec::SCS_mutable
) {
5820 // mutable can only appear on non-static class members, so it's always
5822 Diag(Record
->getLocation(), diag::err_mutable_nonmember
);
5827 Anon
= VarDecl::Create(Context
, Owner
, DS
.getBeginLoc(),
5828 Record
->getLocation(), /*IdentifierInfo=*/nullptr,
5829 Context
.getTypeDeclType(Record
), TInfo
, SC
);
5830 ProcessDeclAttributes(S
, Anon
, Dc
);
5832 // Default-initialize the implicit variable. This initialization will be
5833 // trivial in almost all cases, except if a union member has an in-class
5835 // union { int n = 0; };
5836 ActOnUninitializedDecl(Anon
);
5838 Anon
->setImplicit();
5840 // Mark this as an anonymous struct/union type.
5841 Record
->setAnonymousStructOrUnion(true);
5843 // Add the anonymous struct/union object to the current
5844 // context. We'll be referencing this object when we refer to one of
5846 Owner
->addDecl(Anon
);
5848 // Inject the members of the anonymous struct/union into the owning
5849 // context and into the identifier resolver chain for name lookup
5851 SmallVector
<NamedDecl
*, 2> Chain
;
5852 Chain
.push_back(Anon
);
5854 if (InjectAnonymousStructOrUnionMembers(*this, S
, Owner
, Record
, AS
, SC
,
5858 if (VarDecl
*NewVD
= dyn_cast
<VarDecl
>(Anon
)) {
5859 if (getLangOpts().CPlusPlus
&& NewVD
->isStaticLocal()) {
5860 MangleNumberingContext
*MCtx
;
5861 Decl
*ManglingContextDecl
;
5862 std::tie(MCtx
, ManglingContextDecl
) =
5863 getCurrentMangleNumberContext(NewVD
->getDeclContext());
5865 Context
.setManglingNumber(
5866 NewVD
, MCtx
->getManglingNumber(
5867 NewVD
, getMSManglingNumber(getLangOpts(), S
)));
5868 Context
.setStaticLocalNumber(NewVD
, MCtx
->getStaticLocalNumber(NewVD
));
5874 Anon
->setInvalidDecl();
5879 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5880 /// Microsoft C anonymous structure.
5881 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5884 /// struct A { int a; };
5885 /// struct B { struct A; int b; };
5892 Decl
*Sema::BuildMicrosoftCAnonymousStruct(Scope
*S
, DeclSpec
&DS
,
5893 RecordDecl
*Record
) {
5894 assert(Record
&& "expected a record!");
5896 // Mock up a declarator.
5897 Declarator
Dc(DS
, ParsedAttributesView::none(), DeclaratorContext::TypeName
);
5898 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(Dc
, S
);
5899 assert(TInfo
&& "couldn't build declarator info for anonymous struct");
5901 auto *ParentDecl
= cast
<RecordDecl
>(CurContext
);
5902 QualType RecTy
= Context
.getTypeDeclType(Record
);
5904 // Create a declaration for this anonymous struct.
5906 FieldDecl::Create(Context
, ParentDecl
, DS
.getBeginLoc(), DS
.getBeginLoc(),
5907 /*IdentifierInfo=*/nullptr, RecTy
, TInfo
,
5908 /*BitWidth=*/nullptr, /*Mutable=*/false,
5909 /*InitStyle=*/ICIS_NoInit
);
5910 Anon
->setImplicit();
5912 // Add the anonymous struct object to the current context.
5913 CurContext
->addDecl(Anon
);
5915 // Inject the members of the anonymous struct into the current
5916 // context and into the identifier resolver chain for name lookup
5918 SmallVector
<NamedDecl
*, 2> Chain
;
5919 Chain
.push_back(Anon
);
5921 RecordDecl
*RecordDef
= Record
->getDefinition();
5922 if (RequireCompleteSizedType(Anon
->getLocation(), RecTy
,
5923 diag::err_field_incomplete_or_sizeless
) ||
5924 InjectAnonymousStructOrUnionMembers(
5925 *this, S
, CurContext
, RecordDef
, AS_none
,
5926 StorageClassSpecToVarDeclStorageClass(DS
), Chain
)) {
5927 Anon
->setInvalidDecl();
5928 ParentDecl
->setInvalidDecl();
5934 /// GetNameForDeclarator - Determine the full declaration name for the
5935 /// given Declarator.
5936 DeclarationNameInfo
Sema::GetNameForDeclarator(Declarator
&D
) {
5937 return GetNameFromUnqualifiedId(D
.getName());
5940 /// Retrieves the declaration name from a parsed unqualified-id.
5942 Sema::GetNameFromUnqualifiedId(const UnqualifiedId
&Name
) {
5943 DeclarationNameInfo NameInfo
;
5944 NameInfo
.setLoc(Name
.StartLocation
);
5946 switch (Name
.getKind()) {
5948 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
5949 case UnqualifiedIdKind::IK_Identifier
:
5950 NameInfo
.setName(Name
.Identifier
);
5953 case UnqualifiedIdKind::IK_DeductionGuideName
: {
5954 // C++ [temp.deduct.guide]p3:
5955 // The simple-template-id shall name a class template specialization.
5956 // The template-name shall be the same identifier as the template-name
5957 // of the simple-template-id.
5958 // These together intend to imply that the template-name shall name a
5960 // FIXME: template<typename T> struct X {};
5961 // template<typename T> using Y = X<T>;
5962 // Y(int) -> Y<int>;
5963 // satisfies these rules but does not name a class template.
5964 TemplateName TN
= Name
.TemplateName
.get().get();
5965 auto *Template
= TN
.getAsTemplateDecl();
5966 if (!Template
|| !isa
<ClassTemplateDecl
>(Template
)) {
5967 Diag(Name
.StartLocation
,
5968 diag::err_deduction_guide_name_not_class_template
)
5969 << (int)getTemplateNameKindForDiagnostics(TN
) << TN
;
5971 NoteTemplateLocation(*Template
);
5972 return DeclarationNameInfo();
5976 Context
.DeclarationNames
.getCXXDeductionGuideName(Template
));
5980 case UnqualifiedIdKind::IK_OperatorFunctionId
:
5981 NameInfo
.setName(Context
.DeclarationNames
.getCXXOperatorName(
5982 Name
.OperatorFunctionId
.Operator
));
5983 NameInfo
.setCXXOperatorNameRange(SourceRange(
5984 Name
.OperatorFunctionId
.SymbolLocations
[0], Name
.EndLocation
));
5987 case UnqualifiedIdKind::IK_LiteralOperatorId
:
5988 NameInfo
.setName(Context
.DeclarationNames
.getCXXLiteralOperatorName(
5990 NameInfo
.setCXXLiteralOperatorNameLoc(Name
.EndLocation
);
5993 case UnqualifiedIdKind::IK_ConversionFunctionId
: {
5994 TypeSourceInfo
*TInfo
;
5995 QualType Ty
= GetTypeFromParser(Name
.ConversionFunctionId
, &TInfo
);
5997 return DeclarationNameInfo();
5998 NameInfo
.setName(Context
.DeclarationNames
.getCXXConversionFunctionName(
5999 Context
.getCanonicalType(Ty
)));
6000 NameInfo
.setNamedTypeInfo(TInfo
);
6004 case UnqualifiedIdKind::IK_ConstructorName
: {
6005 TypeSourceInfo
*TInfo
;
6006 QualType Ty
= GetTypeFromParser(Name
.ConstructorName
, &TInfo
);
6008 return DeclarationNameInfo();
6009 NameInfo
.setName(Context
.DeclarationNames
.getCXXConstructorName(
6010 Context
.getCanonicalType(Ty
)));
6011 NameInfo
.setNamedTypeInfo(TInfo
);
6015 case UnqualifiedIdKind::IK_ConstructorTemplateId
: {
6016 // In well-formed code, we can only have a constructor
6017 // template-id that refers to the current context, so go there
6018 // to find the actual type being constructed.
6019 CXXRecordDecl
*CurClass
= dyn_cast
<CXXRecordDecl
>(CurContext
);
6020 if (!CurClass
|| CurClass
->getIdentifier() != Name
.TemplateId
->Name
)
6021 return DeclarationNameInfo();
6023 // Determine the type of the class being constructed.
6024 QualType CurClassType
= Context
.getTypeDeclType(CurClass
);
6026 // FIXME: Check two things: that the template-id names the same type as
6027 // CurClassType, and that the template-id does not occur when the name
6030 NameInfo
.setName(Context
.DeclarationNames
.getCXXConstructorName(
6031 Context
.getCanonicalType(CurClassType
)));
6032 // FIXME: should we retrieve TypeSourceInfo?
6033 NameInfo
.setNamedTypeInfo(nullptr);
6037 case UnqualifiedIdKind::IK_DestructorName
: {
6038 TypeSourceInfo
*TInfo
;
6039 QualType Ty
= GetTypeFromParser(Name
.DestructorName
, &TInfo
);
6041 return DeclarationNameInfo();
6042 NameInfo
.setName(Context
.DeclarationNames
.getCXXDestructorName(
6043 Context
.getCanonicalType(Ty
)));
6044 NameInfo
.setNamedTypeInfo(TInfo
);
6048 case UnqualifiedIdKind::IK_TemplateId
: {
6049 TemplateName TName
= Name
.TemplateId
->Template
.get();
6050 SourceLocation TNameLoc
= Name
.TemplateId
->TemplateNameLoc
;
6051 return Context
.getNameForTemplate(TName
, TNameLoc
);
6054 } // switch (Name.getKind())
6056 llvm_unreachable("Unknown name kind");
6059 static QualType
getCoreType(QualType Ty
) {
6061 if (Ty
->isPointerType() || Ty
->isReferenceType())
6062 Ty
= Ty
->getPointeeType();
6063 else if (Ty
->isArrayType())
6064 Ty
= Ty
->castAsArrayTypeUnsafe()->getElementType();
6066 return Ty
.withoutLocalFastQualifiers();
6070 /// hasSimilarParameters - Determine whether the C++ functions Declaration
6071 /// and Definition have "nearly" matching parameters. This heuristic is
6072 /// used to improve diagnostics in the case where an out-of-line function
6073 /// definition doesn't match any declaration within the class or namespace.
6074 /// Also sets Params to the list of indices to the parameters that differ
6075 /// between the declaration and the definition. If hasSimilarParameters
6076 /// returns true and Params is empty, then all of the parameters match.
6077 static bool hasSimilarParameters(ASTContext
&Context
,
6078 FunctionDecl
*Declaration
,
6079 FunctionDecl
*Definition
,
6080 SmallVectorImpl
<unsigned> &Params
) {
6082 if (Declaration
->param_size() != Definition
->param_size())
6084 for (unsigned Idx
= 0; Idx
< Declaration
->param_size(); ++Idx
) {
6085 QualType DeclParamTy
= Declaration
->getParamDecl(Idx
)->getType();
6086 QualType DefParamTy
= Definition
->getParamDecl(Idx
)->getType();
6088 // The parameter types are identical
6089 if (Context
.hasSameUnqualifiedType(DefParamTy
, DeclParamTy
))
6092 QualType DeclParamBaseTy
= getCoreType(DeclParamTy
);
6093 QualType DefParamBaseTy
= getCoreType(DefParamTy
);
6094 const IdentifierInfo
*DeclTyName
= DeclParamBaseTy
.getBaseTypeIdentifier();
6095 const IdentifierInfo
*DefTyName
= DefParamBaseTy
.getBaseTypeIdentifier();
6097 if (Context
.hasSameUnqualifiedType(DeclParamBaseTy
, DefParamBaseTy
) ||
6098 (DeclTyName
&& DeclTyName
== DefTyName
))
6099 Params
.push_back(Idx
);
6100 else // The two parameters aren't even close
6107 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
6108 /// declarator needs to be rebuilt in the current instantiation.
6109 /// Any bits of declarator which appear before the name are valid for
6110 /// consideration here. That's specifically the type in the decl spec
6111 /// and the base type in any member-pointer chunks.
6112 static bool RebuildDeclaratorInCurrentInstantiation(Sema
&S
, Declarator
&D
,
6113 DeclarationName Name
) {
6114 // The types we specifically need to rebuild are:
6115 // - typenames, typeofs, and decltypes
6116 // - types which will become injected class names
6117 // Of course, we also need to rebuild any type referencing such a
6118 // type. It's safest to just say "dependent", but we call out a
6121 DeclSpec
&DS
= D
.getMutableDeclSpec();
6122 switch (DS
.getTypeSpecType()) {
6123 case DeclSpec::TST_typename
:
6124 case DeclSpec::TST_typeofType
:
6125 case DeclSpec::TST_typeof_unqualType
:
6126 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
6127 #include "clang/Basic/TransformTypeTraits.def"
6128 case DeclSpec::TST_atomic
: {
6129 // Grab the type from the parser.
6130 TypeSourceInfo
*TSI
= nullptr;
6131 QualType T
= S
.GetTypeFromParser(DS
.getRepAsType(), &TSI
);
6132 if (T
.isNull() || !T
->isInstantiationDependentType()) break;
6134 // Make sure there's a type source info. This isn't really much
6135 // of a waste; most dependent types should have type source info
6136 // attached already.
6138 TSI
= S
.Context
.getTrivialTypeSourceInfo(T
, DS
.getTypeSpecTypeLoc());
6140 // Rebuild the type in the current instantiation.
6141 TSI
= S
.RebuildTypeInCurrentInstantiation(TSI
, D
.getIdentifierLoc(), Name
);
6142 if (!TSI
) return true;
6144 // Store the new type back in the decl spec.
6145 ParsedType LocType
= S
.CreateParsedType(TSI
->getType(), TSI
);
6146 DS
.UpdateTypeRep(LocType
);
6150 case DeclSpec::TST_decltype
:
6151 case DeclSpec::TST_typeof_unqualExpr
:
6152 case DeclSpec::TST_typeofExpr
: {
6153 Expr
*E
= DS
.getRepAsExpr();
6154 ExprResult Result
= S
.RebuildExprInCurrentInstantiation(E
);
6155 if (Result
.isInvalid()) return true;
6156 DS
.UpdateExprRep(Result
.get());
6161 // Nothing to do for these decl specs.
6165 // It doesn't matter what order we do this in.
6166 for (unsigned I
= 0, E
= D
.getNumTypeObjects(); I
!= E
; ++I
) {
6167 DeclaratorChunk
&Chunk
= D
.getTypeObject(I
);
6169 // The only type information in the declarator which can come
6170 // before the declaration name is the base type of a member
6172 if (Chunk
.Kind
!= DeclaratorChunk::MemberPointer
)
6175 // Rebuild the scope specifier in-place.
6176 CXXScopeSpec
&SS
= Chunk
.Mem
.Scope();
6177 if (S
.RebuildNestedNameSpecifierInCurrentInstantiation(SS
))
6184 /// Returns true if the declaration is declared in a system header or from a
6186 static bool isFromSystemHeader(SourceManager
&SM
, const Decl
*D
) {
6187 return SM
.isInSystemHeader(D
->getLocation()) ||
6188 SM
.isInSystemMacro(D
->getLocation());
6191 void Sema::warnOnReservedIdentifier(const NamedDecl
*D
) {
6192 // Avoid warning twice on the same identifier, and don't warn on redeclaration
6194 if (D
->getPreviousDecl() || D
->isImplicit())
6196 ReservedIdentifierStatus Status
= D
->isReserved(getLangOpts());
6197 if (Status
!= ReservedIdentifierStatus::NotReserved
&&
6198 !isFromSystemHeader(Context
.getSourceManager(), D
)) {
6199 Diag(D
->getLocation(), diag::warn_reserved_extern_symbol
)
6200 << D
<< static_cast<int>(Status
);
6204 Decl
*Sema::ActOnDeclarator(Scope
*S
, Declarator
&D
) {
6205 D
.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration
);
6207 // Check if we are in an `omp begin/end declare variant` scope. Handle this
6208 // declaration only if the `bind_to_declaration` extension is set.
6209 SmallVector
<FunctionDecl
*, 4> Bases
;
6210 if (LangOpts
.OpenMP
&& isInOpenMPDeclareVariantScope())
6211 if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty::
6212 implementation_extension_bind_to_declaration
))
6213 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6214 S
, D
, MultiTemplateParamsArg(), Bases
);
6216 Decl
*Dcl
= HandleDeclarator(S
, D
, MultiTemplateParamsArg());
6218 if (OriginalLexicalContext
&& OriginalLexicalContext
->isObjCContainer() &&
6219 Dcl
&& Dcl
->getDeclContext()->isFileContext())
6220 Dcl
->setTopLevelDeclInObjCContainer();
6223 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl
, Bases
);
6228 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
6229 /// If T is the name of a class, then each of the following shall have a
6230 /// name different from T:
6231 /// - every static data member of class T;
6232 /// - every member function of class T
6233 /// - every member of class T that is itself a type;
6234 /// \returns true if the declaration name violates these rules.
6235 bool Sema::DiagnoseClassNameShadow(DeclContext
*DC
,
6236 DeclarationNameInfo NameInfo
) {
6237 DeclarationName Name
= NameInfo
.getName();
6239 CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
);
6240 while (Record
&& Record
->isAnonymousStructOrUnion())
6241 Record
= dyn_cast
<CXXRecordDecl
>(Record
->getParent());
6242 if (Record
&& Record
->getIdentifier() && Record
->getDeclName() == Name
) {
6243 Diag(NameInfo
.getLoc(), diag::err_member_name_of_class
) << Name
;
6250 /// Diagnose a declaration whose declarator-id has the given
6251 /// nested-name-specifier.
6253 /// \param SS The nested-name-specifier of the declarator-id.
6255 /// \param DC The declaration context to which the nested-name-specifier
6258 /// \param Name The name of the entity being declared.
6260 /// \param Loc The location of the name of the entity being declared.
6262 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
6263 /// we're declaring an explicit / partial specialization / instantiation.
6265 /// \returns true if we cannot safely recover from this error, false otherwise.
6266 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec
&SS
, DeclContext
*DC
,
6267 DeclarationName Name
,
6268 SourceLocation Loc
, bool IsTemplateId
) {
6269 DeclContext
*Cur
= CurContext
;
6270 while (isa
<LinkageSpecDecl
>(Cur
) || isa
<CapturedDecl
>(Cur
))
6271 Cur
= Cur
->getParent();
6273 // If the user provided a superfluous scope specifier that refers back to the
6274 // class in which the entity is already declared, diagnose and ignore it.
6280 // Note, it was once ill-formed to give redundant qualification in all
6281 // contexts, but that rule was removed by DR482.
6282 if (Cur
->Equals(DC
)) {
6283 if (Cur
->isRecord()) {
6284 Diag(Loc
, LangOpts
.MicrosoftExt
? diag::warn_member_extra_qualification
6285 : diag::err_member_extra_qualification
)
6286 << Name
<< FixItHint::CreateRemoval(SS
.getRange());
6289 Diag(Loc
, diag::warn_namespace_member_extra_qualification
) << Name
;
6294 // Check whether the qualifying scope encloses the scope of the original
6295 // declaration. For a template-id, we perform the checks in
6296 // CheckTemplateSpecializationScope.
6297 if (!Cur
->Encloses(DC
) && !IsTemplateId
) {
6298 if (Cur
->isRecord())
6299 Diag(Loc
, diag::err_member_qualification
)
6300 << Name
<< SS
.getRange();
6301 else if (isa
<TranslationUnitDecl
>(DC
))
6302 Diag(Loc
, diag::err_invalid_declarator_global_scope
)
6303 << Name
<< SS
.getRange();
6304 else if (isa
<FunctionDecl
>(Cur
))
6305 Diag(Loc
, diag::err_invalid_declarator_in_function
)
6306 << Name
<< SS
.getRange();
6307 else if (isa
<BlockDecl
>(Cur
))
6308 Diag(Loc
, diag::err_invalid_declarator_in_block
)
6309 << Name
<< SS
.getRange();
6310 else if (isa
<ExportDecl
>(Cur
)) {
6311 if (!isa
<NamespaceDecl
>(DC
))
6312 Diag(Loc
, diag::err_export_non_namespace_scope_name
)
6313 << Name
<< SS
.getRange();
6315 // The cases that DC is not NamespaceDecl should be handled in
6316 // CheckRedeclarationExported.
6319 Diag(Loc
, diag::err_invalid_declarator_scope
)
6320 << Name
<< cast
<NamedDecl
>(Cur
) << cast
<NamedDecl
>(DC
) << SS
.getRange();
6325 if (Cur
->isRecord()) {
6326 // Cannot qualify members within a class.
6327 Diag(Loc
, diag::err_member_qualification
)
6328 << Name
<< SS
.getRange();
6331 // C++ constructors and destructors with incorrect scopes can break
6332 // our AST invariants by having the wrong underlying types. If
6333 // that's the case, then drop this declaration entirely.
6334 if ((Name
.getNameKind() == DeclarationName::CXXConstructorName
||
6335 Name
.getNameKind() == DeclarationName::CXXDestructorName
) &&
6336 !Context
.hasSameType(Name
.getCXXNameType(),
6337 Context
.getTypeDeclType(cast
<CXXRecordDecl
>(Cur
))))
6343 // C++11 [dcl.meaning]p1:
6344 // [...] "The nested-name-specifier of the qualified declarator-id shall
6345 // not begin with a decltype-specifer"
6346 NestedNameSpecifierLoc
SpecLoc(SS
.getScopeRep(), SS
.location_data());
6347 while (SpecLoc
.getPrefix())
6348 SpecLoc
= SpecLoc
.getPrefix();
6349 if (isa_and_nonnull
<DecltypeType
>(
6350 SpecLoc
.getNestedNameSpecifier()->getAsType()))
6351 Diag(Loc
, diag::err_decltype_in_declarator
)
6352 << SpecLoc
.getTypeLoc().getSourceRange();
6357 NamedDecl
*Sema::HandleDeclarator(Scope
*S
, Declarator
&D
,
6358 MultiTemplateParamsArg TemplateParamLists
) {
6359 // TODO: consider using NameInfo for diagnostic.
6360 DeclarationNameInfo NameInfo
= GetNameForDeclarator(D
);
6361 DeclarationName Name
= NameInfo
.getName();
6363 // All of these full declarators require an identifier. If it doesn't have
6364 // one, the ParsedFreeStandingDeclSpec action should be used.
6365 if (D
.isDecompositionDeclarator()) {
6366 return ActOnDecompositionDeclarator(S
, D
, TemplateParamLists
);
6368 if (!D
.isInvalidType()) // Reject this if we think it is valid.
6369 Diag(D
.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident
)
6370 << D
.getDeclSpec().getSourceRange() << D
.getSourceRange();
6372 } else if (DiagnoseUnexpandedParameterPack(NameInfo
, UPPC_DeclarationType
))
6375 // The scope passed in may not be a decl scope. Zip up the scope tree until
6376 // we find one that is.
6377 while ((S
->getFlags() & Scope::DeclScope
) == 0 ||
6378 (S
->getFlags() & Scope::TemplateParamScope
) != 0)
6381 DeclContext
*DC
= CurContext
;
6382 if (D
.getCXXScopeSpec().isInvalid())
6384 else if (D
.getCXXScopeSpec().isSet()) {
6385 if (DiagnoseUnexpandedParameterPack(D
.getCXXScopeSpec(),
6386 UPPC_DeclarationQualifier
))
6389 bool EnteringContext
= !D
.getDeclSpec().isFriendSpecified();
6390 DC
= computeDeclContext(D
.getCXXScopeSpec(), EnteringContext
);
6391 if (!DC
|| isa
<EnumDecl
>(DC
)) {
6392 // If we could not compute the declaration context, it's because the
6393 // declaration context is dependent but does not refer to a class,
6394 // class template, or class template partial specialization. Complain
6395 // and return early, to avoid the coming semantic disaster.
6396 Diag(D
.getIdentifierLoc(),
6397 diag::err_template_qualified_declarator_no_match
)
6398 << D
.getCXXScopeSpec().getScopeRep()
6399 << D
.getCXXScopeSpec().getRange();
6402 bool IsDependentContext
= DC
->isDependentContext();
6404 if (!IsDependentContext
&&
6405 RequireCompleteDeclContext(D
.getCXXScopeSpec(), DC
))
6408 // If a class is incomplete, do not parse entities inside it.
6409 if (isa
<CXXRecordDecl
>(DC
) && !cast
<CXXRecordDecl
>(DC
)->hasDefinition()) {
6410 Diag(D
.getIdentifierLoc(),
6411 diag::err_member_def_undefined_record
)
6412 << Name
<< DC
<< D
.getCXXScopeSpec().getRange();
6415 if (!D
.getDeclSpec().isFriendSpecified()) {
6416 if (diagnoseQualifiedDeclaration(
6417 D
.getCXXScopeSpec(), DC
, Name
, D
.getIdentifierLoc(),
6418 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
)) {
6426 // Check whether we need to rebuild the type of the given
6427 // declaration in the current instantiation.
6428 if (EnteringContext
&& IsDependentContext
&&
6429 TemplateParamLists
.size() != 0) {
6430 ContextRAII
SavedContext(*this, DC
);
6431 if (RebuildDeclaratorInCurrentInstantiation(*this, D
, Name
))
6436 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
6437 QualType R
= TInfo
->getType();
6439 if (DiagnoseUnexpandedParameterPack(D
.getIdentifierLoc(), TInfo
,
6440 UPPC_DeclarationType
))
6443 LookupResult
Previous(*this, NameInfo
, LookupOrdinaryName
,
6444 forRedeclarationInCurContext());
6446 // See if this is a redefinition of a variable in the same scope.
6447 if (!D
.getCXXScopeSpec().isSet()) {
6448 bool IsLinkageLookup
= false;
6449 bool CreateBuiltins
= false;
6451 // If the declaration we're planning to build will be a function
6452 // or object with linkage, then look for another declaration with
6453 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6455 // If the declaration we're planning to build will be declared with
6456 // external linkage in the translation unit, create any builtin with
6458 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
)
6460 else if (CurContext
->isFunctionOrMethod() &&
6461 (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern
||
6462 R
->isFunctionType())) {
6463 IsLinkageLookup
= true;
6465 CurContext
->getEnclosingNamespaceContext()->isTranslationUnit();
6466 } else if (CurContext
->getRedeclContext()->isTranslationUnit() &&
6467 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static
)
6468 CreateBuiltins
= true;
6470 if (IsLinkageLookup
) {
6471 Previous
.clear(LookupRedeclarationWithLinkage
);
6472 Previous
.setRedeclarationKind(ForExternalRedeclaration
);
6475 LookupName(Previous
, S
, CreateBuiltins
);
6476 } else { // Something like "int foo::x;"
6477 LookupQualifiedName(Previous
, DC
);
6479 // C++ [dcl.meaning]p1:
6480 // When the declarator-id is qualified, the declaration shall refer to a
6481 // previously declared member of the class or namespace to which the
6482 // qualifier refers (or, in the case of a namespace, of an element of the
6483 // inline namespace set of that namespace (7.3.1)) or to a specialization
6486 // Note that we already checked the context above, and that we do not have
6487 // enough information to make sure that Previous contains the declaration
6488 // we want to match. For example, given:
6495 // void X::f(int) { } // ill-formed
6497 // In this case, Previous will point to the overload set
6498 // containing the two f's declared in X, but neither of them
6501 RemoveUsingDecls(Previous
);
6504 if (Previous
.isSingleResult() &&
6505 Previous
.getFoundDecl()->isTemplateParameter()) {
6506 // Maybe we will complain about the shadowed template parameter.
6507 if (!D
.isInvalidType())
6508 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(),
6509 Previous
.getFoundDecl());
6511 // Just pretend that we didn't see the previous declaration.
6515 if (!R
->isFunctionType() && DiagnoseClassNameShadow(DC
, NameInfo
))
6516 // Forget that the previous declaration is the injected-class-name.
6519 // In C++, the previous declaration we find might be a tag type
6520 // (class or enum). In this case, the new declaration will hide the
6521 // tag type. Note that this applies to functions, function templates, and
6522 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6523 if (Previous
.isSingleTagDecl() &&
6524 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&&
6525 (TemplateParamLists
.size() == 0 || R
->isFunctionType()))
6528 // Check that there are no default arguments other than in the parameters
6529 // of a function declaration (C++ only).
6530 if (getLangOpts().CPlusPlus
)
6531 CheckExtraCXXDefaultArguments(D
);
6535 bool AddToScope
= true;
6536 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
) {
6537 if (TemplateParamLists
.size()) {
6538 Diag(D
.getIdentifierLoc(), diag::err_template_typedef
);
6542 New
= ActOnTypedefDeclarator(S
, D
, DC
, TInfo
, Previous
);
6543 } else if (R
->isFunctionType()) {
6544 New
= ActOnFunctionDeclarator(S
, D
, DC
, TInfo
, Previous
,
6548 New
= ActOnVariableDeclarator(S
, D
, DC
, TInfo
, Previous
, TemplateParamLists
,
6555 // If this has an identifier and is not a function template specialization,
6556 // add it to the scope stack.
6557 if (New
->getDeclName() && AddToScope
)
6558 PushOnScopeChains(New
, S
);
6560 if (isInOpenMPDeclareTargetContext())
6561 checkDeclIsAllowedInOpenMPTarget(nullptr, New
);
6566 /// Helper method to turn variable array types into constant array
6567 /// types in certain situations which would otherwise be errors (for
6568 /// GCC compatibility).
6569 static QualType
TryToFixInvalidVariablyModifiedType(QualType T
,
6570 ASTContext
&Context
,
6571 bool &SizeIsNegative
,
6572 llvm::APSInt
&Oversized
) {
6573 // This method tries to turn a variable array into a constant
6574 // array even when the size isn't an ICE. This is necessary
6575 // for compatibility with code that depends on gcc's buggy
6576 // constant expression folding, like struct {char x[(int)(char*)2];}
6577 SizeIsNegative
= false;
6580 if (T
->isDependentType())
6583 QualifierCollector Qs
;
6584 const Type
*Ty
= Qs
.strip(T
);
6586 if (const PointerType
* PTy
= dyn_cast
<PointerType
>(Ty
)) {
6587 QualType Pointee
= PTy
->getPointeeType();
6588 QualType FixedType
=
6589 TryToFixInvalidVariablyModifiedType(Pointee
, Context
, SizeIsNegative
,
6591 if (FixedType
.isNull()) return FixedType
;
6592 FixedType
= Context
.getPointerType(FixedType
);
6593 return Qs
.apply(Context
, FixedType
);
6595 if (const ParenType
* PTy
= dyn_cast
<ParenType
>(Ty
)) {
6596 QualType Inner
= PTy
->getInnerType();
6597 QualType FixedType
=
6598 TryToFixInvalidVariablyModifiedType(Inner
, Context
, SizeIsNegative
,
6600 if (FixedType
.isNull()) return FixedType
;
6601 FixedType
= Context
.getParenType(FixedType
);
6602 return Qs
.apply(Context
, FixedType
);
6605 const VariableArrayType
* VLATy
= dyn_cast
<VariableArrayType
>(T
);
6609 QualType ElemTy
= VLATy
->getElementType();
6610 if (ElemTy
->isVariablyModifiedType()) {
6611 ElemTy
= TryToFixInvalidVariablyModifiedType(ElemTy
, Context
,
6612 SizeIsNegative
, Oversized
);
6613 if (ElemTy
.isNull())
6617 Expr::EvalResult Result
;
6618 if (!VLATy
->getSizeExpr() ||
6619 !VLATy
->getSizeExpr()->EvaluateAsInt(Result
, Context
))
6622 llvm::APSInt Res
= Result
.Val
.getInt();
6624 // Check whether the array size is negative.
6625 if (Res
.isSigned() && Res
.isNegative()) {
6626 SizeIsNegative
= true;
6630 // Check whether the array is too large to be addressed.
6631 unsigned ActiveSizeBits
=
6632 (!ElemTy
->isDependentType() && !ElemTy
->isVariablyModifiedType() &&
6633 !ElemTy
->isIncompleteType() && !ElemTy
->isUndeducedType())
6634 ? ConstantArrayType::getNumAddressingBits(Context
, ElemTy
, Res
)
6635 : Res
.getActiveBits();
6636 if (ActiveSizeBits
> ConstantArrayType::getMaxSizeBits(Context
)) {
6641 QualType FoldedArrayType
= Context
.getConstantArrayType(
6642 ElemTy
, Res
, VLATy
->getSizeExpr(), ArraySizeModifier::Normal
, 0);
6643 return Qs
.apply(Context
, FoldedArrayType
);
6647 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL
, TypeLoc DstTL
) {
6648 SrcTL
= SrcTL
.getUnqualifiedLoc();
6649 DstTL
= DstTL
.getUnqualifiedLoc();
6650 if (PointerTypeLoc SrcPTL
= SrcTL
.getAs
<PointerTypeLoc
>()) {
6651 PointerTypeLoc DstPTL
= DstTL
.castAs
<PointerTypeLoc
>();
6652 FixInvalidVariablyModifiedTypeLoc(SrcPTL
.getPointeeLoc(),
6653 DstPTL
.getPointeeLoc());
6654 DstPTL
.setStarLoc(SrcPTL
.getStarLoc());
6657 if (ParenTypeLoc SrcPTL
= SrcTL
.getAs
<ParenTypeLoc
>()) {
6658 ParenTypeLoc DstPTL
= DstTL
.castAs
<ParenTypeLoc
>();
6659 FixInvalidVariablyModifiedTypeLoc(SrcPTL
.getInnerLoc(),
6660 DstPTL
.getInnerLoc());
6661 DstPTL
.setLParenLoc(SrcPTL
.getLParenLoc());
6662 DstPTL
.setRParenLoc(SrcPTL
.getRParenLoc());
6665 ArrayTypeLoc SrcATL
= SrcTL
.castAs
<ArrayTypeLoc
>();
6666 ArrayTypeLoc DstATL
= DstTL
.castAs
<ArrayTypeLoc
>();
6667 TypeLoc SrcElemTL
= SrcATL
.getElementLoc();
6668 TypeLoc DstElemTL
= DstATL
.getElementLoc();
6669 if (VariableArrayTypeLoc SrcElemATL
=
6670 SrcElemTL
.getAs
<VariableArrayTypeLoc
>()) {
6671 ConstantArrayTypeLoc DstElemATL
= DstElemTL
.castAs
<ConstantArrayTypeLoc
>();
6672 FixInvalidVariablyModifiedTypeLoc(SrcElemATL
, DstElemATL
);
6674 DstElemTL
.initializeFullCopy(SrcElemTL
);
6676 DstATL
.setLBracketLoc(SrcATL
.getLBracketLoc());
6677 DstATL
.setSizeExpr(SrcATL
.getSizeExpr());
6678 DstATL
.setRBracketLoc(SrcATL
.getRBracketLoc());
6681 /// Helper method to turn variable array types into constant array
6682 /// types in certain situations which would otherwise be errors (for
6683 /// GCC compatibility).
6684 static TypeSourceInfo
*
6685 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo
*TInfo
,
6686 ASTContext
&Context
,
6687 bool &SizeIsNegative
,
6688 llvm::APSInt
&Oversized
) {
6690 = TryToFixInvalidVariablyModifiedType(TInfo
->getType(), Context
,
6691 SizeIsNegative
, Oversized
);
6692 if (FixedTy
.isNull())
6694 TypeSourceInfo
*FixedTInfo
= Context
.getTrivialTypeSourceInfo(FixedTy
);
6695 FixInvalidVariablyModifiedTypeLoc(TInfo
->getTypeLoc(),
6696 FixedTInfo
->getTypeLoc());
6700 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6701 /// true if we were successful.
6702 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo
*&TInfo
,
6703 QualType
&T
, SourceLocation Loc
,
6704 unsigned FailedFoldDiagID
) {
6705 bool SizeIsNegative
;
6706 llvm::APSInt Oversized
;
6707 TypeSourceInfo
*FixedTInfo
= TryToFixInvalidVariablyModifiedTypeSourceInfo(
6708 TInfo
, Context
, SizeIsNegative
, Oversized
);
6710 Diag(Loc
, diag::ext_vla_folded_to_constant
);
6712 T
= FixedTInfo
->getType();
6717 Diag(Loc
, diag::err_typecheck_negative_array_size
);
6718 else if (Oversized
.getBoolValue())
6719 Diag(Loc
, diag::err_array_too_large
) << toString(Oversized
, 10);
6720 else if (FailedFoldDiagID
)
6721 Diag(Loc
, FailedFoldDiagID
);
6725 /// Register the given locally-scoped extern "C" declaration so
6726 /// that it can be found later for redeclarations. We include any extern "C"
6727 /// declaration that is not visible in the translation unit here, not just
6728 /// function-scope declarations.
6730 Sema::RegisterLocallyScopedExternCDecl(NamedDecl
*ND
, Scope
*S
) {
6731 if (!getLangOpts().CPlusPlus
&&
6732 ND
->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6733 // Don't need to track declarations in the TU in C.
6736 // Note that we have a locally-scoped external with this name.
6737 Context
.getExternCContextDecl()->makeDeclVisibleInContext(ND
);
6740 NamedDecl
*Sema::findLocallyScopedExternCDecl(DeclarationName Name
) {
6741 // FIXME: We can have multiple results via __attribute__((overloadable)).
6742 auto Result
= Context
.getExternCContextDecl()->lookup(Name
);
6743 return Result
.empty() ? nullptr : *Result
.begin();
6746 /// Diagnose function specifiers on a declaration of an identifier that
6747 /// does not identify a function.
6748 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec
&DS
) {
6749 // FIXME: We should probably indicate the identifier in question to avoid
6750 // confusion for constructs like "virtual int a(), b;"
6751 if (DS
.isVirtualSpecified())
6752 Diag(DS
.getVirtualSpecLoc(),
6753 diag::err_virtual_non_function
);
6755 if (DS
.hasExplicitSpecifier())
6756 Diag(DS
.getExplicitSpecLoc(),
6757 diag::err_explicit_non_function
);
6759 if (DS
.isNoreturnSpecified())
6760 Diag(DS
.getNoreturnSpecLoc(),
6761 diag::err_noreturn_non_function
);
6765 Sema::ActOnTypedefDeclarator(Scope
* S
, Declarator
& D
, DeclContext
* DC
,
6766 TypeSourceInfo
*TInfo
, LookupResult
&Previous
) {
6767 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6768 if (D
.getCXXScopeSpec().isSet()) {
6769 Diag(D
.getIdentifierLoc(), diag::err_qualified_typedef_declarator
)
6770 << D
.getCXXScopeSpec().getRange();
6772 // Pretend we didn't see the scope specifier.
6777 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
6779 if (D
.getDeclSpec().isInlineSpecified())
6780 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
6781 << getLangOpts().CPlusPlus17
;
6782 if (D
.getDeclSpec().hasConstexprSpecifier())
6783 Diag(D
.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr
)
6784 << 1 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
6786 if (D
.getName().getKind() != UnqualifiedIdKind::IK_Identifier
) {
6787 if (D
.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName
)
6788 Diag(D
.getName().StartLocation
,
6789 diag::err_deduction_guide_invalid_specifier
)
6792 Diag(D
.getName().StartLocation
, diag::err_typedef_not_identifier
)
6793 << D
.getName().getSourceRange();
6797 TypedefDecl
*NewTD
= ParseTypedefDecl(S
, D
, TInfo
->getType(), TInfo
);
6798 if (!NewTD
) return nullptr;
6800 // Handle attributes prior to checking for duplicates in MergeVarDecl
6801 ProcessDeclAttributes(S
, NewTD
, D
);
6803 CheckTypedefForVariablyModifiedType(S
, NewTD
);
6805 bool Redeclaration
= D
.isRedeclaration();
6806 NamedDecl
*ND
= ActOnTypedefNameDecl(S
, DC
, NewTD
, Previous
, Redeclaration
);
6807 D
.setRedeclaration(Redeclaration
);
6812 Sema::CheckTypedefForVariablyModifiedType(Scope
*S
, TypedefNameDecl
*NewTD
) {
6813 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6814 // then it shall have block scope.
6815 // Note that variably modified types must be fixed before merging the decl so
6816 // that redeclarations will match.
6817 TypeSourceInfo
*TInfo
= NewTD
->getTypeSourceInfo();
6818 QualType T
= TInfo
->getType();
6819 if (T
->isVariablyModifiedType()) {
6820 setFunctionHasBranchProtectedScope();
6822 if (S
->getFnParent() == nullptr) {
6823 bool SizeIsNegative
;
6824 llvm::APSInt Oversized
;
6825 TypeSourceInfo
*FixedTInfo
=
6826 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo
, Context
,
6830 Diag(NewTD
->getLocation(), diag::ext_vla_folded_to_constant
);
6831 NewTD
->setTypeSourceInfo(FixedTInfo
);
6834 Diag(NewTD
->getLocation(), diag::err_typecheck_negative_array_size
);
6835 else if (T
->isVariableArrayType())
6836 Diag(NewTD
->getLocation(), diag::err_vla_decl_in_file_scope
);
6837 else if (Oversized
.getBoolValue())
6838 Diag(NewTD
->getLocation(), diag::err_array_too_large
)
6839 << toString(Oversized
, 10);
6841 Diag(NewTD
->getLocation(), diag::err_vm_decl_in_file_scope
);
6842 NewTD
->setInvalidDecl();
6848 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6849 /// declares a typedef-name, either using the 'typedef' type specifier or via
6850 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6852 Sema::ActOnTypedefNameDecl(Scope
*S
, DeclContext
*DC
, TypedefNameDecl
*NewTD
,
6853 LookupResult
&Previous
, bool &Redeclaration
) {
6855 // Find the shadowed declaration before filtering for scope.
6856 NamedDecl
*ShadowedDecl
= getShadowedDeclaration(NewTD
, Previous
);
6858 // Merge the decl with the existing one if appropriate. If the decl is
6859 // in an outer scope, it isn't the same thing.
6860 FilterLookupForScope(Previous
, DC
, S
, /*ConsiderLinkage*/false,
6861 /*AllowInlineNamespace*/false);
6862 filterNonConflictingPreviousTypedefDecls(*this, NewTD
, Previous
);
6863 if (!Previous
.empty()) {
6864 Redeclaration
= true;
6865 MergeTypedefNameDecl(S
, NewTD
, Previous
);
6867 inferGslPointerAttribute(NewTD
);
6870 if (ShadowedDecl
&& !Redeclaration
)
6871 CheckShadow(NewTD
, ShadowedDecl
, Previous
);
6873 // If this is the C FILE type, notify the AST context.
6874 if (IdentifierInfo
*II
= NewTD
->getIdentifier())
6875 if (!NewTD
->isInvalidDecl() &&
6876 NewTD
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6877 switch (II
->getInterestingIdentifierID()) {
6878 case tok::InterestingIdentifierKind::FILE:
6879 Context
.setFILEDecl(NewTD
);
6881 case tok::InterestingIdentifierKind::jmp_buf:
6882 Context
.setjmp_bufDecl(NewTD
);
6884 case tok::InterestingIdentifierKind::sigjmp_buf
:
6885 Context
.setsigjmp_bufDecl(NewTD
);
6887 case tok::InterestingIdentifierKind::ucontext_t
:
6888 Context
.setucontext_tDecl(NewTD
);
6890 case tok::InterestingIdentifierKind::float_t
:
6891 case tok::InterestingIdentifierKind::double_t
:
6892 NewTD
->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context
));
6902 /// Determines whether the given declaration is an out-of-scope
6903 /// previous declaration.
6905 /// This routine should be invoked when name lookup has found a
6906 /// previous declaration (PrevDecl) that is not in the scope where a
6907 /// new declaration by the same name is being introduced. If the new
6908 /// declaration occurs in a local scope, previous declarations with
6909 /// linkage may still be considered previous declarations (C99
6910 /// 6.2.2p4-5, C++ [basic.link]p6).
6912 /// \param PrevDecl the previous declaration found by name
6915 /// \param DC the context in which the new declaration is being
6918 /// \returns true if PrevDecl is an out-of-scope previous declaration
6919 /// for a new delcaration with the same name.
6921 isOutOfScopePreviousDeclaration(NamedDecl
*PrevDecl
, DeclContext
*DC
,
6922 ASTContext
&Context
) {
6926 if (!PrevDecl
->hasLinkage())
6929 if (Context
.getLangOpts().CPlusPlus
) {
6930 // C++ [basic.link]p6:
6931 // If there is a visible declaration of an entity with linkage
6932 // having the same name and type, ignoring entities declared
6933 // outside the innermost enclosing namespace scope, the block
6934 // scope declaration declares that same entity and receives the
6935 // linkage of the previous declaration.
6936 DeclContext
*OuterContext
= DC
->getRedeclContext();
6937 if (!OuterContext
->isFunctionOrMethod())
6938 // This rule only applies to block-scope declarations.
6941 DeclContext
*PrevOuterContext
= PrevDecl
->getDeclContext();
6942 if (PrevOuterContext
->isRecord())
6943 // We found a member function: ignore it.
6946 // Find the innermost enclosing namespace for the new and
6947 // previous declarations.
6948 OuterContext
= OuterContext
->getEnclosingNamespaceContext();
6949 PrevOuterContext
= PrevOuterContext
->getEnclosingNamespaceContext();
6951 // The previous declaration is in a different namespace, so it
6952 // isn't the same function.
6953 if (!OuterContext
->Equals(PrevOuterContext
))
6960 static void SetNestedNameSpecifier(Sema
&S
, DeclaratorDecl
*DD
, Declarator
&D
) {
6961 CXXScopeSpec
&SS
= D
.getCXXScopeSpec();
6962 if (!SS
.isSet()) return;
6963 DD
->setQualifierInfo(SS
.getWithLocInContext(S
.Context
));
6966 bool Sema::inferObjCARCLifetime(ValueDecl
*decl
) {
6967 QualType type
= decl
->getType();
6968 Qualifiers::ObjCLifetime lifetime
= type
.getObjCLifetime();
6969 if (lifetime
== Qualifiers::OCL_Autoreleasing
) {
6970 // Various kinds of declaration aren't allowed to be __autoreleasing.
6971 unsigned kind
= -1U;
6972 if (VarDecl
*var
= dyn_cast
<VarDecl
>(decl
)) {
6973 if (var
->hasAttr
<BlocksAttr
>())
6974 kind
= 0; // __block
6975 else if (!var
->hasLocalStorage())
6977 } else if (isa
<ObjCIvarDecl
>(decl
)) {
6979 } else if (isa
<FieldDecl
>(decl
)) {
6984 Diag(decl
->getLocation(), diag::err_arc_autoreleasing_var
)
6987 } else if (lifetime
== Qualifiers::OCL_None
) {
6988 // Try to infer lifetime.
6989 if (!type
->isObjCLifetimeType())
6992 lifetime
= type
->getObjCARCImplicitLifetime();
6993 type
= Context
.getLifetimeQualifiedType(type
, lifetime
);
6994 decl
->setType(type
);
6997 if (VarDecl
*var
= dyn_cast
<VarDecl
>(decl
)) {
6998 // Thread-local variables cannot have lifetime.
6999 if (lifetime
&& lifetime
!= Qualifiers::OCL_ExplicitNone
&&
7000 var
->getTLSKind()) {
7001 Diag(var
->getLocation(), diag::err_arc_thread_ownership
)
7010 void Sema::deduceOpenCLAddressSpace(ValueDecl
*Decl
) {
7011 if (Decl
->getType().hasAddressSpace())
7013 if (Decl
->getType()->isDependentType())
7015 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(Decl
)) {
7016 QualType Type
= Var
->getType();
7017 if (Type
->isSamplerT() || Type
->isVoidType())
7019 LangAS ImplAS
= LangAS::opencl_private
;
7020 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
7021 // __opencl_c_program_scope_global_variables feature, the address space
7022 // for a variable at program scope or a static or extern variable inside
7023 // a function are inferred to be __global.
7024 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
7025 Var
->hasGlobalStorage())
7026 ImplAS
= LangAS::opencl_global
;
7027 // If the original type from a decayed type is an array type and that array
7028 // type has no address space yet, deduce it now.
7029 if (auto DT
= dyn_cast
<DecayedType
>(Type
)) {
7030 auto OrigTy
= DT
->getOriginalType();
7031 if (!OrigTy
.hasAddressSpace() && OrigTy
->isArrayType()) {
7032 // Add the address space to the original array type and then propagate
7033 // that to the element type through `getAsArrayType`.
7034 OrigTy
= Context
.getAddrSpaceQualType(OrigTy
, ImplAS
);
7035 OrigTy
= QualType(Context
.getAsArrayType(OrigTy
), 0);
7036 // Re-generate the decayed type.
7037 Type
= Context
.getDecayedType(OrigTy
);
7040 Type
= Context
.getAddrSpaceQualType(Type
, ImplAS
);
7041 // Apply any qualifiers (including address space) from the array type to
7042 // the element type. This implements C99 6.7.3p8: "If the specification of
7043 // an array type includes any type qualifiers, the element type is so
7044 // qualified, not the array type."
7045 if (Type
->isArrayType())
7046 Type
= QualType(Context
.getAsArrayType(Type
), 0);
7047 Decl
->setType(Type
);
7051 static void checkAttributesAfterMerging(Sema
&S
, NamedDecl
&ND
) {
7052 // Ensure that an auto decl is deduced otherwise the checks below might cache
7053 // the wrong linkage.
7054 assert(S
.ParsingInitForAutoVars
.count(&ND
) == 0);
7056 // 'weak' only applies to declarations with external linkage.
7057 if (WeakAttr
*Attr
= ND
.getAttr
<WeakAttr
>()) {
7058 if (!ND
.isExternallyVisible()) {
7059 S
.Diag(Attr
->getLocation(), diag::err_attribute_weak_static
);
7060 ND
.dropAttr
<WeakAttr
>();
7063 if (WeakRefAttr
*Attr
= ND
.getAttr
<WeakRefAttr
>()) {
7064 if (ND
.isExternallyVisible()) {
7065 S
.Diag(Attr
->getLocation(), diag::err_attribute_weakref_not_static
);
7066 ND
.dropAttr
<WeakRefAttr
>();
7067 ND
.dropAttr
<AliasAttr
>();
7071 if (auto *VD
= dyn_cast
<VarDecl
>(&ND
)) {
7072 if (VD
->hasInit()) {
7073 if (const auto *Attr
= VD
->getAttr
<AliasAttr
>()) {
7074 assert(VD
->isThisDeclarationADefinition() &&
7075 !VD
->isExternallyVisible() && "Broken AliasAttr handled late!");
7076 S
.Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << VD
<< 0;
7077 VD
->dropAttr
<AliasAttr
>();
7082 // 'selectany' only applies to externally visible variable declarations.
7083 // It does not apply to functions.
7084 if (SelectAnyAttr
*Attr
= ND
.getAttr
<SelectAnyAttr
>()) {
7085 if (isa
<FunctionDecl
>(ND
) || !ND
.isExternallyVisible()) {
7086 S
.Diag(Attr
->getLocation(),
7087 diag::err_attribute_selectany_non_extern_data
);
7088 ND
.dropAttr
<SelectAnyAttr
>();
7092 if (const InheritableAttr
*Attr
= getDLLAttr(&ND
)) {
7093 auto *VD
= dyn_cast
<VarDecl
>(&ND
);
7094 bool IsAnonymousNS
= false;
7095 bool IsMicrosoft
= S
.Context
.getTargetInfo().getCXXABI().isMicrosoft();
7097 const NamespaceDecl
*NS
= dyn_cast
<NamespaceDecl
>(VD
->getDeclContext());
7098 while (NS
&& !IsAnonymousNS
) {
7099 IsAnonymousNS
= NS
->isAnonymousNamespace();
7100 NS
= dyn_cast
<NamespaceDecl
>(NS
->getParent());
7103 // dll attributes require external linkage. Static locals may have external
7104 // linkage but still cannot be explicitly imported or exported.
7105 // In Microsoft mode, a variable defined in anonymous namespace must have
7106 // external linkage in order to be exported.
7107 bool AnonNSInMicrosoftMode
= IsAnonymousNS
&& IsMicrosoft
;
7108 if ((ND
.isExternallyVisible() && AnonNSInMicrosoftMode
) ||
7109 (!AnonNSInMicrosoftMode
&&
7110 (!ND
.isExternallyVisible() || (VD
&& VD
->isStaticLocal())))) {
7111 S
.Diag(ND
.getLocation(), diag::err_attribute_dll_not_extern
)
7113 ND
.setInvalidDecl();
7117 // Check the attributes on the function type, if any.
7118 if (const auto *FD
= dyn_cast
<FunctionDecl
>(&ND
)) {
7119 // Don't declare this variable in the second operand of the for-statement;
7120 // GCC miscompiles that by ending its lifetime before evaluating the
7121 // third operand. See gcc.gnu.org/PR86769.
7122 AttributedTypeLoc ATL
;
7123 for (TypeLoc TL
= FD
->getTypeSourceInfo()->getTypeLoc();
7124 (ATL
= TL
.getAsAdjusted
<AttributedTypeLoc
>());
7125 TL
= ATL
.getModifiedLoc()) {
7126 // The [[lifetimebound]] attribute can be applied to the implicit object
7127 // parameter of a non-static member function (other than a ctor or dtor)
7128 // by applying it to the function type.
7129 if (const auto *A
= ATL
.getAttrAs
<LifetimeBoundAttr
>()) {
7130 const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
);
7131 if (!MD
|| MD
->isStatic()) {
7132 S
.Diag(A
->getLocation(), diag::err_lifetimebound_no_object_param
)
7133 << !MD
<< A
->getRange();
7134 } else if (isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
)) {
7135 S
.Diag(A
->getLocation(), diag::err_lifetimebound_ctor_dtor
)
7136 << isa
<CXXDestructorDecl
>(MD
) << A
->getRange();
7143 static void checkDLLAttributeRedeclaration(Sema
&S
, NamedDecl
*OldDecl
,
7145 bool IsSpecialization
,
7146 bool IsDefinition
) {
7147 if (OldDecl
->isInvalidDecl() || NewDecl
->isInvalidDecl())
7150 bool IsTemplate
= false;
7151 if (TemplateDecl
*OldTD
= dyn_cast
<TemplateDecl
>(OldDecl
)) {
7152 OldDecl
= OldTD
->getTemplatedDecl();
7154 if (!IsSpecialization
)
7155 IsDefinition
= false;
7157 if (TemplateDecl
*NewTD
= dyn_cast
<TemplateDecl
>(NewDecl
)) {
7158 NewDecl
= NewTD
->getTemplatedDecl();
7162 if (!OldDecl
|| !NewDecl
)
7165 const DLLImportAttr
*OldImportAttr
= OldDecl
->getAttr
<DLLImportAttr
>();
7166 const DLLExportAttr
*OldExportAttr
= OldDecl
->getAttr
<DLLExportAttr
>();
7167 const DLLImportAttr
*NewImportAttr
= NewDecl
->getAttr
<DLLImportAttr
>();
7168 const DLLExportAttr
*NewExportAttr
= NewDecl
->getAttr
<DLLExportAttr
>();
7170 // dllimport and dllexport are inheritable attributes so we have to exclude
7171 // inherited attribute instances.
7172 bool HasNewAttr
= (NewImportAttr
&& !NewImportAttr
->isInherited()) ||
7173 (NewExportAttr
&& !NewExportAttr
->isInherited());
7175 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
7176 // the only exception being explicit specializations.
7177 // Implicitly generated declarations are also excluded for now because there
7178 // is no other way to switch these to use dllimport or dllexport.
7179 bool AddsAttr
= !(OldImportAttr
|| OldExportAttr
) && HasNewAttr
;
7181 if (AddsAttr
&& !IsSpecialization
&& !OldDecl
->isImplicit()) {
7182 // Allow with a warning for free functions and global variables.
7183 bool JustWarn
= false;
7184 if (!OldDecl
->isCXXClassMember()) {
7185 auto *VD
= dyn_cast
<VarDecl
>(OldDecl
);
7186 if (VD
&& !VD
->getDescribedVarTemplate())
7188 auto *FD
= dyn_cast
<FunctionDecl
>(OldDecl
);
7189 if (FD
&& FD
->getTemplatedKind() == FunctionDecl::TK_NonTemplate
)
7193 // We cannot change a declaration that's been used because IR has already
7194 // been emitted. Dllimported functions will still work though (modulo
7195 // address equality) as they can use the thunk.
7196 if (OldDecl
->isUsed())
7197 if (!isa
<FunctionDecl
>(OldDecl
) || !NewImportAttr
)
7200 unsigned DiagID
= JustWarn
? diag::warn_attribute_dll_redeclaration
7201 : diag::err_attribute_dll_redeclaration
;
7202 S
.Diag(NewDecl
->getLocation(), DiagID
)
7204 << (NewImportAttr
? (const Attr
*)NewImportAttr
: NewExportAttr
);
7205 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7207 NewDecl
->setInvalidDecl();
7212 // A redeclaration is not allowed to drop a dllimport attribute, the only
7213 // exceptions being inline function definitions (except for function
7214 // templates), local extern declarations, qualified friend declarations or
7215 // special MSVC extension: in the last case, the declaration is treated as if
7216 // it were marked dllexport.
7217 bool IsInline
= false, IsStaticDataMember
= false, IsQualifiedFriend
= false;
7218 bool IsMicrosoftABI
= S
.Context
.getTargetInfo().shouldDLLImportComdatSymbols();
7219 if (const auto *VD
= dyn_cast
<VarDecl
>(NewDecl
)) {
7220 // Ignore static data because out-of-line definitions are diagnosed
7222 IsStaticDataMember
= VD
->isStaticDataMember();
7223 IsDefinition
= VD
->isThisDeclarationADefinition(S
.Context
) !=
7224 VarDecl::DeclarationOnly
;
7225 } else if (const auto *FD
= dyn_cast
<FunctionDecl
>(NewDecl
)) {
7226 IsInline
= FD
->isInlined();
7227 IsQualifiedFriend
= FD
->getQualifier() &&
7228 FD
->getFriendObjectKind() == Decl::FOK_Declared
;
7231 if (OldImportAttr
&& !HasNewAttr
&&
7232 (!IsInline
|| (IsMicrosoftABI
&& IsTemplate
)) && !IsStaticDataMember
&&
7233 !NewDecl
->isLocalExternDecl() && !IsQualifiedFriend
) {
7234 if (IsMicrosoftABI
&& IsDefinition
) {
7235 if (IsSpecialization
) {
7237 NewDecl
->getLocation(),
7238 diag::err_attribute_dllimport_function_specialization_definition
);
7239 S
.Diag(OldImportAttr
->getLocation(), diag::note_attribute
);
7240 NewDecl
->dropAttr
<DLLImportAttr
>();
7242 S
.Diag(NewDecl
->getLocation(),
7243 diag::warn_redeclaration_without_import_attribute
)
7245 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7246 NewDecl
->dropAttr
<DLLImportAttr
>();
7247 NewDecl
->addAttr(DLLExportAttr::CreateImplicit(
7248 S
.Context
, NewImportAttr
->getRange()));
7250 } else if (IsMicrosoftABI
&& IsSpecialization
) {
7251 assert(!IsDefinition
);
7252 // MSVC allows this. Keep the inherited attribute.
7254 S
.Diag(NewDecl
->getLocation(),
7255 diag::warn_redeclaration_without_attribute_prev_attribute_ignored
)
7256 << NewDecl
<< OldImportAttr
;
7257 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7258 S
.Diag(OldImportAttr
->getLocation(), diag::note_previous_attribute
);
7259 OldDecl
->dropAttr
<DLLImportAttr
>();
7260 NewDecl
->dropAttr
<DLLImportAttr
>();
7262 } else if (IsInline
&& OldImportAttr
&& !IsMicrosoftABI
) {
7263 // In MinGW, seeing a function declared inline drops the dllimport
7265 OldDecl
->dropAttr
<DLLImportAttr
>();
7266 NewDecl
->dropAttr
<DLLImportAttr
>();
7267 S
.Diag(NewDecl
->getLocation(),
7268 diag::warn_dllimport_dropped_from_inline_function
)
7269 << NewDecl
<< OldImportAttr
;
7272 // A specialization of a class template member function is processed here
7273 // since it's a redeclaration. If the parent class is dllexport, the
7274 // specialization inherits that attribute. This doesn't happen automatically
7275 // since the parent class isn't instantiated until later.
7276 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewDecl
)) {
7277 if (MD
->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
&&
7278 !NewImportAttr
&& !NewExportAttr
) {
7279 if (const DLLExportAttr
*ParentExportAttr
=
7280 MD
->getParent()->getAttr
<DLLExportAttr
>()) {
7281 DLLExportAttr
*NewAttr
= ParentExportAttr
->clone(S
.Context
);
7282 NewAttr
->setInherited(true);
7283 NewDecl
->addAttr(NewAttr
);
7289 /// Given that we are within the definition of the given function,
7290 /// will that definition behave like C99's 'inline', where the
7291 /// definition is discarded except for optimization purposes?
7292 static bool isFunctionDefinitionDiscarded(Sema
&S
, FunctionDecl
*FD
) {
7293 // Try to avoid calling GetGVALinkageForFunction.
7295 // All cases of this require the 'inline' keyword.
7296 if (!FD
->isInlined()) return false;
7298 // This is only possible in C++ with the gnu_inline attribute.
7299 if (S
.getLangOpts().CPlusPlus
&& !FD
->hasAttr
<GNUInlineAttr
>())
7302 // Okay, go ahead and call the relatively-more-expensive function.
7303 return S
.Context
.GetGVALinkageForFunction(FD
) == GVA_AvailableExternally
;
7306 /// Determine whether a variable is extern "C" prior to attaching
7307 /// an initializer. We can't just call isExternC() here, because that
7308 /// will also compute and cache whether the declaration is externally
7309 /// visible, which might change when we attach the initializer.
7311 /// This can only be used if the declaration is known to not be a
7312 /// redeclaration of an internal linkage declaration.
7318 /// Attaching the initializer here makes this declaration not externally
7319 /// visible, because its type has internal linkage.
7321 /// FIXME: This is a hack.
7322 template<typename T
>
7323 static bool isIncompleteDeclExternC(Sema
&S
, const T
*D
) {
7324 if (S
.getLangOpts().CPlusPlus
) {
7325 // In C++, the overloadable attribute negates the effects of extern "C".
7326 if (!D
->isInExternCContext() || D
->template hasAttr
<OverloadableAttr
>())
7329 // So do CUDA's host/device attributes.
7330 if (S
.getLangOpts().CUDA
&& (D
->template hasAttr
<CUDADeviceAttr
>() ||
7331 D
->template hasAttr
<CUDAHostAttr
>()))
7334 return D
->isExternC();
7337 static bool shouldConsiderLinkage(const VarDecl
*VD
) {
7338 const DeclContext
*DC
= VD
->getDeclContext()->getRedeclContext();
7339 if (DC
->isFunctionOrMethod() || isa
<OMPDeclareReductionDecl
>(DC
) ||
7340 isa
<OMPDeclareMapperDecl
>(DC
))
7341 return VD
->hasExternalStorage();
7342 if (DC
->isFileContext())
7346 if (DC
->getDeclKind() == Decl::HLSLBuffer
)
7349 if (isa
<RequiresExprBodyDecl
>(DC
))
7351 llvm_unreachable("Unexpected context");
7354 static bool shouldConsiderLinkage(const FunctionDecl
*FD
) {
7355 const DeclContext
*DC
= FD
->getDeclContext()->getRedeclContext();
7356 if (DC
->isFileContext() || DC
->isFunctionOrMethod() ||
7357 isa
<OMPDeclareReductionDecl
>(DC
) || isa
<OMPDeclareMapperDecl
>(DC
))
7361 llvm_unreachable("Unexpected context");
7364 static bool hasParsedAttr(Scope
*S
, const Declarator
&PD
,
7365 ParsedAttr::Kind Kind
) {
7366 // Check decl attributes on the DeclSpec.
7367 if (PD
.getDeclSpec().getAttributes().hasAttribute(Kind
))
7370 // Walk the declarator structure, checking decl attributes that were in a type
7371 // position to the decl itself.
7372 for (unsigned I
= 0, E
= PD
.getNumTypeObjects(); I
!= E
; ++I
) {
7373 if (PD
.getTypeObject(I
).getAttrs().hasAttribute(Kind
))
7377 // Finally, check attributes on the decl itself.
7378 return PD
.getAttributes().hasAttribute(Kind
) ||
7379 PD
.getDeclarationAttributes().hasAttribute(Kind
);
7382 /// Adjust the \c DeclContext for a function or variable that might be a
7383 /// function-local external declaration.
7384 bool Sema::adjustContextForLocalExternDecl(DeclContext
*&DC
) {
7385 if (!DC
->isFunctionOrMethod())
7388 // If this is a local extern function or variable declared within a function
7389 // template, don't add it into the enclosing namespace scope until it is
7390 // instantiated; it might have a dependent type right now.
7391 if (DC
->isDependentContext())
7394 // C++11 [basic.link]p7:
7395 // When a block scope declaration of an entity with linkage is not found to
7396 // refer to some other declaration, then that entity is a member of the
7397 // innermost enclosing namespace.
7399 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7400 // semantically-enclosing namespace, not a lexically-enclosing one.
7401 while (!DC
->isFileContext() && !isa
<LinkageSpecDecl
>(DC
))
7402 DC
= DC
->getParent();
7406 /// Returns true if given declaration has external C language linkage.
7407 static bool isDeclExternC(const Decl
*D
) {
7408 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
))
7409 return FD
->isExternC();
7410 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
7411 return VD
->isExternC();
7413 llvm_unreachable("Unknown type of decl!");
7416 /// Returns true if there hasn't been any invalid type diagnosed.
7417 static bool diagnoseOpenCLTypes(Sema
&Se
, VarDecl
*NewVD
) {
7418 DeclContext
*DC
= NewVD
->getDeclContext();
7419 QualType R
= NewVD
->getType();
7421 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7422 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7424 if (R
->isImageType() || R
->isPipeType()) {
7425 Se
.Diag(NewVD
->getLocation(),
7426 diag::err_opencl_type_can_only_be_used_as_function_parameter
)
7428 NewVD
->setInvalidDecl();
7432 // OpenCL v1.2 s6.9.r:
7433 // The event type cannot be used to declare a program scope variable.
7434 // OpenCL v2.0 s6.9.q:
7435 // The clk_event_t and reserve_id_t types cannot be declared in program
7437 if (NewVD
->hasGlobalStorage() && !NewVD
->isStaticLocal()) {
7438 if (R
->isReserveIDT() || R
->isClkEventT() || R
->isEventT()) {
7439 Se
.Diag(NewVD
->getLocation(),
7440 diag::err_invalid_type_for_program_scope_var
)
7442 NewVD
->setInvalidDecl();
7447 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7448 if (!Se
.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7449 Se
.getLangOpts())) {
7450 QualType NR
= R
.getCanonicalType();
7451 while (NR
->isPointerType() || NR
->isMemberFunctionPointerType() ||
7452 NR
->isReferenceType()) {
7453 if (NR
->isFunctionPointerType() || NR
->isMemberFunctionPointerType() ||
7454 NR
->isFunctionReferenceType()) {
7455 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_function_pointer
)
7456 << NR
->isReferenceType();
7457 NewVD
->setInvalidDecl();
7460 NR
= NR
->getPointeeType();
7464 if (!Se
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7465 Se
.getLangOpts())) {
7466 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7467 // half array type (unless the cl_khr_fp16 extension is enabled).
7468 if (Se
.Context
.getBaseElementType(R
)->isHalfType()) {
7469 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_half_declaration
) << R
;
7470 NewVD
->setInvalidDecl();
7475 // OpenCL v1.2 s6.9.r:
7476 // The event type cannot be used with the __local, __constant and __global
7477 // address space qualifiers.
7478 if (R
->isEventT()) {
7479 if (R
.getAddressSpace() != LangAS::opencl_private
) {
7480 Se
.Diag(NewVD
->getBeginLoc(), diag::err_event_t_addr_space_qual
);
7481 NewVD
->setInvalidDecl();
7486 if (R
->isSamplerT()) {
7487 // OpenCL v1.2 s6.9.b p4:
7488 // The sampler type cannot be used with the __local and __global address
7489 // space qualifiers.
7490 if (R
.getAddressSpace() == LangAS::opencl_local
||
7491 R
.getAddressSpace() == LangAS::opencl_global
) {
7492 Se
.Diag(NewVD
->getLocation(), diag::err_wrong_sampler_addressspace
);
7493 NewVD
->setInvalidDecl();
7496 // OpenCL v1.2 s6.12.14.1:
7497 // A global sampler must be declared with either the constant address
7498 // space qualifier or with the const qualifier.
7499 if (DC
->isTranslationUnit() &&
7500 !(R
.getAddressSpace() == LangAS::opencl_constant
||
7501 R
.isConstQualified())) {
7502 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_nonconst_global_sampler
);
7503 NewVD
->setInvalidDecl();
7505 if (NewVD
->isInvalidDecl())
7512 template <typename AttrTy
>
7513 static void copyAttrFromTypedefToDecl(Sema
&S
, Decl
*D
, const TypedefType
*TT
) {
7514 const TypedefNameDecl
*TND
= TT
->getDecl();
7515 if (const auto *Attribute
= TND
->getAttr
<AttrTy
>()) {
7516 AttrTy
*Clone
= Attribute
->clone(S
.Context
);
7517 Clone
->setInherited(true);
7522 // This function emits warning and a corresponding note based on the
7523 // ReadOnlyPlacementAttr attribute. The warning checks that all global variable
7524 // declarations of an annotated type must be const qualified.
7525 void emitReadOnlyPlacementAttrWarning(Sema
&S
, const VarDecl
*VD
) {
7526 QualType VarType
= VD
->getType().getCanonicalType();
7528 // Ignore local declarations (for now) and those with const qualification.
7529 // TODO: Local variables should not be allowed if their type declaration has
7530 // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch.
7531 if (!VD
|| VD
->hasLocalStorage() || VD
->getType().isConstQualified())
7534 if (VarType
->isArrayType()) {
7535 // Retrieve element type for array declarations.
7536 VarType
= S
.getASTContext().getBaseElementType(VarType
);
7539 const RecordDecl
*RD
= VarType
->getAsRecordDecl();
7541 // Check if the record declaration is present and if it has any attributes.
7545 if (const auto *ConstDecl
= RD
->getAttr
<ReadOnlyPlacementAttr
>()) {
7546 S
.Diag(VD
->getLocation(), diag::warn_var_decl_not_read_only
) << RD
;
7547 S
.Diag(ConstDecl
->getLocation(), diag::note_enforce_read_only_placement
);
7552 NamedDecl
*Sema::ActOnVariableDeclarator(
7553 Scope
*S
, Declarator
&D
, DeclContext
*DC
, TypeSourceInfo
*TInfo
,
7554 LookupResult
&Previous
, MultiTemplateParamsArg TemplateParamLists
,
7555 bool &AddToScope
, ArrayRef
<BindingDecl
*> Bindings
) {
7556 QualType R
= TInfo
->getType();
7557 DeclarationName Name
= GetNameForDeclarator(D
).getName();
7559 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
7560 bool IsPlaceholderVariable
= false;
7562 if (D
.isDecompositionDeclarator()) {
7563 // Take the name of the first declarator as our name for diagnostic
7565 auto &Decomp
= D
.getDecompositionDeclarator();
7566 if (!Decomp
.bindings().empty()) {
7567 II
= Decomp
.bindings()[0].Name
;
7571 Diag(D
.getIdentifierLoc(), diag::err_bad_variable_name
) << Name
;
7576 DeclSpec::SCS SCSpec
= D
.getDeclSpec().getStorageClassSpec();
7577 StorageClass SC
= StorageClassSpecToVarDeclStorageClass(D
.getDeclSpec());
7579 if (LangOpts
.CPlusPlus
&& (DC
->isClosure() || DC
->isFunctionOrMethod()) &&
7580 SC
!= SC_Static
&& SC
!= SC_Extern
&& II
&& II
->isPlaceholder()) {
7581 IsPlaceholderVariable
= true;
7582 if (!Previous
.empty()) {
7583 NamedDecl
*PrevDecl
= *Previous
.begin();
7584 bool SameDC
= PrevDecl
->getDeclContext()->getRedeclContext()->Equals(
7585 DC
->getRedeclContext());
7586 if (SameDC
&& isDeclInScope(PrevDecl
, CurContext
, S
, false))
7587 DiagPlaceholderVariableDefinition(D
.getIdentifierLoc());
7591 // dllimport globals without explicit storage class are treated as extern. We
7592 // have to change the storage class this early to get the right DeclContext.
7593 if (SC
== SC_None
&& !DC
->isRecord() &&
7594 hasParsedAttr(S
, D
, ParsedAttr::AT_DLLImport
) &&
7595 !hasParsedAttr(S
, D
, ParsedAttr::AT_DLLExport
))
7598 DeclContext
*OriginalDC
= DC
;
7599 bool IsLocalExternDecl
= SC
== SC_Extern
&&
7600 adjustContextForLocalExternDecl(DC
);
7602 if (SCSpec
== DeclSpec::SCS_mutable
) {
7603 // mutable can only appear on non-static class members, so it's always
7605 Diag(D
.getIdentifierLoc(), diag::err_mutable_nonmember
);
7610 if (getLangOpts().CPlusPlus11
&& SCSpec
== DeclSpec::SCS_register
&&
7611 !D
.getAsmLabel() && !getSourceManager().isInSystemMacro(
7612 D
.getDeclSpec().getStorageClassSpecLoc())) {
7613 // In C++11, the 'register' storage class specifier is deprecated.
7614 // Suppress the warning in system macros, it's used in macros in some
7615 // popular C system headers, such as in glibc's htonl() macro.
7616 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7617 getLangOpts().CPlusPlus17
? diag::ext_register_storage_class
7618 : diag::warn_deprecated_register
)
7619 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7622 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
7624 if (!DC
->isRecord() && S
->getFnParent() == nullptr) {
7625 // C99 6.9p2: The storage-class specifiers auto and register shall not
7626 // appear in the declaration specifiers in an external declaration.
7627 // Global Register+Asm is a GNU extension we support.
7628 if (SC
== SC_Auto
|| (SC
== SC_Register
&& !D
.getAsmLabel())) {
7629 Diag(D
.getIdentifierLoc(), diag::err_typecheck_sclass_fscope
);
7634 // If this variable has a VLA type and an initializer, try to
7635 // fold to a constant-sized type. This is otherwise invalid.
7636 if (D
.hasInitializer() && R
->isVariableArrayType())
7637 tryToFixVariablyModifiedVarType(TInfo
, R
, D
.getIdentifierLoc(),
7640 bool IsMemberSpecialization
= false;
7641 bool IsVariableTemplateSpecialization
= false;
7642 bool IsPartialSpecialization
= false;
7643 bool IsVariableTemplate
= false;
7644 VarDecl
*NewVD
= nullptr;
7645 VarTemplateDecl
*NewTemplate
= nullptr;
7646 TemplateParameterList
*TemplateParams
= nullptr;
7647 if (!getLangOpts().CPlusPlus
) {
7648 NewVD
= VarDecl::Create(Context
, DC
, D
.getBeginLoc(), D
.getIdentifierLoc(),
7651 if (R
->getContainedDeducedType())
7652 ParsingInitForAutoVars
.insert(NewVD
);
7654 if (D
.isInvalidType())
7655 NewVD
->setInvalidDecl();
7657 if (NewVD
->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7658 NewVD
->hasLocalStorage())
7659 checkNonTrivialCUnion(NewVD
->getType(), NewVD
->getLocation(),
7660 NTCUC_AutoVar
, NTCUK_Destruct
);
7662 bool Invalid
= false;
7664 if (DC
->isRecord() && !CurContext
->isRecord()) {
7665 // This is an out-of-line definition of a static data member.
7670 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7671 diag::err_static_out_of_line
)
7672 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7677 // [dcl.stc] p2: The auto or register specifiers shall be applied only
7678 // to names of variables declared in a block or to function parameters.
7679 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7682 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7683 diag::err_storage_class_for_static_member
)
7684 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7686 case SC_PrivateExtern
:
7687 llvm_unreachable("C storage class in c++!");
7691 if (SC
== SC_Static
&& CurContext
->isRecord()) {
7692 if (const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(DC
)) {
7693 // Walk up the enclosing DeclContexts to check for any that are
7694 // incompatible with static data members.
