[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / lib / Sema / SemaExprCXX.cpp
blob4ae04358d5df7c811eabe771a9b7b1fb3adb7325
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TokenKinds.h"
32 #include "clang/Basic/TypeTraits.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/EnterExpressionEvaluationContext.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaInternal.h"
42 #include "clang/Sema/SemaLambda.h"
43 #include "clang/Sema/Template.h"
44 #include "clang/Sema/TemplateDeduction.h"
45 #include "llvm/ADT/APInt.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/TypeSize.h"
50 #include <optional>
51 using namespace clang;
52 using namespace sema;
54 /// Handle the result of the special case name lookup for inheriting
55 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
56 /// constructor names in member using declarations, even if 'X' is not the
57 /// name of the corresponding type.
58 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
59 SourceLocation NameLoc,
60 IdentifierInfo &Name) {
61 NestedNameSpecifier *NNS = SS.getScopeRep();
63 // Convert the nested-name-specifier into a type.
64 QualType Type;
65 switch (NNS->getKind()) {
66 case NestedNameSpecifier::TypeSpec:
67 case NestedNameSpecifier::TypeSpecWithTemplate:
68 Type = QualType(NNS->getAsType(), 0);
69 break;
71 case NestedNameSpecifier::Identifier:
72 // Strip off the last layer of the nested-name-specifier and build a
73 // typename type for it.
74 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
75 Type = Context.getDependentNameType(
76 ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier());
77 break;
79 case NestedNameSpecifier::Global:
80 case NestedNameSpecifier::Super:
81 case NestedNameSpecifier::Namespace:
82 case NestedNameSpecifier::NamespaceAlias:
83 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
86 // This reference to the type is located entirely at the location of the
87 // final identifier in the qualified-id.
88 return CreateParsedType(Type,
89 Context.getTrivialTypeSourceInfo(Type, NameLoc));
92 ParsedType Sema::getConstructorName(IdentifierInfo &II,
93 SourceLocation NameLoc,
94 Scope *S, CXXScopeSpec &SS,
95 bool EnteringContext) {
96 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
97 assert(CurClass && &II == CurClass->getIdentifier() &&
98 "not a constructor name");
100 // When naming a constructor as a member of a dependent context (eg, in a
101 // friend declaration or an inherited constructor declaration), form an
102 // unresolved "typename" type.
103 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
104 QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
105 SS.getScopeRep(), &II);
106 return ParsedType::make(T);
109 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
110 return ParsedType();
112 // Find the injected-class-name declaration. Note that we make no attempt to
113 // diagnose cases where the injected-class-name is shadowed: the only
114 // declaration that can validly shadow the injected-class-name is a
115 // non-static data member, and if the class contains both a non-static data
116 // member and a constructor then it is ill-formed (we check that in
117 // CheckCompletedCXXClass).
118 CXXRecordDecl *InjectedClassName = nullptr;
119 for (NamedDecl *ND : CurClass->lookup(&II)) {
120 auto *RD = dyn_cast<CXXRecordDecl>(ND);
121 if (RD && RD->isInjectedClassName()) {
122 InjectedClassName = RD;
123 break;
126 if (!InjectedClassName) {
127 if (!CurClass->isInvalidDecl()) {
128 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
129 // properly. Work around it here for now.
130 Diag(SS.getLastQualifierNameLoc(),
131 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
133 return ParsedType();
136 QualType T = Context.getTypeDeclType(InjectedClassName);
137 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
138 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
140 return ParsedType::make(T);
143 ParsedType Sema::getDestructorName(IdentifierInfo &II, SourceLocation NameLoc,
144 Scope *S, CXXScopeSpec &SS,
145 ParsedType ObjectTypePtr,
146 bool EnteringContext) {
147 // Determine where to perform name lookup.
149 // FIXME: This area of the standard is very messy, and the current
150 // wording is rather unclear about which scopes we search for the
151 // destructor name; see core issues 399 and 555. Issue 399 in
152 // particular shows where the current description of destructor name
153 // lookup is completely out of line with existing practice, e.g.,
154 // this appears to be ill-formed:
156 // namespace N {
157 // template <typename T> struct S {
158 // ~S();
159 // };
160 // }
162 // void f(N::S<int>* s) {
163 // s->N::S<int>::~S();
164 // }
166 // See also PR6358 and PR6359.
168 // For now, we accept all the cases in which the name given could plausibly
169 // be interpreted as a correct destructor name, issuing off-by-default
170 // extension diagnostics on the cases that don't strictly conform to the
171 // C++20 rules. This basically means we always consider looking in the
172 // nested-name-specifier prefix, the complete nested-name-specifier, and
173 // the scope, and accept if we find the expected type in any of the three
174 // places.
176 if (SS.isInvalid())
177 return nullptr;
179 // Whether we've failed with a diagnostic already.
180 bool Failed = false;
182 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
183 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
185 // If we have an object type, it's because we are in a
186 // pseudo-destructor-expression or a member access expression, and
187 // we know what type we're looking for.
188 QualType SearchType =
189 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
191 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
192 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
193 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
194 if (!Type)
195 return false;
197 if (SearchType.isNull() || SearchType->isDependentType())
198 return true;
200 QualType T = Context.getTypeDeclType(Type);
201 return Context.hasSameUnqualifiedType(T, SearchType);
204 unsigned NumAcceptableResults = 0;
205 for (NamedDecl *D : Found) {
206 if (IsAcceptableResult(D))
207 ++NumAcceptableResults;
209 // Don't list a class twice in the lookup failure diagnostic if it's
210 // found by both its injected-class-name and by the name in the enclosing
211 // scope.
212 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
213 if (RD->isInjectedClassName())
214 D = cast<NamedDecl>(RD->getParent());
216 if (FoundDeclSet.insert(D).second)
217 FoundDecls.push_back(D);
220 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
221 // results, and all non-matching results if we have a search type. It's not
222 // clear what the right behavior is if destructor lookup hits an ambiguity,
223 // but other compilers do generally accept at least some kinds of
224 // ambiguity.
225 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
226 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
227 LookupResult::Filter F = Found.makeFilter();
228 while (F.hasNext()) {
229 NamedDecl *D = F.next();
230 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
231 Diag(D->getLocation(), diag::note_destructor_type_here)
232 << Context.getTypeDeclType(TD);
233 else
234 Diag(D->getLocation(), diag::note_destructor_nontype_here);
236 if (!IsAcceptableResult(D))
237 F.erase();
239 F.done();
242 if (Found.isAmbiguous())
243 Failed = true;
245 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
246 if (IsAcceptableResult(Type)) {
247 QualType T = Context.getTypeDeclType(Type);
248 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
249 return CreateParsedType(
250 Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T),
251 Context.getTrivialTypeSourceInfo(T, NameLoc));
255 return nullptr;
258 bool IsDependent = false;
260 auto LookupInObjectType = [&]() -> ParsedType {
261 if (Failed || SearchType.isNull())
262 return nullptr;
264 IsDependent |= SearchType->isDependentType();
266 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
267 DeclContext *LookupCtx = computeDeclContext(SearchType);
268 if (!LookupCtx)
269 return nullptr;
270 LookupQualifiedName(Found, LookupCtx);
271 return CheckLookupResult(Found);
274 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
275 if (Failed)
276 return nullptr;
278 IsDependent |= isDependentScopeSpecifier(LookupSS);
279 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
280 if (!LookupCtx)
281 return nullptr;
283 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
284 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
285 Failed = true;
286 return nullptr;
288 LookupQualifiedName(Found, LookupCtx);
289 return CheckLookupResult(Found);
292 auto LookupInScope = [&]() -> ParsedType {
293 if (Failed || !S)
294 return nullptr;
296 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
297 LookupName(Found, S);
298 return CheckLookupResult(Found);
301 // C++2a [basic.lookup.qual]p6:
302 // In a qualified-id of the form
304 // nested-name-specifier[opt] type-name :: ~ type-name
306 // the second type-name is looked up in the same scope as the first.
308 // We interpret this as meaning that if you do a dual-scope lookup for the
309 // first name, you also do a dual-scope lookup for the second name, per
310 // C++ [basic.lookup.classref]p4:
312 // If the id-expression in a class member access is a qualified-id of the
313 // form
315 // class-name-or-namespace-name :: ...
317 // the class-name-or-namespace-name following the . or -> is first looked
318 // up in the class of the object expression and the name, if found, is used.
319 // Otherwise, it is looked up in the context of the entire
320 // postfix-expression.
322 // This looks in the same scopes as for an unqualified destructor name:
324 // C++ [basic.lookup.classref]p3:
325 // If the unqualified-id is ~ type-name, the type-name is looked up
326 // in the context of the entire postfix-expression. If the type T
327 // of the object expression is of a class type C, the type-name is
328 // also looked up in the scope of class C. At least one of the
329 // lookups shall find a name that refers to cv T.
331 // FIXME: The intent is unclear here. Should type-name::~type-name look in
332 // the scope anyway if it finds a non-matching name declared in the class?
333 // If both lookups succeed and find a dependent result, which result should
334 // we retain? (Same question for p->~type-name().)
336 if (NestedNameSpecifier *Prefix =
337 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
338 // This is
340 // nested-name-specifier type-name :: ~ type-name
342 // Look for the second type-name in the nested-name-specifier.
343 CXXScopeSpec PrefixSS;
344 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
345 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
346 return T;
347 } else {
348 // This is one of
350 // type-name :: ~ type-name
351 // ~ type-name
353 // Look in the scope and (if any) the object type.
354 if (ParsedType T = LookupInScope())
355 return T;
356 if (ParsedType T = LookupInObjectType())
357 return T;
360 if (Failed)
361 return nullptr;
363 if (IsDependent) {
364 // We didn't find our type, but that's OK: it's dependent anyway.
366 // FIXME: What if we have no nested-name-specifier?
367 QualType T =
368 CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(),
369 SS.getWithLocInContext(Context), II, NameLoc);
370 return ParsedType::make(T);
373 // The remaining cases are all non-standard extensions imitating the behavior
374 // of various other compilers.
375 unsigned NumNonExtensionDecls = FoundDecls.size();
377 if (SS.isSet()) {
378 // For compatibility with older broken C++ rules and existing code,
380 // nested-name-specifier :: ~ type-name
382 // also looks for type-name within the nested-name-specifier.
383 if (ParsedType T = LookupInNestedNameSpec(SS)) {
384 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
385 << SS.getRange()
386 << FixItHint::CreateInsertion(SS.getEndLoc(),
387 ("::" + II.getName()).str());
388 return T;
391 // For compatibility with other compilers and older versions of Clang,
393 // nested-name-specifier type-name :: ~ type-name
395 // also looks for type-name in the scope. Unfortunately, we can't
396 // reasonably apply this fallback for dependent nested-name-specifiers.
397 if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
398 if (ParsedType T = LookupInScope()) {
399 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
400 << FixItHint::CreateRemoval(SS.getRange());
401 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
402 << GetTypeFromParser(T);
403 return T;
408 // We didn't find anything matching; tell the user what we did find (if
409 // anything).
411 // Don't tell the user about declarations we shouldn't have found.
412 FoundDecls.resize(NumNonExtensionDecls);
414 // List types before non-types.
415 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
416 [](NamedDecl *A, NamedDecl *B) {
417 return isa<TypeDecl>(A->getUnderlyingDecl()) >
418 isa<TypeDecl>(B->getUnderlyingDecl());
421 // Suggest a fixit to properly name the destroyed type.
422 auto MakeFixItHint = [&]{
423 const CXXRecordDecl *Destroyed = nullptr;
424 // FIXME: If we have a scope specifier, suggest its last component?
425 if (!SearchType.isNull())
426 Destroyed = SearchType->getAsCXXRecordDecl();
427 else if (S)
428 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
429 if (Destroyed)
430 return FixItHint::CreateReplacement(SourceRange(NameLoc),
431 Destroyed->getNameAsString());
432 return FixItHint();
435 if (FoundDecls.empty()) {
436 // FIXME: Attempt typo-correction?
437 Diag(NameLoc, diag::err_undeclared_destructor_name)
438 << &II << MakeFixItHint();
439 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
440 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
441 assert(!SearchType.isNull() &&
442 "should only reject a type result if we have a search type");
443 QualType T = Context.getTypeDeclType(TD);
444 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
445 << T << SearchType << MakeFixItHint();
446 } else {
447 Diag(NameLoc, diag::err_destructor_expr_nontype)
448 << &II << MakeFixItHint();
450 } else {
451 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
452 : diag::err_destructor_expr_mismatch)
453 << &II << SearchType << MakeFixItHint();
456 for (NamedDecl *FoundD : FoundDecls) {
457 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
458 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
459 << Context.getTypeDeclType(TD);
460 else
461 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
462 << FoundD;
465 return nullptr;
468 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
469 ParsedType ObjectType) {
470 if (DS.getTypeSpecType() == DeclSpec::TST_error)
471 return nullptr;
473 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
474 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
475 return nullptr;
478 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
479 "unexpected type in getDestructorType");
480 QualType T = BuildDecltypeType(DS.getRepAsExpr());
482 // If we know the type of the object, check that the correct destructor
483 // type was named now; we can give better diagnostics this way.
484 QualType SearchType = GetTypeFromParser(ObjectType);
485 if (!SearchType.isNull() && !SearchType->isDependentType() &&
486 !Context.hasSameUnqualifiedType(T, SearchType)) {
487 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
488 << T << SearchType;
489 return nullptr;
492 return ParsedType::make(T);
495 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
496 const UnqualifiedId &Name, bool IsUDSuffix) {
497 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
498 if (!IsUDSuffix) {
499 // [over.literal] p8
501 // double operator""_Bq(long double); // OK: not a reserved identifier
502 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
503 IdentifierInfo *II = Name.Identifier;
504 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
505 SourceLocation Loc = Name.getEndLoc();
506 if (!PP.getSourceManager().isInSystemHeader(Loc)) {
507 if (auto Hint = FixItHint::CreateReplacement(
508 Name.getSourceRange(),
509 (StringRef("operator\"\"") + II->getName()).str());
510 isReservedInAllContexts(Status)) {
511 Diag(Loc, diag::warn_reserved_extern_symbol)
512 << II << static_cast<int>(Status) << Hint;
513 } else {
514 Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint;
519 if (!SS.isValid())
520 return false;
522 switch (SS.getScopeRep()->getKind()) {
523 case NestedNameSpecifier::Identifier:
524 case NestedNameSpecifier::TypeSpec:
525 case NestedNameSpecifier::TypeSpecWithTemplate:
526 // Per C++11 [over.literal]p2, literal operators can only be declared at
527 // namespace scope. Therefore, this unqualified-id cannot name anything.
528 // Reject it early, because we have no AST representation for this in the
529 // case where the scope is dependent.
530 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
531 << SS.getScopeRep();
532 return true;
534 case NestedNameSpecifier::Global:
535 case NestedNameSpecifier::Super:
536 case NestedNameSpecifier::Namespace:
537 case NestedNameSpecifier::NamespaceAlias:
538 return false;
541 llvm_unreachable("unknown nested name specifier kind");
544 /// Build a C++ typeid expression with a type operand.
545 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
546 SourceLocation TypeidLoc,
547 TypeSourceInfo *Operand,
548 SourceLocation RParenLoc) {
549 // C++ [expr.typeid]p4:
550 // The top-level cv-qualifiers of the lvalue expression or the type-id
551 // that is the operand of typeid are always ignored.
552 // If the type of the type-id is a class type or a reference to a class
553 // type, the class shall be completely-defined.
554 Qualifiers Quals;
555 QualType T
556 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
557 Quals);
558 if (T->getAs<RecordType>() &&
559 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
560 return ExprError();
562 if (T->isVariablyModifiedType())
563 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
565 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
566 return ExprError();
568 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
569 SourceRange(TypeidLoc, RParenLoc));
572 /// Build a C++ typeid expression with an expression operand.
573 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
574 SourceLocation TypeidLoc,
575 Expr *E,
576 SourceLocation RParenLoc) {
577 bool WasEvaluated = false;
578 if (E && !E->isTypeDependent()) {
579 if (E->hasPlaceholderType()) {
580 ExprResult result = CheckPlaceholderExpr(E);
581 if (result.isInvalid()) return ExprError();
582 E = result.get();
585 QualType T = E->getType();
586 if (const RecordType *RecordT = T->getAs<RecordType>()) {
587 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
588 // C++ [expr.typeid]p3:
589 // [...] If the type of the expression is a class type, the class
590 // shall be completely-defined.
591 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
592 return ExprError();
594 // C++ [expr.typeid]p3:
595 // When typeid is applied to an expression other than an glvalue of a
596 // polymorphic class type [...] [the] expression is an unevaluated
597 // operand. [...]
598 if (RecordD->isPolymorphic() && E->isGLValue()) {
599 if (isUnevaluatedContext()) {
600 // The operand was processed in unevaluated context, switch the
601 // context and recheck the subexpression.
602 ExprResult Result = TransformToPotentiallyEvaluated(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
608 // We require a vtable to query the type at run time.
609 MarkVTableUsed(TypeidLoc, RecordD);
610 WasEvaluated = true;
614 ExprResult Result = CheckUnevaluatedOperand(E);
615 if (Result.isInvalid())
616 return ExprError();
617 E = Result.get();
619 // C++ [expr.typeid]p4:
620 // [...] If the type of the type-id is a reference to a possibly
621 // cv-qualified type, the result of the typeid expression refers to a
622 // std::type_info object representing the cv-unqualified referenced
623 // type.
624 Qualifiers Quals;
625 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
626 if (!Context.hasSameType(T, UnqualT)) {
627 T = UnqualT;
628 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
632 if (E->getType()->isVariablyModifiedType())
633 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
634 << E->getType());
635 else if (!inTemplateInstantiation() &&
636 E->HasSideEffects(Context, WasEvaluated)) {
637 // The expression operand for typeid is in an unevaluated expression
638 // context, so side effects could result in unintended consequences.
639 Diag(E->getExprLoc(), WasEvaluated
640 ? diag::warn_side_effects_typeid
641 : diag::warn_side_effects_unevaluated_context);
644 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
645 SourceRange(TypeidLoc, RParenLoc));
648 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
649 ExprResult
650 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
651 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
652 // typeid is not supported in OpenCL.
653 if (getLangOpts().OpenCLCPlusPlus) {
654 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
655 << "typeid");
658 // Find the std::type_info type.
659 if (!getStdNamespace())
660 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
662 if (!CXXTypeInfoDecl) {
663 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
664 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
665 LookupQualifiedName(R, getStdNamespace());
666 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
667 // Microsoft's typeinfo doesn't have type_info in std but in the global
668 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
669 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
670 LookupQualifiedName(R, Context.getTranslationUnitDecl());
671 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
673 if (!CXXTypeInfoDecl)
674 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
677 if (!getLangOpts().RTTI) {
678 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
681 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
683 if (isType) {
684 // The operand is a type; handle it as such.
685 TypeSourceInfo *TInfo = nullptr;
686 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
687 &TInfo);
688 if (T.isNull())
689 return ExprError();
691 if (!TInfo)
692 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
694 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
697 // The operand is an expression.
698 ExprResult Result =
699 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
701 if (!getLangOpts().RTTIData && !Result.isInvalid())
702 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
703 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
704 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
705 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
706 DiagnosticOptions::MSVC);
707 return Result;
710 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
711 /// a single GUID.
712 static void
713 getUuidAttrOfType(Sema &SemaRef, QualType QT,
714 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
715 // Optionally remove one level of pointer, reference or array indirection.
716 const Type *Ty = QT.getTypePtr();
717 if (QT->isPointerType() || QT->isReferenceType())
718 Ty = QT->getPointeeType().getTypePtr();
719 else if (QT->isArrayType())
720 Ty = Ty->getBaseElementTypeUnsafe();
722 const auto *TD = Ty->getAsTagDecl();
723 if (!TD)
724 return;
726 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
727 UuidAttrs.insert(Uuid);
728 return;
731 // __uuidof can grab UUIDs from template arguments.
732 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
733 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
734 for (const TemplateArgument &TA : TAL.asArray()) {
735 const UuidAttr *UuidForTA = nullptr;
736 if (TA.getKind() == TemplateArgument::Type)
737 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
738 else if (TA.getKind() == TemplateArgument::Declaration)
739 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
741 if (UuidForTA)
742 UuidAttrs.insert(UuidForTA);
747 /// Build a Microsoft __uuidof expression with a type operand.
748 ExprResult Sema::BuildCXXUuidof(QualType Type,
749 SourceLocation TypeidLoc,
750 TypeSourceInfo *Operand,
751 SourceLocation RParenLoc) {
752 MSGuidDecl *Guid = nullptr;
753 if (!Operand->getType()->isDependentType()) {
754 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
755 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
756 if (UuidAttrs.empty())
757 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
758 if (UuidAttrs.size() > 1)
759 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
760 Guid = UuidAttrs.back()->getGuidDecl();
763 return new (Context)
764 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
767 /// Build a Microsoft __uuidof expression with an expression operand.
768 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
769 Expr *E, SourceLocation RParenLoc) {
770 MSGuidDecl *Guid = nullptr;
771 if (!E->getType()->isDependentType()) {
772 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
773 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
774 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
775 } else {
776 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
777 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
778 if (UuidAttrs.empty())
779 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
780 if (UuidAttrs.size() > 1)
781 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
782 Guid = UuidAttrs.back()->getGuidDecl();
786 return new (Context)
787 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
790 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
791 ExprResult
792 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
793 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
794 QualType GuidType = Context.getMSGuidType();
795 GuidType.addConst();
797 if (isType) {
798 // The operand is a type; handle it as such.
799 TypeSourceInfo *TInfo = nullptr;
800 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
801 &TInfo);
802 if (T.isNull())
803 return ExprError();
805 if (!TInfo)
806 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
808 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
811 // The operand is an expression.
812 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
815 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
816 ExprResult
817 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
818 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
819 "Unknown C++ Boolean value!");
820 return new (Context)
821 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
824 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
825 ExprResult
826 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
827 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
830 /// ActOnCXXThrow - Parse throw expressions.
831 ExprResult
832 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
833 bool IsThrownVarInScope = false;
834 if (Ex) {
835 // C++0x [class.copymove]p31:
836 // When certain criteria are met, an implementation is allowed to omit the
837 // copy/move construction of a class object [...]
839 // - in a throw-expression, when the operand is the name of a
840 // non-volatile automatic object (other than a function or catch-
841 // clause parameter) whose scope does not extend beyond the end of the
842 // innermost enclosing try-block (if there is one), the copy/move
843 // operation from the operand to the exception object (15.1) can be
844 // omitted by constructing the automatic object directly into the
845 // exception object
846 if (const auto *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
847 if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl());
848 Var && Var->hasLocalStorage() &&
849 !Var->getType().isVolatileQualified()) {
850 for (; S; S = S->getParent()) {
851 if (S->isDeclScope(Var)) {
852 IsThrownVarInScope = true;
853 break;
856 // FIXME: Many of the scope checks here seem incorrect.
857 if (S->getFlags() &
858 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
859 Scope::ObjCMethodScope | Scope::TryScope))
860 break;
865 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
868 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
869 bool IsThrownVarInScope) {
870 const llvm::Triple &T = Context.getTargetInfo().getTriple();
871 const bool IsOpenMPGPUTarget =
872 getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
873 // Don't report an error if 'throw' is used in system headers or in an OpenMP
874 // target region compiled for a GPU architecture.
875 if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
876 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
877 // Delay error emission for the OpenMP device code.
878 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
881 // In OpenMP target regions, we replace 'throw' with a trap on GPU targets.
882 if (IsOpenMPGPUTarget)
883 targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str();
885 // Exceptions aren't allowed in CUDA device code.
886 if (getLangOpts().CUDA)
887 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
888 << "throw" << CurrentCUDATarget();
890 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
891 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
893 if (Ex && !Ex->isTypeDependent()) {
894 // Initialize the exception result. This implicitly weeds out
895 // abstract types or types with inaccessible copy constructors.
897 // C++0x [class.copymove]p31:
898 // When certain criteria are met, an implementation is allowed to omit the
899 // copy/move construction of a class object [...]
901 // - in a throw-expression, when the operand is the name of a
902 // non-volatile automatic object (other than a function or
903 // catch-clause
904 // parameter) whose scope does not extend beyond the end of the
905 // innermost enclosing try-block (if there is one), the copy/move
906 // operation from the operand to the exception object (15.1) can be
907 // omitted by constructing the automatic object directly into the
908 // exception object
909 NamedReturnInfo NRInfo =
910 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
912 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
913 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
914 return ExprError();
916 InitializedEntity Entity =
917 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
918 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
919 if (Res.isInvalid())
920 return ExprError();
921 Ex = Res.get();
924 // PPC MMA non-pointer types are not allowed as throw expr types.
925 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
926 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
928 return new (Context)
929 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
932 static void
933 collectPublicBases(CXXRecordDecl *RD,
934 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
935 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
936 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
937 bool ParentIsPublic) {
938 for (const CXXBaseSpecifier &BS : RD->bases()) {
939 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
940 bool NewSubobject;
941 // Virtual bases constitute the same subobject. Non-virtual bases are
942 // always distinct subobjects.
943 if (BS.isVirtual())
944 NewSubobject = VBases.insert(BaseDecl).second;
945 else
946 NewSubobject = true;
948 if (NewSubobject)
949 ++SubobjectsSeen[BaseDecl];
951 // Only add subobjects which have public access throughout the entire chain.
952 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
953 if (PublicPath)
954 PublicSubobjectsSeen.insert(BaseDecl);
956 // Recurse on to each base subobject.
957 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
958 PublicPath);
962 static void getUnambiguousPublicSubobjects(
963 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
964 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
965 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
966 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
967 SubobjectsSeen[RD] = 1;
968 PublicSubobjectsSeen.insert(RD);
969 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
970 /*ParentIsPublic=*/true);
972 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
973 // Skip ambiguous objects.
974 if (SubobjectsSeen[PublicSubobject] > 1)
975 continue;
977 Objects.push_back(PublicSubobject);
981 /// CheckCXXThrowOperand - Validate the operand of a throw.
982 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
983 QualType ExceptionObjectTy, Expr *E) {
984 // If the type of the exception would be an incomplete type or a pointer
985 // to an incomplete type other than (cv) void the program is ill-formed.
986 QualType Ty = ExceptionObjectTy;
987 bool isPointer = false;
988 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
989 Ty = Ptr->getPointeeType();
990 isPointer = true;
993 // Cannot throw WebAssembly reference type.
994 if (Ty.isWebAssemblyReferenceType()) {
995 Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange();
996 return true;
999 // Cannot throw WebAssembly table.
1000 if (isPointer && Ty.isWebAssemblyReferenceType()) {
1001 Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange();
1002 return true;
1005 if (!isPointer || !Ty->isVoidType()) {
1006 if (RequireCompleteType(ThrowLoc, Ty,
1007 isPointer ? diag::err_throw_incomplete_ptr
1008 : diag::err_throw_incomplete,
1009 E->getSourceRange()))
1010 return true;
1012 if (!isPointer && Ty->isSizelessType()) {
1013 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
1014 return true;
1017 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
1018 diag::err_throw_abstract_type, E))
1019 return true;
1022 // If the exception has class type, we need additional handling.
1023 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1024 if (!RD)
1025 return false;
1027 // If we are throwing a polymorphic class type or pointer thereof,
1028 // exception handling will make use of the vtable.
1029 MarkVTableUsed(ThrowLoc, RD);
1031 // If a pointer is thrown, the referenced object will not be destroyed.
1032 if (isPointer)
1033 return false;
1035 // If the class has a destructor, we must be able to call it.
1036 if (!RD->hasIrrelevantDestructor()) {
1037 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1038 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1039 CheckDestructorAccess(E->getExprLoc(), Destructor,
1040 PDiag(diag::err_access_dtor_exception) << Ty);
1041 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1042 return true;
1046 // The MSVC ABI creates a list of all types which can catch the exception
1047 // object. This list also references the appropriate copy constructor to call
1048 // if the object is caught by value and has a non-trivial copy constructor.
1049 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1050 // We are only interested in the public, unambiguous bases contained within
1051 // the exception object. Bases which are ambiguous or otherwise
1052 // inaccessible are not catchable types.
1053 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1054 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1056 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1057 // Attempt to lookup the copy constructor. Various pieces of machinery
1058 // will spring into action, like template instantiation, which means this
1059 // cannot be a simple walk of the class's decls. Instead, we must perform
1060 // lookup and overload resolution.
1061 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1062 if (!CD || CD->isDeleted())
1063 continue;
1065 // Mark the constructor referenced as it is used by this throw expression.
1066 MarkFunctionReferenced(E->getExprLoc(), CD);
1068 // Skip this copy constructor if it is trivial, we don't need to record it
1069 // in the catchable type data.
1070 if (CD->isTrivial())
1071 continue;
1073 // The copy constructor is non-trivial, create a mapping from this class
1074 // type to this constructor.
1075 // N.B. The selection of copy constructor is not sensitive to this
1076 // particular throw-site. Lookup will be performed at the catch-site to
1077 // ensure that the copy constructor is, in fact, accessible (via
1078 // friendship or any other means).
1079 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1081 // We don't keep the instantiated default argument expressions around so
1082 // we must rebuild them here.
1083 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1084 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1085 return true;
1090 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1091 // the runtime with no ability for the compiler to request additional
1092 // alignment. Warn if the exception type requires alignment beyond the minimum
1093 // guaranteed by the target C++ runtime.
1094 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1095 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1096 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1097 if (ExnObjAlign < TypeAlign) {
1098 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1099 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1100 << Ty << (unsigned)TypeAlign.getQuantity()
1101 << (unsigned)ExnObjAlign.getQuantity();
1104 if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) {
1105 if (CXXDestructorDecl *Dtor = RD->getDestructor()) {
1106 auto Ty = Dtor->getType();
1107 if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) {
1108 if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) &&
1109 !FT->isNothrow())
1110 Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD;
1115 return false;
1118 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1119 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1120 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1122 QualType ClassType = ThisTy->getPointeeType();
1123 LambdaScopeInfo *CurLSI = nullptr;
1124 DeclContext *CurDC = CurSemaContext;
1126 // Iterate through the stack of lambdas starting from the innermost lambda to
1127 // the outermost lambda, checking if '*this' is ever captured by copy - since
1128 // that could change the cv-qualifiers of the '*this' object.
1129 // The object referred to by '*this' starts out with the cv-qualifiers of its
1130 // member function. We then start with the innermost lambda and iterate
1131 // outward checking to see if any lambda performs a by-copy capture of '*this'
1132 // - and if so, any nested lambda must respect the 'constness' of that
1133 // capturing lamdbda's call operator.
1136 // Since the FunctionScopeInfo stack is representative of the lexical
1137 // nesting of the lambda expressions during initial parsing (and is the best
1138 // place for querying information about captures about lambdas that are
1139 // partially processed) and perhaps during instantiation of function templates
1140 // that contain lambda expressions that need to be transformed BUT not
1141 // necessarily during instantiation of a nested generic lambda's function call
1142 // operator (which might even be instantiated at the end of the TU) - at which
1143 // time the DeclContext tree is mature enough to query capture information
1144 // reliably - we use a two pronged approach to walk through all the lexically
1145 // enclosing lambda expressions:
1147 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1148 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1149 // enclosed by the call-operator of the LSI below it on the stack (while
1150 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1151 // the stack represents the innermost lambda.
1153 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1154 // represents a lambda's call operator. If it does, we must be instantiating
1155 // a generic lambda's call operator (represented by the Current LSI, and
1156 // should be the only scenario where an inconsistency between the LSI and the
1157 // DeclContext should occur), so climb out the DeclContexts if they
1158 // represent lambdas, while querying the corresponding closure types
1159 // regarding capture information.
1161 // 1) Climb down the function scope info stack.
1162 for (int I = FunctionScopes.size();
1163 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1164 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1165 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1166 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1167 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1169 if (!CurLSI->isCXXThisCaptured())
1170 continue;
1172 auto C = CurLSI->getCXXThisCapture();
1174 if (C.isCopyCapture()) {
1175 if (CurLSI->lambdaCaptureShouldBeConst())
1176 ClassType.addConst();
1177 return ASTCtx.getPointerType(ClassType);
1181 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1182 // can happen during instantiation of its nested generic lambda call
1183 // operator); 2. if we're in a lambda scope (lambda body).
1184 if (CurLSI && isLambdaCallOperator(CurDC)) {
1185 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1186 "While computing 'this' capture-type for a generic lambda, when we "
1187 "run out of enclosing LSI's, yet the enclosing DC is a "
1188 "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1189 "lambda call oeprator");
1190 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1192 auto IsThisCaptured =
1193 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1194 IsConst = false;
1195 IsByCopy = false;
1196 for (auto &&C : Closure->captures()) {
1197 if (C.capturesThis()) {
1198 if (C.getCaptureKind() == LCK_StarThis)
1199 IsByCopy = true;
1200 if (Closure->getLambdaCallOperator()->isConst())
1201 IsConst = true;
1202 return true;
1205 return false;
1208 bool IsByCopyCapture = false;
1209 bool IsConstCapture = false;
1210 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1211 while (Closure &&
1212 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1213 if (IsByCopyCapture) {
1214 if (IsConstCapture)
1215 ClassType.addConst();
1216 return ASTCtx.getPointerType(ClassType);
1218 Closure = isLambdaCallOperator(Closure->getParent())
1219 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1220 : nullptr;
1223 return ASTCtx.getPointerType(ClassType);
1226 QualType Sema::getCurrentThisType() {
1227 DeclContext *DC = getFunctionLevelDeclContext();
1228 QualType ThisTy = CXXThisTypeOverride;
1230 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1231 if (method && method->isImplicitObjectMemberFunction())
1232 ThisTy = method->getThisType().getNonReferenceType();
1235 if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) &&
1236 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1238 // This is a lambda call operator that is being instantiated as a default
1239 // initializer. DC must point to the enclosing class type, so we can recover
1240 // the 'this' type from it.
1241 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1242 // There are no cv-qualifiers for 'this' within default initializers,
1243 // per [expr.prim.general]p4.
1244 ThisTy = Context.getPointerType(ClassTy);
1247 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1248 // might need to be adjusted if the lambda or any of its enclosing lambda's
1249 // captures '*this' by copy.
1250 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1251 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1252 CurContext, Context);
1253 return ThisTy;
1256 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1257 Decl *ContextDecl,
1258 Qualifiers CXXThisTypeQuals,
1259 bool Enabled)
1260 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1262 if (!Enabled || !ContextDecl)
1263 return;
1265 CXXRecordDecl *Record = nullptr;
1266 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1267 Record = Template->getTemplatedDecl();
1268 else
1269 Record = cast<CXXRecordDecl>(ContextDecl);
1271 QualType T = S.Context.getRecordType(Record);
1272 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1274 S.CXXThisTypeOverride =
1275 S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T);
1277 this->Enabled = true;
1281 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1282 if (Enabled) {
1283 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1287 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1288 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1289 assert(!LSI->isCXXThisCaptured());
1290 // [=, this] {}; // until C++20: Error: this when = is the default
1291 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1292 !Sema.getLangOpts().CPlusPlus20)
1293 return;
1294 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1295 << FixItHint::CreateInsertion(
1296 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1299 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1300 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1301 const bool ByCopy) {
1302 // We don't need to capture this in an unevaluated context.
1303 if (isUnevaluatedContext() && !Explicit)
1304 return true;
1306 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1308 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1309 ? *FunctionScopeIndexToStopAt
1310 : FunctionScopes.size() - 1;
1312 // Check that we can capture the *enclosing object* (referred to by '*this')
1313 // by the capturing-entity/closure (lambda/block/etc) at
1314 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1316 // Note: The *enclosing object* can only be captured by-value by a
1317 // closure that is a lambda, using the explicit notation:
1318 // [*this] { ... }.
1319 // Every other capture of the *enclosing object* results in its by-reference
1320 // capture.
1322 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1323 // stack), we can capture the *enclosing object* only if:
1324 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1325 // - or, 'L' has an implicit capture.
1326 // AND
1327 // -- there is no enclosing closure
1328 // -- or, there is some enclosing closure 'E' that has already captured the
1329 // *enclosing object*, and every intervening closure (if any) between 'E'
1330 // and 'L' can implicitly capture the *enclosing object*.
1331 // -- or, every enclosing closure can implicitly capture the
1332 // *enclosing object*
1335 unsigned NumCapturingClosures = 0;
1336 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1337 if (CapturingScopeInfo *CSI =
1338 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1339 if (CSI->CXXThisCaptureIndex != 0) {
1340 // 'this' is already being captured; there isn't anything more to do.
1341 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1342 break;
1344 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1345 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1346 // This context can't implicitly capture 'this'; fail out.
1347 if (BuildAndDiagnose) {
1348 LSI->CallOperator->setInvalidDecl();
1349 Diag(Loc, diag::err_this_capture)
1350 << (Explicit && idx == MaxFunctionScopesIndex);
1351 if (!Explicit)
1352 buildLambdaThisCaptureFixit(*this, LSI);
1354 return true;
1356 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1357 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1358 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1359 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1360 (Explicit && idx == MaxFunctionScopesIndex)) {
1361 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1362 // iteration through can be an explicit capture, all enclosing closures,
1363 // if any, must perform implicit captures.
1365 // This closure can capture 'this'; continue looking upwards.
1366 NumCapturingClosures++;
1367 continue;
1369 // This context can't implicitly capture 'this'; fail out.
1370 if (BuildAndDiagnose) {
1371 LSI->CallOperator->setInvalidDecl();
1372 Diag(Loc, diag::err_this_capture)
1373 << (Explicit && idx == MaxFunctionScopesIndex);
1375 if (!Explicit)
1376 buildLambdaThisCaptureFixit(*this, LSI);
1377 return true;
1379 break;
1381 if (!BuildAndDiagnose) return false;
1383 // If we got here, then the closure at MaxFunctionScopesIndex on the
1384 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1385 // (including implicit by-reference captures in any enclosing closures).
1387 // In the loop below, respect the ByCopy flag only for the closure requesting
1388 // the capture (i.e. first iteration through the loop below). Ignore it for
1389 // all enclosing closure's up to NumCapturingClosures (since they must be
1390 // implicitly capturing the *enclosing object* by reference (see loop
1391 // above)).
1392 assert((!ByCopy ||
1393 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1394 "Only a lambda can capture the enclosing object (referred to by "
1395 "*this) by copy");
1396 QualType ThisTy = getCurrentThisType();
1397 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1398 --idx, --NumCapturingClosures) {
1399 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1401 // The type of the corresponding data member (not a 'this' pointer if 'by
1402 // copy').
1403 QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy;
1405 bool isNested = NumCapturingClosures > 1;
1406 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1408 return false;
1411 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1412 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1413 /// is a non-lvalue expression whose value is the address of the object for
1414 /// which the function is called.
1415 QualType ThisTy = getCurrentThisType();
1417 if (ThisTy.isNull()) {
1418 DeclContext *DC = getFunctionLevelDeclContext();
1420 if (const auto *Method = dyn_cast<CXXMethodDecl>(DC);
1421 Method && Method->isExplicitObjectMemberFunction()) {
1422 return Diag(Loc, diag::err_invalid_this_use) << 1;
1425 if (isLambdaCallWithExplicitObjectParameter(CurContext))
1426 return Diag(Loc, diag::err_invalid_this_use) << 1;
1428 return Diag(Loc, diag::err_invalid_this_use) << 0;
1431 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1434 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1435 bool IsImplicit) {
1436 auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit);
1437 MarkThisReferenced(This);
1438 return This;
1441 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1442 CheckCXXThisCapture(This->getExprLoc());
1445 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1446 // If we're outside the body of a member function, then we'll have a specified
1447 // type for 'this'.
1448 if (CXXThisTypeOverride.isNull())
1449 return false;
1451 // Determine whether we're looking into a class that's currently being
1452 // defined.
1453 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1454 return Class && Class->isBeingDefined();
1457 /// Parse construction of a specified type.
1458 /// Can be interpreted either as function-style casting ("int(x)")
1459 /// or class type construction ("ClassType(x,y,z)")
1460 /// or creation of a value-initialized type ("int()").
1461 ExprResult
1462 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1463 SourceLocation LParenOrBraceLoc,
1464 MultiExprArg exprs,
1465 SourceLocation RParenOrBraceLoc,
1466 bool ListInitialization) {
1467 if (!TypeRep)
1468 return ExprError();
1470 TypeSourceInfo *TInfo;
1471 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1472 if (!TInfo)
1473 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1475 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1476 RParenOrBraceLoc, ListInitialization);
1477 // Avoid creating a non-type-dependent expression that contains typos.
1478 // Non-type-dependent expressions are liable to be discarded without
1479 // checking for embedded typos.
1480 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1481 !Result.get()->isTypeDependent())
1482 Result = CorrectDelayedTyposInExpr(Result.get());
1483 else if (Result.isInvalid())
1484 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1485 RParenOrBraceLoc, exprs, Ty);
1486 return Result;
1489 ExprResult
1490 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1491 SourceLocation LParenOrBraceLoc,
1492 MultiExprArg Exprs,
1493 SourceLocation RParenOrBraceLoc,
1494 bool ListInitialization) {
1495 QualType Ty = TInfo->getType();
1496 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1498 assert((!ListInitialization || Exprs.size() == 1) &&
1499 "List initialization must have exactly one expression.");
1500 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1502 InitializedEntity Entity =
1503 InitializedEntity::InitializeTemporary(Context, TInfo);
1504 InitializationKind Kind =
1505 Exprs.size()
1506 ? ListInitialization
1507 ? InitializationKind::CreateDirectList(
1508 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1509 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1510 RParenOrBraceLoc)
1511 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1512 RParenOrBraceLoc);
1514 // C++17 [expr.type.conv]p1:
1515 // If the type is a placeholder for a deduced class type, [...perform class
1516 // template argument deduction...]
1517 // C++23:
1518 // Otherwise, if the type contains a placeholder type, it is replaced by the
1519 // type determined by placeholder type deduction.
1520 DeducedType *Deduced = Ty->getContainedDeducedType();
1521 if (Deduced && !Deduced->isDeduced() &&
1522 isa<DeducedTemplateSpecializationType>(Deduced)) {
1523 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1524 Kind, Exprs);
1525 if (Ty.isNull())
1526 return ExprError();
1527 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1528 } else if (Deduced && !Deduced->isDeduced()) {
1529 MultiExprArg Inits = Exprs;
1530 if (ListInitialization) {
1531 auto *ILE = cast<InitListExpr>(Exprs[0]);
1532 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1535 if (Inits.empty())
1536 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1537 << Ty << FullRange);
1538 if (Inits.size() > 1) {
1539 Expr *FirstBad = Inits[1];
1540 return ExprError(Diag(FirstBad->getBeginLoc(),
1541 diag::err_auto_expr_init_multiple_expressions)
1542 << Ty << FullRange);
1544 if (getLangOpts().CPlusPlus23) {
1545 if (Ty->getAs<AutoType>())
1546 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1548 Expr *Deduce = Inits[0];
1549 if (isa<InitListExpr>(Deduce))
1550 return ExprError(
1551 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1552 << ListInitialization << Ty << FullRange);
1553 QualType DeducedType;
1554 TemplateDeductionInfo Info(Deduce->getExprLoc());
1555 TemplateDeductionResult Result =
1556 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1557 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
1558 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1559 << Ty << Deduce->getType() << FullRange
1560 << Deduce->getSourceRange());
1561 if (DeducedType.isNull()) {
1562 assert(Result == TDK_AlreadyDiagnosed);
1563 return ExprError();
1566 Ty = DeducedType;
1567 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1570 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs))
1571 return CXXUnresolvedConstructExpr::Create(
1572 Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs,
1573 RParenOrBraceLoc, ListInitialization);
1575 // C++ [expr.type.conv]p1:
1576 // If the expression list is a parenthesized single expression, the type
1577 // conversion expression is equivalent (in definedness, and if defined in
1578 // meaning) to the corresponding cast expression.
1579 if (Exprs.size() == 1 && !ListInitialization &&
1580 !isa<InitListExpr>(Exprs[0])) {
1581 Expr *Arg = Exprs[0];
1582 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1583 RParenOrBraceLoc);
1586 // For an expression of the form T(), T shall not be an array type.
1587 QualType ElemTy = Ty;
1588 if (Ty->isArrayType()) {
1589 if (!ListInitialization)
1590 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1591 << FullRange);
1592 ElemTy = Context.getBaseElementType(Ty);
1595 // Only construct objects with object types.
1596 // The standard doesn't explicitly forbid function types here, but that's an
1597 // obvious oversight, as there's no way to dynamically construct a function
1598 // in general.
1599 if (Ty->isFunctionType())
1600 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1601 << Ty << FullRange);
1603 // C++17 [expr.type.conv]p2:
1604 // If the type is cv void and the initializer is (), the expression is a
1605 // prvalue of the specified type that performs no initialization.
1606 if (!Ty->isVoidType() &&
1607 RequireCompleteType(TyBeginLoc, ElemTy,
1608 diag::err_invalid_incomplete_type_use, FullRange))
1609 return ExprError();
1611 // Otherwise, the expression is a prvalue of the specified type whose
1612 // result object is direct-initialized (11.6) with the initializer.
1613 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1614 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1616 if (Result.isInvalid())
1617 return Result;
1619 Expr *Inner = Result.get();
1620 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1621 Inner = BTE->getSubExpr();
1622 if (auto *CE = dyn_cast<ConstantExpr>(Inner);
1623 CE && CE->isImmediateInvocation())
1624 Inner = CE->getSubExpr();
1625 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1626 !isa<CXXScalarValueInitExpr>(Inner)) {
1627 // If we created a CXXTemporaryObjectExpr, that node also represents the
1628 // functional cast. Otherwise, create an explicit cast to represent
1629 // the syntactic form of a functional-style cast that was used here.
1631 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1632 // would give a more consistent AST representation than using a
1633 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1634 // is sometimes handled by initialization and sometimes not.
1635 QualType ResultType = Result.get()->getType();
1636 SourceRange Locs = ListInitialization
1637 ? SourceRange()
1638 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1639 Result = CXXFunctionalCastExpr::Create(
1640 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1641 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1642 Locs.getBegin(), Locs.getEnd());
1645 return Result;
1648 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1649 // [CUDA] Ignore this function, if we can't call it.
1650 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1651 if (getLangOpts().CUDA) {
1652 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1653 // If it's not callable at all, it's not the right function.
1654 if (CallPreference < CFP_WrongSide)
1655 return false;
1656 if (CallPreference == CFP_WrongSide) {
1657 // Maybe. We have to check if there are better alternatives.
1658 DeclContext::lookup_result R =
1659 Method->getDeclContext()->lookup(Method->getDeclName());
1660 for (const auto *D : R) {
1661 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1662 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1663 return false;
1666 // We've found no better variants.
1670 SmallVector<const FunctionDecl*, 4> PreventedBy;
1671 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1673 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1674 return Result;
1676 // In case of CUDA, return true if none of the 1-argument deallocator
1677 // functions are actually callable.
1678 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1679 assert(FD->getNumParams() == 1 &&
1680 "Only single-operand functions should be in PreventedBy");
1681 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1685 /// Determine whether the given function is a non-placement
1686 /// deallocation function.
1687 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1688 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1689 return S.isUsualDeallocationFunction(Method);
1691 if (FD->getOverloadedOperator() != OO_Delete &&
1692 FD->getOverloadedOperator() != OO_Array_Delete)
1693 return false;
1695 unsigned UsualParams = 1;
1697 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1698 S.Context.hasSameUnqualifiedType(
1699 FD->getParamDecl(UsualParams)->getType(),
1700 S.Context.getSizeType()))
1701 ++UsualParams;
1703 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1704 S.Context.hasSameUnqualifiedType(
1705 FD->getParamDecl(UsualParams)->getType(),
1706 S.Context.getTypeDeclType(S.getStdAlignValT())))
1707 ++UsualParams;
1709 return UsualParams == FD->getNumParams();
1712 namespace {
1713 struct UsualDeallocFnInfo {
1714 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1715 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1716 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1717 Destroying(false), HasSizeT(false), HasAlignValT(false),
1718 CUDAPref(Sema::CFP_Native) {
1719 // A function template declaration is never a usual deallocation function.
1720 if (!FD)
1721 return;
1722 unsigned NumBaseParams = 1;
1723 if (FD->isDestroyingOperatorDelete()) {
1724 Destroying = true;
1725 ++NumBaseParams;
1728 if (NumBaseParams < FD->getNumParams() &&
1729 S.Context.hasSameUnqualifiedType(
1730 FD->getParamDecl(NumBaseParams)->getType(),
1731 S.Context.getSizeType())) {
1732 ++NumBaseParams;
1733 HasSizeT = true;
1736 if (NumBaseParams < FD->getNumParams() &&
1737 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1738 ++NumBaseParams;
1739 HasAlignValT = true;
1742 // In CUDA, determine how much we'd like / dislike to call this.
1743 if (S.getLangOpts().CUDA)
1744 CUDAPref = S.IdentifyCUDAPreference(
1745 S.getCurFunctionDecl(/*AllowLambda=*/true), FD);
1748 explicit operator bool() const { return FD; }
1750 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1751 bool WantAlign) const {
1752 // C++ P0722:
1753 // A destroying operator delete is preferred over a non-destroying
1754 // operator delete.
1755 if (Destroying != Other.Destroying)
1756 return Destroying;
1758 // C++17 [expr.delete]p10:
1759 // If the type has new-extended alignment, a function with a parameter
1760 // of type std::align_val_t is preferred; otherwise a function without
1761 // such a parameter is preferred
1762 if (HasAlignValT != Other.HasAlignValT)
1763 return HasAlignValT == WantAlign;
1765 if (HasSizeT != Other.HasSizeT)
1766 return HasSizeT == WantSize;
1768 // Use CUDA call preference as a tiebreaker.
1769 return CUDAPref > Other.CUDAPref;
1772 DeclAccessPair Found;
1773 FunctionDecl *FD;
1774 bool Destroying, HasSizeT, HasAlignValT;
1775 Sema::CUDAFunctionPreference CUDAPref;
1779 /// Determine whether a type has new-extended alignment. This may be called when
1780 /// the type is incomplete (for a delete-expression with an incomplete pointee
1781 /// type), in which case it will conservatively return false if the alignment is
1782 /// not known.
1783 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1784 return S.getLangOpts().AlignedAllocation &&
1785 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1786 S.getASTContext().getTargetInfo().getNewAlign();
1789 /// Select the correct "usual" deallocation function to use from a selection of
1790 /// deallocation functions (either global or class-scope).
1791 static UsualDeallocFnInfo resolveDeallocationOverload(
1792 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1793 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1794 UsualDeallocFnInfo Best;
1796 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1797 UsualDeallocFnInfo Info(S, I.getPair());
1798 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1799 Info.CUDAPref == Sema::CFP_Never)
1800 continue;
1802 if (!Best) {
1803 Best = Info;
1804 if (BestFns)
1805 BestFns->push_back(Info);
1806 continue;
1809 if (Best.isBetterThan(Info, WantSize, WantAlign))
1810 continue;
1812 // If more than one preferred function is found, all non-preferred
1813 // functions are eliminated from further consideration.
1814 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1815 BestFns->clear();
1817 Best = Info;
1818 if (BestFns)
1819 BestFns->push_back(Info);
1822 return Best;
1825 /// Determine whether a given type is a class for which 'delete[]' would call
1826 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1827 /// we need to store the array size (even if the type is
1828 /// trivially-destructible).
1829 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1830 QualType allocType) {
1831 const RecordType *record =
1832 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1833 if (!record) return false;
1835 // Try to find an operator delete[] in class scope.
1837 DeclarationName deleteName =
1838 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1839 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1840 S.LookupQualifiedName(ops, record->getDecl());
1842 // We're just doing this for information.
1843 ops.suppressDiagnostics();
1845 // Very likely: there's no operator delete[].
1846 if (ops.empty()) return false;
1848 // If it's ambiguous, it should be illegal to call operator delete[]
1849 // on this thing, so it doesn't matter if we allocate extra space or not.