7695 const DeclContext
*FunctionOrMethod
= nullptr;
7696 const CXXRecordDecl
*AnonStruct
= nullptr;
7697 for (DeclContext
*Ctxt
= DC
; Ctxt
; Ctxt
= Ctxt
->getParent()) {
7698 if (Ctxt
->isFunctionOrMethod()) {
7699 FunctionOrMethod
= Ctxt
;
7702 const CXXRecordDecl
*ParentDecl
= dyn_cast
<CXXRecordDecl
>(Ctxt
);
7703 if (ParentDecl
&& !ParentDecl
->getDeclName()) {
7704 AnonStruct
= ParentDecl
;
7708 if (FunctionOrMethod
) {
7709 // C++ [class.static.data]p5: A local class shall not have static data
7711 Diag(D
.getIdentifierLoc(),
7712 diag::err_static_data_member_not_allowed_in_local_class
)
7713 << Name
<< RD
->getDeclName()
7714 << llvm::to_underlying(RD
->getTagKind());
7715 } else if (AnonStruct
) {
7716 // C++ [class.static.data]p4: Unnamed classes and classes contained
7717 // directly or indirectly within unnamed classes shall not contain
7718 // static data members.
7719 Diag(D
.getIdentifierLoc(),
7720 diag::err_static_data_member_not_allowed_in_anon_struct
)
7721 << Name
<< llvm::to_underlying(AnonStruct
->getTagKind());
7723 } else if (RD
->isUnion()) {
7724 // C++98 [class.union]p1: If a union contains a static data member,
7725 // the program is ill-formed. C++11 drops this restriction.
7726 Diag(D
.getIdentifierLoc(),
7727 getLangOpts().CPlusPlus11
7728 ? diag::warn_cxx98_compat_static_data_member_in_union
7729 : diag::ext_static_data_member_in_union
) << Name
;
7734 // Match up the template parameter lists with the scope specifier, then
7735 // determine whether we have a template or a template specialization.
7736 bool InvalidScope
= false;
7737 TemplateParams
= MatchTemplateParametersToScopeSpecifier(
7738 D
.getDeclSpec().getBeginLoc(), D
.getIdentifierLoc(),
7739 D
.getCXXScopeSpec(),
7740 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7741 ? D
.getName().TemplateId
7744 /*never a friend*/ false, IsMemberSpecialization
, InvalidScope
);
7745 Invalid
|= InvalidScope
;
7747 if (TemplateParams
) {
7748 if (!TemplateParams
->size() &&
7749 D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) {
7750 // There is an extraneous 'template<>' for this variable. Complain
7751 // about it, but allow the declaration of the variable.
7752 Diag(TemplateParams
->getTemplateLoc(),
7753 diag::err_template_variable_noparams
)
7755 << SourceRange(TemplateParams
->getTemplateLoc(),
7756 TemplateParams
->getRAngleLoc());
7757 TemplateParams
= nullptr;
7759 // Check that we can declare a template here.
7760 if (CheckTemplateDeclScope(S
, TemplateParams
))
7763 if (D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
) {
7764 // This is an explicit specialization or a partial specialization.
7765 IsVariableTemplateSpecialization
= true;
7766 IsPartialSpecialization
= TemplateParams
->size() > 0;
7767 } else { // if (TemplateParams->size() > 0)
7768 // This is a template declaration.
7769 IsVariableTemplate
= true;
7771 // Only C++1y supports variable templates (N3651).
7772 Diag(D
.getIdentifierLoc(),
7773 getLangOpts().CPlusPlus14
7774 ? diag::warn_cxx11_compat_variable_template
7775 : diag::ext_variable_template
);
7779 // Check that we can declare a member specialization here.
7780 if (!TemplateParamLists
.empty() && IsMemberSpecialization
&&
7781 CheckTemplateDeclScope(S
, TemplateParamLists
.back()))
7784 D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) &&
7785 "should have a 'template<>' for this decl");
7788 if (IsVariableTemplateSpecialization
) {
7789 SourceLocation TemplateKWLoc
=
7790 TemplateParamLists
.size() > 0
7791 ? TemplateParamLists
[0]->getTemplateLoc()
7793 DeclResult Res
= ActOnVarTemplateSpecialization(
7794 S
, D
, TInfo
, TemplateKWLoc
, TemplateParams
, SC
,
7795 IsPartialSpecialization
);
7796 if (Res
.isInvalid())
7798 NewVD
= cast
<VarDecl
>(Res
.get());
7800 } else if (D
.isDecompositionDeclarator()) {
7801 NewVD
= DecompositionDecl::Create(Context
, DC
, D
.getBeginLoc(),
7802 D
.getIdentifierLoc(), R
, TInfo
, SC
,
7805 NewVD
= VarDecl::Create(Context
, DC
, D
.getBeginLoc(),
7806 D
.getIdentifierLoc(), II
, R
, TInfo
, SC
);
7808 // If this is supposed to be a variable template, create it as such.
7809 if (IsVariableTemplate
) {
7811 VarTemplateDecl::Create(Context
, DC
, D
.getIdentifierLoc(), Name
,
7812 TemplateParams
, NewVD
);
7813 NewVD
->setDescribedVarTemplate(NewTemplate
);
7816 // If this decl has an auto type in need of deduction, make a note of the
7817 // Decl so we can diagnose uses of it in its own initializer.
7818 if (R
->getContainedDeducedType())
7819 ParsingInitForAutoVars
.insert(NewVD
);
7821 if (D
.isInvalidType() || Invalid
) {
7822 NewVD
->setInvalidDecl();
7824 NewTemplate
->setInvalidDecl();
7827 SetNestedNameSpecifier(*this, NewVD
, D
);
7829 // If we have any template parameter lists that don't directly belong to
7830 // the variable (matching the scope specifier), store them.
7831 // An explicit variable template specialization does not own any template
7833 bool IsExplicitSpecialization
=
7834 IsVariableTemplateSpecialization
&& !IsPartialSpecialization
;
7835 unsigned VDTemplateParamLists
=
7836 (TemplateParams
&& !IsExplicitSpecialization
) ? 1 : 0;
7837 if (TemplateParamLists
.size() > VDTemplateParamLists
)
7838 NewVD
->setTemplateParameterListsInfo(
7839 Context
, TemplateParamLists
.drop_back(VDTemplateParamLists
));
7842 if (D
.getDeclSpec().isInlineSpecified()) {
7843 if (!getLangOpts().CPlusPlus
) {
7844 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
7846 } else if (CurContext
->isFunctionOrMethod()) {
7847 // 'inline' is not allowed on block scope variable declaration.
7848 Diag(D
.getDeclSpec().getInlineSpecLoc(),
7849 diag::err_inline_declaration_block_scope
) << Name
7850 << FixItHint::CreateRemoval(D
.getDeclSpec().getInlineSpecLoc());
7852 Diag(D
.getDeclSpec().getInlineSpecLoc(),
7853 getLangOpts().CPlusPlus17
? diag::warn_cxx14_compat_inline_variable
7854 : diag::ext_inline_variable
);
7855 NewVD
->setInlineSpecified();
7859 // Set the lexical context. If the declarator has a C++ scope specifier, the
7860 // lexical context will be different from the semantic context.
7861 NewVD
->setLexicalDeclContext(CurContext
);
7863 NewTemplate
->setLexicalDeclContext(CurContext
);
7865 if (IsLocalExternDecl
) {
7866 if (D
.isDecompositionDeclarator())
7867 for (auto *B
: Bindings
)
7868 B
->setLocalExternDecl();
7870 NewVD
->setLocalExternDecl();
7873 bool EmitTLSUnsupportedError
= false;
7874 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec()) {
7875 // C++11 [dcl.stc]p4:
7876 // When thread_local is applied to a variable of block scope the
7877 // storage-class-specifier static is implied if it does not appear
7879 // Core issue: 'static' is not implied if the variable is declared
7881 if (NewVD
->hasLocalStorage() &&
7882 (SCSpec
!= DeclSpec::SCS_unspecified
||
7883 TSCS
!= DeclSpec::TSCS_thread_local
||
7884 !DC
->isFunctionOrMethod()))
7885 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7886 diag::err_thread_non_global
)
7887 << DeclSpec::getSpecifierName(TSCS
);
7888 else if (!Context
.getTargetInfo().isTLSSupported()) {
7889 if (getLangOpts().CUDA
|| getLangOpts().OpenMPIsTargetDevice
||
7890 getLangOpts().SYCLIsDevice
) {
7891 // Postpone error emission until we've collected attributes required to
7892 // figure out whether it's a host or device variable and whether the
7893 // error should be ignored.
7894 EmitTLSUnsupportedError
= true;
7895 // We still need to mark the variable as TLS so it shows up in AST with
7896 // proper storage class for other tools to use even if we're not going
7897 // to emit any code for it.
7898 NewVD
->setTSCSpec(TSCS
);
7900 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7901 diag::err_thread_unsupported
);
7903 NewVD
->setTSCSpec(TSCS
);
7906 switch (D
.getDeclSpec().getConstexprSpecifier()) {
7907 case ConstexprSpecKind::Unspecified
:
7910 case ConstexprSpecKind::Consteval
:
7911 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
7912 diag::err_constexpr_wrong_decl_kind
)
7913 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
7916 case ConstexprSpecKind::Constexpr
:
7917 NewVD
->setConstexpr(true);
7918 // C++1z [dcl.spec.constexpr]p1:
7919 // A static data member declared with the constexpr specifier is
7920 // implicitly an inline variable.
7921 if (NewVD
->isStaticDataMember() &&
7922 (getLangOpts().CPlusPlus17
||
7923 Context
.getTargetInfo().getCXXABI().isMicrosoft()))
7924 NewVD
->setImplicitlyInline();
7927 case ConstexprSpecKind::Constinit
:
7928 if (!NewVD
->hasGlobalStorage())
7929 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
7930 diag::err_constinit_local_variable
);
7933 ConstInitAttr::Create(Context
, D
.getDeclSpec().getConstexprSpecLoc(),
7934 ConstInitAttr::Keyword_constinit
));
7939 // An inline definition of a function with external linkage shall
7940 // not contain a definition of a modifiable object with static or
7941 // thread storage duration...
7942 // We only apply this when the function is required to be defined
7943 // elsewhere, i.e. when the function is not 'extern inline'. Note
7944 // that a local variable with thread storage duration still has to
7945 // be marked 'static'. Also note that it's possible to get these
7946 // semantics in C++ using __attribute__((gnu_inline)).
7947 if (SC
== SC_Static
&& S
->getFnParent() != nullptr &&
7948 !NewVD
->getType().isConstQualified()) {
7949 FunctionDecl
*CurFD
= getCurFunctionDecl();
7950 if (CurFD
&& isFunctionDefinitionDiscarded(*this, CurFD
)) {
7951 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7952 diag::warn_static_local_in_extern_inline
);
7953 MaybeSuggestAddingStaticToDecl(CurFD
);
7957 if (D
.getDeclSpec().isModulePrivateSpecified()) {
7958 if (IsVariableTemplateSpecialization
)
7959 Diag(NewVD
->getLocation(), diag::err_module_private_specialization
)
7960 << (IsPartialSpecialization
? 1 : 0)
7961 << FixItHint::CreateRemoval(
7962 D
.getDeclSpec().getModulePrivateSpecLoc());
7963 else if (IsMemberSpecialization
)
7964 Diag(NewVD
->getLocation(), diag::err_module_private_specialization
)
7966 << FixItHint::CreateRemoval(D
.getDeclSpec().getModulePrivateSpecLoc());
7967 else if (NewVD
->hasLocalStorage())
7968 Diag(NewVD
->getLocation(), diag::err_module_private_local
)
7970 << SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
7971 << FixItHint::CreateRemoval(
7972 D
.getDeclSpec().getModulePrivateSpecLoc());
7974 NewVD
->setModulePrivate();
7976 NewTemplate
->setModulePrivate();
7977 for (auto *B
: Bindings
)
7978 B
->setModulePrivate();
7982 if (getLangOpts().OpenCL
) {
7983 deduceOpenCLAddressSpace(NewVD
);
7985 DeclSpec::TSCS TSC
= D
.getDeclSpec().getThreadStorageClassSpec();
7986 if (TSC
!= TSCS_unspecified
) {
7987 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7988 diag::err_opencl_unknown_type_specifier
)
7989 << getLangOpts().getOpenCLVersionString()
7990 << DeclSpec::getSpecifierName(TSC
) << 1;
7991 NewVD
->setInvalidDecl();
7995 // WebAssembly tables are always in address space 1 (wasm_var). Don't apply
7996 // address space if the table has local storage (semantic checks elsewhere
7997 // will produce an error anyway).
7998 if (const auto *ATy
= dyn_cast
<ArrayType
>(NewVD
->getType())) {
7999 if (ATy
&& ATy
->getElementType().isWebAssemblyReferenceType() &&
8000 !NewVD
->hasLocalStorage()) {
8001 QualType Type
= Context
.getAddrSpaceQualType(
8002 NewVD
->getType(), Context
.getLangASForBuiltinAddressSpace(1));
8003 NewVD
->setType(Type
);
8007 // Handle attributes prior to checking for duplicates in MergeVarDecl
8008 ProcessDeclAttributes(S
, NewVD
, D
);
8010 // FIXME: This is probably the wrong location to be doing this and we should
8011 // probably be doing this for more attributes (especially for function
8012 // pointer attributes such as format, warn_unused_result, etc.). Ideally
8013 // the code to copy attributes would be generated by TableGen.
8014 if (R
->isFunctionPointerType())
8015 if (const auto *TT
= R
->getAs
<TypedefType
>())
8016 copyAttrFromTypedefToDecl
<AllocSizeAttr
>(*this, NewVD
, TT
);
8018 if (getLangOpts().CUDA
|| getLangOpts().OpenMPIsTargetDevice
||
8019 getLangOpts().SYCLIsDevice
) {
8020 if (EmitTLSUnsupportedError
&&
8021 ((getLangOpts().CUDA
&& DeclAttrsMatchCUDAMode(getLangOpts(), NewVD
)) ||
8022 (getLangOpts().OpenMPIsTargetDevice
&&
8023 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD
))))
8024 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
8025 diag::err_thread_unsupported
);
8027 if (EmitTLSUnsupportedError
&&
8028 (LangOpts
.SYCLIsDevice
||
8029 (LangOpts
.OpenMP
&& LangOpts
.OpenMPIsTargetDevice
)))
8030 targetDiag(D
.getIdentifierLoc(), diag::err_thread_unsupported
);
8031 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
8032 // storage [duration]."
8033 if (SC
== SC_None
&& S
->getFnParent() != nullptr &&
8034 (NewVD
->hasAttr
<CUDASharedAttr
>() ||
8035 NewVD
->hasAttr
<CUDAConstantAttr
>())) {
8036 NewVD
->setStorageClass(SC_Static
);
8040 // Ensure that dllimport globals without explicit storage class are treated as
8041 // extern. The storage class is set above using parsed attributes. Now we can
8042 // check the VarDecl itself.
8043 assert(!NewVD
->hasAttr
<DLLImportAttr
>() ||
8044 NewVD
->getAttr
<DLLImportAttr
>()->isInherited() ||
8045 NewVD
->isStaticDataMember() || NewVD
->getStorageClass() != SC_None
);
8047 // In auto-retain/release, infer strong retension for variables of
8049 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(NewVD
))
8050 NewVD
->setInvalidDecl();
8052 // Handle GNU asm-label extension (encoded as an attribute).
8053 if (Expr
*E
= (Expr
*)D
.getAsmLabel()) {
8054 // The parser guarantees this is a string.
8055 StringLiteral
*SE
= cast
<StringLiteral
>(E
);
8056 StringRef Label
= SE
->getString();
8057 if (S
->getFnParent() != nullptr) {
8061 Diag(E
->getExprLoc(), diag::warn_asm_label_on_auto_decl
) << Label
;
8064 // Local Named register
8065 if (!Context
.getTargetInfo().isValidGCCRegisterName(Label
) &&
8066 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
8067 Diag(E
->getExprLoc(), diag::err_asm_unknown_register_name
) << Label
;
8071 case SC_PrivateExtern
:
8074 } else if (SC
== SC_Register
) {
8075 // Global Named register
8076 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD
)) {
8077 const auto &TI
= Context
.getTargetInfo();
8078 bool HasSizeMismatch
;
8080 if (!TI
.isValidGCCRegisterName(Label
))
8081 Diag(E
->getExprLoc(), diag::err_asm_unknown_register_name
) << Label
;
8082 else if (!TI
.validateGlobalRegisterVariable(Label
,
8083 Context
.getTypeSize(R
),
8085 Diag(E
->getExprLoc(), diag::err_asm_invalid_global_var_reg
) << Label
;
8086 else if (HasSizeMismatch
)
8087 Diag(E
->getExprLoc(), diag::err_asm_register_size_mismatch
) << Label
;
8090 if (!R
->isIntegralType(Context
) && !R
->isPointerType()) {
8091 Diag(D
.getBeginLoc(), diag::err_asm_bad_register_type
);
8092 NewVD
->setInvalidDecl(true);
8096 NewVD
->addAttr(AsmLabelAttr::Create(Context
, Label
,
8097 /*IsLiteralLabel=*/true,
8098 SE
->getStrTokenLoc(0)));
8099 } else if (!ExtnameUndeclaredIdentifiers
.empty()) {
8100 llvm::DenseMap
<IdentifierInfo
*,AsmLabelAttr
*>::iterator I
=
8101 ExtnameUndeclaredIdentifiers
.find(NewVD
->getIdentifier());
8102 if (I
!= ExtnameUndeclaredIdentifiers
.end()) {
8103 if (isDeclExternC(NewVD
)) {
8104 NewVD
->addAttr(I
->second
);
8105 ExtnameUndeclaredIdentifiers
.erase(I
);
8107 Diag(NewVD
->getLocation(), diag::warn_redefine_extname_not_applied
)
8108 << /*Variable*/1 << NewVD
;
8112 // Find the shadowed declaration before filtering for scope.
8113 NamedDecl
*ShadowedDecl
= D
.getCXXScopeSpec().isEmpty()
8114 ? getShadowedDeclaration(NewVD
, Previous
)
8117 // Don't consider existing declarations that are in a different
8118 // scope and are out-of-semantic-context declarations (if the new
8119 // declaration has linkage).
8120 FilterLookupForScope(Previous
, OriginalDC
, S
, shouldConsiderLinkage(NewVD
),
8121 D
.getCXXScopeSpec().isNotEmpty() ||
8122 IsMemberSpecialization
||
8123 IsVariableTemplateSpecialization
);
8125 // Check whether the previous declaration is in the same block scope. This
8126 // affects whether we merge types with it, per C++11 [dcl.array]p3.
8127 if (getLangOpts().CPlusPlus
&&
8128 NewVD
->isLocalVarDecl() && NewVD
->hasExternalStorage())
8129 NewVD
->setPreviousDeclInSameBlockScope(
8130 Previous
.isSingleResult() && !Previous
.isShadowed() &&
8131 isDeclInScope(Previous
.getFoundDecl(), OriginalDC
, S
, false));
8133 if (!getLangOpts().CPlusPlus
) {
8134 D
.setRedeclaration(CheckVariableDeclaration(NewVD
, Previous
));
8136 // If this is an explicit specialization of a static data member, check it.
8137 if (IsMemberSpecialization
&& !NewVD
->isInvalidDecl() &&
8138 CheckMemberSpecialization(NewVD
, Previous
))
8139 NewVD
->setInvalidDecl();
8141 // Merge the decl with the existing one if appropriate.
8142 if (!Previous
.empty()) {
8143 if (Previous
.isSingleResult() &&
8144 isa
<FieldDecl
>(Previous
.getFoundDecl()) &&
8145 D
.getCXXScopeSpec().isSet()) {
8146 // The user tried to define a non-static data member
8147 // out-of-line (C++ [dcl.meaning]p1).
8148 Diag(NewVD
->getLocation(), diag::err_nonstatic_member_out_of_line
)
8149 << D
.getCXXScopeSpec().getRange();
8151 NewVD
->setInvalidDecl();
8153 } else if (D
.getCXXScopeSpec().isSet()) {
8154 // No previous declaration in the qualifying scope.
8155 Diag(D
.getIdentifierLoc(), diag::err_no_member
)
8156 << Name
<< computeDeclContext(D
.getCXXScopeSpec(), true)
8157 << D
.getCXXScopeSpec().getRange();
8158 NewVD
->setInvalidDecl();
8161 if (!IsVariableTemplateSpecialization
&& !IsPlaceholderVariable
)
8162 D
.setRedeclaration(CheckVariableDeclaration(NewVD
, Previous
));
8164 // CheckVariableDeclaration will set NewVD as invalid if something is in
8165 // error like WebAssembly tables being declared as arrays with a non-zero
8166 // size, but then parsing continues and emits further errors on that line.
8167 // To avoid that we check here if it happened and return nullptr.
8168 if (NewVD
->getType()->isWebAssemblyTableType() && NewVD
->isInvalidDecl())
8172 VarTemplateDecl
*PrevVarTemplate
=
8173 NewVD
->getPreviousDecl()
8174 ? NewVD
->getPreviousDecl()->getDescribedVarTemplate()
8177 // Check the template parameter list of this declaration, possibly
8178 // merging in the template parameter list from the previous variable
8179 // template declaration.
8180 if (CheckTemplateParameterList(
8182 PrevVarTemplate
? PrevVarTemplate
->getTemplateParameters()
8184 (D
.getCXXScopeSpec().isSet() && DC
&& DC
->isRecord() &&
8185 DC
->isDependentContext())
8186 ? TPC_ClassTemplateMember
8188 NewVD
->setInvalidDecl();
8190 // If we are providing an explicit specialization of a static variable
8191 // template, make a note of that.
8192 if (PrevVarTemplate
&&
8193 PrevVarTemplate
->getInstantiatedFromMemberTemplate())
8194 PrevVarTemplate
->setMemberSpecialization();
8198 // Diagnose shadowed variables iff this isn't a redeclaration.
8199 if (!IsPlaceholderVariable
&& ShadowedDecl
&& !D
.isRedeclaration())
8200 CheckShadow(NewVD
, ShadowedDecl
, Previous
);
8202 ProcessPragmaWeak(S
, NewVD
);
8204 // If this is the first declaration of an extern C variable, update
8205 // the map of such variables.
8206 if (NewVD
->isFirstDecl() && !NewVD
->isInvalidDecl() &&
8207 isIncompleteDeclExternC(*this, NewVD
))
8208 RegisterLocallyScopedExternCDecl(NewVD
, S
);
8210 if (getLangOpts().CPlusPlus
&& NewVD
->isStaticLocal()) {
8211 MangleNumberingContext
*MCtx
;
8212 Decl
*ManglingContextDecl
;
8213 std::tie(MCtx
, ManglingContextDecl
) =
8214 getCurrentMangleNumberContext(NewVD
->getDeclContext());
8216 Context
.setManglingNumber(
8217 NewVD
, MCtx
->getManglingNumber(
8218 NewVD
, getMSManglingNumber(getLangOpts(), S
)));
8219 Context
.setStaticLocalNumber(NewVD
, MCtx
->getStaticLocalNumber(NewVD
));
8223 // Special handling of variable named 'main'.
8224 if (Name
.getAsIdentifierInfo() && Name
.getAsIdentifierInfo()->isStr("main") &&
8225 NewVD
->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8226 !getLangOpts().Freestanding
&& !NewVD
->getDescribedVarTemplate()) {
8228 // C++ [basic.start.main]p3
8229 // A program that declares a variable main at global scope is ill-formed.
8230 if (getLangOpts().CPlusPlus
)
8231 Diag(D
.getBeginLoc(), diag::err_main_global_variable
);
8233 // In C, and external-linkage variable named main results in undefined
8235 else if (NewVD
->hasExternalFormalLinkage())
8236 Diag(D
.getBeginLoc(), diag::warn_main_redefined
);
8239 if (D
.isRedeclaration() && !Previous
.empty()) {
8240 NamedDecl
*Prev
= Previous
.getRepresentativeDecl();
8241 checkDLLAttributeRedeclaration(*this, Prev
, NewVD
, IsMemberSpecialization
,
8242 D
.isFunctionDefinition());
8246 if (NewVD
->isInvalidDecl())
8247 NewTemplate
->setInvalidDecl();
8248 ActOnDocumentableDecl(NewTemplate
);
8252 if (IsMemberSpecialization
&& !NewVD
->isInvalidDecl())
8253 CompleteMemberSpecialization(NewVD
, Previous
);
8255 emitReadOnlyPlacementAttrWarning(*this, NewVD
);
8260 /// Enum describing the %select options in diag::warn_decl_shadow.
8261 enum ShadowedDeclKind
{
8268 SDK_StructuredBinding
8271 /// Determine what kind of declaration we're shadowing.
8272 static ShadowedDeclKind
computeShadowedDeclKind(const NamedDecl
*ShadowedDecl
,
8273 const DeclContext
*OldDC
) {
8274 if (isa
<TypeAliasDecl
>(ShadowedDecl
))
8276 else if (isa
<TypedefDecl
>(ShadowedDecl
))
8278 else if (isa
<BindingDecl
>(ShadowedDecl
))
8279 return SDK_StructuredBinding
;
8280 else if (isa
<RecordDecl
>(OldDC
))
8281 return isa
<FieldDecl
>(ShadowedDecl
) ? SDK_Field
: SDK_StaticMember
;
8283 return OldDC
->isFileContext() ? SDK_Global
: SDK_Local
;
8286 /// Return the location of the capture if the given lambda captures the given
8287 /// variable \p VD, or an invalid source location otherwise.
8288 static SourceLocation
getCaptureLocation(const LambdaScopeInfo
*LSI
,
8289 const VarDecl
*VD
) {
8290 for (const Capture
&Capture
: LSI
->Captures
) {
8291 if (Capture
.isVariableCapture() && Capture
.getVariable() == VD
)
8292 return Capture
.getLocation();
8294 return SourceLocation();
8297 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine
&Diags
,
8298 const LookupResult
&R
) {
8299 // Only diagnose if we're shadowing an unambiguous field or variable.
8300 if (R
.getResultKind() != LookupResult::Found
)
8303 // Return false if warning is ignored.
8304 return !Diags
.isIgnored(diag::warn_decl_shadow
, R
.getNameLoc());
8307 /// Return the declaration shadowed by the given variable \p D, or null
8308 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8309 NamedDecl
*Sema::getShadowedDeclaration(const VarDecl
*D
,
8310 const LookupResult
&R
) {
8311 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8314 // Don't diagnose declarations at file scope.
8315 if (D
->hasGlobalStorage() && !D
->isStaticLocal())
8318 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8319 return isa
<VarDecl
, FieldDecl
, BindingDecl
>(ShadowedDecl
) ? ShadowedDecl
8323 /// Return the declaration shadowed by the given typedef \p D, or null
8324 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8325 NamedDecl
*Sema::getShadowedDeclaration(const TypedefNameDecl
*D
,
8326 const LookupResult
&R
) {
8327 // Don't warn if typedef declaration is part of a class
8328 if (D
->getDeclContext()->isRecord())
8331 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8334 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8335 return isa
<TypedefNameDecl
>(ShadowedDecl
) ? ShadowedDecl
: nullptr;
8338 /// Return the declaration shadowed by the given variable \p D, or null
8339 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8340 NamedDecl
*Sema::getShadowedDeclaration(const BindingDecl
*D
,
8341 const LookupResult
&R
) {
8342 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8345 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8346 return isa
<VarDecl
, FieldDecl
, BindingDecl
>(ShadowedDecl
) ? ShadowedDecl
8350 /// Diagnose variable or built-in function shadowing. Implements
8353 /// This method is called whenever a VarDecl is added to a "useful"
8356 /// \param ShadowedDecl the declaration that is shadowed by the given variable
8357 /// \param R the lookup of the name
8359 void Sema::CheckShadow(NamedDecl
*D
, NamedDecl
*ShadowedDecl
,
8360 const LookupResult
&R
) {
8361 DeclContext
*NewDC
= D
->getDeclContext();
8363 if (FieldDecl
*FD
= dyn_cast
<FieldDecl
>(ShadowedDecl
)) {
8364 // Fields are not shadowed by variables in C++ static methods.
8365 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewDC
))
8369 // Fields shadowed by constructor parameters are a special case. Usually
8370 // the constructor initializes the field with the parameter.
8371 if (isa
<CXXConstructorDecl
>(NewDC
))
8372 if (const auto PVD
= dyn_cast
<ParmVarDecl
>(D
)) {
8373 // Remember that this was shadowed so we can either warn about its
8374 // modification or its existence depending on warning settings.
8375 ShadowingDecls
.insert({PVD
->getCanonicalDecl(), FD
});
8380 if (VarDecl
*shadowedVar
= dyn_cast
<VarDecl
>(ShadowedDecl
))
8381 if (shadowedVar
->isExternC()) {
8382 // For shadowing external vars, make sure that we point to the global
8383 // declaration, not a locally scoped extern declaration.
8384 for (auto *I
: shadowedVar
->redecls())
8385 if (I
->isFileVarDecl()) {
8391 DeclContext
*OldDC
= ShadowedDecl
->getDeclContext()->getRedeclContext();
8393 unsigned WarningDiag
= diag::warn_decl_shadow
;
8394 SourceLocation CaptureLoc
;
8395 if (isa
<VarDecl
>(D
) && isa
<VarDecl
>(ShadowedDecl
) && NewDC
&&
8396 isa
<CXXMethodDecl
>(NewDC
)) {
8397 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(NewDC
->getParent())) {
8398 if (RD
->isLambda() && OldDC
->Encloses(NewDC
->getLexicalParent())) {
8399 if (RD
->getLambdaCaptureDefault() == LCD_None
) {
8400 // Try to avoid warnings for lambdas with an explicit capture list.
8401 const auto *LSI
= cast
<LambdaScopeInfo
>(getCurFunction());
8402 // Warn only when the lambda captures the shadowed decl explicitly.
8403 CaptureLoc
= getCaptureLocation(LSI
, cast
<VarDecl
>(ShadowedDecl
));
8404 if (CaptureLoc
.isInvalid())
8405 WarningDiag
= diag::warn_decl_shadow_uncaptured_local
;
8407 // Remember that this was shadowed so we can avoid the warning if the
8408 // shadowed decl isn't captured and the warning settings allow it.
8409 cast
<LambdaScopeInfo
>(getCurFunction())
8410 ->ShadowingDecls
.push_back(
8411 {cast
<VarDecl
>(D
), cast
<VarDecl
>(ShadowedDecl
)});
8416 if (cast
<VarDecl
>(ShadowedDecl
)->hasLocalStorage()) {
8417 // A variable can't shadow a local variable in an enclosing scope, if
8418 // they are separated by a non-capturing declaration context.
8419 for (DeclContext
*ParentDC
= NewDC
;
8420 ParentDC
&& !ParentDC
->Equals(OldDC
);
8421 ParentDC
= getLambdaAwareParentOfDeclContext(ParentDC
)) {
8422 // Only block literals, captured statements, and lambda expressions
8423 // can capture; other scopes don't.
8424 if (!isa
<BlockDecl
>(ParentDC
) && !isa
<CapturedDecl
>(ParentDC
) &&
8425 !isLambdaCallOperator(ParentDC
)) {
8433 // Never warn about shadowing a placeholder variable.
8434 if (ShadowedDecl
->isPlaceholderVar(getLangOpts()))
8437 // Only warn about certain kinds of shadowing for class members.
8438 if (NewDC
&& NewDC
->isRecord()) {
8439 // In particular, don't warn about shadowing non-class members.
8440 if (!OldDC
->isRecord())
8443 // TODO: should we warn about static data members shadowing
8444 // static data members from base classes?
8446 // TODO: don't diagnose for inaccessible shadowed members.
8447 // This is hard to do perfectly because we might friend the
8448 // shadowing context, but that's just a false negative.
8452 DeclarationName Name
= R
.getLookupName();
8454 // Emit warning and note.
8455 ShadowedDeclKind Kind
= computeShadowedDeclKind(ShadowedDecl
, OldDC
);
8456 Diag(R
.getNameLoc(), WarningDiag
) << Name
<< Kind
<< OldDC
;
8457 if (!CaptureLoc
.isInvalid())
8458 Diag(CaptureLoc
, diag::note_var_explicitly_captured_here
)
8459 << Name
<< /*explicitly*/ 1;
8460 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8463 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
8464 /// when these variables are captured by the lambda.
8465 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo
*LSI
) {
8466 for (const auto &Shadow
: LSI
->ShadowingDecls
) {
8467 const VarDecl
*ShadowedDecl
= Shadow
.ShadowedDecl
;
8468 // Try to avoid the warning when the shadowed decl isn't captured.
8469 SourceLocation CaptureLoc
= getCaptureLocation(LSI
, ShadowedDecl
);
8470 const DeclContext
*OldDC
= ShadowedDecl
->getDeclContext();
8471 Diag(Shadow
.VD
->getLocation(), CaptureLoc
.isInvalid()
8472 ? diag::warn_decl_shadow_uncaptured_local
8473 : diag::warn_decl_shadow
)
8474 << Shadow
.VD
->getDeclName()
8475 << computeShadowedDeclKind(ShadowedDecl
, OldDC
) << OldDC
;
8476 if (!CaptureLoc
.isInvalid())
8477 Diag(CaptureLoc
, diag::note_var_explicitly_captured_here
)
8478 << Shadow
.VD
->getDeclName() << /*explicitly*/ 0;
8479 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8483 /// Check -Wshadow without the advantage of a previous lookup.
8484 void Sema::CheckShadow(Scope
*S
, VarDecl
*D
) {
8485 if (Diags
.isIgnored(diag::warn_decl_shadow
, D
->getLocation()))
8488 LookupResult
R(*this, D
->getDeclName(), D
->getLocation(),
8489 Sema::LookupOrdinaryName
, Sema::ForVisibleRedeclaration
);
8491 if (NamedDecl
*ShadowedDecl
= getShadowedDeclaration(D
, R
))
8492 CheckShadow(D
, ShadowedDecl
, R
);
8495 /// Check if 'E', which is an expression that is about to be modified, refers
8496 /// to a constructor parameter that shadows a field.
8497 void Sema::CheckShadowingDeclModification(Expr
*E
, SourceLocation Loc
) {
8498 // Quickly ignore expressions that can't be shadowing ctor parameters.
8499 if (!getLangOpts().CPlusPlus
|| ShadowingDecls
.empty())
8501 E
= E
->IgnoreParenImpCasts();
8502 auto *DRE
= dyn_cast
<DeclRefExpr
>(E
);
8505 const NamedDecl
*D
= cast
<NamedDecl
>(DRE
->getDecl()->getCanonicalDecl());
8506 auto I
= ShadowingDecls
.find(D
);
8507 if (I
== ShadowingDecls
.end())
8509 const NamedDecl
*ShadowedDecl
= I
->second
;
8510 const DeclContext
*OldDC
= ShadowedDecl
->getDeclContext();
8511 Diag(Loc
, diag::warn_modifying_shadowing_decl
) << D
<< OldDC
;
8512 Diag(D
->getLocation(), diag::note_var_declared_here
) << D
;
8513 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8515 // Avoid issuing multiple warnings about the same decl.
8516 ShadowingDecls
.erase(I
);
8519 /// Check for conflict between this global or extern "C" declaration and
8520 /// previous global or extern "C" declarations. This is only used in C++.
8521 template<typename T
>
8522 static bool checkGlobalOrExternCConflict(
8523 Sema
&S
, const T
*ND
, bool IsGlobal
, LookupResult
&Previous
) {
8524 assert(S
.getLangOpts().CPlusPlus
&& "only C++ has extern \"C\"");
8525 NamedDecl
*Prev
= S
.findLocallyScopedExternCDecl(ND
->getDeclName());
8527 if (!Prev
&& IsGlobal
&& !isIncompleteDeclExternC(S
, ND
)) {
8528 // The common case: this global doesn't conflict with any extern "C"
8534 if (!IsGlobal
|| isIncompleteDeclExternC(S
, ND
)) {
8535 // Both the old and new declarations have C language linkage. This is a
8538 Previous
.addDecl(Prev
);
8542 // This is a global, non-extern "C" declaration, and there is a previous
8543 // non-global extern "C" declaration. Diagnose if this is a variable
8545 if (!isa
<VarDecl
>(ND
))
8548 // The declaration is extern "C". Check for any declaration in the
8549 // translation unit which might conflict.
8551 // We have already performed the lookup into the translation unit.
8553 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
8555 if (isa
<VarDecl
>(*I
)) {
8561 DeclContext::lookup_result R
=
8562 S
.Context
.getTranslationUnitDecl()->lookup(ND
->getDeclName());
8563 for (DeclContext::lookup_result::iterator I
= R
.begin(), E
= R
.end();
8565 if (isa
<VarDecl
>(*I
)) {
8569 // FIXME: If we have any other entity with this name in global scope,
8570 // the declaration is ill-formed, but that is a defect: it breaks the
8571 // 'stat' hack, for instance. Only variables can have mangled name
8572 // clashes with extern "C" declarations, so only they deserve a
8581 // Use the first declaration's location to ensure we point at something which
8582 // is lexically inside an extern "C" linkage-spec.
8583 assert(Prev
&& "should have found a previous declaration to diagnose");
8584 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Prev
))
8585 Prev
= FD
->getFirstDecl();
8587 Prev
= cast
<VarDecl
>(Prev
)->getFirstDecl();
8589 S
.Diag(ND
->getLocation(), diag::err_extern_c_global_conflict
)
8591 S
.Diag(Prev
->getLocation(), diag::note_extern_c_global_conflict
)
8596 /// Apply special rules for handling extern "C" declarations. Returns \c true
8597 /// if we have found that this is a redeclaration of some prior entity.
8599 /// Per C++ [dcl.link]p6:
8600 /// Two declarations [for a function or variable] with C language linkage
8601 /// with the same name that appear in different scopes refer to the same
8602 /// [entity]. An entity with C language linkage shall not be declared with
8603 /// the same name as an entity in global scope.
8604 template<typename T
>
8605 static bool checkForConflictWithNonVisibleExternC(Sema
&S
, const T
*ND
,
8606 LookupResult
&Previous
) {
8607 if (!S
.getLangOpts().CPlusPlus
) {
8608 // In C, when declaring a global variable, look for a corresponding 'extern'
8609 // variable declared in function scope. We don't need this in C++, because
8610 // we find local extern decls in the surrounding file-scope DeclContext.
8611 if (ND
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8612 if (NamedDecl
*Prev
= S
.findLocallyScopedExternCDecl(ND
->getDeclName())) {
8614 Previous
.addDecl(Prev
);
8621 // A declaration in the translation unit can conflict with an extern "C"
8623 if (ND
->getDeclContext()->getRedeclContext()->isTranslationUnit())
8624 return checkGlobalOrExternCConflict(S
, ND
, /*IsGlobal*/true, Previous
);
8626 // An extern "C" declaration can conflict with a declaration in the
8627 // translation unit or can be a redeclaration of an extern "C" declaration
8628 // in another scope.
8629 if (isIncompleteDeclExternC(S
,ND
))
8630 return checkGlobalOrExternCConflict(S
, ND
, /*IsGlobal*/false, Previous
);
8632 // Neither global nor extern "C": nothing to do.
8636 void Sema::CheckVariableDeclarationType(VarDecl
*NewVD
) {
8637 // If the decl is already known invalid, don't check it.
8638 if (NewVD
->isInvalidDecl())
8641 QualType T
= NewVD
->getType();
8643 // Defer checking an 'auto' type until its initializer is attached.
8644 if (T
->isUndeducedType())
8647 if (NewVD
->hasAttrs())
8648 CheckAlignasUnderalignment(NewVD
);
8650 if (T
->isObjCObjectType()) {
8651 Diag(NewVD
->getLocation(), diag::err_statically_allocated_object
)
8652 << FixItHint::CreateInsertion(NewVD
->getLocation(), "*");
8653 T
= Context
.getObjCObjectPointerType(T
);
8657 // Emit an error if an address space was applied to decl with local storage.
8658 // This includes arrays of objects with address space qualifiers, but not
8659 // automatic variables that point to other address spaces.
8660 // ISO/IEC TR 18037 S5.1.2
8661 if (!getLangOpts().OpenCL
&& NewVD
->hasLocalStorage() &&
8662 T
.getAddressSpace() != LangAS::Default
) {
8663 Diag(NewVD
->getLocation(), diag::err_as_qualified_auto_decl
) << 0;
8664 NewVD
->setInvalidDecl();
8668 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8670 if (getLangOpts().OpenCLVersion
== 120 &&
8671 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8673 NewVD
->isStaticLocal()) {
8674 Diag(NewVD
->getLocation(), diag::err_static_function_scope
);
8675 NewVD
->setInvalidDecl();
8679 if (getLangOpts().OpenCL
) {
8680 if (!diagnoseOpenCLTypes(*this, NewVD
))
8683 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8684 if (NewVD
->hasAttr
<BlocksAttr
>()) {
8685 Diag(NewVD
->getLocation(), diag::err_opencl_block_storage_type
);
8689 if (T
->isBlockPointerType()) {
8690 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8691 // can't use 'extern' storage class.
8692 if (!T
.isConstQualified()) {
8693 Diag(NewVD
->getLocation(), diag::err_opencl_invalid_block_declaration
)
8695 NewVD
->setInvalidDecl();
8698 if (NewVD
->hasExternalStorage()) {
8699 Diag(NewVD
->getLocation(), diag::err_opencl_extern_block_declaration
);
8700 NewVD
->setInvalidDecl();
8705 // FIXME: Adding local AS in C++ for OpenCL might make sense.
8706 if (NewVD
->isFileVarDecl() || NewVD
->isStaticLocal() ||
8707 NewVD
->hasExternalStorage()) {
8708 if (!T
->isSamplerT() && !T
->isDependentType() &&
8709 !(T
.getAddressSpace() == LangAS::opencl_constant
||
8710 (T
.getAddressSpace() == LangAS::opencl_global
&&
8711 getOpenCLOptions().areProgramScopeVariablesSupported(
8713 int Scope
= NewVD
->isStaticLocal() | NewVD
->hasExternalStorage() << 1;
8714 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8715 Diag(NewVD
->getLocation(), diag::err_opencl_global_invalid_addr_space
)
8716 << Scope
<< "global or constant";
8718 Diag(NewVD
->getLocation(), diag::err_opencl_global_invalid_addr_space
)
8719 << Scope
<< "constant";
8720 NewVD
->setInvalidDecl();
8724 if (T
.getAddressSpace() == LangAS::opencl_global
) {
8725 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8726 << 1 /*is any function*/ << "global";
8727 NewVD
->setInvalidDecl();
8730 if (T
.getAddressSpace() == LangAS::opencl_constant
||
8731 T
.getAddressSpace() == LangAS::opencl_local
) {
8732 FunctionDecl
*FD
= getCurFunctionDecl();
8733 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8735 if (FD
&& !FD
->hasAttr
<OpenCLKernelAttr
>()) {
8736 if (T
.getAddressSpace() == LangAS::opencl_constant
)
8737 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8738 << 0 /*non-kernel only*/ << "constant";
8740 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8741 << 0 /*non-kernel only*/ << "local";
8742 NewVD
->setInvalidDecl();
8745 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8746 // in the outermost scope of a kernel function.
8747 if (FD
&& FD
->hasAttr
<OpenCLKernelAttr
>()) {
8748 if (!getCurScope()->isFunctionScope()) {
8749 if (T
.getAddressSpace() == LangAS::opencl_constant
)
8750 Diag(NewVD
->getLocation(), diag::err_opencl_addrspace_scope
)
8753 Diag(NewVD
->getLocation(), diag::err_opencl_addrspace_scope
)
8755 NewVD
->setInvalidDecl();
8759 } else if (T
.getAddressSpace() != LangAS::opencl_private
&&
8760 // If we are parsing a template we didn't deduce an addr
8762 T
.getAddressSpace() != LangAS::Default
) {
8763 // Do not allow other address spaces on automatic variable.
8764 Diag(NewVD
->getLocation(), diag::err_as_qualified_auto_decl
) << 1;
8765 NewVD
->setInvalidDecl();
8771 if (NewVD
->hasLocalStorage() && T
.isObjCGCWeak()
8772 && !NewVD
->hasAttr
<BlocksAttr
>()) {
8773 if (getLangOpts().getGC() != LangOptions::NonGC
)
8774 Diag(NewVD
->getLocation(), diag::warn_gc_attribute_weak_on_local
);
8776 assert(!getLangOpts().ObjCAutoRefCount
);
8777 Diag(NewVD
->getLocation(), diag::warn_attribute_weak_on_local
);
8781 // WebAssembly tables must be static with a zero length and can't be
8782 // declared within functions.
8783 if (T
->isWebAssemblyTableType()) {
8784 if (getCurScope()->getParent()) { // Parent is null at top-level
8785 Diag(NewVD
->getLocation(), diag::err_wasm_table_in_function
);
8786 NewVD
->setInvalidDecl();
8789 if (NewVD
->getStorageClass() != SC_Static
) {
8790 Diag(NewVD
->getLocation(), diag::err_wasm_table_must_be_static
);
8791 NewVD
->setInvalidDecl();
8794 const auto *ATy
= dyn_cast
<ConstantArrayType
>(T
.getTypePtr());
8795 if (!ATy
|| ATy
->getSize().getSExtValue() != 0) {
8796 Diag(NewVD
->getLocation(),
8797 diag::err_typecheck_wasm_table_must_have_zero_length
);
8798 NewVD
->setInvalidDecl();
8803 bool isVM
= T
->isVariablyModifiedType();
8804 if (isVM
|| NewVD
->hasAttr
<CleanupAttr
>() ||
8805 NewVD
->hasAttr
<BlocksAttr
>())
8806 setFunctionHasBranchProtectedScope();
8808 if ((isVM
&& NewVD
->hasLinkage()) ||
8809 (T
->isVariableArrayType() && NewVD
->hasGlobalStorage())) {
8810 bool SizeIsNegative
;
8811 llvm::APSInt Oversized
;
8812 TypeSourceInfo
*FixedTInfo
= TryToFixInvalidVariablyModifiedTypeSourceInfo(
8813 NewVD
->getTypeSourceInfo(), Context
, SizeIsNegative
, Oversized
);
8815 if (FixedTInfo
&& T
== NewVD
->getTypeSourceInfo()->getType())
8816 FixedT
= FixedTInfo
->getType();
8817 else if (FixedTInfo
) {
8818 // Type and type-as-written are canonically different. We need to fix up
8819 // both types separately.
8820 FixedT
= TryToFixInvalidVariablyModifiedType(T
, Context
, SizeIsNegative
,
8823 if ((!FixedTInfo
|| FixedT
.isNull()) && T
->isVariableArrayType()) {
8824 const VariableArrayType
*VAT
= Context
.getAsVariableArrayType(T
);
8825 // FIXME: This won't give the correct result for
8827 SourceRange SizeRange
= VAT
->getSizeExpr()->getSourceRange();
8829 if (NewVD
->isFileVarDecl())
8830 Diag(NewVD
->getLocation(), diag::err_vla_decl_in_file_scope
)
8832 else if (NewVD
->isStaticLocal())
8833 Diag(NewVD
->getLocation(), diag::err_vla_decl_has_static_storage
)
8836 Diag(NewVD
->getLocation(), diag::err_vla_decl_has_extern_linkage
)
8838 NewVD
->setInvalidDecl();
8843 if (NewVD
->isFileVarDecl())
8844 Diag(NewVD
->getLocation(), diag::err_vm_decl_in_file_scope
);
8846 Diag(NewVD
->getLocation(), diag::err_vm_decl_has_extern_linkage
);
8847 NewVD
->setInvalidDecl();
8851 Diag(NewVD
->getLocation(), diag::ext_vla_folded_to_constant
);
8852 NewVD
->setType(FixedT
);
8853 NewVD
->setTypeSourceInfo(FixedTInfo
);
8856 if (T
->isVoidType()) {
8857 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8858 // of objects and functions.
8859 if (NewVD
->isThisDeclarationADefinition() || getLangOpts().CPlusPlus
) {
8860 Diag(NewVD
->getLocation(), diag::err_typecheck_decl_incomplete_type
)
8862 NewVD
->setInvalidDecl();
8867 if (!NewVD
->hasLocalStorage() && NewVD
->hasAttr
<BlocksAttr
>()) {
8868 Diag(NewVD
->getLocation(), diag::err_block_on_nonlocal
);
8869 NewVD
->setInvalidDecl();
8873 if (!NewVD
->hasLocalStorage() && T
->isSizelessType() &&
8874 !T
.isWebAssemblyReferenceType()) {
8875 Diag(NewVD
->getLocation(), diag::err_sizeless_nonlocal
) << T
;
8876 NewVD
->setInvalidDecl();
8880 if (isVM
&& NewVD
->hasAttr
<BlocksAttr
>()) {
8881 Diag(NewVD
->getLocation(), diag::err_block_on_vm
);
8882 NewVD
->setInvalidDecl();
8886 if (NewVD
->isConstexpr() && !T
->isDependentType() &&
8887 RequireLiteralType(NewVD
->getLocation(), T
,
8888 diag::err_constexpr_var_non_literal
)) {
8889 NewVD
->setInvalidDecl();
8893 // PPC MMA non-pointer types are not allowed as non-local variable types.
8894 if (Context
.getTargetInfo().getTriple().isPPC64() &&
8895 !NewVD
->isLocalVarDecl() &&
8896 CheckPPCMMAType(T
, NewVD
->getLocation())) {
8897 NewVD
->setInvalidDecl();
8901 // Check that SVE types are only used in functions with SVE available.
8902 if (T
->isSVESizelessBuiltinType() && isa
<FunctionDecl
>(CurContext
)) {
8903 const FunctionDecl
*FD
= cast
<FunctionDecl
>(CurContext
);
8904 llvm::StringMap
<bool> CallerFeatureMap
;
8905 Context
.getFunctionFeatureMap(CallerFeatureMap
, FD
);
8906 if (!Builtin::evaluateRequiredTargetFeatures(
8907 "sve", CallerFeatureMap
)) {
8908 Diag(NewVD
->getLocation(), diag::err_sve_vector_in_non_sve_target
) << T
;
8909 NewVD
->setInvalidDecl();
8914 if (T
->isRVVSizelessBuiltinType())
8915 checkRVVTypeSupport(T
, NewVD
->getLocation(), cast
<Decl
>(CurContext
));
8918 /// Perform semantic checking on a newly-created variable
8921 /// This routine performs all of the type-checking required for a
8922 /// variable declaration once it has been built. It is used both to
8923 /// check variables after they have been parsed and their declarators
8924 /// have been translated into a declaration, and to check variables
8925 /// that have been instantiated from a template.
8927 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8929 /// Returns true if the variable declaration is a redeclaration.
8930 bool Sema::CheckVariableDeclaration(VarDecl
*NewVD
, LookupResult
&Previous
) {
8931 CheckVariableDeclarationType(NewVD
);
8933 // If the decl is already known invalid, don't check it.
8934 if (NewVD
->isInvalidDecl())
8937 // If we did not find anything by this name, look for a non-visible
8938 // extern "C" declaration with the same name.
8939 if (Previous
.empty() &&
8940 checkForConflictWithNonVisibleExternC(*this, NewVD
, Previous
))
8941 Previous
.setShadowed();
8943 if (!Previous
.empty()) {
8944 MergeVarDecl(NewVD
, Previous
);
8950 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8951 /// and if so, check that it's a valid override and remember it.
8952 bool Sema::AddOverriddenMethods(CXXRecordDecl
*DC
, CXXMethodDecl
*MD
) {
8953 llvm::SmallPtrSet
<const CXXMethodDecl
*, 4> Overridden
;
8955 // Look for methods in base classes that this method might override.
8956 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8957 /*DetectVirtual=*/false);
8958 auto VisitBase
= [&] (const CXXBaseSpecifier
*Specifier
, CXXBasePath
&Path
) {
8959 CXXRecordDecl
*BaseRecord
= Specifier
->getType()->getAsCXXRecordDecl();
8960 DeclarationName Name
= MD
->getDeclName();
8962 if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
8963 // We really want to find the base class destructor here.
8964 QualType T
= Context
.getTypeDeclType(BaseRecord
);
8965 CanQualType CT
= Context
.getCanonicalType(T
);
8966 Name
= Context
.DeclarationNames
.getCXXDestructorName(CT
);
8969 for (NamedDecl
*BaseND
: BaseRecord
->lookup(Name
)) {
8970 CXXMethodDecl
*BaseMD
=
8971 dyn_cast
<CXXMethodDecl
>(BaseND
->getCanonicalDecl());
8972 if (!BaseMD
|| !BaseMD
->isVirtual() ||
8973 IsOverride(MD
, BaseMD
, /*UseMemberUsingDeclRules=*/false,
8974 /*ConsiderCudaAttrs=*/true))
8976 if (!CheckExplicitObjectOverride(MD
, BaseMD
))
8978 if (Overridden
.insert(BaseMD
).second
) {
8979 MD
->addOverriddenMethod(BaseMD
);
8980 CheckOverridingFunctionReturnType(MD
, BaseMD
);
8981 CheckOverridingFunctionAttributes(MD
, BaseMD
);
8982 CheckOverridingFunctionExceptionSpec(MD
, BaseMD
);
8983 CheckIfOverriddenFunctionIsMarkedFinal(MD
, BaseMD
);
8986 // A method can only override one function from each base class. We
8987 // don't track indirectly overridden methods from bases of bases.
8994 DC
->lookupInBases(VisitBase
, Paths
);
8995 return !Overridden
.empty();
8999 // Struct for holding all of the extra arguments needed by
9000 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
9001 struct ActOnFDArgs
{
9004 MultiTemplateParamsArg TemplateParamLists
;
9007 } // end anonymous namespace
9011 // Callback to only accept typo corrections that have a non-zero edit distance.
9012 // Also only accept corrections that have the same parent decl.
9013 class DifferentNameValidatorCCC final
: public CorrectionCandidateCallback
{
9015 DifferentNameValidatorCCC(ASTContext
&Context
, FunctionDecl
*TypoFD
,
9016 CXXRecordDecl
*Parent
)
9017 : Context(Context
), OriginalFD(TypoFD
),
9018 ExpectedParent(Parent
? Parent
->getCanonicalDecl() : nullptr) {}
9020 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
9021 if (candidate
.getEditDistance() == 0)
9024 SmallVector
<unsigned, 1> MismatchedParams
;
9025 for (TypoCorrection::const_decl_iterator CDecl
= candidate
.begin(),
9026 CDeclEnd
= candidate
.end();
9027 CDecl
!= CDeclEnd
; ++CDecl
) {
9028 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*CDecl
);
9030 if (FD
&& !FD
->hasBody() &&
9031 hasSimilarParameters(Context
, FD
, OriginalFD
, MismatchedParams
)) {
9032 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
9033 CXXRecordDecl
*Parent
= MD
->getParent();
9034 if (Parent
&& Parent
->getCanonicalDecl() == ExpectedParent
)
9036 } else if (!ExpectedParent
) {
9045 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
9046 return std::make_unique
<DifferentNameValidatorCCC
>(*this);
9050 ASTContext
&Context
;
9051 FunctionDecl
*OriginalFD
;
9052 CXXRecordDecl
*ExpectedParent
;
9055 } // end anonymous namespace
9057 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl
*F
) {
9058 TypoCorrectedFunctionDefinitions
.insert(F
);
9061 /// Generate diagnostics for an invalid function redeclaration.
9063 /// This routine handles generating the diagnostic messages for an invalid
9064 /// function redeclaration, including finding possible similar declarations
9065 /// or performing typo correction if there are no previous declarations with
9068 /// Returns a NamedDecl iff typo correction was performed and substituting in
9069 /// the new declaration name does not cause new errors.
9070 static NamedDecl
*DiagnoseInvalidRedeclaration(
9071 Sema
&SemaRef
, LookupResult
&Previous
, FunctionDecl
*NewFD
,
9072 ActOnFDArgs
&ExtraArgs
, bool IsLocalFriend
, Scope
*S
) {
9073 DeclarationName Name
= NewFD
->getDeclName();
9074 DeclContext
*NewDC
= NewFD
->getDeclContext();
9075 SmallVector
<unsigned, 1> MismatchedParams
;
9076 SmallVector
<std::pair
<FunctionDecl
*, unsigned>, 1> NearMatches
;
9077 TypoCorrection Correction
;
9078 bool IsDefinition
= ExtraArgs
.D
.isFunctionDefinition();
9080 IsLocalFriend
? diag::err_no_matching_local_friend
:
9081 NewFD
->getFriendObjectKind() ? diag::err_qualified_friend_no_match
:
9082 diag::err_member_decl_does_not_match
;
9083 LookupResult
Prev(SemaRef
, Name
, NewFD
->getLocation(),
9084 IsLocalFriend
? Sema::LookupLocalFriendName
9085 : Sema::LookupOrdinaryName
,
9086 Sema::ForVisibleRedeclaration
);
9088 NewFD
->setInvalidDecl();
9090 SemaRef
.LookupName(Prev
, S
);
9092 SemaRef
.LookupQualifiedName(Prev
, NewDC
);
9093 assert(!Prev
.isAmbiguous() &&
9094 "Cannot have an ambiguity in previous-declaration lookup");
9095 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewFD
);
9096 DifferentNameValidatorCCC
CCC(SemaRef
.Context
, NewFD
,
9097 MD
? MD
->getParent() : nullptr);
9098 if (!Prev
.empty()) {
9099 for (LookupResult::iterator Func
= Prev
.begin(), FuncEnd
= Prev
.end();
9100 Func
!= FuncEnd
; ++Func
) {
9101 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*Func
);
9103 hasSimilarParameters(SemaRef
.Context
, FD
, NewFD
, MismatchedParams
)) {
9104 // Add 1 to the index so that 0 can mean the mismatch didn't
9105 // involve a parameter
9107 MismatchedParams
.empty() ? 0 : MismatchedParams
.front() + 1;
9108 NearMatches
.push_back(std::make_pair(FD
, ParamNum
));
9111 // If the qualified name lookup yielded nothing, try typo correction
9112 } else if ((Correction
= SemaRef
.CorrectTypo(
9113 Prev
.getLookupNameInfo(), Prev
.getLookupKind(), S
,
9114 &ExtraArgs
.D
.getCXXScopeSpec(), CCC
, Sema::CTK_ErrorRecovery
,
9115 IsLocalFriend
? nullptr : NewDC
))) {
9116 // Set up everything for the call to ActOnFunctionDeclarator
9117 ExtraArgs
.D
.SetIdentifier(Correction
.getCorrectionAsIdentifierInfo(),
9118 ExtraArgs
.D
.getIdentifierLoc());
9120 Previous
.setLookupName(Correction
.getCorrection());
9121 for (TypoCorrection::decl_iterator CDecl
= Correction
.begin(),
9122 CDeclEnd
= Correction
.end();
9123 CDecl
!= CDeclEnd
; ++CDecl
) {
9124 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*CDecl
);
9125 if (FD
&& !FD
->hasBody() &&
9126 hasSimilarParameters(SemaRef
.Context
, FD
, NewFD
, MismatchedParams
)) {
9127 Previous
.addDecl(FD
);
9130 bool wasRedeclaration
= ExtraArgs
.D
.isRedeclaration();
9133 // Retry building the function declaration with the new previous
9134 // declarations, and with errors suppressed.
9137 Sema::SFINAETrap
Trap(SemaRef
);
9139 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
9140 // pieces need to verify the typo-corrected C++ declaration and hopefully
9141 // eliminate the need for the parameter pack ExtraArgs.
9142 Result
= SemaRef
.ActOnFunctionDeclarator(
9143 ExtraArgs
.S
, ExtraArgs
.D
,
9144 Correction
.getCorrectionDecl()->getDeclContext(),
9145 NewFD
->getTypeSourceInfo(), Previous
, ExtraArgs
.TemplateParamLists
,
9146 ExtraArgs
.AddToScope
);
9148 if (Trap
.hasErrorOccurred())
9153 // Determine which correction we picked.
9154 Decl
*Canonical
= Result
->getCanonicalDecl();
9155 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
9157 if ((*I
)->getCanonicalDecl() == Canonical
)
9158 Correction
.setCorrectionDecl(*I
);
9160 // Let Sema know about the correction.
9161 SemaRef
.MarkTypoCorrectedFunctionDefinition(Result
);
9162 SemaRef
.diagnoseTypo(
9164 SemaRef
.PDiag(IsLocalFriend
9165 ? diag::err_no_matching_local_friend_suggest
9166 : diag::err_member_decl_does_not_match_suggest
)
9167 << Name
<< NewDC
<< IsDefinition
);
9171 // Pretend the typo correction never occurred
9172 ExtraArgs
.D
.SetIdentifier(Name
.getAsIdentifierInfo(),
9173 ExtraArgs
.D
.getIdentifierLoc());
9174 ExtraArgs
.D
.setRedeclaration(wasRedeclaration
);
9176 Previous
.setLookupName(Name
);
9179 SemaRef
.Diag(NewFD
->getLocation(), DiagMsg
)
9180 << Name
<< NewDC
<< IsDefinition
<< NewFD
->getLocation();
9182 bool NewFDisConst
= false;
9183 if (CXXMethodDecl
*NewMD
= dyn_cast
<CXXMethodDecl
>(NewFD
))
9184 NewFDisConst
= NewMD
->isConst();
9186 for (SmallVectorImpl
<std::pair
<FunctionDecl
*, unsigned> >::iterator
9187 NearMatch
= NearMatches
.begin(), NearMatchEnd
= NearMatches
.end();
9188 NearMatch
!= NearMatchEnd
; ++NearMatch
) {
9189 FunctionDecl
*FD
= NearMatch
->first
;
9190 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
9191 bool FDisConst
= MD
&& MD
->isConst();
9192 bool IsMember
= MD
|| !IsLocalFriend
;
9194 // FIXME: These notes are poorly worded for the local friend case.
9195 if (unsigned Idx
= NearMatch
->second
) {
9196 ParmVarDecl
*FDParam
= FD
->getParamDecl(Idx
-1);
9197 SourceLocation Loc
= FDParam
->getTypeSpecStartLoc();
9198 if (Loc
.isInvalid()) Loc
= FD
->getLocation();
9199 SemaRef
.Diag(Loc
, IsMember
? diag::note_member_def_close_param_match
9200 : diag::note_local_decl_close_param_match
)
9201 << Idx
<< FDParam
->getType()
9202 << NewFD
->getParamDecl(Idx
- 1)->getType();
9203 } else if (FDisConst
!= NewFDisConst
) {
9204 SemaRef
.Diag(FD
->getLocation(), diag::note_member_def_close_const_match
)
9205 << NewFDisConst
<< FD
->getSourceRange().getEnd()
9207 ? FixItHint::CreateRemoval(ExtraArgs
.D
.getFunctionTypeInfo()
9208 .getConstQualifierLoc())
9209 : FixItHint::CreateInsertion(ExtraArgs
.D
.getFunctionTypeInfo()
9211 .getLocWithOffset(1),
9214 SemaRef
.Diag(FD
->getLocation(),
9215 IsMember
? diag::note_member_def_close_match
9216 : diag::note_local_decl_close_match
);
9221 static StorageClass
getFunctionStorageClass(Sema
&SemaRef
, Declarator
&D
) {
9222 switch (D
.getDeclSpec().getStorageClassSpec()) {
9223 default: llvm_unreachable("Unknown storage class!");
9224 case DeclSpec::SCS_auto
:
9225 case DeclSpec::SCS_register
:
9226 case DeclSpec::SCS_mutable
:
9227 SemaRef
.Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
9228 diag::err_typecheck_sclass_func
);
9229 D
.getMutableDeclSpec().ClearStorageClassSpecs();
9232 case DeclSpec::SCS_unspecified
: break;
9233 case DeclSpec::SCS_extern
:
9234 if (D
.getDeclSpec().isExternInLinkageSpec())
9237 case DeclSpec::SCS_static
: {
9238 if (SemaRef
.CurContext
->getRedeclContext()->isFunctionOrMethod()) {
9240 // The declaration of an identifier for a function that has
9241 // block scope shall have no explicit storage-class specifier
9242 // other than extern
9243 // See also (C++ [dcl.stc]p4).
9244 SemaRef
.Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
9245 diag::err_static_block_func
);
9250 case DeclSpec::SCS_private_extern
: return SC_PrivateExtern
;
9253 // No explicit storage class has already been returned
9257 static FunctionDecl
*CreateNewFunctionDecl(Sema
&SemaRef
, Declarator
&D
,
9258 DeclContext
*DC
, QualType
&R
,
9259 TypeSourceInfo
*TInfo
,
9261 bool &IsVirtualOkay
) {
9262 DeclarationNameInfo NameInfo
= SemaRef
.GetNameForDeclarator(D
);
9263 DeclarationName Name
= NameInfo
.getName();
9265 FunctionDecl
*NewFD
= nullptr;
9266 bool isInline
= D
.getDeclSpec().isInlineSpecified();
9268 if (!SemaRef
.getLangOpts().CPlusPlus
) {
9269 // Determine whether the function was written with a prototype. This is
9271 // - there is a prototype in the declarator, or
9272 // - the type R of the function is some kind of typedef or other non-
9273 // attributed reference to a type name (which eventually refers to a
9274 // function type). Note, we can't always look at the adjusted type to
9275 // check this case because attributes may cause a non-function
9276 // declarator to still have a function type. e.g.,
9277 // typedef void func(int a);
9278 // __attribute__((noreturn)) func other_func; // This has a prototype
9280 (D
.isFunctionDeclarator() && D
.getFunctionTypeInfo().hasPrototype
) ||
9281 (D
.getDeclSpec().isTypeRep() &&
9282 SemaRef
.GetTypeFromParser(D
.getDeclSpec().getRepAsType(), nullptr)
9283 ->isFunctionProtoType()) ||
9284 (!R
->getAsAdjusted
<FunctionType
>() && R
->isFunctionProtoType());
9286 (HasPrototype
|| !SemaRef
.getLangOpts().requiresStrictPrototypes()) &&
9287 "Strict prototypes are required");
9289 NewFD
= FunctionDecl::Create(
9290 SemaRef
.Context
, DC
, D
.getBeginLoc(), NameInfo
, R
, TInfo
, SC
,
9291 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
, HasPrototype
,
9292 ConstexprSpecKind::Unspecified
,
9293 /*TrailingRequiresClause=*/nullptr);
9294 if (D
.isInvalidType())
9295 NewFD
->setInvalidDecl();
9300 ExplicitSpecifier ExplicitSpecifier
= D
.getDeclSpec().getExplicitSpecifier();
9302 ConstexprSpecKind ConstexprKind
= D
.getDeclSpec().getConstexprSpecifier();
9303 if (ConstexprKind
== ConstexprSpecKind::Constinit
) {
9304 SemaRef
.Diag(D
.getDeclSpec().getConstexprSpecLoc(),
9305 diag::err_constexpr_wrong_decl_kind
)
9306 << static_cast<int>(ConstexprKind
);
9307 ConstexprKind
= ConstexprSpecKind::Unspecified
;
9308 D
.getMutableDeclSpec().ClearConstexprSpec();
9310 Expr
*TrailingRequiresClause
= D
.getTrailingRequiresClause();
9312 SemaRef
.CheckExplicitObjectMemberFunction(DC
, D
, Name
, R
);
9314 if (Name
.getNameKind() == DeclarationName::CXXConstructorName
) {
9315 // This is a C++ constructor declaration.
9316 assert(DC
->isRecord() &&
9317 "Constructors can only be declared in a member context");
9319 R
= SemaRef
.CheckConstructorDeclarator(D
, R
, SC
);
9320 return CXXConstructorDecl::Create(
9321 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9322 TInfo
, ExplicitSpecifier
, SemaRef
.getCurFPFeatures().isFPConstrained(),
9323 isInline
, /*isImplicitlyDeclared=*/false, ConstexprKind
,
9324 InheritedConstructor(), TrailingRequiresClause
);
9326 } else if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
9327 // This is a C++ destructor declaration.
9328 if (DC
->isRecord()) {
9329 R
= SemaRef
.CheckDestructorDeclarator(D
, R
, SC
);
9330 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(DC
);
9331 CXXDestructorDecl
*NewDD
= CXXDestructorDecl::Create(
9332 SemaRef
.Context
, Record
, D
.getBeginLoc(), NameInfo
, R
, TInfo
,
9333 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9334 /*isImplicitlyDeclared=*/false, ConstexprKind
,
9335 TrailingRequiresClause
);
9336 // User defined destructors start as not selected if the class definition is still
9338 if (Record
->isBeingDefined())
9339 NewDD
->setIneligibleOrNotSelected(true);
9341 // If the destructor needs an implicit exception specification, set it
9342 // now. FIXME: It'd be nice to be able to create the right type to start
9343 // with, but the type needs to reference the destructor declaration.
9344 if (SemaRef
.getLangOpts().CPlusPlus11
)
9345 SemaRef
.AdjustDestructorExceptionSpec(NewDD
);
9347 IsVirtualOkay
= true;
9351 SemaRef
.Diag(D
.getIdentifierLoc(), diag::err_destructor_not_member
);
9354 // Create a FunctionDecl to satisfy the function definition parsing
9356 return FunctionDecl::Create(
9357 SemaRef
.Context
, DC
, D
.getBeginLoc(), D
.getIdentifierLoc(), Name
, R
,
9358 TInfo
, SC
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9359 /*hasPrototype=*/true, ConstexprKind
, TrailingRequiresClause
);
9362 } else if (Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
) {
9363 if (!DC
->isRecord()) {
9364 SemaRef
.Diag(D
.getIdentifierLoc(),
9365 diag::err_conv_function_not_member
);
9369 SemaRef
.CheckConversionDeclarator(D
, R
, SC
);
9370 if (D
.isInvalidType())
9373 IsVirtualOkay
= true;
9374 return CXXConversionDecl::Create(
9375 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9376 TInfo
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9377 ExplicitSpecifier
, ConstexprKind
, SourceLocation(),
9378 TrailingRequiresClause
);
9380 } else if (Name
.getNameKind() == DeclarationName::CXXDeductionGuideName
) {
9381 if (TrailingRequiresClause
)
9382 SemaRef
.Diag(TrailingRequiresClause
->getBeginLoc(),
9383 diag::err_trailing_requires_clause_on_deduction_guide
)
9384 << TrailingRequiresClause
->getSourceRange();
9385 if (SemaRef
.CheckDeductionGuideDeclarator(D
, R
, SC
))
9387 return CXXDeductionGuideDecl::Create(SemaRef
.Context
, DC
, D
.getBeginLoc(),
9388 ExplicitSpecifier
, NameInfo
, R
, TInfo
,
9390 } else if (DC
->isRecord()) {
9391 // If the name of the function is the same as the name of the record,
9392 // then this must be an invalid constructor that has a return type.
9393 // (The parser checks for a return type and makes the declarator a
9394 // constructor if it has no return type).
9395 if (Name
.getAsIdentifierInfo() &&
9396 Name
.getAsIdentifierInfo() == cast
<CXXRecordDecl
>(DC
)->getIdentifier()){
9397 SemaRef
.Diag(D
.getIdentifierLoc(), diag::err_constructor_return_type
)
9398 << SourceRange(D
.getDeclSpec().getTypeSpecTypeLoc())
9399 << SourceRange(D
.getIdentifierLoc());
9403 // This is a C++ method declaration.
9404 CXXMethodDecl
*Ret
= CXXMethodDecl::Create(
9405 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9406 TInfo
, SC
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9407 ConstexprKind
, SourceLocation(), TrailingRequiresClause
);
9408 IsVirtualOkay
= !Ret
->isStatic();
9412 SemaRef
.getLangOpts().CPlusPlus
&& D
.getDeclSpec().isFriendSpecified();
9413 if (!isFriend
&& SemaRef
.CurContext
->isRecord())
9416 // Determine whether the function was written with a
9417 // prototype. This true when:
9418 // - we're in C++ (where every function has a prototype),
9419 return FunctionDecl::Create(
9420 SemaRef
.Context
, DC
, D
.getBeginLoc(), NameInfo
, R
, TInfo
, SC
,
9421 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9422 true /*HasPrototype*/, ConstexprKind
, TrailingRequiresClause
);
9426 enum OpenCLParamType
{
9430 InvalidAddrSpacePtrKernelParam
,
9435 static bool isOpenCLSizeDependentType(ASTContext
&C
, QualType Ty
) {
9436 // Size dependent types are just typedefs to normal integer types
9437 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9438 // integers other than by their names.
9439 StringRef SizeTypeNames
[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9441 // Remove typedefs one by one until we reach a typedef
9442 // for a size dependent type.
9443 QualType DesugaredTy
= Ty
;
9445 ArrayRef
<StringRef
> Names(SizeTypeNames
);
9446 auto Match
= llvm::find(Names
, DesugaredTy
.getUnqualifiedType().getAsString());
9447 if (Names
.end() != Match
)
9451 DesugaredTy
= Ty
.getSingleStepDesugaredType(C
);
9452 } while (DesugaredTy
!= Ty
);
9457 static OpenCLParamType
getOpenCLKernelParameterType(Sema
&S
, QualType PT
) {
9458 if (PT
->isDependentType())
9459 return InvalidKernelParam
;
9461 if (PT
->isPointerType() || PT
->isReferenceType()) {
9462 QualType PointeeType
= PT
->getPointeeType();
9463 if (PointeeType
.getAddressSpace() == LangAS::opencl_generic
||
9464 PointeeType
.getAddressSpace() == LangAS::opencl_private
||
9465 PointeeType
.getAddressSpace() == LangAS::Default
)
9466 return InvalidAddrSpacePtrKernelParam
;
9468 if (PointeeType
->isPointerType()) {
9469 // This is a pointer to pointer parameter.
9470 // Recursively check inner type.
9471 OpenCLParamType ParamKind
= getOpenCLKernelParameterType(S
, PointeeType
);
9472 if (ParamKind
== InvalidAddrSpacePtrKernelParam
||
9473 ParamKind
== InvalidKernelParam
)
9476 // OpenCL v3.0 s6.11.a:
9477 // A restriction to pass pointers to pointers only applies to OpenCL C
9479 if (S
.getLangOpts().getOpenCLCompatibleVersion() > 120)
9480 return ValidKernelParam
;
9482 return PtrPtrKernelParam
;
9485 // C++ for OpenCL v1.0 s2.4:
9486 // Moreover the types used in parameters of the kernel functions must be:
9487 // Standard layout types for pointer parameters. The same applies to
9488 // reference if an implementation supports them in kernel parameters.
9489 if (S
.getLangOpts().OpenCLCPlusPlus
&&
9490 !S
.getOpenCLOptions().isAvailableOption(
9491 "__cl_clang_non_portable_kernel_param_types", S
.getLangOpts())) {
9492 auto CXXRec
= PointeeType
.getCanonicalType()->getAsCXXRecordDecl();
9493 bool IsStandardLayoutType
= true;
9495 // If template type is not ODR-used its definition is only available
9496 // in the template definition not its instantiation.
9497 // FIXME: This logic doesn't work for types that depend on template
9498 // parameter (PR58590).
9499 if (!CXXRec
->hasDefinition())
9500 CXXRec
= CXXRec
->getTemplateInstantiationPattern();
9501 if (!CXXRec
|| !CXXRec
->hasDefinition() || !CXXRec
->isStandardLayout())
9502 IsStandardLayoutType
= false;
9504 if (!PointeeType
->isAtomicType() && !PointeeType
->isVoidType() &&
9505 !IsStandardLayoutType
)
9506 return InvalidKernelParam
;
9509 // OpenCL v1.2 s6.9.p:
9510 // A restriction to pass pointers only applies to OpenCL C v1.2 or below.
9511 if (S
.getLangOpts().getOpenCLCompatibleVersion() > 120)
9512 return ValidKernelParam
;
9514 return PtrKernelParam
;
9517 // OpenCL v1.2 s6.9.k:
9518 // Arguments to kernel functions in a program cannot be declared with the
9519 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9520 // uintptr_t or a struct and/or union that contain fields declared to be one
9521 // of these built-in scalar types.