1850 if (ops.isAmbiguous()) return false;
1852 // C++17 [expr.delete]p10:
1853 // If the deallocation functions have class scope, the one without a
1854 // parameter of type std::size_t is selected.
1855 auto Best = resolveDeallocationOverload(
1856 S, ops, /*WantSize*/false,
1857 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1858 return Best && Best.HasSizeT;
1861 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1863 /// E.g.:
1864 /// @code new (memory) int[size][4] @endcode
1865 /// or
1866 /// @code ::new Foo(23, "hello") @endcode
1868 /// \param StartLoc The first location of the expression.
1869 /// \param UseGlobal True if 'new' was prefixed with '::'.
1870 /// \param PlacementLParen Opening paren of the placement arguments.
1871 /// \param PlacementArgs Placement new arguments.
1872 /// \param PlacementRParen Closing paren of the placement arguments.
1873 /// \param TypeIdParens If the type is in parens, the source range.
1874 /// \param D The type to be allocated, as well as array dimensions.
1875 /// \param Initializer The initializing expression or initializer-list, or null
1876 /// if there is none.
1877 ExprResult
1878 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1879 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1880 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1881 Declarator &D, Expr *Initializer) {
1882 std::optional<Expr *> ArraySize;
1883 // If the specified type is an array, unwrap it and save the expression.
1884 if (D.getNumTypeObjects() > 0 &&
1885 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1886 DeclaratorChunk &Chunk = D.getTypeObject(0);
1887 if (D.getDeclSpec().hasAutoTypeSpec())
1888 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1889 << D.getSourceRange());
1890 if (Chunk.Arr.hasStatic)
1891 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1892 << D.getSourceRange());
1893 if (!Chunk.Arr.NumElts && !Initializer)
1894 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1895 << D.getSourceRange());
1897 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1898 D.DropFirstTypeObject();
1901 // Every dimension shall be of constant size.
1902 if (ArraySize) {
1903 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1904 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1905 break;
1907 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1908 if (Expr *NumElts = (Expr *)Array.NumElts) {
1909 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1910 // FIXME: GCC permits constant folding here. We should either do so consistently
1911 // or not do so at all, rather than changing behavior in C++14 onwards.
1912 if (getLangOpts().CPlusPlus14) {
1913 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1914 // shall be a converted constant expression (5.19) of type std::size_t
1915 // and shall evaluate to a strictly positive value.
1916 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1917 Array.NumElts
1918 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1919 CCEK_ArrayBound)
1920 .get();
1921 } else {
1922 Array.NumElts =
1923 VerifyIntegerConstantExpression(
1924 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1925 .get();
1927 if (!Array.NumElts)
1928 return ExprError();
1934 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1935 QualType AllocType = TInfo->getType();
1936 if (D.isInvalidType())
1937 return ExprError();
1939 SourceRange DirectInitRange;
1940 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1941 DirectInitRange = List->getSourceRange();
1943 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1944 PlacementLParen, PlacementArgs, PlacementRParen,
1945 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1946 Initializer);
1949 static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style,
1950 Expr *Init) {
1951 if (!Init)
1952 return true;
1953 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1954 return PLE->getNumExprs() == 0;
1955 if (isa<ImplicitValueInitExpr>(Init))
1956 return true;
1957 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1958 return !CCE->isListInitialization() &&
1959 CCE->getConstructor()->isDefaultConstructor();
1960 else if (Style == CXXNewInitializationStyle::List) {
1961 assert(isa<InitListExpr>(Init) &&
1962 "Shouldn't create list CXXConstructExprs for arrays.");
1963 return true;
1965 return false;
1968 bool
1969 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1970 if (!getLangOpts().AlignedAllocationUnavailable)
1971 return false;
1972 if (FD.isDefined())
1973 return false;
1974 std::optional<unsigned> AlignmentParam;
1975 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1976 AlignmentParam)
1977 return true;
1978 return false;
1981 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1982 // implemented in the standard library is selected.
1983 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1984 SourceLocation Loc) {
1985 if (isUnavailableAlignedAllocationFunction(FD)) {
1986 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1987 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1988 getASTContext().getTargetInfo().getPlatformName());
1989 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1991 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1992 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1993 Diag(Loc, diag::err_aligned_allocation_unavailable)
1994 << IsDelete << FD.getType().getAsString() << OSName
1995 << OSVersion.getAsString() << OSVersion.empty();
1996 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
2000 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
2001 SourceLocation PlacementLParen,
2002 MultiExprArg PlacementArgs,
2003 SourceLocation PlacementRParen,
2004 SourceRange TypeIdParens, QualType AllocType,
2005 TypeSourceInfo *AllocTypeInfo,
2006 std::optional<Expr *> ArraySize,
2007 SourceRange DirectInitRange, Expr *Initializer) {
2008 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
2009 SourceLocation StartLoc = Range.getBegin();
2011 CXXNewInitializationStyle InitStyle;
2012 if (DirectInitRange.isValid()) {
2013 assert(Initializer && "Have parens but no initializer.");
2014 InitStyle = CXXNewInitializationStyle::Call;
2015 } else if (Initializer && isa<InitListExpr>(Initializer))
2016 InitStyle = CXXNewInitializationStyle::List;
2017 else {
2018 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
2019 isa<CXXConstructExpr>(Initializer)) &&
2020 "Initializer expression that cannot have been implicitly created.");
2021 InitStyle = CXXNewInitializationStyle::None;
2024 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
2025 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
2026 assert(InitStyle == CXXNewInitializationStyle::Call &&
2027 "paren init for non-call init");
2028 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2031 // C++11 [expr.new]p15:
2032 // A new-expression that creates an object of type T initializes that
2033 // object as follows:
2034 InitializationKind Kind = [&] {
2035 switch (InitStyle) {
2036 // - If the new-initializer is omitted, the object is default-
2037 // initialized (8.5); if no initialization is performed,
2038 // the object has indeterminate value
2039 case CXXNewInitializationStyle::None:
2040 case CXXNewInitializationStyle::Implicit:
2041 return InitializationKind::CreateDefault(TypeRange.getBegin());
2042 // - Otherwise, the new-initializer is interpreted according to the
2043 // initialization rules of 8.5 for direct-initialization.
2044 case CXXNewInitializationStyle::Call:
2045 return InitializationKind::CreateDirect(TypeRange.getBegin(),
2046 DirectInitRange.getBegin(),
2047 DirectInitRange.getEnd());
2048 case CXXNewInitializationStyle::List:
2049 return InitializationKind::CreateDirectList(TypeRange.getBegin(),
2050 Initializer->getBeginLoc(),
2051 Initializer->getEndLoc());
2053 llvm_unreachable("Unknown initialization kind");
2054 }();
2056 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2057 auto *Deduced = AllocType->getContainedDeducedType();
2058 if (Deduced && !Deduced->isDeduced() &&
2059 isa<DeducedTemplateSpecializationType>(Deduced)) {
2060 if (ArraySize)
2061 return ExprError(
2062 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2063 diag::err_deduced_class_template_compound_type)
2064 << /*array*/ 2
2065 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2067 InitializedEntity Entity
2068 = InitializedEntity::InitializeNew(StartLoc, AllocType);
2069 AllocType = DeduceTemplateSpecializationFromInitializer(
2070 AllocTypeInfo, Entity, Kind, Exprs);
2071 if (AllocType.isNull())
2072 return ExprError();
2073 } else if (Deduced && !Deduced->isDeduced()) {
2074 MultiExprArg Inits = Exprs;
2075 bool Braced = (InitStyle == CXXNewInitializationStyle::List);
2076 if (Braced) {
2077 auto *ILE = cast<InitListExpr>(Exprs[0]);
2078 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2081 if (InitStyle == CXXNewInitializationStyle::None ||
2082 InitStyle == CXXNewInitializationStyle::Implicit || Inits.empty())
2083 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2084 << AllocType << TypeRange);
2085 if (Inits.size() > 1) {
2086 Expr *FirstBad = Inits[1];
2087 return ExprError(Diag(FirstBad->getBeginLoc(),
2088 diag::err_auto_new_ctor_multiple_expressions)
2089 << AllocType << TypeRange);
2091 if (Braced && !getLangOpts().CPlusPlus17)
2092 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2093 << AllocType << TypeRange;
2094 Expr *Deduce = Inits[0];
2095 if (isa<InitListExpr>(Deduce))
2096 return ExprError(
2097 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2098 << Braced << AllocType << TypeRange);
2099 QualType DeducedType;
2100 TemplateDeductionInfo Info(Deduce->getExprLoc());
2101 TemplateDeductionResult Result =
2102 DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2103 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2104 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2105 << AllocType << Deduce->getType() << TypeRange
2106 << Deduce->getSourceRange());
2107 if (DeducedType.isNull()) {
2108 assert(Result == TDK_AlreadyDiagnosed);
2109 return ExprError();
2111 AllocType = DeducedType;
2114 // Per C++0x [expr.new]p5, the type being constructed may be a
2115 // typedef of an array type.
2116 if (!ArraySize) {
2117 if (const ConstantArrayType *Array
2118 = Context.getAsConstantArrayType(AllocType)) {
2119 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2120 Context.getSizeType(),
2121 TypeRange.getEnd());
2122 AllocType = Array->getElementType();
2126 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2127 return ExprError();
2129 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2130 return ExprError();
2132 // In ARC, infer 'retaining' for the allocated
2133 if (getLangOpts().ObjCAutoRefCount &&
2134 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2135 AllocType->isObjCLifetimeType()) {
2136 AllocType = Context.getLifetimeQualifiedType(AllocType,
2137 AllocType->getObjCARCImplicitLifetime());
2140 QualType ResultType = Context.getPointerType(AllocType);
2142 if (ArraySize && *ArraySize &&
2143 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2144 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2145 if (result.isInvalid()) return ExprError();
2146 ArraySize = result.get();
2148 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2149 // integral or enumeration type with a non-negative value."
2150 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2151 // enumeration type, or a class type for which a single non-explicit
2152 // conversion function to integral or unscoped enumeration type exists.
2153 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2154 // std::size_t.
2155 std::optional<uint64_t> KnownArraySize;
2156 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2157 ExprResult ConvertedSize;
2158 if (getLangOpts().CPlusPlus14) {
2159 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2161 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2162 AA_Converting);
2164 if (!ConvertedSize.isInvalid() &&
2165 (*ArraySize)->getType()->getAs<RecordType>())
2166 // Diagnose the compatibility of this conversion.
2167 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2168 << (*ArraySize)->getType() << 0 << "'size_t'";
2169 } else {
2170 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2171 protected:
2172 Expr *ArraySize;
2174 public:
2175 SizeConvertDiagnoser(Expr *ArraySize)
2176 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2177 ArraySize(ArraySize) {}
2179 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2180 QualType T) override {
2181 return S.Diag(Loc, diag::err_array_size_not_integral)
2182 << S.getLangOpts().CPlusPlus11 << T;
2185 SemaDiagnosticBuilder diagnoseIncomplete(
2186 Sema &S, SourceLocation Loc, QualType T) override {
2187 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2188 << T << ArraySize->getSourceRange();
2191 SemaDiagnosticBuilder diagnoseExplicitConv(
2192 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2193 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2196 SemaDiagnosticBuilder noteExplicitConv(
2197 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2198 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2199 << ConvTy->isEnumeralType() << ConvTy;
2202 SemaDiagnosticBuilder diagnoseAmbiguous(
2203 Sema &S, SourceLocation Loc, QualType T) override {
2204 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2207 SemaDiagnosticBuilder noteAmbiguous(
2208 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2209 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2210 << ConvTy->isEnumeralType() << ConvTy;
2213 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2214 QualType T,
2215 QualType ConvTy) override {
2216 return S.Diag(Loc,
2217 S.getLangOpts().CPlusPlus11
2218 ? diag::warn_cxx98_compat_array_size_conversion
2219 : diag::ext_array_size_conversion)
2220 << T << ConvTy->isEnumeralType() << ConvTy;
2222 } SizeDiagnoser(*ArraySize);
2224 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2225 SizeDiagnoser);
2227 if (ConvertedSize.isInvalid())
2228 return ExprError();
2230 ArraySize = ConvertedSize.get();
2231 QualType SizeType = (*ArraySize)->getType();
2233 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2234 return ExprError();
2236 // C++98 [expr.new]p7:
2237 // The expression in a direct-new-declarator shall have integral type
2238 // with a non-negative value.
2240 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2241 // per CWG1464. Otherwise, if it's not a constant, we must have an
2242 // unparenthesized array type.
2244 // We've already performed any required implicit conversion to integer or
2245 // unscoped enumeration type.
2246 // FIXME: Per CWG1464, we are required to check the value prior to
2247 // converting to size_t. This will never find a negative array size in
2248 // C++14 onwards, because Value is always unsigned here!
2249 if (std::optional<llvm::APSInt> Value =
2250 (*ArraySize)->getIntegerConstantExpr(Context)) {
2251 if (Value->isSigned() && Value->isNegative()) {
2252 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2253 diag::err_typecheck_negative_array_size)
2254 << (*ArraySize)->getSourceRange());
2257 if (!AllocType->isDependentType()) {
2258 unsigned ActiveSizeBits =
2259 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2260 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2261 return ExprError(
2262 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2263 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2266 KnownArraySize = Value->getZExtValue();
2267 } else if (TypeIdParens.isValid()) {
2268 // Can't have dynamic array size when the type-id is in parentheses.
2269 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2270 << (*ArraySize)->getSourceRange()
2271 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2272 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2274 TypeIdParens = SourceRange();
2277 // Note that we do *not* convert the argument in any way. It can
2278 // be signed, larger than size_t, whatever.
2281 FunctionDecl *OperatorNew = nullptr;
2282 FunctionDecl *OperatorDelete = nullptr;
2283 unsigned Alignment =
2284 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2285 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2286 bool PassAlignment = getLangOpts().AlignedAllocation &&
2287 Alignment > NewAlignment;
2289 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2290 if (!AllocType->isDependentType() &&
2291 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2292 FindAllocationFunctions(
2293 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2294 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2295 OperatorNew, OperatorDelete))
2296 return ExprError();
2298 // If this is an array allocation, compute whether the usual array
2299 // deallocation function for the type has a size_t parameter.
2300 bool UsualArrayDeleteWantsSize = false;
2301 if (ArraySize && !AllocType->isDependentType())
2302 UsualArrayDeleteWantsSize =
2303 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2305 SmallVector<Expr *, 8> AllPlaceArgs;
2306 if (OperatorNew) {
2307 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2308 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2309 : VariadicDoesNotApply;
2311 // We've already converted the placement args, just fill in any default
2312 // arguments. Skip the first parameter because we don't have a corresponding
2313 // argument. Skip the second parameter too if we're passing in the
2314 // alignment; we've already filled it in.
2315 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2316 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2317 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2318 CallType))
2319 return ExprError();
2321 if (!AllPlaceArgs.empty())
2322 PlacementArgs = AllPlaceArgs;
2324 // We would like to perform some checking on the given `operator new` call,
2325 // but the PlacementArgs does not contain the implicit arguments,
2326 // namely allocation size and maybe allocation alignment,
2327 // so we need to conjure them.
2329 QualType SizeTy = Context.getSizeType();
2330 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2332 llvm::APInt SingleEltSize(
2333 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2335 // How many bytes do we want to allocate here?
2336 std::optional<llvm::APInt> AllocationSize;
2337 if (!ArraySize && !AllocType->isDependentType()) {
2338 // For non-array operator new, we only want to allocate one element.
2339 AllocationSize = SingleEltSize;
2340 } else if (KnownArraySize && !AllocType->isDependentType()) {
2341 // For array operator new, only deal with static array size case.
2342 bool Overflow;
2343 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2344 .umul_ov(SingleEltSize, Overflow);
2345 (void)Overflow;
2346 assert(
2347 !Overflow &&
2348 "Expected that all the overflows would have been handled already.");
2351 IntegerLiteral AllocationSizeLiteral(
2352 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2353 SizeTy, SourceLocation());
2354 // Otherwise, if we failed to constant-fold the allocation size, we'll
2355 // just give up and pass-in something opaque, that isn't a null pointer.
2356 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2357 OK_Ordinary, /*SourceExpr=*/nullptr);
2359 // Let's synthesize the alignment argument in case we will need it.
2360 // Since we *really* want to allocate these on stack, this is slightly ugly
2361 // because there might not be a `std::align_val_t` type.
2362 EnumDecl *StdAlignValT = getStdAlignValT();
2363 QualType AlignValT =
2364 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2365 IntegerLiteral AlignmentLiteral(
2366 Context,
2367 llvm::APInt(Context.getTypeSize(SizeTy),
2368 Alignment / Context.getCharWidth()),
2369 SizeTy, SourceLocation());
2370 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2371 CK_IntegralCast, &AlignmentLiteral,
2372 VK_PRValue, FPOptionsOverride());
2374 // Adjust placement args by prepending conjured size and alignment exprs.
2375 llvm::SmallVector<Expr *, 8> CallArgs;
2376 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2377 CallArgs.emplace_back(AllocationSize
2378 ? static_cast<Expr *>(&AllocationSizeLiteral)
2379 : &OpaqueAllocationSize);
2380 if (PassAlignment)
2381 CallArgs.emplace_back(&DesiredAlignment);
2382 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2384 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2386 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2387 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2389 // Warn if the type is over-aligned and is being allocated by (unaligned)
2390 // global operator new.
2391 if (PlacementArgs.empty() && !PassAlignment &&
2392 (OperatorNew->isImplicit() ||
2393 (OperatorNew->getBeginLoc().isValid() &&
2394 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2395 if (Alignment > NewAlignment)
2396 Diag(StartLoc, diag::warn_overaligned_type)
2397 << AllocType
2398 << unsigned(Alignment / Context.getCharWidth())
2399 << unsigned(NewAlignment / Context.getCharWidth());
2403 // Array 'new' can't have any initializers except empty parentheses.
2404 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2405 // dialect distinction.
2406 if (ArraySize && !isLegalArrayNewInitializer(InitStyle, Initializer)) {
2407 SourceRange InitRange(Exprs.front()->getBeginLoc(),
2408 Exprs.back()->getEndLoc());
2409 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2410 return ExprError();
2413 // If we can perform the initialization, and we've not already done so,
2414 // do it now.
2415 if (!AllocType->isDependentType() &&
2416 !Expr::hasAnyTypeDependentArguments(Exprs)) {
2417 // The type we initialize is the complete type, including the array bound.
2418 QualType InitType;
2419 if (KnownArraySize)
2420 InitType = Context.getConstantArrayType(
2421 AllocType,
2422 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2423 *KnownArraySize),
2424 *ArraySize, ArraySizeModifier::Normal, 0);
2425 else if (ArraySize)
2426 InitType = Context.getIncompleteArrayType(AllocType,
2427 ArraySizeModifier::Normal, 0);
2428 else
2429 InitType = AllocType;
2431 InitializedEntity Entity
2432 = InitializedEntity::InitializeNew(StartLoc, InitType);
2433 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2434 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2435 if (FullInit.isInvalid())
2436 return ExprError();
2438 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2439 // we don't want the initialized object to be destructed.
2440 // FIXME: We should not create these in the first place.
2441 if (CXXBindTemporaryExpr *Binder =
2442 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2443 FullInit = Binder->getSubExpr();
2445 Initializer = FullInit.get();
2446 // We don't know that we're generating an implicit initializer until now, so
2447 // we have to update the initialization style as well.
2449 // FIXME: it would be nice to determine the correct initialization style
2450 // earlier so InitStyle doesn't need adjusting.
2451 if (InitStyle == CXXNewInitializationStyle::None && Initializer) {
2452 InitStyle = CXXNewInitializationStyle::Implicit;
2455 // FIXME: If we have a KnownArraySize, check that the array bound of the
2456 // initializer is no greater than that constant value.
2458 if (ArraySize && !*ArraySize) {
2459 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2460 if (CAT) {
2461 // FIXME: Track that the array size was inferred rather than explicitly
2462 // specified.
2463 ArraySize = IntegerLiteral::Create(
2464 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2465 } else {
2466 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2467 << Initializer->getSourceRange();
2472 // Mark the new and delete operators as referenced.
2473 if (OperatorNew) {
2474 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2475 return ExprError();
2476 MarkFunctionReferenced(StartLoc, OperatorNew);
2478 if (OperatorDelete) {
2479 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2480 return ExprError();
2481 MarkFunctionReferenced(StartLoc, OperatorDelete);
2484 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2485 PassAlignment, UsualArrayDeleteWantsSize,
2486 PlacementArgs, TypeIdParens, ArraySize, InitStyle,
2487 Initializer, ResultType, AllocTypeInfo, Range,
2488 DirectInitRange);
2491 /// Checks that a type is suitable as the allocated type
2492 /// in a new-expression.
2493 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2494 SourceRange R) {
2495 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2496 // abstract class type or array thereof.
2497 if (AllocType->isFunctionType())
2498 return Diag(Loc, diag::err_bad_new_type)
2499 << AllocType << 0 << R;
2500 else if (AllocType->isReferenceType())
2501 return Diag(Loc, diag::err_bad_new_type)
2502 << AllocType << 1 << R;
2503 else if (!AllocType->isDependentType() &&
2504 RequireCompleteSizedType(
2505 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2506 return true;
2507 else if (RequireNonAbstractType(Loc, AllocType,
2508 diag::err_allocation_of_abstract_type))
2509 return true;
2510 else if (AllocType->isVariablyModifiedType())
2511 return Diag(Loc, diag::err_variably_modified_new_type)
2512 << AllocType;
2513 else if (AllocType.getAddressSpace() != LangAS::Default &&
2514 !getLangOpts().OpenCLCPlusPlus)
2515 return Diag(Loc, diag::err_address_space_qualified_new)
2516 << AllocType.getUnqualifiedType()
2517 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2518 else if (getLangOpts().ObjCAutoRefCount) {
2519 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2520 QualType BaseAllocType = Context.getBaseElementType(AT);
2521 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2522 BaseAllocType->isObjCLifetimeType())
2523 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2524 << BaseAllocType;
2528 return false;
2531 static bool resolveAllocationOverload(
2532 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2533 bool &PassAlignment, FunctionDecl *&Operator,
2534 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2535 OverloadCandidateSet Candidates(R.getNameLoc(),
2536 OverloadCandidateSet::CSK_Normal);
2537 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2538 Alloc != AllocEnd; ++Alloc) {
2539 // Even member operator new/delete are implicitly treated as
2540 // static, so don't use AddMemberCandidate.
2541 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2543 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2544 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2545 /*ExplicitTemplateArgs=*/nullptr, Args,
2546 Candidates,
2547 /*SuppressUserConversions=*/false);
2548 continue;
2551 FunctionDecl *Fn = cast<FunctionDecl>(D);
2552 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2553 /*SuppressUserConversions=*/false);
2556 // Do the resolution.
2557 OverloadCandidateSet::iterator Best;
2558 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2559 case OR_Success: {
2560 // Got one!
2561 FunctionDecl *FnDecl = Best->Function;
2562 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2563 Best->FoundDecl) == Sema::AR_inaccessible)
2564 return true;
2566 Operator = FnDecl;
2567 return false;
2570 case OR_No_Viable_Function:
2571 // C++17 [expr.new]p13:
2572 // If no matching function is found and the allocated object type has
2573 // new-extended alignment, the alignment argument is removed from the
2574 // argument list, and overload resolution is performed again.
2575 if (PassAlignment) {
2576 PassAlignment = false;
2577 AlignArg = Args[1];
2578 Args.erase(Args.begin() + 1);
2579 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2580 Operator, &Candidates, AlignArg,
2581 Diagnose);
2584 // MSVC will fall back on trying to find a matching global operator new
2585 // if operator new[] cannot be found. Also, MSVC will leak by not
2586 // generating a call to operator delete or operator delete[], but we
2587 // will not replicate that bug.
2588 // FIXME: Find out how this interacts with the std::align_val_t fallback
2589 // once MSVC implements it.
2590 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2591 S.Context.getLangOpts().MSVCCompat) {
2592 R.clear();
2593 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2594 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2595 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2596 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2597 Operator, /*Candidates=*/nullptr,
2598 /*AlignArg=*/nullptr, Diagnose);
2601 if (Diagnose) {
2602 // If this is an allocation of the form 'new (p) X' for some object
2603 // pointer p (or an expression that will decay to such a pointer),
2604 // diagnose the missing inclusion of <new>.
2605 if (!R.isClassLookup() && Args.size() == 2 &&
2606 (Args[1]->getType()->isObjectPointerType() ||
2607 Args[1]->getType()->isArrayType())) {
2608 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2609 << R.getLookupName() << Range;
2610 // Listing the candidates is unlikely to be useful; skip it.
2611 return true;
2614 // Finish checking all candidates before we note any. This checking can
2615 // produce additional diagnostics so can't be interleaved with our
2616 // emission of notes.
2618 // For an aligned allocation, separately check the aligned and unaligned
2619 // candidates with their respective argument lists.
2620 SmallVector<OverloadCandidate*, 32> Cands;
2621 SmallVector<OverloadCandidate*, 32> AlignedCands;
2622 llvm::SmallVector<Expr*, 4> AlignedArgs;
2623 if (AlignedCandidates) {
2624 auto IsAligned = [](OverloadCandidate &C) {
2625 return C.Function->getNumParams() > 1 &&
2626 C.Function->getParamDecl(1)->getType()->isAlignValT();
2628 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2630 AlignedArgs.reserve(Args.size() + 1);
2631 AlignedArgs.push_back(Args[0]);
2632 AlignedArgs.push_back(AlignArg);
2633 AlignedArgs.append(Args.begin() + 1, Args.end());
2634 AlignedCands = AlignedCandidates->CompleteCandidates(
2635 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2637 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2638 R.getNameLoc(), IsUnaligned);
2639 } else {
2640 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2641 R.getNameLoc());
2644 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2645 << R.getLookupName() << Range;
2646 if (AlignedCandidates)
2647 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2648 R.getNameLoc());
2649 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2651 return true;
2653 case OR_Ambiguous:
2654 if (Diagnose) {
2655 Candidates.NoteCandidates(
2656 PartialDiagnosticAt(R.getNameLoc(),
2657 S.PDiag(diag::err_ovl_ambiguous_call)
2658 << R.getLookupName() << Range),
2659 S, OCD_AmbiguousCandidates, Args);
2661 return true;
2663 case OR_Deleted: {
2664 if (Diagnose) {
2665 Candidates.NoteCandidates(
2666 PartialDiagnosticAt(R.getNameLoc(),
2667 S.PDiag(diag::err_ovl_deleted_call)
2668 << R.getLookupName() << Range),
2669 S, OCD_AllCandidates, Args);
2671 return true;
2674 llvm_unreachable("Unreachable, bad result from BestViableFunction");
2677 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2678 AllocationFunctionScope NewScope,
2679 AllocationFunctionScope DeleteScope,
2680 QualType AllocType, bool IsArray,
2681 bool &PassAlignment, MultiExprArg PlaceArgs,
2682 FunctionDecl *&OperatorNew,
2683 FunctionDecl *&OperatorDelete,
2684 bool Diagnose) {
2685 // --- Choosing an allocation function ---
2686 // C++ 5.3.4p8 - 14 & 18
2687 // 1) If looking in AFS_Global scope for allocation functions, only look in
2688 // the global scope. Else, if AFS_Class, only look in the scope of the
2689 // allocated class. If AFS_Both, look in both.
2690 // 2) If an array size is given, look for operator new[], else look for
2691 // operator new.
2692 // 3) The first argument is always size_t. Append the arguments from the
2693 // placement form.
2695 SmallVector<Expr*, 8> AllocArgs;
2696 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2698 // We don't care about the actual value of these arguments.
2699 // FIXME: Should the Sema create the expression and embed it in the syntax
2700 // tree? Or should the consumer just recalculate the value?
2701 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2702 QualType SizeTy = Context.getSizeType();
2703 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2704 IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy,
2705 SourceLocation());
2706 AllocArgs.push_back(&Size);
2708 QualType AlignValT = Context.VoidTy;
2709 if (PassAlignment) {
2710 DeclareGlobalNewDelete();
2711 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2713 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2714 if (PassAlignment)
2715 AllocArgs.push_back(&Align);
2717 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2719 // C++ [expr.new]p8:
2720 // If the allocated type is a non-array type, the allocation
2721 // function's name is operator new and the deallocation function's
2722 // name is operator delete. If the allocated type is an array
2723 // type, the allocation function's name is operator new[] and the
2724 // deallocation function's name is operator delete[].
2725 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2726 IsArray ? OO_Array_New : OO_New);
2728 QualType AllocElemType = Context.getBaseElementType(AllocType);
2730 // Find the allocation function.
2732 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2734 // C++1z [expr.new]p9:
2735 // If the new-expression begins with a unary :: operator, the allocation
2736 // function's name is looked up in the global scope. Otherwise, if the
2737 // allocated type is a class type T or array thereof, the allocation
2738 // function's name is looked up in the scope of T.
2739 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2740 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2742 // We can see ambiguity here if the allocation function is found in
2743 // multiple base classes.
2744 if (R.isAmbiguous())
2745 return true;
2747 // If this lookup fails to find the name, or if the allocated type is not
2748 // a class type, the allocation function's name is looked up in the
2749 // global scope.
2750 if (R.empty()) {
2751 if (NewScope == AFS_Class)
2752 return true;
2754 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2757 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2758 if (PlaceArgs.empty()) {
2759 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2760 } else {
2761 Diag(StartLoc, diag::err_openclcxx_placement_new);
2763 return true;
2766 assert(!R.empty() && "implicitly declared allocation functions not found");
2767 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2769 // We do our own custom access checks below.
2770 R.suppressDiagnostics();
2772 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2773 OperatorNew, /*Candidates=*/nullptr,
2774 /*AlignArg=*/nullptr, Diagnose))
2775 return true;
2778 // We don't need an operator delete if we're running under -fno-exceptions.
2779 if (!getLangOpts().Exceptions) {
2780 OperatorDelete = nullptr;
2781 return false;
2784 // Note, the name of OperatorNew might have been changed from array to
2785 // non-array by resolveAllocationOverload.
2786 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2787 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2788 ? OO_Array_Delete
2789 : OO_Delete);
2791 // C++ [expr.new]p19:
2793 // If the new-expression begins with a unary :: operator, the
2794 // deallocation function's name is looked up in the global
2795 // scope. Otherwise, if the allocated type is a class type T or an
2796 // array thereof, the deallocation function's name is looked up in
2797 // the scope of T. If this lookup fails to find the name, or if
2798 // the allocated type is not a class type or array thereof, the
2799 // deallocation function's name is looked up in the global scope.
2800 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2801 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2802 auto *RD =
2803 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2804 LookupQualifiedName(FoundDelete, RD);
2806 if (FoundDelete.isAmbiguous())
2807 return true; // FIXME: clean up expressions?
2809 // Filter out any destroying operator deletes. We can't possibly call such a
2810 // function in this context, because we're handling the case where the object
2811 // was not successfully constructed.
2812 // FIXME: This is not covered by the language rules yet.
2814 LookupResult::Filter Filter = FoundDelete.makeFilter();
2815 while (Filter.hasNext()) {
2816 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2817 if (FD && FD->isDestroyingOperatorDelete())
2818 Filter.erase();
2820 Filter.done();
2823 bool FoundGlobalDelete = FoundDelete.empty();
2824 if (FoundDelete.empty()) {
2825 FoundDelete.clear(LookupOrdinaryName);
2827 if (DeleteScope == AFS_Class)
2828 return true;
2830 DeclareGlobalNewDelete();
2831 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2834 FoundDelete.suppressDiagnostics();
2836 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2838 // Whether we're looking for a placement operator delete is dictated
2839 // by whether we selected a placement operator new, not by whether
2840 // we had explicit placement arguments. This matters for things like
2841 // struct A { void *operator new(size_t, int = 0); ... };
2842 // A *a = new A()
2844 // We don't have any definition for what a "placement allocation function"
2845 // is, but we assume it's any allocation function whose
2846 // parameter-declaration-clause is anything other than (size_t).
2848 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2849 // This affects whether an exception from the constructor of an overaligned
2850 // type uses the sized or non-sized form of aligned operator delete.
2851 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2852 OperatorNew->isVariadic();
2854 if (isPlacementNew) {
2855 // C++ [expr.new]p20:
2856 // A declaration of a placement deallocation function matches the
2857 // declaration of a placement allocation function if it has the
2858 // same number of parameters and, after parameter transformations
2859 // (8.3.5), all parameter types except the first are
2860 // identical. [...]
2862 // To perform this comparison, we compute the function type that
2863 // the deallocation function should have, and use that type both
2864 // for template argument deduction and for comparison purposes.
2865 QualType ExpectedFunctionType;
2867 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2869 SmallVector<QualType, 4> ArgTypes;
2870 ArgTypes.push_back(Context.VoidPtrTy);
2871 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2872 ArgTypes.push_back(Proto->getParamType(I));
2874 FunctionProtoType::ExtProtoInfo EPI;
2875 // FIXME: This is not part of the standard's rule.
2876 EPI.Variadic = Proto->isVariadic();
2878 ExpectedFunctionType
2879 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2882 for (LookupResult::iterator D = FoundDelete.begin(),
2883 DEnd = FoundDelete.end();
2884 D != DEnd; ++D) {
2885 FunctionDecl *Fn = nullptr;
2886 if (FunctionTemplateDecl *FnTmpl =
2887 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2888 // Perform template argument deduction to try to match the
2889 // expected function type.
2890 TemplateDeductionInfo Info(StartLoc);
2891 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2892 Info))
2893 continue;
2894 } else
2895 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2897 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2898 ExpectedFunctionType,
2899 /*AdjustExcpetionSpec*/true),
2900 ExpectedFunctionType))
2901 Matches.push_back(std::make_pair(D.getPair(), Fn));
2904 if (getLangOpts().CUDA)
2905 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2906 Matches);
2907 } else {
2908 // C++1y [expr.new]p22:
2909 // For a non-placement allocation function, the normal deallocation
2910 // function lookup is used
2912 // Per [expr.delete]p10, this lookup prefers a member operator delete
2913 // without a size_t argument, but prefers a non-member operator delete
2914 // with a size_t where possible (which it always is in this case).
2915 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2916 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2917 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2918 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2919 &BestDeallocFns);
2920 if (Selected)
2921 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2922 else {
2923 // If we failed to select an operator, all remaining functions are viable
2924 // but ambiguous.
2925 for (auto Fn : BestDeallocFns)
2926 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2930 // C++ [expr.new]p20:
2931 // [...] If the lookup finds a single matching deallocation
2932 // function, that function will be called; otherwise, no
2933 // deallocation function will be called.
2934 if (Matches.size() == 1) {
2935 OperatorDelete = Matches[0].second;
2937 // C++1z [expr.new]p23:
2938 // If the lookup finds a usual deallocation function (3.7.4.2)
2939 // with a parameter of type std::size_t and that function, considered
2940 // as a placement deallocation function, would have been
2941 // selected as a match for the allocation function, the program
2942 // is ill-formed.
2943 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2944 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2945 UsualDeallocFnInfo Info(*this,
2946 DeclAccessPair::make(OperatorDelete, AS_public));
2947 // Core issue, per mail to core reflector, 2016-10-09:
2948 // If this is a member operator delete, and there is a corresponding
2949 // non-sized member operator delete, this isn't /really/ a sized
2950 // deallocation function, it just happens to have a size_t parameter.
2951 bool IsSizedDelete = Info.HasSizeT;
2952 if (IsSizedDelete && !FoundGlobalDelete) {
2953 auto NonSizedDelete =
2954 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2955 /*WantAlign*/Info.HasAlignValT);
2956 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2957 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2958 IsSizedDelete = false;
2961 if (IsSizedDelete) {
2962 SourceRange R = PlaceArgs.empty()
2963 ? SourceRange()
2964 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2965 PlaceArgs.back()->getEndLoc());
2966 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2967 if (!OperatorDelete->isImplicit())
2968 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2969 << DeleteName;
2973 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2974 Matches[0].first);
2975 } else if (!Matches.empty()) {
2976 // We found multiple suitable operators. Per [expr.new]p20, that means we
2977 // call no 'operator delete' function, but we should at least warn the user.
2978 // FIXME: Suppress this warning if the construction cannot throw.
2979 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2980 << DeleteName << AllocElemType;
2982 for (auto &Match : Matches)
2983 Diag(Match.second->getLocation(),
2984 diag::note_member_declared_here) << DeleteName;
2987 return false;
2990 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2991 /// delete. These are:
2992 /// @code
2993 /// // C++03:
2994 /// void* operator new(std::size_t) throw(std::bad_alloc);
2995 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2996 /// void operator delete(void *) throw();
2997 /// void operator delete[](void *) throw();
2998 /// // C++11:
2999 /// void* operator new(std::size_t);
3000 /// void* operator new[](std::size_t);
3001 /// void operator delete(void *) noexcept;
3002 /// void operator delete[](void *) noexcept;
3003 /// // C++1y:
3004 /// void* operator new(std::size_t);
3005 /// void* operator new[](std::size_t);
3006 /// void operator delete(void *) noexcept;
3007 /// void operator delete[](void *) noexcept;
3008 /// void operator delete(void *, std::size_t) noexcept;
3009 /// void operator delete[](void *, std::size_t) noexcept;
3010 /// @endcode
3011 /// Note that the placement and nothrow forms of new are *not* implicitly
3012 /// declared. Their use requires including \<new\>.
3013 void Sema::DeclareGlobalNewDelete() {
3014 if (GlobalNewDeleteDeclared)
3015 return;
3017 // The implicitly declared new and delete operators
3018 // are not supported in OpenCL.
3019 if (getLangOpts().OpenCLCPlusPlus)
3020 return;
3022 // C++ [basic.stc.dynamic.general]p2:
3023 // The library provides default definitions for the global allocation
3024 // and deallocation functions. Some global allocation and deallocation
3025 // functions are replaceable ([new.delete]); these are attached to the
3026 // global module ([module.unit]).
3027 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3028 PushGlobalModuleFragment(SourceLocation());
3030 // C++ [basic.std.dynamic]p2:
3031 // [...] The following allocation and deallocation functions (18.4) are
3032 // implicitly declared in global scope in each translation unit of a
3033 // program
3035 // C++03:
3036 // void* operator new(std::size_t) throw(std::bad_alloc);
3037 // void* operator new[](std::size_t) throw(std::bad_alloc);
3038 // void operator delete(void*) throw();
3039 // void operator delete[](void*) throw();
3040 // C++11:
3041 // void* operator new(std::size_t);
3042 // void* operator new[](std::size_t);
3043 // void operator delete(void*) noexcept;
3044 // void operator delete[](void*) noexcept;
3045 // C++1y:
3046 // void* operator new(std::size_t);
3047 // void* operator new[](std::size_t);
3048 // void operator delete(void*) noexcept;
3049 // void operator delete[](void*) noexcept;
3050 // void operator delete(void*, std::size_t) noexcept;
3051 // void operator delete[](void*, std::size_t) noexcept;
3053 // These implicit declarations introduce only the function names operator
3054 // new, operator new[], operator delete, operator delete[].
3056 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3057 // "std" or "bad_alloc" as necessary to form the exception specification.
3058 // However, we do not make these implicit declarations visible to name
3059 // lookup.
3060 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3061 // The "std::bad_alloc" class has not yet been declared, so build it
3062 // implicitly.
3063 StdBadAlloc = CXXRecordDecl::Create(
3064 Context, TagTypeKind::Class, getOrCreateStdNamespace(),
3065 SourceLocation(), SourceLocation(),
3066 &PP.getIdentifierTable().get("bad_alloc"), nullptr);
3067 getStdBadAlloc()->setImplicit(true);
3069 // The implicitly declared "std::bad_alloc" should live in global module
3070 // fragment.
3071 if (TheGlobalModuleFragment) {
3072 getStdBadAlloc()->setModuleOwnershipKind(
3073 Decl::ModuleOwnershipKind::ReachableWhenImported);
3074 getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment);
3077 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3078 // The "std::align_val_t" enum class has not yet been declared, so build it
3079 // implicitly.
3080 auto *AlignValT = EnumDecl::Create(
3081 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3082 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3084 // The implicitly declared "std::align_val_t" should live in global module
3085 // fragment.
3086 if (TheGlobalModuleFragment) {
3087 AlignValT->setModuleOwnershipKind(
3088 Decl::ModuleOwnershipKind::ReachableWhenImported);
3089 AlignValT->setLocalOwningModule(TheGlobalModuleFragment);
3092 AlignValT->setIntegerType(Context.getSizeType());
3093 AlignValT->setPromotionType(Context.getSizeType());
3094 AlignValT->setImplicit(true);
3096 StdAlignValT = AlignValT;
3099 GlobalNewDeleteDeclared = true;
3101 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3102 QualType SizeT = Context.getSizeType();
3104 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3105 QualType Return, QualType Param) {
3106 llvm::SmallVector<QualType, 3> Params;
3107 Params.push_back(Param);
3109 // Create up to four variants of the function (sized/aligned).
3110 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3111 (Kind == OO_Delete || Kind == OO_Array_Delete);
3112 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3114 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3115 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3116 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3117 if (Sized)
3118 Params.push_back(SizeT);
3120 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3121 if (Aligned)
3122 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3124 DeclareGlobalAllocationFunction(
3125 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3127 if (Aligned)
3128 Params.pop_back();
3133 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3134 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3135 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3136 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3138 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3139 PopGlobalModuleFragment();
3142 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3143 /// allocation function if it doesn't already exist.
3144 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3145 QualType Return,
3146 ArrayRef<QualType> Params) {
3147 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3149 // Check if this function is already declared.
3150 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3151 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3152 Alloc != AllocEnd; ++Alloc) {
3153 // Only look at non-template functions, as it is the predefined,
3154 // non-templated allocation function we are trying to declare here.
3155 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3156 if (Func->getNumParams() == Params.size()) {
3157 llvm::SmallVector<QualType, 3> FuncParams;
3158 for (auto *P : Func->parameters())
3159 FuncParams.push_back(
3160 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3161 if (llvm::ArrayRef(FuncParams) == Params) {
3162 // Make the function visible to name lookup, even if we found it in
3163 // an unimported module. It either is an implicitly-declared global
3164 // allocation function, or is suppressing that function.
3165 Func->setVisibleDespiteOwningModule();
3166 return;
3172 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3173 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3175 QualType BadAllocType;
3176 bool HasBadAllocExceptionSpec
3177 = (Name.getCXXOverloadedOperator() == OO_New ||
3178 Name.getCXXOverloadedOperator() == OO_Array_New);
3179 if (HasBadAllocExceptionSpec) {
3180 if (!getLangOpts().CPlusPlus11) {
3181 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3182 assert(StdBadAlloc && "Must have std::bad_alloc declared");
3183 EPI.ExceptionSpec.Type = EST_Dynamic;
3184 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3186 if (getLangOpts().NewInfallible) {
3187 EPI.ExceptionSpec.Type = EST_DynamicNone;
3189 } else {
3190 EPI.ExceptionSpec =
3191 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3194 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3195 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3196 FunctionDecl *Alloc = FunctionDecl::Create(
3197 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3198 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3199 true);
3200 Alloc->setImplicit();
3201 // Global allocation functions should always be visible.
3202 Alloc->setVisibleDespiteOwningModule();
3204 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible &&
3205 !getLangOpts().CheckNew)
3206 Alloc->addAttr(
3207 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3209 // C++ [basic.stc.dynamic.general]p2:
3210 // The library provides default definitions for the global allocation
3211 // and deallocation functions. Some global allocation and deallocation
3212 // functions are replaceable ([new.delete]); these are attached to the
3213 // global module ([module.unit]).
3215 // In the language wording, these functions are attched to the global
3216 // module all the time. But in the implementation, the global module
3217 // is only meaningful when we're in a module unit. So here we attach
3218 // these allocation functions to global module conditionally.
3219 if (TheGlobalModuleFragment) {
3220 Alloc->setModuleOwnershipKind(
3221 Decl::ModuleOwnershipKind::ReachableWhenImported);
3222 Alloc->setLocalOwningModule(TheGlobalModuleFragment);
3225 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3226 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3227 ? VisibilityAttr::Hidden
3228 : VisibilityAttr::Default));
3230 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3231 for (QualType T : Params) {
3232 ParamDecls.push_back(ParmVarDecl::Create(
3233 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3234 /*TInfo=*/nullptr, SC_None, nullptr));
3235 ParamDecls.back()->setImplicit();
3237 Alloc->setParams(ParamDecls);
3238 if (ExtraAttr)
3239 Alloc->addAttr(ExtraAttr);
3240 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3241 Context.getTranslationUnitDecl()->addDecl(Alloc);
3242 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3245 if (!LangOpts.CUDA)
3246 CreateAllocationFunctionDecl(nullptr);
3247 else {
3248 // Host and device get their own declaration so each can be
3249 // defined or re-declared independently.
3250 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3251 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3255 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3256 bool CanProvideSize,
3257 bool Overaligned,
3258 DeclarationName Name) {
3259 DeclareGlobalNewDelete();
3261 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3262 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3264 // FIXME: It's possible for this to result in ambiguity, through a
3265 // user-declared variadic operator delete or the enable_if attribute. We
3266 // should probably not consider those cases to be usual deallocation
3267 // functions. But for now we just make an arbitrary choice in that case.
3268 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3269 Overaligned);
3270 assert(Result.FD && "operator delete missing from global scope?");
3271 return Result.FD;
3274 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3275 CXXRecordDecl *RD) {
3276 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3278 FunctionDecl *OperatorDelete = nullptr;
3279 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3280 return nullptr;
3281 if (OperatorDelete)
3282 return OperatorDelete;
3284 // If there's no class-specific operator delete, look up the global
3285 // non-array delete.
3286 return FindUsualDeallocationFunction(
3287 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3288 Name);
3291 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3292 DeclarationName Name,
3293 FunctionDecl *&Operator, bool Diagnose,
3294 bool WantSize, bool WantAligned) {
3295 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3296 // Try to find operator delete/operator delete[] in class scope.
3297 LookupQualifiedName(Found, RD);
3299 if (Found.isAmbiguous())
3300 return true;
3302 Found.suppressDiagnostics();
3304 bool Overaligned =
3305 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3307 // C++17 [expr.delete]p10:
3308 // If the deallocation functions have class scope, the one without a
3309 // parameter of type std::size_t is selected.
3310 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3311 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3312 /*WantAlign*/ Overaligned, &Matches);
3314 // If we could find an overload, use it.
3315 if (Matches.size() == 1) {
3316 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3318 // FIXME: DiagnoseUseOfDecl?
3319 if (Operator->isDeleted()) {
3320 if (Diagnose) {
3321 Diag(StartLoc, diag::err_deleted_function_use);
3322 NoteDeletedFunction(Operator);
3324 return true;
3327 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3328 Matches[0].Found, Diagnose) == AR_inaccessible)
3329 return true;
3331 return false;
3334 // We found multiple suitable operators; complain about the ambiguity.
3335 // FIXME: The standard doesn't say to do this; it appears that the intent
3336 // is that this should never happen.
3337 if (!Matches.empty()) {
3338 if (Diagnose) {
3339 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3340 << Name << RD;
3341 for (auto &Match : Matches)
3342 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3344 return true;
3347 // We did find operator delete/operator delete[] declarations, but
3348 // none of them were suitable.
3349 if (!Found.empty()) {
3350 if (Diagnose) {
3351 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3352 << Name << RD;
3354 for (NamedDecl *D : Found)
3355 Diag(D->getUnderlyingDecl()->getLocation(),
3356 diag::note_member_declared_here) << Name;
3358 return true;
3361 Operator = nullptr;
3362 return false;
3365 namespace {
3366 /// Checks whether delete-expression, and new-expression used for
3367 /// initializing deletee have the same array form.
3368 class MismatchingNewDeleteDetector {
3369 public:
3370 enum MismatchResult {
3371 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3372 NoMismatch,
3373 /// Indicates that variable is initialized with mismatching form of \a new.
3374 VarInitMismatches,
3375 /// Indicates that member is initialized with mismatching form of \a new.
3376 MemberInitMismatches,
3377 /// Indicates that 1 or more constructors' definitions could not been
3378 /// analyzed, and they will be checked again at the end of translation unit.
3379 AnalyzeLater
3382 /// \param EndOfTU True, if this is the final analysis at the end of
3383 /// translation unit. False, if this is the initial analysis at the point
3384 /// delete-expression was encountered.
3385 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3386 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3387 HasUndefinedConstructors(false) {}
3389 /// Checks whether pointee of a delete-expression is initialized with
3390 /// matching form of new-expression.
3392 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3393 /// point where delete-expression is encountered, then a warning will be
3394 /// issued immediately. If return value is \c AnalyzeLater at the point where
3395 /// delete-expression is seen, then member will be analyzed at the end of
3396 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3397 /// couldn't be analyzed. If at least one constructor initializes the member
3398 /// with matching type of new, the return value is \c NoMismatch.
3399 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3400 /// Analyzes a class member.
3401 /// \param Field Class member to analyze.
3402 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3403 /// for deleting the \p Field.
3404 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3405 FieldDecl *Field;
3406 /// List of mismatching new-expressions used for initialization of the pointee
3407 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3408 /// Indicates whether delete-expression was in array form.
3409 bool IsArrayForm;
3411 private:
3412 const bool EndOfTU;
3413 /// Indicates that there is at least one constructor without body.
3414 bool HasUndefinedConstructors;
3415 /// Returns \c CXXNewExpr from given initialization expression.
3416 /// \param E Expression used for initializing pointee in delete-expression.
3417 /// E can be a single-element \c InitListExpr consisting of new-expression.
3418 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3419 /// Returns whether member is initialized with mismatching form of
3420 /// \c new either by the member initializer or in-class initialization.
3422 /// If bodies of all constructors are not visible at the end of translation
3423 /// unit or at least one constructor initializes member with the matching
3424 /// form of \c new, mismatch cannot be proven, and this function will return
3425 /// \c NoMismatch.
3426 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3427 /// Returns whether variable is initialized with mismatching form of
3428 /// \c new.
3430 /// If variable is initialized with matching form of \c new or variable is not
3431 /// initialized with a \c new expression, this function will return true.
3432 /// If variable is initialized with mismatching form of \c new, returns false.
3433 /// \param D Variable to analyze.
3434 bool hasMatchingVarInit(const DeclRefExpr *D);
3435 /// Checks whether the constructor initializes pointee with mismatching
3436 /// form of \c new.
3438 /// Returns true, if member is initialized with matching form of \c new in
3439 /// member initializer list. Returns false, if member is initialized with the
3440 /// matching form of \c new in this constructor's initializer or given
3441 /// constructor isn't defined at the point where delete-expression is seen, or
3442 /// member isn't initialized by the constructor.
3443 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3444 /// Checks whether member is initialized with matching form of
3445 /// \c new in member initializer list.
3446 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3447 /// Checks whether member is initialized with mismatching form of \c new by
3448 /// in-class initializer.