9522 if (isOpenCLSizeDependentType(S
.getASTContext(), PT
))
9523 return InvalidKernelParam
;
9525 if (PT
->isImageType())
9526 return PtrKernelParam
;
9528 if (PT
->isBooleanType() || PT
->isEventT() || PT
->isReserveIDT())
9529 return InvalidKernelParam
;
9531 // OpenCL extension spec v1.2 s9.5:
9532 // This extension adds support for half scalar and vector types as built-in
9533 // types that can be used for arithmetic operations, conversions etc.
9534 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S
.getLangOpts()) &&
9536 return InvalidKernelParam
;
9538 // Look into an array argument to check if it has a forbidden type.
9539 if (PT
->isArrayType()) {
9540 const Type
*UnderlyingTy
= PT
->getPointeeOrArrayElementType();
9541 // Call ourself to check an underlying type of an array. Since the
9542 // getPointeeOrArrayElementType returns an innermost type which is not an
9543 // array, this recursive call only happens once.
9544 return getOpenCLKernelParameterType(S
, QualType(UnderlyingTy
, 0));
9547 // C++ for OpenCL v1.0 s2.4:
9548 // Moreover the types used in parameters of the kernel functions must be:
9549 // Trivial and standard-layout types C++17 [basic.types] (plain old data
9550 // types) for parameters passed by value;
9551 if (S
.getLangOpts().OpenCLCPlusPlus
&&
9552 !S
.getOpenCLOptions().isAvailableOption(
9553 "__cl_clang_non_portable_kernel_param_types", S
.getLangOpts()) &&
9554 !PT
->isOpenCLSpecificType() && !PT
.isPODType(S
.Context
))
9555 return InvalidKernelParam
;
9557 if (PT
->isRecordType())
9558 return RecordKernelParam
;
9560 return ValidKernelParam
;
9563 static void checkIsValidOpenCLKernelParameter(
9567 llvm::SmallPtrSetImpl
<const Type
*> &ValidTypes
) {
9568 QualType PT
= Param
->getType();
9570 // Cache the valid types we encounter to avoid rechecking structs that are
9572 if (ValidTypes
.count(PT
.getTypePtr()))
9575 switch (getOpenCLKernelParameterType(S
, PT
)) {
9576 case PtrPtrKernelParam
:
9577 // OpenCL v3.0 s6.11.a:
9578 // A kernel function argument cannot be declared as a pointer to a pointer
9579 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9580 S
.Diag(Param
->getLocation(), diag::err_opencl_ptrptr_kernel_param
);
9584 case InvalidAddrSpacePtrKernelParam
:
9585 // OpenCL v1.0 s6.5:
9586 // __kernel function arguments declared to be a pointer of a type can point
9587 // to one of the following address spaces only : __global, __local or
9589 S
.Diag(Param
->getLocation(), diag::err_kernel_arg_address_space
);
9593 // OpenCL v1.2 s6.9.k:
9594 // Arguments to kernel functions in a program cannot be declared with the
9595 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9596 // uintptr_t or a struct and/or union that contain fields declared to be
9597 // one of these built-in scalar types.
9599 case InvalidKernelParam
:
9600 // OpenCL v1.2 s6.8 n:
9601 // A kernel function argument cannot be declared
9603 // Do not diagnose half type since it is diagnosed as invalid argument
9604 // type for any function elsewhere.
9605 if (!PT
->isHalfType()) {
9606 S
.Diag(Param
->getLocation(), diag::err_bad_kernel_param_type
) << PT
;
9608 // Explain what typedefs are involved.
9609 const TypedefType
*Typedef
= nullptr;
9610 while ((Typedef
= PT
->getAs
<TypedefType
>())) {
9611 SourceLocation Loc
= Typedef
->getDecl()->getLocation();
9612 // SourceLocation may be invalid for a built-in type.
9614 S
.Diag(Loc
, diag::note_entity_declared_at
) << PT
;
9615 PT
= Typedef
->desugar();
9622 case PtrKernelParam
:
9623 case ValidKernelParam
:
9624 ValidTypes
.insert(PT
.getTypePtr());
9627 case RecordKernelParam
:
9631 // Track nested structs we will inspect
9632 SmallVector
<const Decl
*, 4> VisitStack
;
9634 // Track where we are in the nested structs. Items will migrate from
9635 // VisitStack to HistoryStack as we do the DFS for bad field.
9636 SmallVector
<const FieldDecl
*, 4> HistoryStack
;
9637 HistoryStack
.push_back(nullptr);
9639 // At this point we already handled everything except of a RecordType or
9640 // an ArrayType of a RecordType.
9641 assert((PT
->isArrayType() || PT
->isRecordType()) && "Unexpected type.");
9642 const RecordType
*RecTy
=
9643 PT
->getPointeeOrArrayElementType()->getAs
<RecordType
>();
9644 const RecordDecl
*OrigRecDecl
= RecTy
->getDecl();
9646 VisitStack
.push_back(RecTy
->getDecl());
9647 assert(VisitStack
.back() && "First decl null?");
9650 const Decl
*Next
= VisitStack
.pop_back_val();
9652 assert(!HistoryStack
.empty());
9653 // Found a marker, we have gone up a level
9654 if (const FieldDecl
*Hist
= HistoryStack
.pop_back_val())
9655 ValidTypes
.insert(Hist
->getType().getTypePtr());
9660 // Adds everything except the original parameter declaration (which is not a
9661 // field itself) to the history stack.
9662 const RecordDecl
*RD
;
9663 if (const FieldDecl
*Field
= dyn_cast
<FieldDecl
>(Next
)) {
9664 HistoryStack
.push_back(Field
);
9666 QualType FieldTy
= Field
->getType();
9667 // Other field types (known to be valid or invalid) are handled while we
9668 // walk around RecordDecl::fields().
9669 assert((FieldTy
->isArrayType() || FieldTy
->isRecordType()) &&
9670 "Unexpected type.");
9671 const Type
*FieldRecTy
= FieldTy
->getPointeeOrArrayElementType();
9673 RD
= FieldRecTy
->castAs
<RecordType
>()->getDecl();
9675 RD
= cast
<RecordDecl
>(Next
);
9678 // Add a null marker so we know when we've gone back up a level
9679 VisitStack
.push_back(nullptr);
9681 for (const auto *FD
: RD
->fields()) {
9682 QualType QT
= FD
->getType();
9684 if (ValidTypes
.count(QT
.getTypePtr()))
9687 OpenCLParamType ParamType
= getOpenCLKernelParameterType(S
, QT
);
9688 if (ParamType
== ValidKernelParam
)
9691 if (ParamType
== RecordKernelParam
) {
9692 VisitStack
.push_back(FD
);
9696 // OpenCL v1.2 s6.9.p:
9697 // Arguments to kernel functions that are declared to be a struct or union
9698 // do not allow OpenCL objects to be passed as elements of the struct or
9699 // union. This restriction was lifted in OpenCL v2.0 with the introduction
9701 if (ParamType
== PtrKernelParam
|| ParamType
== PtrPtrKernelParam
||
9702 ParamType
== InvalidAddrSpacePtrKernelParam
) {
9703 S
.Diag(Param
->getLocation(),
9704 diag::err_record_with_pointers_kernel_param
)
9705 << PT
->isUnionType()
9708 S
.Diag(Param
->getLocation(), diag::err_bad_kernel_param_type
) << PT
;
9711 S
.Diag(OrigRecDecl
->getLocation(), diag::note_within_field_of_type
)
9712 << OrigRecDecl
->getDeclName();
9714 // We have an error, now let's go back up through history and show where
9715 // the offending field came from
9716 for (ArrayRef
<const FieldDecl
*>::const_iterator
9717 I
= HistoryStack
.begin() + 1,
9718 E
= HistoryStack
.end();
9720 const FieldDecl
*OuterField
= *I
;
9721 S
.Diag(OuterField
->getLocation(), diag::note_within_field_of_type
)
9722 << OuterField
->getType();
9725 S
.Diag(FD
->getLocation(), diag::note_illegal_field_declared_here
)
9726 << QT
->isPointerType()
9731 } while (!VisitStack
.empty());
9734 /// Find the DeclContext in which a tag is implicitly declared if we see an
9735 /// elaborated type specifier in the specified context, and lookup finds
9737 static DeclContext
*getTagInjectionContext(DeclContext
*DC
) {
9738 while (!DC
->isFileContext() && !DC
->isFunctionOrMethod())
9739 DC
= DC
->getParent();
9743 /// Find the Scope in which a tag is implicitly declared if we see an
9744 /// elaborated type specifier in the specified context, and lookup finds
9746 static Scope
*getTagInjectionScope(Scope
*S
, const LangOptions
&LangOpts
) {
9747 while (S
->isClassScope() ||
9748 (LangOpts
.CPlusPlus
&&
9749 S
->isFunctionPrototypeScope()) ||
9750 ((S
->getFlags() & Scope::DeclScope
) == 0) ||
9751 (S
->getEntity() && S
->getEntity()->isTransparentContext()))
9756 /// Determine whether a declaration matches a known function in namespace std.
9757 static bool isStdBuiltin(ASTContext
&Ctx
, FunctionDecl
*FD
,
9758 unsigned BuiltinID
) {
9759 switch (BuiltinID
) {
9760 case Builtin::BI__GetExceptionInfo
:
9761 // No type checking whatsoever.
9762 return Ctx
.getTargetInfo().getCXXABI().isMicrosoft();
9764 case Builtin::BIaddressof
:
9765 case Builtin::BI__addressof
:
9766 case Builtin::BIforward
:
9767 case Builtin::BIforward_like
:
9768 case Builtin::BImove
:
9769 case Builtin::BImove_if_noexcept
:
9770 case Builtin::BIas_const
: {
9771 // Ensure that we don't treat the algorithm
9772 // OutputIt std::move(InputIt, InputIt, OutputIt)
9773 // as the builtin std::move.
9774 const auto *FPT
= FD
->getType()->castAs
<FunctionProtoType
>();
9775 return FPT
->getNumParams() == 1 && !FPT
->isVariadic();
9784 Sema::ActOnFunctionDeclarator(Scope
*S
, Declarator
&D
, DeclContext
*DC
,
9785 TypeSourceInfo
*TInfo
, LookupResult
&Previous
,
9786 MultiTemplateParamsArg TemplateParamListsRef
,
9788 QualType R
= TInfo
->getType();
9790 assert(R
->isFunctionType());
9791 if (R
.getCanonicalType()->castAs
<FunctionType
>()->getCmseNSCallAttr())
9792 Diag(D
.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call
);
9794 SmallVector
<TemplateParameterList
*, 4> TemplateParamLists
;
9795 llvm::append_range(TemplateParamLists
, TemplateParamListsRef
);
9796 if (TemplateParameterList
*Invented
= D
.getInventedTemplateParameterList()) {
9797 if (!TemplateParamLists
.empty() &&
9798 Invented
->getDepth() == TemplateParamLists
.back()->getDepth())
9799 TemplateParamLists
.back() = Invented
;
9801 TemplateParamLists
.push_back(Invented
);
9804 // TODO: consider using NameInfo for diagnostic.
9805 DeclarationNameInfo NameInfo
= GetNameForDeclarator(D
);
9806 DeclarationName Name
= NameInfo
.getName();
9807 StorageClass SC
= getFunctionStorageClass(*this, D
);
9809 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec())
9810 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
9811 diag::err_invalid_thread
)
9812 << DeclSpec::getSpecifierName(TSCS
);
9814 if (D
.isFirstDeclarationOfMember())
9815 adjustMemberFunctionCC(
9816 R
, !(D
.isStaticMember() || D
.isExplicitObjectMemberFunction()),
9817 D
.isCtorOrDtor(), D
.getIdentifierLoc());
9819 bool isFriend
= false;
9820 FunctionTemplateDecl
*FunctionTemplate
= nullptr;
9821 bool isMemberSpecialization
= false;
9822 bool isFunctionTemplateSpecialization
= false;
9824 bool HasExplicitTemplateArgs
= false;
9825 TemplateArgumentListInfo TemplateArgs
;
9827 bool isVirtualOkay
= false;
9829 DeclContext
*OriginalDC
= DC
;
9830 bool IsLocalExternDecl
= adjustContextForLocalExternDecl(DC
);
9832 FunctionDecl
*NewFD
= CreateNewFunctionDecl(*this, D
, DC
, R
, TInfo
, SC
,
9834 if (!NewFD
) return nullptr;
9836 if (OriginalLexicalContext
&& OriginalLexicalContext
->isObjCContainer())
9837 NewFD
->setTopLevelDeclInObjCContainer();
9839 // Set the lexical context. If this is a function-scope declaration, or has a
9840 // C++ scope specifier, or is the object of a friend declaration, the lexical
9841 // context will be different from the semantic context.
9842 NewFD
->setLexicalDeclContext(CurContext
);
9844 if (IsLocalExternDecl
)
9845 NewFD
->setLocalExternDecl();
9847 if (getLangOpts().CPlusPlus
) {
9848 // The rules for implicit inlines changed in C++20 for methods and friends
9849 // with an in-class definition (when such a definition is not attached to
9850 // the global module). User-specified 'inline' overrides this (set when
9851 // the function decl is created above).
9852 // FIXME: We need a better way to separate C++ standard and clang modules.
9853 bool ImplicitInlineCXX20
= !getLangOpts().CPlusPlusModules
||
9854 !NewFD
->getOwningModule() ||
9855 NewFD
->getOwningModule()->isGlobalModule() ||
9856 NewFD
->getOwningModule()->isHeaderLikeModule();
9857 bool isInline
= D
.getDeclSpec().isInlineSpecified();
9858 bool isVirtual
= D
.getDeclSpec().isVirtualSpecified();
9859 bool hasExplicit
= D
.getDeclSpec().hasExplicitSpecifier();
9860 isFriend
= D
.getDeclSpec().isFriendSpecified();
9861 if (isFriend
&& !isInline
&& D
.isFunctionDefinition()) {
9862 // Pre-C++20 [class.friend]p5
9863 // A function can be defined in a friend declaration of a
9864 // class . . . . Such a function is implicitly inline.
9865 // Post C++20 [class.friend]p7
9866 // Such a function is implicitly an inline function if it is attached
9867 // to the global module.
9868 NewFD
->setImplicitlyInline(ImplicitInlineCXX20
);
9871 // If this is a method defined in an __interface, and is not a constructor
9872 // or an overloaded operator, then set the pure flag (isVirtual will already
9874 if (const CXXRecordDecl
*Parent
=
9875 dyn_cast
<CXXRecordDecl
>(NewFD
->getDeclContext())) {
9876 if (Parent
->isInterface() && cast
<CXXMethodDecl
>(NewFD
)->isUserProvided())
9877 NewFD
->setPure(true);
9879 // C++ [class.union]p2
9880 // A union can have member functions, but not virtual functions.
9881 if (isVirtual
&& Parent
->isUnion()) {
9882 Diag(D
.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union
);
9883 NewFD
->setInvalidDecl();
9885 if ((Parent
->isClass() || Parent
->isStruct()) &&
9886 Parent
->hasAttr
<SYCLSpecialClassAttr
>() &&
9887 NewFD
->getKind() == Decl::Kind::CXXMethod
&& NewFD
->getIdentifier() &&
9888 NewFD
->getName() == "__init" && D
.isFunctionDefinition()) {
9889 if (auto *Def
= Parent
->getDefinition())
9890 Def
->setInitMethod(true);
9894 SetNestedNameSpecifier(*this, NewFD
, D
);
9895 isMemberSpecialization
= false;
9896 isFunctionTemplateSpecialization
= false;
9897 if (D
.isInvalidType())
9898 NewFD
->setInvalidDecl();
9900 // Match up the template parameter lists with the scope specifier, then
9901 // determine whether we have a template or a template specialization.
9902 bool Invalid
= false;
9903 TemplateParameterList
*TemplateParams
=
9904 MatchTemplateParametersToScopeSpecifier(
9905 D
.getDeclSpec().getBeginLoc(), D
.getIdentifierLoc(),
9906 D
.getCXXScopeSpec(),
9907 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9908 ? D
.getName().TemplateId
9910 TemplateParamLists
, isFriend
, isMemberSpecialization
,
9912 if (TemplateParams
) {
9913 // Check that we can declare a template here.
9914 if (CheckTemplateDeclScope(S
, TemplateParams
))
9915 NewFD
->setInvalidDecl();
9917 if (TemplateParams
->size() > 0) {
9918 // This is a function template
9920 // A destructor cannot be a template.
9921 if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
9922 Diag(NewFD
->getLocation(), diag::err_destructor_template
);
9923 NewFD
->setInvalidDecl();
9926 // If we're adding a template to a dependent context, we may need to
9927 // rebuilding some of the types used within the template parameter list,
9928 // now that we know what the current instantiation is.
9929 if (DC
->isDependentContext()) {
9930 ContextRAII
SavedContext(*this, DC
);
9931 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams
))
9935 FunctionTemplate
= FunctionTemplateDecl::Create(Context
, DC
,
9936 NewFD
->getLocation(),
9937 Name
, TemplateParams
,
9939 FunctionTemplate
->setLexicalDeclContext(CurContext
);
9940 NewFD
->setDescribedFunctionTemplate(FunctionTemplate
);
9942 // For source fidelity, store the other template param lists.
9943 if (TemplateParamLists
.size() > 1) {
9944 NewFD
->setTemplateParameterListsInfo(Context
,
9945 ArrayRef
<TemplateParameterList
*>(TemplateParamLists
)
9949 // This is a function template specialization.
9950 isFunctionTemplateSpecialization
= true;
9951 // For source fidelity, store all the template param lists.
9952 if (TemplateParamLists
.size() > 0)
9953 NewFD
->setTemplateParameterListsInfo(Context
, TemplateParamLists
);
9955 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9957 // We want to remove the "template<>", found here.
9958 SourceRange RemoveRange
= TemplateParams
->getSourceRange();
9960 // If we remove the template<> and the name is not a
9961 // template-id, we're actually silently creating a problem:
9962 // the friend declaration will refer to an untemplated decl,
9963 // and clearly the user wants a template specialization. So
9964 // we need to insert '<>' after the name.
9965 SourceLocation InsertLoc
;
9966 if (D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) {
9967 InsertLoc
= D
.getName().getSourceRange().getEnd();
9968 InsertLoc
= getLocForEndOfToken(InsertLoc
);
9971 Diag(D
.getIdentifierLoc(), diag::err_template_spec_decl_friend
)
9972 << Name
<< RemoveRange
9973 << FixItHint::CreateRemoval(RemoveRange
)
9974 << FixItHint::CreateInsertion(InsertLoc
, "<>");
9979 // Check that we can declare a template here.
9980 if (!TemplateParamLists
.empty() && isMemberSpecialization
&&
9981 CheckTemplateDeclScope(S
, TemplateParamLists
.back()))
9982 NewFD
->setInvalidDecl();
9984 // All template param lists were matched against the scope specifier:
9985 // this is NOT (an explicit specialization of) a template.
9986 if (TemplateParamLists
.size() > 0)
9987 // For source fidelity, store all the template param lists.
9988 NewFD
->setTemplateParameterListsInfo(Context
, TemplateParamLists
);
9992 NewFD
->setInvalidDecl();
9993 if (FunctionTemplate
)
9994 FunctionTemplate
->setInvalidDecl();
9997 // C++ [dcl.fct.spec]p5:
9998 // The virtual specifier shall only be used in declarations of
9999 // nonstatic class member functions that appear within a
10000 // member-specification of a class declaration; see 10.3.
10002 if (isVirtual
&& !NewFD
->isInvalidDecl()) {
10003 if (!isVirtualOkay
) {
10004 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
10005 diag::err_virtual_non_function
);
10006 } else if (!CurContext
->isRecord()) {
10007 // 'virtual' was specified outside of the class.
10008 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
10009 diag::err_virtual_out_of_class
)
10010 << FixItHint::CreateRemoval(D
.getDeclSpec().getVirtualSpecLoc());
10011 } else if (NewFD
->getDescribedFunctionTemplate()) {
10012 // C++ [temp.mem]p3:
10013 // A member function template shall not be virtual.
10014 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
10015 diag::err_virtual_member_function_template
)
10016 << FixItHint::CreateRemoval(D
.getDeclSpec().getVirtualSpecLoc());
10018 // Okay: Add virtual to the method.
10019 NewFD
->setVirtualAsWritten(true);
10022 if (getLangOpts().CPlusPlus14
&&
10023 NewFD
->getReturnType()->isUndeducedType())
10024 Diag(D
.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual
);
10027 if (getLangOpts().CPlusPlus14
&&
10028 (NewFD
->isDependentContext() ||
10029 (isFriend
&& CurContext
->isDependentContext())) &&
10030 NewFD
->getReturnType()->isUndeducedType()) {
10031 // If the function template is referenced directly (for instance, as a
10032 // member of the current instantiation), pretend it has a dependent type.
10033 // This is not really justified by the standard, but is the only sane
10035 // FIXME: For a friend function, we have not marked the function as being
10036 // a friend yet, so 'isDependentContext' on the FD doesn't work.
10037 const FunctionProtoType
*FPT
=
10038 NewFD
->getType()->castAs
<FunctionProtoType
>();
10039 QualType Result
= SubstAutoTypeDependent(FPT
->getReturnType());
10040 NewFD
->setType(Context
.getFunctionType(Result
, FPT
->getParamTypes(),
10041 FPT
->getExtProtoInfo()));
10044 // C++ [dcl.fct.spec]p3:
10045 // The inline specifier shall not appear on a block scope function
10047 if (isInline
&& !NewFD
->isInvalidDecl()) {
10048 if (CurContext
->isFunctionOrMethod()) {
10049 // 'inline' is not allowed on block scope function declaration.
10050 Diag(D
.getDeclSpec().getInlineSpecLoc(),
10051 diag::err_inline_declaration_block_scope
) << Name
10052 << FixItHint::CreateRemoval(D
.getDeclSpec().getInlineSpecLoc());
10056 // C++ [dcl.fct.spec]p6:
10057 // The explicit specifier shall be used only in the declaration of a
10058 // constructor or conversion function within its class definition;
10059 // see 12.3.1 and 12.3.2.
10060 if (hasExplicit
&& !NewFD
->isInvalidDecl() &&
10061 !isa
<CXXDeductionGuideDecl
>(NewFD
)) {
10062 if (!CurContext
->isRecord()) {
10063 // 'explicit' was specified outside of the class.
10064 Diag(D
.getDeclSpec().getExplicitSpecLoc(),
10065 diag::err_explicit_out_of_class
)
10066 << FixItHint::CreateRemoval(D
.getDeclSpec().getExplicitSpecRange());
10067 } else if (!isa
<CXXConstructorDecl
>(NewFD
) &&
10068 !isa
<CXXConversionDecl
>(NewFD
)) {
10069 // 'explicit' was specified on a function that wasn't a constructor
10070 // or conversion function.
10071 Diag(D
.getDeclSpec().getExplicitSpecLoc(),
10072 diag::err_explicit_non_ctor_or_conv_function
)
10073 << FixItHint::CreateRemoval(D
.getDeclSpec().getExplicitSpecRange());
10077 ConstexprSpecKind ConstexprKind
= D
.getDeclSpec().getConstexprSpecifier();
10078 if (ConstexprKind
!= ConstexprSpecKind::Unspecified
) {
10079 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
10080 // are implicitly inline.
10081 NewFD
->setImplicitlyInline();
10083 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
10084 // be either constructors or to return a literal type. Therefore,
10085 // destructors cannot be declared constexpr.
10086 if (isa
<CXXDestructorDecl
>(NewFD
) &&
10087 (!getLangOpts().CPlusPlus20
||
10088 ConstexprKind
== ConstexprSpecKind::Consteval
)) {
10089 Diag(D
.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor
)
10090 << static_cast<int>(ConstexprKind
);
10091 NewFD
->setConstexprKind(getLangOpts().CPlusPlus20
10092 ? ConstexprSpecKind::Unspecified
10093 : ConstexprSpecKind::Constexpr
);
10095 // C++20 [dcl.constexpr]p2: An allocation function, or a
10096 // deallocation function shall not be declared with the consteval
10098 if (ConstexprKind
== ConstexprSpecKind::Consteval
&&
10099 (NewFD
->getOverloadedOperator() == OO_New
||
10100 NewFD
->getOverloadedOperator() == OO_Array_New
||
10101 NewFD
->getOverloadedOperator() == OO_Delete
||
10102 NewFD
->getOverloadedOperator() == OO_Array_Delete
)) {
10103 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
10104 diag::err_invalid_consteval_decl_kind
)
10106 NewFD
->setConstexprKind(ConstexprSpecKind::Constexpr
);
10110 // If __module_private__ was specified, mark the function accordingly.
10111 if (D
.getDeclSpec().isModulePrivateSpecified()) {
10112 if (isFunctionTemplateSpecialization
) {
10113 SourceLocation ModulePrivateLoc
10114 = D
.getDeclSpec().getModulePrivateSpecLoc();
10115 Diag(ModulePrivateLoc
, diag::err_module_private_specialization
)
10117 << FixItHint::CreateRemoval(ModulePrivateLoc
);
10119 NewFD
->setModulePrivate();
10120 if (FunctionTemplate
)
10121 FunctionTemplate
->setModulePrivate();
10126 if (FunctionTemplate
) {
10127 FunctionTemplate
->setObjectOfFriendDecl();
10128 FunctionTemplate
->setAccess(AS_public
);
10130 NewFD
->setObjectOfFriendDecl();
10131 NewFD
->setAccess(AS_public
);
10134 // If a function is defined as defaulted or deleted, mark it as such now.
10135 // We'll do the relevant checks on defaulted / deleted functions later.
10136 switch (D
.getFunctionDefinitionKind()) {
10137 case FunctionDefinitionKind::Declaration
:
10138 case FunctionDefinitionKind::Definition
:
10141 case FunctionDefinitionKind::Defaulted
:
10142 NewFD
->setDefaulted();
10145 case FunctionDefinitionKind::Deleted
:
10146 NewFD
->setDeletedAsWritten();
10150 if (isa
<CXXMethodDecl
>(NewFD
) && DC
== CurContext
&&
10151 D
.isFunctionDefinition() && !isInline
) {
10152 // Pre C++20 [class.mfct]p2:
10153 // A member function may be defined (8.4) in its class definition, in
10154 // which case it is an inline member function (7.1.2)
10155 // Post C++20 [class.mfct]p1:
10156 // If a member function is attached to the global module and is defined
10157 // in its class definition, it is inline.
10158 NewFD
->setImplicitlyInline(ImplicitInlineCXX20
);
10161 if (SC
== SC_Static
&& isa
<CXXMethodDecl
>(NewFD
) &&
10162 !CurContext
->isRecord()) {
10163 // C++ [class.static]p1:
10164 // A data or function member of a class may be declared static
10165 // in a class definition, in which case it is a static member of
10168 // Complain about the 'static' specifier if it's on an out-of-line
10169 // member function definition.
10171 // MSVC permits the use of a 'static' storage specifier on an out-of-line
10172 // member function template declaration and class member template
10173 // declaration (MSVC versions before 2015), warn about this.
10174 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
10175 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015
) &&
10176 cast
<CXXRecordDecl
>(DC
)->getDescribedClassTemplate()) ||
10177 (getLangOpts().MSVCCompat
&& NewFD
->getDescribedFunctionTemplate()))
10178 ? diag::ext_static_out_of_line
: diag::err_static_out_of_line
)
10179 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
10182 // C++11 [except.spec]p15:
10183 // A deallocation function with no exception-specification is treated
10184 // as if it were specified with noexcept(true).
10185 const FunctionProtoType
*FPT
= R
->getAs
<FunctionProtoType
>();
10186 if ((Name
.getCXXOverloadedOperator() == OO_Delete
||
10187 Name
.getCXXOverloadedOperator() == OO_Array_Delete
) &&
10188 getLangOpts().CPlusPlus11
&& FPT
&& !FPT
->hasExceptionSpec())
10189 NewFD
->setType(Context
.getFunctionType(
10190 FPT
->getReturnType(), FPT
->getParamTypes(),
10191 FPT
->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept
)));
10193 // C++20 [dcl.inline]/7
10194 // If an inline function or variable that is attached to a named module
10195 // is declared in a definition domain, it shall be defined in that
10197 // So, if the current declaration does not have a definition, we must
10198 // check at the end of the TU (or when the PMF starts) to see that we
10199 // have a definition at that point.
10200 if (isInline
&& !D
.isFunctionDefinition() && getLangOpts().CPlusPlus20
&&
10201 NewFD
->hasOwningModule() && NewFD
->getOwningModule()->isNamedModule()) {
10202 PendingInlineFuncDecls
.insert(NewFD
);
10206 // Filter out previous declarations that don't match the scope.
10207 FilterLookupForScope(Previous
, OriginalDC
, S
, shouldConsiderLinkage(NewFD
),
10208 D
.getCXXScopeSpec().isNotEmpty() ||
10209 isMemberSpecialization
||
10210 isFunctionTemplateSpecialization
);
10212 // Handle GNU asm-label extension (encoded as an attribute).
10213 if (Expr
*E
= (Expr
*) D
.getAsmLabel()) {
10214 // The parser guarantees this is a string.
10215 StringLiteral
*SE
= cast
<StringLiteral
>(E
);
10216 NewFD
->addAttr(AsmLabelAttr::Create(Context
, SE
->getString(),
10217 /*IsLiteralLabel=*/true,
10218 SE
->getStrTokenLoc(0)));
10219 } else if (!ExtnameUndeclaredIdentifiers
.empty()) {
10220 llvm::DenseMap
<IdentifierInfo
*,AsmLabelAttr
*>::iterator I
=
10221 ExtnameUndeclaredIdentifiers
.find(NewFD
->getIdentifier());
10222 if (I
!= ExtnameUndeclaredIdentifiers
.end()) {
10223 if (isDeclExternC(NewFD
)) {
10224 NewFD
->addAttr(I
->second
);
10225 ExtnameUndeclaredIdentifiers
.erase(I
);
10227 Diag(NewFD
->getLocation(), diag::warn_redefine_extname_not_applied
)
10228 << /*Variable*/0 << NewFD
;
10232 // Copy the parameter declarations from the declarator D to the function
10233 // declaration NewFD, if they are available. First scavenge them into Params.
10234 SmallVector
<ParmVarDecl
*, 16> Params
;
10236 if (D
.isFunctionDeclarator(FTIIdx
)) {
10237 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getTypeObject(FTIIdx
).Fun
;
10239 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
10240 // function that takes no arguments, not a function that takes a
10241 // single void argument.
10242 // We let through "const void" here because Sema::GetTypeForDeclarator
10243 // already checks for that case.
10244 if (FTIHasNonVoidParameters(FTI
) && FTI
.Params
[0].Param
) {
10245 for (unsigned i
= 0, e
= FTI
.NumParams
; i
!= e
; ++i
) {
10246 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
10247 assert(Param
->getDeclContext() != NewFD
&& "Was set before ?");
10248 Param
->setDeclContext(NewFD
);
10249 Params
.push_back(Param
);
10251 if (Param
->isInvalidDecl())
10252 NewFD
->setInvalidDecl();
10256 if (!getLangOpts().CPlusPlus
) {
10257 // In C, find all the tag declarations from the prototype and move them
10258 // into the function DeclContext. Remove them from the surrounding tag
10259 // injection context of the function, which is typically but not always
10261 DeclContext
*PrototypeTagContext
=
10262 getTagInjectionContext(NewFD
->getLexicalDeclContext());
10263 for (NamedDecl
*NonParmDecl
: FTI
.getDeclsInPrototype()) {
10264 auto *TD
= dyn_cast
<TagDecl
>(NonParmDecl
);
10266 // We don't want to reparent enumerators. Look at their parent enum
10269 if (auto *ECD
= dyn_cast
<EnumConstantDecl
>(NonParmDecl
))
10270 TD
= cast
<EnumDecl
>(ECD
->getDeclContext());
10274 DeclContext
*TagDC
= TD
->getLexicalDeclContext();
10275 if (!TagDC
->containsDecl(TD
))
10277 TagDC
->removeDecl(TD
);
10278 TD
->setDeclContext(NewFD
);
10279 NewFD
->addDecl(TD
);
10281 // Preserve the lexical DeclContext if it is not the surrounding tag
10282 // injection context of the FD. In this example, the semantic context of
10283 // E will be f and the lexical context will be S, while both the
10284 // semantic and lexical contexts of S will be f:
10285 // void f(struct S { enum E { a } f; } s);
10286 if (TagDC
!= PrototypeTagContext
)
10287 TD
->setLexicalDeclContext(TagDC
);
10290 } else if (const FunctionProtoType
*FT
= R
->getAs
<FunctionProtoType
>()) {
10291 // When we're declaring a function with a typedef, typeof, etc as in the
10292 // following example, we'll need to synthesize (unnamed)
10293 // parameters for use in the declaration.
10296 // typedef void fn(int);
10300 // Synthesize a parameter for each argument type.
10301 for (const auto &AI
: FT
->param_types()) {
10302 ParmVarDecl
*Param
=
10303 BuildParmVarDeclForTypedef(NewFD
, D
.getIdentifierLoc(), AI
);
10304 Param
->setScopeInfo(0, Params
.size());
10305 Params
.push_back(Param
);
10308 assert(R
->isFunctionNoProtoType() && NewFD
->getNumParams() == 0 &&
10309 "Should not need args for typedef of non-prototype fn");
10312 // Finally, we know we have the right number of parameters, install them.
10313 NewFD
->setParams(Params
);
10315 if (D
.getDeclSpec().isNoreturnSpecified())
10317 C11NoReturnAttr::Create(Context
, D
.getDeclSpec().getNoreturnSpecLoc()));
10319 // Functions returning a variably modified type violate C99 6.7.5.2p2
10320 // because all functions have linkage.
10321 if (!NewFD
->isInvalidDecl() &&
10322 NewFD
->getReturnType()->isVariablyModifiedType()) {
10323 Diag(NewFD
->getLocation(), diag::err_vm_func_decl
);
10324 NewFD
->setInvalidDecl();
10327 // Apply an implicit SectionAttr if '#pragma clang section text' is active
10328 if (PragmaClangTextSection
.Valid
&& D
.isFunctionDefinition() &&
10329 !NewFD
->hasAttr
<SectionAttr
>())
10330 NewFD
->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
10331 Context
, PragmaClangTextSection
.SectionName
,
10332 PragmaClangTextSection
.PragmaLocation
));
10334 // Apply an implicit SectionAttr if #pragma code_seg is active.
10335 if (CodeSegStack
.CurrentValue
&& D
.isFunctionDefinition() &&
10336 !NewFD
->hasAttr
<SectionAttr
>()) {
10337 NewFD
->addAttr(SectionAttr::CreateImplicit(
10338 Context
, CodeSegStack
.CurrentValue
->getString(),
10339 CodeSegStack
.CurrentPragmaLocation
, SectionAttr::Declspec_allocate
));
10340 if (UnifySection(CodeSegStack
.CurrentValue
->getString(),
10341 ASTContext::PSF_Implicit
| ASTContext::PSF_Execute
|
10342 ASTContext::PSF_Read
,
10344 NewFD
->dropAttr
<SectionAttr
>();
10347 // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is
10349 if (StrictGuardStackCheckStack
.CurrentValue
&& D
.isFunctionDefinition() &&
10350 !NewFD
->hasAttr
<StrictGuardStackCheckAttr
>())
10351 NewFD
->addAttr(StrictGuardStackCheckAttr::CreateImplicit(
10352 Context
, PragmaClangTextSection
.PragmaLocation
));
10354 // Apply an implicit CodeSegAttr from class declspec or
10355 // apply an implicit SectionAttr from #pragma code_seg if active.
10356 if (!NewFD
->hasAttr
<CodeSegAttr
>()) {
10357 if (Attr
*SAttr
= getImplicitCodeSegOrSectionAttrForFunction(NewFD
,
10358 D
.isFunctionDefinition())) {
10359 NewFD
->addAttr(SAttr
);
10363 // Handle attributes.
10364 ProcessDeclAttributes(S
, NewFD
, D
);
10365 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
10366 if (NewTVA
&& !NewTVA
->isDefaultVersion() &&
10367 !Context
.getTargetInfo().hasFeature("fmv")) {
10368 // Don't add to scope fmv functions declarations if fmv disabled
10369 AddToScope
= false;
10373 if (getLangOpts().OpenCL
|| getLangOpts().HLSL
) {
10374 // Neither OpenCL nor HLSL allow an address space qualifyer on a return
10377 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10378 // type declaration will generate a compilation error.
10379 LangAS AddressSpace
= NewFD
->getReturnType().getAddressSpace();
10380 if (AddressSpace
!= LangAS::Default
) {
10381 Diag(NewFD
->getLocation(), diag::err_return_value_with_address_space
);
10382 NewFD
->setInvalidDecl();
10386 if (!getLangOpts().CPlusPlus
) {
10387 // Perform semantic checking on the function declaration.
10388 if (!NewFD
->isInvalidDecl() && NewFD
->isMain())
10389 CheckMain(NewFD
, D
.getDeclSpec());
10391 if (!NewFD
->isInvalidDecl() && NewFD
->isMSVCRTEntryPoint())
10392 CheckMSVCRTEntryPoint(NewFD
);
10394 if (!NewFD
->isInvalidDecl())
10395 D
.setRedeclaration(CheckFunctionDeclaration(S
, NewFD
, Previous
,
10396 isMemberSpecialization
,
10397 D
.isFunctionDefinition()));
10398 else if (!Previous
.empty())
10399 // Recover gracefully from an invalid redeclaration.
10400 D
.setRedeclaration(true);
10401 assert((NewFD
->isInvalidDecl() || !D
.isRedeclaration() ||
10402 Previous
.getResultKind() != LookupResult::FoundOverloaded
) &&
10403 "previous declaration set still overloaded");
10405 // Diagnose no-prototype function declarations with calling conventions that
10406 // don't support variadic calls. Only do this in C and do it after merging
10407 // possibly prototyped redeclarations.
10408 const FunctionType
*FT
= NewFD
->getType()->castAs
<FunctionType
>();
10409 if (isa
<FunctionNoProtoType
>(FT
) && !D
.isFunctionDefinition()) {
10410 CallingConv CC
= FT
->getExtInfo().getCC();
10411 if (!supportsVariadicCall(CC
)) {
10412 // Windows system headers sometimes accidentally use stdcall without
10413 // (void) parameters, so we relax this to a warning.
10415 CC
== CC_X86StdCall
? diag::warn_cconv_knr
: diag::err_cconv_knr
;
10416 Diag(NewFD
->getLocation(), DiagID
)
10417 << FunctionType::getNameForCallConv(CC
);
10421 if (NewFD
->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10422 NewFD
->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10423 checkNonTrivialCUnion(NewFD
->getReturnType(),
10424 NewFD
->getReturnTypeSourceRange().getBegin(),
10425 NTCUC_FunctionReturn
, NTCUK_Destruct
|NTCUK_Copy
);
10427 // C++11 [replacement.functions]p3:
10428 // The program's definitions shall not be specified as inline.
10430 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10432 // Suppress the diagnostic if the function is __attribute__((used)), since
10433 // that forces an external definition to be emitted.
10434 if (D
.getDeclSpec().isInlineSpecified() &&
10435 NewFD
->isReplaceableGlobalAllocationFunction() &&
10436 !NewFD
->hasAttr
<UsedAttr
>())
10437 Diag(D
.getDeclSpec().getInlineSpecLoc(),
10438 diag::ext_operator_new_delete_declared_inline
)
10439 << NewFD
->getDeclName();
10441 // If the declarator is a template-id, translate the parser's template
10442 // argument list into our AST format.
10443 if (D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
) {
10444 TemplateIdAnnotation
*TemplateId
= D
.getName().TemplateId
;
10445 TemplateArgs
.setLAngleLoc(TemplateId
->LAngleLoc
);
10446 TemplateArgs
.setRAngleLoc(TemplateId
->RAngleLoc
);
10447 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
10448 TemplateId
->NumArgs
);
10449 translateTemplateArguments(TemplateArgsPtr
,
10452 HasExplicitTemplateArgs
= true;
10454 if (NewFD
->isInvalidDecl()) {
10455 HasExplicitTemplateArgs
= false;
10456 } else if (FunctionTemplate
) {
10457 // Function template with explicit template arguments.
10458 Diag(D
.getIdentifierLoc(), diag::err_function_template_partial_spec
)
10459 << SourceRange(TemplateId
->LAngleLoc
, TemplateId
->RAngleLoc
);
10461 HasExplicitTemplateArgs
= false;
10462 } else if (isFriend
) {
10463 // "friend void foo<>(int);" is an implicit specialization decl.
10464 isFunctionTemplateSpecialization
= true;
10466 assert(isFunctionTemplateSpecialization
&&
10467 "should have a 'template<>' for this decl");
10469 } else if (isFriend
&& isFunctionTemplateSpecialization
) {
10470 // This combination is only possible in a recovery case; the user
10471 // wrote something like:
10472 // template <> friend void foo(int);
10473 // which we're recovering from as if the user had written:
10474 // friend void foo<>(int);
10475 // Go ahead and fake up a template id.
10476 HasExplicitTemplateArgs
= true;
10477 TemplateArgs
.setLAngleLoc(D
.getIdentifierLoc());
10478 TemplateArgs
.setRAngleLoc(D
.getIdentifierLoc());
10481 // We do not add HD attributes to specializations here because
10482 // they may have different constexpr-ness compared to their
10483 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
10484 // may end up with different effective targets. Instead, a
10485 // specialization inherits its target attributes from its template
10486 // in the CheckFunctionTemplateSpecialization() call below.
10487 if (getLangOpts().CUDA
&& !isFunctionTemplateSpecialization
)
10488 maybeAddCUDAHostDeviceAttrs(NewFD
, Previous
);
10490 // Handle explict specializations of function templates
10491 // and friend function declarations with an explicit
10492 // template argument list.
10493 if (isFunctionTemplateSpecialization
) {
10494 bool isDependentSpecialization
= false;
10496 // For friend function specializations, this is a dependent
10497 // specialization if its semantic context is dependent, its
10498 // type is dependent, or if its template-id is dependent.
10499 isDependentSpecialization
=
10500 DC
->isDependentContext() || NewFD
->getType()->isDependentType() ||
10501 (HasExplicitTemplateArgs
&&
10502 TemplateSpecializationType::
10503 anyInstantiationDependentTemplateArguments(
10504 TemplateArgs
.arguments()));
10505 assert((!isDependentSpecialization
||
10506 (HasExplicitTemplateArgs
== isDependentSpecialization
)) &&
10507 "dependent friend function specialization without template "
10510 // For class-scope explicit specializations of function templates,
10511 // if the lexical context is dependent, then the specialization
10513 isDependentSpecialization
=
10514 CurContext
->isRecord() && CurContext
->isDependentContext();
10517 TemplateArgumentListInfo
*ExplicitTemplateArgs
=
10518 HasExplicitTemplateArgs
? &TemplateArgs
: nullptr;
10519 if (isDependentSpecialization
) {
10520 // If it's a dependent specialization, it may not be possible
10521 // to determine the primary template (for explicit specializations)
10522 // or befriended declaration (for friends) until the enclosing
10523 // template is instantiated. In such cases, we store the declarations
10524 // found by name lookup and defer resolution until instantiation.
10525 if (CheckDependentFunctionTemplateSpecialization(
10526 NewFD
, ExplicitTemplateArgs
, Previous
))
10527 NewFD
->setInvalidDecl();
10528 } else if (!NewFD
->isInvalidDecl()) {
10529 if (CheckFunctionTemplateSpecialization(NewFD
, ExplicitTemplateArgs
,
10531 NewFD
->setInvalidDecl();
10534 // C++ [dcl.stc]p1:
10535 // A storage-class-specifier shall not be specified in an explicit
10536 // specialization (14.7.3)
10537 // FIXME: We should be checking this for dependent specializations.
10538 FunctionTemplateSpecializationInfo
*Info
=
10539 NewFD
->getTemplateSpecializationInfo();
10540 if (Info
&& SC
!= SC_None
) {
10541 if (SC
!= Info
->getTemplate()->getTemplatedDecl()->getStorageClass())
10542 Diag(NewFD
->getLocation(),
10543 diag::err_explicit_specialization_inconsistent_storage_class
)
10545 << FixItHint::CreateRemoval(
10546 D
.getDeclSpec().getStorageClassSpecLoc());
10549 Diag(NewFD
->getLocation(),
10550 diag::ext_explicit_specialization_storage_class
)
10551 << FixItHint::CreateRemoval(
10552 D
.getDeclSpec().getStorageClassSpecLoc());
10554 } else if (isMemberSpecialization
&& isa
<CXXMethodDecl
>(NewFD
)) {
10555 if (CheckMemberSpecialization(NewFD
, Previous
))
10556 NewFD
->setInvalidDecl();
10559 // Perform semantic checking on the function declaration.
10560 if (!NewFD
->isInvalidDecl() && NewFD
->isMain())
10561 CheckMain(NewFD
, D
.getDeclSpec());
10563 if (!NewFD
->isInvalidDecl() && NewFD
->isMSVCRTEntryPoint())
10564 CheckMSVCRTEntryPoint(NewFD
);
10566 if (!NewFD
->isInvalidDecl())
10567 D
.setRedeclaration(CheckFunctionDeclaration(S
, NewFD
, Previous
,
10568 isMemberSpecialization
,
10569 D
.isFunctionDefinition()));
10570 else if (!Previous
.empty())
10571 // Recover gracefully from an invalid redeclaration.
10572 D
.setRedeclaration(true);
10574 assert((NewFD
->isInvalidDecl() || NewFD
->isMultiVersion() ||
10575 !D
.isRedeclaration() ||
10576 Previous
.getResultKind() != LookupResult::FoundOverloaded
) &&
10577 "previous declaration set still overloaded");
10579 NamedDecl
*PrincipalDecl
= (FunctionTemplate
10580 ? cast
<NamedDecl
>(FunctionTemplate
)
10583 if (isFriend
&& NewFD
->getPreviousDecl()) {
10584 AccessSpecifier Access
= AS_public
;
10585 if (!NewFD
->isInvalidDecl())
10586 Access
= NewFD
->getPreviousDecl()->getAccess();
10588 NewFD
->setAccess(Access
);
10589 if (FunctionTemplate
) FunctionTemplate
->setAccess(Access
);
10592 if (NewFD
->isOverloadedOperator() && !DC
->isRecord() &&
10593 PrincipalDecl
->isInIdentifierNamespace(Decl::IDNS_Ordinary
))
10594 PrincipalDecl
->setNonMemberOperator();
10596 // If we have a function template, check the template parameter
10597 // list. This will check and merge default template arguments.
10598 if (FunctionTemplate
) {
10599 FunctionTemplateDecl
*PrevTemplate
=
10600 FunctionTemplate
->getPreviousDecl();
10601 CheckTemplateParameterList(FunctionTemplate
->getTemplateParameters(),
10602 PrevTemplate
? PrevTemplate
->getTemplateParameters()
10604 D
.getDeclSpec().isFriendSpecified()
10605 ? (D
.isFunctionDefinition()
10606 ? TPC_FriendFunctionTemplateDefinition
10607 : TPC_FriendFunctionTemplate
)
10608 : (D
.getCXXScopeSpec().isSet() &&
10609 DC
&& DC
->isRecord() &&
10610 DC
->isDependentContext())
10611 ? TPC_ClassTemplateMember
10612 : TPC_FunctionTemplate
);
10615 if (NewFD
->isInvalidDecl()) {
10616 // Ignore all the rest of this.
10617 } else if (!D
.isRedeclaration()) {
10618 struct ActOnFDArgs ExtraArgs
= { S
, D
, TemplateParamLists
,
10620 // Fake up an access specifier if it's supposed to be a class member.
10621 if (isa
<CXXRecordDecl
>(NewFD
->getDeclContext()))
10622 NewFD
->setAccess(AS_public
);
10624 // Qualified decls generally require a previous declaration.
10625 if (D
.getCXXScopeSpec().isSet()) {
10626 // ...with the major exception of templated-scope or
10627 // dependent-scope friend declarations.
10629 // TODO: we currently also suppress this check in dependent
10630 // contexts because (1) the parameter depth will be off when
10631 // matching friend templates and (2) we might actually be
10632 // selecting a friend based on a dependent factor. But there
10633 // are situations where these conditions don't apply and we
10634 // can actually do this check immediately.
10636 // Unless the scope is dependent, it's always an error if qualified
10637 // redeclaration lookup found nothing at all. Diagnose that now;
10638 // nothing will diagnose that error later.
10640 (D
.getCXXScopeSpec().getScopeRep()->isDependent() ||
10641 (!Previous
.empty() && CurContext
->isDependentContext()))) {
10643 } else if (NewFD
->isCPUDispatchMultiVersion() ||
10644 NewFD
->isCPUSpecificMultiVersion()) {
10645 // ignore this, we allow the redeclaration behavior here to create new
10646 // versions of the function.
10648 // The user tried to provide an out-of-line definition for a
10649 // function that is a member of a class or namespace, but there
10650 // was no such member function declared (C++ [class.mfct]p2,
10651 // C++ [namespace.memdef]p2). For example:
10657 // void X::f() { } // ill-formed
10659 // Complain about this problem, and attempt to suggest close
10660 // matches (e.g., those that differ only in cv-qualifiers and
10661 // whether the parameter types are references).
10663 if (NamedDecl
*Result
= DiagnoseInvalidRedeclaration(
10664 *this, Previous
, NewFD
, ExtraArgs
, false, nullptr)) {
10665 AddToScope
= ExtraArgs
.AddToScope
;
10670 // Unqualified local friend declarations are required to resolve
10672 } else if (isFriend
&& cast
<CXXRecordDecl
>(CurContext
)->isLocalClass()) {
10673 if (NamedDecl
*Result
= DiagnoseInvalidRedeclaration(
10674 *this, Previous
, NewFD
, ExtraArgs
, true, S
)) {
10675 AddToScope
= ExtraArgs
.AddToScope
;
10679 } else if (!D
.isFunctionDefinition() &&
10680 isa
<CXXMethodDecl
>(NewFD
) && NewFD
->isOutOfLine() &&
10681 !isFriend
&& !isFunctionTemplateSpecialization
&&
10682 !isMemberSpecialization
) {
10683 // An out-of-line member function declaration must also be a
10684 // definition (C++ [class.mfct]p2).
10685 // Note that this is not the case for explicit specializations of
10686 // function templates or member functions of class templates, per
10687 // C++ [temp.expl.spec]p2. We also allow these declarations as an
10688 // extension for compatibility with old SWIG code which likes to
10690 Diag(NewFD
->getLocation(), diag::ext_out_of_line_declaration
)
10691 << D
.getCXXScopeSpec().getRange();
10695 if (getLangOpts().HLSL
&& D
.isFunctionDefinition()) {
10696 // Any top level function could potentially be specified as an entry.
10697 if (!NewFD
->isInvalidDecl() && S
->getDepth() == 0 && Name
.isIdentifier())
10698 ActOnHLSLTopLevelFunction(NewFD
);
10700 if (NewFD
->hasAttr
<HLSLShaderAttr
>())
10701 CheckHLSLEntryPoint(NewFD
);
10704 // If this is the first declaration of a library builtin function, add
10705 // attributes as appropriate.
10706 if (!D
.isRedeclaration()) {
10707 if (IdentifierInfo
*II
= Previous
.getLookupName().getAsIdentifierInfo()) {
10708 if (unsigned BuiltinID
= II
->getBuiltinID()) {
10709 bool InStdNamespace
= Context
.BuiltinInfo
.isInStdNamespace(BuiltinID
);
10710 if (!InStdNamespace
&&
10711 NewFD
->getDeclContext()->getRedeclContext()->isFileContext()) {
10712 if (NewFD
->getLanguageLinkage() == CLanguageLinkage
) {
10713 // Validate the type matches unless this builtin is specified as
10714 // matching regardless of its declared type.
10715 if (Context
.BuiltinInfo
.allowTypeMismatch(BuiltinID
)) {
10716 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10718 ASTContext::GetBuiltinTypeError Error
;
10719 LookupNecessaryTypesForBuiltin(S
, BuiltinID
);
10720 QualType BuiltinType
= Context
.GetBuiltinType(BuiltinID
, Error
);
10722 if (!Error
&& !BuiltinType
.isNull() &&
10723 Context
.hasSameFunctionTypeIgnoringExceptionSpec(
10724 NewFD
->getType(), BuiltinType
))
10725 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10728 } else if (InStdNamespace
&& NewFD
->isInStdNamespace() &&
10729 isStdBuiltin(Context
, NewFD
, BuiltinID
)) {
10730 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10736 ProcessPragmaWeak(S
, NewFD
);
10737 checkAttributesAfterMerging(*this, *NewFD
);
10739 AddKnownFunctionAttributes(NewFD
);
10741 if (NewFD
->hasAttr
<OverloadableAttr
>() &&
10742 !NewFD
->getType()->getAs
<FunctionProtoType
>()) {
10743 Diag(NewFD
->getLocation(),
10744 diag::err_attribute_overloadable_no_prototype
)
10746 NewFD
->dropAttr
<OverloadableAttr
>();
10749 // If there's a #pragma GCC visibility in scope, and this isn't a class
10750 // member, set the visibility of this function.
10751 if (!DC
->isRecord() && NewFD
->isExternallyVisible())
10752 AddPushedVisibilityAttribute(NewFD
);
10754 // If there's a #pragma clang arc_cf_code_audited in scope, consider
10755 // marking the function.
10756 AddCFAuditedAttribute(NewFD
);
10758 // If this is a function definition, check if we have to apply any
10759 // attributes (i.e. optnone and no_builtin) due to a pragma.
10760 if (D
.isFunctionDefinition()) {
10761 AddRangeBasedOptnone(NewFD
);
10762 AddImplicitMSFunctionNoBuiltinAttr(NewFD
);
10763 AddSectionMSAllocText(NewFD
);
10764 ModifyFnAttributesMSPragmaOptimize(NewFD
);
10767 // If this is the first declaration of an extern C variable, update
10768 // the map of such variables.
10769 if (NewFD
->isFirstDecl() && !NewFD
->isInvalidDecl() &&
10770 isIncompleteDeclExternC(*this, NewFD
))
10771 RegisterLocallyScopedExternCDecl(NewFD
, S
);
10773 // Set this FunctionDecl's range up to the right paren.
10774 NewFD
->setRangeEnd(D
.getSourceRange().getEnd());
10776 if (D
.isRedeclaration() && !Previous
.empty()) {
10777 NamedDecl
*Prev
= Previous
.getRepresentativeDecl();
10778 checkDLLAttributeRedeclaration(*this, Prev
, NewFD
,
10779 isMemberSpecialization
||
10780 isFunctionTemplateSpecialization
,
10781 D
.isFunctionDefinition());
10784 if (getLangOpts().CUDA
) {
10785 IdentifierInfo
*II
= NewFD
->getIdentifier();
10786 if (II
&& II
->isStr(getCudaConfigureFuncName()) &&
10787 !NewFD
->isInvalidDecl() &&
10788 NewFD
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10789 if (!R
->castAs
<FunctionType
>()->getReturnType()->isScalarType())
10790 Diag(NewFD
->getLocation(), diag::err_config_scalar_return
)
10791 << getCudaConfigureFuncName();
10792 Context
.setcudaConfigureCallDecl(NewFD
);
10795 // Variadic functions, other than a *declaration* of printf, are not allowed
10796 // in device-side CUDA code, unless someone passed
10797 // -fcuda-allow-variadic-functions.
10798 if (!getLangOpts().CUDAAllowVariadicFunctions
&& NewFD
->isVariadic() &&
10799 (NewFD
->hasAttr
<CUDADeviceAttr
>() ||
10800 NewFD
->hasAttr
<CUDAGlobalAttr
>()) &&
10801 !(II
&& II
->isStr("printf") && NewFD
->isExternC() &&
10802 !D
.isFunctionDefinition())) {
10803 Diag(NewFD
->getLocation(), diag::err_variadic_device_fn
);
10807 MarkUnusedFileScopedDecl(NewFD
);
10811 if (getLangOpts().OpenCL
&& NewFD
->hasAttr
<OpenCLKernelAttr
>()) {
10812 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10813 if (SC
== SC_Static
) {
10814 Diag(D
.getIdentifierLoc(), diag::err_static_kernel
);
10815 D
.setInvalidType();
10818 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10819 if (!NewFD
->getReturnType()->isVoidType()) {
10820 SourceRange RTRange
= NewFD
->getReturnTypeSourceRange();
10821 Diag(D
.getIdentifierLoc(), diag::err_expected_kernel_void_return_type
)
10822 << (RTRange
.isValid() ? FixItHint::CreateReplacement(RTRange
, "void")
10824 D
.setInvalidType();
10827 llvm::SmallPtrSet
<const Type
*, 16> ValidTypes
;
10828 for (auto *Param
: NewFD
->parameters())
10829 checkIsValidOpenCLKernelParameter(*this, D
, Param
, ValidTypes
);
10831 if (getLangOpts().OpenCLCPlusPlus
) {
10832 if (DC
->isRecord()) {
10833 Diag(D
.getIdentifierLoc(), diag::err_method_kernel
);
10834 D
.setInvalidType();
10836 if (FunctionTemplate
) {
10837 Diag(D
.getIdentifierLoc(), diag::err_template_kernel
);
10838 D
.setInvalidType();
10843 if (getLangOpts().CPlusPlus
) {
10844 // Precalculate whether this is a friend function template with a constraint
10845 // that depends on an enclosing template, per [temp.friend]p9.
10846 if (isFriend
&& FunctionTemplate
&&
10847 FriendConstraintsDependOnEnclosingTemplate(NewFD
))
10848 NewFD
->setFriendConstraintRefersToEnclosingTemplate(true);
10850 if (FunctionTemplate
) {
10851 if (NewFD
->isInvalidDecl())
10852 FunctionTemplate
->setInvalidDecl();
10853 return FunctionTemplate
;
10856 if (isMemberSpecialization
&& !NewFD
->isInvalidDecl())
10857 CompleteMemberSpecialization(NewFD
, Previous
);
10860 for (const ParmVarDecl
*Param
: NewFD
->parameters()) {
10861 QualType PT
= Param
->getType();
10863 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10865 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10866 if(const PipeType
*PipeTy
= PT
->getAs
<PipeType
>()) {
10867 QualType ElemTy
= PipeTy
->getElementType();
10868 if (ElemTy
->isReferenceType() || ElemTy
->isPointerType()) {
10869 Diag(Param
->getTypeSpecStartLoc(), diag::err_reference_pipe_type
);
10870 D
.setInvalidType();
10874 // WebAssembly tables can't be used as function parameters.
10875 if (Context
.getTargetInfo().getTriple().isWasm()) {
10876 if (PT
->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
10877 Diag(Param
->getTypeSpecStartLoc(),
10878 diag::err_wasm_table_as_function_parameter
);
10879 D
.setInvalidType();
10884 // Diagnose availability attributes. Availability cannot be used on functions
10885 // that are run during load/unload.
10886 if (const auto *attr
= NewFD
->getAttr
<AvailabilityAttr
>()) {
10887 if (NewFD
->hasAttr
<ConstructorAttr
>()) {
10888 Diag(attr
->getLocation(), diag::warn_availability_on_static_initializer
)
10890 NewFD
->dropAttr
<AvailabilityAttr
>();
10892 if (NewFD
->hasAttr
<DestructorAttr
>()) {
10893 Diag(attr
->getLocation(), diag::warn_availability_on_static_initializer
)
10895 NewFD
->dropAttr
<AvailabilityAttr
>();
10899 // Diagnose no_builtin attribute on function declaration that are not a
10901 // FIXME: We should really be doing this in
10902 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10903 // the FunctionDecl and at this point of the code
10904 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10905 // because Sema::ActOnStartOfFunctionDef has not been called yet.
10906 if (const auto *NBA
= NewFD
->getAttr
<NoBuiltinAttr
>())
10907 switch (D
.getFunctionDefinitionKind()) {
10908 case FunctionDefinitionKind::Defaulted
:
10909 case FunctionDefinitionKind::Deleted
:
10910 Diag(NBA
->getLocation(),
10911 diag::err_attribute_no_builtin_on_defaulted_deleted_function
)
10912 << NBA
->getSpelling();
10914 case FunctionDefinitionKind::Declaration
:
10915 Diag(NBA
->getLocation(), diag::err_attribute_no_builtin_on_non_definition
)
10916 << NBA
->getSpelling();
10918 case FunctionDefinitionKind::Definition
:
10925 /// Return a CodeSegAttr from a containing class. The Microsoft docs say
10926 /// when __declspec(code_seg) "is applied to a class, all member functions of
10927 /// the class and nested classes -- this includes compiler-generated special
10928 /// member functions -- are put in the specified segment."
10929 /// The actual behavior is a little more complicated. The Microsoft compiler
10930 /// won't check outer classes if there is an active value from #pragma code_seg.
10931 /// The CodeSeg is always applied from the direct parent but only from outer
10932 /// classes when the #pragma code_seg stack is empty. See:
10933 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10934 /// available since MS has removed the page.
10935 static Attr
*getImplicitCodeSegAttrFromClass(Sema
&S
, const FunctionDecl
*FD
) {
10936 const auto *Method
= dyn_cast
<CXXMethodDecl
>(FD
);
10939 const CXXRecordDecl
*Parent
= Method
->getParent();
10940 if (const auto *SAttr
= Parent
->getAttr
<CodeSegAttr
>()) {
10941 Attr
*NewAttr
= SAttr
->clone(S
.getASTContext());
10942 NewAttr
->setImplicit(true);
10946 // The Microsoft compiler won't check outer classes for the CodeSeg
10947 // when the #pragma code_seg stack is active.
10948 if (S
.CodeSegStack
.CurrentValue
)
10951 while ((Parent
= dyn_cast
<CXXRecordDecl
>(Parent
->getParent()))) {
10952 if (const auto *SAttr
= Parent
->getAttr
<CodeSegAttr
>()) {
10953 Attr
*NewAttr
= SAttr
->clone(S
.getASTContext());
10954 NewAttr
->setImplicit(true);
10961 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10962 /// containing class. Otherwise it will return implicit SectionAttr if the
10963 /// function is a definition and there is an active value on CodeSegStack
10964 /// (from the current #pragma code-seg value).
10966 /// \param FD Function being declared.
10967 /// \param IsDefinition Whether it is a definition or just a declaration.
10968 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
10969 /// nullptr if no attribute should be added.
10970 Attr
*Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl
*FD
,
10971 bool IsDefinition
) {
10972 if (Attr
*A
= getImplicitCodeSegAttrFromClass(*this, FD
))
10974 if (!FD
->hasAttr
<SectionAttr
>() && IsDefinition
&&
10975 CodeSegStack
.CurrentValue
)
10976 return SectionAttr::CreateImplicit(
10977 getASTContext(), CodeSegStack
.CurrentValue
->getString(),
10978 CodeSegStack
.CurrentPragmaLocation
, SectionAttr::Declspec_allocate
);
10982 /// Determines if we can perform a correct type check for \p D as a
10983 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
10984 /// best-effort check.
10986 /// \param NewD The new declaration.
10987 /// \param OldD The old declaration.
10988 /// \param NewT The portion of the type of the new declaration to check.
10989 /// \param OldT The portion of the type of the old declaration to check.
10990 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl
*NewD
, ValueDecl
*OldD
,
10991 QualType NewT
, QualType OldT
) {
10992 if (!NewD
->getLexicalDeclContext()->isDependentContext())
10995 // For dependently-typed local extern declarations and friends, we can't
10996 // perform a correct type check in general until instantiation:
10999 // template<typename T> void g() { T f(); }
11001 // (valid if g() is only instantiated with T = int).
11002 if (NewT
->isDependentType() &&
11003 (NewD
->isLocalExternDecl() || NewD
->getFriendObjectKind()))
11006 // Similarly, if the previous declaration was a dependent local extern
11007 // declaration, we don't really know its type yet.
11008 if (OldT
->isDependentType() && OldD
->isLocalExternDecl())
11014 /// Checks if the new declaration declared in dependent context must be
11015 /// put in the same redeclaration chain as the specified declaration.
11017 /// \param D Declaration that is checked.
11018 /// \param PrevDecl Previous declaration found with proper lookup method for the
11019 /// same declaration name.
11020 /// \returns True if D must be added to the redeclaration chain which PrevDecl
11023 bool Sema::shouldLinkDependentDeclWithPrevious(Decl
*D
, Decl
*PrevDecl
) {
11024 if (!D
->getLexicalDeclContext()->isDependentContext())
11027 // Don't chain dependent friend function definitions until instantiation, to
11028 // permit cases like
11031 // template<typename T> class C1 { friend void func() {} };
11032 // template<typename T> class C2 { friend void func() {} };
11034 // ... which is valid if only one of C1 and C2 is ever instantiated.
11036 // FIXME: This need only apply to function definitions. For now, we proxy
11037 // this by checking for a file-scope function. We do not want this to apply
11038 // to friend declarations nominating member functions, because that gets in
11039 // the way of access checks.
11040 if (D
->getFriendObjectKind() && D
->getDeclContext()->isFileContext())
11043 auto *VD
= dyn_cast
<ValueDecl
>(D
);
11044 auto *PrevVD
= dyn_cast
<ValueDecl
>(PrevDecl
);
11045 return !VD
|| !PrevVD
||
11046 canFullyTypeCheckRedeclaration(VD
, PrevVD
, VD
->getType(),
11047 PrevVD
->getType());
11050 /// Check the target or target_version attribute of the function for
11051 /// MultiVersion validity.
11053 /// Returns true if there was an error, false otherwise.
11054 static bool CheckMultiVersionValue(Sema
&S
, const FunctionDecl
*FD
) {
11055 const auto *TA
= FD
->getAttr
<TargetAttr
>();
11056 const auto *TVA
= FD
->getAttr
<TargetVersionAttr
>();
11059 "MultiVersion candidate requires a target or target_version attribute");
11060 const TargetInfo
&TargetInfo
= S
.Context
.getTargetInfo();
11061 enum ErrType
{ Feature
= 0, Architecture
= 1 };
11064 ParsedTargetAttr ParseInfo
=
11065 S
.getASTContext().getTargetInfo().parseTargetAttr(TA
->getFeaturesStr());
11066 if (!ParseInfo
.CPU
.empty() && !TargetInfo
.validateCpuIs(ParseInfo
.CPU
)) {
11067 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11068 << Architecture
<< ParseInfo
.CPU
;
11071 for (const auto &Feat
: ParseInfo
.Features
) {
11072 auto BareFeat
= StringRef
{Feat
}.substr(1);
11073 if (Feat
[0] == '-') {
11074 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11075 << Feature
<< ("no-" + BareFeat
).str();
11079 if (!TargetInfo
.validateCpuSupports(BareFeat
) ||
11080 !TargetInfo
.isValidFeatureName(BareFeat
)) {
11081 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11082 << Feature
<< BareFeat
;
11089 llvm::SmallVector
<StringRef
, 8> Feats
;
11090 TVA
->getFeatures(Feats
);
11091 for (const auto &Feat
: Feats
) {
11092 if (!TargetInfo
.validateCpuSupports(Feat
)) {
11093 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11094 << Feature
<< Feat
;
11102 // Provide a white-list of attributes that are allowed to be combined with
11103 // multiversion functions.
11104 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind
,
11105 MultiVersionKind MVKind
) {
11106 // Note: this list/diagnosis must match the list in
11107 // checkMultiversionAttributesAllSame.
11112 return MVKind
== MultiVersionKind::Target
;
11113 case attr::NonNull
:
11114 case attr::NoThrow
:
11119 static bool checkNonMultiVersionCompatAttributes(Sema
&S
,
11120 const FunctionDecl
*FD
,
11121 const FunctionDecl
*CausedFD
,
11122 MultiVersionKind MVKind
) {
11123 const auto Diagnose
= [FD
, CausedFD
, MVKind
](Sema
&S
, const Attr
*A
) {
11124 S
.Diag(FD
->getLocation(), diag::err_multiversion_disallowed_other_attr
)
11125 << static_cast<unsigned>(MVKind
) << A
;
11127 S
.Diag(CausedFD
->getLocation(), diag::note_multiversioning_caused_here
);
11131 for (const Attr
*A
: FD
->attrs()) {
11132 switch (A
->getKind()) {
11133 case attr::CPUDispatch
:
11134 case attr::CPUSpecific
:
11135 if (MVKind
!= MultiVersionKind::CPUDispatch
&&
11136 MVKind
!= MultiVersionKind::CPUSpecific
)
11137 return Diagnose(S
, A
);
11140 if (MVKind
!= MultiVersionKind::Target
)
11141 return Diagnose(S
, A
);
11143 case attr::TargetVersion
:
11144 if (MVKind
!= MultiVersionKind::TargetVersion
)
11145 return Diagnose(S
, A
);
11147 case attr::TargetClones
:
11148 if (MVKind
!= MultiVersionKind::TargetClones
)
11149 return Diagnose(S
, A
);
11152 if (!AttrCompatibleWithMultiVersion(A
->getKind(), MVKind
))
11153 return Diagnose(S
, A
);
11160 bool Sema::areMultiversionVariantFunctionsCompatible(
11161 const FunctionDecl
*OldFD
, const FunctionDecl
*NewFD
,
11162 const PartialDiagnostic
&NoProtoDiagID
,
11163 const PartialDiagnosticAt
&NoteCausedDiagIDAt
,
11164 const PartialDiagnosticAt
&NoSupportDiagIDAt
,
11165 const PartialDiagnosticAt
&DiffDiagIDAt
, bool TemplatesSupported
,
11166 bool ConstexprSupported
, bool CLinkageMayDiffer
) {
11167 enum DoesntSupport
{
11174 DefaultedFuncs
= 6,
11175 ConstexprFuncs
= 7,
11176 ConstevalFuncs
= 8,
11185 LanguageLinkage
= 5,
11188 if (NoProtoDiagID
.getDiagID() != 0 && OldFD
&&
11189 !OldFD
->getType()->getAs
<FunctionProtoType
>()) {
11190 Diag(OldFD
->getLocation(), NoProtoDiagID
);
11191 Diag(NoteCausedDiagIDAt
.first
, NoteCausedDiagIDAt
.second
);
11195 if (NoProtoDiagID
.getDiagID() != 0 &&
11196 !NewFD
->getType()->getAs
<FunctionProtoType
>())
11197 return Diag(NewFD
->getLocation(), NoProtoDiagID
);
11199 if (!TemplatesSupported
&&
11200 NewFD
->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate
)
11201 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11204 if (const auto *NewCXXFD
= dyn_cast
<CXXMethodDecl
>(NewFD
)) {
11205 if (NewCXXFD
->isVirtual())
11206 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11209 if (isa
<CXXConstructorDecl
>(NewCXXFD
))
11210 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11213 if (isa
<CXXDestructorDecl
>(NewCXXFD
))
11214 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11218 if (NewFD
->isDeleted())
11219 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11222 if (NewFD
->isDefaulted())
11223 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11226 if (!ConstexprSupported
&& NewFD
->isConstexpr())
11227 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11228 << (NewFD
->isConsteval() ? ConstevalFuncs
: ConstexprFuncs
);
11230 QualType NewQType
= Context
.getCanonicalType(NewFD
->getType());
11231 const auto *NewType
= cast
<FunctionType
>(NewQType
);
11232 QualType NewReturnType
= NewType
->getReturnType();
11234 if (NewReturnType
->isUndeducedType())
11235 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11238 // Ensure the return type is identical.
11240 QualType OldQType
= Context
.getCanonicalType(OldFD
->getType());
11241 const auto *OldType
= cast
<FunctionType
>(OldQType
);
11242 FunctionType::ExtInfo OldTypeInfo
= OldType
->getExtInfo();
11243 FunctionType::ExtInfo NewTypeInfo
= NewType
->getExtInfo();
11245 if (OldTypeInfo
.getCC() != NewTypeInfo
.getCC())
11246 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << CallingConv
;
11248 QualType OldReturnType
= OldType
->getReturnType();
11250 if (OldReturnType
!= NewReturnType
)
11251 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << ReturnType
;
11253 if (OldFD
->getConstexprKind() != NewFD
->getConstexprKind())
11254 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << ConstexprSpec
;
11256 if (OldFD
->isInlineSpecified() != NewFD
->isInlineSpecified())
11257 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << InlineSpec
;
11259 if (OldFD
->getFormalLinkage() != NewFD
->getFormalLinkage())
11260 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << Linkage
;
11262 if (!CLinkageMayDiffer
&& OldFD
->isExternC() != NewFD
->isExternC())
11263 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << LanguageLinkage
;
11265 if (CheckEquivalentExceptionSpec(
11266 OldFD
->getType()->getAs
<FunctionProtoType
>(), OldFD
->getLocation(),
11267 NewFD
->getType()->getAs
<FunctionProtoType
>(), NewFD
->getLocation()))
11273 static bool CheckMultiVersionAdditionalRules(Sema
&S
, const FunctionDecl
*OldFD
,
11274 const FunctionDecl
*NewFD
,
11276 MultiVersionKind MVKind
) {
11277 if (!S
.getASTContext().getTargetInfo().supportsMultiVersioning()) {
11278 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_not_supported
);
11280 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11284 bool IsCPUSpecificCPUDispatchMVKind
=
11285 MVKind
== MultiVersionKind::CPUDispatch
||
11286 MVKind
== MultiVersionKind::CPUSpecific
;
11288 if (CausesMV
&& OldFD
&&
11289 checkNonMultiVersionCompatAttributes(S
, OldFD
, NewFD
, MVKind
))
11292 if (checkNonMultiVersionCompatAttributes(S
, NewFD
, nullptr, MVKind
))
11295 // Only allow transition to MultiVersion if it hasn't been used.
11296 if (OldFD
&& CausesMV
&& OldFD
->isUsed(false))
11297 return S
.Diag(NewFD
->getLocation(), diag::err_multiversion_after_used
);
11299 return S
.areMultiversionVariantFunctionsCompatible(
11300 OldFD
, NewFD
, S
.PDiag(diag::err_multiversion_noproto
),
11301 PartialDiagnosticAt(NewFD
->getLocation(),
11302 S
.PDiag(diag::note_multiversioning_caused_here
)),
11303 PartialDiagnosticAt(NewFD
->getLocation(),
11304 S
.PDiag(diag::err_multiversion_doesnt_support
)
11305 << static_cast<unsigned>(MVKind
)),
11306 PartialDiagnosticAt(NewFD
->getLocation(),
11307 S
.PDiag(diag::err_multiversion_diff
)),
11308 /*TemplatesSupported=*/false,
11309 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind
,
11310 /*CLinkageMayDiffer=*/false);
11313 /// Check the validity of a multiversion function declaration that is the
11314 /// first of its kind. Also sets the multiversion'ness' of the function itself.
11316 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11318 /// Returns true if there was an error, false otherwise.
11319 static bool CheckMultiVersionFirstFunction(Sema
&S
, FunctionDecl
*FD
) {
11320 MultiVersionKind MVKind
= FD
->getMultiVersionKind();
11321 assert(MVKind
!= MultiVersionKind::None
&&
11322 "Function lacks multiversion attribute");
11323 const auto *TA
= FD
->getAttr
<TargetAttr
>();
11324 const auto *TVA
= FD
->getAttr
<TargetVersionAttr
>();
11325 // Target and target_version only causes MV if it is default, otherwise this
11326 // is a normal function.
11327 if ((TA
&& !TA
->isDefaultVersion()) || (TVA
&& !TVA
->isDefaultVersion()))
11330 if ((TA
|| TVA
) && CheckMultiVersionValue(S
, FD
)) {
11331 FD
->setInvalidDecl();
11335 if (CheckMultiVersionAdditionalRules(S
, nullptr, FD
, true, MVKind
)) {
11336 FD
->setInvalidDecl();
11340 FD
->setIsMultiVersion();
11344 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl
*FD
) {
11345 for (const Decl
*D
= FD
->getPreviousDecl(); D
; D
= D
->getPreviousDecl()) {
11346 if (D
->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None
)
11353 static bool CheckTargetCausesMultiVersioning(Sema
&S
, FunctionDecl
*OldFD
,
11354 FunctionDecl
*NewFD
,
11355 bool &Redeclaration
,
11356 NamedDecl
*&OldDecl
,
11357 LookupResult
&Previous
) {
11358 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11359 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11360 const auto *OldTA
= OldFD
->getAttr
<TargetAttr
>();
11361 const auto *OldTVA
= OldFD
->getAttr
<TargetVersionAttr
>();
11362 // If the old decl is NOT MultiVersioned yet, and we don't cause that
11363 // to change, this is a simple redeclaration.
11364 if ((NewTA
&& !NewTA
->isDefaultVersion() &&
11365 (!OldTA
|| OldTA
->getFeaturesStr() == NewTA
->getFeaturesStr())) ||
11366 (NewTVA
&& !NewTVA
->isDefaultVersion() &&
11367 (!OldTVA
|| OldTVA
->getName() == NewTVA
->getName())))
11370 // Otherwise, this decl causes MultiVersioning.
11371 if (CheckMultiVersionAdditionalRules(S
, OldFD
, NewFD
, true,
11372 NewTVA
? MultiVersionKind::TargetVersion
11373 : MultiVersionKind::Target
)) {
11374 NewFD
->setInvalidDecl();
11378 if (CheckMultiVersionValue(S
, NewFD
)) {
11379 NewFD
->setInvalidDecl();
11383 // If this is 'default', permit the forward declaration.
11384 if (!OldFD
->isMultiVersion() &&
11385 ((NewTA
&& NewTA
->isDefaultVersion() && !OldTA
) ||
11386 (NewTVA
&& NewTVA
->isDefaultVersion() && !OldTVA
))) {
11387 Redeclaration
= true;
11389 OldFD
->setIsMultiVersion();
11390 NewFD
->setIsMultiVersion();
11394 if (CheckMultiVersionValue(S
, OldFD
)) {
11395 S
.Diag(NewFD
->getLocation(), diag::note_multiversioning_caused_here
);
11396 NewFD
->setInvalidDecl();
11401 ParsedTargetAttr OldParsed
=
11402 S
.getASTContext().getTargetInfo().parseTargetAttr(
11403 OldTA
->getFeaturesStr());
11404 llvm::sort(OldParsed
.Features
);
11405 ParsedTargetAttr NewParsed
=
11406 S
.getASTContext().getTargetInfo().parseTargetAttr(
11407 NewTA
->getFeaturesStr());
11408 // Sort order doesn't matter, it just needs to be consistent.
11409 llvm::sort(NewParsed
.Features
);
11410 if (OldParsed
== NewParsed
) {
11411 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11412 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11413 NewFD
->setInvalidDecl();
11419 llvm::SmallVector
<StringRef
, 8> Feats
;
11420 OldTVA
->getFeatures(Feats
);
11422 llvm::SmallVector
<StringRef
, 8> NewFeats
;
11423 NewTVA
->getFeatures(NewFeats
);
11424 llvm::sort(NewFeats
);
11426 if (Feats
== NewFeats
) {
11427 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11428 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11429 NewFD
->setInvalidDecl();
11434 for (const auto *FD
: OldFD
->redecls()) {
11435 const auto *CurTA
= FD
->getAttr
<TargetAttr
>();
11436 const auto *CurTVA
= FD
->getAttr
<TargetVersionAttr
>();
11437 // We allow forward declarations before ANY multiversioning attributes, but
11438 // nothing after the fact.
11439 if (PreviousDeclsHaveMultiVersionAttribute(FD
) &&
11440 ((NewTA
&& (!CurTA
|| CurTA
->isInherited())) ||
11441 (NewTVA
&& (!CurTVA
|| CurTVA
->isInherited())))) {
11442 S
.Diag(FD
->getLocation(), diag::err_multiversion_required_in_redecl
)
11443 << (NewTA
? 0 : 2);
11444 S
.Diag(NewFD
->getLocation(), diag::note_multiversioning_caused_here
);
11445 NewFD
->setInvalidDecl();
11450 OldFD
->setIsMultiVersion();
11451 NewFD
->setIsMultiVersion();
11452 Redeclaration
= false;
11458 static bool MultiVersionTypesCompatible(MultiVersionKind Old
,
11459 MultiVersionKind New
) {
11460 if (Old
== New
|| Old
== MultiVersionKind::None
||
11461 New
== MultiVersionKind::None
)
11464 return (Old
== MultiVersionKind::CPUDispatch
&&
11465 New
== MultiVersionKind::CPUSpecific
) ||
11466 (Old
== MultiVersionKind::CPUSpecific
&&
11467 New
== MultiVersionKind::CPUDispatch
);
11470 /// Check the validity of a new function declaration being added to an existing
11471 /// multiversioned declaration collection.
11472 static bool CheckMultiVersionAdditionalDecl(
11473 Sema
&S
, FunctionDecl
*OldFD
, FunctionDecl
*NewFD
,
11474 MultiVersionKind NewMVKind
, const CPUDispatchAttr
*NewCPUDisp
,
11475 const CPUSpecificAttr
*NewCPUSpec
, const TargetClonesAttr
*NewClones
,
11476 bool &Redeclaration
, NamedDecl
*&OldDecl
, LookupResult
&Previous
) {
11477 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11478 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11479 MultiVersionKind OldMVKind
= OldFD
->getMultiVersionKind();
11480 // Disallow mixing of multiversioning types.
11481 if (!MultiVersionTypesCompatible(OldMVKind
, NewMVKind
)) {
11482 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_types_mixed
);
11483 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11484 NewFD
->setInvalidDecl();
11488 ParsedTargetAttr NewParsed
;
11490 NewParsed
= S
.getASTContext().getTargetInfo().parseTargetAttr(
11491 NewTA
->getFeaturesStr());
11492 llvm::sort(NewParsed
.Features
);
11494 llvm::SmallVector
<StringRef
, 8> NewFeats
;
11496 NewTVA
->getFeatures(NewFeats
);
11497 llvm::sort(NewFeats
);
11500 bool UseMemberUsingDeclRules
=
11501 S
.CurContext
->isRecord() && !NewFD
->getFriendObjectKind();
11503 bool MayNeedOverloadableChecks
=
11504 AllowOverloadingOfFunction(Previous
, S
.Context
, NewFD
);
11506 // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11507 // of a previous member of the MultiVersion set.
11508 for (NamedDecl
*ND
: Previous
) {
11509 FunctionDecl
*CurFD
= ND
->getAsFunction();
11510 if (!CurFD
|| CurFD
->isInvalidDecl())
11512 if (MayNeedOverloadableChecks
&&
11513 S
.IsOverload(NewFD
, CurFD
, UseMemberUsingDeclRules
))
11516 if (NewMVKind
== MultiVersionKind::None
&&
11517 OldMVKind
== MultiVersionKind::TargetVersion
) {
11518 NewFD
->addAttr(TargetVersionAttr::CreateImplicit(
11519 S
.Context
, "default", NewFD
->getSourceRange()));
11520 NewFD
->setIsMultiVersion();
11521 NewMVKind
= MultiVersionKind::TargetVersion
;
11523 NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11524 NewTVA
->getFeatures(NewFeats
);
11525 llvm::sort(NewFeats
);
11529 switch (NewMVKind
) {
11530 case MultiVersionKind::None
:
11531 assert(OldMVKind
== MultiVersionKind::TargetClones
&&
11532 "Only target_clones can be omitted in subsequent declarations");
11534 case MultiVersionKind::Target
: {
11535 const auto *CurTA
= CurFD
->getAttr
<TargetAttr
>();
11536 if (CurTA
->getFeaturesStr() == NewTA
->getFeaturesStr()) {
11537 NewFD
->setIsMultiVersion();
11538 Redeclaration
= true;
11543 ParsedTargetAttr CurParsed
=
11544 S
.getASTContext().getTargetInfo().parseTargetAttr(
11545 CurTA
->getFeaturesStr());
11546 llvm::sort(CurParsed
.Features
);
11547 if (CurParsed
== NewParsed
) {
11548 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11549 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11550 NewFD
->setInvalidDecl();
11555 case MultiVersionKind::TargetVersion
: {
11556 const auto *CurTVA
= CurFD
->getAttr
<TargetVersionAttr
>();
11557 if (CurTVA
->getName() == NewTVA
->getName()) {
11558 NewFD
->setIsMultiVersion();
11559 Redeclaration
= true;
11563 llvm::SmallVector
<StringRef
, 8> CurFeats
;
11565 CurTVA
->getFeatures(CurFeats
);
11566 llvm::sort(CurFeats
);
11568 if (CurFeats
== NewFeats
) {
11569 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11570 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11571 NewFD
->setInvalidDecl();
11576 case MultiVersionKind::TargetClones
: {
11577 const auto *CurClones
= CurFD
->getAttr
<TargetClonesAttr
>();
11578 Redeclaration
= true;
11580 NewFD
->setIsMultiVersion();
11582 if (CurClones
&& NewClones
&&
11583 (CurClones
->featuresStrs_size() != NewClones
->featuresStrs_size() ||
11584 !std::equal(CurClones
->featuresStrs_begin(),
11585 CurClones
->featuresStrs_end(),
11586 NewClones
->featuresStrs_begin()))) {
11587 S
.Diag(NewFD
->getLocation(), diag::err_target_clone_doesnt_match
);
11588 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11589 NewFD
->setInvalidDecl();
11595 case MultiVersionKind::CPUSpecific
:
11596 case MultiVersionKind::CPUDispatch
: {
11597 const auto *CurCPUSpec
= CurFD
->getAttr
<CPUSpecificAttr
>();
11598 const auto *CurCPUDisp
= CurFD
->getAttr
<CPUDispatchAttr
>();
11599 // Handle CPUDispatch/CPUSpecific versions.
11600 // Only 1 CPUDispatch function is allowed, this will make it go through
11601 // the redeclaration errors.
11602 if (NewMVKind
== MultiVersionKind::CPUDispatch
&&
11603 CurFD
->hasAttr
<CPUDispatchAttr
>()) {
11604 if (CurCPUDisp
->cpus_size() == NewCPUDisp
->cpus_size() &&
11606 CurCPUDisp
->cpus_begin(), CurCPUDisp
->cpus_end(),
11607 NewCPUDisp
->cpus_begin(),
11608 [](const IdentifierInfo
*Cur
, const IdentifierInfo
*New
) {
11609 return Cur
->getName() == New
->getName();
11611 NewFD
->setIsMultiVersion();
11612 Redeclaration
= true;
11617 // If the declarations don't match, this is an error condition.
11618 S
.Diag(NewFD
->getLocation(), diag::err_cpu_dispatch_mismatch
);
11619 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11620 NewFD
->setInvalidDecl();
11623 if (NewMVKind
== MultiVersionKind::CPUSpecific
&& CurCPUSpec
) {
11624 if (CurCPUSpec
->cpus_size() == NewCPUSpec
->cpus_size() &&
11626 CurCPUSpec
->cpus_begin(), CurCPUSpec
->cpus_end(),
11627 NewCPUSpec
->cpus_begin(),
11628 [](const IdentifierInfo
*Cur
, const IdentifierInfo
*New
) {
11629 return Cur
->getName() == New
->getName();
11631 NewFD
->setIsMultiVersion();
11632 Redeclaration
= true;
11637 // Only 1 version of CPUSpecific is allowed for each CPU.
11638 for (const IdentifierInfo
*CurII
: CurCPUSpec
->cpus()) {
11639 for (const IdentifierInfo
*NewII
: NewCPUSpec
->cpus()) {
11640 if (CurII
== NewII
) {
11641 S
.Diag(NewFD
->getLocation(), diag::err_cpu_specific_multiple_defs
)
11643 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11644 NewFD
->setInvalidDecl();
11655 // Else, this is simply a non-redecl case. Checking the 'value' is only
11656 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11657 // handled in the attribute adding step.
11658 if ((NewMVKind
== MultiVersionKind::TargetVersion
||
11659 NewMVKind
== MultiVersionKind::Target
) &&
11660 CheckMultiVersionValue(S
, NewFD
)) {
11661 NewFD
->setInvalidDecl();
11665 if (CheckMultiVersionAdditionalRules(S
, OldFD
, NewFD
,
11666 !OldFD
->isMultiVersion(), NewMVKind
)) {
11667 NewFD
->setInvalidDecl();
11671 // Permit forward declarations in the case where these two are compatible.
11672 if (!OldFD
->isMultiVersion()) {
11673 OldFD
->setIsMultiVersion();
11674 NewFD
->setIsMultiVersion();
11675 Redeclaration
= true;
11680 NewFD
->setIsMultiVersion();
11681 Redeclaration
= false;
11687 /// Check the validity of a mulitversion function declaration.
11688 /// Also sets the multiversion'ness' of the function itself.
11690 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11692 /// Returns true if there was an error, false otherwise.
11693 static bool CheckMultiVersionFunction(Sema
&S
, FunctionDecl
*NewFD
,
11694 bool &Redeclaration
, NamedDecl
*&OldDecl
,
11695 LookupResult
&Previous
) {
11696 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11697 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11698 const auto *NewCPUDisp
= NewFD
->getAttr
<CPUDispatchAttr
>();
11699 const auto *NewCPUSpec
= NewFD
->getAttr
<CPUSpecificAttr
>();
11700 const auto *NewClones
= NewFD
->getAttr
<TargetClonesAttr
>();
11701 MultiVersionKind MVKind
= NewFD
->getMultiVersionKind();
11703 // Main isn't allowed to become a multiversion function, however it IS
11704 // permitted to have 'main' be marked with the 'target' optimization hint,
11705 // for 'target_version' only default is allowed.
11706 if (NewFD
->isMain()) {
11707 if (MVKind
!= MultiVersionKind::None
&&
11708 !(MVKind
== MultiVersionKind::Target
&& !NewTA
->isDefaultVersion()) &&
11709 !(MVKind
== MultiVersionKind::TargetVersion
&&
11710 NewTVA
->isDefaultVersion())) {
11711 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_not_allowed_on_main
);
11712 NewFD
->setInvalidDecl();
11718 // Target attribute on AArch64 is not used for multiversioning
11719 if (NewTA
&& S
.getASTContext().getTargetInfo().getTriple().isAArch64())
11722 if (!OldDecl
|| !OldDecl
->getAsFunction() ||
11723 OldDecl
->getDeclContext()->getRedeclContext() !=
11724 NewFD
->getDeclContext()->getRedeclContext()) {
11725 // If there's no previous declaration, AND this isn't attempting to cause
11726 // multiversioning, this isn't an error condition.
11727 if (MVKind
== MultiVersionKind::None
)
11729 return CheckMultiVersionFirstFunction(S
, NewFD
);
11732 FunctionDecl
*OldFD
= OldDecl
->getAsFunction();
11734 if (!OldFD
->isMultiVersion() && MVKind
== MultiVersionKind::None
) {
11735 if (NewTVA
|| !OldFD
->getAttr
<TargetVersionAttr
>())
11737 if (!NewFD
->getType()->getAs
<FunctionProtoType
>()) {
11738 // Multiversion declaration doesn't have prototype.
11739 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_noproto
);
11740 NewFD
->setInvalidDecl();
11742 // No "target_version" attribute is equivalent to "default" attribute.
11743 NewFD
->addAttr(TargetVersionAttr::CreateImplicit(
11744 S
.Context
, "default", NewFD
->getSourceRange()));
11745 NewFD
->setIsMultiVersion();
11746 OldFD
->setIsMultiVersion();
11748 Redeclaration
= true;
11753 // Multiversioned redeclarations aren't allowed to omit the attribute, except
11754 // for target_clones and target_version.
11755 if (OldFD
->isMultiVersion() && MVKind
== MultiVersionKind::None
&&
11756 OldFD
->getMultiVersionKind() != MultiVersionKind::TargetClones
&&
11757 OldFD
->getMultiVersionKind() != MultiVersionKind::TargetVersion
) {
11758 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_required_in_redecl
)
11759 << (OldFD
->getMultiVersionKind() != MultiVersionKind::Target
);
11760 NewFD
->setInvalidDecl();
11764 if (!OldFD
->isMultiVersion()) {
11766 case MultiVersionKind::Target
:
11767 case MultiVersionKind::TargetVersion
:
11768 return CheckTargetCausesMultiVersioning(S
, OldFD
, NewFD
, Redeclaration
,
11769 OldDecl
, Previous
);
11770 case MultiVersionKind::TargetClones
:
11771 if (OldFD
->isUsed(false)) {
11772 NewFD
->setInvalidDecl();
11773 return S
.Diag(NewFD
->getLocation(), diag::err_multiversion_after_used
);
11775 OldFD
->setIsMultiVersion();
11778 case MultiVersionKind::CPUDispatch
:
11779 case MultiVersionKind::CPUSpecific
:
11780 case MultiVersionKind::None
:
11785 // At this point, we have a multiversion function decl (in OldFD) AND an
11786 // appropriate attribute in the current function decl. Resolve that these are
11787 // still compatible with previous declarations.
11788 return CheckMultiVersionAdditionalDecl(S
, OldFD
, NewFD
, MVKind
, NewCPUDisp
,
11789 NewCPUSpec
, NewClones
, Redeclaration
,
11790 OldDecl
, Previous
);
11793 /// Perform semantic checking of a new function declaration.
11795 /// Performs semantic analysis of the new function declaration
11796 /// NewFD. This routine performs all semantic checking that does not
11797 /// require the actual declarator involved in the declaration, and is
11798 /// used both for the declaration of functions as they are parsed
11799 /// (called via ActOnDeclarator) and for the declaration of functions
11800 /// that have been instantiated via C++ template instantiation (called
11801 /// via InstantiateDecl).
11803 /// \param IsMemberSpecialization whether this new function declaration is
11804 /// a member specialization (that replaces any definition provided by the
11805 /// previous declaration).
11807 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11809 /// \returns true if the function declaration is a redeclaration.
11810 bool Sema::CheckFunctionDeclaration(Scope
*S
, FunctionDecl
*NewFD
,
11811 LookupResult
&Previous
,
11812 bool IsMemberSpecialization
,
11814 assert(!NewFD
->getReturnType()->isVariablyModifiedType() &&
11815 "Variably modified return types are not handled here");
11817 // Determine whether the type of this function should be merged with
11818 // a previous visible declaration. This never happens for functions in C++,
11819 // and always happens in C if the previous declaration was visible.
11820 bool MergeTypeWithPrevious
= !getLangOpts().CPlusPlus
&&
11821 !Previous
.isShadowed();
11823 bool Redeclaration
= false;
11824 NamedDecl
*OldDecl
= nullptr;
11825 bool MayNeedOverloadableChecks
= false;
11827 // Merge or overload the declaration with an existing declaration of
11828 // the same name, if appropriate.
11829 if (!Previous
.empty()) {
11830 // Determine whether NewFD is an overload of PrevDecl or
11831 // a declaration that requires merging. If it's an overload,
11832 // there's no more work to do here; we'll just add the new
11833 // function to the scope.
11834 if (!AllowOverloadingOfFunction(Previous
, Context
, NewFD
)) {
11835 NamedDecl
*Candidate
= Previous
.getRepresentativeDecl();
11836 if (shouldLinkPossiblyHiddenDecl(Candidate
, NewFD
)) {
11837 Redeclaration
= true;
11838 OldDecl
= Candidate
;
11841 MayNeedOverloadableChecks
= true;
11842 switch (CheckOverload(S
, NewFD
, Previous
, OldDecl
,
11843 /*NewIsUsingDecl*/ false)) {
11845 Redeclaration
= true;
11848 case Ovl_NonFunction
:
11849 Redeclaration
= true;
11853 Redeclaration
= false;
11859 // Check for a previous extern "C" declaration with this name.
11860 if (!Redeclaration
&&
11861 checkForConflictWithNonVisibleExternC(*this, NewFD
, Previous
)) {
11862 if (!Previous
.empty()) {
11863 // This is an extern "C" declaration with the same name as a previous
11864 // declaration, and thus redeclares that entity...
11865 Redeclaration
= true;
11866 OldDecl
= Previous
.getFoundDecl();
11867 MergeTypeWithPrevious
= false;
11869 // ... except in the presence of __attribute__((overloadable)).
11870 if (OldDecl
->hasAttr
<OverloadableAttr
>() ||
11871 NewFD
->hasAttr
<OverloadableAttr
>()) {
11872 if (IsOverload(NewFD
, cast
<FunctionDecl
>(OldDecl
), false)) {
11873 MayNeedOverloadableChecks
= true;
11874 Redeclaration
= false;
11881 if (CheckMultiVersionFunction(*this, NewFD
, Redeclaration
, OldDecl
, Previous
))
11882 return Redeclaration
;
11884 // PPC MMA non-pointer types are not allowed as function return types.
11885 if (Context
.getTargetInfo().getTriple().isPPC64() &&
11886 CheckPPCMMAType(NewFD
->getReturnType(), NewFD
->getLocation())) {
11887 NewFD
->setInvalidDecl();
11890 // C++11 [dcl.constexpr]p8:
11891 // A constexpr specifier for a non-static member function that is not
11892 // a constructor declares that member function to be const.
11894 // This needs to be delayed until we know whether this is an out-of-line
11895 // definition of a static member function.
11897 // This rule is not present in C++1y, so we produce a backwards
11898 // compatibility warning whenever it happens in C++11.
11899 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewFD
);
11900 if (!getLangOpts().CPlusPlus14
&& MD
&& MD
->isConstexpr() &&
11901 !MD
->isStatic() && !isa
<CXXConstructorDecl
>(MD
) &&
11902 !isa
<CXXDestructorDecl
>(MD
) && !MD
->getMethodQualifiers().hasConst()) {
11903 CXXMethodDecl
*OldMD
= nullptr;
11905 OldMD
= dyn_cast_or_null
<CXXMethodDecl
>(OldDecl
->getAsFunction());
11906 if (!OldMD
|| !OldMD
->isStatic()) {
11907 const FunctionProtoType
*FPT
=
11908 MD
->getType()->castAs
<FunctionProtoType
>();
11909 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
11910 EPI
.TypeQuals
.addConst();
11911 MD
->setType(Context
.getFunctionType(FPT
->getReturnType(),
11912 FPT
->getParamTypes(), EPI
));
11914 // Warn that we did this, if we're not performing template instantiation.
11915 // In that case, we'll have warned already when the template was defined.
11916 if (!inTemplateInstantiation()) {
11917 SourceLocation AddConstLoc
;
11918 if (FunctionTypeLoc FTL
= MD
->getTypeSourceInfo()->getTypeLoc()
11919 .IgnoreParens().getAs
<FunctionTypeLoc
>())
11920 AddConstLoc
= getLocForEndOfToken(FTL
.getRParenLoc());
11922 Diag(MD
->getLocation(), diag::warn_cxx14_compat_constexpr_not_const
)
11923 << FixItHint::CreateInsertion(AddConstLoc
, " const");
11928 if (Redeclaration
) {
11929 // NewFD and OldDecl represent declarations that need to be
11931 if (MergeFunctionDecl(NewFD
, OldDecl
, S
, MergeTypeWithPrevious
,
11933 NewFD
->setInvalidDecl();
11934 return Redeclaration
;
11938 Previous
.addDecl(OldDecl
);
11940 if (FunctionTemplateDecl
*OldTemplateDecl
=
11941 dyn_cast
<FunctionTemplateDecl
>(OldDecl
)) {
11942 auto *OldFD
= OldTemplateDecl
->getTemplatedDecl();
11943 FunctionTemplateDecl
*NewTemplateDecl
11944 = NewFD
->getDescribedFunctionTemplate();
11945 assert(NewTemplateDecl
&& "Template/non-template mismatch");
11947 // The call to MergeFunctionDecl above may have created some state in
11948 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
11949 // can add it as a redeclaration.
11950 NewTemplateDecl
->mergePrevDecl(OldTemplateDecl
);
11952 NewFD
->setPreviousDeclaration(OldFD
);
11953 if (NewFD
->isCXXClassMember()) {
11954 NewFD
->setAccess(OldTemplateDecl
->getAccess());
11955 NewTemplateDecl
->setAccess(OldTemplateDecl
->getAccess());
11958 // If this is an explicit specialization of a member that is a function
11959 // template, mark it as a member specialization.
11960 if (IsMemberSpecialization
&&
11961 NewTemplateDecl
->getInstantiatedFromMemberTemplate()) {
11962 NewTemplateDecl
->setMemberSpecialization();
11963 assert(OldTemplateDecl
->isMemberSpecialization());
11964 // Explicit specializations of a member template do not inherit deleted
11965 // status from the parent member template that they are specializing.
11966 if (OldFD
->isDeleted()) {
11967 // FIXME: This assert will not hold in the presence of modules.
11968 assert(OldFD
->getCanonicalDecl() == OldFD
);
11969 // FIXME: We need an update record for this AST mutation.
11970 OldFD
->setDeletedAsWritten(false);
11975 if (shouldLinkDependentDeclWithPrevious(NewFD
, OldDecl
)) {
11976 auto *OldFD
= cast
<FunctionDecl
>(OldDecl
);
11977 // This needs to happen first so that 'inline' propagates.
11978 NewFD
->setPreviousDeclaration(OldFD
);
11979 if (NewFD
->isCXXClassMember())
11980 NewFD
->setAccess(OldFD
->getAccess());
11983 } else if (!getLangOpts().CPlusPlus
&& MayNeedOverloadableChecks
&&
11984 !NewFD
->getAttr
<OverloadableAttr
>()) {
11985 assert((Previous
.empty() ||
11986 llvm::any_of(Previous
,
11987 [](const NamedDecl
*ND
) {
11988 return ND
->hasAttr
<OverloadableAttr
>();
11990 "Non-redecls shouldn't happen without overloadable present");
11992 auto OtherUnmarkedIter
= llvm::find_if(Previous
, [](const NamedDecl
*ND
) {
11993 const auto *FD
= dyn_cast
<FunctionDecl
>(ND
);
11994 return FD
&& !FD
->hasAttr
<OverloadableAttr
>();
11997 if (OtherUnmarkedIter
!= Previous
.end()) {
11998 Diag(NewFD
->getLocation(),
11999 diag::err_attribute_overloadable_multiple_unmarked_overloads
);
12000 Diag((*OtherUnmarkedIter
)->getLocation(),
12001 diag::note_attribute_overloadable_prev_overload
)
12004 NewFD
->addAttr(OverloadableAttr::CreateImplicit(Context
));
12008 if (LangOpts
.OpenMP
)
12009 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD
);
12011 // Semantic checking for this function declaration (in isolation).
12013 if (getLangOpts().CPlusPlus
) {
12014 // C++-specific checks.
12015 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(NewFD
)) {
12016 CheckConstructor(Constructor
);
12017 } else if (CXXDestructorDecl
*Destructor
=
12018 dyn_cast
<CXXDestructorDecl
>(NewFD
)) {
12019 // We check here for invalid destructor names.
12020 // If we have a friend destructor declaration that is dependent, we can't
12021 // diagnose right away because cases like this are still valid:
12022 // template <class T> struct A { friend T::X::~Y(); };
12023 // struct B { struct Y { ~Y(); }; using X = Y; };
12024 // template struct A<B>;
12025 if (NewFD
->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None
||
12026 !Destructor
->getFunctionObjectParameterType()->isDependentType()) {
12027 CXXRecordDecl
*Record
= Destructor
->getParent();
12028 QualType ClassType
= Context
.getTypeDeclType(Record
);
12030 DeclarationName Name
= Context
.DeclarationNames
.getCXXDestructorName(
12031 Context
.getCanonicalType(ClassType
));
12032 if (NewFD
->getDeclName() != Name
) {
12033 Diag(NewFD
->getLocation(), diag::err_destructor_name
);
12034 NewFD
->setInvalidDecl();
12035 return Redeclaration
;
12038 } else if (auto *Guide
= dyn_cast
<CXXDeductionGuideDecl
>(NewFD
)) {
12039 if (auto *TD
= Guide
->getDescribedFunctionTemplate())
12040 CheckDeductionGuideTemplate(TD
);
12042 // A deduction guide is not on the list of entities that can be
12043 // explicitly specialized.
12044 if (Guide
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
)
12045 Diag(Guide
->getBeginLoc(), diag::err_deduction_guide_specialized
)
12046 << /*explicit specialization*/ 1;
12049 // Find any virtual functions that this function overrides.
12050 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(NewFD
)) {
12051 if (!Method
->isFunctionTemplateSpecialization() &&
12052 !Method
->getDescribedFunctionTemplate() &&
12053 Method
->isCanonicalDecl()) {
12054 AddOverriddenMethods(Method
->getParent(), Method
);
12056 if (Method
->isVirtual() && NewFD
->getTrailingRequiresClause())
12057 // C++2a [class.virtual]p6
12058 // A virtual method shall not have a requires-clause.
12059 Diag(NewFD
->getTrailingRequiresClause()->getBeginLoc(),
12060 diag::err_constrained_virtual_method
);
12062 if (Method
->isStatic())
12063 checkThisInStaticMemberFunctionType(Method
);
12066 // C++20: dcl.decl.general p4:
12067 // The optional requires-clause ([temp.pre]) in an init-declarator or
12068 // member-declarator shall be present only if the declarator declares a
12069 // templated function ([dcl.fct]).
12070 if (Expr
*TRC
= NewFD
->getTrailingRequiresClause()) {
12072 // An entity is templated if it is
12074 // - an entity defined ([basic.def]) or created ([class.temporary]) in a
12075 // templated entity,
12076 // - a member of a templated entity,
12077 // - an enumerator for an enumeration that is a templated entity, or
12078 // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
12079 // appearing in the declaration of a templated entity. [Note 6: A local
12080 // class, a local or block variable, or a friend function defined in a
12081 // templated entity is a templated entity. — end note]
12083 // A templated function is a function template or a function that is
12084 // templated. A templated class is a class template or a class that is
12085 // templated. A templated variable is a variable template or a variable
12086 // that is templated.
12088 if (!NewFD
->getDescribedFunctionTemplate() && // -a template
12089 // defined... in a templated entity
12090 !(DeclIsDefn
&& NewFD
->isTemplated()) &&
12091 // a member of a templated entity
12092 !(isa
<CXXMethodDecl
>(NewFD
) && NewFD
->isTemplated()) &&
12093 // Don't complain about instantiations, they've already had these
12094 // rules + others enforced.
12095 !NewFD
->isTemplateInstantiation()) {
12096 Diag(TRC
->getBeginLoc(), diag::err_constrained_non_templated_function
);
12100 if (CXXConversionDecl
*Conversion
= dyn_cast
<CXXConversionDecl
>(NewFD
))
12101 ActOnConversionDeclarator(Conversion
);
12103 // Extra checking for C++ overloaded operators (C++ [over.oper]).
12104 if (NewFD
->isOverloadedOperator() &&
12105 CheckOverloadedOperatorDeclaration(NewFD
)) {
12106 NewFD
->setInvalidDecl();
12107 return Redeclaration
;
12110 // Extra checking for C++0x literal operators (C++0x [over.literal]).
12111 if (NewFD
->getLiteralIdentifier() &&
12112 CheckLiteralOperatorDeclaration(NewFD
)) {
12113 NewFD
->setInvalidDecl();
12114 return Redeclaration
;
12117 // In C++, check default arguments now that we have merged decls. Unless
12118 // the lexical context is the class, because in this case this is done
12119 // during delayed parsing anyway.
12120 if (!CurContext
->isRecord())
12121 CheckCXXDefaultArguments(NewFD
);
12123 // If this function is declared as being extern "C", then check to see if
12124 // the function returns a UDT (class, struct, or union type) that is not C
12125 // compatible, and if it does, warn the user.
12126 // But, issue any diagnostic on the first declaration only.
12127 if (Previous
.empty() && NewFD
->isExternC()) {
12128 QualType R
= NewFD
->getReturnType();
12129 if (R
->isIncompleteType() && !R
->isVoidType())
12130 Diag(NewFD
->getLocation(), diag::warn_return_value_udt_incomplete
)
12132 else if (!R
.isPODType(Context
) && !R
->isVoidType() &&
12133 !R
->isObjCObjectPointerType())
12134 Diag(NewFD
->getLocation(), diag::warn_return_value_udt
) << NewFD
<< R
;
12137 // C++1z [dcl.fct]p6:
12138 // [...] whether the function has a non-throwing exception-specification
12139 // [is] part of the function type
12141 // This results in an ABI break between C++14 and C++17 for functions whose
12142 // declared type includes an exception-specification in a parameter or
12143 // return type. (Exception specifications on the function itself are OK in
12144 // most cases, and exception specifications are not permitted in most other
12145 // contexts where they could make it into a mangling.)
12146 if (!getLangOpts().CPlusPlus17
&& !NewFD
->getPrimaryTemplate()) {
12147 auto HasNoexcept
= [&](QualType T
) -> bool {
12148 // Strip off declarator chunks that could be between us and a function
12149 // type. We don't need to look far, exception specifications are very
12150 // restricted prior to C++17.
12151 if (auto *RT
= T
->getAs
<ReferenceType
>())
12152 T
= RT
->getPointeeType();
12153 else if (T
->isAnyPointerType())
12154 T
= T
->getPointeeType();
12155 else if (auto *MPT
= T
->getAs
<MemberPointerType
>())
12156 T
= MPT
->getPointeeType();
12157 if (auto *FPT
= T
->getAs
<FunctionProtoType
>())
12158 if (FPT
->isNothrow())
12163 auto *FPT
= NewFD
->getType()->castAs
<FunctionProtoType
>();
12164 bool AnyNoexcept
= HasNoexcept(FPT
->getReturnType());
12165 for (QualType T
: FPT
->param_types())
12166 AnyNoexcept
|= HasNoexcept(T
);
12168 Diag(NewFD
->getLocation(),
12169 diag::warn_cxx17_compat_exception_spec_in_signature
)
12173 if (!Redeclaration
&& LangOpts
.CUDA
)
12174 checkCUDATargetOverload(NewFD
, Previous
);
12177 // Check if the function definition uses any AArch64 SME features without
12178 // having the '+sme' feature enabled.
12180 bool UsesSM
= NewFD
->hasAttr
<ArmLocallyStreamingAttr
>();
12181 bool UsesZA
= NewFD
->hasAttr
<ArmNewZAAttr
>();
12182 if (const auto *FPT
= NewFD
->getType()->getAs
<FunctionProtoType
>()) {
12183 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
12185 EPI
.AArch64SMEAttributes
& FunctionType::SME_PStateSMEnabledMask
;
12186 UsesZA
|= EPI
.AArch64SMEAttributes
& FunctionType::SME_PStateZASharedMask
;
12189 if (UsesSM
|| UsesZA
) {
12190 llvm::StringMap
<bool> FeatureMap
;
12191 Context
.getFunctionFeatureMap(FeatureMap
, NewFD
);
12192 if (!FeatureMap
.contains("sme")) {
12194 Diag(NewFD
->getLocation(),
12195 diag::err_sme_definition_using_sm_in_non_sme_target
);
12197 Diag(NewFD
->getLocation(),
12198 diag::err_sme_definition_using_za_in_non_sme_target
);
12203 return Redeclaration
;
12206 void Sema::CheckMain(FunctionDecl
* FD
, const DeclSpec
& DS
) {
12207 // C++11 [basic.start.main]p3:
12208 // A program that [...] declares main to be inline, static or
12209 // constexpr is ill-formed.
12210 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
12211 // appear in a declaration of main.
12212 // static main is not an error under C99, but we should warn about it.
12213 // We accept _Noreturn main as an extension.
12214 if (FD
->getStorageClass() == SC_Static
)
12215 Diag(DS
.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
12216 ? diag::err_static_main
: diag::warn_static_main
)
12217 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
12218 if (FD
->isInlineSpecified())
12219 Diag(DS
.getInlineSpecLoc(), diag::err_inline_main
)
12220 << FixItHint::CreateRemoval(DS
.getInlineSpecLoc());
12221 if (DS
.isNoreturnSpecified()) {
12222 SourceLocation NoreturnLoc
= DS
.getNoreturnSpecLoc();
12223 SourceRange
NoreturnRange(NoreturnLoc
, getLocForEndOfToken(NoreturnLoc
));
12224 Diag(NoreturnLoc
, diag::ext_noreturn_main
);
12225 Diag(NoreturnLoc
, diag::note_main_remove_noreturn
)
12226 << FixItHint::CreateRemoval(NoreturnRange
);
12228 if (FD
->isConstexpr()) {
12229 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_main
)
12230 << FD
->isConsteval()
12231 << FixItHint::CreateRemoval(DS
.getConstexprSpecLoc());
12232 FD
->setConstexprKind(ConstexprSpecKind::Unspecified
);
12235 if (getLangOpts().OpenCL
) {
12236 Diag(FD
->getLocation(), diag::err_opencl_no_main
)
12237 << FD
->hasAttr
<OpenCLKernelAttr
>();
12238 FD
->setInvalidDecl();
12242 // Functions named main in hlsl are default entries, but don't have specific
12243 // signatures they are required to conform to.
12244 if (getLangOpts().HLSL
)
12247 QualType T
= FD
->getType();
12248 assert(T
->isFunctionType() && "function decl is not of function type");
12249 const FunctionType
* FT
= T
->castAs
<FunctionType
>();
12251 // Set default calling convention for main()
12252 if (FT
->getCallConv() != CC_C
) {
12253 FT
= Context
.adjustFunctionType(FT
, FT
->getExtInfo().withCallingConv(CC_C
));
12254 FD
->setType(QualType(FT
, 0));
12255 T
= Context
.getCanonicalType(FD
->getType());
12258 if (getLangOpts().GNUMode
&& !getLangOpts().CPlusPlus
) {
12259 // In C with GNU extensions we allow main() to have non-integer return
12260 // type, but we should warn about the extension, and we disable the
12261 // implicit-return-zero rule.
12263 // GCC in C mode accepts qualified 'int'.
12264 if (Context
.hasSameUnqualifiedType(FT
->getReturnType(), Context
.IntTy
))
12265 FD
->setHasImplicitReturnZero(true);
12267 Diag(FD
->getTypeSpecStartLoc(), diag::ext_main_returns_nonint
);
12268 SourceRange RTRange
= FD
->getReturnTypeSourceRange();
12269 if (RTRange
.isValid())
12270 Diag(RTRange
.getBegin(), diag::note_main_change_return_type
)
12271 << FixItHint::CreateReplacement(RTRange
, "int");
12274 // In C and C++, main magically returns 0 if you fall off the end;
12275 // set the flag which tells us that.
12276 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
12278 // All the standards say that main() should return 'int'.
12279 if (Context
.hasSameType(FT
->getReturnType(), Context
.IntTy
))
12280 FD
->setHasImplicitReturnZero(true);
12282 // Otherwise, this is just a flat-out error.
12283 SourceRange RTRange
= FD
->getReturnTypeSourceRange();
12284 Diag(FD
->getTypeSpecStartLoc(), diag::err_main_returns_nonint
)
12285 << (RTRange
.isValid() ? FixItHint::CreateReplacement(RTRange
, "int")
12287 FD
->setInvalidDecl(true);
12291 // Treat protoless main() as nullary.
12292 if (isa
<FunctionNoProtoType
>(FT
)) return;
12294 const FunctionProtoType
* FTP
= cast
<const FunctionProtoType
>(FT
);
12295 unsigned nparams
= FTP
->getNumParams();
12296 assert(FD
->getNumParams() == nparams
);
12298 bool HasExtraParameters
= (nparams
> 3);
12300 if (FTP
->isVariadic()) {
12301 Diag(FD
->getLocation(), diag::ext_variadic_main
);
12302 // FIXME: if we had information about the location of the ellipsis, we
12303 // could add a FixIt hint to remove it as a parameter.
12306 // Darwin passes an undocumented fourth argument of type char**. If
12307 // other platforms start sprouting these, the logic below will start
12309 if (nparams
== 4 && Context
.getTargetInfo().getTriple().isOSDarwin())
12310 HasExtraParameters
= false;
12312 if (HasExtraParameters
) {
12313 Diag(FD
->getLocation(), diag::err_main_surplus_args
) << nparams
;
12314 FD
->setInvalidDecl(true);
12318 // FIXME: a lot of the following diagnostics would be improved
12319 // if we had some location information about types.
12322 Context
.getPointerType(Context
.getPointerType(Context
.CharTy
));
12323 QualType Expected
[] = { Context
.IntTy
, CharPP
, CharPP
, CharPP
};
12325 for (unsigned i
= 0; i
< nparams
; ++i
) {
12326 QualType AT
= FTP
->getParamType(i
);
12328 bool mismatch
= true;
12330 if (Context
.hasSameUnqualifiedType(AT
, Expected
[i
]))
12332 else if (Expected
[i
] == CharPP
) {
12333 // As an extension, the following forms are okay:
12335 // char const * const *
12338 QualifierCollector qs
;
12339 const PointerType
* PT
;
12340 if ((PT
= qs
.strip(AT
)->getAs
<PointerType
>()) &&
12341 (PT
= qs
.strip(PT
->getPointeeType())->getAs
<PointerType
>()) &&
12342 Context
.hasSameType(QualType(qs
.strip(PT
->getPointeeType()), 0),
12345 mismatch
= !qs
.empty();
12350 Diag(FD
->getLocation(), diag::err_main_arg_wrong
) << i
<< Expected
[i
];
12351 // TODO: suggest replacing given type with expected type
12352 FD
->setInvalidDecl(true);
12356 if (nparams
== 1 && !FD
->isInvalidDecl()) {
12357 Diag(FD
->getLocation(), diag::warn_main_one_arg
);
12360 if (!FD
->isInvalidDecl() && FD
->getDescribedFunctionTemplate()) {
12361 Diag(FD
->getLocation(), diag::err_mainlike_template_decl
) << FD
;
12362 FD
->setInvalidDecl();
12366 static bool isDefaultStdCall(FunctionDecl
*FD
, Sema
&S
) {
12368 // Default calling convention for main and wmain is __cdecl
12369 if (FD
->getName() == "main" || FD
->getName() == "wmain")
12372 // Default calling convention for MinGW is __cdecl
12373 const llvm::Triple
&T
= S
.Context
.getTargetInfo().getTriple();
12374 if (T
.isWindowsGNUEnvironment())
12377 // Default calling convention for WinMain, wWinMain and DllMain
12378 // is __stdcall on 32 bit Windows
12379 if (T
.isOSWindows() && T
.getArch() == llvm::Triple::x86
)
12385 void Sema::CheckMSVCRTEntryPoint(FunctionDecl
*FD
) {
12386 QualType T
= FD
->getType();
12387 assert(T
->isFunctionType() && "function decl is not of function type");
12388 const FunctionType
*FT
= T
->castAs
<FunctionType
>();
12390 // Set an implicit return of 'zero' if the function can return some integral,
12391 // enumeration, pointer or nullptr type.
12392 if (FT
->getReturnType()->isIntegralOrEnumerationType() ||
12393 FT
->getReturnType()->isAnyPointerType() ||
12394 FT
->getReturnType()->isNullPtrType())
12395 // DllMain is exempt because a return value of zero means it failed.
12396 if (FD
->getName() != "DllMain")
12397 FD
->setHasImplicitReturnZero(true);
12399 // Explicity specified calling conventions are applied to MSVC entry points
12400 if (!hasExplicitCallingConv(T
)) {
12401 if (isDefaultStdCall(FD
, *this)) {
12402 if (FT
->getCallConv() != CC_X86StdCall
) {
12403 FT
= Context
.adjustFunctionType(
12404 FT
, FT
->getExtInfo().withCallingConv(CC_X86StdCall
));
12405 FD
->setType(QualType(FT
, 0));
12407 } else if (FT
->getCallConv() != CC_C
) {
12408 FT
= Context
.adjustFunctionType(FT
,
12409 FT
->getExtInfo().withCallingConv(CC_C
));
12410 FD
->setType(QualType(FT
, 0));
12414 if (!FD
->isInvalidDecl() && FD
->getDescribedFunctionTemplate()) {
12415 Diag(FD
->getLocation(), diag::err_mainlike_template_decl
) << FD
;
12416 FD
->setInvalidDecl();
12420 void Sema::ActOnHLSLTopLevelFunction(FunctionDecl
*FD
) {
12421 auto &TargetInfo
= getASTContext().getTargetInfo();
12423 if (FD
->getName() != TargetInfo
.getTargetOpts().HLSLEntry
)
12426 StringRef Env
= TargetInfo
.getTriple().getEnvironmentName();
12427 HLSLShaderAttr::ShaderType ShaderType
;
12428 if (HLSLShaderAttr::ConvertStrToShaderType(Env
, ShaderType
)) {
12429 if (const auto *Shader
= FD
->getAttr
<HLSLShaderAttr
>()) {
12430 // The entry point is already annotated - check that it matches the
12432 if (Shader
->getType() != ShaderType
) {
12433 Diag(Shader
->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch
)
12435 FD
->setInvalidDecl();
12438 // Implicitly add the shader attribute if the entry function isn't
12439 // explicitly annotated.
12440 FD
->addAttr(HLSLShaderAttr::CreateImplicit(Context
, ShaderType
,
12441 FD
->getBeginLoc()));
12444 switch (TargetInfo
.getTriple().getEnvironment()) {
12445 case llvm::Triple::UnknownEnvironment
:
12446 case llvm::Triple::Library
:
12449 llvm_unreachable("Unhandled environment in triple");
12454 void Sema::CheckHLSLEntryPoint(FunctionDecl
*FD
) {
12455 const auto *ShaderAttr
= FD
->getAttr
<HLSLShaderAttr
>();
12456 assert(ShaderAttr
&& "Entry point has no shader attribute");
12457 HLSLShaderAttr::ShaderType ST
= ShaderAttr
->getType();
12460 case HLSLShaderAttr::Pixel
:
12461 case HLSLShaderAttr::Vertex
:
12462 case HLSLShaderAttr::Geometry
:
12463 case HLSLShaderAttr::Hull
:
12464 case HLSLShaderAttr::Domain
:
12465 case HLSLShaderAttr::RayGeneration
:
12466 case HLSLShaderAttr::Intersection
:
12467 case HLSLShaderAttr::AnyHit
:
12468 case HLSLShaderAttr::ClosestHit
:
12469 case HLSLShaderAttr::Miss
:
12470 case HLSLShaderAttr::Callable
:
12471 if (const auto *NT
= FD
->getAttr
<HLSLNumThreadsAttr
>()) {
12472 DiagnoseHLSLAttrStageMismatch(NT
, ST
,
12473 {HLSLShaderAttr::Compute
,
12474 HLSLShaderAttr::Amplification
,
12475 HLSLShaderAttr::Mesh
});
12476 FD
->setInvalidDecl();
12480 case HLSLShaderAttr::Compute
:
12481 case HLSLShaderAttr::Amplification
:
12482 case HLSLShaderAttr::Mesh
:
12483 if (!FD
->hasAttr
<HLSLNumThreadsAttr
>()) {
12484 Diag(FD
->getLocation(), diag::err_hlsl_missing_numthreads
)
12485 << HLSLShaderAttr::ConvertShaderTypeToStr(ST
);
12486 FD
->setInvalidDecl();
12491 for (ParmVarDecl
*Param
: FD
->parameters()) {
12492 if (const auto *AnnotationAttr
= Param
->getAttr
<HLSLAnnotationAttr
>()) {
12493 CheckHLSLSemanticAnnotation(FD
, Param
, AnnotationAttr
);
12495 // FIXME: Handle struct parameters where annotations are on struct fields.
12496 // See: https://github.com/llvm/llvm-project/issues/57875
12497 Diag(FD
->getLocation(), diag::err_hlsl_missing_semantic_annotation
);
12498 Diag(Param
->getLocation(), diag::note_previous_decl
) << Param
;
12499 FD
->setInvalidDecl();
12502 // FIXME: Verify return type semantic annotation.
12505 void Sema::CheckHLSLSemanticAnnotation(
12506 FunctionDecl
*EntryPoint
, const Decl
*Param
,
12507 const HLSLAnnotationAttr
*AnnotationAttr
) {
12508 auto *ShaderAttr
= EntryPoint
->getAttr
<HLSLShaderAttr
>();
12509 assert(ShaderAttr
&& "Entry point has no shader attribute");
12510 HLSLShaderAttr::ShaderType ST
= ShaderAttr
->getType();
12512 switch (AnnotationAttr
->getKind()) {
12513 case attr::HLSLSV_DispatchThreadID
:
12514 case attr::HLSLSV_GroupIndex
:
12515 if (ST
== HLSLShaderAttr::Compute
)
12517 DiagnoseHLSLAttrStageMismatch(AnnotationAttr
, ST
,
12518 {HLSLShaderAttr::Compute
});
12521 llvm_unreachable("Unknown HLSLAnnotationAttr");
12525 void Sema::DiagnoseHLSLAttrStageMismatch(
12526 const Attr
*A
, HLSLShaderAttr::ShaderType Stage
,
12527 std::initializer_list
<HLSLShaderAttr::ShaderType
> AllowedStages
) {
12528 SmallVector
<StringRef
, 8> StageStrings
;
12529 llvm::transform(AllowedStages
, std::back_inserter(StageStrings
),
12530 [](HLSLShaderAttr::ShaderType ST
) {
12532 HLSLShaderAttr::ConvertShaderTypeToStr(ST
));
12534 Diag(A
->getLoc(), diag::err_hlsl_attr_unsupported_in_stage
)
12535 << A
<< HLSLShaderAttr::ConvertShaderTypeToStr(Stage
)
12536 << (AllowedStages
.size() != 1) << join(StageStrings
, ", ");
12539 bool Sema::CheckForConstantInitializer(Expr
*Init
, QualType DclT
) {
12540 // FIXME: Need strict checking. In C89, we need to check for
12541 // any assignment, increment, decrement, function-calls, or
12542 // commas outside of a sizeof. In C99, it's the same list,
12543 // except that the aforementioned are allowed in unevaluated
12544 // expressions. Everything else falls under the
12545 // "may accept other forms of constant expressions" exception.
12547 // Regular C++ code will not end up here (exceptions: language extensions,
12548 // OpenCL C++ etc), so the constant expression rules there don't matter.
12549 if (Init
->isValueDependent()) {
12550 assert(Init
->containsErrors() &&
12551 "Dependent code should only occur in error-recovery path.");
12554 const Expr
*Culprit
;
12555 if (Init
->isConstantInitializer(Context
, false, &Culprit
))
12557 Diag(Culprit
->getExprLoc(), diag::err_init_element_not_constant
)
12558 << Culprit
->getSourceRange();
12563 // Visits an initialization expression to see if OrigDecl is evaluated in
12564 // its own initialization and throws a warning if it does.
12565 class SelfReferenceChecker
12566 : public EvaluatedExprVisitor
<SelfReferenceChecker
> {
12571 bool isReferenceType
;
12574 llvm::SmallVector
<unsigned, 4> InitFieldIndex
;
12577 typedef EvaluatedExprVisitor
<SelfReferenceChecker
> Inherited
;
12579 SelfReferenceChecker(Sema
&S
, Decl
*OrigDecl
) : Inherited(S
.Context
),
12580 S(S
), OrigDecl(OrigDecl
) {
12582 isRecordType
= false;
12583 isReferenceType
= false;
12584 isInitList
= false;
12585 if (ValueDecl
*VD
= dyn_cast
<ValueDecl
>(OrigDecl
)) {
12586 isPODType
= VD
->getType().isPODType(S
.Context
);
12587 isRecordType
= VD
->getType()->isRecordType();
12588 isReferenceType
= VD
->getType()->isReferenceType();
12592 // For most expressions, just call the visitor. For initializer lists,
12593 // track the index of the field being initialized since fields are
12594 // initialized in order allowing use of previously initialized fields.
12595 void CheckExpr(Expr
*E
) {
12596 InitListExpr
*InitList
= dyn_cast
<InitListExpr
>(E
);
12602 // Track and increment the index here.
12604 InitFieldIndex
.push_back(0);
12605 for (auto *Child
: InitList
->children()) {
12606 CheckExpr(cast
<Expr
>(Child
));
12607 ++InitFieldIndex
.back();
12609 InitFieldIndex
.pop_back();
12612 // Returns true if MemberExpr is checked and no further checking is needed.
12613 // Returns false if additional checking is required.
12614 bool CheckInitListMemberExpr(MemberExpr
*E
, bool CheckReference
) {
12615 llvm::SmallVector
<FieldDecl
*, 4> Fields
;
12617 bool ReferenceField
= false;
12619 // Get the field members used.
12620 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12621 FieldDecl
*FD
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
12624 Fields
.push_back(FD
);
12625 if (FD
->getType()->isReferenceType())
12626 ReferenceField
= true;
12627 Base
= ME
->getBase()->IgnoreParenImpCasts();
12630 // Keep checking only if the base Decl is the same.
12631 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
);
12632 if (!DRE
|| DRE
->getDecl() != OrigDecl
)
12635 // A reference field can be bound to an unininitialized field.
12636 if (CheckReference
&& !ReferenceField
)
12639 // Convert FieldDecls to their index number.
12640 llvm::SmallVector
<unsigned, 4> UsedFieldIndex
;
12641 for (const FieldDecl
*I
: llvm::reverse(Fields
))
12642 UsedFieldIndex
.push_back(I
->getFieldIndex());
12644 // See if a warning is needed by checking the first difference in index
12645 // numbers. If field being used has index less than the field being
12646 // initialized, then the use is safe.
12647 for (auto UsedIter
= UsedFieldIndex
.begin(),
12648 UsedEnd
= UsedFieldIndex
.end(),
12649 OrigIter
= InitFieldIndex
.begin(),
12650 OrigEnd
= InitFieldIndex
.end();
12651 UsedIter
!= UsedEnd
&& OrigIter
!= OrigEnd
; ++UsedIter
, ++OrigIter
) {
12652 if (*UsedIter
< *OrigIter
)
12654 if (*UsedIter
> *OrigIter
)
12658 // TODO: Add a different warning which will print the field names.
12659 HandleDeclRefExpr(DRE
);
12663 // For most expressions, the cast is directly above the DeclRefExpr.
12664 // For conditional operators, the cast can be outside the conditional
12665 // operator if both expressions are DeclRefExpr's.
12666 void HandleValue(Expr
*E
) {
12667 E
= E
->IgnoreParens();
12668 if (DeclRefExpr
* DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
12669 HandleDeclRefExpr(DRE
);
12673 if (ConditionalOperator
*CO
= dyn_cast
<ConditionalOperator
>(E
)) {
12674 Visit(CO
->getCond());
12675 HandleValue(CO
->getTrueExpr());
12676 HandleValue(CO
->getFalseExpr());
12680 if (BinaryConditionalOperator
*BCO
=
12681 dyn_cast
<BinaryConditionalOperator
>(E
)) {
12682 Visit(BCO
->getCond());
12683 HandleValue(BCO
->getFalseExpr());
12687 if (OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(E
)) {
12688 HandleValue(OVE
->getSourceExpr());
12692 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
12693 if (BO
->getOpcode() == BO_Comma
) {
12694 Visit(BO
->getLHS());
12695 HandleValue(BO
->getRHS());
12700 if (isa
<MemberExpr
>(E
)) {
12702 if (CheckInitListMemberExpr(cast
<MemberExpr
>(E
),
12703 false /*CheckReference*/))
12707 Expr
*Base
= E
->IgnoreParenImpCasts();
12708 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12709 // Check for static member variables and don't warn on them.
12710 if (!isa
<FieldDecl
>(ME
->getMemberDecl()))
12712 Base
= ME
->getBase()->IgnoreParenImpCasts();
12714 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
))
12715 HandleDeclRefExpr(DRE
);
12722 // Reference types not handled in HandleValue are handled here since all
12723 // uses of references are bad, not just r-value uses.
12724 void VisitDeclRefExpr(DeclRefExpr
*E
) {
12725 if (isReferenceType
)
12726 HandleDeclRefExpr(E
);
12729 void VisitImplicitCastExpr(ImplicitCastExpr
*E
) {
12730 if (E
->getCastKind() == CK_LValueToRValue
) {
12731 HandleValue(E
->getSubExpr());
12735 Inherited::VisitImplicitCastExpr(E
);
12738 void VisitMemberExpr(MemberExpr
*E
) {
12740 if (CheckInitListMemberExpr(E
, true /*CheckReference*/))
12744 // Don't warn on arrays since they can be treated as pointers.
12745 if (E
->getType()->canDecayToPointerType()) return;
12747 // Warn when a non-static method call is followed by non-static member
12748 // field accesses, which is followed by a DeclRefExpr.
12749 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(E
->getMemberDecl());
12750 bool Warn
= (MD
&& !MD
->isStatic());
12751 Expr
*Base
= E
->getBase()->IgnoreParenImpCasts();
12752 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12753 if (!isa
<FieldDecl
>(ME
->getMemberDecl()))
12755 Base
= ME
->getBase()->IgnoreParenImpCasts();
12758 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
)) {
12760 HandleDeclRefExpr(DRE
);
12764 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12765 // Visit that expression.
12769 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr
*E
) {
12770 Expr
*Callee
= E
->getCallee();
12772 if (isa
<UnresolvedLookupExpr
>(Callee
))
12773 return Inherited::VisitCXXOperatorCallExpr(E
);
12776 for (auto Arg
: E
->arguments())
12777 HandleValue(Arg
->IgnoreParenImpCasts());
12780 void VisitUnaryOperator(UnaryOperator
*E
) {
12781 // For POD record types, addresses of its own members are well-defined.
12782 if (E
->getOpcode() == UO_AddrOf
&& isRecordType
&&
12783 isa
<MemberExpr
>(E
->getSubExpr()->IgnoreParens())) {
12785 HandleValue(E
->getSubExpr());
12789 if (E
->isIncrementDecrementOp()) {
12790 HandleValue(E
->getSubExpr());
12794 Inherited::VisitUnaryOperator(E
);
12797 void VisitObjCMessageExpr(ObjCMessageExpr
*E
) {}
12799 void VisitCXXConstructExpr(CXXConstructExpr
*E
) {
12800 if (E
->getConstructor()->isCopyConstructor()) {
12801 Expr
*ArgExpr
= E
->getArg(0);
12802 if (InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(ArgExpr
))
12803 if (ILE
->getNumInits() == 1)
12804 ArgExpr
= ILE
->getInit(0);
12805 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(ArgExpr
))
12806 if (ICE
->getCastKind() == CK_NoOp
)
12807 ArgExpr
= ICE
->getSubExpr();
12808 HandleValue(ArgExpr
);
12811 Inherited::VisitCXXConstructExpr(E
);
12814 void VisitCallExpr(CallExpr
*E
) {
12815 // Treat std::move as a use.
12816 if (E
->isCallToStdMove()) {
12817 HandleValue(E
->getArg(0));
12821 Inherited::VisitCallExpr(E
);
12824 void VisitBinaryOperator(BinaryOperator
*E
) {
12825 if (E
->isCompoundAssignmentOp()) {
12826 HandleValue(E
->getLHS());
12827 Visit(E
->getRHS());
12831 Inherited::VisitBinaryOperator(E
);
12834 // A custom visitor for BinaryConditionalOperator is needed because the
12835 // regular visitor would check the condition and true expression separately
12836 // but both point to the same place giving duplicate diagnostics.
12837 void VisitBinaryConditionalOperator(BinaryConditionalOperator
*E
) {
12838 Visit(E
->getCond());
12839 Visit(E
->getFalseExpr());
12842 void HandleDeclRefExpr(DeclRefExpr
*DRE
) {
12843 Decl
* ReferenceDecl
= DRE
->getDecl();
12844 if (OrigDecl
!= ReferenceDecl
) return;
12846 if (isReferenceType
) {
12847 diag
= diag::warn_uninit_self_reference_in_reference_init
;
12848 } else if (cast
<VarDecl
>(OrigDecl
)->isStaticLocal()) {
12849 diag
= diag::warn_static_self_reference_in_init
;
12850 } else if (isa
<TranslationUnitDecl
>(OrigDecl
->getDeclContext()) ||
12851 isa
<NamespaceDecl
>(OrigDecl
->getDeclContext()) ||
12852 DRE
->getDecl()->getType()->isRecordType()) {
12853 diag
= diag::warn_uninit_self_reference_in_init
;
12855 // Local variables will be handled by the CFG analysis.
12859 S
.DiagRuntimeBehavior(DRE
->getBeginLoc(), DRE
,
12861 << DRE
->getDecl() << OrigDecl
->getLocation()
12862 << DRE
->getSourceRange());
12866 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12867 static void CheckSelfReference(Sema
&S
, Decl
* OrigDecl
, Expr
*E
,
12869 // Parameters arguments are occassionially constructed with itself,
12870 // for instance, in recursive functions. Skip them.
12871 if (isa
<ParmVarDecl
>(OrigDecl
))
12874 E
= E
->IgnoreParens();
12876 // Skip checking T a = a where T is not a record or reference type.
12877 // Doing so is a way to silence uninitialized warnings.
12878 if (!DirectInit
&& !cast
<VarDecl
>(OrigDecl
)->getType()->isRecordType())
12879 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
12880 if (ICE
->getCastKind() == CK_LValueToRValue
)
12881 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(ICE
->getSubExpr()))
12882 if (DRE
->getDecl() == OrigDecl
)
12885 SelfReferenceChecker(S
, OrigDecl
).CheckExpr(E
);
12887 } // end anonymous namespace
12890 // Simple wrapper to add the name of a variable or (if no variable is
12891 // available) a DeclarationName into a diagnostic.
12892 struct VarDeclOrName
{
12894 DeclarationName Name
;
12896 friend const Sema::SemaDiagnosticBuilder
&
12897 operator<<(const Sema::SemaDiagnosticBuilder
&Diag
, VarDeclOrName VN
) {
12898 return VN
.VDecl
? Diag
<< VN
.VDecl
: Diag
<< VN
.Name
;
12901 } // end anonymous namespace
12903 QualType
Sema::deduceVarTypeFromInitializer(VarDecl
*VDecl
,
12904 DeclarationName Name
, QualType Type
,
12905 TypeSourceInfo
*TSI
,
12906 SourceRange Range
, bool DirectInit
,
12908 bool IsInitCapture
= !VDecl
;
12909 assert((!VDecl
|| !VDecl
->isInitCapture()) &&
12910 "init captures are expected to be deduced prior to initialization");
12912 VarDeclOrName VN
{VDecl
, Name
};
12914 DeducedType
*Deduced
= Type
->getContainedDeducedType();
12915 assert(Deduced
&& "deduceVarTypeFromInitializer for non-deduced type");
12917 // Diagnose auto array declarations in C23, unless it's a supported extension.
12918 if (getLangOpts().C23
&& Type
->isArrayType() &&
12919 !isa_and_present
<StringLiteral
, InitListExpr
>(Init
)) {
12920 Diag(Range
.getBegin(), diag::err_auto_not_allowed
)
12921 << (int)Deduced
->getContainedAutoType()->getKeyword()
12922 << /*in array decl*/ 23 << Range
;
12926 // C++11 [dcl.spec.auto]p3
12928 assert(VDecl
&& "no init for init capture deduction?");
12930 // Except for class argument deduction, and then for an initializing
12931 // declaration only, i.e. no static at class scope or extern.
12932 if (!isa
<DeducedTemplateSpecializationType
>(Deduced
) ||
12933 VDecl
->hasExternalStorage() ||
12934 VDecl
->isStaticDataMember()) {
12935 Diag(VDecl
->getLocation(), diag::err_auto_var_requires_init
)
12936 << VDecl
->getDeclName() << Type
;
12941 ArrayRef
<Expr
*> DeduceInits
;
12943 DeduceInits
= Init
;
12945 auto *PL
= dyn_cast_if_present
<ParenListExpr
>(Init
);
12946 if (DirectInit
&& PL
)
12947 DeduceInits
= PL
->exprs();
12949 if (isa
<DeducedTemplateSpecializationType
>(Deduced
)) {
12950 assert(VDecl
&& "non-auto type for init capture deduction?");
12951 InitializedEntity Entity
= InitializedEntity::InitializeVariable(VDecl
);
12952 InitializationKind Kind
= InitializationKind::CreateForInit(
12953 VDecl
->getLocation(), DirectInit
, Init
);
12954 // FIXME: Initialization should not be taking a mutable list of inits.
12955 SmallVector
<Expr
*, 8> InitsCopy(DeduceInits
.begin(), DeduceInits
.end());
12956 return DeduceTemplateSpecializationFromInitializer(TSI
, Entity
, Kind
,
12961 if (auto *IL
= dyn_cast
<InitListExpr
>(Init
))
12962 DeduceInits
= IL
->inits();
12965 // Deduction only works if we have exactly one source expression.
12966 if (DeduceInits
.empty()) {
12967 // It isn't possible to write this directly, but it is possible to
12968 // end up in this situation with "auto x(some_pack...);"
12969 Diag(Init
->getBeginLoc(), IsInitCapture
12970 ? diag::err_init_capture_no_expression
12971 : diag::err_auto_var_init_no_expression
)
12972 << VN
<< Type
<< Range
;
12976 if (DeduceInits
.size() > 1) {
12977 Diag(DeduceInits
[1]->getBeginLoc(),
12978 IsInitCapture
? diag::err_init_capture_multiple_expressions
12979 : diag::err_auto_var_init_multiple_expressions
)
12980 << VN
<< Type
<< Range
;
12984 Expr
*DeduceInit
= DeduceInits
[0];
12985 if (DirectInit
&& isa
<InitListExpr
>(DeduceInit
)) {
12986 Diag(Init
->getBeginLoc(), IsInitCapture
12987 ? diag::err_init_capture_paren_braces
12988 : diag::err_auto_var_init_paren_braces
)
12989 << isa
<InitListExpr
>(Init
) << VN
<< Type
<< Range
;
12993 // Expressions default to 'id' when we're in a debugger.
12994 bool DefaultedAnyToId
= false;
12995 if (getLangOpts().DebuggerCastResultToId
&&
12996 Init
->getType() == Context
.UnknownAnyTy
&& !IsInitCapture
) {
12997 ExprResult Result
= forceUnknownAnyToType(Init
, Context
.getObjCIdType());
12998 if (Result
.isInvalid()) {
13001 Init
= Result
.get();
13002 DefaultedAnyToId
= true;
13005 // C++ [dcl.decomp]p1:
13006 // If the assignment-expression [...] has array type A and no ref-qualifier
13007 // is present, e has type cv A
13008 if (VDecl
&& isa
<DecompositionDecl
>(VDecl
) &&
13009 Context
.hasSameUnqualifiedType(Type
, Context
.getAutoDeductType()) &&
13010 DeduceInit
->getType()->isConstantArrayType())
13011 return Context
.getQualifiedType(DeduceInit
->getType(),
13012 Type
.getQualifiers());
13014 QualType DeducedType
;
13015 TemplateDeductionInfo
Info(DeduceInit
->getExprLoc());
13016 TemplateDeductionResult Result
=
13017 DeduceAutoType(TSI
->getTypeLoc(), DeduceInit
, DeducedType
, Info
);
13018 if (Result
!= TDK_Success
&& Result
!= TDK_AlreadyDiagnosed
) {
13019 if (!IsInitCapture
)
13020 DiagnoseAutoDeductionFailure(VDecl
, DeduceInit
);
13021 else if (isa
<InitListExpr
>(Init
))
13022 Diag(Range
.getBegin(),
13023 diag::err_init_capture_deduction_failure_from_init_list
)
13025 << (DeduceInit
->getType().isNull() ? TSI
->getType()
13026 : DeduceInit
->getType())
13027 << DeduceInit
->getSourceRange();
13029 Diag(Range
.getBegin(), diag::err_init_capture_deduction_failure
)
13030 << VN
<< TSI
->getType()
13031 << (DeduceInit
->getType().isNull() ? TSI
->getType()
13032 : DeduceInit
->getType())
13033 << DeduceInit
->getSourceRange();
13036 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
13037 // 'id' instead of a specific object type prevents most of our usual
13039 // We only want to warn outside of template instantiations, though:
13040 // inside a template, the 'id' could have come from a parameter.
13041 if (!inTemplateInstantiation() && !DefaultedAnyToId
&& !IsInitCapture
&&
13042 !DeducedType
.isNull() && DeducedType
->isObjCIdType()) {
13043 SourceLocation Loc
= TSI
->getTypeLoc().getBeginLoc();
13044 Diag(Loc
, diag::warn_auto_var_is_id
) << VN
<< Range
;
13047 return DeducedType
;
13050 bool Sema::DeduceVariableDeclarationType(VarDecl
*VDecl
, bool DirectInit
,
13052 assert(!Init
|| !Init
->containsErrors());
13053 QualType DeducedType
= deduceVarTypeFromInitializer(
13054 VDecl
, VDecl
->getDeclName(), VDecl
->getType(), VDecl
->getTypeSourceInfo(),
13055 VDecl
->getSourceRange(), DirectInit
, Init
);
13056 if (DeducedType
.isNull()) {
13057 VDecl
->setInvalidDecl();
13061 VDecl
->setType(DeducedType
);
13062 assert(VDecl
->isLinkageValid());
13064 // In ARC, infer lifetime.
13065 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(VDecl
))
13066 VDecl
->setInvalidDecl();
13068 if (getLangOpts().OpenCL
)
13069 deduceOpenCLAddressSpace(VDecl
);
13071 // If this is a redeclaration, check that the type we just deduced matches
13072 // the previously declared type.
13073 if (VarDecl
*Old
= VDecl
->getPreviousDecl()) {
13074 // We never need to merge the type, because we cannot form an incomplete
13075 // array of auto, nor deduce such a type.
13076 MergeVarDeclTypes(VDecl
, Old
, /*MergeTypeWithPrevious*/ false);
13079 // Check the deduced type is valid for a variable declaration.
13080 CheckVariableDeclarationType(VDecl
);
13081 return VDecl
->isInvalidDecl();
13084 void Sema::checkNonTrivialCUnionInInitializer(const Expr
*Init
,
13085 SourceLocation Loc
) {
13086 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(Init
))
13087 Init
= EWC
->getSubExpr();
13089 if (auto *CE
= dyn_cast
<ConstantExpr
>(Init
))
13090 Init
= CE
->getSubExpr();
13092 QualType InitType
= Init
->getType();
13093 assert((InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13094 InitType
.hasNonTrivialToPrimitiveCopyCUnion()) &&
13095 "shouldn't be called if type doesn't have a non-trivial C struct");
13096 if (auto *ILE
= dyn_cast
<InitListExpr
>(Init
)) {
13097 for (auto *I
: ILE
->inits()) {
13098 if (!I
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
13099 !I
->getType().hasNonTrivialToPrimitiveCopyCUnion())
13101 SourceLocation SL
= I
->getExprLoc();
13102 checkNonTrivialCUnionInInitializer(I
, SL
.isValid() ? SL
: Loc
);
13107 if (isa
<ImplicitValueInitExpr
>(Init
)) {
13108 if (InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13109 checkNonTrivialCUnion(InitType
, Loc
, NTCUC_DefaultInitializedObject
,
13112 // Assume all other explicit initializers involving copying some existing
13114 // TODO: ignore any explicit initializers where we can guarantee
13116 if (InitType
.hasNonTrivialToPrimitiveCopyCUnion())
13117 checkNonTrivialCUnion(InitType
, Loc
, NTCUC_CopyInit
, NTCUK_Copy
);
13123 bool shouldIgnoreForRecordTriviality(const FieldDecl
*FD
) {
13124 // Ignore unavailable fields. A field can be marked as unavailable explicitly
13125 // in the source code or implicitly by the compiler if it is in a union
13126 // defined in a system header and has non-trivial ObjC ownership
13127 // qualifications. We don't want those fields to participate in determining
13128 // whether the containing union is non-trivial.
13129 return FD
->hasAttr
<UnavailableAttr
>();
13132 struct DiagNonTrivalCUnionDefaultInitializeVisitor
13133 : DefaultInitializedTypeVisitor
<DiagNonTrivalCUnionDefaultInitializeVisitor
,
13136 DefaultInitializedTypeVisitor
<DiagNonTrivalCUnionDefaultInitializeVisitor
,
13139 DiagNonTrivalCUnionDefaultInitializeVisitor(
13140 QualType OrigTy
, SourceLocation OrigLoc
,
13141 Sema::NonTrivialCUnionContext UseContext
, Sema
&S
)
13142 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13144 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK
, QualType QT
,
13145 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13146 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13147 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13148 InNonTrivialUnion
);
13149 return Super::visitWithKind(PDIK
, QT
, FD
, InNonTrivialUnion
);
13152 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13153 bool InNonTrivialUnion
) {
13154 if (InNonTrivialUnion
)
13155 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13156 << 1 << 0 << QT
<< FD
->getName();
13159 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13160 if (InNonTrivialUnion
)
13161 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13162 << 1 << 0 << QT
<< FD
->getName();
13165 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13166 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13167 if (RD
->isUnion()) {
13168 if (OrigLoc
.isValid()) {
13169 bool IsUnion
= false;
13170 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13171 IsUnion
= OrigRD
->isUnion();
13172 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13173 << 0 << OrigTy
<< IsUnion
<< UseContext
;
13174 // Reset OrigLoc so that this diagnostic is emitted only once.
13175 OrigLoc
= SourceLocation();
13177 InNonTrivialUnion
= true;
13180 if (InNonTrivialUnion
)
13181 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13182 << 0 << 0 << QT
.getUnqualifiedType() << "";
13184 for (const FieldDecl
*FD
: RD
->fields())
13185 if (!shouldIgnoreForRecordTriviality(FD
))
13186 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13189 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13191 // The non-trivial C union type or the struct/union type that contains a
13192 // non-trivial C union.
13194 SourceLocation OrigLoc
;
13195 Sema::NonTrivialCUnionContext UseContext
;
13199 struct DiagNonTrivalCUnionDestructedTypeVisitor
13200 : DestructedTypeVisitor
<DiagNonTrivalCUnionDestructedTypeVisitor
, void> {
13202 DestructedTypeVisitor
<DiagNonTrivalCUnionDestructedTypeVisitor
, void>;
13204 DiagNonTrivalCUnionDestructedTypeVisitor(
13205 QualType OrigTy
, SourceLocation OrigLoc
,
13206 Sema::NonTrivialCUnionContext UseContext
, Sema
&S
)
13207 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13209 void visitWithKind(QualType::DestructionKind DK
, QualType QT
,
13210 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13211 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13212 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13213 InNonTrivialUnion
);
13214 return Super::visitWithKind(DK
, QT
, FD
, InNonTrivialUnion
);
13217 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13218 bool InNonTrivialUnion
) {
13219 if (InNonTrivialUnion
)
13220 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13221 << 1 << 1 << QT
<< FD
->getName();
13224 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13225 if (InNonTrivialUnion
)
13226 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13227 << 1 << 1 << QT
<< FD
->getName();
13230 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13231 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13232 if (RD
->isUnion()) {
13233 if (OrigLoc
.isValid()) {
13234 bool IsUnion
= false;
13235 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13236 IsUnion
= OrigRD
->isUnion();
13237 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13238 << 1 << OrigTy
<< IsUnion
<< UseContext
;
13239 // Reset OrigLoc so that this diagnostic is emitted only once.
13240 OrigLoc
= SourceLocation();
13242 InNonTrivialUnion
= true;
13245 if (InNonTrivialUnion
)
13246 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13247 << 0 << 1 << QT
.getUnqualifiedType() << "";
13249 for (const FieldDecl
*FD
: RD
->fields())
13250 if (!shouldIgnoreForRecordTriviality(FD
))
13251 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13254 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13255 void visitCXXDestructor(QualType QT
, const FieldDecl
*FD
,
13256 bool InNonTrivialUnion
) {}
13258 // The non-trivial C union type or the struct/union type that contains a
13259 // non-trivial C union.