3449 MismatchResult analyzeInClassInitializer();
3453 MismatchingNewDeleteDetector::MismatchResult
3454 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3455 NewExprs.clear();
3456 assert(DE && "Expected delete-expression");
3457 IsArrayForm = DE->isArrayForm();
3458 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3459 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3460 return analyzeMemberExpr(ME);
3461 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3462 if (!hasMatchingVarInit(D))
3463 return VarInitMismatches;
3465 return NoMismatch;
3468 const CXXNewExpr *
3469 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3470 assert(E != nullptr && "Expected a valid initializer expression");
3471 E = E->IgnoreParenImpCasts();
3472 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3473 if (ILE->getNumInits() == 1)
3474 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3477 return dyn_cast_or_null<const CXXNewExpr>(E);
3480 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3481 const CXXCtorInitializer *CI) {
3482 const CXXNewExpr *NE = nullptr;
3483 if (Field == CI->getMember() &&
3484 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3485 if (NE->isArray() == IsArrayForm)
3486 return true;
3487 else
3488 NewExprs.push_back(NE);
3490 return false;
3493 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3494 const CXXConstructorDecl *CD) {
3495 if (CD->isImplicit())
3496 return false;
3497 const FunctionDecl *Definition = CD;
3498 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3499 HasUndefinedConstructors = true;
3500 return EndOfTU;
3502 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3503 if (hasMatchingNewInCtorInit(CI))
3504 return true;
3506 return false;
3509 MismatchingNewDeleteDetector::MismatchResult
3510 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3511 assert(Field != nullptr && "This should be called only for members");
3512 const Expr *InitExpr = Field->getInClassInitializer();
3513 if (!InitExpr)
3514 return EndOfTU ? NoMismatch : AnalyzeLater;
3515 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3516 if (NE->isArray() != IsArrayForm) {
3517 NewExprs.push_back(NE);
3518 return MemberInitMismatches;
3521 return NoMismatch;
3524 MismatchingNewDeleteDetector::MismatchResult
3525 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3526 bool DeleteWasArrayForm) {
3527 assert(Field != nullptr && "Analysis requires a valid class member.");
3528 this->Field = Field;
3529 IsArrayForm = DeleteWasArrayForm;
3530 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3531 for (const auto *CD : RD->ctors()) {
3532 if (hasMatchingNewInCtor(CD))
3533 return NoMismatch;
3535 if (HasUndefinedConstructors)
3536 return EndOfTU ? NoMismatch : AnalyzeLater;
3537 if (!NewExprs.empty())
3538 return MemberInitMismatches;
3539 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3540 : NoMismatch;
3543 MismatchingNewDeleteDetector::MismatchResult
3544 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3545 assert(ME != nullptr && "Expected a member expression");
3546 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3547 return analyzeField(F, IsArrayForm);
3548 return NoMismatch;
3551 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3552 const CXXNewExpr *NE = nullptr;
3553 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3554 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3555 NE->isArray() != IsArrayForm) {
3556 NewExprs.push_back(NE);
3559 return NewExprs.empty();
3562 static void
3563 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3564 const MismatchingNewDeleteDetector &Detector) {
3565 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3566 FixItHint H;
3567 if (!Detector.IsArrayForm)
3568 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3569 else {
3570 SourceLocation RSquare = Lexer::findLocationAfterToken(
3571 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3572 SemaRef.getLangOpts(), true);
3573 if (RSquare.isValid())
3574 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3576 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3577 << Detector.IsArrayForm << H;
3579 for (const auto *NE : Detector.NewExprs)
3580 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3581 << Detector.IsArrayForm;
3584 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3585 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3586 return;
3587 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3588 switch (Detector.analyzeDeleteExpr(DE)) {
3589 case MismatchingNewDeleteDetector::VarInitMismatches:
3590 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3591 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3592 break;
3594 case MismatchingNewDeleteDetector::AnalyzeLater: {
3595 DeleteExprs[Detector.Field].push_back(
3596 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3597 break;
3599 case MismatchingNewDeleteDetector::NoMismatch:
3600 break;
3604 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3605 bool DeleteWasArrayForm) {
3606 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3607 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3608 case MismatchingNewDeleteDetector::VarInitMismatches:
3609 llvm_unreachable("This analysis should have been done for class members.");
3610 case MismatchingNewDeleteDetector::AnalyzeLater:
3611 llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3612 "translation unit.");
3613 case MismatchingNewDeleteDetector::MemberInitMismatches:
3614 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3615 break;
3616 case MismatchingNewDeleteDetector::NoMismatch:
3617 break;
3621 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3622 /// @code ::delete ptr; @endcode
3623 /// or
3624 /// @code delete [] ptr; @endcode
3625 ExprResult
3626 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3627 bool ArrayForm, Expr *ExE) {
3628 // C++ [expr.delete]p1:
3629 // The operand shall have a pointer type, or a class type having a single
3630 // non-explicit conversion function to a pointer type. The result has type
3631 // void.
3633 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3635 ExprResult Ex = ExE;
3636 FunctionDecl *OperatorDelete = nullptr;
3637 bool ArrayFormAsWritten = ArrayForm;
3638 bool UsualArrayDeleteWantsSize = false;
3640 if (!Ex.get()->isTypeDependent()) {
3641 // Perform lvalue-to-rvalue cast, if needed.
3642 Ex = DefaultLvalueConversion(Ex.get());
3643 if (Ex.isInvalid())
3644 return ExprError();
3646 QualType Type = Ex.get()->getType();
3648 class DeleteConverter : public ContextualImplicitConverter {
3649 public:
3650 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3652 bool match(QualType ConvType) override {
3653 // FIXME: If we have an operator T* and an operator void*, we must pick
3654 // the operator T*.
3655 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3656 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3657 return true;
3658 return false;
3661 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3662 QualType T) override {
3663 return S.Diag(Loc, diag::err_delete_operand) << T;
3666 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3667 QualType T) override {
3668 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3671 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3672 QualType T,
3673 QualType ConvTy) override {
3674 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3677 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3678 QualType ConvTy) override {
3679 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3680 << ConvTy;
3683 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3684 QualType T) override {
3685 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3688 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3689 QualType ConvTy) override {
3690 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3691 << ConvTy;
3694 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3695 QualType T,
3696 QualType ConvTy) override {
3697 llvm_unreachable("conversion functions are permitted");
3699 } Converter;
3701 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3702 if (Ex.isInvalid())
3703 return ExprError();
3704 Type = Ex.get()->getType();
3705 if (!Converter.match(Type))
3706 // FIXME: PerformContextualImplicitConversion should return ExprError
3707 // itself in this case.
3708 return ExprError();
3710 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3711 QualType PointeeElem = Context.getBaseElementType(Pointee);
3713 if (Pointee.getAddressSpace() != LangAS::Default &&
3714 !getLangOpts().OpenCLCPlusPlus)
3715 return Diag(Ex.get()->getBeginLoc(),
3716 diag::err_address_space_qualified_delete)
3717 << Pointee.getUnqualifiedType()
3718 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3720 CXXRecordDecl *PointeeRD = nullptr;
3721 if (Pointee->isVoidType() && !isSFINAEContext()) {
3722 // The C++ standard bans deleting a pointer to a non-object type, which
3723 // effectively bans deletion of "void*". However, most compilers support
3724 // this, so we treat it as a warning unless we're in a SFINAE context.
3725 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3726 << Type << Ex.get()->getSourceRange();
3727 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3728 Pointee->isSizelessType()) {
3729 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3730 << Type << Ex.get()->getSourceRange());
3731 } else if (!Pointee->isDependentType()) {
3732 // FIXME: This can result in errors if the definition was imported from a
3733 // module but is hidden.
3734 if (!RequireCompleteType(StartLoc, Pointee,
3735 diag::warn_delete_incomplete, Ex.get())) {
3736 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3737 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3741 if (Pointee->isArrayType() && !ArrayForm) {
3742 Diag(StartLoc, diag::warn_delete_array_type)
3743 << Type << Ex.get()->getSourceRange()
3744 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3745 ArrayForm = true;
3748 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3749 ArrayForm ? OO_Array_Delete : OO_Delete);
3751 if (PointeeRD) {
3752 if (!UseGlobal &&
3753 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3754 OperatorDelete))
3755 return ExprError();
3757 // If we're allocating an array of records, check whether the
3758 // usual operator delete[] has a size_t parameter.
3759 if (ArrayForm) {
3760 // If the user specifically asked to use the global allocator,
3761 // we'll need to do the lookup into the class.
3762 if (UseGlobal)
3763 UsualArrayDeleteWantsSize =
3764 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3766 // Otherwise, the usual operator delete[] should be the
3767 // function we just found.
3768 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3769 UsualArrayDeleteWantsSize =
3770 UsualDeallocFnInfo(*this,
3771 DeclAccessPair::make(OperatorDelete, AS_public))
3772 .HasSizeT;
3775 if (!PointeeRD->hasIrrelevantDestructor())
3776 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3777 MarkFunctionReferenced(StartLoc,
3778 const_cast<CXXDestructorDecl*>(Dtor));
3779 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3780 return ExprError();
3783 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3784 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3785 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3786 SourceLocation());
3789 if (!OperatorDelete) {
3790 if (getLangOpts().OpenCLCPlusPlus) {
3791 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3792 return ExprError();
3795 bool IsComplete = isCompleteType(StartLoc, Pointee);
3796 bool CanProvideSize =
3797 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3798 Pointee.isDestructedType());
3799 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3801 // Look for a global declaration.
3802 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3803 Overaligned, DeleteName);
3806 MarkFunctionReferenced(StartLoc, OperatorDelete);
3808 // Check access and ambiguity of destructor if we're going to call it.
3809 // Note that this is required even for a virtual delete.
3810 bool IsVirtualDelete = false;
3811 if (PointeeRD) {
3812 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3813 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3814 PDiag(diag::err_access_dtor) << PointeeElem);
3815 IsVirtualDelete = Dtor->isVirtual();
3819 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3821 // Convert the operand to the type of the first parameter of operator
3822 // delete. This is only necessary if we selected a destroying operator
3823 // delete that we are going to call (non-virtually); converting to void*
3824 // is trivial and left to AST consumers to handle.
3825 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3826 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3827 Qualifiers Qs = Pointee.getQualifiers();
3828 if (Qs.hasCVRQualifiers()) {
3829 // Qualifiers are irrelevant to this conversion; we're only looking
3830 // for access and ambiguity.
3831 Qs.removeCVRQualifiers();
3832 QualType Unqual = Context.getPointerType(
3833 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3834 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3836 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3837 if (Ex.isInvalid())
3838 return ExprError();
3842 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3843 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3844 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3845 AnalyzeDeleteExprMismatch(Result);
3846 return Result;
3849 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3850 bool IsDelete,
3851 FunctionDecl *&Operator) {
3853 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3854 IsDelete ? OO_Delete : OO_New);
3856 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3857 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3858 assert(!R.empty() && "implicitly declared allocation functions not found");
3859 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3861 // We do our own custom access checks below.
3862 R.suppressDiagnostics();
3864 SmallVector<Expr *, 8> Args(TheCall->arguments());
3865 OverloadCandidateSet Candidates(R.getNameLoc(),
3866 OverloadCandidateSet::CSK_Normal);
3867 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3868 FnOvl != FnOvlEnd; ++FnOvl) {
3869 // Even member operator new/delete are implicitly treated as
3870 // static, so don't use AddMemberCandidate.
3871 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3873 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3874 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3875 /*ExplicitTemplateArgs=*/nullptr, Args,
3876 Candidates,
3877 /*SuppressUserConversions=*/false);
3878 continue;
3881 FunctionDecl *Fn = cast<FunctionDecl>(D);
3882 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3883 /*SuppressUserConversions=*/false);
3886 SourceRange Range = TheCall->getSourceRange();
3888 // Do the resolution.
3889 OverloadCandidateSet::iterator Best;
3890 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3891 case OR_Success: {
3892 // Got one!
3893 FunctionDecl *FnDecl = Best->Function;
3894 assert(R.getNamingClass() == nullptr &&
3895 "class members should not be considered");
3897 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3898 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3899 << (IsDelete ? 1 : 0) << Range;
3900 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3901 << R.getLookupName() << FnDecl->getSourceRange();
3902 return true;
3905 Operator = FnDecl;
3906 return false;
3909 case OR_No_Viable_Function:
3910 Candidates.NoteCandidates(
3911 PartialDiagnosticAt(R.getNameLoc(),
3912 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3913 << R.getLookupName() << Range),
3914 S, OCD_AllCandidates, Args);
3915 return true;
3917 case OR_Ambiguous:
3918 Candidates.NoteCandidates(
3919 PartialDiagnosticAt(R.getNameLoc(),
3920 S.PDiag(diag::err_ovl_ambiguous_call)
3921 << R.getLookupName() << Range),
3922 S, OCD_AmbiguousCandidates, Args);
3923 return true;
3925 case OR_Deleted: {
3926 Candidates.NoteCandidates(
3927 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3928 << R.getLookupName() << Range),
3929 S, OCD_AllCandidates, Args);
3930 return true;
3933 llvm_unreachable("Unreachable, bad result from BestViableFunction");
3936 ExprResult
3937 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3938 bool IsDelete) {
3939 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3940 if (!getLangOpts().CPlusPlus) {
3941 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3942 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3943 << "C++";
3944 return ExprError();
3946 // CodeGen assumes it can find the global new and delete to call,
3947 // so ensure that they are declared.
3948 DeclareGlobalNewDelete();
3950 FunctionDecl *OperatorNewOrDelete = nullptr;
3951 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3952 OperatorNewOrDelete))
3953 return ExprError();
3954 assert(OperatorNewOrDelete && "should be found");
3956 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3957 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3959 TheCall->setType(OperatorNewOrDelete->getReturnType());
3960 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3961 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3962 InitializedEntity Entity =
3963 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3964 ExprResult Arg = PerformCopyInitialization(
3965 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3966 if (Arg.isInvalid())
3967 return ExprError();
3968 TheCall->setArg(i, Arg.get());
3970 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3971 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3972 "Callee expected to be implicit cast to a builtin function pointer");
3973 Callee->setType(OperatorNewOrDelete->getType());
3975 return TheCallResult;
3978 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3979 bool IsDelete, bool CallCanBeVirtual,
3980 bool WarnOnNonAbstractTypes,
3981 SourceLocation DtorLoc) {
3982 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3983 return;
3985 // C++ [expr.delete]p3:
3986 // In the first alternative (delete object), if the static type of the
3987 // object to be deleted is different from its dynamic type, the static
3988 // type shall be a base class of the dynamic type of the object to be
3989 // deleted and the static type shall have a virtual destructor or the
3990 // behavior is undefined.
3992 const CXXRecordDecl *PointeeRD = dtor->getParent();
3993 // Note: a final class cannot be derived from, no issue there
3994 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3995 return;
3997 // If the superclass is in a system header, there's nothing that can be done.
3998 // The `delete` (where we emit the warning) can be in a system header,
3999 // what matters for this warning is where the deleted type is defined.
4000 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
4001 return;
4003 QualType ClassType = dtor->getFunctionObjectParameterType();
4004 if (PointeeRD->isAbstract()) {
4005 // If the class is abstract, we warn by default, because we're
4006 // sure the code has undefined behavior.
4007 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
4008 << ClassType;
4009 } else if (WarnOnNonAbstractTypes) {
4010 // Otherwise, if this is not an array delete, it's a bit suspect,
4011 // but not necessarily wrong.
4012 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
4013 << ClassType;
4015 if (!IsDelete) {
4016 std::string TypeStr;
4017 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
4018 Diag(DtorLoc, diag::note_delete_non_virtual)
4019 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
4023 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
4024 SourceLocation StmtLoc,
4025 ConditionKind CK) {
4026 ExprResult E =
4027 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
4028 if (E.isInvalid())
4029 return ConditionError();
4030 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
4031 CK == ConditionKind::ConstexprIf);
4034 /// Check the use of the given variable as a C++ condition in an if,
4035 /// while, do-while, or switch statement.
4036 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
4037 SourceLocation StmtLoc,
4038 ConditionKind CK) {
4039 if (ConditionVar->isInvalidDecl())
4040 return ExprError();
4042 QualType T = ConditionVar->getType();
4044 // C++ [stmt.select]p2:
4045 // The declarator shall not specify a function or an array.
4046 if (T->isFunctionType())
4047 return ExprError(Diag(ConditionVar->getLocation(),
4048 diag::err_invalid_use_of_function_type)
4049 << ConditionVar->getSourceRange());
4050 else if (T->isArrayType())
4051 return ExprError(Diag(ConditionVar->getLocation(),
4052 diag::err_invalid_use_of_array_type)
4053 << ConditionVar->getSourceRange());
4055 ExprResult Condition = BuildDeclRefExpr(
4056 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4057 ConditionVar->getLocation());
4059 switch (CK) {
4060 case ConditionKind::Boolean:
4061 return CheckBooleanCondition(StmtLoc, Condition.get());
4063 case ConditionKind::ConstexprIf:
4064 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4066 case ConditionKind::Switch:
4067 return CheckSwitchCondition(StmtLoc, Condition.get());
4070 llvm_unreachable("unexpected condition kind");
4073 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
4074 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4075 // C++11 6.4p4:
4076 // The value of a condition that is an initialized declaration in a statement
4077 // other than a switch statement is the value of the declared variable
4078 // implicitly converted to type bool. If that conversion is ill-formed, the
4079 // program is ill-formed.
4080 // The value of a condition that is an expression is the value of the
4081 // expression, implicitly converted to bool.
4083 // C++23 8.5.2p2
4084 // If the if statement is of the form if constexpr, the value of the condition
4085 // is contextually converted to bool and the converted expression shall be
4086 // a constant expression.
4089 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4090 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4091 return E;
4093 // FIXME: Return this value to the caller so they don't need to recompute it.
4094 llvm::APSInt Cond;
4095 E = VerifyIntegerConstantExpression(
4096 E.get(), &Cond,
4097 diag::err_constexpr_if_condition_expression_is_not_constant);
4098 return E;
4101 /// Helper function to determine whether this is the (deprecated) C++
4102 /// conversion from a string literal to a pointer to non-const char or
4103 /// non-const wchar_t (for narrow and wide string literals,
4104 /// respectively).
4105 bool
4106 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4107 // Look inside the implicit cast, if it exists.
4108 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4109 From = Cast->getSubExpr();
4111 // A string literal (2.13.4) that is not a wide string literal can
4112 // be converted to an rvalue of type "pointer to char"; a wide
4113 // string literal can be converted to an rvalue of type "pointer
4114 // to wchar_t" (C++ 4.2p2).
4115 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4116 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4117 if (const BuiltinType *ToPointeeType
4118 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4119 // This conversion is considered only when there is an
4120 // explicit appropriate pointer target type (C++ 4.2p2).
4121 if (!ToPtrType->getPointeeType().hasQualifiers()) {
4122 switch (StrLit->getKind()) {
4123 case StringLiteralKind::UTF8:
4124 case StringLiteralKind::UTF16:
4125 case StringLiteralKind::UTF32:
4126 // We don't allow UTF literals to be implicitly converted
4127 break;
4128 case StringLiteralKind::Ordinary:
4129 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4130 ToPointeeType->getKind() == BuiltinType::Char_S);
4131 case StringLiteralKind::Wide:
4132 return Context.typesAreCompatible(Context.getWideCharType(),
4133 QualType(ToPointeeType, 0));
4134 case StringLiteralKind::Unevaluated:
4135 assert(false && "Unevaluated string literal in expression");
4136 break;
4141 return false;
4144 static ExprResult BuildCXXCastArgument(Sema &S,
4145 SourceLocation CastLoc,
4146 QualType Ty,
4147 CastKind Kind,
4148 CXXMethodDecl *Method,
4149 DeclAccessPair FoundDecl,
4150 bool HadMultipleCandidates,
4151 Expr *From) {
4152 switch (Kind) {
4153 default: llvm_unreachable("Unhandled cast kind!");
4154 case CK_ConstructorConversion: {
4155 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4156 SmallVector<Expr*, 8> ConstructorArgs;
4158 if (S.RequireNonAbstractType(CastLoc, Ty,
4159 diag::err_allocation_of_abstract_type))
4160 return ExprError();
4162 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4163 ConstructorArgs))
4164 return ExprError();
4166 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4167 InitializedEntity::InitializeTemporary(Ty));
4168 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4169 return ExprError();
4171 ExprResult Result = S.BuildCXXConstructExpr(
4172 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4173 ConstructorArgs, HadMultipleCandidates,
4174 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4175 CXXConstructionKind::Complete, SourceRange());
4176 if (Result.isInvalid())
4177 return ExprError();
4179 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4182 case CK_UserDefinedConversion: {
4183 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4185 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4186 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4187 return ExprError();
4189 // Create an implicit call expr that calls it.
4190 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4191 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4192 HadMultipleCandidates);
4193 if (Result.isInvalid())
4194 return ExprError();
4195 // Record usage of conversion in an implicit cast.
4196 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4197 CK_UserDefinedConversion, Result.get(),
4198 nullptr, Result.get()->getValueKind(),
4199 S.CurFPFeatureOverrides());
4201 return S.MaybeBindToTemporary(Result.get());
4206 /// PerformImplicitConversion - Perform an implicit conversion of the
4207 /// expression From to the type ToType using the pre-computed implicit
4208 /// conversion sequence ICS. Returns the converted
4209 /// expression. Action is the kind of conversion we're performing,
4210 /// used in the error message.
4211 ExprResult
4212 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4213 const ImplicitConversionSequence &ICS,
4214 AssignmentAction Action,
4215 CheckedConversionKind CCK) {
4216 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4217 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4218 return From;
4220 switch (ICS.getKind()) {
4221 case ImplicitConversionSequence::StandardConversion: {
4222 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4223 Action, CCK);
4224 if (Res.isInvalid())
4225 return ExprError();
4226 From = Res.get();
4227 break;
4230 case ImplicitConversionSequence::UserDefinedConversion: {
4232 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4233 CastKind CastKind;
4234 QualType BeforeToType;
4235 assert(FD && "no conversion function for user-defined conversion seq");
4236 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4237 CastKind = CK_UserDefinedConversion;
4239 // If the user-defined conversion is specified by a conversion function,
4240 // the initial standard conversion sequence converts the source type to
4241 // the implicit object parameter of the conversion function.
4242 BeforeToType = Context.getTagDeclType(Conv->getParent());
4243 } else {
4244 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4245 CastKind = CK_ConstructorConversion;
4246 // Do no conversion if dealing with ... for the first conversion.
4247 if (!ICS.UserDefined.EllipsisConversion) {
4248 // If the user-defined conversion is specified by a constructor, the
4249 // initial standard conversion sequence converts the source type to
4250 // the type required by the argument of the constructor
4251 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4254 // Watch out for ellipsis conversion.
4255 if (!ICS.UserDefined.EllipsisConversion) {
4256 ExprResult Res =
4257 PerformImplicitConversion(From, BeforeToType,
4258 ICS.UserDefined.Before, AA_Converting,
4259 CCK);
4260 if (Res.isInvalid())
4261 return ExprError();
4262 From = Res.get();
4265 ExprResult CastArg = BuildCXXCastArgument(
4266 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4267 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4268 ICS.UserDefined.HadMultipleCandidates, From);
4270 if (CastArg.isInvalid())
4271 return ExprError();
4273 From = CastArg.get();
4275 // C++ [over.match.oper]p7:
4276 // [...] the second standard conversion sequence of a user-defined
4277 // conversion sequence is not applied.
4278 if (CCK == CCK_ForBuiltinOverloadedOp)
4279 return From;
4281 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4282 AA_Converting, CCK);
4285 case ImplicitConversionSequence::AmbiguousConversion:
4286 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4287 PDiag(diag::err_typecheck_ambiguous_condition)
4288 << From->getSourceRange());
4289 return ExprError();
4291 case ImplicitConversionSequence::EllipsisConversion:
4292 case ImplicitConversionSequence::StaticObjectArgumentConversion:
4293 llvm_unreachable("bad conversion");
4295 case ImplicitConversionSequence::BadConversion:
4296 Sema::AssignConvertType ConvTy =
4297 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4298 bool Diagnosed = DiagnoseAssignmentResult(
4299 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4300 ToType, From->getType(), From, Action);
4301 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4302 return ExprError();
4305 // Everything went well.
4306 return From;
4309 /// PerformImplicitConversion - Perform an implicit conversion of the
4310 /// expression From to the type ToType by following the standard
4311 /// conversion sequence SCS. Returns the converted
4312 /// expression. Flavor is the context in which we're performing this
4313 /// conversion, for use in error messages.
4314 ExprResult
4315 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4316 const StandardConversionSequence& SCS,
4317 AssignmentAction Action,
4318 CheckedConversionKind CCK) {
4319 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4321 // Overall FIXME: we are recomputing too many types here and doing far too
4322 // much extra work. What this means is that we need to keep track of more
4323 // information that is computed when we try the implicit conversion initially,
4324 // so that we don't need to recompute anything here.
4325 QualType FromType = From->getType();
4327 if (SCS.CopyConstructor) {
4328 // FIXME: When can ToType be a reference type?
4329 assert(!ToType->isReferenceType());
4330 if (SCS.Second == ICK_Derived_To_Base) {
4331 SmallVector<Expr*, 8> ConstructorArgs;
4332 if (CompleteConstructorCall(
4333 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4334 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4335 return ExprError();
4336 return BuildCXXConstructExpr(
4337 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4338 SCS.FoundCopyConstructor, SCS.CopyConstructor, ConstructorArgs,
4339 /*HadMultipleCandidates*/ false,
4340 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4341 CXXConstructionKind::Complete, SourceRange());
4343 return BuildCXXConstructExpr(
4344 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4345 SCS.FoundCopyConstructor, SCS.CopyConstructor, From,
4346 /*HadMultipleCandidates*/ false,
4347 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4348 CXXConstructionKind::Complete, SourceRange());
4351 // Resolve overloaded function references.
4352 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4353 DeclAccessPair Found;
4354 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4355 true, Found);
4356 if (!Fn)
4357 return ExprError();
4359 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4360 return ExprError();
4362 ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn);
4363 if (Res.isInvalid())
4364 return ExprError();
4366 // We might get back another placeholder expression if we resolved to a
4367 // builtin.
4368 Res = CheckPlaceholderExpr(Res.get());
4369 if (Res.isInvalid())
4370 return ExprError();
4372 From = Res.get();
4373 FromType = From->getType();
4376 // If we're converting to an atomic type, first convert to the corresponding
4377 // non-atomic type.
4378 QualType ToAtomicType;
4379 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4380 ToAtomicType = ToType;
4381 ToType = ToAtomic->getValueType();
4384 QualType InitialFromType = FromType;
4385 // Perform the first implicit conversion.