13261 SourceLocation OrigLoc
;
13262 Sema::NonTrivialCUnionContext UseContext
;
13266 struct DiagNonTrivalCUnionCopyVisitor
13267 : CopiedTypeVisitor
<DiagNonTrivalCUnionCopyVisitor
, false, void> {
13268 using Super
= CopiedTypeVisitor
<DiagNonTrivalCUnionCopyVisitor
, false, void>;
13270 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy
, SourceLocation OrigLoc
,
13271 Sema::NonTrivialCUnionContext UseContext
,
13273 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13275 void visitWithKind(QualType::PrimitiveCopyKind PCK
, QualType QT
,
13276 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13277 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13278 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13279 InNonTrivialUnion
);
13280 return Super::visitWithKind(PCK
, QT
, FD
, InNonTrivialUnion
);
13283 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13284 bool InNonTrivialUnion
) {
13285 if (InNonTrivialUnion
)
13286 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13287 << 1 << 2 << QT
<< FD
->getName();
13290 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13291 if (InNonTrivialUnion
)
13292 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13293 << 1 << 2 << QT
<< FD
->getName();
13296 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13297 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13298 if (RD
->isUnion()) {
13299 if (OrigLoc
.isValid()) {
13300 bool IsUnion
= false;
13301 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13302 IsUnion
= OrigRD
->isUnion();
13303 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13304 << 2 << OrigTy
<< IsUnion
<< UseContext
;
13305 // Reset OrigLoc so that this diagnostic is emitted only once.
13306 OrigLoc
= SourceLocation();
13308 InNonTrivialUnion
= true;
13311 if (InNonTrivialUnion
)
13312 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13313 << 0 << 2 << QT
.getUnqualifiedType() << "";
13315 for (const FieldDecl
*FD
: RD
->fields())
13316 if (!shouldIgnoreForRecordTriviality(FD
))
13317 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13320 void preVisit(QualType::PrimitiveCopyKind PCK
, QualType QT
,
13321 const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13322 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13323 void visitVolatileTrivial(QualType QT
, const FieldDecl
*FD
,
13324 bool InNonTrivialUnion
) {}
13326 // The non-trivial C union type or the struct/union type that contains a
13327 // non-trivial C union.
13329 SourceLocation OrigLoc
;
13330 Sema::NonTrivialCUnionContext UseContext
;
13336 void Sema::checkNonTrivialCUnion(QualType QT
, SourceLocation Loc
,
13337 NonTrivialCUnionContext UseContext
,
13338 unsigned NonTrivialKind
) {
13339 assert((QT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13340 QT
.hasNonTrivialToPrimitiveDestructCUnion() ||
13341 QT
.hasNonTrivialToPrimitiveCopyCUnion()) &&
13342 "shouldn't be called if type doesn't have a non-trivial C union");
13344 if ((NonTrivialKind
& NTCUK_Init
) &&
13345 QT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13346 DiagNonTrivalCUnionDefaultInitializeVisitor(QT
, Loc
, UseContext
, *this)
13347 .visit(QT
, nullptr, false);
13348 if ((NonTrivialKind
& NTCUK_Destruct
) &&
13349 QT
.hasNonTrivialToPrimitiveDestructCUnion())
13350 DiagNonTrivalCUnionDestructedTypeVisitor(QT
, Loc
, UseContext
, *this)
13351 .visit(QT
, nullptr, false);
13352 if ((NonTrivialKind
& NTCUK_Copy
) && QT
.hasNonTrivialToPrimitiveCopyCUnion())
13353 DiagNonTrivalCUnionCopyVisitor(QT
, Loc
, UseContext
, *this)
13354 .visit(QT
, nullptr, false);
13357 /// AddInitializerToDecl - Adds the initializer Init to the
13358 /// declaration dcl. If DirectInit is true, this is C++ direct
13359 /// initialization rather than copy initialization.
13360 void Sema::AddInitializerToDecl(Decl
*RealDecl
, Expr
*Init
, bool DirectInit
) {
13361 // If there is no declaration, there was an error parsing it. Just ignore
13362 // the initializer.
13363 if (!RealDecl
|| RealDecl
->isInvalidDecl()) {
13364 CorrectDelayedTyposInExpr(Init
, dyn_cast_or_null
<VarDecl
>(RealDecl
));
13368 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(RealDecl
)) {
13369 // Pure-specifiers are handled in ActOnPureSpecifier.
13370 Diag(Method
->getLocation(), diag::err_member_function_initialization
)
13371 << Method
->getDeclName() << Init
->getSourceRange();
13372 Method
->setInvalidDecl();
13376 VarDecl
*VDecl
= dyn_cast
<VarDecl
>(RealDecl
);
13378 assert(!isa
<FieldDecl
>(RealDecl
) && "field init shouldn't get here");
13379 Diag(RealDecl
->getLocation(), diag::err_illegal_initializer
);
13380 RealDecl
->setInvalidDecl();
13384 // WebAssembly tables can't be used to initialise a variable.
13385 if (Init
&& !Init
->getType().isNull() &&
13386 Init
->getType()->isWebAssemblyTableType()) {
13387 Diag(Init
->getExprLoc(), diag::err_wasm_table_art
) << 0;
13388 VDecl
->setInvalidDecl();
13392 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
13393 if (VDecl
->getType()->isUndeducedType()) {
13394 // Attempt typo correction early so that the type of the init expression can
13395 // be deduced based on the chosen correction if the original init contains a
13397 ExprResult Res
= CorrectDelayedTyposInExpr(Init
, VDecl
);
13398 if (!Res
.isUsable()) {
13399 // There are unresolved typos in Init, just drop them.
13400 // FIXME: improve the recovery strategy to preserve the Init.
13401 RealDecl
->setInvalidDecl();
13404 if (Res
.get()->containsErrors()) {
13405 // Invalidate the decl as we don't know the type for recovery-expr yet.
13406 RealDecl
->setInvalidDecl();
13407 VDecl
->setInit(Res
.get());
13412 if (DeduceVariableDeclarationType(VDecl
, DirectInit
, Init
))
13416 // dllimport cannot be used on variable definitions.
13417 if (VDecl
->hasAttr
<DLLImportAttr
>() && !VDecl
->isStaticDataMember()) {
13418 Diag(VDecl
->getLocation(), diag::err_attribute_dllimport_data_definition
);
13419 VDecl
->setInvalidDecl();
13423 // C99 6.7.8p5. If the declaration of an identifier has block scope, and
13424 // the identifier has external or internal linkage, the declaration shall
13425 // have no initializer for the identifier.
13426 // C++14 [dcl.init]p5 is the same restriction for C++.
13427 if (VDecl
->isLocalVarDecl() && VDecl
->hasExternalStorage()) {
13428 Diag(VDecl
->getLocation(), diag::err_block_extern_cant_init
);
13429 VDecl
->setInvalidDecl();
13433 if (!VDecl
->getType()->isDependentType()) {
13434 // A definition must end up with a complete type, which means it must be
13435 // complete with the restriction that an array type might be completed by
13436 // the initializer; note that later code assumes this restriction.
13437 QualType BaseDeclType
= VDecl
->getType();
13438 if (const ArrayType
*Array
= Context
.getAsIncompleteArrayType(BaseDeclType
))
13439 BaseDeclType
= Array
->getElementType();
13440 if (RequireCompleteType(VDecl
->getLocation(), BaseDeclType
,
13441 diag::err_typecheck_decl_incomplete_type
)) {
13442 RealDecl
->setInvalidDecl();
13446 // The variable can not have an abstract class type.
13447 if (RequireNonAbstractType(VDecl
->getLocation(), VDecl
->getType(),
13448 diag::err_abstract_type_in_decl
,
13449 AbstractVariableType
))
13450 VDecl
->setInvalidDecl();
13453 // C++ [module.import/6] external definitions are not permitted in header
13455 if (getLangOpts().CPlusPlusModules
&& currentModuleIsHeaderUnit() &&
13456 !VDecl
->isInvalidDecl() && VDecl
->isThisDeclarationADefinition() &&
13457 VDecl
->getFormalLinkage() == Linkage::External
&& !VDecl
->isInline() &&
13458 !VDecl
->isTemplated() && !isa
<VarTemplateSpecializationDecl
>(VDecl
)) {
13459 Diag(VDecl
->getLocation(), diag::err_extern_def_in_header_unit
);
13460 VDecl
->setInvalidDecl();
13463 // If adding the initializer will turn this declaration into a definition,
13464 // and we already have a definition for this variable, diagnose or otherwise
13465 // handle the situation.
13466 if (VarDecl
*Def
= VDecl
->getDefinition())
13467 if (Def
!= VDecl
&&
13468 (!VDecl
->isStaticDataMember() || VDecl
->isOutOfLine()) &&
13469 !VDecl
->isThisDeclarationADemotedDefinition() &&
13470 checkVarDeclRedefinition(Def
, VDecl
))
13473 if (getLangOpts().CPlusPlus
) {
13474 // C++ [class.static.data]p4
13475 // If a static data member is of const integral or const
13476 // enumeration type, its declaration in the class definition can
13477 // specify a constant-initializer which shall be an integral
13478 // constant expression (5.19). In that case, the member can appear
13479 // in integral constant expressions. The member shall still be
13480 // defined in a namespace scope if it is used in the program and the
13481 // namespace scope definition shall not contain an initializer.
13483 // We already performed a redefinition check above, but for static
13484 // data members we also need to check whether there was an in-class
13485 // declaration with an initializer.
13486 if (VDecl
->isStaticDataMember() && VDecl
->getCanonicalDecl()->hasInit()) {
13487 Diag(Init
->getExprLoc(), diag::err_static_data_member_reinitialization
)
13488 << VDecl
->getDeclName();
13489 Diag(VDecl
->getCanonicalDecl()->getInit()->getExprLoc(),
13490 diag::note_previous_initializer
)
13495 if (VDecl
->hasLocalStorage())
13496 setFunctionHasBranchProtectedScope();
13498 if (DiagnoseUnexpandedParameterPack(Init
, UPPC_Initializer
)) {
13499 VDecl
->setInvalidDecl();
13504 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
13505 // a kernel function cannot be initialized."
13506 if (VDecl
->getType().getAddressSpace() == LangAS::opencl_local
) {
13507 Diag(VDecl
->getLocation(), diag::err_local_cant_init
);
13508 VDecl
->setInvalidDecl();
13512 // The LoaderUninitialized attribute acts as a definition (of undef).
13513 if (VDecl
->hasAttr
<LoaderUninitializedAttr
>()) {
13514 Diag(VDecl
->getLocation(), diag::err_loader_uninitialized_cant_init
);
13515 VDecl
->setInvalidDecl();
13519 // Get the decls type and save a reference for later, since
13520 // CheckInitializerTypes may change it.
13521 QualType DclT
= VDecl
->getType(), SavT
= DclT
;
13523 // Expressions default to 'id' when we're in a debugger
13524 // and we are assigning it to a variable of Objective-C pointer type.
13525 if (getLangOpts().DebuggerCastResultToId
&& DclT
->isObjCObjectPointerType() &&
13526 Init
->getType() == Context
.UnknownAnyTy
) {
13527 ExprResult Result
= forceUnknownAnyToType(Init
, Context
.getObjCIdType());
13528 if (Result
.isInvalid()) {
13529 VDecl
->setInvalidDecl();
13532 Init
= Result
.get();
13535 // Perform the initialization.
13536 ParenListExpr
*CXXDirectInit
= dyn_cast
<ParenListExpr
>(Init
);
13537 bool IsParenListInit
= false;
13538 if (!VDecl
->isInvalidDecl()) {
13539 InitializedEntity Entity
= InitializedEntity::InitializeVariable(VDecl
);
13540 InitializationKind Kind
= InitializationKind::CreateForInit(
13541 VDecl
->getLocation(), DirectInit
, Init
);
13543 MultiExprArg Args
= Init
;
13545 Args
= MultiExprArg(CXXDirectInit
->getExprs(),
13546 CXXDirectInit
->getNumExprs());
13548 // Try to correct any TypoExprs in the initialization arguments.
13549 for (size_t Idx
= 0; Idx
< Args
.size(); ++Idx
) {
13550 ExprResult Res
= CorrectDelayedTyposInExpr(
13551 Args
[Idx
], VDecl
, /*RecoverUncorrectedTypos=*/true,
13552 [this, Entity
, Kind
](Expr
*E
) {
13553 InitializationSequence
Init(*this, Entity
, Kind
, MultiExprArg(E
));
13554 return Init
.Failed() ? ExprError() : E
;
13556 if (Res
.isInvalid()) {
13557 VDecl
->setInvalidDecl();
13558 } else if (Res
.get() != Args
[Idx
]) {
13559 Args
[Idx
] = Res
.get();
13562 if (VDecl
->isInvalidDecl())
13565 InitializationSequence
InitSeq(*this, Entity
, Kind
, Args
,
13566 /*TopLevelOfInitList=*/false,
13567 /*TreatUnavailableAsInvalid=*/false);
13568 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
, Args
, &DclT
);
13569 if (Result
.isInvalid()) {
13570 // If the provided initializer fails to initialize the var decl,
13571 // we attach a recovery expr for better recovery.
13572 auto RecoveryExpr
=
13573 CreateRecoveryExpr(Init
->getBeginLoc(), Init
->getEndLoc(), Args
);
13574 if (RecoveryExpr
.get())
13575 VDecl
->setInit(RecoveryExpr
.get());
13579 Init
= Result
.getAs
<Expr
>();
13580 IsParenListInit
= !InitSeq
.steps().empty() &&
13581 InitSeq
.step_begin()->Kind
==
13582 InitializationSequence::SK_ParenthesizedListInit
;
13583 QualType VDeclType
= VDecl
->getType();
13584 if (Init
&& !Init
->getType().isNull() &&
13585 !Init
->getType()->isDependentType() && !VDeclType
->isDependentType() &&
13586 Context
.getAsIncompleteArrayType(VDeclType
) &&
13587 Context
.getAsIncompleteArrayType(Init
->getType())) {
13588 // Bail out if it is not possible to deduce array size from the
13590 Diag(VDecl
->getLocation(), diag::err_typecheck_decl_incomplete_type
)
13592 VDecl
->setInvalidDecl();
13597 // Check for self-references within variable initializers.
13598 // Variables declared within a function/method body (except for references)
13599 // are handled by a dataflow analysis.
13600 // This is undefined behavior in C++, but valid in C.
13601 if (getLangOpts().CPlusPlus
)
13602 if (!VDecl
->hasLocalStorage() || VDecl
->getType()->isRecordType() ||
13603 VDecl
->getType()->isReferenceType())
13604 CheckSelfReference(*this, RealDecl
, Init
, DirectInit
);
13606 // If the type changed, it means we had an incomplete type that was
13607 // completed by the initializer. For example:
13608 // int ary[] = { 1, 3, 5 };
13609 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
13610 if (!VDecl
->isInvalidDecl() && (DclT
!= SavT
))
13611 VDecl
->setType(DclT
);
13613 if (!VDecl
->isInvalidDecl()) {
13614 checkUnsafeAssigns(VDecl
->getLocation(), VDecl
->getType(), Init
);
13616 if (VDecl
->hasAttr
<BlocksAttr
>())
13617 checkRetainCycles(VDecl
, Init
);
13619 // It is safe to assign a weak reference into a strong variable.
13620 // Although this code can still have problems:
13621 // id x = self.weakProp;
13622 // id y = self.weakProp;
13623 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13624 // paths through the function. This should be revisited if
13625 // -Wrepeated-use-of-weak is made flow-sensitive.
13626 if (FunctionScopeInfo
*FSI
= getCurFunction())
13627 if ((VDecl
->getType().getObjCLifetime() == Qualifiers::OCL_Strong
||
13628 VDecl
->getType().isNonWeakInMRRWithObjCWeak(Context
)) &&
13629 !Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
,
13630 Init
->getBeginLoc()))
13631 FSI
->markSafeWeakUse(Init
);
13634 // The initialization is usually a full-expression.
13636 // FIXME: If this is a braced initialization of an aggregate, it is not
13637 // an expression, and each individual field initializer is a separate
13638 // full-expression. For instance, in:
13640 // struct Temp { ~Temp(); };
13641 // struct S { S(Temp); };
13642 // struct T { S a, b; } t = { Temp(), Temp() }
13644 // we should destroy the first Temp before constructing the second.
13645 ExprResult Result
=
13646 ActOnFinishFullExpr(Init
, VDecl
->getLocation(),
13647 /*DiscardedValue*/ false, VDecl
->isConstexpr());
13648 if (Result
.isInvalid()) {
13649 VDecl
->setInvalidDecl();
13652 Init
= Result
.get();
13654 // Attach the initializer to the decl.
13655 VDecl
->setInit(Init
);
13657 if (VDecl
->isLocalVarDecl()) {
13658 // Don't check the initializer if the declaration is malformed.
13659 if (VDecl
->isInvalidDecl()) {
13662 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
13663 // This is true even in C++ for OpenCL.
13664 } else if (VDecl
->getType().getAddressSpace() == LangAS::opencl_constant
) {
13665 CheckForConstantInitializer(Init
, DclT
);
13667 // Otherwise, C++ does not restrict the initializer.
13668 } else if (getLangOpts().CPlusPlus
) {
13671 // C99 6.7.8p4: All the expressions in an initializer for an object that has
13672 // static storage duration shall be constant expressions or string literals.
13673 } else if (VDecl
->getStorageClass() == SC_Static
) {
13674 CheckForConstantInitializer(Init
, DclT
);
13676 // C89 is stricter than C99 for aggregate initializers.
13677 // C89 6.5.7p3: All the expressions [...] in an initializer list
13678 // for an object that has aggregate or union type shall be
13679 // constant expressions.
13680 } else if (!getLangOpts().C99
&& VDecl
->getType()->isAggregateType() &&
13681 isa
<InitListExpr
>(Init
)) {
13682 const Expr
*Culprit
;
13683 if (!Init
->isConstantInitializer(Context
, false, &Culprit
)) {
13684 Diag(Culprit
->getExprLoc(),
13685 diag::ext_aggregate_init_not_constant
)
13686 << Culprit
->getSourceRange();
13690 if (auto *E
= dyn_cast
<ExprWithCleanups
>(Init
))
13691 if (auto *BE
= dyn_cast
<BlockExpr
>(E
->getSubExpr()->IgnoreParens()))
13692 if (VDecl
->hasLocalStorage())
13693 BE
->getBlockDecl()->setCanAvoidCopyToHeap();
13694 } else if (VDecl
->isStaticDataMember() && !VDecl
->isInline() &&
13695 VDecl
->getLexicalDeclContext()->isRecord()) {
13696 // This is an in-class initialization for a static data member, e.g.,
13699 // static const int value = 17;
13702 // C++ [class.mem]p4:
13703 // A member-declarator can contain a constant-initializer only
13704 // if it declares a static member (9.4) of const integral or
13705 // const enumeration type, see 9.4.2.
13707 // C++11 [class.static.data]p3:
13708 // If a non-volatile non-inline const static data member is of integral
13709 // or enumeration type, its declaration in the class definition can
13710 // specify a brace-or-equal-initializer in which every initializer-clause
13711 // that is an assignment-expression is a constant expression. A static
13712 // data member of literal type can be declared in the class definition
13713 // with the constexpr specifier; if so, its declaration shall specify a
13714 // brace-or-equal-initializer in which every initializer-clause that is
13715 // an assignment-expression is a constant expression.
13717 // Do nothing on dependent types.
13718 if (DclT
->isDependentType()) {
13720 // Allow any 'static constexpr' members, whether or not they are of literal
13721 // type. We separately check that every constexpr variable is of literal
13723 } else if (VDecl
->isConstexpr()) {
13725 // Require constness.
13726 } else if (!DclT
.isConstQualified()) {
13727 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_non_const
)
13728 << Init
->getSourceRange();
13729 VDecl
->setInvalidDecl();
13731 // We allow integer constant expressions in all cases.
13732 } else if (DclT
->isIntegralOrEnumerationType()) {
13733 // Check whether the expression is a constant expression.
13734 SourceLocation Loc
;
13735 if (getLangOpts().CPlusPlus11
&& DclT
.isVolatileQualified())
13736 // In C++11, a non-constexpr const static data member with an
13737 // in-class initializer cannot be volatile.
13738 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_volatile
);
13739 else if (Init
->isValueDependent())
13740 ; // Nothing to check.
13741 else if (Init
->isIntegerConstantExpr(Context
, &Loc
))
13742 ; // Ok, it's an ICE!
13743 else if (Init
->getType()->isScopedEnumeralType() &&
13744 Init
->isCXX11ConstantExpr(Context
))
13745 ; // Ok, it is a scoped-enum constant expression.
13746 else if (Init
->isEvaluatable(Context
)) {
13747 // If we can constant fold the initializer through heroics, accept it,
13748 // but report this as a use of an extension for -pedantic.
13749 Diag(Loc
, diag::ext_in_class_initializer_non_constant
)
13750 << Init
->getSourceRange();
13752 // Otherwise, this is some crazy unknown case. Report the issue at the
13753 // location provided by the isIntegerConstantExpr failed check.
13754 Diag(Loc
, diag::err_in_class_initializer_non_constant
)
13755 << Init
->getSourceRange();
13756 VDecl
->setInvalidDecl();
13759 // We allow foldable floating-point constants as an extension.
13760 } else if (DclT
->isFloatingType()) { // also permits complex, which is ok
13761 // In C++98, this is a GNU extension. In C++11, it is not, but we support
13762 // it anyway and provide a fixit to add the 'constexpr'.
13763 if (getLangOpts().CPlusPlus11
) {
13764 Diag(VDecl
->getLocation(),
13765 diag::ext_in_class_initializer_float_type_cxx11
)
13766 << DclT
<< Init
->getSourceRange();
13767 Diag(VDecl
->getBeginLoc(),
13768 diag::note_in_class_initializer_float_type_cxx11
)
13769 << FixItHint::CreateInsertion(VDecl
->getBeginLoc(), "constexpr ");
13771 Diag(VDecl
->getLocation(), diag::ext_in_class_initializer_float_type
)
13772 << DclT
<< Init
->getSourceRange();
13774 if (!Init
->isValueDependent() && !Init
->isEvaluatable(Context
)) {
13775 Diag(Init
->getExprLoc(), diag::err_in_class_initializer_non_constant
)
13776 << Init
->getSourceRange();
13777 VDecl
->setInvalidDecl();
13781 // Suggest adding 'constexpr' in C++11 for literal types.
13782 } else if (getLangOpts().CPlusPlus11
&& DclT
->isLiteralType(Context
)) {
13783 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_literal_type
)
13784 << DclT
<< Init
->getSourceRange()
13785 << FixItHint::CreateInsertion(VDecl
->getBeginLoc(), "constexpr ");
13786 VDecl
->setConstexpr(true);
13789 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_bad_type
)
13790 << DclT
<< Init
->getSourceRange();
13791 VDecl
->setInvalidDecl();
13793 } else if (VDecl
->isFileVarDecl()) {
13794 // In C, extern is typically used to avoid tentative definitions when
13795 // declaring variables in headers, but adding an intializer makes it a
13796 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13797 // In C++, extern is often used to give implictly static const variables
13798 // external linkage, so don't warn in that case. If selectany is present,
13799 // this might be header code intended for C and C++ inclusion, so apply the
13801 if (VDecl
->getStorageClass() == SC_Extern
&&
13802 ((!getLangOpts().CPlusPlus
&& !VDecl
->hasAttr
<SelectAnyAttr
>()) ||
13803 !Context
.getBaseElementType(VDecl
->getType()).isConstQualified()) &&
13804 !(getLangOpts().CPlusPlus
&& VDecl
->isExternC()) &&
13805 !isTemplateInstantiation(VDecl
->getTemplateSpecializationKind()))
13806 Diag(VDecl
->getLocation(), diag::warn_extern_init
);
13808 // In Microsoft C++ mode, a const variable defined in namespace scope has
13809 // external linkage by default if the variable is declared with
13810 // __declspec(dllexport).
13811 if (Context
.getTargetInfo().getCXXABI().isMicrosoft() &&
13812 getLangOpts().CPlusPlus
&& VDecl
->getType().isConstQualified() &&
13813 VDecl
->hasAttr
<DLLExportAttr
>() && VDecl
->getDefinition())
13814 VDecl
->setStorageClass(SC_Extern
);
13816 // C99 6.7.8p4. All file scoped initializers need to be constant.
13817 if (!getLangOpts().CPlusPlus
&& !VDecl
->isInvalidDecl())
13818 CheckForConstantInitializer(Init
, DclT
);
13821 QualType InitType
= Init
->getType();
13822 if (!InitType
.isNull() &&
13823 (InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13824 InitType
.hasNonTrivialToPrimitiveCopyCUnion()))
13825 checkNonTrivialCUnionInInitializer(Init
, Init
->getExprLoc());
13827 // We will represent direct-initialization similarly to copy-initialization:
13828 // int x(1); -as-> int x = 1;
13829 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13831 // Clients that want to distinguish between the two forms, can check for
13832 // direct initializer using VarDecl::getInitStyle().
13833 // A major benefit is that clients that don't particularly care about which
13834 // exactly form was it (like the CodeGen) can handle both cases without
13835 // special case code.
13838 // The form of initialization (using parentheses or '=') is generally
13839 // insignificant, but does matter when the entity being initialized has a
13841 if (CXXDirectInit
) {
13842 assert(DirectInit
&& "Call-style initializer must be direct init.");
13843 VDecl
->setInitStyle(IsParenListInit
? VarDecl::ParenListInit
13844 : VarDecl::CallInit
);
13845 } else if (DirectInit
) {
13846 // This must be list-initialization. No other way is direct-initialization.
13847 VDecl
->setInitStyle(VarDecl::ListInit
);
13850 if (LangOpts
.OpenMP
&&
13851 (LangOpts
.OpenMPIsTargetDevice
|| !LangOpts
.OMPTargetTriples
.empty()) &&
13852 VDecl
->isFileVarDecl())
13853 DeclsToCheckForDeferredDiags
.insert(VDecl
);
13854 CheckCompleteVariableDeclaration(VDecl
);
13857 /// ActOnInitializerError - Given that there was an error parsing an
13858 /// initializer for the given declaration, try to at least re-establish
13859 /// invariants such as whether a variable's type is either dependent or
13861 void Sema::ActOnInitializerError(Decl
*D
) {
13862 // Our main concern here is re-establishing invariants like "a
13863 // variable's type is either dependent or complete".
13864 if (!D
|| D
->isInvalidDecl()) return;
13866 VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
13869 // Bindings are not usable if we can't make sense of the initializer.
13870 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
))
13871 for (auto *BD
: DD
->bindings())
13872 BD
->setInvalidDecl();
13874 // Auto types are meaningless if we can't make sense of the initializer.
13875 if (VD
->getType()->isUndeducedType()) {
13876 D
->setInvalidDecl();
13880 QualType Ty
= VD
->getType();
13881 if (Ty
->isDependentType()) return;
13883 // Require a complete type.
13884 if (RequireCompleteType(VD
->getLocation(),
13885 Context
.getBaseElementType(Ty
),
13886 diag::err_typecheck_decl_incomplete_type
)) {
13887 VD
->setInvalidDecl();
13891 // Require a non-abstract type.
13892 if (RequireNonAbstractType(VD
->getLocation(), Ty
,
13893 diag::err_abstract_type_in_decl
,
13894 AbstractVariableType
)) {
13895 VD
->setInvalidDecl();
13899 // Don't bother complaining about constructors or destructors,
13903 void Sema::ActOnUninitializedDecl(Decl
*RealDecl
) {
13904 // If there is no declaration, there was an error parsing it. Just ignore it.
13908 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(RealDecl
)) {
13909 QualType Type
= Var
->getType();
13911 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
13912 if (isa
<DecompositionDecl
>(RealDecl
)) {
13913 Diag(Var
->getLocation(), diag::err_decomp_decl_requires_init
) << Var
;
13914 Var
->setInvalidDecl();
13918 if (Type
->isUndeducedType() &&
13919 DeduceVariableDeclarationType(Var
, false, nullptr))
13922 // C++11 [class.static.data]p3: A static data member can be declared with
13923 // the constexpr specifier; if so, its declaration shall specify
13924 // a brace-or-equal-initializer.
13925 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
13926 // the definition of a variable [...] or the declaration of a static data
13928 if (Var
->isConstexpr() && !Var
->isThisDeclarationADefinition() &&
13929 !Var
->isThisDeclarationADemotedDefinition()) {
13930 if (Var
->isStaticDataMember()) {
13931 // C++1z removes the relevant rule; the in-class declaration is always
13932 // a definition there.
13933 if (!getLangOpts().CPlusPlus17
&&
13934 !Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
13935 Diag(Var
->getLocation(),
13936 diag::err_constexpr_static_mem_var_requires_init
)
13938 Var
->setInvalidDecl();
13942 Diag(Var
->getLocation(), diag::err_invalid_constexpr_var_decl
);
13943 Var
->setInvalidDecl();
13948 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
13950 if (!Var
->isInvalidDecl() &&
13951 Var
->getType().getAddressSpace() == LangAS::opencl_constant
&&
13952 Var
->getStorageClass() != SC_Extern
&& !Var
->getInit()) {
13953 bool HasConstExprDefaultConstructor
= false;
13954 if (CXXRecordDecl
*RD
= Var
->getType()->getAsCXXRecordDecl()) {
13955 for (auto *Ctor
: RD
->ctors()) {
13956 if (Ctor
->isConstexpr() && Ctor
->getNumParams() == 0 &&
13957 Ctor
->getMethodQualifiers().getAddressSpace() ==
13958 LangAS::opencl_constant
) {
13959 HasConstExprDefaultConstructor
= true;
13963 if (!HasConstExprDefaultConstructor
) {
13964 Diag(Var
->getLocation(), diag::err_opencl_constant_no_init
);
13965 Var
->setInvalidDecl();
13970 if (!Var
->isInvalidDecl() && RealDecl
->hasAttr
<LoaderUninitializedAttr
>()) {
13971 if (Var
->getStorageClass() == SC_Extern
) {
13972 Diag(Var
->getLocation(), diag::err_loader_uninitialized_extern_decl
)
13974 Var
->setInvalidDecl();
13977 if (RequireCompleteType(Var
->getLocation(), Var
->getType(),
13978 diag::err_typecheck_decl_incomplete_type
)) {
13979 Var
->setInvalidDecl();
13982 if (CXXRecordDecl
*RD
= Var
->getType()->getAsCXXRecordDecl()) {
13983 if (!RD
->hasTrivialDefaultConstructor()) {
13984 Diag(Var
->getLocation(), diag::err_loader_uninitialized_trivial_ctor
);
13985 Var
->setInvalidDecl();
13989 // The declaration is unitialized, no need for further checks.
13993 VarDecl::DefinitionKind DefKind
= Var
->isThisDeclarationADefinition();
13994 if (!Var
->isInvalidDecl() && DefKind
!= VarDecl::DeclarationOnly
&&
13995 Var
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13996 checkNonTrivialCUnion(Var
->getType(), Var
->getLocation(),
13997 NTCUC_DefaultInitializedObject
, NTCUK_Init
);
14001 case VarDecl::Definition
:
14002 if (!Var
->isStaticDataMember() || !Var
->getAnyInitializer())
14005 // We have an out-of-line definition of a static data member
14006 // that has an in-class initializer, so we type-check this like
14011 case VarDecl::DeclarationOnly
:
14012 // It's only a declaration.
14014 // Block scope. C99 6.7p7: If an identifier for an object is
14015 // declared with no linkage (C99 6.2.2p6), the type for the
14016 // object shall be complete.
14017 if (!Type
->isDependentType() && Var
->isLocalVarDecl() &&
14018 !Var
->hasLinkage() && !Var
->isInvalidDecl() &&
14019 RequireCompleteType(Var
->getLocation(), Type
,
14020 diag::err_typecheck_decl_incomplete_type
))
14021 Var
->setInvalidDecl();
14023 // Make sure that the type is not abstract.
14024 if (!Type
->isDependentType() && !Var
->isInvalidDecl() &&
14025 RequireNonAbstractType(Var
->getLocation(), Type
,
14026 diag::err_abstract_type_in_decl
,
14027 AbstractVariableType
))
14028 Var
->setInvalidDecl();
14029 if (!Type
->isDependentType() && !Var
->isInvalidDecl() &&
14030 Var
->getStorageClass() == SC_PrivateExtern
) {
14031 Diag(Var
->getLocation(), diag::warn_private_extern
);
14032 Diag(Var
->getLocation(), diag::note_private_extern
);
14035 if (Context
.getTargetInfo().allowDebugInfoForExternalRef() &&
14036 !Var
->isInvalidDecl())
14037 ExternalDeclarations
.push_back(Var
);
14041 case VarDecl::TentativeDefinition
:
14042 // File scope. C99 6.9.2p2: A declaration of an identifier for an
14043 // object that has file scope without an initializer, and without a
14044 // storage-class specifier or with the storage-class specifier "static",
14045 // constitutes a tentative definition. Note: A tentative definition with
14046 // external linkage is valid (C99 6.2.2p5).
14047 if (!Var
->isInvalidDecl()) {
14048 if (const IncompleteArrayType
*ArrayT
14049 = Context
.getAsIncompleteArrayType(Type
)) {
14050 if (RequireCompleteSizedType(
14051 Var
->getLocation(), ArrayT
->getElementType(),
14052 diag::err_array_incomplete_or_sizeless_type
))
14053 Var
->setInvalidDecl();
14054 } else if (Var
->getStorageClass() == SC_Static
) {
14055 // C99 6.9.2p3: If the declaration of an identifier for an object is
14056 // a tentative definition and has internal linkage (C99 6.2.2p3), the
14057 // declared type shall not be an incomplete type.
14058 // NOTE: code such as the following
14059 // static struct s;
14060 // struct s { int a; };
14061 // is accepted by gcc. Hence here we issue a warning instead of
14062 // an error and we do not invalidate the static declaration.
14063 // NOTE: to avoid multiple warnings, only check the first declaration.
14064 if (Var
->isFirstDecl())
14065 RequireCompleteType(Var
->getLocation(), Type
,
14066 diag::ext_typecheck_decl_incomplete_type
);
14070 // Record the tentative definition; we're done.
14071 if (!Var
->isInvalidDecl())
14072 TentativeDefinitions
.push_back(Var
);
14076 // Provide a specific diagnostic for uninitialized variable
14077 // definitions with incomplete array type.
14078 if (Type
->isIncompleteArrayType()) {
14079 if (Var
->isConstexpr())
14080 Diag(Var
->getLocation(), diag::err_constexpr_var_requires_const_init
)
14083 Diag(Var
->getLocation(),
14084 diag::err_typecheck_incomplete_array_needs_initializer
);
14085 Var
->setInvalidDecl();
14089 // Provide a specific diagnostic for uninitialized variable
14090 // definitions with reference type.
14091 if (Type
->isReferenceType()) {
14092 Diag(Var
->getLocation(), diag::err_reference_var_requires_init
)
14093 << Var
<< SourceRange(Var
->getLocation(), Var
->getLocation());
14097 // Do not attempt to type-check the default initializer for a
14098 // variable with dependent type.
14099 if (Type
->isDependentType())
14102 if (Var
->isInvalidDecl())
14105 if (!Var
->hasAttr
<AliasAttr
>()) {
14106 if (RequireCompleteType(Var
->getLocation(),
14107 Context
.getBaseElementType(Type
),
14108 diag::err_typecheck_decl_incomplete_type
)) {
14109 Var
->setInvalidDecl();
14116 // The variable can not have an abstract class type.
14117 if (RequireNonAbstractType(Var
->getLocation(), Type
,
14118 diag::err_abstract_type_in_decl
,
14119 AbstractVariableType
)) {
14120 Var
->setInvalidDecl();
14124 // Check for jumps past the implicit initializer. C++0x
14125 // clarifies that this applies to a "variable with automatic
14126 // storage duration", not a "local variable".
14127 // C++11 [stmt.dcl]p3
14128 // A program that jumps from a point where a variable with automatic
14129 // storage duration is not in scope to a point where it is in scope is
14130 // ill-formed unless the variable has scalar type, class type with a
14131 // trivial default constructor and a trivial destructor, a cv-qualified
14132 // version of one of these types, or an array of one of the preceding
14133 // types and is declared without an initializer.
14134 if (getLangOpts().CPlusPlus
&& Var
->hasLocalStorage()) {
14135 if (const RecordType
*Record
14136 = Context
.getBaseElementType(Type
)->getAs
<RecordType
>()) {
14137 CXXRecordDecl
*CXXRecord
= cast
<CXXRecordDecl
>(Record
->getDecl());
14138 // Mark the function (if we're in one) for further checking even if the
14139 // looser rules of C++11 do not require such checks, so that we can
14140 // diagnose incompatibilities with C++98.
14141 if (!CXXRecord
->isPOD())
14142 setFunctionHasBranchProtectedScope();
14145 // In OpenCL, we can't initialize objects in the __local address space,
14146 // even implicitly, so don't synthesize an implicit initializer.
14147 if (getLangOpts().OpenCL
&&
14148 Var
->getType().getAddressSpace() == LangAS::opencl_local
)
14150 // C++03 [dcl.init]p9:
14151 // If no initializer is specified for an object, and the
14152 // object is of (possibly cv-qualified) non-POD class type (or
14153 // array thereof), the object shall be default-initialized; if
14154 // the object is of const-qualified type, the underlying class
14155 // type shall have a user-declared default
14156 // constructor. Otherwise, if no initializer is specified for
14157 // a non- static object, the object and its subobjects, if
14158 // any, have an indeterminate initial value); if the object
14159 // or any of its subobjects are of const-qualified type, the
14160 // program is ill-formed.
14161 // C++0x [dcl.init]p11:
14162 // If no initializer is specified for an object, the object is
14163 // default-initialized; [...].
14164 InitializedEntity Entity
= InitializedEntity::InitializeVariable(Var
);
14165 InitializationKind Kind
14166 = InitializationKind::CreateDefault(Var
->getLocation());
14168 InitializationSequence
InitSeq(*this, Entity
, Kind
, std::nullopt
);
14169 ExprResult Init
= InitSeq
.Perform(*this, Entity
, Kind
, std::nullopt
);
14172 Var
->setInit(MaybeCreateExprWithCleanups(Init
.get()));
14173 // This is important for template substitution.
14174 Var
->setInitStyle(VarDecl::CallInit
);
14175 } else if (Init
.isInvalid()) {
14176 // If default-init fails, attach a recovery-expr initializer to track
14177 // that initialization was attempted and failed.
14178 auto RecoveryExpr
=
14179 CreateRecoveryExpr(Var
->getLocation(), Var
->getLocation(), {});
14180 if (RecoveryExpr
.get())
14181 Var
->setInit(RecoveryExpr
.get());
14184 CheckCompleteVariableDeclaration(Var
);
14188 void Sema::ActOnCXXForRangeDecl(Decl
*D
) {
14189 // If there is no declaration, there was an error parsing it. Ignore it.
14193 VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
14195 Diag(D
->getLocation(), diag::err_for_range_decl_must_be_var
);
14196 D
->setInvalidDecl();
14200 VD
->setCXXForRangeDecl(true);
14202 // for-range-declaration cannot be given a storage class specifier.
14204 switch (VD
->getStorageClass()) {
14213 case SC_PrivateExtern
:
14224 // for-range-declaration cannot be given a storage class specifier con't.
14225 switch (VD
->getTSCSpec()) {
14226 case TSCS_thread_local
:
14229 case TSCS___thread
:
14230 case TSCS__Thread_local
:
14231 case TSCS_unspecified
:
14236 Diag(VD
->getOuterLocStart(), diag::err_for_range_storage_class
)
14238 D
->setInvalidDecl();
14242 StmtResult
Sema::ActOnCXXForRangeIdentifier(Scope
*S
, SourceLocation IdentLoc
,
14243 IdentifierInfo
*Ident
,
14244 ParsedAttributes
&Attrs
) {
14245 // C++1y [stmt.iter]p1:
14246 // A range-based for statement of the form
14247 // for ( for-range-identifier : for-range-initializer ) statement
14248 // is equivalent to
14249 // for ( auto&& for-range-identifier : for-range-initializer ) statement
14250 DeclSpec
DS(Attrs
.getPool().getFactory());
14252 const char *PrevSpec
;
14254 DS
.SetTypeSpecType(DeclSpec::TST_auto
, IdentLoc
, PrevSpec
, DiagID
,
14255 getPrintingPolicy());
14257 Declarator
D(DS
, ParsedAttributesView::none(), DeclaratorContext::ForInit
);
14258 D
.SetIdentifier(Ident
, IdentLoc
);
14259 D
.takeAttributes(Attrs
);
14261 D
.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc
, /*lvalue*/ false),
14263 Decl
*Var
= ActOnDeclarator(S
, D
);
14264 cast
<VarDecl
>(Var
)->setCXXForRangeDecl(true);
14265 FinalizeDeclaration(Var
);
14266 return ActOnDeclStmt(FinalizeDeclaratorGroup(S
, DS
, Var
), IdentLoc
,
14267 Attrs
.Range
.getEnd().isValid() ? Attrs
.Range
.getEnd()
14271 void Sema::CheckCompleteVariableDeclaration(VarDecl
*var
) {
14272 if (var
->isInvalidDecl()) return;
14274 MaybeAddCUDAConstantAttr(var
);
14276 if (getLangOpts().OpenCL
) {
14277 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
14279 if (var
->getTypeSourceInfo()->getType()->isBlockPointerType() &&
14281 Diag(var
->getLocation(), diag::err_opencl_invalid_block_declaration
)
14283 var
->setInvalidDecl();
14288 // In Objective-C, don't allow jumps past the implicit initialization of a
14289 // local retaining variable.
14290 if (getLangOpts().ObjC
&&
14291 var
->hasLocalStorage()) {
14292 switch (var
->getType().getObjCLifetime()) {
14293 case Qualifiers::OCL_None
:
14294 case Qualifiers::OCL_ExplicitNone
:
14295 case Qualifiers::OCL_Autoreleasing
:
14298 case Qualifiers::OCL_Weak
:
14299 case Qualifiers::OCL_Strong
:
14300 setFunctionHasBranchProtectedScope();
14305 if (var
->hasLocalStorage() &&
14306 var
->getType().isDestructedType() == QualType::DK_nontrivial_c_struct
)
14307 setFunctionHasBranchProtectedScope();
14309 // Warn about externally-visible variables being defined without a
14310 // prior declaration. We only want to do this for global
14311 // declarations, but we also specifically need to avoid doing it for
14312 // class members because the linkage of an anonymous class can
14313 // change if it's later given a typedef name.
14314 if (var
->isThisDeclarationADefinition() &&
14315 var
->getDeclContext()->getRedeclContext()->isFileContext() &&
14316 var
->isExternallyVisible() && var
->hasLinkage() &&
14317 !var
->isInline() && !var
->getDescribedVarTemplate() &&
14318 var
->getStorageClass() != SC_Register
&&
14319 !isa
<VarTemplatePartialSpecializationDecl
>(var
) &&
14320 !isTemplateInstantiation(var
->getTemplateSpecializationKind()) &&
14321 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations
,
14322 var
->getLocation())) {
14323 // Find a previous declaration that's not a definition.
14324 VarDecl
*prev
= var
->getPreviousDecl();
14325 while (prev
&& prev
->isThisDeclarationADefinition())
14326 prev
= prev
->getPreviousDecl();
14329 Diag(var
->getLocation(), diag::warn_missing_variable_declarations
) << var
;
14330 Diag(var
->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage
)
14331 << /* variable */ 0;
14335 // Cache the result of checking for constant initialization.
14336 std::optional
<bool> CacheHasConstInit
;
14337 const Expr
*CacheCulprit
= nullptr;
14338 auto checkConstInit
= [&]() mutable {
14339 if (!CacheHasConstInit
)
14340 CacheHasConstInit
= var
->getInit()->isConstantInitializer(
14341 Context
, var
->getType()->isReferenceType(), &CacheCulprit
);
14342 return *CacheHasConstInit
;
14345 if (var
->getTLSKind() == VarDecl::TLS_Static
) {
14346 if (var
->getType().isDestructedType()) {
14347 // GNU C++98 edits for __thread, [basic.start.term]p3:
14348 // The type of an object with thread storage duration shall not
14349 // have a non-trivial destructor.
14350 Diag(var
->getLocation(), diag::err_thread_nontrivial_dtor
);
14351 if (getLangOpts().CPlusPlus11
)
14352 Diag(var
->getLocation(), diag::note_use_thread_local
);
14353 } else if (getLangOpts().CPlusPlus
&& var
->hasInit()) {
14354 if (!checkConstInit()) {
14355 // GNU C++98 edits for __thread, [basic.start.init]p4:
14356 // An object of thread storage duration shall not require dynamic
14358 // FIXME: Need strict checking here.
14359 Diag(CacheCulprit
->getExprLoc(), diag::err_thread_dynamic_init
)
14360 << CacheCulprit
->getSourceRange();
14361 if (getLangOpts().CPlusPlus11
)
14362 Diag(var
->getLocation(), diag::note_use_thread_local
);
14368 if (!var
->getType()->isStructureType() && var
->hasInit() &&
14369 isa
<InitListExpr
>(var
->getInit())) {
14370 const auto *ILE
= cast
<InitListExpr
>(var
->getInit());
14371 unsigned NumInits
= ILE
->getNumInits();
14373 for (unsigned I
= 0; I
< NumInits
; ++I
) {
14374 const auto *Init
= ILE
->getInit(I
);
14377 const auto *SL
= dyn_cast
<StringLiteral
>(Init
->IgnoreImpCasts());
14381 unsigned NumConcat
= SL
->getNumConcatenated();
14382 // Diagnose missing comma in string array initialization.
14383 // Do not warn when all the elements in the initializer are concatenated
14384 // together. Do not warn for macros too.
14385 if (NumConcat
== 2 && !SL
->getBeginLoc().isMacroID()) {
14386 bool OnlyOneMissingComma
= true;
14387 for (unsigned J
= I
+ 1; J
< NumInits
; ++J
) {
14388 const auto *Init
= ILE
->getInit(J
);
14391 const auto *SLJ
= dyn_cast
<StringLiteral
>(Init
->IgnoreImpCasts());
14392 if (!SLJ
|| SLJ
->getNumConcatenated() > 1) {
14393 OnlyOneMissingComma
= false;
14398 if (OnlyOneMissingComma
) {
14399 SmallVector
<FixItHint
, 1> Hints
;
14400 for (unsigned i
= 0; i
< NumConcat
- 1; ++i
)
14401 Hints
.push_back(FixItHint::CreateInsertion(
14402 PP
.getLocForEndOfToken(SL
->getStrTokenLoc(i
)), ","));
14404 Diag(SL
->getStrTokenLoc(1),
14405 diag::warn_concatenated_literal_array_init
)
14407 Diag(SL
->getBeginLoc(),
14408 diag::note_concatenated_string_literal_silence
);
14410 // In any case, stop now.
14417 QualType type
= var
->getType();
14419 if (var
->hasAttr
<BlocksAttr
>())
14420 getCurFunction()->addByrefBlockVar(var
);
14422 Expr
*Init
= var
->getInit();
14423 bool GlobalStorage
= var
->hasGlobalStorage();
14424 bool IsGlobal
= GlobalStorage
&& !var
->isStaticLocal();
14425 QualType baseType
= Context
.getBaseElementType(type
);
14426 bool HasConstInit
= true;
14428 // Check whether the initializer is sufficiently constant.
14429 if (getLangOpts().CPlusPlus
&& !type
->isDependentType() && Init
&&
14430 !Init
->isValueDependent() &&
14431 (GlobalStorage
|| var
->isConstexpr() ||
14432 var
->mightBeUsableInConstantExpressions(Context
))) {
14433 // If this variable might have a constant initializer or might be usable in
14434 // constant expressions, check whether or not it actually is now. We can't
14435 // do this lazily, because the result might depend on things that change
14436 // later, such as which constexpr functions happen to be defined.
14437 SmallVector
<PartialDiagnosticAt
, 8> Notes
;
14438 if (!getLangOpts().CPlusPlus11
) {
14439 // Prior to C++11, in contexts where a constant initializer is required,
14440 // the set of valid constant initializers is described by syntactic rules
14441 // in [expr.const]p2-6.
14442 // FIXME: Stricter checking for these rules would be useful for constinit /
14443 // -Wglobal-constructors.
14444 HasConstInit
= checkConstInit();
14446 // Compute and cache the constant value, and remember that we have a
14447 // constant initializer.
14448 if (HasConstInit
) {
14449 (void)var
->checkForConstantInitialization(Notes
);
14451 } else if (CacheCulprit
) {
14452 Notes
.emplace_back(CacheCulprit
->getExprLoc(),
14453 PDiag(diag::note_invalid_subexpr_in_const_expr
));
14454 Notes
.back().second
<< CacheCulprit
->getSourceRange();
14457 // Evaluate the initializer to see if it's a constant initializer.
14458 HasConstInit
= var
->checkForConstantInitialization(Notes
);
14461 if (HasConstInit
) {
14462 // FIXME: Consider replacing the initializer with a ConstantExpr.
14463 } else if (var
->isConstexpr()) {
14464 SourceLocation DiagLoc
= var
->getLocation();
14465 // If the note doesn't add any useful information other than a source
14466 // location, fold it into the primary diagnostic.
14467 if (Notes
.size() == 1 && Notes
[0].second
.getDiagID() ==
14468 diag::note_invalid_subexpr_in_const_expr
) {
14469 DiagLoc
= Notes
[0].first
;
14472 Diag(DiagLoc
, diag::err_constexpr_var_requires_const_init
)
14473 << var
<< Init
->getSourceRange();
14474 for (unsigned I
= 0, N
= Notes
.size(); I
!= N
; ++I
)
14475 Diag(Notes
[I
].first
, Notes
[I
].second
);
14476 } else if (GlobalStorage
&& var
->hasAttr
<ConstInitAttr
>()) {
14477 auto *Attr
= var
->getAttr
<ConstInitAttr
>();
14478 Diag(var
->getLocation(), diag::err_require_constant_init_failed
)
14479 << Init
->getSourceRange();
14480 Diag(Attr
->getLocation(), diag::note_declared_required_constant_init_here
)
14481 << Attr
->getRange() << Attr
->isConstinit();
14482 for (auto &it
: Notes
)
14483 Diag(it
.first
, it
.second
);
14484 } else if (IsGlobal
&&
14485 !getDiagnostics().isIgnored(diag::warn_global_constructor
,
14486 var
->getLocation())) {
14487 // Warn about globals which don't have a constant initializer. Don't
14488 // warn about globals with a non-trivial destructor because we already
14489 // warned about them.
14490 CXXRecordDecl
*RD
= baseType
->getAsCXXRecordDecl();
14491 if (!(RD
&& !RD
->hasTrivialDestructor())) {
14492 // checkConstInit() here permits trivial default initialization even in
14493 // C++11 onwards, where such an initializer is not a constant initializer
14494 // but nonetheless doesn't require a global constructor.
14495 if (!checkConstInit())
14496 Diag(var
->getLocation(), diag::warn_global_constructor
)
14497 << Init
->getSourceRange();
14502 // Apply section attributes and pragmas to global variables.
14503 if (GlobalStorage
&& var
->isThisDeclarationADefinition() &&
14504 !inTemplateInstantiation()) {
14505 PragmaStack
<StringLiteral
*> *Stack
= nullptr;
14506 int SectionFlags
= ASTContext::PSF_Read
;
14508 Context
.getTargetInfo().getTriple().isWindowsMSVCEnvironment();
14509 std::optional
<QualType::NonConstantStorageReason
> Reason
;
14510 if (HasConstInit
&&
14511 !(Reason
= var
->getType().isNonConstantStorage(Context
, true, false))) {
14512 Stack
= &ConstSegStack
;
14514 SectionFlags
|= ASTContext::PSF_Write
;
14515 Stack
= var
->hasInit() && HasConstInit
? &DataSegStack
: &BSSSegStack
;
14517 if (const SectionAttr
*SA
= var
->getAttr
<SectionAttr
>()) {
14518 if (SA
->getSyntax() == AttributeCommonInfo::AS_Declspec
)
14519 SectionFlags
|= ASTContext::PSF_Implicit
;
14520 UnifySection(SA
->getName(), SectionFlags
, var
);
14521 } else if (Stack
->CurrentValue
) {
14522 if (Stack
!= &ConstSegStack
&& MSVCEnv
&&
14523 ConstSegStack
.CurrentValue
!= ConstSegStack
.DefaultValue
&&
14524 var
->getType().isConstQualified()) {
14525 assert((!Reason
|| Reason
!= QualType::NonConstantStorageReason::
14526 NonConstNonReferenceType
) &&
14527 "This case should've already been handled elsewhere");
14528 Diag(var
->getLocation(), diag::warn_section_msvc_compat
)
14529 << var
<< ConstSegStack
.CurrentValue
<< (int)(!HasConstInit
14530 ? QualType::NonConstantStorageReason::NonTrivialCtor
14533 SectionFlags
|= ASTContext::PSF_Implicit
;
14534 auto SectionName
= Stack
->CurrentValue
->getString();
14535 var
->addAttr(SectionAttr::CreateImplicit(Context
, SectionName
,
14536 Stack
->CurrentPragmaLocation
,
14537 SectionAttr::Declspec_allocate
));
14538 if (UnifySection(SectionName
, SectionFlags
, var
))
14539 var
->dropAttr
<SectionAttr
>();
14542 // Apply the init_seg attribute if this has an initializer. If the
14543 // initializer turns out to not be dynamic, we'll end up ignoring this
14545 if (CurInitSeg
&& var
->getInit())
14546 var
->addAttr(InitSegAttr::CreateImplicit(Context
, CurInitSeg
->getString(),
14550 // All the following checks are C++ only.
14551 if (!getLangOpts().CPlusPlus
) {
14552 // If this variable must be emitted, add it as an initializer for the
14554 if (Context
.DeclMustBeEmitted(var
) && !ModuleScopes
.empty())
14555 Context
.addModuleInitializer(ModuleScopes
.back().Module
, var
);
14559 // Require the destructor.
14560 if (!type
->isDependentType())
14561 if (const RecordType
*recordType
= baseType
->getAs
<RecordType
>())
14562 FinalizeVarWithDestructor(var
, recordType
);
14564 // If this variable must be emitted, add it as an initializer for the current
14566 if (Context
.DeclMustBeEmitted(var
) && !ModuleScopes
.empty())
14567 Context
.addModuleInitializer(ModuleScopes
.back().Module
, var
);
14569 // Build the bindings if this is a structured binding declaration.
14570 if (auto *DD
= dyn_cast
<DecompositionDecl
>(var
))
14571 CheckCompleteDecompositionDeclaration(DD
);
14574 /// Check if VD needs to be dllexport/dllimport due to being in a
14575 /// dllexport/import function.
14576 void Sema::CheckStaticLocalForDllExport(VarDecl
*VD
) {
14577 assert(VD
->isStaticLocal());
14579 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(VD
->getParentFunctionOrMethod());
14581 // Find outermost function when VD is in lambda function.
14582 while (FD
&& !getDLLAttr(FD
) &&
14583 !FD
->hasAttr
<DLLExportStaticLocalAttr
>() &&
14584 !FD
->hasAttr
<DLLImportStaticLocalAttr
>()) {
14585 FD
= dyn_cast_or_null
<FunctionDecl
>(FD
->getParentFunctionOrMethod());
14591 // Static locals inherit dll attributes from their function.
14592 if (Attr
*A
= getDLLAttr(FD
)) {
14593 auto *NewAttr
= cast
<InheritableAttr
>(A
->clone(getASTContext()));
14594 NewAttr
->setInherited(true);
14595 VD
->addAttr(NewAttr
);
14596 } else if (Attr
*A
= FD
->getAttr
<DLLExportStaticLocalAttr
>()) {
14597 auto *NewAttr
= DLLExportAttr::CreateImplicit(getASTContext(), *A
);
14598 NewAttr
->setInherited(true);
14599 VD
->addAttr(NewAttr
);
14601 // Export this function to enforce exporting this static variable even
14602 // if it is not used in this compilation unit.
14603 if (!FD
->hasAttr
<DLLExportAttr
>())
14604 FD
->addAttr(NewAttr
);
14606 } else if (Attr
*A
= FD
->getAttr
<DLLImportStaticLocalAttr
>()) {
14607 auto *NewAttr
= DLLImportAttr::CreateImplicit(getASTContext(), *A
);
14608 NewAttr
->setInherited(true);
14609 VD
->addAttr(NewAttr
);
14613 void Sema::CheckThreadLocalForLargeAlignment(VarDecl
*VD
) {
14614 assert(VD
->getTLSKind());
14616 // Perform TLS alignment check here after attributes attached to the variable
14617 // which may affect the alignment have been processed. Only perform the check
14618 // if the target has a maximum TLS alignment (zero means no constraints).
14619 if (unsigned MaxAlign
= Context
.getTargetInfo().getMaxTLSAlign()) {
14620 // Protect the check so that it's not performed on dependent types and
14621 // dependent alignments (we can't determine the alignment in that case).
14622 if (!VD
->hasDependentAlignment()) {
14623 CharUnits MaxAlignChars
= Context
.toCharUnitsFromBits(MaxAlign
);
14624 if (Context
.getDeclAlign(VD
) > MaxAlignChars
) {
14625 Diag(VD
->getLocation(), diag::err_tls_var_aligned_over_maximum
)
14626 << (unsigned)Context
.getDeclAlign(VD
).getQuantity() << VD
14627 << (unsigned)MaxAlignChars
.getQuantity();
14633 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
14634 /// any semantic actions necessary after any initializer has been attached.
14635 void Sema::FinalizeDeclaration(Decl
*ThisDecl
) {
14636 // Note that we are no longer parsing the initializer for this declaration.
14637 ParsingInitForAutoVars
.erase(ThisDecl
);
14639 VarDecl
*VD
= dyn_cast_or_null
<VarDecl
>(ThisDecl
);
14643 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
14644 if (VD
->hasGlobalStorage() && VD
->isThisDeclarationADefinition() &&
14645 !inTemplateInstantiation() && !VD
->hasAttr
<SectionAttr
>()) {
14646 if (PragmaClangBSSSection
.Valid
)
14647 VD
->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
14648 Context
, PragmaClangBSSSection
.SectionName
,
14649 PragmaClangBSSSection
.PragmaLocation
));
14650 if (PragmaClangDataSection
.Valid
)
14651 VD
->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
14652 Context
, PragmaClangDataSection
.SectionName
,
14653 PragmaClangDataSection
.PragmaLocation
));
14654 if (PragmaClangRodataSection
.Valid
)
14655 VD
->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
14656 Context
, PragmaClangRodataSection
.SectionName
,
14657 PragmaClangRodataSection
.PragmaLocation
));
14658 if (PragmaClangRelroSection
.Valid
)
14659 VD
->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
14660 Context
, PragmaClangRelroSection
.SectionName
,
14661 PragmaClangRelroSection
.PragmaLocation
));
14664 if (auto *DD
= dyn_cast
<DecompositionDecl
>(ThisDecl
)) {
14665 for (auto *BD
: DD
->bindings()) {
14666 FinalizeDeclaration(BD
);
14670 checkAttributesAfterMerging(*this, *VD
);
14672 if (VD
->isStaticLocal())
14673 CheckStaticLocalForDllExport(VD
);
14675 if (VD
->getTLSKind())
14676 CheckThreadLocalForLargeAlignment(VD
);
14678 // Perform check for initializers of device-side global variables.
14679 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
14680 // 7.5). We must also apply the same checks to all __shared__
14681 // variables whether they are local or not. CUDA also allows
14682 // constant initializers for __constant__ and __device__ variables.
14683 if (getLangOpts().CUDA
)
14684 checkAllowedCUDAInitializer(VD
);
14686 // Grab the dllimport or dllexport attribute off of the VarDecl.
14687 const InheritableAttr
*DLLAttr
= getDLLAttr(VD
);
14689 // Imported static data members cannot be defined out-of-line.
14690 if (const auto *IA
= dyn_cast_or_null
<DLLImportAttr
>(DLLAttr
)) {
14691 if (VD
->isStaticDataMember() && VD
->isOutOfLine() &&
14692 VD
->isThisDeclarationADefinition()) {
14693 // We allow definitions of dllimport class template static data members
14695 CXXRecordDecl
*Context
=
14696 cast
<CXXRecordDecl
>(VD
->getFirstDecl()->getDeclContext());
14697 bool IsClassTemplateMember
=
14698 isa
<ClassTemplatePartialSpecializationDecl
>(Context
) ||
14699 Context
->getDescribedClassTemplate();
14701 Diag(VD
->getLocation(),
14702 IsClassTemplateMember
14703 ? diag::warn_attribute_dllimport_static_field_definition
14704 : diag::err_attribute_dllimport_static_field_definition
);
14705 Diag(IA
->getLocation(), diag::note_attribute
);
14706 if (!IsClassTemplateMember
)
14707 VD
->setInvalidDecl();
14711 // dllimport/dllexport variables cannot be thread local, their TLS index
14712 // isn't exported with the variable.
14713 if (DLLAttr
&& VD
->getTLSKind()) {
14714 auto *F
= dyn_cast_or_null
<FunctionDecl
>(VD
->getParentFunctionOrMethod());
14715 if (F
&& getDLLAttr(F
)) {
14716 assert(VD
->isStaticLocal());
14717 // But if this is a static local in a dlimport/dllexport function, the
14718 // function will never be inlined, which means the var would never be
14719 // imported, so having it marked import/export is safe.
14721 Diag(VD
->getLocation(), diag::err_attribute_dll_thread_local
) << VD
14723 VD
->setInvalidDecl();
14727 if (UsedAttr
*Attr
= VD
->getAttr
<UsedAttr
>()) {
14728 if (!Attr
->isInherited() && !VD
->isThisDeclarationADefinition()) {
14729 Diag(Attr
->getLocation(), diag::warn_attribute_ignored_on_non_definition
)
14731 VD
->dropAttr
<UsedAttr
>();
14734 if (RetainAttr
*Attr
= VD
->getAttr
<RetainAttr
>()) {
14735 if (!Attr
->isInherited() && !VD
->isThisDeclarationADefinition()) {
14736 Diag(Attr
->getLocation(), diag::warn_attribute_ignored_on_non_definition
)
14738 VD
->dropAttr
<RetainAttr
>();
14742 const DeclContext
*DC
= VD
->getDeclContext();
14743 // If there's a #pragma GCC visibility in scope, and this isn't a class
14744 // member, set the visibility of this variable.
14745 if (DC
->getRedeclContext()->isFileContext() && VD
->isExternallyVisible())
14746 AddPushedVisibilityAttribute(VD
);
14748 // FIXME: Warn on unused var template partial specializations.
14749 if (VD
->isFileVarDecl() && !isa
<VarTemplatePartialSpecializationDecl
>(VD
))
14750 MarkUnusedFileScopedDecl(VD
);
14752 // Now we have parsed the initializer and can update the table of magic
14754 if (!VD
->hasAttr
<TypeTagForDatatypeAttr
>() ||
14755 !VD
->getType()->isIntegralOrEnumerationType())
14758 for (const auto *I
: ThisDecl
->specific_attrs
<TypeTagForDatatypeAttr
>()) {
14759 const Expr
*MagicValueExpr
= VD
->getInit();
14760 if (!MagicValueExpr
) {
14763 std::optional
<llvm::APSInt
> MagicValueInt
;
14764 if (!(MagicValueInt
= MagicValueExpr
->getIntegerConstantExpr(Context
))) {
14765 Diag(I
->getRange().getBegin(),
14766 diag::err_type_tag_for_datatype_not_ice
)
14767 << LangOpts
.CPlusPlus
<< MagicValueExpr
->getSourceRange();
14770 if (MagicValueInt
->getActiveBits() > 64) {
14771 Diag(I
->getRange().getBegin(),
14772 diag::err_type_tag_for_datatype_too_large
)
14773 << LangOpts
.CPlusPlus
<< MagicValueExpr
->getSourceRange();
14776 uint64_t MagicValue
= MagicValueInt
->getZExtValue();
14777 RegisterTypeTagForDatatype(I
->getArgumentKind(),
14779 I
->getMatchingCType(),
14780 I
->getLayoutCompatible(),
14781 I
->getMustBeNull());
14785 static bool hasDeducedAuto(DeclaratorDecl
*DD
) {
14786 auto *VD
= dyn_cast
<VarDecl
>(DD
);
14787 return VD
&& !VD
->getType()->hasAutoForTrailingReturnType();
14790 Sema::DeclGroupPtrTy
Sema::FinalizeDeclaratorGroup(Scope
*S
, const DeclSpec
&DS
,
14791 ArrayRef
<Decl
*> Group
) {
14792 SmallVector
<Decl
*, 8> Decls
;
14794 if (DS
.isTypeSpecOwned())
14795 Decls
.push_back(DS
.getRepAsDecl());
14797 DeclaratorDecl
*FirstDeclaratorInGroup
= nullptr;
14798 DecompositionDecl
*FirstDecompDeclaratorInGroup
= nullptr;
14799 bool DiagnosedMultipleDecomps
= false;
14800 DeclaratorDecl
*FirstNonDeducedAutoInGroup
= nullptr;
14801 bool DiagnosedNonDeducedAuto
= false;
14803 for (unsigned i
= 0, e
= Group
.size(); i
!= e
; ++i
) {
14804 if (Decl
*D
= Group
[i
]) {
14805 // Check if the Decl has been declared in '#pragma omp declare target'
14806 // directive and has static storage duration.
14807 if (auto *VD
= dyn_cast
<VarDecl
>(D
);
14808 LangOpts
.OpenMP
&& VD
&& VD
->hasAttr
<OMPDeclareTargetDeclAttr
>() &&
14809 VD
->hasGlobalStorage())
14810 ActOnOpenMPDeclareTargetInitializer(D
);
14811 // For declarators, there are some additional syntactic-ish checks we need
14813 if (auto *DD
= dyn_cast
<DeclaratorDecl
>(D
)) {
14814 if (!FirstDeclaratorInGroup
)
14815 FirstDeclaratorInGroup
= DD
;
14816 if (!FirstDecompDeclaratorInGroup
)
14817 FirstDecompDeclaratorInGroup
= dyn_cast
<DecompositionDecl
>(D
);
14818 if (!FirstNonDeducedAutoInGroup
&& DS
.hasAutoTypeSpec() &&
14819 !hasDeducedAuto(DD
))
14820 FirstNonDeducedAutoInGroup
= DD
;
14822 if (FirstDeclaratorInGroup
!= DD
) {
14823 // A decomposition declaration cannot be combined with any other
14824 // declaration in the same group.
14825 if (FirstDecompDeclaratorInGroup
&& !DiagnosedMultipleDecomps
) {
14826 Diag(FirstDecompDeclaratorInGroup
->getLocation(),
14827 diag::err_decomp_decl_not_alone
)
14828 << FirstDeclaratorInGroup
->getSourceRange()
14829 << DD
->getSourceRange();
14830 DiagnosedMultipleDecomps
= true;
14833 // A declarator that uses 'auto' in any way other than to declare a
14834 // variable with a deduced type cannot be combined with any other
14835 // declarator in the same group.
14836 if (FirstNonDeducedAutoInGroup
&& !DiagnosedNonDeducedAuto
) {
14837 Diag(FirstNonDeducedAutoInGroup
->getLocation(),
14838 diag::err_auto_non_deduced_not_alone
)
14839 << FirstNonDeducedAutoInGroup
->getType()
14840 ->hasAutoForTrailingReturnType()
14841 << FirstDeclaratorInGroup
->getSourceRange()
14842 << DD
->getSourceRange();
14843 DiagnosedNonDeducedAuto
= true;
14848 Decls
.push_back(D
);
14852 if (DeclSpec::isDeclRep(DS
.getTypeSpecType())) {
14853 if (TagDecl
*Tag
= dyn_cast_or_null
<TagDecl
>(DS
.getRepAsDecl())) {
14854 handleTagNumbering(Tag
, S
);
14855 if (FirstDeclaratorInGroup
&& !Tag
->hasNameForLinkage() &&
14856 getLangOpts().CPlusPlus
)
14857 Context
.addDeclaratorForUnnamedTagDecl(Tag
, FirstDeclaratorInGroup
);
14861 return BuildDeclaratorGroup(Decls
);
14864 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
14865 /// group, performing any necessary semantic checking.
14866 Sema::DeclGroupPtrTy
14867 Sema::BuildDeclaratorGroup(MutableArrayRef
<Decl
*> Group
) {
14868 // C++14 [dcl.spec.auto]p7: (DR1347)
14869 // If the type that replaces the placeholder type is not the same in each
14870 // deduction, the program is ill-formed.
14871 if (Group
.size() > 1) {
14873 VarDecl
*DeducedDecl
= nullptr;
14874 for (unsigned i
= 0, e
= Group
.size(); i
!= e
; ++i
) {
14875 VarDecl
*D
= dyn_cast
<VarDecl
>(Group
[i
]);
14876 if (!D
|| D
->isInvalidDecl())
14878 DeducedType
*DT
= D
->getType()->getContainedDeducedType();
14879 if (!DT
|| DT
->getDeducedType().isNull())
14881 if (Deduced
.isNull()) {
14882 Deduced
= DT
->getDeducedType();
14884 } else if (!Context
.hasSameType(DT
->getDeducedType(), Deduced
)) {
14885 auto *AT
= dyn_cast
<AutoType
>(DT
);
14886 auto Dia
= Diag(D
->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14887 diag::err_auto_different_deductions
)
14888 << (AT
? (unsigned)AT
->getKeyword() : 3) << Deduced
14889 << DeducedDecl
->getDeclName() << DT
->getDeducedType()
14890 << D
->getDeclName();
14891 if (DeducedDecl
->hasInit())
14892 Dia
<< DeducedDecl
->getInit()->getSourceRange();
14894 Dia
<< D
->getInit()->getSourceRange();
14895 D
->setInvalidDecl();
14901 ActOnDocumentableDecls(Group
);
14903 return DeclGroupPtrTy::make(
14904 DeclGroupRef::Create(Context
, Group
.data(), Group
.size()));
14907 void Sema::ActOnDocumentableDecl(Decl
*D
) {
14908 ActOnDocumentableDecls(D
);
14911 void Sema::ActOnDocumentableDecls(ArrayRef
<Decl
*> Group
) {
14912 // Don't parse the comment if Doxygen diagnostics are ignored.
14913 if (Group
.empty() || !Group
[0])
14916 if (Diags
.isIgnored(diag::warn_doc_param_not_found
,
14917 Group
[0]->getLocation()) &&
14918 Diags
.isIgnored(diag::warn_unknown_comment_command_name
,
14919 Group
[0]->getLocation()))
14922 if (Group
.size() >= 2) {
14923 // This is a decl group. Normally it will contain only declarations
14924 // produced from declarator list. But in case we have any definitions or
14925 // additional declaration references:
14926 // 'typedef struct S {} S;'
14927 // 'typedef struct S *S;'
14929 // FinalizeDeclaratorGroup adds these as separate declarations.
14930 Decl
*MaybeTagDecl
= Group
[0];
14931 if (MaybeTagDecl
&& isa
<TagDecl
>(MaybeTagDecl
)) {
14932 Group
= Group
.slice(1);
14936 // FIMXE: We assume every Decl in the group is in the same file.
14937 // This is false when preprocessor constructs the group from decls in
14938 // different files (e. g. macros or #include).
14939 Context
.attachCommentsToJustParsedDecls(Group
, &getPreprocessor());
14942 /// Common checks for a parameter-declaration that should apply to both function
14943 /// parameters and non-type template parameters.
14944 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope
*S
, Declarator
&D
) {
14945 // Check that there are no default arguments inside the type of this
14947 if (getLangOpts().CPlusPlus
)
14948 CheckExtraCXXDefaultArguments(D
);
14950 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
14951 if (D
.getCXXScopeSpec().isSet()) {
14952 Diag(D
.getIdentifierLoc(), diag::err_qualified_param_declarator
)
14953 << D
.getCXXScopeSpec().getRange();
14956 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
14957 // simple identifier except [...irrelevant cases...].
14958 switch (D
.getName().getKind()) {
14959 case UnqualifiedIdKind::IK_Identifier
:
14962 case UnqualifiedIdKind::IK_OperatorFunctionId
:
14963 case UnqualifiedIdKind::IK_ConversionFunctionId
:
14964 case UnqualifiedIdKind::IK_LiteralOperatorId
:
14965 case UnqualifiedIdKind::IK_ConstructorName
:
14966 case UnqualifiedIdKind::IK_DestructorName
:
14967 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
14968 case UnqualifiedIdKind::IK_DeductionGuideName
:
14969 Diag(D
.getIdentifierLoc(), diag::err_bad_parameter_name
)
14970 << GetNameForDeclarator(D
).getName();
14973 case UnqualifiedIdKind::IK_TemplateId
:
14974 case UnqualifiedIdKind::IK_ConstructorTemplateId
:
14975 // GetNameForDeclarator would not produce a useful name in this case.
14976 Diag(D
.getIdentifierLoc(), diag::err_bad_parameter_name_template_id
);
14981 static void CheckExplicitObjectParameter(Sema
&S
, ParmVarDecl
*P
,
14982 SourceLocation ExplicitThisLoc
) {
14983 if (!ExplicitThisLoc
.isValid())
14985 assert(S
.getLangOpts().CPlusPlus
&&
14986 "explicit parameter in non-cplusplus mode");
14987 if (!S
.getLangOpts().CPlusPlus23
)
14988 S
.Diag(ExplicitThisLoc
, diag::err_cxx20_deducing_this
)
14989 << P
->getSourceRange();
14991 // C++2b [dcl.fct/7] An explicit object parameter shall not be a function
14993 if (P
->isParameterPack()) {
14994 S
.Diag(P
->getBeginLoc(), diag::err_explicit_object_parameter_pack
)
14995 << P
->getSourceRange();
14998 P
->setExplicitObjectParameterLoc(ExplicitThisLoc
);
14999 if (LambdaScopeInfo
*LSI
= S
.getCurLambda())
15000 LSI
->ExplicitObjectParameter
= P
;
15003 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
15004 /// to introduce parameters into function prototype scope.
15005 Decl
*Sema::ActOnParamDeclarator(Scope
*S
, Declarator
&D
,
15006 SourceLocation ExplicitThisLoc
) {
15007 const DeclSpec
&DS
= D
.getDeclSpec();
15009 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
15011 // C++03 [dcl.stc]p2 also permits 'auto'.
15012 StorageClass SC
= SC_None
;
15013 if (DS
.getStorageClassSpec() == DeclSpec::SCS_register
) {
15015 // In C++11, the 'register' storage class specifier is deprecated.
15016 // In C++17, it is not allowed, but we tolerate it as an extension.
15017 if (getLangOpts().CPlusPlus11
) {
15018 Diag(DS
.getStorageClassSpecLoc(),
15019 getLangOpts().CPlusPlus17
? diag::ext_register_storage_class
15020 : diag::warn_deprecated_register
)
15021 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
15023 } else if (getLangOpts().CPlusPlus
&&
15024 DS
.getStorageClassSpec() == DeclSpec::SCS_auto
) {
15026 } else if (DS
.getStorageClassSpec() != DeclSpec::SCS_unspecified
) {
15027 Diag(DS
.getStorageClassSpecLoc(),
15028 diag::err_invalid_storage_class_in_func_decl
);
15029 D
.getMutableDeclSpec().ClearStorageClassSpecs();
15032 if (DeclSpec::TSCS TSCS
= DS
.getThreadStorageClassSpec())
15033 Diag(DS
.getThreadStorageClassSpecLoc(), diag::err_invalid_thread
)
15034 << DeclSpec::getSpecifierName(TSCS
);
15035 if (DS
.isInlineSpecified())
15036 Diag(DS
.getInlineSpecLoc(), diag::err_inline_non_function
)
15037 << getLangOpts().CPlusPlus17
;
15038 if (DS
.hasConstexprSpecifier())
15039 Diag(DS
.getConstexprSpecLoc(), diag::err_invalid_constexpr
)
15040 << 0 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
15042 DiagnoseFunctionSpecifiers(DS
);
15044 CheckFunctionOrTemplateParamDeclarator(S
, D
);
15046 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
15047 QualType parmDeclType
= TInfo
->getType();
15049 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
15050 IdentifierInfo
*II
= D
.getIdentifier();
15052 LookupResult
R(*this, II
, D
.getIdentifierLoc(), LookupOrdinaryName
,
15053 ForVisibleRedeclaration
);
15056 NamedDecl
*PrevDecl
= *R
.begin();
15057 if (R
.isSingleResult() && PrevDecl
->isTemplateParameter()) {
15058 // Maybe we will complain about the shadowed template parameter.