4386 switch (SCS.First) {
4387 case ICK_Identity:
4388 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4389 FromType = FromAtomic->getValueType().getUnqualifiedType();
4390 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4391 From, /*BasePath=*/nullptr, VK_PRValue,
4392 FPOptionsOverride());
4394 break;
4396 case ICK_Lvalue_To_Rvalue: {
4397 assert(From->getObjectKind() != OK_ObjCProperty);
4398 ExprResult FromRes = DefaultLvalueConversion(From);
4399 if (FromRes.isInvalid())
4400 return ExprError();
4402 From = FromRes.get();
4403 FromType = From->getType();
4404 break;
4407 case ICK_Array_To_Pointer:
4408 FromType = Context.getArrayDecayedType(FromType);
4409 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4410 /*BasePath=*/nullptr, CCK)
4411 .get();
4412 break;
4414 case ICK_Function_To_Pointer:
4415 FromType = Context.getPointerType(FromType);
4416 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4417 VK_PRValue, /*BasePath=*/nullptr, CCK)
4418 .get();
4419 break;
4421 default:
4422 llvm_unreachable("Improper first standard conversion");
4425 // Perform the second implicit conversion
4426 switch (SCS.Second) {
4427 case ICK_Identity:
4428 // C++ [except.spec]p5:
4429 // [For] assignment to and initialization of pointers to functions,
4430 // pointers to member functions, and references to functions: the
4431 // target entity shall allow at least the exceptions allowed by the
4432 // source value in the assignment or initialization.
4433 switch (Action) {
4434 case AA_Assigning:
4435 case AA_Initializing:
4436 // Note, function argument passing and returning are initialization.
4437 case AA_Passing:
4438 case AA_Returning:
4439 case AA_Sending:
4440 case AA_Passing_CFAudited:
4441 if (CheckExceptionSpecCompatibility(From, ToType))
4442 return ExprError();
4443 break;
4445 case AA_Casting:
4446 case AA_Converting:
4447 // Casts and implicit conversions are not initialization, so are not
4448 // checked for exception specification mismatches.
4449 break;
4451 // Nothing else to do.
4452 break;
4454 case ICK_Integral_Promotion:
4455 case ICK_Integral_Conversion:
4456 if (ToType->isBooleanType()) {
4457 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4458 SCS.Second == ICK_Integral_Promotion &&
4459 "only enums with fixed underlying type can promote to bool");
4460 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4461 /*BasePath=*/nullptr, CCK)
4462 .get();
4463 } else {
4464 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4465 /*BasePath=*/nullptr, CCK)
4466 .get();
4468 break;
4470 case ICK_Floating_Promotion:
4471 case ICK_Floating_Conversion:
4472 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4473 /*BasePath=*/nullptr, CCK)
4474 .get();
4475 break;
4477 case ICK_Complex_Promotion:
4478 case ICK_Complex_Conversion: {
4479 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4480 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4481 CastKind CK;
4482 if (FromEl->isRealFloatingType()) {
4483 if (ToEl->isRealFloatingType())
4484 CK = CK_FloatingComplexCast;
4485 else
4486 CK = CK_FloatingComplexToIntegralComplex;
4487 } else if (ToEl->isRealFloatingType()) {
4488 CK = CK_IntegralComplexToFloatingComplex;
4489 } else {
4490 CK = CK_IntegralComplexCast;
4492 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4493 CCK)
4494 .get();
4495 break;
4498 case ICK_Floating_Integral:
4499 if (ToType->isRealFloatingType())
4500 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4501 /*BasePath=*/nullptr, CCK)
4502 .get();
4503 else
4504 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4505 /*BasePath=*/nullptr, CCK)
4506 .get();
4507 break;
4509 case ICK_Fixed_Point_Conversion:
4510 assert((FromType->isFixedPointType() || ToType->isFixedPointType()) &&
4511 "Attempting implicit fixed point conversion without a fixed "
4512 "point operand");
4513 if (FromType->isFloatingType())
4514 From = ImpCastExprToType(From, ToType, CK_FloatingToFixedPoint,
4515 VK_PRValue,
4516 /*BasePath=*/nullptr, CCK).get();
4517 else if (ToType->isFloatingType())
4518 From = ImpCastExprToType(From, ToType, CK_FixedPointToFloating,
4519 VK_PRValue,
4520 /*BasePath=*/nullptr, CCK).get();
4521 else if (FromType->isIntegralType(Context))
4522 From = ImpCastExprToType(From, ToType, CK_IntegralToFixedPoint,
4523 VK_PRValue,
4524 /*BasePath=*/nullptr, CCK).get();
4525 else if (ToType->isIntegralType(Context))
4526 From = ImpCastExprToType(From, ToType, CK_FixedPointToIntegral,
4527 VK_PRValue,
4528 /*BasePath=*/nullptr, CCK).get();
4529 else if (ToType->isBooleanType())
4530 From = ImpCastExprToType(From, ToType, CK_FixedPointToBoolean,
4531 VK_PRValue,
4532 /*BasePath=*/nullptr, CCK).get();
4533 else
4534 From = ImpCastExprToType(From, ToType, CK_FixedPointCast,
4535 VK_PRValue,
4536 /*BasePath=*/nullptr, CCK).get();
4537 break;
4539 case ICK_Compatible_Conversion:
4540 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4541 /*BasePath=*/nullptr, CCK).get();
4542 break;
4544 case ICK_Writeback_Conversion:
4545 case ICK_Pointer_Conversion: {
4546 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4547 // Diagnose incompatible Objective-C conversions
4548 if (Action == AA_Initializing || Action == AA_Assigning)
4549 Diag(From->getBeginLoc(),
4550 diag::ext_typecheck_convert_incompatible_pointer)
4551 << ToType << From->getType() << Action << From->getSourceRange()
4552 << 0;
4553 else
4554 Diag(From->getBeginLoc(),
4555 diag::ext_typecheck_convert_incompatible_pointer)
4556 << From->getType() << ToType << Action << From->getSourceRange()
4557 << 0;
4559 if (From->getType()->isObjCObjectPointerType() &&
4560 ToType->isObjCObjectPointerType())
4561 EmitRelatedResultTypeNote(From);
4562 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4563 !CheckObjCARCUnavailableWeakConversion(ToType,
4564 From->getType())) {
4565 if (Action == AA_Initializing)
4566 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4567 else
4568 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4569 << (Action == AA_Casting) << From->getType() << ToType
4570 << From->getSourceRange();
4573 // Defer address space conversion to the third conversion.
4574 QualType FromPteeType = From->getType()->getPointeeType();
4575 QualType ToPteeType = ToType->getPointeeType();
4576 QualType NewToType = ToType;
4577 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4578 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4579 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4580 NewToType = Context.getAddrSpaceQualType(NewToType,
4581 FromPteeType.getAddressSpace());
4582 if (ToType->isObjCObjectPointerType())
4583 NewToType = Context.getObjCObjectPointerType(NewToType);
4584 else if (ToType->isBlockPointerType())
4585 NewToType = Context.getBlockPointerType(NewToType);
4586 else
4587 NewToType = Context.getPointerType(NewToType);
4590 CastKind Kind;
4591 CXXCastPath BasePath;
4592 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4593 return ExprError();
4595 // Make sure we extend blocks if necessary.
4596 // FIXME: doing this here is really ugly.
4597 if (Kind == CK_BlockPointerToObjCPointerCast) {
4598 ExprResult E = From;
4599 (void) PrepareCastToObjCObjectPointer(E);
4600 From = E.get();
4602 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4603 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4604 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4605 .get();
4606 break;
4609 case ICK_Pointer_Member: {
4610 CastKind Kind;
4611 CXXCastPath BasePath;
4612 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4613 return ExprError();
4614 if (CheckExceptionSpecCompatibility(From, ToType))
4615 return ExprError();
4617 // We may not have been able to figure out what this member pointer resolved
4618 // to up until this exact point. Attempt to lock-in it's inheritance model.
4619 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4620 (void)isCompleteType(From->getExprLoc(), From->getType());
4621 (void)isCompleteType(From->getExprLoc(), ToType);
4624 From =
4625 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4626 break;
4629 case ICK_Boolean_Conversion:
4630 // Perform half-to-boolean conversion via float.
4631 if (From->getType()->isHalfType()) {
4632 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4633 FromType = Context.FloatTy;
4636 From = ImpCastExprToType(From, Context.BoolTy,
4637 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4638 /*BasePath=*/nullptr, CCK)
4639 .get();
4640 break;
4642 case ICK_Derived_To_Base: {
4643 CXXCastPath BasePath;
4644 if (CheckDerivedToBaseConversion(
4645 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4646 From->getSourceRange(), &BasePath, CStyle))
4647 return ExprError();
4649 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4650 CK_DerivedToBase, From->getValueKind(),
4651 &BasePath, CCK).get();
4652 break;
4655 case ICK_Vector_Conversion:
4656 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4657 /*BasePath=*/nullptr, CCK)
4658 .get();
4659 break;
4661 case ICK_SVE_Vector_Conversion:
4662 case ICK_RVV_Vector_Conversion:
4663 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4664 /*BasePath=*/nullptr, CCK)
4665 .get();
4666 break;
4668 case ICK_Vector_Splat: {
4669 // Vector splat from any arithmetic type to a vector.
4670 Expr *Elem = prepareVectorSplat(ToType, From).get();
4671 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4672 /*BasePath=*/nullptr, CCK)
4673 .get();
4674 break;
4677 case ICK_Complex_Real:
4678 // Case 1. x -> _Complex y
4679 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4680 QualType ElType = ToComplex->getElementType();
4681 bool isFloatingComplex = ElType->isRealFloatingType();
4683 // x -> y
4684 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4685 // do nothing
4686 } else if (From->getType()->isRealFloatingType()) {
4687 From = ImpCastExprToType(From, ElType,
4688 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4689 } else {
4690 assert(From->getType()->isIntegerType());
4691 From = ImpCastExprToType(From, ElType,
4692 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4694 // y -> _Complex y
4695 From = ImpCastExprToType(From, ToType,
4696 isFloatingComplex ? CK_FloatingRealToComplex
4697 : CK_IntegralRealToComplex).get();
4699 // Case 2. _Complex x -> y
4700 } else {
4701 auto *FromComplex = From->getType()->castAs<ComplexType>();
4702 QualType ElType = FromComplex->getElementType();
4703 bool isFloatingComplex = ElType->isRealFloatingType();
4705 // _Complex x -> x
4706 From = ImpCastExprToType(From, ElType,
4707 isFloatingComplex ? CK_FloatingComplexToReal
4708 : CK_IntegralComplexToReal,
4709 VK_PRValue, /*BasePath=*/nullptr, CCK)
4710 .get();
4712 // x -> y
4713 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4714 // do nothing
4715 } else if (ToType->isRealFloatingType()) {
4716 From = ImpCastExprToType(From, ToType,
4717 isFloatingComplex ? CK_FloatingCast
4718 : CK_IntegralToFloating,
4719 VK_PRValue, /*BasePath=*/nullptr, CCK)
4720 .get();
4721 } else {
4722 assert(ToType->isIntegerType());
4723 From = ImpCastExprToType(From, ToType,
4724 isFloatingComplex ? CK_FloatingToIntegral
4725 : CK_IntegralCast,
4726 VK_PRValue, /*BasePath=*/nullptr, CCK)
4727 .get();
4730 break;
4732 case ICK_Block_Pointer_Conversion: {
4733 LangAS AddrSpaceL =
4734 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4735 LangAS AddrSpaceR =
4736 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4737 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4738 "Invalid cast");
4739 CastKind Kind =
4740 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4741 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4742 VK_PRValue, /*BasePath=*/nullptr, CCK)
4743 .get();
4744 break;
4747 case ICK_TransparentUnionConversion: {
4748 ExprResult FromRes = From;
4749 Sema::AssignConvertType ConvTy =
4750 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4751 if (FromRes.isInvalid())
4752 return ExprError();
4753 From = FromRes.get();
4754 assert ((ConvTy == Sema::Compatible) &&
4755 "Improper transparent union conversion");
4756 (void)ConvTy;
4757 break;
4760 case ICK_Zero_Event_Conversion:
4761 case ICK_Zero_Queue_Conversion:
4762 From = ImpCastExprToType(From, ToType,
4763 CK_ZeroToOCLOpaqueType,
4764 From->getValueKind()).get();
4765 break;
4767 case ICK_Lvalue_To_Rvalue:
4768 case ICK_Array_To_Pointer:
4769 case ICK_Function_To_Pointer:
4770 case ICK_Function_Conversion:
4771 case ICK_Qualification:
4772 case ICK_Num_Conversion_Kinds:
4773 case ICK_C_Only_Conversion:
4774 case ICK_Incompatible_Pointer_Conversion:
4775 llvm_unreachable("Improper second standard conversion");
4778 switch (SCS.Third) {
4779 case ICK_Identity:
4780 // Nothing to do.
4781 break;
4783 case ICK_Function_Conversion:
4784 // If both sides are functions (or pointers/references to them), there could
4785 // be incompatible exception declarations.
4786 if (CheckExceptionSpecCompatibility(From, ToType))
4787 return ExprError();
4789 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4790 /*BasePath=*/nullptr, CCK)
4791 .get();
4792 break;
4794 case ICK_Qualification: {
4795 ExprValueKind VK = From->getValueKind();
4796 CastKind CK = CK_NoOp;
4798 if (ToType->isReferenceType() &&
4799 ToType->getPointeeType().getAddressSpace() !=
4800 From->getType().getAddressSpace())
4801 CK = CK_AddressSpaceConversion;
4803 if (ToType->isPointerType() &&
4804 ToType->getPointeeType().getAddressSpace() !=
4805 From->getType()->getPointeeType().getAddressSpace())
4806 CK = CK_AddressSpaceConversion;
4808 if (!isCast(CCK) &&
4809 !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4810 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4811 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4812 << InitialFromType << ToType;
4815 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4816 /*BasePath=*/nullptr, CCK)
4817 .get();
4819 if (SCS.DeprecatedStringLiteralToCharPtr &&
4820 !getLangOpts().WritableStrings) {
4821 Diag(From->getBeginLoc(),
4822 getLangOpts().CPlusPlus11
4823 ? diag::ext_deprecated_string_literal_conversion
4824 : diag::warn_deprecated_string_literal_conversion)
4825 << ToType.getNonReferenceType();
4828 break;
4831 default:
4832 llvm_unreachable("Improper third standard conversion");
4835 // If this conversion sequence involved a scalar -> atomic conversion, perform
4836 // that conversion now.
4837 if (!ToAtomicType.isNull()) {
4838 assert(Context.hasSameType(
4839 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4840 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4841 VK_PRValue, nullptr, CCK)
4842 .get();
4845 // Materialize a temporary if we're implicitly converting to a reference
4846 // type. This is not required by the C++ rules but is necessary to maintain
4847 // AST invariants.
4848 if (ToType->isReferenceType() && From->isPRValue()) {
4849 ExprResult Res = TemporaryMaterializationConversion(From);
4850 if (Res.isInvalid())
4851 return ExprError();
4852 From = Res.get();
4855 // If this conversion sequence succeeded and involved implicitly converting a
4856 // _Nullable type to a _Nonnull one, complain.
4857 if (!isCast(CCK))
4858 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4859 From->getBeginLoc());
4861 return From;
4864 /// Check the completeness of a type in a unary type trait.
4866 /// If the particular type trait requires a complete type, tries to complete
4867 /// it. If completing the type fails, a diagnostic is emitted and false
4868 /// returned. If completing the type succeeds or no completion was required,
4869 /// returns true.
4870 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4871 SourceLocation Loc,
4872 QualType ArgTy) {
4873 // C++0x [meta.unary.prop]p3:
4874 // For all of the class templates X declared in this Clause, instantiating
4875 // that template with a template argument that is a class template
4876 // specialization may result in the implicit instantiation of the template
4877 // argument if and only if the semantics of X require that the argument
4878 // must be a complete type.
4879 // We apply this rule to all the type trait expressions used to implement
4880 // these class templates. We also try to follow any GCC documented behavior
4881 // in these expressions to ensure portability of standard libraries.
4882 switch (UTT) {
4883 default: llvm_unreachable("not a UTT");
4884 // is_complete_type somewhat obviously cannot require a complete type.
4885 case UTT_IsCompleteType:
4886 // Fall-through
4888 // These traits are modeled on the type predicates in C++0x
4889 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4890 // requiring a complete type, as whether or not they return true cannot be
4891 // impacted by the completeness of the type.
4892 case UTT_IsVoid:
4893 case UTT_IsIntegral:
4894 case UTT_IsFloatingPoint:
4895 case UTT_IsArray:
4896 case UTT_IsBoundedArray:
4897 case UTT_IsPointer:
4898 case UTT_IsNullPointer:
4899 case UTT_IsReferenceable:
4900 case UTT_IsLvalueReference:
4901 case UTT_IsRvalueReference:
4902 case UTT_IsMemberFunctionPointer:
4903 case UTT_IsMemberObjectPointer:
4904 case UTT_IsEnum:
4905 case UTT_IsScopedEnum:
4906 case UTT_IsUnion:
4907 case UTT_IsClass:
4908 case UTT_IsFunction:
4909 case UTT_IsReference:
4910 case UTT_IsArithmetic:
4911 case UTT_IsFundamental:
4912 case UTT_IsObject:
4913 case UTT_IsScalar:
4914 case UTT_IsCompound:
4915 case UTT_IsMemberPointer:
4916 // Fall-through
4918 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4919 // which requires some of its traits to have the complete type. However,
4920 // the completeness of the type cannot impact these traits' semantics, and
4921 // so they don't require it. This matches the comments on these traits in
4922 // Table 49.
4923 case UTT_IsConst:
4924 case UTT_IsVolatile:
4925 case UTT_IsSigned:
4926 case UTT_IsUnboundedArray:
4927 case UTT_IsUnsigned:
4929 // This type trait always returns false, checking the type is moot.
4930 case UTT_IsInterfaceClass:
4931 return true;
4933 // C++14 [meta.unary.prop]:
4934 // If T is a non-union class type, T shall be a complete type.
4935 case UTT_IsEmpty:
4936 case UTT_IsPolymorphic:
4937 case UTT_IsAbstract:
4938 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4939 if (!RD->isUnion())
4940 return !S.RequireCompleteType(
4941 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4942 return true;
4944 // C++14 [meta.unary.prop]:
4945 // If T is a class type, T shall be a complete type.
4946 case UTT_IsFinal:
4947 case UTT_IsSealed:
4948 if (ArgTy->getAsCXXRecordDecl())
4949 return !S.RequireCompleteType(
4950 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4951 return true;
4953 // LWG3823: T shall be an array type, a complete type, or cv void.
4954 case UTT_IsAggregate:
4955 if (ArgTy->isArrayType() || ArgTy->isVoidType())
4956 return true;
4958 return !S.RequireCompleteType(
4959 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4961 // C++1z [meta.unary.prop]:
4962 // remove_all_extents_t<T> shall be a complete type or cv void.
4963 case UTT_IsTrivial:
4964 case UTT_IsTriviallyCopyable:
4965 case UTT_IsStandardLayout:
4966 case UTT_IsPOD:
4967 case UTT_IsLiteral:
4968 // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
4969 // impose the same constraints.
4970 case UTT_IsTriviallyRelocatable:
4971 case UTT_IsTriviallyEqualityComparable:
4972 case UTT_CanPassInRegs:
4973 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4974 // or an array of unknown bound. But GCC actually imposes the same constraints
4975 // as above.
4976 case UTT_HasNothrowAssign:
4977 case UTT_HasNothrowMoveAssign:
4978 case UTT_HasNothrowConstructor:
4979 case UTT_HasNothrowCopy:
4980 case UTT_HasTrivialAssign:
4981 case UTT_HasTrivialMoveAssign:
4982 case UTT_HasTrivialDefaultConstructor:
4983 case UTT_HasTrivialMoveConstructor:
4984 case UTT_HasTrivialCopy:
4985 case UTT_HasTrivialDestructor:
4986 case UTT_HasVirtualDestructor:
4987 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4988 [[fallthrough]];
4990 // C++1z [meta.unary.prop]:
4991 // T shall be a complete type, cv void, or an array of unknown bound.
4992 case UTT_IsDestructible:
4993 case UTT_IsNothrowDestructible:
4994 case UTT_IsTriviallyDestructible:
4995 case UTT_HasUniqueObjectRepresentations:
4996 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4997 return true;
4999 return !S.RequireCompleteType(
5000 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5004 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
5005 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
5006 bool (CXXRecordDecl::*HasTrivial)() const,
5007 bool (CXXRecordDecl::*HasNonTrivial)() const,
5008 bool (CXXMethodDecl::*IsDesiredOp)() const)
5010 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5011 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
5012 return true;
5014 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
5015 DeclarationNameInfo NameInfo(Name, KeyLoc);
5016 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
5017 if (Self.LookupQualifiedName(Res, RD)) {
5018 bool FoundOperator = false;
5019 Res.suppressDiagnostics();
5020 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
5021 Op != OpEnd; ++Op) {
5022 if (isa<FunctionTemplateDecl>(*Op))
5023 continue;
5025 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
5026 if((Operator->*IsDesiredOp)()) {
5027 FoundOperator = true;
5028 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
5029 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5030 if (!CPT || !CPT->isNothrow())
5031 return false;
5034 return FoundOperator;
5036 return false;
5039 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
5040 SourceLocation KeyLoc, QualType T) {
5041 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5043 ASTContext &C = Self.Context;
5044 switch(UTT) {
5045 default: llvm_unreachable("not a UTT");
5046 // Type trait expressions corresponding to the primary type category
5047 // predicates in C++0x [meta.unary.cat].
5048 case UTT_IsVoid:
5049 return T->isVoidType();
5050 case UTT_IsIntegral:
5051 return T->isIntegralType(C);
5052 case UTT_IsFloatingPoint:
5053 return T->isFloatingType();
5054 case UTT_IsArray:
5055 return T->isArrayType();
5056 case UTT_IsBoundedArray:
5057 if (!T->isVariableArrayType()) {
5058 return T->isArrayType() && !T->isIncompleteArrayType();
5061 Self.Diag(KeyLoc, diag::err_vla_unsupported)
5062 << 1 << tok::kw___is_bounded_array;
5063 return false;
5064 case UTT_IsUnboundedArray:
5065 if (!T->isVariableArrayType()) {
5066 return T->isIncompleteArrayType();
5069 Self.Diag(KeyLoc, diag::err_vla_unsupported)
5070 << 1 << tok::kw___is_unbounded_array;
5071 return false;
5072 case UTT_IsPointer:
5073 return T->isAnyPointerType();
5074 case UTT_IsNullPointer:
5075 return T->isNullPtrType();
5076 case UTT_IsLvalueReference:
5077 return T->isLValueReferenceType();
5078 case UTT_IsRvalueReference:
5079 return T->isRValueReferenceType();
5080 case UTT_IsMemberFunctionPointer:
5081 return T->isMemberFunctionPointerType();
5082 case UTT_IsMemberObjectPointer:
5083 return T->isMemberDataPointerType();
5084 case UTT_IsEnum:
5085 return T->isEnumeralType();
5086 case UTT_IsScopedEnum:
5087 return T->isScopedEnumeralType();
5088 case UTT_IsUnion:
5089 return T->isUnionType();
5090 case UTT_IsClass:
5091 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5092 case UTT_IsFunction:
5093 return T->isFunctionType();
5095 // Type trait expressions which correspond to the convenient composition
5096 // predicates in C++0x [meta.unary.comp].
5097 case UTT_IsReference:
5098 return T->isReferenceType();
5099 case UTT_IsArithmetic:
5100 return T->isArithmeticType() && !T->isEnumeralType();
5101 case UTT_IsFundamental:
5102 return T->isFundamentalType();
5103 case UTT_IsObject:
5104 return T->isObjectType();
5105 case UTT_IsScalar:
5106 // Note: semantic analysis depends on Objective-C lifetime types to be
5107 // considered scalar types. However, such types do not actually behave
5108 // like scalar types at run time (since they may require retain/release
5109 // operations), so we report them as non-scalar.
5110 if (T->isObjCLifetimeType()) {
5111 switch (T.getObjCLifetime()) {
5112 case Qualifiers::OCL_None:
5113 case Qualifiers::OCL_ExplicitNone:
5114 return true;
5116 case Qualifiers::OCL_Strong:
5117 case Qualifiers::OCL_Weak:
5118 case Qualifiers::OCL_Autoreleasing:
5119 return false;
5123 return T->isScalarType();
5124 case UTT_IsCompound:
5125 return T->isCompoundType();
5126 case UTT_IsMemberPointer:
5127 return T->isMemberPointerType();
5129 // Type trait expressions which correspond to the type property predicates
5130 // in C++0x [meta.unary.prop].
5131 case UTT_IsConst:
5132 return T.isConstQualified();
5133 case UTT_IsVolatile:
5134 return T.isVolatileQualified();
5135 case UTT_IsTrivial:
5136 return T.isTrivialType(C);
5137 case UTT_IsTriviallyCopyable:
5138 return T.isTriviallyCopyableType(C);
5139 case UTT_IsStandardLayout:
5140 return T->isStandardLayoutType();
5141 case UTT_IsPOD:
5142 return T.isPODType(C);
5143 case UTT_IsLiteral:
5144 return T->isLiteralType(C);
5145 case UTT_IsEmpty:
5146 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5147 return !RD->isUnion() && RD->isEmpty();
5148 return false;
5149 case UTT_IsPolymorphic:
5150 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5151 return !RD->isUnion() && RD->isPolymorphic();
5152 return false;
5153 case UTT_IsAbstract:
5154 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5155 return !RD->isUnion() && RD->isAbstract();
5156 return false;
5157 case UTT_IsAggregate:
5158 // Report vector extensions and complex types as aggregates because they
5159 // support aggregate initialization. GCC mirrors this behavior for vectors
5160 // but not _Complex.
5161 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5162 T->isAnyComplexType();
5163 // __is_interface_class only returns true when CL is invoked in /CLR mode and
5164 // even then only when it is used with the 'interface struct ...' syntax
5165 // Clang doesn't support /CLR which makes this type trait moot.
5166 case UTT_IsInterfaceClass:
5167 return false;
5168 case UTT_IsFinal:
5169 case UTT_IsSealed:
5170 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5171 return RD->hasAttr<FinalAttr>();
5172 return false;
5173 case UTT_IsSigned:
5174 // Enum types should always return false.
5175 // Floating points should always return true.
5176 return T->isFloatingType() ||
5177 (T->isSignedIntegerType() && !T->isEnumeralType());
5178 case UTT_IsUnsigned:
5179 // Enum types should always return false.
5180 return T->isUnsignedIntegerType() && !T->isEnumeralType();
5182 // Type trait expressions which query classes regarding their construction,
5183 // destruction, and copying. Rather than being based directly on the
5184 // related type predicates in the standard, they are specified by both
5185 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5186 // specifications.
5188 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5189 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5191 // Note that these builtins do not behave as documented in g++: if a class
5192 // has both a trivial and a non-trivial special member of a particular kind,
5193 // they return false! For now, we emulate this behavior.
5194 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5195 // does not correctly compute triviality in the presence of multiple special
5196 // members of the same kind. Revisit this once the g++ bug is fixed.
5197 case UTT_HasTrivialDefaultConstructor:
5198 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5199 // If __is_pod (type) is true then the trait is true, else if type is
5200 // a cv class or union type (or array thereof) with a trivial default
5201 // constructor ([class.ctor]) then the trait is true, else it is false.
5202 if (T.isPODType(C))
5203 return true;
5204 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5205 return RD->hasTrivialDefaultConstructor() &&
5206 !RD->hasNonTrivialDefaultConstructor();
5207 return false;
5208 case UTT_HasTrivialMoveConstructor:
5209 // This trait is implemented by MSVC 2012 and needed to parse the
5210 // standard library headers. Specifically this is used as the logic
5211 // behind std::is_trivially_move_constructible (20.9.4.3).
5212 if (T.isPODType(C))
5213 return true;
5214 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5215 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5216 return false;
5217 case UTT_HasTrivialCopy:
5218 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5219 // If __is_pod (type) is true or type is a reference type then
5220 // the trait is true, else if type is a cv class or union type
5221 // with a trivial copy constructor ([class.copy]) then the trait
5222 // is true, else it is false.
5223 if (T.isPODType(C) || T->isReferenceType())
5224 return true;
5225 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5226 return RD->hasTrivialCopyConstructor() &&
5227 !RD->hasNonTrivialCopyConstructor();
5228 return false;
5229 case UTT_HasTrivialMoveAssign:
5230 // This trait is implemented by MSVC 2012 and needed to parse the
5231 // standard library headers. Specifically it is used as the logic
5232 // behind std::is_trivially_move_assignable (20.9.4.3)
5233 if (T.isPODType(C))
5234 return true;
5235 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5236 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5237 return false;
5238 case UTT_HasTrivialAssign:
5239 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5240 // If type is const qualified or is a reference type then the
5241 // trait is false. Otherwise if __is_pod (type) is true then the
5242 // trait is true, else if type is a cv class or union type with
5243 // a trivial copy assignment ([class.copy]) then the trait is
5244 // true, else it is false.
5245 // Note: the const and reference restrictions are interesting,
5246 // given that const and reference members don't prevent a class
5247 // from having a trivial copy assignment operator (but do cause
5248 // errors if the copy assignment operator is actually used, q.v.
5249 // [class.copy]p12).
5251 if (T.isConstQualified())
5252 return false;
5253 if (T.isPODType(C))
5254 return true;
5255 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5256 return RD->hasTrivialCopyAssignment() &&
5257 !RD->hasNonTrivialCopyAssignment();
5258 return false;
5259 case UTT_IsDestructible:
5260 case UTT_IsTriviallyDestructible:
5261 case UTT_IsNothrowDestructible:
5262 // C++14 [meta.unary.prop]:
5263 // For reference types, is_destructible<T>::value is true.
5264 if (T->isReferenceType())
5265 return true;
5267 // Objective-C++ ARC: autorelease types don't require destruction.
5268 if (T->isObjCLifetimeType() &&
5269 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5270 return true;
5272 // C++14 [meta.unary.prop]:
5273 // For incomplete types and function types, is_destructible<T>::value is
5274 // false.
5275 if (T->isIncompleteType() || T->isFunctionType())
5276 return false;
5278 // A type that requires destruction (via a non-trivial destructor or ARC
5279 // lifetime semantics) is not trivially-destructible.
5280 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5281 return false;
5283 // C++14 [meta.unary.prop]:
5284 // For object types and given U equal to remove_all_extents_t<T>, if the
5285 // expression std::declval<U&>().~U() is well-formed when treated as an
5286 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5287 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5288 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5289 if (!Destructor)
5290 return false;
5291 // C++14 [dcl.fct.def.delete]p2:
5292 // A program that refers to a deleted function implicitly or
5293 // explicitly, other than to declare it, is ill-formed.
5294 if (Destructor->isDeleted())
5295 return false;
5296 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5297 return false;
5298 if (UTT == UTT_IsNothrowDestructible) {
5299 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5300 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5301 if (!CPT || !CPT->isNothrow())
5302 return false;
5305 return true;
5307 case UTT_HasTrivialDestructor:
5308 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5309 // If __is_pod (type) is true or type is a reference type
5310 // then the trait is true, else if type is a cv class or union
5311 // type (or array thereof) with a trivial destructor
5312 // ([class.dtor]) then the trait is true, else it is
5313 // false.
5314 if (T.isPODType(C) || T->isReferenceType())
5315 return true;
5317 // Objective-C++ ARC: autorelease types don't require destruction.
5318 if (T->isObjCLifetimeType() &&
5319 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5320 return true;
5322 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5323 return RD->hasTrivialDestructor();
5324 return false;
5325 // TODO: Propagate nothrowness for implicitly declared special members.
5326 case UTT_HasNothrowAssign:
5327 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5328 // If type is const qualified or is a reference type then the
5329 // trait is false. Otherwise if __has_trivial_assign (type)
5330 // is true then the trait is true, else if type is a cv class
5331 // or union type with copy assignment operators that are known
5332 // not to throw an exception then the trait is true, else it is
5333 // false.
5334 if (C.getBaseElementType(T).isConstQualified())
5335 return false;
5336 if (T->isReferenceType())
5337 return false;
5338 if (T.isPODType(C) || T->isObjCLifetimeType())
5339 return true;
5341 if (const RecordType *RT = T->getAs<RecordType>())
5342 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5343 &CXXRecordDecl::hasTrivialCopyAssignment,
5344 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5345 &CXXMethodDecl::isCopyAssignmentOperator);
5346 return false;
5347 case UTT_HasNothrowMoveAssign:
5348 // This trait is implemented by MSVC 2012 and needed to parse the
5349 // standard library headers. Specifically this is used as the logic
5350 // behind std::is_nothrow_move_assignable (20.9.4.3).
5351 if (T.isPODType(C))
5352 return true;
5354 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5355 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5356 &CXXRecordDecl::hasTrivialMoveAssignment,
5357 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5358 &CXXMethodDecl::isMoveAssignmentOperator);
5359 return false;
5360 case UTT_HasNothrowCopy:
5361 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5362 // If __has_trivial_copy (type) is true then the trait is true, else
5363 // if type is a cv class or union type with copy constructors that are
5364 // known not to throw an exception then the trait is true, else it is
5365 // false.
5366 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5367 return true;
5368 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5369 if (RD->hasTrivialCopyConstructor() &&
5370 !RD->hasNonTrivialCopyConstructor())
5371 return true;
5373 bool FoundConstructor = false;
5374 unsigned FoundTQs;
5375 for (const auto *ND : Self.LookupConstructors(RD)) {
5376 // A template constructor is never a copy constructor.
5377 // FIXME: However, it may actually be selected at the actual overload
5378 // resolution point.
5379 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5380 continue;
5381 // UsingDecl itself is not a constructor
5382 if (isa<UsingDecl>(ND))
5383 continue;
5384 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5385 if (Constructor->isCopyConstructor(FoundTQs)) {
5386 FoundConstructor = true;
5387 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5388 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5389 if (!CPT)
5390 return false;
5391 // TODO: check whether evaluating default arguments can throw.
5392 // For now, we'll be conservative and assume that they can throw.
5393 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5394 return false;
5398 return FoundConstructor;
5400 return false;
5401 case UTT_HasNothrowConstructor:
5402 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5403 // If __has_trivial_constructor (type) is true then the trait is
5404 // true, else if type is a cv class or union type (or array
5405 // thereof) with a default constructor that is known not to
5406 // throw an exception then the trait is true, else it is false.
5407 if (T.isPODType(C) || T->isObjCLifetimeType())
5408 return true;
5409 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5410 if (RD->hasTrivialDefaultConstructor() &&
5411 !RD->hasNonTrivialDefaultConstructor())
5412 return true;
5414 bool FoundConstructor = false;
5415 for (const auto *ND : Self.LookupConstructors(RD)) {
5416 // FIXME: In C++0x, a constructor template can be a default constructor.
5417 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5418 continue;
5419 // UsingDecl itself is not a constructor
5420 if (isa<UsingDecl>(ND))
5421 continue;
5422 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5423 if (Constructor->isDefaultConstructor()) {
5424 FoundConstructor = true;
5425 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5426 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5427 if (!CPT)
5428 return false;
5429 // FIXME: check whether evaluating default arguments can throw.
5430 // For now, we'll be conservative and assume that they can throw.
5431 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5432 return false;
5435 return FoundConstructor;
5437 return false;
5438 case UTT_HasVirtualDestructor:
5439 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5440 // If type is a class type with a virtual destructor ([class.dtor])
5441 // then the trait is true, else it is false.
5442 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5443 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5444 return Destructor->isVirtual();
5445 return false;
5447 // These type trait expressions are modeled on the specifications for the
5448 // Embarcadero C++0x type trait functions:
5449 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5450 case UTT_IsCompleteType:
5451 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5452 // Returns True if and only if T is a complete type at the point of the
5453 // function call.
5454 return !T->isIncompleteType();
5455 case UTT_HasUniqueObjectRepresentations:
5456 return C.hasUniqueObjectRepresentations(T);
5457 case UTT_IsTriviallyRelocatable:
5458 return T.isTriviallyRelocatableType(C);
5459 case UTT_IsReferenceable:
5460 return T.isReferenceable();
5461 case UTT_CanPassInRegs:
5462 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers())
5463 return RD->canPassInRegisters();
5464 Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T;
5465 return false;
5466 case UTT_IsTriviallyEqualityComparable:
5467 return T.isTriviallyEqualityComparableType(C);
5471 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5472 QualType RhsT, SourceLocation KeyLoc);
5474 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
5475 SourceLocation KWLoc,
5476 ArrayRef<TypeSourceInfo *> Args,
5477 SourceLocation RParenLoc,
5478 bool IsDependent) {
5479 if (IsDependent)
5480 return false;
5482 if (Kind <= UTT_Last)
5483 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5485 // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary
5486 // alongside the IsConstructible traits to avoid duplication.
5487 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary && Kind != BTT_ReferenceConstructsFromTemporary)
5488 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5489 Args[1]->getType(), RParenLoc);
5491 switch (Kind) {
5492 case clang::BTT_ReferenceBindsToTemporary:
5493 case clang::BTT_ReferenceConstructsFromTemporary:
5494 case clang::TT_IsConstructible:
5495 case clang::TT_IsNothrowConstructible:
5496 case clang::TT_IsTriviallyConstructible: {
5497 // C++11 [meta.unary.prop]:
5498 // is_trivially_constructible is defined as:
5500 // is_constructible<T, Args...>::value is true and the variable
5501 // definition for is_constructible, as defined below, is known to call
5502 // no operation that is not trivial.
5504 // The predicate condition for a template specialization
5505 // is_constructible<T, Args...> shall be satisfied if and only if the
5506 // following variable definition would be well-formed for some invented
5507 // variable t:
5509 // T t(create<Args>()...);
5510 assert(!Args.empty());
5512 // Precondition: T and all types in the parameter pack Args shall be
5513 // complete types, (possibly cv-qualified) void, or arrays of
5514 // unknown bound.
5515 for (const auto *TSI : Args) {
5516 QualType ArgTy = TSI->getType();
5517 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5518 continue;
5520 if (S.RequireCompleteType(KWLoc, ArgTy,
5521 diag::err_incomplete_type_used_in_type_trait_expr))
5522 return false;
5525 // Make sure the first argument is not incomplete nor a function type.
5526 QualType T = Args[0]->getType();
5527 if (T->isIncompleteType() || T->isFunctionType())
5528 return false;
5530 // Make sure the first argument is not an abstract type.
5531 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5532 if (RD && RD->isAbstract())
5533 return false;
5535 llvm::BumpPtrAllocator OpaqueExprAllocator;
5536 SmallVector<Expr *, 2> ArgExprs;
5537 ArgExprs.reserve(Args.size() - 1);
5538 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5539 QualType ArgTy = Args[I]->getType();
5540 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5541 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5542 ArgExprs.push_back(
5543 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5544 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5545 ArgTy.getNonLValueExprType(S.Context),
5546 Expr::getValueKindForType(ArgTy)));
5549 // Perform the initialization in an unevaluated context within a SFINAE
5550 // trap at translation unit scope.
5551 EnterExpressionEvaluationContext Unevaluated(
5552 S, Sema::ExpressionEvaluationContext::Unevaluated);
5553 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5554 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5555 InitializedEntity To(
5556 InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5557 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5558 RParenLoc));
5559 InitializationSequence Init(S, To, InitKind, ArgExprs);
5560 if (Init.Failed())
5561 return false;
5563 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5564 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5565 return false;
5567 if (Kind == clang::TT_IsConstructible)
5568 return true;
5570 if (Kind == clang::BTT_ReferenceBindsToTemporary || Kind == clang::BTT_ReferenceConstructsFromTemporary) {
5571 if (!T->isReferenceType())
5572 return false;
5574 if (!Init.isDirectReferenceBinding())
5575 return true;
5577 if (Kind == clang::BTT_ReferenceBindsToTemporary)
5578 return false;
5580 QualType U = Args[1]->getType();
5581 if (U->isReferenceType())
5582 return false;
5584 QualType TPtr = S.Context.getPointerType(S.BuiltinRemoveReference(T, UnaryTransformType::RemoveCVRef, {}));
5585 QualType UPtr = S.Context.getPointerType(S.BuiltinRemoveReference(U, UnaryTransformType::RemoveCVRef, {}));
5586 return EvaluateBinaryTypeTrait(S, TypeTrait::BTT_IsConvertibleTo, UPtr, TPtr, RParenLoc);
5589 if (Kind == clang::TT_IsNothrowConstructible)
5590 return S.canThrow(Result.get()) == CT_Cannot;
5592 if (Kind == clang::TT_IsTriviallyConstructible) {
5593 // Under Objective-C ARC and Weak, if the destination has non-trivial
5594 // Objective-C lifetime, this is a non-trivial construction.
5595 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5596 return false;
5598 // The initialization succeeded; now make sure there are no non-trivial
5599 // calls.
5600 return !Result.get()->hasNonTrivialCall(S.Context);
5603 llvm_unreachable("unhandled type trait");
5604 return false;
5606 default: llvm_unreachable("not a TT");
5609 return false;
5612 namespace {
5613 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5614 SourceLocation KWLoc) {
5615 TypeTrait Replacement;
5616 switch (Kind) {
5617 case UTT_HasNothrowAssign:
5618 case UTT_HasNothrowMoveAssign:
5619 Replacement = BTT_IsNothrowAssignable;
5620 break;
5621 case UTT_HasNothrowCopy:
5622 case UTT_HasNothrowConstructor:
5623 Replacement = TT_IsNothrowConstructible;
5624 break;
5625 case UTT_HasTrivialAssign:
5626 case UTT_HasTrivialMoveAssign:
5627 Replacement = BTT_IsTriviallyAssignable;
5628 break;
5629 case UTT_HasTrivialCopy:
5630 Replacement = UTT_IsTriviallyCopyable;
5631 break;
5632 case UTT_HasTrivialDefaultConstructor:
5633 case UTT_HasTrivialMoveConstructor:
5634 Replacement = TT_IsTriviallyConstructible;
5635 break;
5636 case UTT_HasTrivialDestructor:
5637 Replacement = UTT_IsTriviallyDestructible;
5638 break;
5639 default:
5640 return;
5642 S.Diag(KWLoc, diag::warn_deprecated_builtin)
5643 << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5647 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5648 if (Arity && N != Arity) {
5649 Diag(Loc, diag::err_type_trait_arity)
5650 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5651 return false;
5654 if (!Arity && N == 0) {
5655 Diag(Loc, diag::err_type_trait_arity)
5656 << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5657 return false;
5659 return true;
5662 enum class TypeTraitReturnType {
5663 Bool,
5666 static TypeTraitReturnType GetReturnType(TypeTrait Kind) {
5667 return TypeTraitReturnType::Bool;
5670 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5671 ArrayRef<TypeSourceInfo *> Args,
5672 SourceLocation RParenLoc) {
5673 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5674 return ExprError();
5676 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5677 *this, Kind, KWLoc, Args[0]->getType()))
5678 return ExprError();
5680 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5682 bool Dependent = false;
5683 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5684 if (Args[I]->getType()->isDependentType()) {
5685 Dependent = true;
5686 break;
5690 switch (GetReturnType(Kind)) {
5691 case TypeTraitReturnType::Bool: {
5692 bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc,
5693 Dependent);
5694 return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(),
5695 KWLoc, Kind, Args, RParenLoc, Result);
5698 llvm_unreachable("unhandled type trait return type");
5701 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5702 ArrayRef<ParsedType> Args,
5703 SourceLocation RParenLoc) {
5704 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5705 ConvertedArgs.reserve(Args.size());
5707 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5708 TypeSourceInfo *TInfo;
5709 QualType T = GetTypeFromParser(Args[I], &TInfo);
5710 if (!TInfo)
5711 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5713 ConvertedArgs.push_back(TInfo);
5716 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5719 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5720 QualType RhsT, SourceLocation KeyLoc) {
5721 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5722 "Cannot evaluate traits of dependent types");
5724 switch(BTT) {
5725 case BTT_IsBaseOf: {
5726 // C++0x [meta.rel]p2
5727 // Base is a base class of Derived without regard to cv-qualifiers or
5728 // Base and Derived are not unions and name the same class type without
5729 // regard to cv-qualifiers.
5731 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5732 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5733 if (!rhsRecord || !lhsRecord) {
5734 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5735 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5736 if (!LHSObjTy || !RHSObjTy)
5737 return false;
5739 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5740 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5741 if (!BaseInterface || !DerivedInterface)
5742 return false;
5744 if (Self.RequireCompleteType(
5745 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5746 return false;
5748 return BaseInterface->isSuperClassOf(DerivedInterface);
5751 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5752 == (lhsRecord == rhsRecord));
5754 // Unions are never base classes, and never have base classes.
5755 // It doesn't matter if they are complete or not. See PR#41843
5756 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5757 return false;
5758 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5759 return false;
5761 if (lhsRecord == rhsRecord)
5762 return true;
5764 // C++0x [meta.rel]p2:
5765 // If Base and Derived are class types and are different types
5766 // (ignoring possible cv-qualifiers) then Derived shall be a
5767 // complete type.
5768 if (Self.RequireCompleteType(KeyLoc, RhsT,
5769 diag::err_incomplete_type_used_in_type_trait_expr))
5770 return false;
5772 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5773 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5775 case BTT_IsSame:
5776 return Self.Context.hasSameType(LhsT, RhsT);
5777 case BTT_TypeCompatible: {
5778 // GCC ignores cv-qualifiers on arrays for this builtin.
5779 Qualifiers LhsQuals, RhsQuals;
5780 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5781 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5782 return Self.Context.typesAreCompatible(Lhs, Rhs);
5784 case BTT_IsConvertible:
5785 case BTT_IsConvertibleTo: {
5786 // C++0x [meta.rel]p4:
5787 // Given the following function prototype:
5789 // template <class T>
5790 // typename add_rvalue_reference<T>::type create();
5792 // the predicate condition for a template specialization
5793 // is_convertible<From, To> shall be satisfied if and only if
5794 // the return expression in the following code would be
5795 // well-formed, including any implicit conversions to the return
5796 // type of the function:
5798 // To test() {
5799 // return create<From>();
5800 // }
5802 // Access checking is performed as if in a context unrelated to To and
5803 // From. Only the validity of the immediate context of the expression
5804 // of the return-statement (including conversions to the return type)
5805 // is considered.
5807 // We model the initialization as a copy-initialization of a temporary
5808 // of the appropriate type, which for this expression is identical to the
5809 // return statement (since NRVO doesn't apply).
5811 // Functions aren't allowed to return function or array types.
5812 if (RhsT->isFunctionType() || RhsT->isArrayType())
5813 return false;
5815 // A return statement in a void function must have void type.
5816 if (RhsT->isVoidType())
5817 return LhsT->isVoidType();
5819 // A function definition requires a complete, non-abstract return type.
5820 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5821 return false;
5823 // Compute the result of add_rvalue_reference.
5824 if (LhsT->isObjectType() || LhsT->isFunctionType())
5825 LhsT = Self.Context.getRValueReferenceType(LhsT);
5827 // Build a fake source and destination for initialization.
5828 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5829 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5830 Expr::getValueKindForType(LhsT));
5831 Expr *FromPtr = &From;
5832 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5833 SourceLocation()));
5835 // Perform the initialization in an unevaluated context within a SFINAE
5836 // trap at translation unit scope.
5837 EnterExpressionEvaluationContext Unevaluated(
5838 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5839 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5840 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5841 InitializationSequence Init(Self, To, Kind, FromPtr);
5842 if (Init.Failed())
5843 return false;
5845 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5846 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5849 case BTT_IsAssignable:
5850 case BTT_IsNothrowAssignable:
5851 case BTT_IsTriviallyAssignable: {
5852 // C++11 [meta.unary.prop]p3:
5853 // is_trivially_assignable is defined as:
5854 // is_assignable<T, U>::value is true and the assignment, as defined by
5855 // is_assignable, is known to call no operation that is not trivial
5857 // is_assignable is defined as:
5858 // The expression declval<T>() = declval<U>() is well-formed when
5859 // treated as an unevaluated operand (Clause 5).
5861 // For both, T and U shall be complete types, (possibly cv-qualified)
5862 // void, or arrays of unknown bound.
5863 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5864 Self.RequireCompleteType(KeyLoc, LhsT,
5865 diag::err_incomplete_type_used_in_type_trait_expr))
5866 return false;
5867 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5868 Self.RequireCompleteType(KeyLoc, RhsT,
5869 diag::err_incomplete_type_used_in_type_trait_expr))
5870 return false;
5872 // cv void is never assignable.
5873 if (LhsT->isVoidType() || RhsT->isVoidType())
5874 return false;
5876 // Build expressions that emulate the effect of declval<T>() and
5877 // declval<U>().
5878 if (LhsT->isObjectType() || LhsT->isFunctionType())
5879 LhsT = Self.Context.getRValueReferenceType(LhsT);
5880 if (RhsT->isObjectType() || RhsT->isFunctionType())
5881 RhsT = Self.Context.getRValueReferenceType(RhsT);
5882 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5883 Expr::getValueKindForType(LhsT));
5884 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5885 Expr::getValueKindForType(RhsT));
5887 // Attempt the assignment in an unevaluated context within a SFINAE
5888 // trap at translation unit scope.
5889 EnterExpressionEvaluationContext Unevaluated(
5890 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5891 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5892 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5893 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5894 &Rhs);
5895 if (Result.isInvalid())
5896 return false;
5898 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5899 Self.CheckUnusedVolatileAssignment(Result.get());
5901 if (SFINAE.hasErrorOccurred())
5902 return false;
5904 if (BTT == BTT_IsAssignable)
5905 return true;
5907 if (BTT == BTT_IsNothrowAssignable)
5908 return Self.canThrow(Result.get()) == CT_Cannot;
5910 if (BTT == BTT_IsTriviallyAssignable) {
5911 // Under Objective-C ARC and Weak, if the destination has non-trivial
5912 // Objective-C lifetime, this is a non-trivial assignment.
5913 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5914 return false;
5916 return !Result.get()->hasNonTrivialCall(Self.Context);
5919 llvm_unreachable("unhandled type trait");
5920 return false;
5922 default: llvm_unreachable("not a BTT");
5924 llvm_unreachable("Unknown type trait or not implemented");
5927 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5928 SourceLocation KWLoc,
5929 ParsedType Ty,
5930 Expr* DimExpr,
5931 SourceLocation RParen) {
5932 TypeSourceInfo *TSInfo;
5933 QualType T = GetTypeFromParser(Ty, &TSInfo);
5934 if (!TSInfo)
5935 TSInfo = Context.getTrivialTypeSourceInfo(T);
5937 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5940 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5941 QualType T, Expr *DimExpr,
5942 SourceLocation KeyLoc) {
5943 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5945 switch(ATT) {
5946 case ATT_ArrayRank:
5947 if (T->isArrayType()) {
5948 unsigned Dim = 0;
5949 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5950 ++Dim;
5951 T = AT->getElementType();
5953 return Dim;
5955 return 0;
5957 case ATT_ArrayExtent: {
5958 llvm::APSInt Value;
5959 uint64_t Dim;
5960 if (Self.VerifyIntegerConstantExpression(
5961 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5962 .isInvalid())
5963 return 0;
5964 if (Value.isSigned() && Value.isNegative()) {
5965 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5966 << DimExpr->getSourceRange();
5967 return 0;
5969 Dim = Value.getLimitedValue();
5971 if (T->isArrayType()) {
5972 unsigned D = 0;
5973 bool Matched = false;
5974 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5975 if (Dim == D) {
5976 Matched = true;
5977 break;
5979 ++D;
5980 T = AT->getElementType();
5983 if (Matched && T->isArrayType()) {
5984 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5985 return CAT->getSize().getLimitedValue();
5988 return 0;
5991 llvm_unreachable("Unknown type trait or not implemented");
5994 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5995 SourceLocation KWLoc,
5996 TypeSourceInfo *TSInfo,
5997 Expr* DimExpr,
5998 SourceLocation RParen) {
5999 QualType T = TSInfo->getType();
6001 // FIXME: This should likely be tracked as an APInt to remove any host
6002 // assumptions about the width of size_t on the target.
6003 uint64_t Value = 0;
6004 if (!T->isDependentType())
6005 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
6007 // While the specification for these traits from the Embarcadero C++
6008 // compiler's documentation says the return type is 'unsigned int', Clang
6009 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
6010 // compiler, there is no difference. On several other platforms this is an
6011 // important distinction.