15059 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), PrevDecl
);
15060 // Just pretend that we didn't see the previous declaration.
15061 PrevDecl
= nullptr;
15063 if (PrevDecl
&& S
->isDeclScope(PrevDecl
)) {
15064 Diag(D
.getIdentifierLoc(), diag::err_param_redefinition
) << II
;
15065 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
15066 // Recover by removing the name
15068 D
.SetIdentifier(nullptr, D
.getIdentifierLoc());
15069 D
.setInvalidType(true);
15074 // Temporarily put parameter variables in the translation unit, not
15075 // the enclosing context. This prevents them from accidentally
15076 // looking like class members in C++.
15078 CheckParameter(Context
.getTranslationUnitDecl(), D
.getBeginLoc(),
15079 D
.getIdentifierLoc(), II
, parmDeclType
, TInfo
, SC
);
15081 if (D
.isInvalidType())
15082 New
->setInvalidDecl();
15084 CheckExplicitObjectParameter(*this, New
, ExplicitThisLoc
);
15086 assert(S
->isFunctionPrototypeScope());
15087 assert(S
->getFunctionPrototypeDepth() >= 1);
15088 New
->setScopeInfo(S
->getFunctionPrototypeDepth() - 1,
15089 S
->getNextFunctionPrototypeIndex());
15091 // Add the parameter declaration into this scope.
15094 IdResolver
.AddDecl(New
);
15096 ProcessDeclAttributes(S
, New
, D
);
15098 if (D
.getDeclSpec().isModulePrivateSpecified())
15099 Diag(New
->getLocation(), diag::err_module_private_local
)
15100 << 1 << New
<< SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
15101 << FixItHint::CreateRemoval(D
.getDeclSpec().getModulePrivateSpecLoc());
15103 if (New
->hasAttr
<BlocksAttr
>()) {
15104 Diag(New
->getLocation(), diag::err_block_on_nonlocal
);
15107 if (getLangOpts().OpenCL
)
15108 deduceOpenCLAddressSpace(New
);
15113 /// Synthesizes a variable for a parameter arising from a
15115 ParmVarDecl
*Sema::BuildParmVarDeclForTypedef(DeclContext
*DC
,
15116 SourceLocation Loc
,
15118 /* FIXME: setting StartLoc == Loc.
15119 Would it be worth to modify callers so as to provide proper source
15120 location for the unnamed parameters, embedding the parameter's type? */
15121 ParmVarDecl
*Param
= ParmVarDecl::Create(Context
, DC
, Loc
, Loc
, nullptr,
15122 T
, Context
.getTrivialTypeSourceInfo(T
, Loc
),
15124 Param
->setImplicit();
15128 void Sema::DiagnoseUnusedParameters(ArrayRef
<ParmVarDecl
*> Parameters
) {
15129 // Don't diagnose unused-parameter errors in template instantiations; we
15130 // will already have done so in the template itself.
15131 if (inTemplateInstantiation())
15134 for (const ParmVarDecl
*Parameter
: Parameters
) {
15135 if (!Parameter
->isReferenced() && Parameter
->getDeclName() &&
15136 !Parameter
->hasAttr
<UnusedAttr
>() &&
15137 !Parameter
->getIdentifier()->isPlaceholder()) {
15138 Diag(Parameter
->getLocation(), diag::warn_unused_parameter
)
15139 << Parameter
->getDeclName();
15144 void Sema::DiagnoseSizeOfParametersAndReturnValue(
15145 ArrayRef
<ParmVarDecl
*> Parameters
, QualType ReturnTy
, NamedDecl
*D
) {
15146 if (LangOpts
.NumLargeByValueCopy
== 0) // No check.
15149 // Warn if the return value is pass-by-value and larger than the specified
15151 if (!ReturnTy
->isDependentType() && ReturnTy
.isPODType(Context
)) {
15152 unsigned Size
= Context
.getTypeSizeInChars(ReturnTy
).getQuantity();
15153 if (Size
> LangOpts
.NumLargeByValueCopy
)
15154 Diag(D
->getLocation(), diag::warn_return_value_size
) << D
<< Size
;
15157 // Warn if any parameter is pass-by-value and larger than the specified
15159 for (const ParmVarDecl
*Parameter
: Parameters
) {
15160 QualType T
= Parameter
->getType();
15161 if (T
->isDependentType() || !T
.isPODType(Context
))
15163 unsigned Size
= Context
.getTypeSizeInChars(T
).getQuantity();
15164 if (Size
> LangOpts
.NumLargeByValueCopy
)
15165 Diag(Parameter
->getLocation(), diag::warn_parameter_size
)
15166 << Parameter
<< Size
;
15170 ParmVarDecl
*Sema::CheckParameter(DeclContext
*DC
, SourceLocation StartLoc
,
15171 SourceLocation NameLoc
, IdentifierInfo
*Name
,
15172 QualType T
, TypeSourceInfo
*TSInfo
,
15174 // In ARC, infer a lifetime qualifier for appropriate parameter types.
15175 if (getLangOpts().ObjCAutoRefCount
&&
15176 T
.getObjCLifetime() == Qualifiers::OCL_None
&&
15177 T
->isObjCLifetimeType()) {
15179 Qualifiers::ObjCLifetime lifetime
;
15181 // Special cases for arrays:
15182 // - if it's const, use __unsafe_unretained
15183 // - otherwise, it's an error
15184 if (T
->isArrayType()) {
15185 if (!T
.isConstQualified()) {
15186 if (DelayedDiagnostics
.shouldDelayDiagnostics())
15187 DelayedDiagnostics
.add(
15188 sema::DelayedDiagnostic::makeForbiddenType(
15189 NameLoc
, diag::err_arc_array_param_no_ownership
, T
, false));
15191 Diag(NameLoc
, diag::err_arc_array_param_no_ownership
)
15192 << TSInfo
->getTypeLoc().getSourceRange();
15194 lifetime
= Qualifiers::OCL_ExplicitNone
;
15196 lifetime
= T
->getObjCARCImplicitLifetime();
15198 T
= Context
.getLifetimeQualifiedType(T
, lifetime
);
15201 ParmVarDecl
*New
= ParmVarDecl::Create(Context
, DC
, StartLoc
, NameLoc
, Name
,
15202 Context
.getAdjustedParameterType(T
),
15203 TSInfo
, SC
, nullptr);
15205 // Make a note if we created a new pack in the scope of a lambda, so that
15206 // we know that references to that pack must also be expanded within the
15208 if (New
->isParameterPack())
15209 if (auto *LSI
= getEnclosingLambda())
15210 LSI
->LocalPacks
.push_back(New
);
15212 if (New
->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
15213 New
->getType().hasNonTrivialToPrimitiveCopyCUnion())
15214 checkNonTrivialCUnion(New
->getType(), New
->getLocation(),
15215 NTCUC_FunctionParam
, NTCUK_Destruct
|NTCUK_Copy
);
15217 // Parameter declarators cannot be interface types. All ObjC objects are
15218 // passed by reference.
15219 if (T
->isObjCObjectType()) {
15220 SourceLocation TypeEndLoc
=
15221 getLocForEndOfToken(TSInfo
->getTypeLoc().getEndLoc());
15223 diag::err_object_cannot_be_passed_returned_by_value
) << 1 << T
15224 << FixItHint::CreateInsertion(TypeEndLoc
, "*");
15225 T
= Context
.getObjCObjectPointerType(T
);
15229 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
15230 // duration shall not be qualified by an address-space qualifier."
15231 // Since all parameters have automatic store duration, they can not have
15232 // an address space.
15233 if (T
.getAddressSpace() != LangAS::Default
&&
15234 // OpenCL allows function arguments declared to be an array of a type
15235 // to be qualified with an address space.
15236 !(getLangOpts().OpenCL
&&
15237 (T
->isArrayType() || T
.getAddressSpace() == LangAS::opencl_private
)) &&
15238 // WebAssembly allows reference types as parameters. Funcref in particular
15239 // lives in a different address space.
15240 !(T
->isFunctionPointerType() &&
15241 T
.getAddressSpace() == LangAS::wasm_funcref
)) {
15242 Diag(NameLoc
, diag::err_arg_with_address_space
);
15243 New
->setInvalidDecl();
15246 // PPC MMA non-pointer types are not allowed as function argument types.
15247 if (Context
.getTargetInfo().getTriple().isPPC64() &&
15248 CheckPPCMMAType(New
->getOriginalType(), New
->getLocation())) {
15249 New
->setInvalidDecl();
15255 void Sema::ActOnFinishKNRParamDeclarations(Scope
*S
, Declarator
&D
,
15256 SourceLocation LocAfterDecls
) {
15257 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getFunctionTypeInfo();
15259 // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
15260 // in the declaration list shall have at least one declarator, those
15261 // declarators shall only declare identifiers from the identifier list, and
15262 // every identifier in the identifier list shall be declared.
15264 // C89 3.7.1p5 "If a declarator includes an identifier list, only the
15265 // identifiers it names shall be declared in the declaration list."
15267 // This is why we only diagnose in C99 and later. Note, the other conditions
15268 // listed are checked elsewhere.
15269 if (!FTI
.hasPrototype
) {
15270 for (int i
= FTI
.NumParams
; i
!= 0; /* decrement in loop */) {
15272 if (FTI
.Params
[i
].Param
== nullptr) {
15273 if (getLangOpts().C99
) {
15274 SmallString
<256> Code
;
15275 llvm::raw_svector_ostream(Code
)
15276 << " int " << FTI
.Params
[i
].Ident
->getName() << ";\n";
15277 Diag(FTI
.Params
[i
].IdentLoc
, diag::ext_param_not_declared
)
15278 << FTI
.Params
[i
].Ident
15279 << FixItHint::CreateInsertion(LocAfterDecls
, Code
);
15282 // Implicitly declare the argument as type 'int' for lack of a better
15284 AttributeFactory attrs
;
15285 DeclSpec
DS(attrs
);
15286 const char* PrevSpec
; // unused
15287 unsigned DiagID
; // unused
15288 DS
.SetTypeSpecType(DeclSpec::TST_int
, FTI
.Params
[i
].IdentLoc
, PrevSpec
,
15289 DiagID
, Context
.getPrintingPolicy());
15290 // Use the identifier location for the type source range.
15291 DS
.SetRangeStart(FTI
.Params
[i
].IdentLoc
);
15292 DS
.SetRangeEnd(FTI
.Params
[i
].IdentLoc
);
15293 Declarator
ParamD(DS
, ParsedAttributesView::none(),
15294 DeclaratorContext::KNRTypeList
);
15295 ParamD
.SetIdentifier(FTI
.Params
[i
].Ident
, FTI
.Params
[i
].IdentLoc
);
15296 FTI
.Params
[i
].Param
= ActOnParamDeclarator(S
, ParamD
);
15303 Sema::ActOnStartOfFunctionDef(Scope
*FnBodyScope
, Declarator
&D
,
15304 MultiTemplateParamsArg TemplateParameterLists
,
15305 SkipBodyInfo
*SkipBody
, FnBodyKind BodyKind
) {
15306 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
15307 assert(D
.isFunctionDeclarator() && "Not a function declarator!");
15308 Scope
*ParentScope
= FnBodyScope
->getParent();
15310 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
15311 // we define a non-templated function definition, we will create a declaration
15312 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
15313 // The base function declaration will have the equivalent of an `omp declare
15314 // variant` annotation which specifies the mangled definition as a
15315 // specialization function under the OpenMP context defined as part of the
15316 // `omp begin declare variant`.
15317 SmallVector
<FunctionDecl
*, 4> Bases
;
15318 if (LangOpts
.OpenMP
&& isInOpenMPDeclareVariantScope())
15319 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
15320 ParentScope
, D
, TemplateParameterLists
, Bases
);
15322 D
.setFunctionDefinitionKind(FunctionDefinitionKind::Definition
);
15323 Decl
*DP
= HandleDeclarator(ParentScope
, D
, TemplateParameterLists
);
15324 Decl
*Dcl
= ActOnStartOfFunctionDef(FnBodyScope
, DP
, SkipBody
, BodyKind
);
15326 if (!Bases
.empty())
15327 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl
, Bases
);
15332 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl
*D
) {
15333 Consumer
.HandleInlineFunctionDefinition(D
);
15336 static bool FindPossiblePrototype(const FunctionDecl
*FD
,
15337 const FunctionDecl
*&PossiblePrototype
) {
15338 for (const FunctionDecl
*Prev
= FD
->getPreviousDecl(); Prev
;
15339 Prev
= Prev
->getPreviousDecl()) {
15340 // Ignore any declarations that occur in function or method
15341 // scope, because they aren't visible from the header.
15342 if (Prev
->getLexicalDeclContext()->isFunctionOrMethod())
15345 PossiblePrototype
= Prev
;
15346 return Prev
->getType()->isFunctionProtoType();
15352 ShouldWarnAboutMissingPrototype(const FunctionDecl
*FD
,
15353 const FunctionDecl
*&PossiblePrototype
) {
15354 // Don't warn about invalid declarations.
15355 if (FD
->isInvalidDecl())
15358 // Or declarations that aren't global.
15359 if (!FD
->isGlobal())
15362 // Don't warn about C++ member functions.
15363 if (isa
<CXXMethodDecl
>(FD
))
15366 // Don't warn about 'main'.
15367 if (isa
<TranslationUnitDecl
>(FD
->getDeclContext()->getRedeclContext()))
15368 if (IdentifierInfo
*II
= FD
->getIdentifier())
15369 if (II
->isStr("main") || II
->isStr("efi_main"))
15372 // Don't warn about inline functions.
15373 if (FD
->isInlined())
15376 // Don't warn about function templates.
15377 if (FD
->getDescribedFunctionTemplate())
15380 // Don't warn about function template specializations.
15381 if (FD
->isFunctionTemplateSpecialization())
15384 // Don't warn for OpenCL kernels.
15385 if (FD
->hasAttr
<OpenCLKernelAttr
>())
15388 // Don't warn on explicitly deleted functions.
15389 if (FD
->isDeleted())
15392 // Don't warn on implicitly local functions (such as having local-typed
15394 if (!FD
->isExternallyVisible())
15397 // If we were able to find a potential prototype, don't warn.
15398 if (FindPossiblePrototype(FD
, PossiblePrototype
))
15405 Sema::CheckForFunctionRedefinition(FunctionDecl
*FD
,
15406 const FunctionDecl
*EffectiveDefinition
,
15407 SkipBodyInfo
*SkipBody
) {
15408 const FunctionDecl
*Definition
= EffectiveDefinition
;
15410 !FD
->isDefined(Definition
, /*CheckForPendingFriendDefinition*/ true))
15413 if (Definition
->getFriendObjectKind() != Decl::FOK_None
) {
15414 if (FunctionDecl
*OrigDef
= Definition
->getInstantiatedFromMemberFunction()) {
15415 if (FunctionDecl
*OrigFD
= FD
->getInstantiatedFromMemberFunction()) {
15416 // A merged copy of the same function, instantiated as a member of
15417 // the same class, is OK.
15418 if (declaresSameEntity(OrigFD
, OrigDef
) &&
15419 declaresSameEntity(cast
<Decl
>(Definition
->getLexicalDeclContext()),
15420 cast
<Decl
>(FD
->getLexicalDeclContext())))
15426 if (canRedefineFunction(Definition
, getLangOpts()))
15429 // Don't emit an error when this is redefinition of a typo-corrected
15431 if (TypoCorrectedFunctionDefinitions
.count(Definition
))
15434 // If we don't have a visible definition of the function, and it's inline or
15435 // a template, skip the new definition.
15436 if (SkipBody
&& !hasVisibleDefinition(Definition
) &&
15437 (Definition
->getFormalLinkage() == Linkage::Internal
||
15438 Definition
->isInlined() || Definition
->getDescribedFunctionTemplate() ||
15439 Definition
->getNumTemplateParameterLists())) {
15440 SkipBody
->ShouldSkip
= true;
15441 SkipBody
->Previous
= const_cast<FunctionDecl
*>(Definition
);
15442 if (auto *TD
= Definition
->getDescribedFunctionTemplate())
15443 makeMergedDefinitionVisible(TD
);
15444 makeMergedDefinitionVisible(const_cast<FunctionDecl
*>(Definition
));
15448 if (getLangOpts().GNUMode
&& Definition
->isInlineSpecified() &&
15449 Definition
->getStorageClass() == SC_Extern
)
15450 Diag(FD
->getLocation(), diag::err_redefinition_extern_inline
)
15451 << FD
<< getLangOpts().CPlusPlus
;
15453 Diag(FD
->getLocation(), diag::err_redefinition
) << FD
;
15455 Diag(Definition
->getLocation(), diag::note_previous_definition
);
15456 FD
->setInvalidDecl();
15459 LambdaScopeInfo
*Sema::RebuildLambdaScopeInfo(CXXMethodDecl
*CallOperator
) {
15460 CXXRecordDecl
*LambdaClass
= CallOperator
->getParent();
15462 LambdaScopeInfo
*LSI
= PushLambdaScope();
15463 LSI
->CallOperator
= CallOperator
;
15464 LSI
->Lambda
= LambdaClass
;
15465 LSI
->ReturnType
= CallOperator
->getReturnType();
15466 // This function in calls in situation where the context of the call operator
15467 // is not entered, so we set AfterParameterList to false, so that
15468 // `tryCaptureVariable` finds explicit captures in the appropriate context.
15469 LSI
->AfterParameterList
= false;
15470 const LambdaCaptureDefault LCD
= LambdaClass
->getLambdaCaptureDefault();
15472 if (LCD
== LCD_None
)
15473 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_None
;
15474 else if (LCD
== LCD_ByCopy
)
15475 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_LambdaByval
;
15476 else if (LCD
== LCD_ByRef
)
15477 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_LambdaByref
;
15478 DeclarationNameInfo DNI
= CallOperator
->getNameInfo();
15480 LSI
->IntroducerRange
= DNI
.getCXXOperatorNameRange();
15481 LSI
->Mutable
= !CallOperator
->isConst();
15482 if (CallOperator
->isExplicitObjectMemberFunction())
15483 LSI
->ExplicitObjectParameter
= CallOperator
->getParamDecl(0);
15485 // Add the captures to the LSI so they can be noted as already
15486 // captured within tryCaptureVar.
15487 auto I
= LambdaClass
->field_begin();
15488 for (const auto &C
: LambdaClass
->captures()) {
15489 if (C
.capturesVariable()) {
15490 ValueDecl
*VD
= C
.getCapturedVar();
15491 if (VD
->isInitCapture())
15492 CurrentInstantiationScope
->InstantiatedLocal(VD
, VD
);
15493 const bool ByRef
= C
.getCaptureKind() == LCK_ByRef
;
15494 LSI
->addCapture(VD
, /*IsBlock*/false, ByRef
,
15495 /*RefersToEnclosingVariableOrCapture*/true, C
.getLocation(),
15496 /*EllipsisLoc*/C
.isPackExpansion()
15497 ? C
.getEllipsisLoc() : SourceLocation(),
15498 I
->getType(), /*Invalid*/false);
15500 } else if (C
.capturesThis()) {
15501 LSI
->addThisCapture(/*Nested*/ false, C
.getLocation(), I
->getType(),
15502 C
.getCaptureKind() == LCK_StarThis
);
15504 LSI
->addVLATypeCapture(C
.getLocation(), I
->getCapturedVLAType(),
15512 Decl
*Sema::ActOnStartOfFunctionDef(Scope
*FnBodyScope
, Decl
*D
,
15513 SkipBodyInfo
*SkipBody
,
15514 FnBodyKind BodyKind
) {
15516 // Parsing the function declaration failed in some way. Push on a fake scope
15517 // anyway so we can try to parse the function body.
15518 PushFunctionScope();
15519 PushExpressionEvaluationContext(ExprEvalContexts
.back().Context
);
15523 FunctionDecl
*FD
= nullptr;
15525 if (FunctionTemplateDecl
*FunTmpl
= dyn_cast
<FunctionTemplateDecl
>(D
))
15526 FD
= FunTmpl
->getTemplatedDecl();
15528 FD
= cast
<FunctionDecl
>(D
);
15530 // Do not push if it is a lambda because one is already pushed when building
15531 // the lambda in ActOnStartOfLambdaDefinition().
15532 if (!isLambdaCallOperator(FD
))
15533 // [expr.const]/p14.1
15534 // An expression or conversion is in an immediate function context if it is
15535 // potentially evaluated and either: its innermost enclosing non-block scope
15536 // is a function parameter scope of an immediate function.
15537 PushExpressionEvaluationContext(
15538 FD
->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
15539 : ExprEvalContexts
.back().Context
);
15541 // Each ExpressionEvaluationContextRecord also keeps track of whether the
15542 // context is nested in an immediate function context, so smaller contexts
15543 // that appear inside immediate functions (like variable initializers) are
15544 // considered to be inside an immediate function context even though by
15545 // themselves they are not immediate function contexts. But when a new
15546 // function is entered, we need to reset this tracking, since the entered
15547 // function might be not an immediate function.
15548 ExprEvalContexts
.back().InImmediateFunctionContext
= FD
->isConsteval();
15549 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
=
15550 getLangOpts().CPlusPlus20
&& FD
->isImmediateEscalating();
15552 // Check for defining attributes before the check for redefinition.
15553 if (const auto *Attr
= FD
->getAttr
<AliasAttr
>()) {
15554 Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << FD
<< 0;
15555 FD
->dropAttr
<AliasAttr
>();
15556 FD
->setInvalidDecl();
15558 if (const auto *Attr
= FD
->getAttr
<IFuncAttr
>()) {
15559 Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << FD
<< 1;
15560 FD
->dropAttr
<IFuncAttr
>();
15561 FD
->setInvalidDecl();
15563 if (const auto *Attr
= FD
->getAttr
<TargetVersionAttr
>()) {
15564 if (!Context
.getTargetInfo().hasFeature("fmv") &&
15565 !Attr
->isDefaultVersion()) {
15566 // If function multi versioning disabled skip parsing function body
15567 // defined with non-default target_version attribute
15569 SkipBody
->ShouldSkip
= true;
15574 if (auto *Ctor
= dyn_cast
<CXXConstructorDecl
>(FD
)) {
15575 if (Ctor
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
15576 Ctor
->isDefaultConstructor() &&
15577 Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
15578 // If this is an MS ABI dllexport default constructor, instantiate any
15579 // default arguments.
15580 InstantiateDefaultCtorDefaultArgs(Ctor
);
15584 // See if this is a redefinition. If 'will have body' (or similar) is already
15585 // set, then these checks were already performed when it was set.
15586 if (!FD
->willHaveBody() && !FD
->isLateTemplateParsed() &&
15587 !FD
->isThisDeclarationInstantiatedFromAFriendDefinition()) {
15588 CheckForFunctionRedefinition(FD
, nullptr, SkipBody
);
15590 // If we're skipping the body, we're done. Don't enter the scope.
15591 if (SkipBody
&& SkipBody
->ShouldSkip
)
15595 // Mark this function as "will have a body eventually". This lets users to
15596 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
15598 FD
->setWillHaveBody();
15600 // If we are instantiating a generic lambda call operator, push
15601 // a LambdaScopeInfo onto the function stack. But use the information
15602 // that's already been calculated (ActOnLambdaExpr) to prime the current
15603 // LambdaScopeInfo.
15604 // When the template operator is being specialized, the LambdaScopeInfo,
15605 // has to be properly restored so that tryCaptureVariable doesn't try
15606 // and capture any new variables. In addition when calculating potential
15607 // captures during transformation of nested lambdas, it is necessary to
15608 // have the LSI properly restored.
15609 if (isGenericLambdaCallOperatorSpecialization(FD
)) {
15610 assert(inTemplateInstantiation() &&
15611 "There should be an active template instantiation on the stack "
15612 "when instantiating a generic lambda!");
15613 RebuildLambdaScopeInfo(cast
<CXXMethodDecl
>(D
));
15615 // Enter a new function scope
15616 PushFunctionScope();
15619 // Builtin functions cannot be defined.
15620 if (unsigned BuiltinID
= FD
->getBuiltinID()) {
15621 if (!Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
) &&
15622 !Context
.BuiltinInfo
.isPredefinedRuntimeFunction(BuiltinID
)) {
15623 Diag(FD
->getLocation(), diag::err_builtin_definition
) << FD
;
15624 FD
->setInvalidDecl();
15628 // The return type of a function definition must be complete (C99 6.9.1p3).
15629 // C++23 [dcl.fct.def.general]/p2
15630 // The type of [...] the return for a function definition
15631 // shall not be a (possibly cv-qualified) class type that is incomplete
15632 // or abstract within the function body unless the function is deleted.
15633 QualType ResultType
= FD
->getReturnType();
15634 if (!ResultType
->isDependentType() && !ResultType
->isVoidType() &&
15635 !FD
->isInvalidDecl() && BodyKind
!= FnBodyKind::Delete
&&
15636 (RequireCompleteType(FD
->getLocation(), ResultType
,
15637 diag::err_func_def_incomplete_result
) ||
15638 RequireNonAbstractType(FD
->getLocation(), FD
->getReturnType(),
15639 diag::err_abstract_type_in_decl
,
15640 AbstractReturnType
)))
15641 FD
->setInvalidDecl();
15644 PushDeclContext(FnBodyScope
, FD
);
15646 // Check the validity of our function parameters
15647 if (BodyKind
!= FnBodyKind::Delete
)
15648 CheckParmsForFunctionDef(FD
->parameters(),
15649 /*CheckParameterNames=*/true);
15651 // Add non-parameter declarations already in the function to the current
15654 for (Decl
*NPD
: FD
->decls()) {
15655 auto *NonParmDecl
= dyn_cast
<NamedDecl
>(NPD
);
15658 assert(!isa
<ParmVarDecl
>(NonParmDecl
) &&
15659 "parameters should not be in newly created FD yet");
15661 // If the decl has a name, make it accessible in the current scope.
15662 if (NonParmDecl
->getDeclName())
15663 PushOnScopeChains(NonParmDecl
, FnBodyScope
, /*AddToContext=*/false);
15665 // Similarly, dive into enums and fish their constants out, making them
15666 // accessible in this scope.
15667 if (auto *ED
= dyn_cast
<EnumDecl
>(NonParmDecl
)) {
15668 for (auto *EI
: ED
->enumerators())
15669 PushOnScopeChains(EI
, FnBodyScope
, /*AddToContext=*/false);
15674 // Introduce our parameters into the function scope
15675 for (auto *Param
: FD
->parameters()) {
15676 Param
->setOwningFunction(FD
);
15678 // If this has an identifier, add it to the scope stack.
15679 if (Param
->getIdentifier() && FnBodyScope
) {
15680 CheckShadow(FnBodyScope
, Param
);
15682 PushOnScopeChains(Param
, FnBodyScope
);
15686 // C++ [module.import/6] external definitions are not permitted in header
15687 // units. Deleted and Defaulted functions are implicitly inline (but the
15688 // inline state is not set at this point, so check the BodyKind explicitly).
15689 // FIXME: Consider an alternate location for the test where the inlined()
15690 // state is complete.
15691 if (getLangOpts().CPlusPlusModules
&& currentModuleIsHeaderUnit() &&
15692 !FD
->isInvalidDecl() && !FD
->isInlined() &&
15693 BodyKind
!= FnBodyKind::Delete
&& BodyKind
!= FnBodyKind::Default
&&
15694 FD
->getFormalLinkage() == Linkage::External
&& !FD
->isTemplated() &&
15695 !FD
->isTemplateInstantiation()) {
15696 assert(FD
->isThisDeclarationADefinition());
15697 Diag(FD
->getLocation(), diag::err_extern_def_in_header_unit
);
15698 FD
->setInvalidDecl();
15701 // Ensure that the function's exception specification is instantiated.
15702 if (const FunctionProtoType
*FPT
= FD
->getType()->getAs
<FunctionProtoType
>())
15703 ResolveExceptionSpec(D
->getLocation(), FPT
);
15705 // dllimport cannot be applied to non-inline function definitions.
15706 if (FD
->hasAttr
<DLLImportAttr
>() && !FD
->isInlined() &&
15707 !FD
->isTemplateInstantiation()) {
15708 assert(!FD
->hasAttr
<DLLExportAttr
>());
15709 Diag(FD
->getLocation(), diag::err_attribute_dllimport_function_definition
);
15710 FD
->setInvalidDecl();
15713 // We want to attach documentation to original Decl (which might be
15714 // a function template).
15715 ActOnDocumentableDecl(D
);
15716 if (getCurLexicalContext()->isObjCContainer() &&
15717 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl
&&
15718 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation
)
15719 Diag(FD
->getLocation(), diag::warn_function_def_in_objc_container
);
15724 /// Given the set of return statements within a function body,
15725 /// compute the variables that are subject to the named return value
15728 /// Each of the variables that is subject to the named return value
15729 /// optimization will be marked as NRVO variables in the AST, and any
15730 /// return statement that has a marked NRVO variable as its NRVO candidate can
15731 /// use the named return value optimization.
15733 /// This function applies a very simplistic algorithm for NRVO: if every return
15734 /// statement in the scope of a variable has the same NRVO candidate, that
15735 /// candidate is an NRVO variable.
15736 void Sema::computeNRVO(Stmt
*Body
, FunctionScopeInfo
*Scope
) {
15737 ReturnStmt
**Returns
= Scope
->Returns
.data();
15739 for (unsigned I
= 0, E
= Scope
->Returns
.size(); I
!= E
; ++I
) {
15740 if (const VarDecl
*NRVOCandidate
= Returns
[I
]->getNRVOCandidate()) {
15741 if (!NRVOCandidate
->isNRVOVariable())
15742 Returns
[I
]->setNRVOCandidate(nullptr);
15747 bool Sema::canDelayFunctionBody(const Declarator
&D
) {
15748 // We can't delay parsing the body of a constexpr function template (yet).
15749 if (D
.getDeclSpec().hasConstexprSpecifier())
15752 // We can't delay parsing the body of a function template with a deduced
15753 // return type (yet).
15754 if (D
.getDeclSpec().hasAutoTypeSpec()) {
15755 // If the placeholder introduces a non-deduced trailing return type,
15756 // we can still delay parsing it.
15757 if (D
.getNumTypeObjects()) {
15758 const auto &Outer
= D
.getTypeObject(D
.getNumTypeObjects() - 1);
15759 if (Outer
.Kind
== DeclaratorChunk::Function
&&
15760 Outer
.Fun
.hasTrailingReturnType()) {
15761 QualType Ty
= GetTypeFromParser(Outer
.Fun
.getTrailingReturnType());
15762 return Ty
.isNull() || !Ty
->isUndeducedType();
15771 bool Sema::canSkipFunctionBody(Decl
*D
) {
15772 // We cannot skip the body of a function (or function template) which is
15773 // constexpr, since we may need to evaluate its body in order to parse the
15774 // rest of the file.
15775 // We cannot skip the body of a function with an undeduced return type,
15776 // because any callers of that function need to know the type.
15777 if (const FunctionDecl
*FD
= D
->getAsFunction()) {
15778 if (FD
->isConstexpr())
15780 // We can't simply call Type::isUndeducedType here, because inside template
15781 // auto can be deduced to a dependent type, which is not considered
15783 if (FD
->getReturnType()->getContainedDeducedType())
15786 return Consumer
.shouldSkipFunctionBody(D
);
15789 Decl
*Sema::ActOnSkippedFunctionBody(Decl
*Decl
) {
15792 if (FunctionDecl
*FD
= Decl
->getAsFunction())
15793 FD
->setHasSkippedBody();
15794 else if (ObjCMethodDecl
*MD
= dyn_cast
<ObjCMethodDecl
>(Decl
))
15795 MD
->setHasSkippedBody();
15799 Decl
*Sema::ActOnFinishFunctionBody(Decl
*D
, Stmt
*BodyArg
) {
15800 return ActOnFinishFunctionBody(D
, BodyArg
, /*IsInstantiation=*/false);
15803 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15805 class ExitFunctionBodyRAII
{
15807 ExitFunctionBodyRAII(Sema
&S
, bool IsLambda
) : S(S
), IsLambda(IsLambda
) {}
15808 ~ExitFunctionBodyRAII() {
15810 S
.PopExpressionEvaluationContext();
15815 bool IsLambda
= false;
15818 static void diagnoseImplicitlyRetainedSelf(Sema
&S
) {
15819 llvm::DenseMap
<const BlockDecl
*, bool> EscapeInfo
;
15821 auto IsOrNestedInEscapingBlock
= [&](const BlockDecl
*BD
) {
15822 if (EscapeInfo
.count(BD
))
15823 return EscapeInfo
[BD
];
15826 const BlockDecl
*CurBD
= BD
;
15829 R
= !CurBD
->doesNotEscape();
15832 CurBD
= CurBD
->getParent()->getInnermostBlockDecl();
15835 return EscapeInfo
[BD
] = R
;
15838 // If the location where 'self' is implicitly retained is inside a escaping
15839 // block, emit a diagnostic.
15840 for (const std::pair
<SourceLocation
, const BlockDecl
*> &P
:
15841 S
.ImplicitlyRetainedSelfLocs
)
15842 if (IsOrNestedInEscapingBlock(P
.second
))
15843 S
.Diag(P
.first
, diag::warn_implicitly_retains_self
)
15844 << FixItHint::CreateInsertion(P
.first
, "self->");
15847 void Sema::CheckCoroutineWrapper(FunctionDecl
*FD
) {
15850 RecordDecl
*RD
= FD
->getReturnType()->getAsRecordDecl();
15851 if (!RD
|| !RD
->getUnderlyingDecl()->hasAttr
<CoroReturnTypeAttr
>())
15853 // Allow `get_return_object()`.
15854 if (FD
->getDeclName().isIdentifier() &&
15855 FD
->getName().equals("get_return_object") && FD
->param_empty())
15857 if (!FD
->hasAttr
<CoroWrapperAttr
>())
15858 Diag(FD
->getLocation(), diag::err_coroutine_return_type
) << RD
;
15861 Decl
*Sema::ActOnFinishFunctionBody(Decl
*dcl
, Stmt
*Body
,
15862 bool IsInstantiation
) {
15863 FunctionScopeInfo
*FSI
= getCurFunction();
15864 FunctionDecl
*FD
= dcl
? dcl
->getAsFunction() : nullptr;
15866 if (FSI
->UsesFPIntrin
&& FD
&& !FD
->hasAttr
<StrictFPAttr
>())
15867 FD
->addAttr(StrictFPAttr::CreateImplicit(Context
));
15869 sema::AnalysisBasedWarnings::Policy WP
= AnalysisWarnings
.getDefaultPolicy();
15870 sema::AnalysisBasedWarnings::Policy
*ActivePolicy
= nullptr;
15872 if (getLangOpts().Coroutines
) {
15873 if (FSI
->isCoroutine())
15874 CheckCompletedCoroutineBody(FD
, Body
);
15876 CheckCoroutineWrapper(FD
);
15880 // Do not call PopExpressionEvaluationContext() if it is a lambda because
15881 // one is already popped when finishing the lambda in BuildLambdaExpr().
15882 // This is meant to pop the context added in ActOnStartOfFunctionDef().
15883 ExitFunctionBodyRAII
ExitRAII(*this, isLambdaCallOperator(FD
));
15886 FD
->setWillHaveBody(false);
15887 CheckImmediateEscalatingFunctionDefinition(FD
, FSI
);
15889 if (getLangOpts().CPlusPlus14
) {
15890 if (!FD
->isInvalidDecl() && Body
&& !FD
->isDependentContext() &&
15891 FD
->getReturnType()->isUndeducedType()) {
15892 // For a function with a deduced result type to return void,
15893 // the result type as written must be 'auto' or 'decltype(auto)',
15894 // possibly cv-qualified or constrained, but not ref-qualified.
15895 if (!FD
->getReturnType()->getAs
<AutoType
>()) {
15896 Diag(dcl
->getLocation(), diag::err_auto_fn_no_return_but_not_auto
)
15897 << FD
->getReturnType();
15898 FD
->setInvalidDecl();
15900 // Falling off the end of the function is the same as 'return;'.
15901 Expr
*Dummy
= nullptr;
15902 if (DeduceFunctionTypeFromReturnExpr(
15903 FD
, dcl
->getLocation(), Dummy
,
15904 FD
->getReturnType()->getAs
<AutoType
>()))
15905 FD
->setInvalidDecl();
15908 } else if (getLangOpts().CPlusPlus11
&& isLambdaCallOperator(FD
)) {
15909 // In C++11, we don't use 'auto' deduction rules for lambda call
15910 // operators because we don't support return type deduction.
15911 auto *LSI
= getCurLambda();
15912 if (LSI
->HasImplicitReturnType
) {
15913 deduceClosureReturnType(*LSI
);
15915 // C++11 [expr.prim.lambda]p4:
15916 // [...] if there are no return statements in the compound-statement
15917 // [the deduced type is] the type void
15919 LSI
->ReturnType
.isNull() ? Context
.VoidTy
: LSI
->ReturnType
;
15921 // Update the return type to the deduced type.
15922 const auto *Proto
= FD
->getType()->castAs
<FunctionProtoType
>();
15923 FD
->setType(Context
.getFunctionType(RetType
, Proto
->getParamTypes(),
15924 Proto
->getExtProtoInfo()));
15928 // If the function implicitly returns zero (like 'main') or is naked,
15929 // don't complain about missing return statements.
15930 if (FD
->hasImplicitReturnZero() || FD
->hasAttr
<NakedAttr
>())
15931 WP
.disableCheckFallThrough();
15933 // MSVC permits the use of pure specifier (=0) on function definition,
15934 // defined at class scope, warn about this non-standard construct.
15935 if (getLangOpts().MicrosoftExt
&& FD
->isPure() && !FD
->isOutOfLine())
15936 Diag(FD
->getLocation(), diag::ext_pure_function_definition
);
15938 if (!FD
->isInvalidDecl()) {
15939 // Don't diagnose unused parameters of defaulted, deleted or naked
15941 if (!FD
->isDeleted() && !FD
->isDefaulted() && !FD
->hasSkippedBody() &&
15942 !FD
->hasAttr
<NakedAttr
>())
15943 DiagnoseUnusedParameters(FD
->parameters());
15944 DiagnoseSizeOfParametersAndReturnValue(FD
->parameters(),
15945 FD
->getReturnType(), FD
);
15947 // If this is a structor, we need a vtable.
15948 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(FD
))
15949 MarkVTableUsed(FD
->getLocation(), Constructor
->getParent());
15950 else if (CXXDestructorDecl
*Destructor
=
15951 dyn_cast
<CXXDestructorDecl
>(FD
))
15952 MarkVTableUsed(FD
->getLocation(), Destructor
->getParent());
15954 // Try to apply the named return value optimization. We have to check
15955 // if we can do this here because lambdas keep return statements around
15956 // to deduce an implicit return type.
15957 if (FD
->getReturnType()->isRecordType() &&
15958 (!getLangOpts().CPlusPlus
|| !FD
->isDependentContext()))
15959 computeNRVO(Body
, FSI
);
15962 // GNU warning -Wmissing-prototypes:
15963 // Warn if a global function is defined without a previous
15964 // prototype declaration. This warning is issued even if the
15965 // definition itself provides a prototype. The aim is to detect
15966 // global functions that fail to be declared in header files.
15967 const FunctionDecl
*PossiblePrototype
= nullptr;
15968 if (ShouldWarnAboutMissingPrototype(FD
, PossiblePrototype
)) {
15969 Diag(FD
->getLocation(), diag::warn_missing_prototype
) << FD
;
15971 if (PossiblePrototype
) {
15972 // We found a declaration that is not a prototype,
15973 // but that could be a zero-parameter prototype
15974 if (TypeSourceInfo
*TI
= PossiblePrototype
->getTypeSourceInfo()) {
15975 TypeLoc TL
= TI
->getTypeLoc();
15976 if (FunctionNoProtoTypeLoc FTL
= TL
.getAs
<FunctionNoProtoTypeLoc
>())
15977 Diag(PossiblePrototype
->getLocation(),
15978 diag::note_declaration_not_a_prototype
)
15979 << (FD
->getNumParams() != 0)
15980 << (FD
->getNumParams() == 0 ? FixItHint::CreateInsertion(
15981 FTL
.getRParenLoc(), "void")
15985 // Returns true if the token beginning at this Loc is `const`.
15986 auto isLocAtConst
= [&](SourceLocation Loc
, const SourceManager
&SM
,
15987 const LangOptions
&LangOpts
) {
15988 std::pair
<FileID
, unsigned> LocInfo
= SM
.getDecomposedLoc(Loc
);
15989 if (LocInfo
.first
.isInvalid())
15992 bool Invalid
= false;
15993 StringRef Buffer
= SM
.getBufferData(LocInfo
.first
, &Invalid
);
15997 if (LocInfo
.second
> Buffer
.size())
16000 const char *LexStart
= Buffer
.data() + LocInfo
.second
;
16001 StringRef
StartTok(LexStart
, Buffer
.size() - LocInfo
.second
);
16003 return StartTok
.consume_front("const") &&
16004 (StartTok
.empty() || isWhitespace(StartTok
[0]) ||
16005 StartTok
.starts_with("/*") || StartTok
.starts_with("//"));
16008 auto findBeginLoc
= [&]() {
16009 // If the return type has `const` qualifier, we want to insert
16010 // `static` before `const` (and not before the typename).
16011 if ((FD
->getReturnType()->isAnyPointerType() &&
16012 FD
->getReturnType()->getPointeeType().isConstQualified()) ||
16013 FD
->getReturnType().isConstQualified()) {
16014 // But only do this if we can determine where the `const` is.
16016 if (isLocAtConst(FD
->getBeginLoc(), getSourceManager(),
16019 return FD
->getBeginLoc();
16021 return FD
->getTypeSpecStartLoc();
16023 Diag(FD
->getTypeSpecStartLoc(),
16024 diag::note_static_for_internal_linkage
)
16025 << /* function */ 1
16026 << (FD
->getStorageClass() == SC_None
16027 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
16032 // We might not have found a prototype because we didn't wish to warn on
16033 // the lack of a missing prototype. Try again without the checks for
16034 // whether we want to warn on the missing prototype.
16035 if (!PossiblePrototype
)
16036 (void)FindPossiblePrototype(FD
, PossiblePrototype
);
16038 // If the function being defined does not have a prototype, then we may
16039 // need to diagnose it as changing behavior in C23 because we now know
16040 // whether the function accepts arguments or not. This only handles the
16041 // case where the definition has no prototype but does have parameters
16042 // and either there is no previous potential prototype, or the previous
16043 // potential prototype also has no actual prototype. This handles cases
16045 // void f(); void f(a) int a; {}
16046 // void g(a) int a; {}
16047 // See MergeFunctionDecl() for other cases of the behavior change
16048 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
16049 // type without a prototype.
16050 if (!FD
->hasWrittenPrototype() && FD
->getNumParams() != 0 &&
16051 (!PossiblePrototype
|| (!PossiblePrototype
->hasWrittenPrototype() &&
16052 !PossiblePrototype
->isImplicit()))) {
16053 // The function definition has parameters, so this will change behavior
16054 // in C23. If there is a possible prototype, it comes before the
16055 // function definition.
16056 // FIXME: The declaration may have already been diagnosed as being
16057 // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
16058 // there's no way to test for the "changes behavior" condition in
16059 // SemaType.cpp when forming the declaration's function type. So, we do
16060 // this awkward dance instead.
16062 // If we have a possible prototype and it declares a function with a
16063 // prototype, we don't want to diagnose it; if we have a possible
16064 // prototype and it has no prototype, it may have already been
16065 // diagnosed in SemaType.cpp as deprecated depending on whether
16066 // -Wstrict-prototypes is enabled. If we already warned about it being
16067 // deprecated, add a note that it also changes behavior. If we didn't
16068 // warn about it being deprecated (because the diagnostic is not
16069 // enabled), warn now that it is deprecated and changes behavior.
16071 // This K&R C function definition definitely changes behavior in C23,
16073 Diag(FD
->getLocation(), diag::warn_non_prototype_changes_behavior
)
16074 << /*definition*/ 1 << /* not supported in C23 */ 0;
16076 // If we have a possible prototype for the function which is a user-
16077 // visible declaration, we already tested that it has no prototype.
16078 // This will change behavior in C23. This gets a warning rather than a
16079 // note because it's the same behavior-changing problem as with the
16081 if (PossiblePrototype
)
16082 Diag(PossiblePrototype
->getLocation(),
16083 diag::warn_non_prototype_changes_behavior
)
16084 << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
16085 << /*definition*/ 1;
16088 // Warn on CPUDispatch with an actual body.
16089 if (FD
->isMultiVersion() && FD
->hasAttr
<CPUDispatchAttr
>() && Body
)
16090 if (const auto *CmpndBody
= dyn_cast
<CompoundStmt
>(Body
))
16091 if (!CmpndBody
->body_empty())
16092 Diag(CmpndBody
->body_front()->getBeginLoc(),
16093 diag::warn_dispatch_body_ignored
);
16095 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
16096 const CXXMethodDecl
*KeyFunction
;
16097 if (MD
->isOutOfLine() && (MD
= MD
->getCanonicalDecl()) &&
16099 (KeyFunction
= Context
.getCurrentKeyFunction(MD
->getParent())) &&
16100 MD
== KeyFunction
->getCanonicalDecl()) {
16101 // Update the key-function state if necessary for this ABI.
16102 if (FD
->isInlined() &&
16103 !Context
.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
16104 Context
.setNonKeyFunction(MD
);
16106 // If the newly-chosen key function is already defined, then we
16107 // need to mark the vtable as used retroactively.
16108 KeyFunction
= Context
.getCurrentKeyFunction(MD
->getParent());
16109 const FunctionDecl
*Definition
;
16110 if (KeyFunction
&& KeyFunction
->isDefined(Definition
))
16111 MarkVTableUsed(Definition
->getLocation(), MD
->getParent(), true);
16113 // We just defined they key function; mark the vtable as used.
16114 MarkVTableUsed(FD
->getLocation(), MD
->getParent(), true);
16120 (FD
== getCurFunctionDecl() || getCurLambda()->CallOperator
== FD
) &&
16121 "Function parsing confused");
16122 } else if (ObjCMethodDecl
*MD
= dyn_cast_or_null
<ObjCMethodDecl
>(dcl
)) {
16123 assert(MD
== getCurMethodDecl() && "Method parsing confused");
16125 if (!MD
->isInvalidDecl()) {
16126 DiagnoseSizeOfParametersAndReturnValue(MD
->parameters(),
16127 MD
->getReturnType(), MD
);
16130 computeNRVO(Body
, FSI
);
16132 if (FSI
->ObjCShouldCallSuper
) {
16133 Diag(MD
->getEndLoc(), diag::warn_objc_missing_super_call
)
16134 << MD
->getSelector().getAsString();
16135 FSI
->ObjCShouldCallSuper
= false;
16137 if (FSI
->ObjCWarnForNoDesignatedInitChain
) {
16138 const ObjCMethodDecl
*InitMethod
= nullptr;
16139 bool isDesignated
=
16140 MD
->isDesignatedInitializerForTheInterface(&InitMethod
);
16141 assert(isDesignated
&& InitMethod
);
16142 (void)isDesignated
;
16144 auto superIsNSObject
= [&](const ObjCMethodDecl
*MD
) {
16145 auto IFace
= MD
->getClassInterface();
16148 auto SuperD
= IFace
->getSuperClass();
16151 return SuperD
->getIdentifier() ==
16152 NSAPIObj
->getNSClassId(NSAPI::ClassId_NSObject
);
16154 // Don't issue this warning for unavailable inits or direct subclasses
16156 if (!MD
->isUnavailable() && !superIsNSObject(MD
)) {
16157 Diag(MD
->getLocation(),
16158 diag::warn_objc_designated_init_missing_super_call
);
16159 Diag(InitMethod
->getLocation(),
16160 diag::note_objc_designated_init_marked_here
);
16162 FSI
->ObjCWarnForNoDesignatedInitChain
= false;
16164 if (FSI
->ObjCWarnForNoInitDelegation
) {
16165 // Don't issue this warning for unavaialable inits.
16166 if (!MD
->isUnavailable())
16167 Diag(MD
->getLocation(),
16168 diag::warn_objc_secondary_init_missing_init_call
);
16169 FSI
->ObjCWarnForNoInitDelegation
= false;
16172 diagnoseImplicitlyRetainedSelf(*this);
16174 // Parsing the function declaration failed in some way. Pop the fake scope
16176 PopFunctionScopeInfo(ActivePolicy
, dcl
);
16180 if (Body
&& FSI
->HasPotentialAvailabilityViolations
)
16181 DiagnoseUnguardedAvailabilityViolations(dcl
);
16183 assert(!FSI
->ObjCShouldCallSuper
&&
16184 "This should only be set for ObjC methods, which should have been "
16185 "handled in the block above.");
16187 // Verify and clean out per-function state.
16188 if (Body
&& (!FD
|| !FD
->isDefaulted())) {
16189 // C++ constructors that have function-try-blocks can't have return
16190 // statements in the handlers of that block. (C++ [except.handle]p14)
16192 if (FD
&& isa
<CXXConstructorDecl
>(FD
) && isa
<CXXTryStmt
>(Body
))
16193 DiagnoseReturnInConstructorExceptionHandler(cast
<CXXTryStmt
>(Body
));
16195 // Verify that gotos and switch cases don't jump into scopes illegally.
16196 if (FSI
->NeedsScopeChecking() && !PP
.isCodeCompletionEnabled())
16197 DiagnoseInvalidJumps(Body
);
16199 if (CXXDestructorDecl
*Destructor
= dyn_cast
<CXXDestructorDecl
>(dcl
)) {
16200 if (!Destructor
->getParent()->isDependentType())
16201 CheckDestructor(Destructor
);
16203 MarkBaseAndMemberDestructorsReferenced(Destructor
->getLocation(),
16204 Destructor
->getParent());
16207 // If any errors have occurred, clear out any temporaries that may have
16208 // been leftover. This ensures that these temporaries won't be picked up
16209 // for deletion in some later function.
16210 if (hasUncompilableErrorOccurred() ||
16211 hasAnyUnrecoverableErrorsInThisFunction() ||
16212 getDiagnostics().getSuppressAllDiagnostics()) {
16213 DiscardCleanupsInEvaluationContext();
16215 if (!hasUncompilableErrorOccurred() && !isa
<FunctionTemplateDecl
>(dcl
)) {
16216 // Since the body is valid, issue any analysis-based warnings that are
16218 ActivePolicy
= &WP
;
16221 if (!IsInstantiation
&& FD
&&
16222 (FD
->isConstexpr() || FD
->hasAttr
<MSConstexprAttr
>()) &&
16223 !FD
->isInvalidDecl() &&
16224 !CheckConstexprFunctionDefinition(FD
, CheckConstexprKind::Diagnose
))
16225 FD
->setInvalidDecl();
16227 if (FD
&& FD
->hasAttr
<NakedAttr
>()) {
16228 for (const Stmt
*S
: Body
->children()) {
16229 // Allow local register variables without initializer as they don't
16230 // require prologue.
16231 bool RegisterVariables
= false;
16232 if (auto *DS
= dyn_cast
<DeclStmt
>(S
)) {
16233 for (const auto *Decl
: DS
->decls()) {
16234 if (const auto *Var
= dyn_cast
<VarDecl
>(Decl
)) {
16235 RegisterVariables
=
16236 Var
->hasAttr
<AsmLabelAttr
>() && !Var
->hasInit();
16237 if (!RegisterVariables
)
16242 if (RegisterVariables
)
16244 if (!isa
<AsmStmt
>(S
) && !isa
<NullStmt
>(S
)) {
16245 Diag(S
->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function
);
16246 Diag(FD
->getAttr
<NakedAttr
>()->getLocation(), diag::note_attribute
);
16247 FD
->setInvalidDecl();
16253 assert(ExprCleanupObjects
.size() ==
16254 ExprEvalContexts
.back().NumCleanupObjects
&&
16255 "Leftover temporaries in function");
16256 assert(!Cleanup
.exprNeedsCleanups() &&
16257 "Unaccounted cleanups in function");
16258 assert(MaybeODRUseExprs
.empty() &&
16259 "Leftover expressions for odr-use checking");
16261 } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
16262 // the declaration context below. Otherwise, we're unable to transform
16263 // 'this' expressions when transforming immediate context functions.
16265 if (!IsInstantiation
)
16268 PopFunctionScopeInfo(ActivePolicy
, dcl
);
16269 // If any errors have occurred, clear out any temporaries that may have
16270 // been leftover. This ensures that these temporaries won't be picked up for
16271 // deletion in some later function.
16272 if (hasUncompilableErrorOccurred()) {
16273 DiscardCleanupsInEvaluationContext();
16276 if (FD
&& ((LangOpts
.OpenMP
&& (LangOpts
.OpenMPIsTargetDevice
||
16277 !LangOpts
.OMPTargetTriples
.empty())) ||
16278 LangOpts
.CUDA
|| LangOpts
.SYCLIsDevice
)) {
16279 auto ES
= getEmissionStatus(FD
);
16280 if (ES
== Sema::FunctionEmissionStatus::Emitted
||
16281 ES
== Sema::FunctionEmissionStatus::Unknown
)
16282 DeclsToCheckForDeferredDiags
.insert(FD
);
16285 if (FD
&& !FD
->isDeleted())
16286 checkTypeSupport(FD
->getType(), FD
->getLocation(), FD
);
16291 /// When we finish delayed parsing of an attribute, we must attach it to the
16293 void Sema::ActOnFinishDelayedAttribute(Scope
*S
, Decl
*D
,
16294 ParsedAttributes
&Attrs
) {
16295 // Always attach attributes to the underlying decl.
16296 if (TemplateDecl
*TD
= dyn_cast
<TemplateDecl
>(D
))
16297 D
= TD
->getTemplatedDecl();
16298 ProcessDeclAttributeList(S
, D
, Attrs
);
16300 if (CXXMethodDecl
*Method
= dyn_cast_or_null
<CXXMethodDecl
>(D
))
16301 if (Method
->isStatic())
16302 checkThisInStaticMemberFunctionAttributes(Method
);
16305 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
16306 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
16307 NamedDecl
*Sema::ImplicitlyDefineFunction(SourceLocation Loc
,
16308 IdentifierInfo
&II
, Scope
*S
) {
16309 // It is not valid to implicitly define a function in C23.
16310 assert(LangOpts
.implicitFunctionsAllowed() &&
16311 "Implicit function declarations aren't allowed in this language mode");
16313 // Find the scope in which the identifier is injected and the corresponding
16315 // FIXME: C89 does not say what happens if there is no enclosing block scope.
16316 // In that case, we inject the declaration into the translation unit scope
16318 Scope
*BlockScope
= S
;
16319 while (!BlockScope
->isCompoundStmtScope() && BlockScope
->getParent())
16320 BlockScope
= BlockScope
->getParent();
16322 // Loop until we find a DeclContext that is either a function/method or the
16323 // translation unit, which are the only two valid places to implicitly define
16324 // a function. This avoids accidentally defining the function within a tag
16325 // declaration, for example.
16326 Scope
*ContextScope
= BlockScope
;
16327 while (!ContextScope
->getEntity() ||
16328 (!ContextScope
->getEntity()->isFunctionOrMethod() &&
16329 !ContextScope
->getEntity()->isTranslationUnit()))
16330 ContextScope
= ContextScope
->getParent();
16331 ContextRAII
SavedContext(*this, ContextScope
->getEntity());
16333 // Before we produce a declaration for an implicitly defined
16334 // function, see whether there was a locally-scoped declaration of
16335 // this name as a function or variable. If so, use that
16336 // (non-visible) declaration, and complain about it.
16337 NamedDecl
*ExternCPrev
= findLocallyScopedExternCDecl(&II
);
16339 // We still need to inject the function into the enclosing block scope so
16340 // that later (non-call) uses can see it.
16341 PushOnScopeChains(ExternCPrev
, BlockScope
, /*AddToContext*/false);
16343 // C89 footnote 38:
16344 // If in fact it is not defined as having type "function returning int",
16345 // the behavior is undefined.
16346 if (!isa
<FunctionDecl
>(ExternCPrev
) ||
16347 !Context
.typesAreCompatible(
16348 cast
<FunctionDecl
>(ExternCPrev
)->getType(),
16349 Context
.getFunctionNoProtoType(Context
.IntTy
))) {
16350 Diag(Loc
, diag::ext_use_out_of_scope_declaration
)
16351 << ExternCPrev
<< !getLangOpts().C99
;
16352 Diag(ExternCPrev
->getLocation(), diag::note_previous_declaration
);
16353 return ExternCPrev
;
16357 // Extension in C99 (defaults to error). Legal in C89, but warn about it.
16359 if (II
.getName().starts_with("__builtin_"))
16360 diag_id
= diag::warn_builtin_unknown
;
16361 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
16362 else if (getLangOpts().C99
)
16363 diag_id
= diag::ext_implicit_function_decl_c99
;
16365 diag_id
= diag::warn_implicit_function_decl
;
16367 TypoCorrection Corrected
;
16368 // Because typo correction is expensive, only do it if the implicit
16369 // function declaration is going to be treated as an error.
16371 // Perform the correction before issuing the main diagnostic, as some
16372 // consumers use typo-correction callbacks to enhance the main diagnostic.
16373 if (S
&& !ExternCPrev
&&
16374 (Diags
.getDiagnosticLevel(diag_id
, Loc
) >= DiagnosticsEngine::Error
)) {
16375 DeclFilterCCC
<FunctionDecl
> CCC
{};
16376 Corrected
= CorrectTypo(DeclarationNameInfo(&II
, Loc
), LookupOrdinaryName
,
16377 S
, nullptr, CCC
, CTK_NonError
);
16380 Diag(Loc
, diag_id
) << &II
;
16382 // If the correction is going to suggest an implicitly defined function,
16383 // skip the correction as not being a particularly good idea.
16384 bool Diagnose
= true;
16385 if (const auto *D
= Corrected
.getCorrectionDecl())
16386 Diagnose
= !D
->isImplicit();
16388 diagnoseTypo(Corrected
, PDiag(diag::note_function_suggestion
),
16389 /*ErrorRecovery*/ false);
16392 // If we found a prior declaration of this function, don't bother building
16393 // another one. We've already pushed that one into scope, so there's nothing
16396 return ExternCPrev
;
16398 // Set a Declarator for the implicit definition: int foo();
16400 AttributeFactory attrFactory
;
16401 DeclSpec
DS(attrFactory
);
16403 bool Error
= DS
.SetTypeSpecType(DeclSpec::TST_int
, Loc
, Dummy
, DiagID
,
16404 Context
.getPrintingPolicy());
16405 (void)Error
; // Silence warning.
16406 assert(!Error
&& "Error setting up implicit decl!");
16407 SourceLocation NoLoc
;
16408 Declarator
D(DS
, ParsedAttributesView::none(), DeclaratorContext::Block
);
16409 D
.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
16410 /*IsAmbiguous=*/false,
16411 /*LParenLoc=*/NoLoc
,
16412 /*Params=*/nullptr,
16414 /*EllipsisLoc=*/NoLoc
,
16415 /*RParenLoc=*/NoLoc
,
16416 /*RefQualifierIsLvalueRef=*/true,
16417 /*RefQualifierLoc=*/NoLoc
,
16418 /*MutableLoc=*/NoLoc
, EST_None
,
16419 /*ESpecRange=*/SourceRange(),
16420 /*Exceptions=*/nullptr,
16421 /*ExceptionRanges=*/nullptr,
16422 /*NumExceptions=*/0,
16423 /*NoexceptExpr=*/nullptr,
16424 /*ExceptionSpecTokens=*/nullptr,
16425 /*DeclsInPrototype=*/std::nullopt
,
16427 std::move(DS
.getAttributes()), SourceLocation());
16428 D
.SetIdentifier(&II
, Loc
);
16430 // Insert this function into the enclosing block scope.
16431 FunctionDecl
*FD
= cast
<FunctionDecl
>(ActOnDeclarator(BlockScope
, D
));
16434 AddKnownFunctionAttributes(FD
);
16439 /// If this function is a C++ replaceable global allocation function
16440 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
16441 /// adds any function attributes that we know a priori based on the standard.
16443 /// We need to check for duplicate attributes both here and where user-written
16444 /// attributes are applied to declarations.
16445 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
16446 FunctionDecl
*FD
) {
16447 if (FD
->isInvalidDecl())
16450 if (FD
->getDeclName().getCXXOverloadedOperator() != OO_New
&&
16451 FD
->getDeclName().getCXXOverloadedOperator() != OO_Array_New
)
16454 std::optional
<unsigned> AlignmentParam
;
16455 bool IsNothrow
= false;
16456 if (!FD
->isReplaceableGlobalAllocationFunction(&AlignmentParam
, &IsNothrow
))
16459 // C++2a [basic.stc.dynamic.allocation]p4:
16460 // An allocation function that has a non-throwing exception specification
16461 // indicates failure by returning a null pointer value. Any other allocation
16462 // function never returns a null pointer value and indicates failure only by
16463 // throwing an exception [...]
16465 // However, -fcheck-new invalidates this possible assumption, so don't add
16466 // NonNull when that is enabled.
16467 if (!IsNothrow
&& !FD
->hasAttr
<ReturnsNonNullAttr
>() &&
16468 !getLangOpts().CheckNew
)
16469 FD
->addAttr(ReturnsNonNullAttr::CreateImplicit(Context
, FD
->getLocation()));
16471 // C++2a [basic.stc.dynamic.allocation]p2:
16472 // An allocation function attempts to allocate the requested amount of
16473 // storage. [...] If the request succeeds, the value returned by a
16474 // replaceable allocation function is a [...] pointer value p0 different
16475 // from any previously returned value p1 [...]
16477 // However, this particular information is being added in codegen,
16478 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
16480 // C++2a [basic.stc.dynamic.allocation]p2:
16481 // An allocation function attempts to allocate the requested amount of
16482 // storage. If it is successful, it returns the address of the start of a
16483 // block of storage whose length in bytes is at least as large as the
16485 if (!FD
->hasAttr
<AllocSizeAttr
>()) {
16486 FD
->addAttr(AllocSizeAttr::CreateImplicit(
16487 Context
, /*ElemSizeParam=*/ParamIdx(1, FD
),
16488 /*NumElemsParam=*/ParamIdx(), FD
->getLocation()));
16491 // C++2a [basic.stc.dynamic.allocation]p3:
16492 // For an allocation function [...], the pointer returned on a successful
16493 // call shall represent the address of storage that is aligned as follows:
16494 // (3.1) If the allocation function takes an argument of type
16495 // std​::​align_Âval_Ât, the storage will have the alignment
16496 // specified by the value of this argument.
16497 if (AlignmentParam
&& !FD
->hasAttr
<AllocAlignAttr
>()) {
16498 FD
->addAttr(AllocAlignAttr::CreateImplicit(
16499 Context
, ParamIdx(*AlignmentParam
, FD
), FD
->getLocation()));
16503 // C++2a [basic.stc.dynamic.allocation]p3:
16504 // For an allocation function [...], the pointer returned on a successful
16505 // call shall represent the address of storage that is aligned as follows:
16506 // (3.2) Otherwise, if the allocation function is named operator new[],
16507 // the storage is aligned for any object that does not have
16508 // new-extended alignment ([basic.align]) and is no larger than the
16510 // (3.3) Otherwise, the storage is aligned for any object that does not
16511 // have new-extended alignment and is of the requested size.
16514 /// Adds any function attributes that we know a priori based on
16515 /// the declaration of this function.
16517 /// These attributes can apply both to implicitly-declared builtins
16518 /// (like __builtin___printf_chk) or to library-declared functions
16519 /// like NSLog or printf.
16521 /// We need to check for duplicate attributes both here and where user-written
16522 /// attributes are applied to declarations.
16523 void Sema::AddKnownFunctionAttributes(FunctionDecl
*FD
) {
16524 if (FD
->isInvalidDecl())
16527 // If this is a built-in function, map its builtin attributes to
16528 // actual attributes.
16529 if (unsigned BuiltinID
= FD
->getBuiltinID()) {
16530 // Handle printf-formatting attributes.
16531 unsigned FormatIdx
;
16533 if (Context
.BuiltinInfo
.isPrintfLike(BuiltinID
, FormatIdx
, HasVAListArg
)) {
16534 if (!FD
->hasAttr
<FormatAttr
>()) {
16535 const char *fmt
= "printf";
16536 unsigned int NumParams
= FD
->getNumParams();
16537 if (FormatIdx
< NumParams
&& // NumParams may be 0 (e.g. vfprintf)
16538 FD
->getParamDecl(FormatIdx
)->getType()->isObjCObjectPointerType())
16540 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16541 &Context
.Idents
.get(fmt
),
16543 HasVAListArg
? 0 : FormatIdx
+2,
16544 FD
->getLocation()));
16547 if (Context
.BuiltinInfo
.isScanfLike(BuiltinID
, FormatIdx
,
16549 if (!FD
->hasAttr
<FormatAttr
>())
16550 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16551 &Context
.Idents
.get("scanf"),
16553 HasVAListArg
? 0 : FormatIdx
+2,
16554 FD
->getLocation()));
16557 // Handle automatically recognized callbacks.
16558 SmallVector
<int, 4> Encoding
;
16559 if (!FD
->hasAttr
<CallbackAttr
>() &&
16560 Context
.BuiltinInfo
.performsCallback(BuiltinID
, Encoding
))
16561 FD
->addAttr(CallbackAttr::CreateImplicit(
16562 Context
, Encoding
.data(), Encoding
.size(), FD
->getLocation()));
16564 // Mark const if we don't care about errno and/or floating point exceptions
16565 // that are the only thing preventing the function from being const. This
16566 // allows IRgen to use LLVM intrinsics for such functions.
16567 bool NoExceptions
=
16568 getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore
;
16569 bool ConstWithoutErrnoAndExceptions
=
16570 Context
.BuiltinInfo
.isConstWithoutErrnoAndExceptions(BuiltinID
);
16571 bool ConstWithoutExceptions
=
16572 Context
.BuiltinInfo
.isConstWithoutExceptions(BuiltinID
);
16573 if (!FD
->hasAttr
<ConstAttr
>() &&
16574 (ConstWithoutErrnoAndExceptions
|| ConstWithoutExceptions
) &&
16575 (!ConstWithoutErrnoAndExceptions
||
16576 (!getLangOpts().MathErrno
&& NoExceptions
)) &&
16577 (!ConstWithoutExceptions
|| NoExceptions
))
16578 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16580 // We make "fma" on GNU or Windows const because we know it does not set
16581 // errno in those environments even though it could set errno based on the
16583 const llvm::Triple
&Trip
= Context
.getTargetInfo().getTriple();
16584 if ((Trip
.isGNUEnvironment() || Trip
.isOSMSVCRT()) &&
16585 !FD
->hasAttr
<ConstAttr
>()) {
16586 switch (BuiltinID
) {
16587 case Builtin::BI__builtin_fma
:
16588 case Builtin::BI__builtin_fmaf
:
16589 case Builtin::BI__builtin_fmal
:
16590 case Builtin::BIfma
:
16591 case Builtin::BIfmaf
:
16592 case Builtin::BIfmal
:
16593 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16600 if (Context
.BuiltinInfo
.isReturnsTwice(BuiltinID
) &&
16601 !FD
->hasAttr
<ReturnsTwiceAttr
>())
16602 FD
->addAttr(ReturnsTwiceAttr::CreateImplicit(Context
,
16603 FD
->getLocation()));
16604 if (Context
.BuiltinInfo
.isNoThrow(BuiltinID
) && !FD
->hasAttr
<NoThrowAttr
>())
16605 FD
->addAttr(NoThrowAttr::CreateImplicit(Context
, FD
->getLocation()));
16606 if (Context
.BuiltinInfo
.isPure(BuiltinID
) && !FD
->hasAttr
<PureAttr
>())
16607 FD
->addAttr(PureAttr::CreateImplicit(Context
, FD
->getLocation()));
16608 if (Context
.BuiltinInfo
.isConst(BuiltinID
) && !FD
->hasAttr
<ConstAttr
>())
16609 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16610 if (getLangOpts().CUDA
&& Context
.BuiltinInfo
.isTSBuiltin(BuiltinID
) &&
16611 !FD
->hasAttr
<CUDADeviceAttr
>() && !FD
->hasAttr
<CUDAHostAttr
>()) {
16612 // Add the appropriate attribute, depending on the CUDA compilation mode
16613 // and which target the builtin belongs to. For example, during host
16614 // compilation, aux builtins are __device__, while the rest are __host__.
16615 if (getLangOpts().CUDAIsDevice
!=
16616 Context
.BuiltinInfo
.isAuxBuiltinID(BuiltinID
))
16617 FD
->addAttr(CUDADeviceAttr::CreateImplicit(Context
, FD
->getLocation()));
16619 FD
->addAttr(CUDAHostAttr::CreateImplicit(Context
, FD
->getLocation()));
16622 // Add known guaranteed alignment for allocation functions.
16623 switch (BuiltinID
) {
16624 case Builtin::BImemalign
:
16625 case Builtin::BIaligned_alloc
:
16626 if (!FD
->hasAttr
<AllocAlignAttr
>())
16627 FD
->addAttr(AllocAlignAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16628 FD
->getLocation()));
16634 // Add allocsize attribute for allocation functions.
16635 switch (BuiltinID
) {
16636 case Builtin::BIcalloc
:
16637 FD
->addAttr(AllocSizeAttr::CreateImplicit(
16638 Context
, ParamIdx(1, FD
), ParamIdx(2, FD
), FD
->getLocation()));
16640 case Builtin::BImemalign
:
16641 case Builtin::BIaligned_alloc
:
16642 case Builtin::BIrealloc
:
16643 FD
->addAttr(AllocSizeAttr::CreateImplicit(Context
, ParamIdx(2, FD
),
16644 ParamIdx(), FD
->getLocation()));
16646 case Builtin::BImalloc
:
16647 FD
->addAttr(AllocSizeAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16648 ParamIdx(), FD
->getLocation()));
16654 // Add lifetime attribute to std::move, std::fowrard et al.
16655 switch (BuiltinID
) {
16656 case Builtin::BIaddressof
:
16657 case Builtin::BI__addressof
:
16658 case Builtin::BI__builtin_addressof
:
16659 case Builtin::BIas_const
:
16660 case Builtin::BIforward
:
16661 case Builtin::BIforward_like
:
16662 case Builtin::BImove
:
16663 case Builtin::BImove_if_noexcept
:
16664 if (ParmVarDecl
*P
= FD
->getParamDecl(0u);
16665 !P
->hasAttr
<LifetimeBoundAttr
>())
16667 LifetimeBoundAttr::CreateImplicit(Context
, FD
->getLocation()));
16674 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD
);
16676 // If C++ exceptions are enabled but we are told extern "C" functions cannot
16677 // throw, add an implicit nothrow attribute to any extern "C" function we come
16679 if (getLangOpts().CXXExceptions
&& getLangOpts().ExternCNoUnwind
&&
16680 FD
->isExternC() && !FD
->hasAttr
<NoThrowAttr
>()) {
16681 const auto *FPT
= FD
->getType()->getAs
<FunctionProtoType
>();
16682 if (!FPT
|| FPT
->getExceptionSpecType() == EST_None
)
16683 FD
->addAttr(NoThrowAttr::CreateImplicit(Context
, FD
->getLocation()));
16686 IdentifierInfo
*Name
= FD
->getIdentifier();
16689 if ((!getLangOpts().CPlusPlus
&& FD
->getDeclContext()->isTranslationUnit()) ||
16690 (isa
<LinkageSpecDecl
>(FD
->getDeclContext()) &&
16691 cast
<LinkageSpecDecl
>(FD
->getDeclContext())->getLanguage() ==
16692 LinkageSpecLanguageIDs::C
)) {
16693 // Okay: this could be a libc/libm/Objective-C function we know
16698 if (Name
->isStr("asprintf") || Name
->isStr("vasprintf")) {
16699 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
16700 // target-specific builtins, perhaps?
16701 if (!FD
->hasAttr
<FormatAttr
>())
16702 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16703 &Context
.Idents
.get("printf"), 2,
16704 Name
->isStr("vasprintf") ? 0 : 3,
16705 FD
->getLocation()));
16708 if (Name
->isStr("__CFStringMakeConstantString")) {
16709 // We already have a __builtin___CFStringMakeConstantString,
16710 // but builds that use -fno-constant-cfstrings don't go through that.
16711 if (!FD
->hasAttr
<FormatArgAttr
>())
16712 FD
->addAttr(FormatArgAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16713 FD
->getLocation()));
16717 TypedefDecl
*Sema::ParseTypedefDecl(Scope
*S
, Declarator
&D
, QualType T
,
16718 TypeSourceInfo
*TInfo
) {
16719 assert(D
.getIdentifier() && "Wrong callback for declspec without declarator");
16720 assert(!T
.isNull() && "GetTypeForDeclarator() returned null type");
16723 assert(D
.isInvalidType() && "no declarator info for valid type");
16724 TInfo
= Context
.getTrivialTypeSourceInfo(T
);
16727 // Scope manipulation handled by caller.
16728 TypedefDecl
*NewTD
=
16729 TypedefDecl::Create(Context
, CurContext
, D
.getBeginLoc(),
16730 D
.getIdentifierLoc(), D
.getIdentifier(), TInfo
);
16732 // Bail out immediately if we have an invalid declaration.
16733 if (D
.isInvalidType()) {
16734 NewTD
->setInvalidDecl();
16738 if (D
.getDeclSpec().isModulePrivateSpecified()) {
16739 if (CurContext
->isFunctionOrMethod())
16740 Diag(NewTD
->getLocation(), diag::err_module_private_local
)
16742 << SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
16743 << FixItHint::CreateRemoval(
16744 D
.getDeclSpec().getModulePrivateSpecLoc());
16746 NewTD
->setModulePrivate();
16749 // C++ [dcl.typedef]p8:
16750 // If the typedef declaration defines an unnamed class (or
16751 // enum), the first typedef-name declared by the declaration
16752 // to be that class type (or enum type) is used to denote the
16753 // class type (or enum type) for linkage purposes only.
16754 // We need to check whether the type was declared in the declaration.
16755 switch (D
.getDeclSpec().getTypeSpecType()) {
16758 case TST_interface
:
16761 TagDecl
*tagFromDeclSpec
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
16762 setTagNameForLinkagePurposes(tagFromDeclSpec
, NewTD
);
16773 /// Check that this is a valid underlying type for an enum declaration.
16774 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo
*TI
) {
16775 SourceLocation UnderlyingLoc
= TI
->getTypeLoc().getBeginLoc();
16776 QualType T
= TI
->getType();
16778 if (T
->isDependentType())
16781 // This doesn't use 'isIntegralType' despite the error message mentioning
16782 // integral type because isIntegralType would also allow enum types in C.
16783 if (const BuiltinType
*BT
= T
->getAs
<BuiltinType
>())
16784 if (BT
->isInteger())
16787 return Diag(UnderlyingLoc
, diag::err_enum_invalid_underlying
)
16788 << T
<< T
->isBitIntType();
16791 /// Check whether this is a valid redeclaration of a previous enumeration.
16792 /// \return true if the redeclaration was invalid.
16793 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc
, bool IsScoped
,
16794 QualType EnumUnderlyingTy
, bool IsFixed
,
16795 const EnumDecl
*Prev
) {
16796 if (IsScoped
!= Prev
->isScoped()) {
16797 Diag(EnumLoc
, diag::err_enum_redeclare_scoped_mismatch
)
16798 << Prev
->isScoped();
16799 Diag(Prev
->getLocation(), diag::note_previous_declaration
);
16803 if (IsFixed
&& Prev
->isFixed()) {
16804 if (!EnumUnderlyingTy
->isDependentType() &&
16805 !Prev
->getIntegerType()->isDependentType() &&
16806 !Context
.hasSameUnqualifiedType(EnumUnderlyingTy
,
16807 Prev
->getIntegerType())) {
16808 // TODO: Highlight the underlying type of the redeclaration.
16809 Diag(EnumLoc
, diag::err_enum_redeclare_type_mismatch
)
16810 << EnumUnderlyingTy
<< Prev
->getIntegerType();
16811 Diag(Prev
->getLocation(), diag::note_previous_declaration
)
16812 << Prev
->getIntegerTypeRange();
16815 } else if (IsFixed
!= Prev
->isFixed()) {
16816 Diag(EnumLoc
, diag::err_enum_redeclare_fixed_mismatch
)
16817 << Prev
->isFixed();
16818 Diag(Prev
->getLocation(), diag::note_previous_declaration
);
16825 /// Get diagnostic %select index for tag kind for
16826 /// redeclaration diagnostic message.
16827 /// WARNING: Indexes apply to particular diagnostics only!
16829 /// \returns diagnostic %select index.
16830 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag
) {
16832 case TagTypeKind::Struct
:
16834 case TagTypeKind::Interface
:
16836 case TagTypeKind::Class
:
16838 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16842 /// Determine if tag kind is a class-key compatible with
16843 /// class for redeclaration (class, struct, or __interface).
16845 /// \returns true iff the tag kind is compatible.
16846 static bool isClassCompatTagKind(TagTypeKind Tag
)
16848 return Tag
== TagTypeKind::Struct
|| Tag
== TagTypeKind::Class
||
16849 Tag
== TagTypeKind::Interface
;
16852 Sema::NonTagKind
Sema::getNonTagTypeDeclKind(const Decl
*PrevDecl
,
16854 if (isa
<TypedefDecl
>(PrevDecl
))
16855 return NTK_Typedef
;
16856 else if (isa
<TypeAliasDecl
>(PrevDecl
))
16857 return NTK_TypeAlias
;
16858 else if (isa
<ClassTemplateDecl
>(PrevDecl
))
16859 return NTK_Template
;
16860 else if (isa
<TypeAliasTemplateDecl
>(PrevDecl
))
16861 return NTK_TypeAliasTemplate
;
16862 else if (isa
<TemplateTemplateParmDecl
>(PrevDecl
))
16863 return NTK_TemplateTemplateArgument
;
16865 case TagTypeKind::Struct
:
16866 case TagTypeKind::Interface
:
16867 case TagTypeKind::Class
:
16868 return getLangOpts().CPlusPlus
? NTK_NonClass
: NTK_NonStruct
;
16869 case TagTypeKind::Union
:
16870 return NTK_NonUnion
;
16871 case TagTypeKind::Enum
:
16872 return NTK_NonEnum
;
16874 llvm_unreachable("invalid TTK");
16877 /// Determine whether a tag with a given kind is acceptable
16878 /// as a redeclaration of the given tag declaration.
16880 /// \returns true if the new tag kind is acceptable, false otherwise.
16881 bool Sema::isAcceptableTagRedeclaration(const TagDecl
*Previous
,
16882 TagTypeKind NewTag
, bool isDefinition
,
16883 SourceLocation NewTagLoc
,
16884 const IdentifierInfo
*Name
) {
16885 // C++ [dcl.type.elab]p3:
16886 // The class-key or enum keyword present in the
16887 // elaborated-type-specifier shall agree in kind with the
16888 // declaration to which the name in the elaborated-type-specifier
16889 // refers. This rule also applies to the form of
16890 // elaborated-type-specifier that declares a class-name or
16891 // friend class since it can be construed as referring to the
16892 // definition of the class. Thus, in any
16893 // elaborated-type-specifier, the enum keyword shall be used to
16894 // refer to an enumeration (7.2), the union class-key shall be
16895 // used to refer to a union (clause 9), and either the class or
16896 // struct class-key shall be used to refer to a class (clause 9)
16897 // declared using the class or struct class-key.
16898 TagTypeKind OldTag
= Previous
->getTagKind();
16899 if (OldTag
!= NewTag
&&
16900 !(isClassCompatTagKind(OldTag
) && isClassCompatTagKind(NewTag
)))
16903 // Tags are compatible, but we might still want to warn on mismatched tags.
16904 // Non-class tags can't be mismatched at this point.
16905 if (!isClassCompatTagKind(NewTag
))
16908 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
16909 // by our warning analysis. We don't want to warn about mismatches with (eg)
16910 // declarations in system headers that are designed to be specialized, but if
16911 // a user asks us to warn, we should warn if their code contains mismatched
16913 auto IsIgnoredLoc
= [&](SourceLocation Loc
) {
16914 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch
,
16917 if (IsIgnoredLoc(NewTagLoc
))
16920 auto IsIgnored
= [&](const TagDecl
*Tag
) {
16921 return IsIgnoredLoc(Tag
->getLocation());
16923 while (IsIgnored(Previous
)) {
16924 Previous
= Previous
->getPreviousDecl();
16927 OldTag
= Previous
->getTagKind();
16930 bool isTemplate
= false;
16931 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(Previous
))
16932 isTemplate
= Record
->getDescribedClassTemplate();
16934 if (inTemplateInstantiation()) {
16935 if (OldTag
!= NewTag
) {
16936 // In a template instantiation, do not offer fix-its for tag mismatches
16937 // since they usually mess up the template instead of fixing the problem.
16938 Diag(NewTagLoc
, diag::warn_struct_class_tag_mismatch
)
16939 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
16940 << getRedeclDiagFromTagKind(OldTag
);
16941 // FIXME: Note previous location?
16946 if (isDefinition
) {
16947 // On definitions, check all previous tags and issue a fix-it for each
16948 // one that doesn't match the current tag.
16949 if (Previous
->getDefinition()) {
16950 // Don't suggest fix-its for redefinitions.
16954 bool previousMismatch
= false;
16955 for (const TagDecl
*I
: Previous
->redecls()) {
16956 if (I
->getTagKind() != NewTag
) {
16957 // Ignore previous declarations for which the warning was disabled.
16961 if (!previousMismatch
) {
16962 previousMismatch
= true;
16963 Diag(NewTagLoc
, diag::warn_struct_class_previous_tag_mismatch
)
16964 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
16965 << getRedeclDiagFromTagKind(I
->getTagKind());
16967 Diag(I
->getInnerLocStart(), diag::note_struct_class_suggestion
)
16968 << getRedeclDiagFromTagKind(NewTag
)
16969 << FixItHint::CreateReplacement(I
->getInnerLocStart(),
16970 TypeWithKeyword::getTagTypeKindName(NewTag
));
16976 // Identify the prevailing tag kind: this is the kind of the definition (if
16977 // there is a non-ignored definition), or otherwise the kind of the prior
16978 // (non-ignored) declaration.
16979 const TagDecl
*PrevDef
= Previous
->getDefinition();
16980 if (PrevDef
&& IsIgnored(PrevDef
))
16982 const TagDecl
*Redecl
= PrevDef
? PrevDef
: Previous
;
16983 if (Redecl
->getTagKind() != NewTag
) {
16984 Diag(NewTagLoc
, diag::warn_struct_class_tag_mismatch
)
16985 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
16986 << getRedeclDiagFromTagKind(OldTag
);
16987 Diag(Redecl
->getLocation(), diag::note_previous_use
);
16989 // If there is a previous definition, suggest a fix-it.
16991 Diag(NewTagLoc
, diag::note_struct_class_suggestion
)
16992 << getRedeclDiagFromTagKind(Redecl
->getTagKind())
16993 << FixItHint::CreateReplacement(SourceRange(NewTagLoc
),
16994 TypeWithKeyword::getTagTypeKindName(Redecl
->getTagKind()));
17001 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
17002 /// from an outer enclosing namespace or file scope inside a friend declaration.
17003 /// This should provide the commented out code in the following snippet:
17007 /// struct Y { friend struct /*N::*/ X; };
17010 static FixItHint
createFriendTagNNSFixIt(Sema
&SemaRef
, NamedDecl
*ND
, Scope
*S
,
17011 SourceLocation NameLoc
) {
17012 // While the decl is in a namespace, do repeated lookup of that name and see
17013 // if we get the same namespace back. If we do not, continue until
17014 // translation unit scope, at which point we have a fully qualified NNS.
17015 SmallVector
<IdentifierInfo
*, 4> Namespaces
;
17016 DeclContext
*DC
= ND
->getDeclContext()->getRedeclContext();
17017 for (; !DC
->isTranslationUnit(); DC
= DC
->getParent()) {
17018 // This tag should be declared in a namespace, which can only be enclosed by
17019 // other namespaces. Bail if there's an anonymous namespace in the chain.
17020 NamespaceDecl
*Namespace
= dyn_cast
<NamespaceDecl
>(DC
);
17021 if (!Namespace
|| Namespace
->isAnonymousNamespace())
17022 return FixItHint();
17023 IdentifierInfo
*II
= Namespace
->getIdentifier();
17024 Namespaces
.push_back(II
);
17025 NamedDecl
*Lookup
= SemaRef
.LookupSingleName(
17026 S
, II
, NameLoc
, Sema::LookupNestedNameSpecifierName
);
17027 if (Lookup
== Namespace
)
17031 // Once we have all the namespaces, reverse them to go outermost first, and
17033 SmallString
<64> Insertion
;
17034 llvm::raw_svector_ostream
OS(Insertion
);
17035 if (DC
->isTranslationUnit())
17037 std::reverse(Namespaces
.begin(), Namespaces
.end());
17038 for (auto *II
: Namespaces
)
17039 OS
<< II
->getName() << "::";
17040 return FixItHint::CreateInsertion(NameLoc
, Insertion
);
17043 /// Determine whether a tag originally declared in context \p OldDC can
17044 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
17045 /// found a declaration in \p OldDC as a previous decl, perhaps through a
17046 /// using-declaration).
17047 static bool isAcceptableTagRedeclContext(Sema
&S
, DeclContext
*OldDC
,
17048 DeclContext
*NewDC
) {
17049 OldDC
= OldDC
->getRedeclContext();
17050 NewDC
= NewDC
->getRedeclContext();
17052 if (OldDC
->Equals(NewDC
))
17055 // In MSVC mode, we allow a redeclaration if the contexts are related (either
17056 // encloses the other).
17057 if (S
.getLangOpts().MSVCCompat
&&
17058 (OldDC
->Encloses(NewDC
) || NewDC
->Encloses(OldDC
)))
17064 /// This is invoked when we see 'struct foo' or 'struct {'. In the
17065 /// former case, Name will be non-null. In the later case, Name will be null.
17066 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
17067 /// reference/declaration/definition of a tag.
17069 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
17070 /// trailing-type-specifier) other than one in an alias-declaration.
17072 /// \param SkipBody If non-null, will be set to indicate if the caller should
17073 /// skip the definition of this tag and treat it as if it were a declaration.
17075 Sema::ActOnTag(Scope
*S
, unsigned TagSpec
, TagUseKind TUK
, SourceLocation KWLoc
,
17076 CXXScopeSpec
&SS
, IdentifierInfo
*Name
, SourceLocation NameLoc
,
17077 const ParsedAttributesView
&Attrs
, AccessSpecifier AS
,
17078 SourceLocation ModulePrivateLoc
,
17079 MultiTemplateParamsArg TemplateParameterLists
, bool &OwnedDecl
,
17080 bool &IsDependent
, SourceLocation ScopedEnumKWLoc
,
17081 bool ScopedEnumUsesClassTag
, TypeResult UnderlyingType
,
17082 bool IsTypeSpecifier
, bool IsTemplateParamOrArg
,
17083 OffsetOfKind OOK
, SkipBodyInfo
*SkipBody
) {
17084 // If this is not a definition, it must have a name.
17085 IdentifierInfo
*OrigName
= Name
;
17086 assert((Name
!= nullptr || TUK
== TUK_Definition
) &&
17087 "Nameless record must be a definition!");
17088 assert(TemplateParameterLists
.size() == 0 || TUK
!= TUK_Reference
);
17091 TagTypeKind Kind
= TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec
);
17092 bool ScopedEnum
= ScopedEnumKWLoc
.isValid();
17094 // FIXME: Check member specializations more carefully.
17095 bool isMemberSpecialization
= false;
17096 bool Invalid
= false;
17098 // We only need to do this matching if we have template parameters
17099 // or a scope specifier, which also conveniently avoids this work
17100 // for non-C++ cases.
17101 if (TemplateParameterLists
.size() > 0 ||
17102 (SS
.isNotEmpty() && TUK
!= TUK_Reference
)) {
17103 if (TemplateParameterList
*TemplateParams
=
17104 MatchTemplateParametersToScopeSpecifier(
17105 KWLoc
, NameLoc
, SS
, nullptr, TemplateParameterLists
,
17106 TUK
== TUK_Friend
, isMemberSpecialization
, Invalid
)) {
17107 if (Kind
== TagTypeKind::Enum
) {
17108 Diag(KWLoc
, diag::err_enum_template
);
17112 if (TemplateParams
->size() > 0) {
17113 // This is a declaration or definition of a class template (which may
17114 // be a member of another template).
17120 DeclResult Result
= CheckClassTemplate(
17121 S
, TagSpec
, TUK
, KWLoc
, SS
, Name
, NameLoc
, Attrs
, TemplateParams
,
17122 AS
, ModulePrivateLoc
,
17123 /*FriendLoc*/ SourceLocation(), TemplateParameterLists
.size() - 1,
17124 TemplateParameterLists
.data(), SkipBody
);
17125 return Result
.get();
17127 // The "template<>" header is extraneous.
17128 Diag(TemplateParams
->getTemplateLoc(), diag::err_template_tag_noparams
)
17129 << TypeWithKeyword::getTagTypeKindName(Kind
) << Name
;
17130 isMemberSpecialization
= true;
17134 if (!TemplateParameterLists
.empty() && isMemberSpecialization
&&
17135 CheckTemplateDeclScope(S
, TemplateParameterLists
.back()))
17139 // Figure out the underlying type if this a enum declaration. We need to do
17140 // this early, because it's needed to detect if this is an incompatible
17142 llvm::PointerUnion
<const Type
*, TypeSourceInfo
*> EnumUnderlying
;
17143 bool IsFixed
= !UnderlyingType
.isUnset() || ScopedEnum
;
17145 if (Kind
== TagTypeKind::Enum
) {
17146 if (UnderlyingType
.isInvalid() || (!UnderlyingType
.get() && ScopedEnum
)) {
17147 // No underlying type explicitly specified, or we failed to parse the
17148 // type, default to int.
17149 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17150 } else if (UnderlyingType
.get()) {
17151 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
17152 // integral type; any cv-qualification is ignored.
17153 TypeSourceInfo
*TI
= nullptr;
17154 GetTypeFromParser(UnderlyingType
.get(), &TI
);
17155 EnumUnderlying
= TI
;
17157 if (CheckEnumUnderlyingType(TI
))
17158 // Recover by falling back to int.
17159 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17161 if (DiagnoseUnexpandedParameterPack(TI
->getTypeLoc().getBeginLoc(), TI
,
17162 UPPC_FixedUnderlyingType
))
17163 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17165 } else if (Context
.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
17166 // For MSVC ABI compatibility, unfixed enums must use an underlying type
17167 // of 'int'. However, if this is an unfixed forward declaration, don't set
17168 // the underlying type unless the user enables -fms-compatibility. This
17169 // makes unfixed forward declared enums incomplete and is more conforming.
17170 if (TUK
== TUK_Definition
|| getLangOpts().MSVCCompat
)
17171 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17175 DeclContext
*SearchDC
= CurContext
;
17176 DeclContext
*DC
= CurContext
;
17177 bool isStdBadAlloc
= false;
17178 bool isStdAlignValT
= false;
17180 RedeclarationKind Redecl
= forRedeclarationInCurContext();
17181 if (TUK
== TUK_Friend
|| TUK
== TUK_Reference
)
17182 Redecl
= NotForRedeclaration
;
17184 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
17185 /// implemented asks for structural equivalence checking, the returned decl
17186 /// here is passed back to the parser, allowing the tag body to be parsed.
17187 auto createTagFromNewDecl
= [&]() -> TagDecl
* {
17188 assert(!getLangOpts().CPlusPlus
&& "not meant for C++ usage");
17189 // If there is an identifier, use the location of the identifier as the
17190 // location of the decl, otherwise use the location of the struct/union
17192 SourceLocation Loc
= NameLoc
.isValid() ? NameLoc
: KWLoc
;
17193 TagDecl
*New
= nullptr;
17195 if (Kind
== TagTypeKind::Enum
) {
17196 New
= EnumDecl::Create(Context
, SearchDC
, KWLoc
, Loc
, Name
, nullptr,
17197 ScopedEnum
, ScopedEnumUsesClassTag
, IsFixed
);
17198 // If this is an undefined enum, bail.
17199 if (TUK
!= TUK_Definition
&& !Invalid
)
17201 if (EnumUnderlying
) {
17202 EnumDecl
*ED
= cast
<EnumDecl
>(New
);
17203 if (TypeSourceInfo
*TI
= EnumUnderlying
.dyn_cast
<TypeSourceInfo
*>())
17204 ED
->setIntegerTypeSourceInfo(TI
);
17206 ED
->setIntegerType(QualType(EnumUnderlying
.get
<const Type
*>(), 0));
17207 QualType EnumTy
= ED
->getIntegerType();
17208 ED
->setPromotionType(Context
.isPromotableIntegerType(EnumTy
)
17209 ? Context
.getPromotedIntegerType(EnumTy
)
17212 } else { // struct/union
17213 New
= RecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17217 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(New
)) {
17218 // Add alignment attributes if necessary; these attributes are checked
17219 // when the ASTContext lays out the structure.
17221 // It is important for implementing the correct semantics that this
17222 // happen here (in ActOnTag). The #pragma pack stack is
17223 // maintained as a result of parser callbacks which can occur at
17224 // many points during the parsing of a struct declaration (because
17225 // the #pragma tokens are effectively skipped over during the
17226 // parsing of the struct).
17227 if (TUK
== TUK_Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
)) {
17228 AddAlignmentAttributesForRecord(RD
);
17229 AddMsStructLayoutForRecord(RD
);
17232 New
->setLexicalDeclContext(CurContext
);
17236 LookupResult
Previous(*this, Name
, NameLoc
, LookupTagName
, Redecl
);
17237 if (Name
&& SS
.isNotEmpty()) {
17238 // We have a nested-name tag ('struct foo::bar').
17240 // Check for invalid 'foo::'.
17241 if (SS
.isInvalid()) {
17243 goto CreateNewDecl
;
17246 // If this is a friend or a reference to a class in a dependent
17247 // context, don't try to make a decl for it.
17248 if (TUK
== TUK_Friend
|| TUK
== TUK_Reference
) {
17249 DC
= computeDeclContext(SS
, false);
17251 IsDependent
= true;
17255 DC
= computeDeclContext(SS
, true);
17257 Diag(SS
.getRange().getBegin(), diag::err_dependent_nested_name_spec
)
17263 if (RequireCompleteDeclContext(SS
, DC
))
17267 // Look-up name inside 'foo::'.
17268 LookupQualifiedName(Previous
, DC
);
17270 if (Previous
.isAmbiguous())
17273 if (Previous
.empty()) {
17274 // Name lookup did not find anything. However, if the
17275 // nested-name-specifier refers to the current instantiation,
17276 // and that current instantiation has any dependent base
17277 // classes, we might find something at instantiation time: treat
17278 // this as a dependent elaborated-type-specifier.
17279 // But this only makes any sense for reference-like lookups.
17280 if (Previous
.wasNotFoundInCurrentInstantiation() &&
17281 (TUK
== TUK_Reference
|| TUK
== TUK_Friend
)) {
17282 IsDependent
= true;
17286 // A tag 'foo::bar' must already exist.
17287 Diag(NameLoc
, diag::err_not_tag_in_scope
)
17288 << llvm::to_underlying(Kind
) << Name
<< DC
<< SS
.getRange();
17291 goto CreateNewDecl
;
17294 // C++14 [class.mem]p14:
17295 // If T is the name of a class, then each of the following shall have a
17296 // name different from T:
17297 // -- every member of class T that is itself a type
17298 if (TUK
!= TUK_Reference
&& TUK
!= TUK_Friend
&&
17299 DiagnoseClassNameShadow(SearchDC
, DeclarationNameInfo(Name
, NameLoc
)))
17302 // If this is a named struct, check to see if there was a previous forward
17303 // declaration or definition.
17304 // FIXME: We're looking into outer scopes here, even when we
17305 // shouldn't be. Doing so can result in ambiguities that we
17306 // shouldn't be diagnosing.
17307 LookupName(Previous
, S
);
17309 // When declaring or defining a tag, ignore ambiguities introduced
17310 // by types using'ed into this scope.
17311 if (Previous
.isAmbiguous() &&
17312 (TUK
== TUK_Definition
|| TUK
== TUK_Declaration
)) {
17313 LookupResult::Filter F
= Previous
.makeFilter();
17314 while (F
.hasNext()) {
17315 NamedDecl
*ND
= F
.next();
17316 if (!ND
->getDeclContext()->getRedeclContext()->Equals(
17317 SearchDC
->getRedeclContext()))
17323 // C++11 [namespace.memdef]p3:
17324 // If the name in a friend declaration is neither qualified nor
17325 // a template-id and the declaration is a function or an
17326 // elaborated-type-specifier, the lookup to determine whether
17327 // the entity has been previously declared shall not consider
17328 // any scopes outside the innermost enclosing namespace.
17330 // MSVC doesn't implement the above rule for types, so a friend tag
17331 // declaration may be a redeclaration of a type declared in an enclosing
17332 // scope. They do implement this rule for friend functions.
17334 // Does it matter that this should be by scope instead of by
17335 // semantic context?
17336 if (!Previous
.empty() && TUK
== TUK_Friend
) {
17337 DeclContext
*EnclosingNS
= SearchDC
->getEnclosingNamespaceContext();
17338 LookupResult::Filter F
= Previous
.makeFilter();
17339 bool FriendSawTagOutsideEnclosingNamespace
= false;
17340 while (F
.hasNext()) {
17341 NamedDecl
*ND
= F
.next();
17342 DeclContext
*DC
= ND
->getDeclContext()->getRedeclContext();
17343 if (DC
->isFileContext() &&
17344 !EnclosingNS
->Encloses(ND
->getDeclContext())) {
17345 if (getLangOpts().MSVCCompat
)
17346 FriendSawTagOutsideEnclosingNamespace
= true;
17353 // Diagnose this MSVC extension in the easy case where lookup would have
17354 // unambiguously found something outside the enclosing namespace.
17355 if (Previous
.isSingleResult() && FriendSawTagOutsideEnclosingNamespace
) {
17356 NamedDecl
*ND
= Previous
.getFoundDecl();
17357 Diag(NameLoc
, diag::ext_friend_tag_redecl_outside_namespace
)
17358 << createFriendTagNNSFixIt(*this, ND
, S
, NameLoc
);
17362 // Note: there used to be some attempt at recovery here.
17363 if (Previous
.isAmbiguous())
17366 if (!getLangOpts().CPlusPlus
&& TUK
!= TUK_Reference
) {
17367 // FIXME: This makes sure that we ignore the contexts associated
17368 // with C structs, unions, and enums when looking for a matching
17369 // tag declaration or definition. See the similar lookup tweak
17370 // in Sema::LookupName; is there a better way to deal with this?
17371 while (isa
<RecordDecl
, EnumDecl
, ObjCContainerDecl
>(SearchDC
))
17372 SearchDC
= SearchDC
->getParent();
17373 } else if (getLangOpts().CPlusPlus
) {
17374 // Inside ObjCContainer want to keep it as a lexical decl context but go
17375 // past it (most often to TranslationUnit) to find the semantic decl
17377 while (isa
<ObjCContainerDecl
>(SearchDC
))
17378 SearchDC
= SearchDC
->getParent();
17380 } else if (getLangOpts().CPlusPlus
) {
17381 // Don't use ObjCContainerDecl as the semantic decl context for anonymous
17382 // TagDecl the same way as we skip it for named TagDecl.
17383 while (isa
<ObjCContainerDecl
>(SearchDC
))
17384 SearchDC
= SearchDC
->getParent();
17387 if (Previous
.isSingleResult() &&
17388 Previous
.getFoundDecl()->isTemplateParameter()) {
17389 // Maybe we will complain about the shadowed template parameter.
17390 DiagnoseTemplateParameterShadow(NameLoc
, Previous
.getFoundDecl());
17391 // Just pretend that we didn't see the previous declaration.
17395 if (getLangOpts().CPlusPlus
&& Name
&& DC
&& StdNamespace
&&
17396 DC
->Equals(getStdNamespace())) {
17397 if (Name
->isStr("bad_alloc")) {
17398 // This is a declaration of or a reference to "std::bad_alloc".
17399 isStdBadAlloc
= true;
17401 // If std::bad_alloc has been implicitly declared (but made invisible to
17402 // name lookup), fill in this implicit declaration as the previous
17403 // declaration, so that the declarations get chained appropriately.
17404 if (Previous
.empty() && StdBadAlloc
)
17405 Previous
.addDecl(getStdBadAlloc());
17406 } else if (Name
->isStr("align_val_t")) {
17407 isStdAlignValT
= true;
17408 if (Previous
.empty() && StdAlignValT
)
17409 Previous
.addDecl(getStdAlignValT());
17413 // If we didn't find a previous declaration, and this is a reference
17414 // (or friend reference), move to the correct scope. In C++, we
17415 // also need to do a redeclaration lookup there, just in case
17416 // there's a shadow friend decl.
17417 if (Name
&& Previous
.empty() &&
17418 (TUK
== TUK_Reference
|| TUK
== TUK_Friend
|| IsTemplateParamOrArg
)) {
17419 if (Invalid
) goto CreateNewDecl
;
17420 assert(SS
.isEmpty());
17422 if (TUK
== TUK_Reference
|| IsTemplateParamOrArg
) {
17423 // C++ [basic.scope.pdecl]p5:
17424 // -- for an elaborated-type-specifier of the form
17426 // class-key identifier
17428 // if the elaborated-type-specifier is used in the
17429 // decl-specifier-seq or parameter-declaration-clause of a
17430 // function defined in namespace scope, the identifier is
17431 // declared as a class-name in the namespace that contains
17432 // the declaration; otherwise, except as a friend
17433 // declaration, the identifier is declared in the smallest
17434 // non-class, non-function-prototype scope that contains the
17437 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
17438 // C structs and unions.
17440 // It is an error in C++ to declare (rather than define) an enum
17441 // type, including via an elaborated type specifier. We'll
17442 // diagnose that later; for now, declare the enum in the same
17443 // scope as we would have picked for any other tag type.
17445 // GNU C also supports this behavior as part of its incomplete
17446 // enum types extension, while GNU C++ does not.
17448 // Find the context where we'll be declaring the tag.
17449 // FIXME: We would like to maintain the current DeclContext as the
17450 // lexical context,
17451 SearchDC
= getTagInjectionContext(SearchDC
);
17453 // Find the scope where we'll be declaring the tag.
17454 S
= getTagInjectionScope(S
, getLangOpts());
17456 assert(TUK
== TUK_Friend
);
17457 CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(SearchDC
);
17459 // C++ [namespace.memdef]p3:
17460 // If a friend declaration in a non-local class first declares a
17461 // class or function, the friend class or function is a member of
17462 // the innermost enclosing namespace.
17463 SearchDC
= RD
->isLocalClass() ? RD
->isLocalClass()
17464 : SearchDC
->getEnclosingNamespaceContext();
17467 // In C++, we need to do a redeclaration lookup to properly
17468 // diagnose some problems.
17469 // FIXME: redeclaration lookup is also used (with and without C++) to find a
17470 // hidden declaration so that we don't get ambiguity errors when using a
17471 // type declared by an elaborated-type-specifier. In C that is not correct
17472 // and we should instead merge compatible types found by lookup.
17473 if (getLangOpts().CPlusPlus
) {
17474 // FIXME: This can perform qualified lookups into function contexts,
17475 // which are meaningless.
17476 Previous
.setRedeclarationKind(forRedeclarationInCurContext());
17477 LookupQualifiedName(Previous
, SearchDC
);
17479 Previous
.setRedeclarationKind(forRedeclarationInCurContext());
17480 LookupName(Previous
, S
);
17484 // If we have a known previous declaration to use, then use it.
17485 if (Previous
.empty() && SkipBody
&& SkipBody
->Previous
)
17486 Previous
.addDecl(SkipBody
->Previous
);
17488 if (!Previous
.empty()) {
17489 NamedDecl
*PrevDecl
= Previous
.getFoundDecl();
17490 NamedDecl
*DirectPrevDecl
= Previous
.getRepresentativeDecl();
17492 // It's okay to have a tag decl in the same scope as a typedef
17493 // which hides a tag decl in the same scope. Finding this
17494 // with a redeclaration lookup can only actually happen in C++.
17496 // This is also okay for elaborated-type-specifiers, which is
17497 // technically forbidden by the current standard but which is
17498 // okay according to the likely resolution of an open issue;
17499 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
17500 if (getLangOpts().CPlusPlus
) {
17501 if (TypedefNameDecl
*TD
= dyn_cast
<TypedefNameDecl
>(PrevDecl
)) {
17502 if (const TagType
*TT
= TD
->getUnderlyingType()->getAs
<TagType
>()) {
17503 TagDecl
*Tag
= TT
->getDecl();
17504 if (Tag
->getDeclName() == Name
&&
17505 Tag
->getDeclContext()->getRedeclContext()
17506 ->Equals(TD
->getDeclContext()->getRedeclContext())) {
17509 Previous
.addDecl(Tag
);
17510 Previous
.resolveKind();
17516 // If this is a redeclaration of a using shadow declaration, it must
17517 // declare a tag in the same context. In MSVC mode, we allow a
17518 // redefinition if either context is within the other.
17519 if (auto *Shadow
= dyn_cast
<UsingShadowDecl
>(DirectPrevDecl
)) {
17520 auto *OldTag
= dyn_cast
<TagDecl
>(PrevDecl
);
17521 if (SS
.isEmpty() && TUK
!= TUK_Reference
&& TUK
!= TUK_Friend
&&
17522 isDeclInScope(Shadow
, SearchDC
, S
, isMemberSpecialization
) &&
17523 !(OldTag
&& isAcceptableTagRedeclContext(
17524 *this, OldTag
->getDeclContext(), SearchDC
))) {
17525 Diag(KWLoc
, diag::err_using_decl_conflict_reverse
);
17526 Diag(Shadow
->getTargetDecl()->getLocation(),
17527 diag::note_using_decl_target
);
17528 Diag(Shadow
->getIntroducer()->getLocation(), diag::note_using_decl
)
17530 // Recover by ignoring the old declaration.
17532 goto CreateNewDecl
;
17536 if (TagDecl
*PrevTagDecl
= dyn_cast
<TagDecl
>(PrevDecl
)) {
17537 // If this is a use of a previous tag, or if the tag is already declared
17538 // in the same scope (so that the definition/declaration completes or
17539 // rementions the tag), reuse the decl.
17540 if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
||
17541 isDeclInScope(DirectPrevDecl
, SearchDC
, S
,
17542 SS
.isNotEmpty() || isMemberSpecialization
)) {
17543 // Make sure that this wasn't declared as an enum and now used as a
17544 // struct or something similar.
17545 if (!isAcceptableTagRedeclaration(PrevTagDecl
, Kind
,
17546 TUK
== TUK_Definition
, KWLoc
,
17548 bool SafeToContinue
=
17549 (PrevTagDecl
->getTagKind() != TagTypeKind::Enum
&&
17550 Kind
!= TagTypeKind::Enum
);
17551 if (SafeToContinue
)
17552 Diag(KWLoc
, diag::err_use_with_wrong_tag
)
17554 << FixItHint::CreateReplacement(SourceRange(KWLoc
),
17555 PrevTagDecl
->getKindName());
17557 Diag(KWLoc
, diag::err_use_with_wrong_tag
) << Name
;
17558 Diag(PrevTagDecl
->getLocation(), diag::note_previous_use
);
17560 if (SafeToContinue
)
17561 Kind
= PrevTagDecl
->getTagKind();
17563 // Recover by making this an anonymous redefinition.
17570 if (Kind
== TagTypeKind::Enum
&&
17571 PrevTagDecl
->getTagKind() == TagTypeKind::Enum
) {
17572 const EnumDecl
*PrevEnum
= cast
<EnumDecl
>(PrevTagDecl
);
17573 if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
)
17574 return PrevTagDecl
;
17576 QualType EnumUnderlyingTy
;
17577 if (TypeSourceInfo
*TI
= EnumUnderlying
.dyn_cast
<TypeSourceInfo
*>())
17578 EnumUnderlyingTy
= TI
->getType().getUnqualifiedType();
17579 else if (const Type
*T
= EnumUnderlying
.dyn_cast
<const Type
*>())
17580 EnumUnderlyingTy
= QualType(T
, 0);
17582 // All conflicts with previous declarations are recovered by
17583 // returning the previous declaration, unless this is a definition,
17584 // in which case we want the caller to bail out.
17585 if (CheckEnumRedeclaration(NameLoc
.isValid() ? NameLoc
: KWLoc
,
17586 ScopedEnum
, EnumUnderlyingTy
,
17587 IsFixed
, PrevEnum
))
17588 return TUK
== TUK_Declaration
? PrevTagDecl
: nullptr;
17591 // C++11 [class.mem]p1:
17592 // A member shall not be declared twice in the member-specification,
17593 // except that a nested class or member class template can be declared
17594 // and then later defined.
17595 if (TUK
== TUK_Declaration
&& PrevDecl
->isCXXClassMember() &&
17596 S
->isDeclScope(PrevDecl
)) {
17597 Diag(NameLoc
, diag::ext_member_redeclared
);
17598 Diag(PrevTagDecl
->getLocation(), diag::note_previous_declaration
);
17602 // If this is a use, just return the declaration we found, unless
17603 // we have attributes.
17604 if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
) {
17605 if (!Attrs
.empty()) {
17606 // FIXME: Diagnose these attributes. For now, we create a new
17607 // declaration to hold them.
17608 } else if (TUK
== TUK_Reference
&&
17609 (PrevTagDecl
->getFriendObjectKind() ==
17610 Decl::FOK_Undeclared
||
17611 PrevDecl
->getOwningModule() != getCurrentModule()) &&
17613 // This declaration is a reference to an existing entity, but
17614 // has different visibility from that entity: it either makes
17615 // a friend visible or it makes a type visible in a new module.
17616 // In either case, create a new declaration. We only do this if
17617 // the declaration would have meant the same thing if no prior
17618 // declaration were found, that is, if it was found in the same
17619 // scope where we would have injected a declaration.
17620 if (!getTagInjectionContext(CurContext
)->getRedeclContext()
17621 ->Equals(PrevDecl
->getDeclContext()->getRedeclContext()))
17622 return PrevTagDecl
;
17623 // This is in the injected scope, create a new declaration in
17625 S
= getTagInjectionScope(S
, getLangOpts());
17627 return PrevTagDecl
;
17631 // Diagnose attempts to redefine a tag.
17632 if (TUK
== TUK_Definition
) {
17633 if (NamedDecl
*Def
= PrevTagDecl
->getDefinition()) {
17634 // If we're defining a specialization and the previous definition
17635 // is from an implicit instantiation, don't emit an error
17636 // here; we'll catch this in the general case below.
17637 bool IsExplicitSpecializationAfterInstantiation
= false;
17638 if (isMemberSpecialization
) {
17639 if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Def
))
17640 IsExplicitSpecializationAfterInstantiation
=
17641 RD
->getTemplateSpecializationKind() !=
17642 TSK_ExplicitSpecialization
;
17643 else if (EnumDecl
*ED
= dyn_cast
<EnumDecl
>(Def
))
17644 IsExplicitSpecializationAfterInstantiation
=
17645 ED
->getTemplateSpecializationKind() !=
17646 TSK_ExplicitSpecialization
;
17649 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
17650 // not keep more that one definition around (merge them). However,
17651 // ensure the decl passes the structural compatibility check in
17652 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
17653 NamedDecl
*Hidden
= nullptr;
17654 if (SkipBody
&& !hasVisibleDefinition(Def
, &Hidden
)) {
17655 // There is a definition of this tag, but it is not visible. We
17656 // explicitly make use of C++'s one definition rule here, and
17657 // assume that this definition is identical to the hidden one
17658 // we already have. Make the existing definition visible and
17659 // use it in place of this one.
17660 if (!getLangOpts().CPlusPlus
) {
17661 // Postpone making the old definition visible until after we
17662 // complete parsing the new one and do the structural
17664 SkipBody
->CheckSameAsPrevious
= true;
17665 SkipBody
->New
= createTagFromNewDecl();
17666 SkipBody
->Previous
= Def
;
17669 SkipBody
->ShouldSkip
= true;
17670 SkipBody
->Previous
= Def
;
17671 makeMergedDefinitionVisible(Hidden
);
17672 // Carry on and handle it like a normal definition. We'll
17673 // skip starting the definitiion later.
17675 } else if (!IsExplicitSpecializationAfterInstantiation
) {
17676 // A redeclaration in function prototype scope in C isn't
17677 // visible elsewhere, so merely issue a warning.
17678 if (!getLangOpts().CPlusPlus
&& S
->containedInPrototypeScope())
17679 Diag(NameLoc
, diag::warn_redefinition_in_param_list
) << Name
;
17681 Diag(NameLoc
, diag::err_redefinition
) << Name
;
17682 notePreviousDefinition(Def
,
17683 NameLoc
.isValid() ? NameLoc
: KWLoc
);
17684 // If this is a redefinition, recover by making this
17685 // struct be anonymous, which will make any later
17686 // references get the previous definition.
17692 // If the type is currently being defined, complain
17693 // about a nested redefinition.
17694 auto *TD
= Context
.getTagDeclType(PrevTagDecl
)->getAsTagDecl();
17695 if (TD
->isBeingDefined()) {
17696 Diag(NameLoc
, diag::err_nested_redefinition
) << Name
;
17697 Diag(PrevTagDecl
->getLocation(),
17698 diag::note_previous_definition
);
17705 // Okay, this is definition of a previously declared or referenced
17706 // tag. We're going to create a new Decl for it.
17709 // Okay, we're going to make a redeclaration. If this is some kind
17710 // of reference, make sure we build the redeclaration in the same DC
17711 // as the original, and ignore the current access specifier.
17712 if (TUK
== TUK_Friend
|| TUK
== TUK_Reference
) {
17713 SearchDC
= PrevTagDecl
->getDeclContext();
17717 // If we get here we have (another) forward declaration or we
17718 // have a definition. Just create a new decl.
17721 // If we get here, this is a definition of a new tag type in a nested
17722 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
17723 // new decl/type. We set PrevDecl to NULL so that the entities
17724 // have distinct types.
17727 // If we get here, we're going to create a new Decl. If PrevDecl
17728 // is non-NULL, it's a definition of the tag declared by
17729 // PrevDecl. If it's NULL, we have a new definition.
17731 // Otherwise, PrevDecl is not a tag, but was found with tag
17732 // lookup. This is only actually possible in C++, where a few
17733 // things like templates still live in the tag namespace.
17735 // Use a better diagnostic if an elaborated-type-specifier
17736 // found the wrong kind of type on the first
17737 // (non-redeclaration) lookup.
17738 if ((TUK
== TUK_Reference
|| TUK
== TUK_Friend
) &&
17739 !Previous
.isForRedeclaration()) {
17740 NonTagKind NTK
= getNonTagTypeDeclKind(PrevDecl
, Kind
);
17741 Diag(NameLoc
, diag::err_tag_reference_non_tag
)
17742 << PrevDecl
<< NTK
<< llvm::to_underlying(Kind
);
17743 Diag(PrevDecl
->getLocation(), diag::note_declared_at
);
17746 // Otherwise, only diagnose if the declaration is in scope.
17747 } else if (!isDeclInScope(DirectPrevDecl
, SearchDC
, S
,
17748 SS
.isNotEmpty() || isMemberSpecialization
)) {
17751 // Diagnose implicit declarations introduced by elaborated types.
17752 } else if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
) {
17753 NonTagKind NTK
= getNonTagTypeDeclKind(PrevDecl
, Kind
);
17754 Diag(NameLoc
, diag::err_tag_reference_conflict
) << NTK
;
17755 Diag(PrevDecl
->getLocation(), diag::note_previous_decl
) << PrevDecl
;
17758 // Otherwise it's a declaration. Call out a particularly common
17760 } else if (TypedefNameDecl
*TND
= dyn_cast
<TypedefNameDecl
>(PrevDecl
)) {
17762 if (isa
<TypeAliasDecl
>(PrevDecl
)) Kind
= 1;
17763 Diag(NameLoc
, diag::err_tag_definition_of_typedef
)
17764 << Name
<< Kind
<< TND
->getUnderlyingType();
17765 Diag(PrevDecl
->getLocation(), diag::note_previous_decl
) << PrevDecl
;
17768 // Otherwise, diagnose.
17770 // The tag name clashes with something else in the target scope,
17771 // issue an error and recover by making this tag be anonymous.
17772 Diag(NameLoc
, diag::err_redefinition_different_kind
) << Name
;
17773 notePreviousDefinition(PrevDecl
, NameLoc
);
17778 // The existing declaration isn't relevant to us; we're in a
17779 // new scope, so clear out the previous declaration.
17786 TagDecl
*PrevDecl
= nullptr;
17787 if (Previous
.isSingleResult())
17788 PrevDecl
= cast
<TagDecl
>(Previous
.getFoundDecl());
17790 // If there is an identifier, use the location of the identifier as the
17791 // location of the decl, otherwise use the location of the struct/union
17793 SourceLocation Loc
= NameLoc
.isValid() ? NameLoc
: KWLoc
;
17795 // Otherwise, create a new declaration. If there is a previous
17796 // declaration of the same entity, the two will be linked via
17800 if (Kind
== TagTypeKind::Enum
) {
17801 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17802 // enum X { A, B, C } D; D should chain to X.
17803 New
= EnumDecl::Create(Context
, SearchDC
, KWLoc
, Loc
, Name
,
17804 cast_or_null
<EnumDecl
>(PrevDecl
), ScopedEnum
,
17805 ScopedEnumUsesClassTag
, IsFixed
);
17807 if (isStdAlignValT
&& (!StdAlignValT
|| getStdAlignValT()->isImplicit()))
17808 StdAlignValT
= cast
<EnumDecl
>(New
);
17810 // If this is an undefined enum, warn.
17811 if (TUK
!= TUK_Definition
&& !Invalid
) {
17813 if (IsFixed
&& cast
<EnumDecl
>(New
)->isFixed()) {
17814 // C++0x: 7.2p2: opaque-enum-declaration.
17815 // Conflicts are diagnosed above. Do nothing.
17817 else if (PrevDecl
&& (Def
= cast
<EnumDecl
>(PrevDecl
)->getDefinition())) {
17818 Diag(Loc
, diag::ext_forward_ref_enum_def
)
17820 Diag(Def
->getLocation(), diag::note_previous_definition
);
17822 unsigned DiagID
= diag::ext_forward_ref_enum
;
17823 if (getLangOpts().MSVCCompat
)
17824 DiagID
= diag::ext_ms_forward_ref_enum
;
17825 else if (getLangOpts().CPlusPlus
)
17826 DiagID
= diag::err_forward_ref_enum
;
17831 if (EnumUnderlying
) {
17832 EnumDecl
*ED
= cast
<EnumDecl
>(New
);
17833 if (TypeSourceInfo
*TI
= EnumUnderlying
.dyn_cast
<TypeSourceInfo
*>())
17834 ED
->setIntegerTypeSourceInfo(TI
);
17836 ED
->setIntegerType(QualType(EnumUnderlying
.get
<const Type
*>(), 0));
17837 QualType EnumTy
= ED
->getIntegerType();
17838 ED
->setPromotionType(Context
.isPromotableIntegerType(EnumTy
)
17839 ? Context
.getPromotedIntegerType(EnumTy
)
17841 assert(ED
->isComplete() && "enum with type should be complete");
17844 // struct/union/class
17846 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17847 // struct X { int A; } D; D should chain to X.
17848 if (getLangOpts().CPlusPlus
) {
17849 // FIXME: Look for a way to use RecordDecl for simple structs.
17850 New
= CXXRecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17851 cast_or_null
<CXXRecordDecl
>(PrevDecl
));
17853 if (isStdBadAlloc
&& (!StdBadAlloc
|| getStdBadAlloc()->isImplicit()))
17854 StdBadAlloc
= cast
<CXXRecordDecl
>(New
);
17856 New
= RecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17857 cast_or_null
<RecordDecl
>(PrevDecl
));
17860 if (OOK
!= OOK_Outside
&& TUK
== TUK_Definition
&& !getLangOpts().CPlusPlus
)
17861 Diag(New
->getLocation(), diag::ext_type_defined_in_offsetof
)
17862 << (OOK
== OOK_Macro
) << New
->getSourceRange();
17864 // C++11 [dcl.type]p3:
17865 // A type-specifier-seq shall not define a class or enumeration [...].
17866 if (!Invalid
&& getLangOpts().CPlusPlus
&&
17867 (IsTypeSpecifier
|| IsTemplateParamOrArg
) && TUK
== TUK_Definition
) {
17868 Diag(New
->getLocation(), diag::err_type_defined_in_type_specifier
)
17869 << Context
.getTagDeclType(New
);
17873 if (!Invalid
&& getLangOpts().CPlusPlus
&& TUK
== TUK_Definition
&&
17874 DC
->getDeclKind() == Decl::Enum
) {
17875 Diag(New
->getLocation(), diag::err_type_defined_in_enum
)
17876 << Context
.getTagDeclType(New
);
17880 // Maybe add qualifier info.
17881 if (SS
.isNotEmpty()) {
17883 // If this is either a declaration or a definition, check the
17884 // nested-name-specifier against the current context.
17885 if ((TUK
== TUK_Definition
|| TUK
== TUK_Declaration
) &&
17886 diagnoseQualifiedDeclaration(SS
, DC
, OrigName
, Loc
,
17887 isMemberSpecialization
))
17890 New
->setQualifierInfo(SS
.getWithLocInContext(Context
));
17891 if (TemplateParameterLists
.size() > 0) {
17892 New
->setTemplateParameterListsInfo(Context
, TemplateParameterLists
);
17899 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(New
)) {
17900 // Add alignment attributes if necessary; these attributes are checked when
17901 // the ASTContext lays out the structure.
17903 // It is important for implementing the correct semantics that this
17904 // happen here (in ActOnTag). The #pragma pack stack is
17905 // maintained as a result of parser callbacks which can occur at
17906 // many points during the parsing of a struct declaration (because
17907 // the #pragma tokens are effectively skipped over during the
17908 // parsing of the struct).
17909 if (TUK
== TUK_Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
)) {
17910 AddAlignmentAttributesForRecord(RD
);
17911 AddMsStructLayoutForRecord(RD
);
17915 if (ModulePrivateLoc
.isValid()) {
17916 if (isMemberSpecialization
)
17917 Diag(New
->getLocation(), diag::err_module_private_specialization
)
17919 << FixItHint::CreateRemoval(ModulePrivateLoc
);
17920 // __module_private__ does not apply to local classes. However, we only
17921 // diagnose this as an error when the declaration specifiers are
17922 // freestanding. Here, we just ignore the __module_private__.
17923 else if (!SearchDC
->isFunctionOrMethod())
17924 New
->setModulePrivate();
17927 // If this is a specialization of a member class (of a class template),
17928 // check the specialization.
17929 if (isMemberSpecialization
&& CheckMemberSpecialization(New
, Previous
))
17932 // If we're declaring or defining a tag in function prototype scope in C,
17933 // note that this type can only be used within the function and add it to
17934 // the list of decls to inject into the function definition scope.
17935 if ((Name
|| Kind
== TagTypeKind::Enum
) &&
17936 getNonFieldDeclScope(S
)->isFunctionPrototypeScope()) {
17937 if (getLangOpts().CPlusPlus
) {
17938 // C++ [dcl.fct]p6:
17939 // Types shall not be defined in return or parameter types.
17940 if (TUK
== TUK_Definition
&& !IsTypeSpecifier
) {
17941 Diag(Loc
, diag::err_type_defined_in_param_type
)
17945 } else if (!PrevDecl
) {
17946 Diag(Loc
, diag::warn_decl_in_param_list
) << Context
.getTagDeclType(New
);
17951 New
->setInvalidDecl();
17953 // Set the lexical context. If the tag has a C++ scope specifier, the
17954 // lexical context will be different from the semantic context.
17955 New
->setLexicalDeclContext(CurContext
);
17957 // Mark this as a friend decl if applicable.
17958 // In Microsoft mode, a friend declaration also acts as a forward
17959 // declaration so we always pass true to setObjectOfFriendDecl to make
17960 // the tag name visible.
17961 if (TUK
== TUK_Friend
)
17962 New
->setObjectOfFriendDecl(getLangOpts().MSVCCompat
);
17964 // Set the access specifier.
17965 if (!Invalid
&& SearchDC
->isRecord())
17966 SetMemberAccessSpecifier(New
, PrevDecl
, AS
);
17969 CheckRedeclarationInModule(New
, PrevDecl
);
17971 if (TUK
== TUK_Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
))
17972 New
->startDefinition();
17974 ProcessDeclAttributeList(S
, New
, Attrs
);
17975 AddPragmaAttributes(S
, New
);
17977 // If this has an identifier, add it to the scope stack.
17978 if (TUK
== TUK_Friend
) {
17979 // We might be replacing an existing declaration in the lookup tables;
17980 // if so, borrow its access specifier.
17982 New
->setAccess(PrevDecl
->getAccess());
17984 DeclContext
*DC
= New
->getDeclContext()->getRedeclContext();
17985 DC
->makeDeclVisibleInContext(New
);
17986 if (Name
) // can be null along some error paths
17987 if (Scope
*EnclosingScope
= getScopeForDeclContext(S
, DC
))
17988 PushOnScopeChains(New
, EnclosingScope
, /* AddToContext = */ false);
17990 S
= getNonFieldDeclScope(S
);
17991 PushOnScopeChains(New
, S
, true);
17993 CurContext
->addDecl(New
);
17996 // If this is the C FILE type, notify the AST context.
17997 if (IdentifierInfo
*II
= New
->getIdentifier())
17998 if (!New
->isInvalidDecl() &&
17999 New
->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
18001 Context
.setFILEDecl(New
);
18004 mergeDeclAttributes(New
, PrevDecl
);
18006 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(New
))
18007 inferGslOwnerPointerAttribute(CXXRD
);
18009 // If there's a #pragma GCC visibility in scope, set the visibility of this
18011 AddPushedVisibilityAttribute(New
);
18013 if (isMemberSpecialization
&& !New
->isInvalidDecl())
18014 CompleteMemberSpecialization(New
, Previous
);
18017 // In C++, don't return an invalid declaration. We can't recover well from
18018 // the cases where we make the type anonymous.
18019 if (Invalid
&& getLangOpts().CPlusPlus
) {
18020 if (New
->isBeingDefined())
18021 if (auto RD
= dyn_cast
<RecordDecl
>(New
))
18022 RD
->completeDefinition();
18024 } else if (SkipBody
&& SkipBody
->ShouldSkip
) {
18025 return SkipBody
->Previous
;
18031 void Sema::ActOnTagStartDefinition(Scope
*S
, Decl
*TagD
) {
18032 AdjustDeclIfTemplate(TagD
);
18033 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
18035 // Enter the tag context.
18036 PushDeclContext(S
, Tag
);
18038 ActOnDocumentableDecl(TagD
);
18040 // If there's a #pragma GCC visibility in scope, set the visibility of this
18042 AddPushedVisibilityAttribute(Tag
);
18045 bool Sema::ActOnDuplicateDefinition(Decl
*Prev
, SkipBodyInfo
&SkipBody
) {
18046 if (!hasStructuralCompatLayout(Prev
, SkipBody
.New
))
18049 // Make the previous decl visible.
18050 makeMergedDefinitionVisible(SkipBody
.Previous
);
18054 void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl
*IDecl
) {
18055 assert(IDecl
->getLexicalParent() == CurContext
&&
18056 "The next DeclContext should be lexically contained in the current one.");
18057 CurContext
= IDecl
;
18060 void Sema::ActOnStartCXXMemberDeclarations(Scope
*S
, Decl
*TagD
,
18061 SourceLocation FinalLoc
,
18062 bool IsFinalSpelledSealed
,
18064 SourceLocation LBraceLoc
) {
18065 AdjustDeclIfTemplate(TagD
);
18066 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(TagD
);
18068 FieldCollector
->StartClass();
18070 if (!Record
->getIdentifier())
18074 Record
->markAbstract();
18076 if (FinalLoc
.isValid()) {
18077 Record
->addAttr(FinalAttr::Create(Context
, FinalLoc
,
18078 IsFinalSpelledSealed
18079 ? FinalAttr::Keyword_sealed
18080 : FinalAttr::Keyword_final
));
18083 // [...] The class-name is also inserted into the scope of the
18084 // class itself; this is known as the injected-class-name. For
18085 // purposes of access checking, the injected-class-name is treated
18086 // as if it were a public member name.
18087 CXXRecordDecl
*InjectedClassName
= CXXRecordDecl::Create(
18088 Context
, Record
->getTagKind(), CurContext
, Record
->getBeginLoc(),
18089 Record
->getLocation(), Record
->getIdentifier(),
18090 /*PrevDecl=*/nullptr,
18091 /*DelayTypeCreation=*/true);
18092 Context
.getTypeDeclType(InjectedClassName
, Record
);
18093 InjectedClassName
->setImplicit();
18094 InjectedClassName
->setAccess(AS_public
);
18095 if (ClassTemplateDecl
*Template
= Record
->getDescribedClassTemplate())
18096 InjectedClassName
->setDescribedClassTemplate(Template
);
18097 PushOnScopeChains(InjectedClassName
, S
);
18098 assert(InjectedClassName
->isInjectedClassName() &&
18099 "Broken injected-class-name");
18102 void Sema::ActOnTagFinishDefinition(Scope
*S
, Decl
*TagD
,
18103 SourceRange BraceRange
) {
18104 AdjustDeclIfTemplate(TagD
);
18105 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
18106 Tag
->setBraceRange(BraceRange
);
18108 // Make sure we "complete" the definition even it is invalid.
18109 if (Tag
->isBeingDefined()) {
18110 assert(Tag
->isInvalidDecl() && "We should already have completed it");
18111 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
))
18112 RD
->completeDefinition();
18115 if (auto *RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
18116 FieldCollector
->FinishClass();
18117 if (RD
->hasAttr
<SYCLSpecialClassAttr
>()) {
18118 auto *Def
= RD
->getDefinition();
18119 assert(Def
&& "The record is expected to have a completed definition");
18120 unsigned NumInitMethods
= 0;
18121 for (auto *Method
: Def
->methods()) {
18122 if (!Method
->getIdentifier())
18124 if (Method
->getName() == "__init")
18127 if (NumInitMethods
> 1 || !Def
->hasInitMethod())
18128 Diag(RD
->getLocation(), diag::err_sycl_special_type_num_init_method
);
18132 // Exit this scope of this tag's definition.
18135 if (getCurLexicalContext()->isObjCContainer() &&
18136 Tag
->getDeclContext()->isFileContext())
18137 Tag
->setTopLevelDeclInObjCContainer();
18139 // Notify the consumer that we've defined a tag.
18140 if (!Tag
->isInvalidDecl())
18141 Consumer
.HandleTagDeclDefinition(Tag
);
18143 // Clangs implementation of #pragma align(packed) differs in bitfield layout
18144 // from XLs and instead matches the XL #pragma pack(1) behavior.
18145 if (Context
.getTargetInfo().getTriple().isOSAIX() &&
18146 AlignPackStack
.hasValue()) {
18147 AlignPackInfo APInfo
= AlignPackStack
.CurrentValue
;
18148 // Only diagnose #pragma align(packed).
18149 if (!APInfo
.IsAlignAttr() || APInfo
.getAlignMode() != AlignPackInfo::Packed
)
18151 const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
);
18154 // Only warn if there is at least 1 bitfield member.
18155 if (llvm::any_of(RD
->fields(),
18156 [](const FieldDecl
*FD
) { return FD
->isBitField(); }))
18157 Diag(BraceRange
.getBegin(), diag::warn_pragma_align_not_xl_compatible
);
18161 void Sema::ActOnObjCContainerFinishDefinition() {
18162 // Exit this scope of this interface definition.
18166 void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl
*ObjCCtx
) {
18167 assert(ObjCCtx
== CurContext
&& "Mismatch of container contexts");
18168 OriginalLexicalContext
= ObjCCtx
;
18169 ActOnObjCContainerFinishDefinition();
18172 void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl
*ObjCCtx
) {
18173 ActOnObjCContainerStartDefinition(ObjCCtx
);
18174 OriginalLexicalContext
= nullptr;
18177 void Sema::ActOnTagDefinitionError(Scope
*S
, Decl
*TagD
) {
18178 AdjustDeclIfTemplate(TagD
);
18179 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
18180 Tag
->setInvalidDecl();
18182 // Make sure we "complete" the definition even it is invalid.
18183 if (Tag
->isBeingDefined()) {
18184 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
))
18185 RD
->completeDefinition();
18188 // We're undoing ActOnTagStartDefinition here, not
18189 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
18190 // the FieldCollector.
18195 // Note that FieldName may be null for anonymous bitfields.
18196 ExprResult
Sema::VerifyBitField(SourceLocation FieldLoc
,
18197 IdentifierInfo
*FieldName
, QualType FieldTy
,
18198 bool IsMsStruct
, Expr
*BitWidth
) {
18200 if (BitWidth
->containsErrors())
18201 return ExprError();
18203 // C99 6.7.2.1p4 - verify the field type.
18204 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
18205 if (!FieldTy
->isDependentType() && !FieldTy
->isIntegralOrEnumerationType()) {
18206 // Handle incomplete and sizeless types with a specific error.
18207 if (RequireCompleteSizedType(FieldLoc
, FieldTy
,
18208 diag::err_field_incomplete_or_sizeless
))
18209 return ExprError();
18211 return Diag(FieldLoc
, diag::err_not_integral_type_bitfield
)
18212 << FieldName
<< FieldTy
<< BitWidth
->getSourceRange();
18213 return Diag(FieldLoc
, diag::err_not_integral_type_anon_bitfield
)
18214 << FieldTy
<< BitWidth
->getSourceRange();
18215 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr
*>(BitWidth
),
18216 UPPC_BitFieldWidth
))
18217 return ExprError();
18219 // If the bit-width is type- or value-dependent, don't try to check
18221 if (BitWidth
->isValueDependent() || BitWidth
->isTypeDependent())
18224 llvm::APSInt Value
;
18225 ExprResult ICE
= VerifyIntegerConstantExpression(BitWidth
, &Value
, AllowFold
);
18226 if (ICE
.isInvalid())
18228 BitWidth
= ICE
.get();
18230 // Zero-width bitfield is ok for anonymous field.
18231 if (Value
== 0 && FieldName
)
18232 return Diag(FieldLoc
, diag::err_bitfield_has_zero_width
)
18233 << FieldName
<< BitWidth
->getSourceRange();
18235 if (Value
.isSigned() && Value
.isNegative()) {
18237 return Diag(FieldLoc
, diag::err_bitfield_has_negative_width
)
18238 << FieldName
<< toString(Value
, 10);
18239 return Diag(FieldLoc
, diag::err_anon_bitfield_has_negative_width
)
18240 << toString(Value
, 10);
18243 // The size of the bit-field must not exceed our maximum permitted object
18245 if (Value
.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context
)) {
18246 return Diag(FieldLoc
, diag::err_bitfield_too_wide
)
18247 << !FieldName
<< FieldName
<< toString(Value
, 10);
18250 if (!FieldTy
->isDependentType()) {
18251 uint64_t TypeStorageSize
= Context
.getTypeSize(FieldTy
);
18252 uint64_t TypeWidth
= Context
.getIntWidth(FieldTy
);
18253 bool BitfieldIsOverwide
= Value
.ugt(TypeWidth
);
18255 // Over-wide bitfields are an error in C or when using the MSVC bitfield
18257 bool CStdConstraintViolation
=
18258 BitfieldIsOverwide
&& !getLangOpts().CPlusPlus
;
18259 bool MSBitfieldViolation
=
18260 Value
.ugt(TypeStorageSize
) &&
18261 (IsMsStruct
|| Context
.getTargetInfo().getCXXABI().isMicrosoft());
18262 if (CStdConstraintViolation
|| MSBitfieldViolation
) {
18263 unsigned DiagWidth
=
18264 CStdConstraintViolation
? TypeWidth
: TypeStorageSize
;
18265 return Diag(FieldLoc
, diag::err_bitfield_width_exceeds_type_width
)
18266 << (bool)FieldName
<< FieldName
<< toString(Value
, 10)
18267 << !CStdConstraintViolation
<< DiagWidth
;
18270 // Warn on types where the user might conceivably expect to get all
18271 // specified bits as value bits: that's all integral types other than
18273 if (BitfieldIsOverwide
&& !FieldTy
->isBooleanType() && FieldName
) {
18274 Diag(FieldLoc
, diag::warn_bitfield_width_exceeds_type_width
)
18275 << FieldName
<< toString(Value
, 10)
18276 << (unsigned)TypeWidth
;
18283 /// ActOnField - Each field of a C struct/union is passed into this in order
18284 /// to create a FieldDecl object for it.
18285 Decl
*Sema::ActOnField(Scope
*S
, Decl
*TagD
, SourceLocation DeclStart
,
18286 Declarator
&D
, Expr
*BitfieldWidth
) {
18287 FieldDecl
*Res
= HandleField(S
, cast_if_present
<RecordDecl
>(TagD
), DeclStart
,
18289 /*InitStyle=*/ICIS_NoInit
, AS_public
);
18293 /// HandleField - Analyze a field of a C struct or a C++ data member.
18295 FieldDecl
*Sema::HandleField(Scope
*S
, RecordDecl
*Record
,
18296 SourceLocation DeclStart
,
18297 Declarator
&D
, Expr
*BitWidth
,
18298 InClassInitStyle InitStyle
,
18299 AccessSpecifier AS
) {
18300 if (D
.isDecompositionDeclarator()) {
18301 const DecompositionDeclarator
&Decomp
= D
.getDecompositionDeclarator();
18302 Diag(Decomp
.getLSquareLoc(), diag::err_decomp_decl_context
)
18303 << Decomp
.getSourceRange();
18307 IdentifierInfo
*II
= D
.getIdentifier();
18308 SourceLocation Loc
= DeclStart
;
18309 if (II
) Loc
= D
.getIdentifierLoc();
18311 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
18312 QualType T
= TInfo
->getType();
18313 if (getLangOpts().CPlusPlus
) {
18314 CheckExtraCXXDefaultArguments(D
);
18316 if (DiagnoseUnexpandedParameterPack(D
.getIdentifierLoc(), TInfo
,
18317 UPPC_DataMemberType
)) {
18318 D
.setInvalidType();
18320 TInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
18324 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
18326 if (D
.getDeclSpec().isInlineSpecified())
18327 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
18328 << getLangOpts().CPlusPlus17
;
18329 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec())
18330 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
18331 diag::err_invalid_thread
)
18332 << DeclSpec::getSpecifierName(TSCS
);
18334 // Check to see if this name was declared as a member previously
18335 NamedDecl
*PrevDecl
= nullptr;
18336 LookupResult
Previous(*this, II
, Loc
, LookupMemberName
,
18337 ForVisibleRedeclaration
);
18338 LookupName(Previous
, S
);
18339 switch (Previous
.getResultKind()) {
18340 case LookupResult::Found
:
18341 case LookupResult::FoundUnresolvedValue
:
18342 PrevDecl
= Previous
.getAsSingle
<NamedDecl
>();
18345 case LookupResult::FoundOverloaded
:
18346 PrevDecl
= Previous
.getRepresentativeDecl();
18349 case LookupResult::NotFound
:
18350 case LookupResult::NotFoundInCurrentInstantiation
:
18351 case LookupResult::Ambiguous
:
18354 Previous
.suppressDiagnostics();
18356 if (PrevDecl
&& PrevDecl
->isTemplateParameter()) {
18357 // Maybe we will complain about the shadowed template parameter.
18358 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), PrevDecl
);
18359 // Just pretend that we didn't see the previous declaration.
18360 PrevDecl
= nullptr;
18363 if (PrevDecl
&& !isDeclInScope(PrevDecl
, Record
, S
))
18364 PrevDecl
= nullptr;
18367 = (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable
);
18368 SourceLocation TSSL
= D
.getBeginLoc();
18370 = CheckFieldDecl(II
, T
, TInfo
, Record
, Loc
, Mutable
, BitWidth
, InitStyle
,
18371 TSSL
, AS
, PrevDecl
, &D
);
18373 if (NewFD
->isInvalidDecl())
18374 Record
->setInvalidDecl();
18376 if (D
.getDeclSpec().isModulePrivateSpecified())
18377 NewFD
->setModulePrivate();
18379 if (NewFD
->isInvalidDecl() && PrevDecl
) {
18380 // Don't introduce NewFD into scope; there's already something
18381 // with the same name in the same scope.
18383 PushOnScopeChains(NewFD
, S
);
18385 Record
->addDecl(NewFD
);
18390 /// Build a new FieldDecl and check its well-formedness.
18392 /// This routine builds a new FieldDecl given the fields name, type,
18393 /// record, etc. \p PrevDecl should refer to any previous declaration
18394 /// with the same name and in the same scope as the field to be
18397 /// \returns a new FieldDecl.
18399 /// \todo The Declarator argument is a hack. It will be removed once
18400 FieldDecl
*Sema::CheckFieldDecl(DeclarationName Name
, QualType T
,
18401 TypeSourceInfo
*TInfo
,
18402 RecordDecl
*Record
, SourceLocation Loc
,
18403 bool Mutable
, Expr
*BitWidth
,
18404 InClassInitStyle InitStyle
,
18405 SourceLocation TSSL
,
18406 AccessSpecifier AS
, NamedDecl
*PrevDecl
,
18408 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
18409 bool InvalidDecl
= false;
18410 if (D
) InvalidDecl
= D
->isInvalidType();
18412 // If we receive a broken type, recover by assuming 'int' and
18413 // marking this declaration as invalid.
18414 if (T
.isNull() || T
->containsErrors()) {
18415 InvalidDecl
= true;
18419 QualType EltTy
= Context
.getBaseElementType(T
);
18420 if (!EltTy
->isDependentType() && !EltTy
->containsErrors()) {
18421 if (RequireCompleteSizedType(Loc
, EltTy
,
18422 diag::err_field_incomplete_or_sizeless
)) {
18423 // Fields of incomplete type force their record to be invalid.
18424 Record
->setInvalidDecl();
18425 InvalidDecl
= true;
18428 EltTy
->isIncompleteType(&Def
);
18429 if (Def
&& Def
->isInvalidDecl()) {
18430 Record
->setInvalidDecl();
18431 InvalidDecl
= true;
18436 // TR 18037 does not allow fields to be declared with address space
18437 if (T
.hasAddressSpace() || T
->isDependentAddressSpaceType() ||
18438 T
->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
18439 Diag(Loc
, diag::err_field_with_address_space
);
18440 Record
->setInvalidDecl();
18441 InvalidDecl
= true;
18444 if (LangOpts
.OpenCL
) {
18445 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
18446 // used as structure or union field: image, sampler, event or block types.
18447 if (T
->isEventT() || T
->isImageType() || T
->isSamplerT() ||
18448 T
->isBlockPointerType()) {
18449 Diag(Loc
, diag::err_opencl_type_struct_or_union_field
) << T
;
18450 Record
->setInvalidDecl();
18451 InvalidDecl
= true;
18453 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
18455 if (BitWidth
&& !getOpenCLOptions().isAvailableOption(
18456 "__cl_clang_bitfields", LangOpts
)) {
18457 Diag(Loc
, diag::err_opencl_bitfields
);
18458 InvalidDecl
= true;
18462 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
18463 if (!InvalidDecl
&& getLangOpts().CPlusPlus
&& !II
&& BitWidth
&&
18464 T
.hasQualifiers()) {
18465 InvalidDecl
= true;
18466 Diag(Loc
, diag::err_anon_bitfield_qualifiers
);
18469 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18470 // than a variably modified type.
18471 if (!InvalidDecl
&& T
->isVariablyModifiedType()) {
18472 if (!tryToFixVariablyModifiedVarType(
18473 TInfo
, T
, Loc
, diag::err_typecheck_field_variable_size
))
18474 InvalidDecl
= true;
18477 // Fields can not have abstract class types
18478 if (!InvalidDecl
&& RequireNonAbstractType(Loc
, T
,
18479 diag::err_abstract_type_in_decl
,
18480 AbstractFieldType
))
18481 InvalidDecl
= true;
18484 BitWidth
= nullptr;
18485 // If this is declared as a bit-field, check the bit-field.
18488 VerifyBitField(Loc
, II
, T
, Record
->isMsStruct(Context
), BitWidth
).get();
18490 InvalidDecl
= true;
18491 BitWidth
= nullptr;
18495 // Check that 'mutable' is consistent with the type of the declaration.
18496 if (!InvalidDecl
&& Mutable
) {
18497 unsigned DiagID
= 0;
18498 if (T
->isReferenceType())
18499 DiagID
= getLangOpts().MSVCCompat
? diag::ext_mutable_reference
18500 : diag::err_mutable_reference
;
18501 else if (T
.isConstQualified())
18502 DiagID
= diag::err_mutable_const
;
18505 SourceLocation ErrLoc
= Loc
;
18506 if (D
&& D
->getDeclSpec().getStorageClassSpecLoc().isValid())
18507 ErrLoc
= D
->getDeclSpec().getStorageClassSpecLoc();
18508 Diag(ErrLoc
, DiagID
);
18509 if (DiagID
!= diag::ext_mutable_reference
) {
18511 InvalidDecl
= true;
18516 // C++11 [class.union]p8 (DR1460):
18517 // At most one variant member of a union may have a
18518 // brace-or-equal-initializer.
18519 if (InitStyle
!= ICIS_NoInit
)
18520 checkDuplicateDefaultInit(*this, cast
<CXXRecordDecl
>(Record
), Loc
);
18522 FieldDecl
*NewFD
= FieldDecl::Create(Context
, Record
, TSSL
, Loc
, II
, T
, TInfo
,
18523 BitWidth
, Mutable
, InitStyle
);
18525 NewFD
->setInvalidDecl();
18527 if (PrevDecl
&& !isa
<TagDecl
>(PrevDecl
) &&
18528 !PrevDecl
->isPlaceholderVar(getLangOpts())) {
18529 Diag(Loc
, diag::err_duplicate_member
) << II
;
18530 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
18531 NewFD
->setInvalidDecl();
18534 if (!InvalidDecl
&& getLangOpts().CPlusPlus
) {
18535 if (Record
->isUnion()) {
18536 if (const RecordType
*RT
= EltTy
->getAs
<RecordType
>()) {
18537 CXXRecordDecl
* RDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
18538 if (RDecl
->getDefinition()) {
18539 // C++ [class.union]p1: An object of a class with a non-trivial
18540 // constructor, a non-trivial copy constructor, a non-trivial
18541 // destructor, or a non-trivial copy assignment operator
18542 // cannot be a member of a union, nor can an array of such
18544 if (CheckNontrivialField(NewFD
))
18545 NewFD
->setInvalidDecl();
18549 // C++ [class.union]p1: If a union contains a member of reference type,
18550 // the program is ill-formed, except when compiling with MSVC extensions
18552 if (EltTy
->isReferenceType()) {
18553 Diag(NewFD
->getLocation(), getLangOpts().MicrosoftExt
?
18554 diag::ext_union_member_of_reference_type
:
18555 diag::err_union_member_of_reference_type
)
18556 << NewFD
->getDeclName() << EltTy
;
18557 if (!getLangOpts().MicrosoftExt
)
18558 NewFD
->setInvalidDecl();
18563 // FIXME: We need to pass in the attributes given an AST
18564 // representation, not a parser representation.
18566 // FIXME: The current scope is almost... but not entirely... correct here.
18567 ProcessDeclAttributes(getCurScope(), NewFD
, *D
);
18569 if (NewFD
->hasAttrs())
18570 CheckAlignasUnderalignment(NewFD
);
18573 // In auto-retain/release, infer strong retension for fields of
18574 // retainable type.
18575 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(NewFD
))
18576 NewFD
->setInvalidDecl();
18578 if (T
.isObjCGCWeak())
18579 Diag(Loc
, diag::warn_attribute_weak_on_field
);
18581 // PPC MMA non-pointer types are not allowed as field types.
18582 if (Context
.getTargetInfo().getTriple().isPPC64() &&
18583 CheckPPCMMAType(T
, NewFD
->getLocation()))
18584 NewFD
->setInvalidDecl();
18586 NewFD
->setAccess(AS
);
18590 bool Sema::CheckNontrivialField(FieldDecl
*FD
) {
18592 assert(getLangOpts().CPlusPlus
&& "valid check only for C++");
18594 if (FD
->isInvalidDecl() || FD
->getType()->isDependentType())
18597 QualType EltTy
= Context
.getBaseElementType(FD
->getType());
18598 if (const RecordType
*RT
= EltTy
->getAs
<RecordType
>()) {
18599 CXXRecordDecl
*RDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
18600 if (RDecl
->getDefinition()) {
18601 // We check for copy constructors before constructors
18602 // because otherwise we'll never get complaints about
18603 // copy constructors.
18605 CXXSpecialMember member
= CXXInvalid
;
18606 // We're required to check for any non-trivial constructors. Since the
18607 // implicit default constructor is suppressed if there are any
18608 // user-declared constructors, we just need to check that there is a
18609 // trivial default constructor and a trivial copy constructor. (We don't
18610 // worry about move constructors here, since this is a C++98 check.)
18611 if (RDecl
->hasNonTrivialCopyConstructor())
18612 member
= CXXCopyConstructor
;
18613 else if (!RDecl
->hasTrivialDefaultConstructor())
18614 member
= CXXDefaultConstructor
;
18615 else if (RDecl
->hasNonTrivialCopyAssignment())
18616 member
= CXXCopyAssignment
;
18617 else if (RDecl
->hasNonTrivialDestructor())
18618 member
= CXXDestructor
;
18620 if (member
!= CXXInvalid
) {
18621 if (!getLangOpts().CPlusPlus11
&&
18622 getLangOpts().ObjCAutoRefCount
&& RDecl
->hasObjectMember()) {
18623 // Objective-C++ ARC: it is an error to have a non-trivial field of
18624 // a union. However, system headers in Objective-C programs
18625 // occasionally have Objective-C lifetime objects within unions,
18626 // and rather than cause the program to fail, we make those
18627 // members unavailable.
18628 SourceLocation Loc
= FD
->getLocation();
18629 if (getSourceManager().isInSystemHeader(Loc
)) {
18630 if (!FD
->hasAttr
<UnavailableAttr
>())
18631 FD
->addAttr(UnavailableAttr::CreateImplicit(Context
, "",
18632 UnavailableAttr::IR_ARCFieldWithOwnership
, Loc
));
18637 Diag(FD
->getLocation(), getLangOpts().CPlusPlus11
?
18638 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member
:
18639 diag::err_illegal_union_or_anon_struct_member
)
18640 << FD
->getParent()->isUnion() << FD
->getDeclName() << member
;
18641 DiagnoseNontrivial(RDecl
, member
);
18642 return !getLangOpts().CPlusPlus11
;
18650 /// TranslateIvarVisibility - Translate visibility from a token ID to an
18651 /// AST enum value.
18652 static ObjCIvarDecl::AccessControl
18653 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility
) {
18654 switch (ivarVisibility
) {
18655 default: llvm_unreachable("Unknown visitibility kind");
18656 case tok::objc_private
: return ObjCIvarDecl::Private
;
18657 case tok::objc_public
: return ObjCIvarDecl::Public
;
18658 case tok::objc_protected
: return ObjCIvarDecl::Protected
;
18659 case tok::objc_package
: return ObjCIvarDecl::Package
;
18663 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
18664 /// in order to create an IvarDecl object for it.
18665 Decl
*Sema::ActOnIvar(Scope
*S
, SourceLocation DeclStart
, Declarator
&D
,
18666 Expr
*BitWidth
, tok::ObjCKeywordKind Visibility
) {
18668 IdentifierInfo
*II
= D
.getIdentifier();
18669 SourceLocation Loc
= DeclStart
;
18670 if (II
) Loc
= D
.getIdentifierLoc();
18672 // FIXME: Unnamed fields can be handled in various different ways, for
18673 // example, unnamed unions inject all members into the struct namespace!
18675 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
18676 QualType T
= TInfo
->getType();
18679 // 6.7.2.1p3, 6.7.2.1p4
18680 BitWidth
= VerifyBitField(Loc
, II
, T
, /*IsMsStruct*/false, BitWidth
).get();
18682 D
.setInvalidType();
18689 if (T
->isReferenceType()) {
18690 Diag(Loc
, diag::err_ivar_reference_type
);
18691 D
.setInvalidType();
18693 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18694 // than a variably modified type.
18695 else if (T
->isVariablyModifiedType()) {
18696 if (!tryToFixVariablyModifiedVarType(
18697 TInfo
, T
, Loc
, diag::err_typecheck_ivar_variable_size
))
18698 D
.setInvalidType();
18701 // Get the visibility (access control) for this ivar.
18702 ObjCIvarDecl::AccessControl ac
=
18703 Visibility
!= tok::objc_not_keyword
? TranslateIvarVisibility(Visibility
)
18704 : ObjCIvarDecl::None
;
18705 // Must set ivar's DeclContext to its enclosing interface.
18706 ObjCContainerDecl
*EnclosingDecl
= cast
<ObjCContainerDecl
>(CurContext
);
18707 if (!EnclosingDecl
|| EnclosingDecl
->isInvalidDecl())
18709 ObjCContainerDecl
*EnclosingContext
;
18710 if (ObjCImplementationDecl
*IMPDecl
=
18711 dyn_cast
<ObjCImplementationDecl
>(EnclosingDecl
)) {
18712 if (LangOpts
.ObjCRuntime
.isFragile()) {
18713 // Case of ivar declared in an implementation. Context is that of its class.
18714 EnclosingContext
= IMPDecl
->getClassInterface();
18715 assert(EnclosingContext
&& "Implementation has no class interface!");
18718 EnclosingContext
= EnclosingDecl
;
18720 if (ObjCCategoryDecl
*CDecl
=
18721 dyn_cast
<ObjCCategoryDecl
>(EnclosingDecl
)) {
18722 if (LangOpts
.ObjCRuntime
.isFragile() || !CDecl
->IsClassExtension()) {
18723 Diag(Loc
, diag::err_misplaced_ivar
) << CDecl
->IsClassExtension();
18727 EnclosingContext
= EnclosingDecl
;
18730 // Construct the decl.
18731 ObjCIvarDecl
*NewID
= ObjCIvarDecl::Create(
18732 Context
, EnclosingContext
, DeclStart
, Loc
, II
, T
, TInfo
, ac
, BitWidth
);
18734 if (T
->containsErrors())
18735 NewID
->setInvalidDecl();
18738 NamedDecl
*PrevDecl
= LookupSingleName(S
, II
, Loc
, LookupMemberName
,
18739 ForVisibleRedeclaration
);
18740 if (PrevDecl
&& isDeclInScope(PrevDecl
, EnclosingContext
, S
)
18741 && !isa
<TagDecl
>(PrevDecl
)) {
18742 Diag(Loc
, diag::err_duplicate_member
) << II
;
18743 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
18744 NewID
->setInvalidDecl();
18748 // Process attributes attached to the ivar.
18749 ProcessDeclAttributes(S
, NewID
, D
);
18751 if (D
.isInvalidType())
18752 NewID
->setInvalidDecl();
18754 // In ARC, infer 'retaining' for ivars of retainable type.
18755 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(NewID
))
18756 NewID
->setInvalidDecl();
18758 if (D
.getDeclSpec().isModulePrivateSpecified())
18759 NewID
->setModulePrivate();
18762 // FIXME: When interfaces are DeclContexts, we'll need to add
18763 // these to the interface.
18765 IdResolver
.AddDecl(NewID
);
18768 if (LangOpts
.ObjCRuntime
.isNonFragile() &&
18769 !NewID
->isInvalidDecl() && isa
<ObjCInterfaceDecl
>(EnclosingDecl
))
18770 Diag(Loc
, diag::warn_ivars_in_interface
);
18775 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
18776 /// class and class extensions. For every class \@interface and class
18777 /// extension \@interface, if the last ivar is a bitfield of any type,
18778 /// then add an implicit `char :0` ivar to the end of that interface.
18779 void Sema::ActOnLastBitfield(SourceLocation DeclLoc
,
18780 SmallVectorImpl
<Decl
*> &AllIvarDecls
) {
18781 if (LangOpts
.ObjCRuntime
.isFragile() || AllIvarDecls
.empty())
18784 Decl
*ivarDecl
= AllIvarDecls
[AllIvarDecls
.size()-1];
18785 ObjCIvarDecl
*Ivar
= cast
<ObjCIvarDecl
>(ivarDecl
);
18787 if (!Ivar
->isBitField() || Ivar
->isZeroLengthBitField(Context
))
18789 ObjCInterfaceDecl
*ID
= dyn_cast
<ObjCInterfaceDecl
>(CurContext
);
18791 if (ObjCCategoryDecl
*CD
= dyn_cast
<ObjCCategoryDecl
>(CurContext
)) {
18792 if (!CD
->IsClassExtension())
18795 // No need to add this to end of @implementation.
18799 // All conditions are met. Add a new bitfield to the tail end of ivars.
18800 llvm::APInt
Zero(Context
.getTypeSize(Context
.IntTy
), 0);
18801 Expr
* BW
= IntegerLiteral::Create(Context
, Zero
, Context
.IntTy
, DeclLoc
);
18803 Ivar
= ObjCIvarDecl::Create(Context
, cast
<ObjCContainerDecl
>(CurContext
),
18804 DeclLoc
, DeclLoc
, nullptr,
18806 Context
.getTrivialTypeSourceInfo(Context
.CharTy
,
18808 ObjCIvarDecl::Private
, BW
,
18810 AllIvarDecls
.push_back(Ivar
);
18813 /// [class.dtor]p4:
18814 /// At the end of the definition of a class, overload resolution is
18815 /// performed among the prospective destructors declared in that class with
18816 /// an empty argument list to select the destructor for the class, also
18817 /// known as the selected destructor.
18819 /// We do the overload resolution here, then mark the selected constructor in the AST.
18820 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
18821 static void ComputeSelectedDestructor(Sema
&S
, CXXRecordDecl
*Record
) {
18822 if (!Record
->hasUserDeclaredDestructor()) {
18826 SourceLocation Loc
= Record
->getLocation();
18827 OverloadCandidateSet
OCS(Loc
, OverloadCandidateSet::CSK_Normal
);
18829 for (auto *Decl
: Record
->decls()) {
18830 if (auto *DD
= dyn_cast
<CXXDestructorDecl
>(Decl
)) {
18831 if (DD
->isInvalidDecl())
18833 S
.AddOverloadCandidate(DD
, DeclAccessPair::make(DD
, DD
->getAccess()), {},
18835 assert(DD
->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
18842 OverloadCandidateSet::iterator Best
;
18844 OverloadCandidateDisplayKind DisplayKind
;
18846 switch (OCS
.BestViableFunction(S
, Loc
, Best
)) {
18849 Record
->addedSelectedDestructor(dyn_cast
<CXXDestructorDecl
>(Best
->Function
));
18853 Msg
= diag::err_ambiguous_destructor
;
18854 DisplayKind
= OCD_AmbiguousCandidates
;
18857 case OR_No_Viable_Function
:
18858 Msg
= diag::err_no_viable_destructor
;
18859 DisplayKind
= OCD_AllCandidates
;
18864 // OpenCL have got their own thing going with destructors. It's slightly broken,
18865 // but we allow it.
18866 if (!S
.LangOpts
.OpenCL
) {
18867 PartialDiagnostic Diag
= S
.PDiag(Msg
) << Record
;
18868 OCS
.NoteCandidates(PartialDiagnosticAt(Loc
, Diag
), S
, DisplayKind
, {});
18869 Record
->setInvalidDecl();
18871 // It's a bit hacky: At this point we've raised an error but we want the
18872 // rest of the compiler to continue somehow working. However almost
18873 // everything we'll try to do with the class will depend on there being a
18874 // destructor. So let's pretend the first one is selected and hope for the
18876 Record
->addedSelectedDestructor(dyn_cast
<CXXDestructorDecl
>(OCS
.begin()->Function
));
18880 /// [class.mem.special]p5
18881 /// Two special member functions are of the same kind if:
18882 /// - they are both default constructors,
18883 /// - they are both copy or move constructors with the same first parameter
18885 /// - they are both copy or move assignment operators with the same first
18886 /// parameter type and the same cv-qualifiers and ref-qualifier, if any.
18887 static bool AreSpecialMemberFunctionsSameKind(ASTContext
&Context
,
18890 Sema::CXXSpecialMember CSM
) {
18891 // We don't want to compare templates to non-templates: See
18892 // https://github.com/llvm/llvm-project/issues/59206
18893 if (CSM
== Sema::CXXDefaultConstructor
)
18894 return bool(M1
->getDescribedFunctionTemplate()) ==
18895 bool(M2
->getDescribedFunctionTemplate());
18896 // FIXME: better resolve CWG
18897 // https://cplusplus.github.io/CWG/issues/2787.html
18898 if (!Context
.hasSameType(M1
->getNonObjectParameter(0)->getType(),
18899 M2
->getNonObjectParameter(0)->getType()))
18901 if (!Context
.hasSameType(M1
->getFunctionObjectParameterReferenceType(),
18902 M2
->getFunctionObjectParameterReferenceType()))
18908 /// [class.mem.special]p6:
18909 /// An eligible special member function is a special member function for which:
18910 /// - the function is not deleted,
18911 /// - the associated constraints, if any, are satisfied, and
18912 /// - no special member function of the same kind whose associated constraints
18913 /// [CWG2595], if any, are satisfied is more constrained.
18914 static void SetEligibleMethods(Sema
&S
, CXXRecordDecl
*Record
,
18915 ArrayRef
<CXXMethodDecl
*> Methods
,
18916 Sema::CXXSpecialMember CSM
) {
18917 SmallVector
<bool, 4> SatisfactionStatus
;
18919 for (CXXMethodDecl
*Method
: Methods
) {
18920 const Expr
*Constraints
= Method
->getTrailingRequiresClause();
18922 SatisfactionStatus
.push_back(true);
18924 ConstraintSatisfaction Satisfaction
;
18925 if (S
.CheckFunctionConstraints(Method
, Satisfaction
))
18926 SatisfactionStatus
.push_back(false);
18928 SatisfactionStatus
.push_back(Satisfaction
.IsSatisfied
);
18932 for (size_t i
= 0; i
< Methods
.size(); i
++) {
18933 if (!SatisfactionStatus
[i
])
18935 CXXMethodDecl
*Method
= Methods
[i
];
18936 CXXMethodDecl
*OrigMethod
= Method
;
18937 if (FunctionDecl
*MF
= OrigMethod
->getInstantiatedFromMemberFunction())
18938 OrigMethod
= cast
<CXXMethodDecl
>(MF
);
18940 const Expr
*Constraints
= OrigMethod
->getTrailingRequiresClause();
18941 bool AnotherMethodIsMoreConstrained
= false;
18942 for (size_t j
= 0; j
< Methods
.size(); j
++) {
18943 if (i
== j
|| !SatisfactionStatus
[j
])
18945 CXXMethodDecl
*OtherMethod
= Methods
[j
];
18946 if (FunctionDecl
*MF
= OtherMethod
->getInstantiatedFromMemberFunction())
18947 OtherMethod
= cast
<CXXMethodDecl
>(MF
);
18949 if (!AreSpecialMemberFunctionsSameKind(S
.Context
, OrigMethod
, OtherMethod
,
18953 const Expr
*OtherConstraints
= OtherMethod
->getTrailingRequiresClause();
18954 if (!OtherConstraints
)
18956 if (!Constraints
) {
18957 AnotherMethodIsMoreConstrained
= true;
18960 if (S
.IsAtLeastAsConstrained(OtherMethod
, {OtherConstraints
}, OrigMethod
,
18962 AnotherMethodIsMoreConstrained
)) {
18963 // There was an error with the constraints comparison. Exit the loop
18964 // and don't consider this function eligible.
18965 AnotherMethodIsMoreConstrained
= true;
18967 if (AnotherMethodIsMoreConstrained
)
18970 // FIXME: Do not consider deleted methods as eligible after implementing
18971 // DR1734 and DR1496.
18972 if (!AnotherMethodIsMoreConstrained
) {
18973 Method
->setIneligibleOrNotSelected(false);
18974 Record
->addedEligibleSpecialMemberFunction(Method
, 1 << CSM
);
18979 static void ComputeSpecialMemberFunctionsEligiblity(Sema
&S
,
18980 CXXRecordDecl
*Record
) {
18981 SmallVector
<CXXMethodDecl
*, 4> DefaultConstructors
;
18982 SmallVector
<CXXMethodDecl
*, 4> CopyConstructors
;
18983 SmallVector
<CXXMethodDecl
*, 4> MoveConstructors
;
18984 SmallVector
<CXXMethodDecl
*, 4> CopyAssignmentOperators
;
18985 SmallVector
<CXXMethodDecl
*, 4> MoveAssignmentOperators
;
18987 for (auto *Decl
: Record
->decls()) {
18988 auto *MD
= dyn_cast
<CXXMethodDecl
>(Decl
);
18990 auto *FTD
= dyn_cast
<FunctionTemplateDecl
>(Decl
);
18992 MD
= dyn_cast
<CXXMethodDecl
>(FTD
->getTemplatedDecl());
18996 if (auto *CD
= dyn_cast
<CXXConstructorDecl
>(MD
)) {
18997 if (CD
->isInvalidDecl())
18999 if (CD
->isDefaultConstructor())
19000 DefaultConstructors
.push_back(MD
);
19001 else if (CD
->isCopyConstructor())
19002 CopyConstructors
.push_back(MD
);
19003 else if (CD
->isMoveConstructor())
19004 MoveConstructors
.push_back(MD
);
19005 } else if (MD
->isCopyAssignmentOperator()) {
19006 CopyAssignmentOperators
.push_back(MD
);
19007 } else if (MD
->isMoveAssignmentOperator()) {
19008 MoveAssignmentOperators
.push_back(MD
);
19012 SetEligibleMethods(S
, Record
, DefaultConstructors
,
19013 Sema::CXXDefaultConstructor
);
19014 SetEligibleMethods(S
, Record
, CopyConstructors
, Sema::CXXCopyConstructor
);
19015 SetEligibleMethods(S
, Record
, MoveConstructors
, Sema::CXXMoveConstructor
);
19016 SetEligibleMethods(S
, Record
, CopyAssignmentOperators
,
19017 Sema::CXXCopyAssignment
);
19018 SetEligibleMethods(S
, Record
, MoveAssignmentOperators
,
19019 Sema::CXXMoveAssignment
);
19022 void Sema::ActOnFields(Scope
*S
, SourceLocation RecLoc
, Decl
*EnclosingDecl
,
19023 ArrayRef
<Decl
*> Fields
, SourceLocation LBrac
,
19024 SourceLocation RBrac
,
19025 const ParsedAttributesView
&Attrs
) {
19026 assert(EnclosingDecl
&& "missing record or interface decl");
19028 // If this is an Objective-C @implementation or category and we have
19029 // new fields here we should reset the layout of the interface since
19030 // it will now change.
19031 if (!Fields
.empty() && isa
<ObjCContainerDecl
>(EnclosingDecl
)) {
19032 ObjCContainerDecl
*DC
= cast
<ObjCContainerDecl
>(EnclosingDecl
);
19033 switch (DC
->getKind()) {
19035 case Decl::ObjCCategory
:
19036 Context
.ResetObjCLayout(cast
<ObjCCategoryDecl
>(DC
)->getClassInterface());
19038 case Decl::ObjCImplementation
:
19040 ResetObjCLayout(cast
<ObjCImplementationDecl
>(DC
)->getClassInterface());
19045 RecordDecl
*Record
= dyn_cast
<RecordDecl
>(EnclosingDecl
);
19046 CXXRecordDecl
*CXXRecord
= dyn_cast
<CXXRecordDecl
>(EnclosingDecl
);
19048 // Start counting up the number of named members; make sure to include
19049 // members of anonymous structs and unions in the total.
19050 unsigned NumNamedMembers
= 0;
19052 for (const auto *I
: Record
->decls()) {
19053 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(I
))
19054 if (IFD
->getDeclName())
19059 // Verify that all the fields are okay.
19060 SmallVector
<FieldDecl
*, 32> RecFields
;
19062 for (ArrayRef
<Decl
*>::iterator i
= Fields
.begin(), end
= Fields
.end();
19064 FieldDecl
*FD
= cast
<FieldDecl
>(*i
);
19066 // Get the type for the field.
19067 const Type
*FDTy
= FD
->getType().getTypePtr();
19069 if (!FD
->isAnonymousStructOrUnion()) {
19070 // Remember all fields written by the user.
19071 RecFields
.push_back(FD
);
19074 // If the field is already invalid for some reason, don't emit more
19075 // diagnostics about it.
19076 if (FD
->isInvalidDecl()) {
19077 EnclosingDecl
->setInvalidDecl();
19082 // A structure or union shall not contain a member with
19083 // incomplete or function type (hence, a structure shall not
19084 // contain an instance of itself, but may contain a pointer to
19085 // an instance of itself), except that the last member of a
19086 // structure with more than one named member may have incomplete
19087 // array type; such a structure (and any union containing,
19088 // possibly recursively, a member that is such a structure)
19089 // shall not be a member of a structure or an element of an
19091 bool IsLastField
= (i
+ 1 == Fields
.end());
19092 if (FDTy
->isFunctionType()) {
19093 // Field declared as a function.
19094 Diag(FD
->getLocation(), diag::err_field_declared_as_function
)
19095 << FD
->getDeclName();
19096 FD
->setInvalidDecl();
19097 EnclosingDecl
->setInvalidDecl();
19099 } else if (FDTy
->isIncompleteArrayType() &&
19100 (Record
|| isa
<ObjCContainerDecl
>(EnclosingDecl
))) {
19102 // Flexible array member.
19103 // Microsoft and g++ is more permissive regarding flexible array.
19104 // It will accept flexible array in union and also
19105 // as the sole element of a struct/class.
19106 unsigned DiagID
= 0;
19107 if (!Record
->isUnion() && !IsLastField
) {
19108 Diag(FD
->getLocation(), diag::err_flexible_array_not_at_end
)
19109 << FD
->getDeclName() << FD
->getType()
19110 << llvm::to_underlying(Record
->getTagKind());
19111 Diag((*(i
+ 1))->getLocation(), diag::note_next_field_declaration
);
19112 FD
->setInvalidDecl();
19113 EnclosingDecl
->setInvalidDecl();
19115 } else if (Record
->isUnion())
19116 DiagID
= getLangOpts().MicrosoftExt
19117 ? diag::ext_flexible_array_union_ms
19118 : getLangOpts().CPlusPlus
19119 ? diag::ext_flexible_array_union_gnu
19120 : diag::err_flexible_array_union
;
19121 else if (NumNamedMembers
< 1)
19122 DiagID
= getLangOpts().MicrosoftExt
19123 ? diag::ext_flexible_array_empty_aggregate_ms
19124 : getLangOpts().CPlusPlus
19125 ? diag::ext_flexible_array_empty_aggregate_gnu
19126 : diag::err_flexible_array_empty_aggregate
;
19129 Diag(FD
->getLocation(), DiagID
)
19130 << FD
->getDeclName() << llvm::to_underlying(Record
->getTagKind());
19131 // While the layout of types that contain virtual bases is not specified
19132 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
19133 // virtual bases after the derived members. This would make a flexible
19134 // array member declared at the end of an object not adjacent to the end
19136 if (CXXRecord
&& CXXRecord
->getNumVBases() != 0)
19137 Diag(FD
->getLocation(), diag::err_flexible_array_virtual_base
)
19138 << FD
->getDeclName() << llvm::to_underlying(Record
->getTagKind());
19139 if (!getLangOpts().C99
)
19140 Diag(FD
->getLocation(), diag::ext_c99_flexible_array_member
)
19141 << FD
->getDeclName() << llvm::to_underlying(Record
->getTagKind());
19143 // If the element type has a non-trivial destructor, we would not
19144 // implicitly destroy the elements, so disallow it for now.
19146 // FIXME: GCC allows this. We should probably either implicitly delete
19147 // the destructor of the containing class, or just allow this.
19148 QualType BaseElem
= Context
.getBaseElementType(FD
->getType());
19149 if (!BaseElem
->isDependentType() && BaseElem
.isDestructedType()) {
19150 Diag(FD
->getLocation(), diag::err_flexible_array_has_nontrivial_dtor
)
19151 << FD
->getDeclName() << FD
->getType();
19152 FD
->setInvalidDecl();
19153 EnclosingDecl
->setInvalidDecl();
19156 // Okay, we have a legal flexible array member at the end of the struct.
19157 Record
->setHasFlexibleArrayMember(true);
19159 // In ObjCContainerDecl ivars with incomplete array type are accepted,
19160 // unless they are followed by another ivar. That check is done
19161 // elsewhere, after synthesized ivars are known.
19163 } else if (!FDTy
->isDependentType() &&
19164 RequireCompleteSizedType(
19165 FD
->getLocation(), FD
->getType(),
19166 diag::err_field_incomplete_or_sizeless
)) {
19168 FD
->setInvalidDecl();
19169 EnclosingDecl
->setInvalidDecl();
19171 } else if (const RecordType
*FDTTy
= FDTy
->getAs
<RecordType
>()) {
19172 if (Record
&& FDTTy
->getDecl()->hasFlexibleArrayMember()) {
19173 // A type which contains a flexible array member is considered to be a
19174 // flexible array member.
19175 Record
->setHasFlexibleArrayMember(true);
19176 if (!Record
->isUnion()) {
19177 // If this is a struct/class and this is not the last element, reject
19178 // it. Note that GCC supports variable sized arrays in the middle of
19181 Diag(FD
->getLocation(), diag::ext_variable_sized_type_in_struct
)
19182 << FD
->getDeclName() << FD
->getType();
19184 // We support flexible arrays at the end of structs in
19185 // other structs as an extension.
19186 Diag(FD
->getLocation(), diag::ext_flexible_array_in_struct
)
19187 << FD
->getDeclName();
19191 if (isa
<ObjCContainerDecl
>(EnclosingDecl
) &&
19192 RequireNonAbstractType(FD
->getLocation(), FD
->getType(),
19193 diag::err_abstract_type_in_decl
,
19194 AbstractIvarType
)) {
19195 // Ivars can not have abstract class types
19196 FD
->setInvalidDecl();
19198 if (Record
&& FDTTy
->getDecl()->hasObjectMember())
19199 Record
->setHasObjectMember(true);
19200 if (Record
&& FDTTy
->getDecl()->hasVolatileMember())
19201 Record
->setHasVolatileMember(true);
19202 } else if (FDTy
->isObjCObjectType()) {
19203 /// A field cannot be an Objective-c object
19204 Diag(FD
->getLocation(), diag::err_statically_allocated_object
)
19205 << FixItHint::CreateInsertion(FD
->getLocation(), "*");
19206 QualType T
= Context
.getObjCObjectPointerType(FD
->getType());
19208 } else if (Record
&& Record
->isUnion() &&
19209 FD
->getType().hasNonTrivialObjCLifetime() &&
19210 getSourceManager().isInSystemHeader(FD
->getLocation()) &&
19211 !getLangOpts().CPlusPlus
&& !FD
->hasAttr
<UnavailableAttr
>() &&
19212 (FD
->getType().getObjCLifetime() != Qualifiers::OCL_Strong
||
19213 !Context
.hasDirectOwnershipQualifier(FD
->getType()))) {
19214 // For backward compatibility, fields of C unions declared in system
19215 // headers that have non-trivial ObjC ownership qualifications are marked
19216 // as unavailable unless the qualifier is explicit and __strong. This can
19217 // break ABI compatibility between programs compiled with ARC and MRR, but
19218 // is a better option than rejecting programs using those unions under
19220 FD
->addAttr(UnavailableAttr::CreateImplicit(
19221 Context
, "", UnavailableAttr::IR_ARCFieldWithOwnership
,
19222 FD
->getLocation()));
19223 } else if (getLangOpts().ObjC
&&
19224 getLangOpts().getGC() != LangOptions::NonGC
&& Record
&&
19225 !Record
->hasObjectMember()) {
19226 if (FD
->getType()->isObjCObjectPointerType() ||
19227 FD
->getType().isObjCGCStrong())
19228 Record
->setHasObjectMember(true);
19229 else if (Context
.getAsArrayType(FD
->getType())) {
19230 QualType BaseType
= Context
.getBaseElementType(FD
->getType());
19231 if (BaseType
->isRecordType() &&
19232 BaseType
->castAs
<RecordType
>()->getDecl()->hasObjectMember())
19233 Record
->setHasObjectMember(true);
19234 else if (BaseType
->isObjCObjectPointerType() ||
19235 BaseType
.isObjCGCStrong())
19236 Record
->setHasObjectMember(true);
19240 if (Record
&& !getLangOpts().CPlusPlus
&&
19241 !shouldIgnoreForRecordTriviality(FD
)) {
19242 QualType FT
= FD
->getType();
19243 if (FT
.isNonTrivialToPrimitiveDefaultInitialize()) {
19244 Record
->setNonTrivialToPrimitiveDefaultInitialize(true);
19245 if (FT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
19247 Record
->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
19249 QualType::PrimitiveCopyKind PCK
= FT
.isNonTrivialToPrimitiveCopy();
19250 if (PCK
!= QualType::PCK_Trivial
&& PCK
!= QualType::PCK_VolatileTrivial
) {
19251 Record
->setNonTrivialToPrimitiveCopy(true);
19252 if (FT
.hasNonTrivialToPrimitiveCopyCUnion() || Record
->isUnion())
19253 Record
->setHasNonTrivialToPrimitiveCopyCUnion(true);
19255 if (FT
.isDestructedType()) {
19256 Record
->setNonTrivialToPrimitiveDestroy(true);
19257 Record
->setParamDestroyedInCallee(true);
19258 if (FT
.hasNonTrivialToPrimitiveDestructCUnion() || Record
->isUnion())
19259 Record
->setHasNonTrivialToPrimitiveDestructCUnion(true);
19262 if (const auto *RT
= FT
->getAs
<RecordType
>()) {
19263 if (RT
->getDecl()->getArgPassingRestrictions() ==
19264 RecordArgPassingKind::CanNeverPassInRegs
)
19265 Record
->setArgPassingRestrictions(
19266 RecordArgPassingKind::CanNeverPassInRegs
);
19267 } else if (FT
.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak
)
19268 Record
->setArgPassingRestrictions(
19269 RecordArgPassingKind::CanNeverPassInRegs
);
19272 if (Record
&& FD
->getType().isVolatileQualified())
19273 Record
->setHasVolatileMember(true);
19274 // Keep track of the number of named members.
19275 if (FD
->getIdentifier())
19279 // Okay, we successfully defined 'Record'.
19281 bool Completed
= false;
19283 if (!CXXRecord
->isInvalidDecl()) {
19284 // Set access bits correctly on the directly-declared conversions.
19285 for (CXXRecordDecl::conversion_iterator
19286 I
= CXXRecord
->conversion_begin(),
19287 E
= CXXRecord
->conversion_end(); I
!= E
; ++I
)
19288 I
.setAccess((*I
)->getAccess());
19291 // Add any implicitly-declared members to this class.
19292 AddImplicitlyDeclaredMembersToClass(CXXRecord
);
19294 if (!CXXRecord
->isDependentType()) {
19295 if (!CXXRecord
->isInvalidDecl()) {
19296 // If we have virtual base classes, we may end up finding multiple
19297 // final overriders for a given virtual function. Check for this
19299 if (CXXRecord
->getNumVBases()) {
19300 CXXFinalOverriderMap FinalOverriders
;
19301 CXXRecord
->getFinalOverriders(FinalOverriders
);
19303 for (CXXFinalOverriderMap::iterator M
= FinalOverriders
.begin(),
19304 MEnd
= FinalOverriders
.end();
19306 for (OverridingMethods::iterator SO
= M
->second
.begin(),
19307 SOEnd
= M
->second
.end();
19308 SO
!= SOEnd
; ++SO
) {
19309 assert(SO
->second
.size() > 0 &&
19310 "Virtual function without overriding functions?");
19311 if (SO
->second
.size() == 1)
19314 // C++ [class.virtual]p2:
19315 // In a derived class, if a virtual member function of a base
19316 // class subobject has more than one final overrider the
19317 // program is ill-formed.
19318 Diag(Record
->getLocation(), diag::err_multiple_final_overriders
)
19319 << (const NamedDecl
*)M
->first
<< Record
;
19320 Diag(M
->first
->getLocation(),
19321 diag::note_overridden_virtual_function
);
19322 for (OverridingMethods::overriding_iterator
19323 OM
= SO
->second
.begin(),
19324 OMEnd
= SO
->second
.end();
19326 Diag(OM
->Method
->getLocation(), diag::note_final_overrider
)
19327 << (const NamedDecl
*)M
->first
<< OM
->Method
->getParent();
19329 Record
->setInvalidDecl();
19332 CXXRecord
->completeDefinition(&FinalOverriders
);
19336 ComputeSelectedDestructor(*this, CXXRecord
);
19337 ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord
);
19342 Record
->completeDefinition();
19344 // Handle attributes before checking the layout.
19345 ProcessDeclAttributeList(S
, Record
, Attrs
);
19347 // Check to see if a FieldDecl is a pointer to a function.
19348 auto IsFunctionPointerOrForwardDecl
= [&](const Decl
*D
) {
19349 const FieldDecl
*FD
= dyn_cast
<FieldDecl
>(D
);
19351 // Check whether this is a forward declaration that was inserted by
19352 // Clang. This happens when a non-forward declared / defined type is
19356 // struct bar *(*f)();
19357 // struct bar *(*g)();
19360 // "struct bar" shows up in the decl AST as a "RecordDecl" with an
19361 // incomplete definition.
19362 if (const auto *TD
= dyn_cast
<TagDecl
>(D
))
19363 return !TD
->isCompleteDefinition();
19366 QualType FieldType
= FD
->getType().getDesugaredType(Context
);
19367 if (isa
<PointerType
>(FieldType
)) {
19368 QualType PointeeType
= cast
<PointerType
>(FieldType
)->getPointeeType();
19369 return PointeeType
.getDesugaredType(Context
)->isFunctionType();
19374 // Maybe randomize the record's decls. We automatically randomize a record
19375 // of function pointers, unless it has the "no_randomize_layout" attribute.
19376 if (!getLangOpts().CPlusPlus
&&
19377 (Record
->hasAttr
<RandomizeLayoutAttr
>() ||
19378 (!Record
->hasAttr
<NoRandomizeLayoutAttr
>() &&
19379 llvm::all_of(Record
->decls(), IsFunctionPointerOrForwardDecl
))) &&
19380 !Record
->isUnion() && !getLangOpts().RandstructSeed
.empty() &&
19381 !Record
->isRandomized()) {
19382 SmallVector
<Decl
*, 32> NewDeclOrdering
;
19383 if (randstruct::randomizeStructureLayout(Context
, Record
,
19385 Record
->reorderDecls(NewDeclOrdering
);
19388 // We may have deferred checking for a deleted destructor. Check now.
19390 auto *Dtor
= CXXRecord
->getDestructor();
19391 if (Dtor
&& Dtor
->isImplicit() &&
19392 ShouldDeleteSpecialMember(Dtor
, CXXDestructor
)) {
19393 CXXRecord
->setImplicitDestructorIsDeleted();
19394 SetDeclDeleted(Dtor
, CXXRecord
->getLocation());
19398 if (Record
->hasAttrs()) {
19399 CheckAlignasUnderalignment(Record
);
19401 if (const MSInheritanceAttr
*IA
= Record
->getAttr
<MSInheritanceAttr
>())
19402 checkMSInheritanceAttrOnDefinition(cast
<CXXRecordDecl
>(Record
),
19403 IA
->getRange(), IA
->getBestCase(),
19404 IA
->getInheritanceModel());
19407 // Check if the structure/union declaration is a type that can have zero
19408 // size in C. For C this is a language extension, for C++ it may cause
19409 // compatibility problems.
19410 bool CheckForZeroSize
;
19411 if (!getLangOpts().CPlusPlus
) {
19412 CheckForZeroSize
= true;
19414 // For C++ filter out types that cannot be referenced in C code.
19415 CXXRecordDecl
*CXXRecord
= cast
<CXXRecordDecl
>(Record
);
19417 CXXRecord
->getLexicalDeclContext()->isExternCContext() &&
19418 !CXXRecord
->isDependentType() && !inTemplateInstantiation() &&
19419 CXXRecord
->isCLike();
19421 if (CheckForZeroSize
) {
19422 bool ZeroSize
= true;
19423 bool IsEmpty
= true;
19424 unsigned NonBitFields
= 0;
19425 for (RecordDecl::field_iterator I
= Record
->field_begin(),
19426 E
= Record
->field_end();
19427 (NonBitFields
== 0 || ZeroSize
) && I
!= E
; ++I
) {
19429 if (I
->isUnnamedBitfield()) {
19430 if (!I
->isZeroLengthBitField(Context
))
19434 QualType FieldType
= I
->getType();
19435 if (FieldType
->isIncompleteType() ||
19436 !Context
.getTypeSizeInChars(FieldType
).isZero())
19441 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
19442 // allowed in C++, but warn if its declaration is inside
19443 // extern "C" block.
19445 Diag(RecLoc
, getLangOpts().CPlusPlus
?
19446 diag::warn_zero_size_struct_union_in_extern_c
:
19447 diag::warn_zero_size_struct_union_compat
)
19448 << IsEmpty
<< Record
->isUnion() << (NonBitFields
> 1);
19451 // Structs without named members are extension in C (C99 6.7.2.1p7),
19452 // but are accepted by GCC.
19453 if (NonBitFields
== 0 && !getLangOpts().CPlusPlus
) {
19454 Diag(RecLoc
, IsEmpty
? diag::ext_empty_struct_union
:
19455 diag::ext_no_named_members_in_struct_union
)
19456 << Record
->isUnion();
19460 ObjCIvarDecl
**ClsFields
=
19461 reinterpret_cast<ObjCIvarDecl
**>(RecFields
.data());
19462 if (ObjCInterfaceDecl
*ID
= dyn_cast
<ObjCInterfaceDecl
>(EnclosingDecl
)) {
19463 ID
->setEndOfDefinitionLoc(RBrac
);
19464 // Add ivar's to class's DeclContext.
19465 for (unsigned i
= 0, e
= RecFields
.size(); i
!= e
; ++i
) {
19466 ClsFields
[i
]->setLexicalDeclContext(ID
);
19467 ID
->addDecl(ClsFields
[i
]);
19469 // Must enforce the rule that ivars in the base classes may not be
19471 if (ID
->getSuperClass())
19472 DiagnoseDuplicateIvars(ID
, ID
->getSuperClass());
19473 } else if (ObjCImplementationDecl
*IMPDecl
=
19474 dyn_cast
<ObjCImplementationDecl
>(EnclosingDecl
)) {
19475 assert(IMPDecl
&& "ActOnFields - missing ObjCImplementationDecl");
19476 for (unsigned I
= 0, N
= RecFields
.size(); I
!= N
; ++I
)
19477 // Ivar declared in @implementation never belongs to the implementation.
19478 // Only it is in implementation's lexical context.
19479 ClsFields
[I
]->setLexicalDeclContext(IMPDecl
);
19480 CheckImplementationIvars(IMPDecl
, ClsFields
, RecFields
.size(), RBrac
);
19481 IMPDecl
->setIvarLBraceLoc(LBrac
);
19482 IMPDecl
->setIvarRBraceLoc(RBrac
);
19483 } else if (ObjCCategoryDecl
*CDecl
=
19484 dyn_cast
<ObjCCategoryDecl
>(EnclosingDecl
)) {
19485 // case of ivars in class extension; all other cases have been
19486 // reported as errors elsewhere.
19487 // FIXME. Class extension does not have a LocEnd field.
19488 // CDecl->setLocEnd(RBrac);
19489 // Add ivar's to class extension's DeclContext.
19490 // Diagnose redeclaration of private ivars.
19491 ObjCInterfaceDecl
*IDecl
= CDecl
->getClassInterface();
19492 for (unsigned i
= 0, e
= RecFields
.size(); i
!= e
; ++i
) {
19494 if (const ObjCIvarDecl
*ClsIvar
=
19495 IDecl
->getIvarDecl(ClsFields
[i
]->getIdentifier())) {
19496 Diag(ClsFields
[i
]->getLocation(),
19497 diag::err_duplicate_ivar_declaration
);
19498 Diag(ClsIvar
->getLocation(), diag::note_previous_definition
);
19501 for (const auto *Ext
: IDecl
->known_extensions()) {
19502 if (const ObjCIvarDecl
*ClsExtIvar
19503 = Ext
->getIvarDecl(ClsFields
[i
]->getIdentifier())) {
19504 Diag(ClsFields
[i
]->getLocation(),
19505 diag::err_duplicate_ivar_declaration
);
19506 Diag(ClsExtIvar
->getLocation(), diag::note_previous_definition
);
19511 ClsFields
[i
]->setLexicalDeclContext(CDecl
);
19512 CDecl
->addDecl(ClsFields
[i
]);
19514 CDecl
->setIvarLBraceLoc(LBrac
);
19515 CDecl
->setIvarRBraceLoc(RBrac
);
19520 /// Determine whether the given integral value is representable within
19521 /// the given type T.
19522 static bool isRepresentableIntegerValue(ASTContext
&Context
,
19523 llvm::APSInt
&Value
,
19525 assert((T
->isIntegralType(Context
) || T
->isEnumeralType()) &&
19526 "Integral type required!");
19527 unsigned BitWidth
= Context
.getIntWidth(T
);
19529 if (Value
.isUnsigned() || Value
.isNonNegative()) {
19530 if (T
->isSignedIntegerOrEnumerationType())
19532 return Value
.getActiveBits() <= BitWidth
;
19534 return Value
.getSignificantBits() <= BitWidth
;
19537 // Given an integral type, return the next larger integral type
19538 // (or a NULL type of no such type exists).
19539 static QualType
getNextLargerIntegralType(ASTContext
&Context
, QualType T
) {
19540 // FIXME: Int128/UInt128 support, which also needs to be introduced into
19541 // enum checking below.
19542 assert((T
->isIntegralType(Context
) ||
19543 T
->isEnumeralType()) && "Integral type required!");
19544 const unsigned NumTypes
= 4;
19545 QualType SignedIntegralTypes
[NumTypes
] = {
19546 Context
.ShortTy
, Context
.IntTy
, Context
.LongTy
, Context
.LongLongTy
19548 QualType UnsignedIntegralTypes
[NumTypes
] = {
19549 Context
.UnsignedShortTy
, Context
.UnsignedIntTy
, Context
.UnsignedLongTy
,
19550 Context
.UnsignedLongLongTy
19553 unsigned BitWidth
= Context
.getTypeSize(T
);
19554 QualType
*Types
= T
->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
19555 : UnsignedIntegralTypes
;
19556 for (unsigned I
= 0; I
!= NumTypes
; ++I
)
19557 if (Context
.getTypeSize(Types
[I
]) > BitWidth
)
19563 EnumConstantDecl
*Sema::CheckEnumConstant(EnumDecl
*Enum
,
19564 EnumConstantDecl
*LastEnumConst
,
19565 SourceLocation IdLoc
,
19566 IdentifierInfo
*Id
,
19568 unsigned IntWidth
= Context
.getTargetInfo().getIntWidth();
19569 llvm::APSInt
EnumVal(IntWidth
);
19572 if (Val
&& DiagnoseUnexpandedParameterPack(Val
, UPPC_EnumeratorValue
))
19576 Val
= DefaultLvalueConversion(Val
).get();
19579 if (Enum
->isDependentType() || Val
->isTypeDependent() ||
19580 Val
->containsErrors())
19581 EltTy
= Context
.DependentTy
;
19583 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
19584 // underlying type, but do allow it in all other contexts.
19585 if (getLangOpts().CPlusPlus11
&& Enum
->isFixed()) {
19586 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
19587 // constant-expression in the enumerator-definition shall be a converted
19588 // constant expression of the underlying type.
19589 EltTy
= Enum
->getIntegerType();
19590 ExprResult Converted
=
19591 CheckConvertedConstantExpression(Val
, EltTy
, EnumVal
,
19593 if (Converted
.isInvalid())
19596 Val
= Converted
.get();
19597 } else if (!Val
->isValueDependent() &&
19599 VerifyIntegerConstantExpression(Val
, &EnumVal
, AllowFold
)
19601 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
19603 if (Enum
->isComplete()) {
19604 EltTy
= Enum
->getIntegerType();
19606 // In Obj-C and Microsoft mode, require the enumeration value to be
19607 // representable in the underlying type of the enumeration. In C++11,
19608 // we perform a non-narrowing conversion as part of converted constant
19609 // expression checking.
19610 if (!isRepresentableIntegerValue(Context
, EnumVal
, EltTy
)) {
19611 if (Context
.getTargetInfo()
19613 .isWindowsMSVCEnvironment()) {
19614 Diag(IdLoc
, diag::ext_enumerator_too_large
) << EltTy
;
19616 Diag(IdLoc
, diag::err_enumerator_too_large
) << EltTy
;
19620 // Cast to the underlying type.
19621 Val
= ImpCastExprToType(Val
, EltTy
,
19622 EltTy
->isBooleanType() ? CK_IntegralToBoolean
19625 } else if (getLangOpts().CPlusPlus
) {
19626 // C++11 [dcl.enum]p5:
19627 // If the underlying type is not fixed, the type of each enumerator
19628 // is the type of its initializing value:
19629 // - If an initializer is specified for an enumerator, the
19630 // initializing value has the same type as the expression.
19631 EltTy
= Val
->getType();
19634 // The expression that defines the value of an enumeration constant
19635 // shall be an integer constant expression that has a value
19636 // representable as an int.
19638 // Complain if the value is not representable in an int.
19639 if (!isRepresentableIntegerValue(Context
, EnumVal
, Context
.IntTy
))
19640 Diag(IdLoc
, diag::ext_enum_value_not_int
)
19641 << toString(EnumVal
, 10) << Val
->getSourceRange()
19642 << (EnumVal
.isUnsigned() || EnumVal
.isNonNegative());
19643 else if (!Context
.hasSameType(Val
->getType(), Context
.IntTy
)) {
19644 // Force the type of the expression to 'int'.
19645 Val
= ImpCastExprToType(Val
, Context
.IntTy
, CK_IntegralCast
).get();
19647 EltTy
= Val
->getType();
19654 if (Enum
->isDependentType())
19655 EltTy
= Context
.DependentTy
;
19656 else if (!LastEnumConst
) {
19657 // C++0x [dcl.enum]p5:
19658 // If the underlying type is not fixed, the type of each enumerator
19659 // is the type of its initializing value:
19660 // - If no initializer is specified for the first enumerator, the
19661 // initializing value has an unspecified integral type.
19663 // GCC uses 'int' for its unspecified integral type, as does
19665 if (Enum
->isFixed()) {
19666 EltTy
= Enum
->getIntegerType();
19669 EltTy
= Context
.IntTy
;
19672 // Assign the last value + 1.
19673 EnumVal
= LastEnumConst
->getInitVal();
19675 EltTy
= LastEnumConst
->getType();
19677 // Check for overflow on increment.
19678 if (EnumVal
< LastEnumConst
->getInitVal()) {
19679 // C++0x [dcl.enum]p5:
19680 // If the underlying type is not fixed, the type of each enumerator
19681 // is the type of its initializing value:
19683 // - Otherwise the type of the initializing value is the same as
19684 // the type of the initializing value of the preceding enumerator
19685 // unless the incremented value is not representable in that type,
19686 // in which case the type is an unspecified integral type
19687 // sufficient to contain the incremented value. If no such type
19688 // exists, the program is ill-formed.
19689 QualType T
= getNextLargerIntegralType(Context
, EltTy
);
19690 if (T
.isNull() || Enum
->isFixed()) {
19691 // There is no integral type larger enough to represent this
19692 // value. Complain, then allow the value to wrap around.
19693 EnumVal
= LastEnumConst
->getInitVal();
19694 EnumVal
= EnumVal
.zext(EnumVal
.getBitWidth() * 2);
19696 if (Enum
->isFixed())
19697 // When the underlying type is fixed, this is ill-formed.
19698 Diag(IdLoc
, diag::err_enumerator_wrapped
)
19699 << toString(EnumVal
, 10)
19702 Diag(IdLoc
, diag::ext_enumerator_increment_too_large
)
19703 << toString(EnumVal
, 10);
19708 // Retrieve the last enumerator's value, extent that type to the
19709 // type that is supposed to be large enough to represent the incremented
19710 // value, then increment.
19711 EnumVal
= LastEnumConst
->getInitVal();
19712 EnumVal
.setIsSigned(EltTy
->isSignedIntegerOrEnumerationType());
19713 EnumVal
= EnumVal
.zextOrTrunc(Context
.getIntWidth(EltTy
));
19716 // If we're not in C++, diagnose the overflow of enumerator values,
19717 // which in C99 means that the enumerator value is not representable in
19718 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
19719 // permits enumerator values that are representable in some larger
19721 if (!getLangOpts().CPlusPlus
&& !T
.isNull())
19722 Diag(IdLoc
, diag::warn_enum_value_overflow
);
19723 } else if (!getLangOpts().CPlusPlus
&&
19724 !EltTy
->isDependentType() &&
19725 !isRepresentableIntegerValue(Context
, EnumVal
, EltTy
)) {
19726 // Enforce C99 6.7.2.2p2 even when we compute the next value.
19727 Diag(IdLoc
, diag::ext_enum_value_not_int
)
19728 << toString(EnumVal
, 10) << 1;
19733 if (!EltTy
->isDependentType()) {
19734 // Make the enumerator value match the signedness and size of the
19735 // enumerator's type.
19736 EnumVal
= EnumVal
.extOrTrunc(Context
.getIntWidth(EltTy
));
19737 EnumVal
.setIsSigned(EltTy
->isSignedIntegerOrEnumerationType());
19740 return EnumConstantDecl::Create(Context
, Enum
, IdLoc
, Id
, EltTy
,
19744 Sema::SkipBodyInfo
Sema::shouldSkipAnonEnumBody(Scope
*S
, IdentifierInfo
*II
,
19745 SourceLocation IILoc
) {
19746 if (!(getLangOpts().Modules
|| getLangOpts().ModulesLocalVisibility
) ||
19747 !getLangOpts().CPlusPlus
)
19748 return SkipBodyInfo();
19750 // We have an anonymous enum definition. Look up the first enumerator to
19751 // determine if we should merge the definition with an existing one and
19753 NamedDecl
*PrevDecl
= LookupSingleName(S
, II
, IILoc
, LookupOrdinaryName
,
19754 forRedeclarationInCurContext());
19755 auto *PrevECD
= dyn_cast_or_null
<EnumConstantDecl
>(PrevDecl
);
19757 return SkipBodyInfo();
19759 EnumDecl
*PrevED
= cast
<EnumDecl
>(PrevECD
->getDeclContext());
19761 if (!PrevED
->getDeclName() && !hasVisibleDefinition(PrevED
, &Hidden
)) {
19763 Skip
.Previous
= Hidden
;
19767 return SkipBodyInfo();
19770 Decl
*Sema::ActOnEnumConstant(Scope
*S
, Decl
*theEnumDecl
, Decl
*lastEnumConst
,
19771 SourceLocation IdLoc
, IdentifierInfo
*Id
,
19772 const ParsedAttributesView
&Attrs
,
19773 SourceLocation EqualLoc
, Expr
*Val
) {
19774 EnumDecl
*TheEnumDecl
= cast
<EnumDecl
>(theEnumDecl
);
19775 EnumConstantDecl
*LastEnumConst
=
19776 cast_or_null
<EnumConstantDecl
>(lastEnumConst
);
19778 // The scope passed in may not be a decl scope. Zip up the scope tree until
19779 // we find one that is.
19780 S
= getNonFieldDeclScope(S
);
19782 // Verify that there isn't already something declared with this name in this
19784 LookupResult
R(*this, Id
, IdLoc
, LookupOrdinaryName
, ForVisibleRedeclaration
);
19786 NamedDecl
*PrevDecl
= R
.getAsSingle
<NamedDecl
>();
19788 if (PrevDecl
&& PrevDecl
->isTemplateParameter()) {
19789 // Maybe we will complain about the shadowed template parameter.
19790 DiagnoseTemplateParameterShadow(IdLoc
, PrevDecl
);
19791 // Just pretend that we didn't see the previous declaration.
19792 PrevDecl
= nullptr;
19795 // C++ [class.mem]p15:
19796 // If T is the name of a class, then each of the following shall have a name
19797 // different from T:
19798 // - every enumerator of every member of class T that is an unscoped
19800 if (getLangOpts().CPlusPlus
&& !TheEnumDecl
->isScoped())
19801 DiagnoseClassNameShadow(TheEnumDecl
->getDeclContext(),
19802 DeclarationNameInfo(Id
, IdLoc
));
19804 EnumConstantDecl
*New
=
19805 CheckEnumConstant(TheEnumDecl
, LastEnumConst
, IdLoc
, Id
, Val
);
19810 if (!TheEnumDecl
->isScoped() && isa
<ValueDecl
>(PrevDecl
)) {
19811 // Check for other kinds of shadowing not already handled.
19812 CheckShadow(New
, PrevDecl
, R
);
19815 // When in C++, we may get a TagDecl with the same name; in this case the
19816 // enum constant will 'hide' the tag.
19817 assert((getLangOpts().CPlusPlus
|| !isa
<TagDecl
>(PrevDecl
)) &&
19818 "Received TagDecl when not in C++!");
19819 if (!isa
<TagDecl
>(PrevDecl
) && isDeclInScope(PrevDecl
, CurContext
, S
)) {
19820 if (isa
<EnumConstantDecl
>(PrevDecl
))
19821 Diag(IdLoc
, diag::err_redefinition_of_enumerator
) << Id
;
19823 Diag(IdLoc
, diag::err_redefinition
) << Id
;
19824 notePreviousDefinition(PrevDecl
, IdLoc
);
19829 // Process attributes.
19830 ProcessDeclAttributeList(S
, New
, Attrs
);
19831 AddPragmaAttributes(S
, New
);
19833 // Register this decl in the current scope stack.
19834 New
->setAccess(TheEnumDecl
->getAccess());
19835 PushOnScopeChains(New
, S
);
19837 ActOnDocumentableDecl(New
);
19842 // Returns true when the enum initial expression does not trigger the
19843 // duplicate enum warning. A few common cases are exempted as follows:
19844 // Element2 = Element1
19845 // Element2 = Element1 + 1
19846 // Element2 = Element1 - 1
19847 // Where Element2 and Element1 are from the same enum.
19848 static bool ValidDuplicateEnum(EnumConstantDecl
*ECD
, EnumDecl
*Enum
) {
19849 Expr
*InitExpr
= ECD
->getInitExpr();
19852 InitExpr
= InitExpr
->IgnoreImpCasts();
19854 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(InitExpr
)) {
19855 if (!BO
->isAdditiveOp())
19857 IntegerLiteral
*IL
= dyn_cast
<IntegerLiteral
>(BO
->getRHS());
19860 if (IL
->getValue() != 1)
19863 InitExpr
= BO
->getLHS();
19866 // This checks if the elements are from the same enum.
19867 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(InitExpr
);
19871 EnumConstantDecl
*EnumConstant
= dyn_cast
<EnumConstantDecl
>(DRE
->getDecl());
19875 if (cast
<EnumDecl
>(TagDecl::castFromDeclContext(ECD
->getDeclContext())) !=
19882 // Emits a warning when an element is implicitly set a value that
19883 // a previous element has already been set to.
19884 static void CheckForDuplicateEnumValues(Sema
&S
, ArrayRef
<Decl
*> Elements
,
19885 EnumDecl
*Enum
, QualType EnumType
) {
19886 // Avoid anonymous enums
19887 if (!Enum
->getIdentifier())
19890 // Only check for small enums.
19891 if (Enum
->getNumPositiveBits() > 63 || Enum
->getNumNegativeBits() > 64)
19894 if (S
.Diags
.isIgnored(diag::warn_duplicate_enum_values
, Enum
->getLocation()))
19897 typedef SmallVector
<EnumConstantDecl
*, 3> ECDVector
;
19898 typedef SmallVector
<std::unique_ptr
<ECDVector
>, 3> DuplicatesVector
;
19900 typedef llvm::PointerUnion
<EnumConstantDecl
*, ECDVector
*> DeclOrVector
;
19902 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
19903 typedef std::unordered_map
<int64_t, DeclOrVector
> ValueToVectorMap
;
19905 // Use int64_t as a key to avoid needing special handling for map keys.
19906 auto EnumConstantToKey
= [](const EnumConstantDecl
*D
) {
19907 llvm::APSInt Val
= D
->getInitVal();
19908 return Val
.isSigned() ? Val
.getSExtValue() : Val
.getZExtValue();
19911 DuplicatesVector DupVector
;
19912 ValueToVectorMap EnumMap
;
19914 // Populate the EnumMap with all values represented by enum constants without
19916 for (auto *Element
: Elements
) {
19917 EnumConstantDecl
*ECD
= cast_or_null
<EnumConstantDecl
>(Element
);
19919 // Null EnumConstantDecl means a previous diagnostic has been emitted for
19920 // this constant. Skip this enum since it may be ill-formed.
19925 // Constants with initializers are handled in the next loop.
19926 if (ECD
->getInitExpr())
19929 // Duplicate values are handled in the next loop.
19930 EnumMap
.insert({EnumConstantToKey(ECD
), ECD
});
19933 if (EnumMap
.size() == 0)
19936 // Create vectors for any values that has duplicates.
19937 for (auto *Element
: Elements
) {
19938 // The last loop returned if any constant was null.
19939 EnumConstantDecl
*ECD
= cast
<EnumConstantDecl
>(Element
);
19940 if (!ValidDuplicateEnum(ECD
, Enum
))
19943 auto Iter
= EnumMap
.find(EnumConstantToKey(ECD
));
19944 if (Iter
== EnumMap
.end())
19947 DeclOrVector
& Entry
= Iter
->second
;
19948 if (EnumConstantDecl
*D
= Entry
.dyn_cast
<EnumConstantDecl
*>()) {
19949 // Ensure constants are different.
19953 // Create new vector and push values onto it.
19954 auto Vec
= std::make_unique
<ECDVector
>();
19956 Vec
->push_back(ECD
);
19958 // Update entry to point to the duplicates vector.
19961 // Store the vector somewhere we can consult later for quick emission of
19963 DupVector
.emplace_back(std::move(Vec
));
19967 ECDVector
*Vec
= Entry
.get
<ECDVector
*>();
19968 // Make sure constants are not added more than once.
19969 if (*Vec
->begin() == ECD
)
19972 Vec
->push_back(ECD
);
19975 // Emit diagnostics.
19976 for (const auto &Vec
: DupVector
) {
19977 assert(Vec
->size() > 1 && "ECDVector should have at least 2 elements.");
19979 // Emit warning for one enum constant.
19980 auto *FirstECD
= Vec
->front();
19981 S
.Diag(FirstECD
->getLocation(), diag::warn_duplicate_enum_values
)
19982 << FirstECD
<< toString(FirstECD
->getInitVal(), 10)
19983 << FirstECD
->getSourceRange();
19985 // Emit one note for each of the remaining enum constants with
19987 for (auto *ECD
: llvm::drop_begin(*Vec
))
19988 S
.Diag(ECD
->getLocation(), diag::note_duplicate_element
)
19989 << ECD
<< toString(ECD
->getInitVal(), 10)
19990 << ECD
->getSourceRange();
19994 bool Sema::IsValueInFlagEnum(const EnumDecl
*ED
, const llvm::APInt
&Val
,
19995 bool AllowMask
) const {
19996 assert(ED
->isClosedFlag() && "looking for value in non-flag or open enum");
19997 assert(ED
->isCompleteDefinition() && "expected enum definition");
19999 auto R
= FlagBitsCache
.insert(std::make_pair(ED
, llvm::APInt()));
20000 llvm::APInt
&FlagBits
= R
.first
->second
;
20003 for (auto *E
: ED
->enumerators()) {
20004 const auto &EVal
= E
->getInitVal();
20005 // Only single-bit enumerators introduce new flag values.
20006 if (EVal
.isPowerOf2())
20007 FlagBits
= FlagBits
.zext(EVal
.getBitWidth()) | EVal
;
20011 // A value is in a flag enum if either its bits are a subset of the enum's
20012 // flag bits (the first condition) or we are allowing masks and the same is
20013 // true of its complement (the second condition). When masks are allowed, we
20014 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
20016 // While it's true that any value could be used as a mask, the assumption is
20017 // that a mask will have all of the insignificant bits set. Anything else is
20018 // likely a logic error.
20019 llvm::APInt FlagMask
= ~FlagBits
.zextOrTrunc(Val
.getBitWidth());
20020 return !(FlagMask
& Val
) || (AllowMask
&& !(FlagMask
& ~Val
));
20023 void Sema::ActOnEnumBody(SourceLocation EnumLoc
, SourceRange BraceRange
,
20024 Decl
*EnumDeclX
, ArrayRef
<Decl
*> Elements
, Scope
*S
,
20025 const ParsedAttributesView
&Attrs
) {
20026 EnumDecl
*Enum
= cast
<EnumDecl
>(EnumDeclX
);
20027 QualType EnumType
= Context
.getTypeDeclType(Enum
);
20029 ProcessDeclAttributeList(S
, Enum
, Attrs
);
20031 if (Enum
->isDependentType()) {
20032 for (unsigned i
= 0, e
= Elements
.size(); i
!= e
; ++i
) {
20033 EnumConstantDecl
*ECD
=
20034 cast_or_null
<EnumConstantDecl
>(Elements
[i
]);
20035 if (!ECD
) continue;
20037 ECD
->setType(EnumType
);
20040 Enum
->completeDefinition(Context
.DependentTy
, Context
.DependentTy
, 0, 0);
20044 // TODO: If the result value doesn't fit in an int, it must be a long or long
20045 // long value. ISO C does not support this, but GCC does as an extension,
20047 unsigned IntWidth
= Context
.getTargetInfo().getIntWidth();
20048 unsigned CharWidth
= Context
.getTargetInfo().getCharWidth();
20049 unsigned ShortWidth
= Context
.getTargetInfo().getShortWidth();
20051 // Verify that all the values are okay, compute the size of the values, and
20052 // reverse the list.
20053 unsigned NumNegativeBits
= 0;
20054 unsigned NumPositiveBits
= 0;
20056 for (unsigned i
= 0, e
= Elements
.size(); i
!= e
; ++i
) {
20057 EnumConstantDecl
*ECD
=
20058 cast_or_null
<EnumConstantDecl
>(Elements
[i
]);
20059 if (!ECD
) continue; // Already issued a diagnostic.
20061 const llvm::APSInt
&InitVal
= ECD
->getInitVal();
20063 // Keep track of the size of positive and negative values.
20064 if (InitVal
.isUnsigned() || InitVal
.isNonNegative()) {
20065 // If the enumerator is zero that should still be counted as a positive
20066 // bit since we need a bit to store the value zero.
20067 unsigned ActiveBits
= InitVal
.getActiveBits();
20068 NumPositiveBits
= std::max({NumPositiveBits
, ActiveBits
, 1u});
20071 std::max(NumNegativeBits
, (unsigned)InitVal
.getSignificantBits());
20075 // If we have an empty set of enumerators we still need one bit.
20076 // From [dcl.enum]p8
20077 // If the enumerator-list is empty, the values of the enumeration are as if
20078 // the enumeration had a single enumerator with value 0
20079 if (!NumPositiveBits
&& !NumNegativeBits
)
20080 NumPositiveBits
= 1;
20082 // Figure out the type that should be used for this enum.
20084 unsigned BestWidth
;
20086 // C++0x N3000 [conv.prom]p3:
20087 // An rvalue of an unscoped enumeration type whose underlying
20088 // type is not fixed can be converted to an rvalue of the first
20089 // of the following types that can represent all the values of
20090 // the enumeration: int, unsigned int, long int, unsigned long
20091 // int, long long int, or unsigned long long int.
20093 // An identifier declared as an enumeration constant has type int.
20094 // The C99 rule is modified by a gcc extension
20095 QualType BestPromotionType
;
20097 bool Packed
= Enum
->hasAttr
<PackedAttr
>();
20098 // -fshort-enums is the equivalent to specifying the packed attribute on all
20099 // enum definitions.
20100 if (LangOpts
.ShortEnums
)
20103 // If the enum already has a type because it is fixed or dictated by the
20104 // target, promote that type instead of analyzing the enumerators.
20105 if (Enum
->isComplete()) {
20106 BestType
= Enum
->getIntegerType();
20107 if (Context
.isPromotableIntegerType(BestType
))
20108 BestPromotionType
= Context
.getPromotedIntegerType(BestType
);
20110 BestPromotionType
= BestType
;
20112 BestWidth
= Context
.getIntWidth(BestType
);
20114 else if (NumNegativeBits
) {
20115 // If there is a negative value, figure out the smallest integer type (of
20116 // int/long/longlong) that fits.
20117 // If it's packed, check also if it fits a char or a short.
20118 if (Packed
&& NumNegativeBits
<= CharWidth
&& NumPositiveBits
< CharWidth
) {
20119 BestType
= Context
.SignedCharTy
;
20120 BestWidth
= CharWidth
;
20121 } else if (Packed
&& NumNegativeBits
<= ShortWidth
&&
20122 NumPositiveBits
< ShortWidth
) {
20123 BestType
= Context
.ShortTy
;
20124 BestWidth
= ShortWidth
;
20125 } else if (NumNegativeBits
<= IntWidth
&& NumPositiveBits
< IntWidth
) {
20126 BestType
= Context
.IntTy
;
20127 BestWidth
= IntWidth
;
20129 BestWidth
= Context
.getTargetInfo().getLongWidth();
20131 if (NumNegativeBits
<= BestWidth
&& NumPositiveBits
< BestWidth
) {
20132 BestType
= Context
.LongTy
;
20134 BestWidth
= Context
.getTargetInfo().getLongLongWidth();
20136 if (NumNegativeBits
> BestWidth
|| NumPositiveBits
>= BestWidth
)
20137 Diag(Enum
->getLocation(), diag::ext_enum_too_large
);
20138 BestType
= Context
.LongLongTy
;
20141 BestPromotionType
= (BestWidth
<= IntWidth
? Context
.IntTy
: BestType
);
20143 // If there is no negative value, figure out the smallest type that fits
20144 // all of the enumerator values.
20145 // If it's packed, check also if it fits a char or a short.
20146 if (Packed
&& NumPositiveBits
<= CharWidth
) {
20147 BestType
= Context
.UnsignedCharTy
;
20148 BestPromotionType
= Context
.IntTy
;
20149 BestWidth
= CharWidth
;
20150 } else if (Packed
&& NumPositiveBits
<= ShortWidth
) {
20151 BestType
= Context
.UnsignedShortTy
;
20152 BestPromotionType
= Context
.IntTy
;
20153 BestWidth
= ShortWidth
;
20154 } else if (NumPositiveBits
<= IntWidth
) {
20155 BestType
= Context
.UnsignedIntTy
;
20156 BestWidth
= IntWidth
;
20158 = (NumPositiveBits
== BestWidth
|| !getLangOpts().CPlusPlus
)
20159 ? Context
.UnsignedIntTy
: Context
.IntTy
;
20160 } else if (NumPositiveBits
<=
20161 (BestWidth
= Context
.getTargetInfo().getLongWidth())) {
20162 BestType
= Context
.UnsignedLongTy
;
20164 = (NumPositiveBits
== BestWidth
|| !getLangOpts().CPlusPlus
)
20165 ? Context
.UnsignedLongTy
: Context
.LongTy
;
20167 BestWidth
= Context
.getTargetInfo().getLongLongWidth();
20168 assert(NumPositiveBits
<= BestWidth
&&
20169 "How could an initializer get larger than ULL?");
20170 BestType
= Context
.UnsignedLongLongTy
;
20172 = (NumPositiveBits
== BestWidth
|| !getLangOpts().CPlusPlus
)
20173 ? Context
.UnsignedLongLongTy
: Context
.LongLongTy
;
20177 // Loop over all of the enumerator constants, changing their types to match
20178 // the type of the enum if needed.
20179 for (auto *D
: Elements
) {
20180 auto *ECD
= cast_or_null
<EnumConstantDecl
>(D
);
20181 if (!ECD
) continue; // Already issued a diagnostic.
20183 // Standard C says the enumerators have int type, but we allow, as an
20184 // extension, the enumerators to be larger than int size. If each
20185 // enumerator value fits in an int, type it as an int, otherwise type it the
20186 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
20187 // that X has type 'int', not 'unsigned'.
20189 // Determine whether the value fits into an int.
20190 llvm::APSInt InitVal
= ECD
->getInitVal();
20192 // If it fits into an integer type, force it. Otherwise force it to match
20193 // the enum decl type.
20197 if (!getLangOpts().CPlusPlus
&&
20198 !Enum
->isFixed() &&
20199 isRepresentableIntegerValue(Context
, InitVal
, Context
.IntTy
)) {
20200 NewTy
= Context
.IntTy
;
20201 NewWidth
= IntWidth
;
20203 } else if (ECD
->getType() == BestType
) {
20204 // Already the right type!
20205 if (getLangOpts().CPlusPlus
)
20206 // C++ [dcl.enum]p4: Following the closing brace of an
20207 // enum-specifier, each enumerator has the type of its
20209 ECD
->setType(EnumType
);
20213 NewWidth
= BestWidth
;
20214 NewSign
= BestType
->isSignedIntegerOrEnumerationType();
20217 // Adjust the APSInt value.
20218 InitVal
= InitVal
.extOrTrunc(NewWidth
);
20219 InitVal
.setIsSigned(NewSign
);
20220 ECD
->setInitVal(InitVal
);
20222 // Adjust the Expr initializer and type.
20223 if (ECD
->getInitExpr() &&
20224 !Context
.hasSameType(NewTy
, ECD
->getInitExpr()->getType()))
20225 ECD
->setInitExpr(ImplicitCastExpr::Create(
20226 Context
, NewTy
, CK_IntegralCast
, ECD
->getInitExpr(),
20227 /*base paths*/ nullptr, VK_PRValue
, FPOptionsOverride()));
20228 if (getLangOpts().CPlusPlus
)
20229 // C++ [dcl.enum]p4: Following the closing brace of an
20230 // enum-specifier, each enumerator has the type of its
20232 ECD
->setType(EnumType
);
20234 ECD
->setType(NewTy
);
20237 Enum
->completeDefinition(BestType
, BestPromotionType
,
20238 NumPositiveBits
, NumNegativeBits
);
20240 CheckForDuplicateEnumValues(*this, Elements
, Enum
, EnumType
);
20242 if (Enum
->isClosedFlag()) {
20243 for (Decl
*D
: Elements
) {
20244 EnumConstantDecl
*ECD
= cast_or_null
<EnumConstantDecl
>(D
);
20245 if (!ECD
) continue; // Already issued a diagnostic.
20247 llvm::APSInt InitVal
= ECD
->getInitVal();
20248 if (InitVal
!= 0 && !InitVal
.isPowerOf2() &&
20249 !IsValueInFlagEnum(Enum
, InitVal
, true))
20250 Diag(ECD
->getLocation(), diag::warn_flag_enum_constant_out_of_range
)
20255 // Now that the enum type is defined, ensure it's not been underaligned.
20256 if (Enum
->hasAttrs())
20257 CheckAlignasUnderalignment(Enum
);
20260 Decl
*Sema::ActOnFileScopeAsmDecl(Expr
*expr
,
20261 SourceLocation StartLoc
,
20262 SourceLocation EndLoc
) {
20263 StringLiteral
*AsmString
= cast
<StringLiteral
>(expr
);
20265 FileScopeAsmDecl
*New
= FileScopeAsmDecl::Create(Context
, CurContext
,
20266 AsmString
, StartLoc
,
20268 CurContext
->addDecl(New
);
20272 Decl
*Sema::ActOnTopLevelStmtDecl(Stmt
*Statement
) {
20273 auto *New
= TopLevelStmtDecl::Create(Context
, Statement
);
20274 Context
.getTranslationUnitDecl()->addDecl(New
);
20278 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo
* Name
,
20279 IdentifierInfo
* AliasName
,
20280 SourceLocation PragmaLoc
,
20281 SourceLocation NameLoc
,
20282 SourceLocation AliasNameLoc
) {
20283 NamedDecl
*PrevDecl
= LookupSingleName(TUScope
, Name
, NameLoc
,
20284 LookupOrdinaryName
);
20285 AttributeCommonInfo
Info(AliasName
, SourceRange(AliasNameLoc
),
20286 AttributeCommonInfo::Form::Pragma());
20287 AsmLabelAttr
*Attr
= AsmLabelAttr::CreateImplicit(
20288 Context
, AliasName
->getName(), /*IsLiteralLabel=*/true, Info
);
20290 // If a declaration that:
20291 // 1) declares a function or a variable
20292 // 2) has external linkage
20293 // already exists, add a label attribute to it.
20294 if (PrevDecl
&& (isa
<FunctionDecl
>(PrevDecl
) || isa
<VarDecl
>(PrevDecl
))) {
20295 if (isDeclExternC(PrevDecl
))
20296 PrevDecl
->addAttr(Attr
);
20298 Diag(PrevDecl
->getLocation(), diag::warn_redefine_extname_not_applied
)
20299 << /*Variable*/(isa
<FunctionDecl
>(PrevDecl
) ? 0 : 1) << PrevDecl
;
20300 // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
20302 (void)ExtnameUndeclaredIdentifiers
.insert(std::make_pair(Name
, Attr
));
20305 void Sema::ActOnPragmaWeakID(IdentifierInfo
* Name
,
20306 SourceLocation PragmaLoc
,
20307 SourceLocation NameLoc
) {
20308 Decl
*PrevDecl
= LookupSingleName(TUScope
, Name
, NameLoc
, LookupOrdinaryName
);
20311 PrevDecl
->addAttr(WeakAttr::CreateImplicit(Context
, PragmaLoc
));
20313 (void)WeakUndeclaredIdentifiers
[Name
].insert(WeakInfo(nullptr, NameLoc
));
20317 void Sema::ActOnPragmaWeakAlias(IdentifierInfo
* Name
,
20318 IdentifierInfo
* AliasName
,
20319 SourceLocation PragmaLoc
,
20320 SourceLocation NameLoc
,
20321 SourceLocation AliasNameLoc
) {
20322 Decl
*PrevDecl
= LookupSingleName(TUScope
, AliasName
, AliasNameLoc
,
20323 LookupOrdinaryName
);
20324 WeakInfo W
= WeakInfo(Name
, NameLoc
);
20326 if (PrevDecl
&& (isa
<FunctionDecl
>(PrevDecl
) || isa
<VarDecl
>(PrevDecl
))) {
20327 if (!PrevDecl
->hasAttr
<AliasAttr
>())
20328 if (NamedDecl
*ND
= dyn_cast
<NamedDecl
>(PrevDecl
))
20329 DeclApplyPragmaWeak(TUScope
, ND
, W
);
20331 (void)WeakUndeclaredIdentifiers
[AliasName
].insert(W
);
20335 ObjCContainerDecl
*Sema::getObjCDeclContext() const {
20336 return (dyn_cast_or_null
<ObjCContainerDecl
>(CurContext
));
20339 Sema::FunctionEmissionStatus
Sema::getEmissionStatus(const FunctionDecl
*FD
,
20341 assert(FD
&& "Expected non-null FunctionDecl");
20343 // SYCL functions can be template, so we check if they have appropriate
20344 // attribute prior to checking if it is a template.
20345 if (LangOpts
.SYCLIsDevice
&& FD
->hasAttr
<SYCLKernelAttr
>())
20346 return FunctionEmissionStatus::Emitted
;
20348 // Templates are emitted when they're instantiated.
20349 if (FD
->isDependentContext())
20350 return FunctionEmissionStatus::TemplateDiscarded
;
20352 // Check whether this function is an externally visible definition.
20353 auto IsEmittedForExternalSymbol
= [this, FD
]() {
20354 // We have to check the GVA linkage of the function's *definition* -- if we
20355 // only have a declaration, we don't know whether or not the function will
20356 // be emitted, because (say) the definition could include "inline".
20357 const FunctionDecl
*Def
= FD
->getDefinition();
20359 return Def
&& !isDiscardableGVALinkage(
20360 getASTContext().GetGVALinkageForFunction(Def
));
20363 if (LangOpts
.OpenMPIsTargetDevice
) {
20364 // In OpenMP device mode we will not emit host only functions, or functions
20365 // we don't need due to their linkage.
20366 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
20367 OMPDeclareTargetDeclAttr::getDeviceType(FD
->getCanonicalDecl());
20368 // DevTy may be changed later by
20369 // #pragma omp declare target to(*) device_type(*).
20370 // Therefore DevTy having no value does not imply host. The emission status
20371 // will be checked again at the end of compilation unit with Final = true.
20373 if (*DevTy
== OMPDeclareTargetDeclAttr::DT_Host
)
20374 return FunctionEmissionStatus::OMPDiscarded
;
20375 // If we have an explicit value for the device type, or we are in a target
20376 // declare context, we need to emit all extern and used symbols.
20377 if (isInOpenMPDeclareTargetContext() || DevTy
)
20378 if (IsEmittedForExternalSymbol())
20379 return FunctionEmissionStatus::Emitted
;
20380 // Device mode only emits what it must, if it wasn't tagged yet and needed,
20383 return FunctionEmissionStatus::OMPDiscarded
;
20384 } else if (LangOpts
.OpenMP
> 45) {
20385 // In OpenMP host compilation prior to 5.0 everything was an emitted host
20386 // function. In 5.0, no_host was introduced which might cause a function to
20388 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
20389 OMPDeclareTargetDeclAttr::getDeviceType(FD
->getCanonicalDecl());
20391 if (*DevTy
== OMPDeclareTargetDeclAttr::DT_NoHost
)
20392 return FunctionEmissionStatus::OMPDiscarded
;
20395 if (Final
&& LangOpts
.OpenMP
&& !LangOpts
.CUDA
)
20396 return FunctionEmissionStatus::Emitted
;
20398 if (LangOpts
.CUDA
) {
20399 // When compiling for device, host functions are never emitted. Similarly,
20400 // when compiling for host, device and global functions are never emitted.
20401 // (Technically, we do emit a host-side stub for global functions, but this
20402 // doesn't count for our purposes here.)
20403 Sema::CUDAFunctionTarget T
= IdentifyCUDATarget(FD
);
20404 if (LangOpts
.CUDAIsDevice
&& T
== Sema::CFT_Host
)
20405 return FunctionEmissionStatus::CUDADiscarded
;
20406 if (!LangOpts
.CUDAIsDevice
&&
20407 (T
== Sema::CFT_Device
|| T
== Sema::CFT_Global
))
20408 return FunctionEmissionStatus::CUDADiscarded
;
20410 if (IsEmittedForExternalSymbol())
20411 return FunctionEmissionStatus::Emitted
;
20414 // Otherwise, the function is known-emitted if it's in our set of
20415 // known-emitted functions.
20416 return FunctionEmissionStatus::Unknown
;
20419 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl
*Callee
) {
20420 // Host-side references to a __global__ function refer to the stub, so the
20421 // function itself is never emitted and therefore should not be marked.
20422 // If we have host fn calls kernel fn calls host+device, the HD function
20423 // does not get instantiated on the host. We model this by omitting at the
20424 // call to the kernel from the callgraph. This ensures that, when compiling
20425 // for host, only HD functions actually called from the host get marked as
20427 return LangOpts
.CUDA
&& !LangOpts
.CUDAIsDevice
&&
20428 IdentifyCUDATarget(Callee
) == CFT_Global
;