6012 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
6013 RParen, Context.getSizeType());
6016 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
6017 SourceLocation KWLoc,
6018 Expr *Queried,
6019 SourceLocation RParen) {
6020 // If error parsing the expression, ignore.
6021 if (!Queried)
6022 return ExprError();
6024 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
6026 return Result;
6029 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
6030 switch (ET) {
6031 case ET_IsLValueExpr: return E->isLValue();
6032 case ET_IsRValueExpr:
6033 return E->isPRValue();
6035 llvm_unreachable("Expression trait not covered by switch");
6038 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
6039 SourceLocation KWLoc,
6040 Expr *Queried,
6041 SourceLocation RParen) {
6042 if (Queried->isTypeDependent()) {
6043 // Delay type-checking for type-dependent expressions.
6044 } else if (Queried->hasPlaceholderType()) {
6045 ExprResult PE = CheckPlaceholderExpr(Queried);
6046 if (PE.isInvalid()) return ExprError();
6047 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
6050 bool Value = EvaluateExpressionTrait(ET, Queried);
6052 return new (Context)
6053 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
6056 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
6057 ExprValueKind &VK,
6058 SourceLocation Loc,
6059 bool isIndirect) {
6060 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
6061 "placeholders should have been weeded out by now");
6063 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
6064 // temporary materialization conversion otherwise.
6065 if (isIndirect)
6066 LHS = DefaultLvalueConversion(LHS.get());
6067 else if (LHS.get()->isPRValue())
6068 LHS = TemporaryMaterializationConversion(LHS.get());
6069 if (LHS.isInvalid())
6070 return QualType();
6072 // The RHS always undergoes lvalue conversions.
6073 RHS = DefaultLvalueConversion(RHS.get());
6074 if (RHS.isInvalid()) return QualType();
6076 const char *OpSpelling = isIndirect ? "->*" : ".*";
6077 // C++ 5.5p2
6078 // The binary operator .* [p3: ->*] binds its second operand, which shall
6079 // be of type "pointer to member of T" (where T is a completely-defined
6080 // class type) [...]
6081 QualType RHSType = RHS.get()->getType();
6082 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
6083 if (!MemPtr) {
6084 Diag(Loc, diag::err_bad_memptr_rhs)
6085 << OpSpelling << RHSType << RHS.get()->getSourceRange();
6086 return QualType();
6089 QualType Class(MemPtr->getClass(), 0);
6091 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6092 // member pointer points must be completely-defined. However, there is no
6093 // reason for this semantic distinction, and the rule is not enforced by
6094 // other compilers. Therefore, we do not check this property, as it is
6095 // likely to be considered a defect.
6097 // C++ 5.5p2
6098 // [...] to its first operand, which shall be of class T or of a class of
6099 // which T is an unambiguous and accessible base class. [p3: a pointer to
6100 // such a class]
6101 QualType LHSType = LHS.get()->getType();
6102 if (isIndirect) {
6103 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
6104 LHSType = Ptr->getPointeeType();
6105 else {
6106 Diag(Loc, diag::err_bad_memptr_lhs)
6107 << OpSpelling << 1 << LHSType
6108 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
6109 return QualType();
6113 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
6114 // If we want to check the hierarchy, we need a complete type.
6115 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6116 OpSpelling, (int)isIndirect)) {
6117 return QualType();
6120 if (!IsDerivedFrom(Loc, LHSType, Class)) {
6121 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6122 << (int)isIndirect << LHS.get()->getType();
6123 return QualType();
6126 CXXCastPath BasePath;
6127 if (CheckDerivedToBaseConversion(
6128 LHSType, Class, Loc,
6129 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6130 &BasePath))
6131 return QualType();
6133 // Cast LHS to type of use.
6134 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6135 if (isIndirect)
6136 UseType = Context.getPointerType(UseType);
6137 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6138 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6139 &BasePath);
6142 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6143 // Diagnose use of pointer-to-member type which when used as
6144 // the functional cast in a pointer-to-member expression.
6145 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6146 return QualType();
6149 // C++ 5.5p2
6150 // The result is an object or a function of the type specified by the
6151 // second operand.
6152 // The cv qualifiers are the union of those in the pointer and the left side,
6153 // in accordance with 5.5p5 and 5.2.5.
6154 QualType Result = MemPtr->getPointeeType();
6155 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6157 // C++0x [expr.mptr.oper]p6:
6158 // In a .* expression whose object expression is an rvalue, the program is
6159 // ill-formed if the second operand is a pointer to member function with
6160 // ref-qualifier &. In a ->* expression or in a .* expression whose object
6161 // expression is an lvalue, the program is ill-formed if the second operand
6162 // is a pointer to member function with ref-qualifier &&.
6163 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6164 switch (Proto->getRefQualifier()) {
6165 case RQ_None:
6166 // Do nothing
6167 break;
6169 case RQ_LValue:
6170 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6171 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6172 // is (exactly) 'const'.
6173 if (Proto->isConst() && !Proto->isVolatile())
6174 Diag(Loc, getLangOpts().CPlusPlus20
6175 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6176 : diag::ext_pointer_to_const_ref_member_on_rvalue);
6177 else
6178 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6179 << RHSType << 1 << LHS.get()->getSourceRange();
6181 break;
6183 case RQ_RValue:
6184 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6185 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6186 << RHSType << 0 << LHS.get()->getSourceRange();
6187 break;
6191 // C++ [expr.mptr.oper]p6:
6192 // The result of a .* expression whose second operand is a pointer
6193 // to a data member is of the same value category as its
6194 // first operand. The result of a .* expression whose second
6195 // operand is a pointer to a member function is a prvalue. The
6196 // result of an ->* expression is an lvalue if its second operand
6197 // is a pointer to data member and a prvalue otherwise.
6198 if (Result->isFunctionType()) {
6199 VK = VK_PRValue;
6200 return Context.BoundMemberTy;
6201 } else if (isIndirect) {
6202 VK = VK_LValue;
6203 } else {
6204 VK = LHS.get()->getValueKind();
6207 return Result;
6210 /// Try to convert a type to another according to C++11 5.16p3.
6212 /// This is part of the parameter validation for the ? operator. If either
6213 /// value operand is a class type, the two operands are attempted to be
6214 /// converted to each other. This function does the conversion in one direction.
6215 /// It returns true if the program is ill-formed and has already been diagnosed
6216 /// as such.
6217 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6218 SourceLocation QuestionLoc,
6219 bool &HaveConversion,
6220 QualType &ToType) {
6221 HaveConversion = false;
6222 ToType = To->getType();
6224 InitializationKind Kind =
6225 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6226 // C++11 5.16p3
6227 // The process for determining whether an operand expression E1 of type T1
6228 // can be converted to match an operand expression E2 of type T2 is defined
6229 // as follows:
6230 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6231 // implicitly converted to type "lvalue reference to T2", subject to the
6232 // constraint that in the conversion the reference must bind directly to
6233 // an lvalue.
6234 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6235 // implicitly converted to the type "rvalue reference to R2", subject to
6236 // the constraint that the reference must bind directly.
6237 if (To->isGLValue()) {
6238 QualType T = Self.Context.getReferenceQualifiedType(To);
6239 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6241 InitializationSequence InitSeq(Self, Entity, Kind, From);
6242 if (InitSeq.isDirectReferenceBinding()) {
6243 ToType = T;
6244 HaveConversion = true;
6245 return false;
6248 if (InitSeq.isAmbiguous())
6249 return InitSeq.Diagnose(Self, Entity, Kind, From);
6252 // -- If E2 is an rvalue, or if the conversion above cannot be done:
6253 // -- if E1 and E2 have class type, and the underlying class types are
6254 // the same or one is a base class of the other:
6255 QualType FTy = From->getType();
6256 QualType TTy = To->getType();
6257 const RecordType *FRec = FTy->getAs<RecordType>();
6258 const RecordType *TRec = TTy->getAs<RecordType>();
6259 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6260 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6261 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6262 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6263 // E1 can be converted to match E2 if the class of T2 is the
6264 // same type as, or a base class of, the class of T1, and
6265 // [cv2 > cv1].
6266 if (FRec == TRec || FDerivedFromT) {
6267 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
6268 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6269 InitializationSequence InitSeq(Self, Entity, Kind, From);
6270 if (InitSeq) {
6271 HaveConversion = true;
6272 return false;
6275 if (InitSeq.isAmbiguous())
6276 return InitSeq.Diagnose(Self, Entity, Kind, From);
6280 return false;
6283 // -- Otherwise: E1 can be converted to match E2 if E1 can be
6284 // implicitly converted to the type that expression E2 would have
6285 // if E2 were converted to an rvalue (or the type it has, if E2 is
6286 // an rvalue).
6288 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6289 // to the array-to-pointer or function-to-pointer conversions.
6290 TTy = TTy.getNonLValueExprType(Self.Context);
6292 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6293 InitializationSequence InitSeq(Self, Entity, Kind, From);
6294 HaveConversion = !InitSeq.Failed();
6295 ToType = TTy;
6296 if (InitSeq.isAmbiguous())
6297 return InitSeq.Diagnose(Self, Entity, Kind, From);
6299 return false;
6302 /// Try to find a common type for two according to C++0x 5.16p5.
6304 /// This is part of the parameter validation for the ? operator. If either
6305 /// value operand is a class type, overload resolution is used to find a
6306 /// conversion to a common type.
6307 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6308 SourceLocation QuestionLoc) {
6309 Expr *Args[2] = { LHS.get(), RHS.get() };
6310 OverloadCandidateSet CandidateSet(QuestionLoc,
6311 OverloadCandidateSet::CSK_Operator);
6312 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6313 CandidateSet);
6315 OverloadCandidateSet::iterator Best;
6316 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6317 case OR_Success: {
6318 // We found a match. Perform the conversions on the arguments and move on.
6319 ExprResult LHSRes = Self.PerformImplicitConversion(
6320 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6321 Sema::AA_Converting);
6322 if (LHSRes.isInvalid())
6323 break;
6324 LHS = LHSRes;
6326 ExprResult RHSRes = Self.PerformImplicitConversion(
6327 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6328 Sema::AA_Converting);
6329 if (RHSRes.isInvalid())
6330 break;
6331 RHS = RHSRes;
6332 if (Best->Function)
6333 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6334 return false;
6337 case OR_No_Viable_Function:
6339 // Emit a better diagnostic if one of the expressions is a null pointer
6340 // constant and the other is a pointer type. In this case, the user most
6341 // likely forgot to take the address of the other expression.
6342 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6343 return true;
6345 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6346 << LHS.get()->getType() << RHS.get()->getType()
6347 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6348 return true;
6350 case OR_Ambiguous:
6351 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6352 << LHS.get()->getType() << RHS.get()->getType()
6353 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6354 // FIXME: Print the possible common types by printing the return types of
6355 // the viable candidates.
6356 break;
6358 case OR_Deleted:
6359 llvm_unreachable("Conditional operator has only built-in overloads");
6361 return true;
6364 /// Perform an "extended" implicit conversion as returned by
6365 /// TryClassUnification.
6366 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6367 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6368 InitializationKind Kind =
6369 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6370 Expr *Arg = E.get();
6371 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6372 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6373 if (Result.isInvalid())
6374 return true;
6376 E = Result;
6377 return false;
6380 // Check the condition operand of ?: to see if it is valid for the GCC
6381 // extension.
6382 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6383 QualType CondTy) {
6384 if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6385 return false;
6386 const QualType EltTy =
6387 cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6388 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6389 return EltTy->isIntegralType(Ctx);
6392 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6393 QualType CondTy) {
6394 if (!CondTy->isSveVLSBuiltinType())
6395 return false;
6396 const QualType EltTy =
6397 cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6398 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6399 return EltTy->isIntegralType(Ctx);
6402 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6403 ExprResult &RHS,
6404 SourceLocation QuestionLoc) {
6405 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6406 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6408 QualType CondType = Cond.get()->getType();
6409 const auto *CondVT = CondType->castAs<VectorType>();
6410 QualType CondElementTy = CondVT->getElementType();
6411 unsigned CondElementCount = CondVT->getNumElements();
6412 QualType LHSType = LHS.get()->getType();
6413 const auto *LHSVT = LHSType->getAs<VectorType>();
6414 QualType RHSType = RHS.get()->getType();
6415 const auto *RHSVT = RHSType->getAs<VectorType>();
6417 QualType ResultType;
6420 if (LHSVT && RHSVT) {
6421 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6422 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6423 << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6424 return {};
6427 // If both are vector types, they must be the same type.
6428 if (!Context.hasSameType(LHSType, RHSType)) {
6429 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6430 << LHSType << RHSType;
6431 return {};
6433 ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6434 } else if (LHSVT || RHSVT) {
6435 ResultType = CheckVectorOperands(
6436 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6437 /*AllowBoolConversions*/ false,
6438 /*AllowBoolOperation*/ true,
6439 /*ReportInvalid*/ true);
6440 if (ResultType.isNull())
6441 return {};
6442 } else {
6443 // Both are scalar.
6444 LHSType = LHSType.getUnqualifiedType();
6445 RHSType = RHSType.getUnqualifiedType();
6446 QualType ResultElementTy =
6447 Context.hasSameType(LHSType, RHSType)
6448 ? Context.getCommonSugaredType(LHSType, RHSType)
6449 : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6450 ACK_Conditional);
6452 if (ResultElementTy->isEnumeralType()) {
6453 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6454 << ResultElementTy;
6455 return {};
6457 if (CondType->isExtVectorType())
6458 ResultType =
6459 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6460 else
6461 ResultType = Context.getVectorType(
6462 ResultElementTy, CondVT->getNumElements(), VectorKind::Generic);
6464 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6465 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6468 assert(!ResultType.isNull() && ResultType->isVectorType() &&
6469 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6470 "Result should have been a vector type");
6471 auto *ResultVectorTy = ResultType->castAs<VectorType>();
6472 QualType ResultElementTy = ResultVectorTy->getElementType();
6473 unsigned ResultElementCount = ResultVectorTy->getNumElements();
6475 if (ResultElementCount != CondElementCount) {
6476 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6477 << ResultType;
6478 return {};
6481 if (Context.getTypeSize(ResultElementTy) !=
6482 Context.getTypeSize(CondElementTy)) {
6483 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6484 << ResultType;
6485 return {};
6488 return ResultType;
6491 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6492 ExprResult &LHS,
6493 ExprResult &RHS,
6494 SourceLocation QuestionLoc) {
6495 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6496 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6498 QualType CondType = Cond.get()->getType();
6499 const auto *CondBT = CondType->castAs<BuiltinType>();
6500 QualType CondElementTy = CondBT->getSveEltType(Context);
6501 llvm::ElementCount CondElementCount =
6502 Context.getBuiltinVectorTypeInfo(CondBT).EC;
6504 QualType LHSType = LHS.get()->getType();
6505 const auto *LHSBT =
6506 LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6507 QualType RHSType = RHS.get()->getType();
6508 const auto *RHSBT =
6509 RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6511 QualType ResultType;
6513 if (LHSBT && RHSBT) {
6514 // If both are sizeless vector types, they must be the same type.
6515 if (!Context.hasSameType(LHSType, RHSType)) {
6516 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6517 << LHSType << RHSType;
6518 return QualType();
6520 ResultType = LHSType;
6521 } else if (LHSBT || RHSBT) {
6522 ResultType = CheckSizelessVectorOperands(
6523 LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6524 if (ResultType.isNull())
6525 return QualType();
6526 } else {
6527 // Both are scalar so splat
6528 QualType ResultElementTy;
6529 LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6530 RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6532 if (Context.hasSameType(LHSType, RHSType))
6533 ResultElementTy = LHSType;
6534 else
6535 ResultElementTy =
6536 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6538 if (ResultElementTy->isEnumeralType()) {
6539 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6540 << ResultElementTy;
6541 return QualType();
6544 ResultType = Context.getScalableVectorType(
6545 ResultElementTy, CondElementCount.getKnownMinValue());
6547 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6548 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6551 assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() &&
6552 "Result should have been a vector type");
6553 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6554 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6555 llvm::ElementCount ResultElementCount =
6556 Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6558 if (ResultElementCount != CondElementCount) {
6559 Diag(QuestionLoc, diag::err_conditional_vector_size)
6560 << CondType << ResultType;
6561 return QualType();
6564 if (Context.getTypeSize(ResultElementTy) !=
6565 Context.getTypeSize(CondElementTy)) {
6566 Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6567 << CondType << ResultType;
6568 return QualType();
6571 return ResultType;
6574 /// Check the operands of ?: under C++ semantics.
6576 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6577 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6579 /// This function also implements GCC's vector extension and the
6580 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6581 /// permit the use of a?b:c where the type of a is that of a integer vector with
6582 /// the same number of elements and size as the vectors of b and c. If one of
6583 /// either b or c is a scalar it is implicitly converted to match the type of
6584 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6585 /// scalars, then b and c are checked and converted to the type of a if
6586 /// possible.
6588 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6589 /// For the GCC extension, the ?: operator is evaluated as
6590 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6591 /// For the OpenCL extensions, the ?: operator is evaluated as
6592 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
6593 /// most-significant-bit-set(a[n]) ? b[n] : c[n]).
6594 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6595 ExprResult &RHS, ExprValueKind &VK,
6596 ExprObjectKind &OK,
6597 SourceLocation QuestionLoc) {
6598 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6599 // pointers.
6601 // Assume r-value.
6602 VK = VK_PRValue;
6603 OK = OK_Ordinary;
6604 bool IsVectorConditional =
6605 isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6607 bool IsSizelessVectorConditional =
6608 isValidSizelessVectorForConditionalCondition(Context,
6609 Cond.get()->getType());
6611 // C++11 [expr.cond]p1
6612 // The first expression is contextually converted to bool.
6613 if (!Cond.get()->isTypeDependent()) {
6614 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6615 ? DefaultFunctionArrayLvalueConversion(Cond.get())
6616 : CheckCXXBooleanCondition(Cond.get());
6617 if (CondRes.isInvalid())
6618 return QualType();
6619 Cond = CondRes;
6620 } else {
6621 // To implement C++, the first expression typically doesn't alter the result
6622 // type of the conditional, however the GCC compatible vector extension
6623 // changes the result type to be that of the conditional. Since we cannot
6624 // know if this is a vector extension here, delay the conversion of the
6625 // LHS/RHS below until later.
6626 return Context.DependentTy;
6630 // Either of the arguments dependent?
6631 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6632 return Context.DependentTy;
6634 // C++11 [expr.cond]p2
6635 // If either the second or the third operand has type (cv) void, ...
6636 QualType LTy = LHS.get()->getType();
6637 QualType RTy = RHS.get()->getType();
6638 bool LVoid = LTy->isVoidType();
6639 bool RVoid = RTy->isVoidType();
6640 if (LVoid || RVoid) {
6641 // ... one of the following shall hold:
6642 // -- The second or the third operand (but not both) is a (possibly
6643 // parenthesized) throw-expression; the result is of the type
6644 // and value category of the other.
6645 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6646 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6648 // Void expressions aren't legal in the vector-conditional expressions.
6649 if (IsVectorConditional) {
6650 SourceRange DiagLoc =
6651 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6652 bool IsThrow = LVoid ? LThrow : RThrow;
6653 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6654 << DiagLoc << IsThrow;
6655 return QualType();
6658 if (LThrow != RThrow) {
6659 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6660 VK = NonThrow->getValueKind();
6661 // DR (no number yet): the result is a bit-field if the
6662 // non-throw-expression operand is a bit-field.
6663 OK = NonThrow->getObjectKind();
6664 return NonThrow->getType();
6667 // -- Both the second and third operands have type void; the result is of
6668 // type void and is a prvalue.
6669 if (LVoid && RVoid)
6670 return Context.getCommonSugaredType(LTy, RTy);
6672 // Neither holds, error.
6673 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6674 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6675 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6676 return QualType();
6679 // Neither is void.
6680 if (IsVectorConditional)
6681 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6683 if (IsSizelessVectorConditional)
6684 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6686 // WebAssembly tables are not allowed as conditional LHS or RHS.
6687 if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) {
6688 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
6689 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6690 return QualType();
6693 // C++11 [expr.cond]p3
6694 // Otherwise, if the second and third operand have different types, and
6695 // either has (cv) class type [...] an attempt is made to convert each of
6696 // those operands to the type of the other.
6697 if (!Context.hasSameType(LTy, RTy) &&
6698 (LTy->isRecordType() || RTy->isRecordType())) {
6699 // These return true if a single direction is already ambiguous.
6700 QualType L2RType, R2LType;
6701 bool HaveL2R, HaveR2L;
6702 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6703 return QualType();
6704 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6705 return QualType();
6707 // If both can be converted, [...] the program is ill-formed.
6708 if (HaveL2R && HaveR2L) {
6709 Diag(QuestionLoc, diag::err_conditional_ambiguous)
6710 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6711 return QualType();
6714 // If exactly one conversion is possible, that conversion is applied to
6715 // the chosen operand and the converted operands are used in place of the
6716 // original operands for the remainder of this section.
6717 if (HaveL2R) {
6718 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6719 return QualType();
6720 LTy = LHS.get()->getType();
6721 } else if (HaveR2L) {
6722 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6723 return QualType();
6724 RTy = RHS.get()->getType();
6728 // C++11 [expr.cond]p3
6729 // if both are glvalues of the same value category and the same type except
6730 // for cv-qualification, an attempt is made to convert each of those
6731 // operands to the type of the other.
6732 // FIXME:
6733 // Resolving a defect in P0012R1: we extend this to cover all cases where
6734 // one of the operands is reference-compatible with the other, in order
6735 // to support conditionals between functions differing in noexcept. This
6736 // will similarly cover difference in array bounds after P0388R4.
6737 // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6738 // that instead?
6739 ExprValueKind LVK = LHS.get()->getValueKind();
6740 ExprValueKind RVK = RHS.get()->getValueKind();
6741 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6742 // DerivedToBase was already handled by the class-specific case above.
6743 // FIXME: Should we allow ObjC conversions here?
6744 const ReferenceConversions AllowedConversions =
6745 ReferenceConversions::Qualification |
6746 ReferenceConversions::NestedQualification |
6747 ReferenceConversions::Function;
6749 ReferenceConversions RefConv;
6750 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6751 Ref_Compatible &&
6752 !(RefConv & ~AllowedConversions) &&
6753 // [...] subject to the constraint that the reference must bind
6754 // directly [...]
6755 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6756 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6757 RTy = RHS.get()->getType();
6758 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6759 Ref_Compatible &&
6760 !(RefConv & ~AllowedConversions) &&
6761 !LHS.get()->refersToBitField() &&
6762 !LHS.get()->refersToVectorElement()) {
6763 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6764 LTy = LHS.get()->getType();
6768 // C++11 [expr.cond]p4
6769 // If the second and third operands are glvalues of the same value
6770 // category and have the same type, the result is of that type and
6771 // value category and it is a bit-field if the second or the third
6772 // operand is a bit-field, or if both are bit-fields.
6773 // We only extend this to bitfields, not to the crazy other kinds of
6774 // l-values.
6775 bool Same = Context.hasSameType(LTy, RTy);
6776 if (Same && LVK == RVK && LVK != VK_PRValue &&
6777 LHS.get()->isOrdinaryOrBitFieldObject() &&
6778 RHS.get()->isOrdinaryOrBitFieldObject()) {
6779 VK = LHS.get()->getValueKind();
6780 if (LHS.get()->getObjectKind() == OK_BitField ||
6781 RHS.get()->getObjectKind() == OK_BitField)
6782 OK = OK_BitField;
6783 return Context.getCommonSugaredType(LTy, RTy);
6786 // C++11 [expr.cond]p5
6787 // Otherwise, the result is a prvalue. If the second and third operands
6788 // do not have the same type, and either has (cv) class type, ...
6789 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6790 // ... overload resolution is used to determine the conversions (if any)
6791 // to be applied to the operands. If the overload resolution fails, the
6792 // program is ill-formed.
6793 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6794 return QualType();
6797 // C++11 [expr.cond]p6
6798 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6799 // conversions are performed on the second and third operands.
6800 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6801 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6802 if (LHS.isInvalid() || RHS.isInvalid())
6803 return QualType();
6804 LTy = LHS.get()->getType();
6805 RTy = RHS.get()->getType();
6807 // After those conversions, one of the following shall hold:
6808 // -- The second and third operands have the same type; the result
6809 // is of that type. If the operands have class type, the result
6810 // is a prvalue temporary of the result type, which is
6811 // copy-initialized from either the second operand or the third
6812 // operand depending on the value of the first operand.
6813 if (Context.hasSameType(LTy, RTy)) {
6814 if (LTy->isRecordType()) {
6815 // The operands have class type. Make a temporary copy.
6816 ExprResult LHSCopy = PerformCopyInitialization(
6817 InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
6818 if (LHSCopy.isInvalid())
6819 return QualType();
6821 ExprResult RHSCopy = PerformCopyInitialization(
6822 InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
6823 if (RHSCopy.isInvalid())
6824 return QualType();
6826 LHS = LHSCopy;
6827 RHS = RHSCopy;
6829 return Context.getCommonSugaredType(LTy, RTy);
6832 // Extension: conditional operator involving vector types.
6833 if (LTy->isVectorType() || RTy->isVectorType())
6834 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
6835 /*AllowBothBool*/ true,
6836 /*AllowBoolConversions*/ false,
6837 /*AllowBoolOperation*/ false,
6838 /*ReportInvalid*/ true);
6840 // -- The second and third operands have arithmetic or enumeration type;
6841 // the usual arithmetic conversions are performed to bring them to a
6842 // common type, and the result is of that type.
6843 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6844 QualType ResTy =
6845 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6846 if (LHS.isInvalid() || RHS.isInvalid())
6847 return QualType();
6848 if (ResTy.isNull()) {
6849 Diag(QuestionLoc,
6850 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6851 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6852 return QualType();
6855 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6856 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6858 return ResTy;
6861 // -- The second and third operands have pointer type, or one has pointer
6862 // type and the other is a null pointer constant, or both are null
6863 // pointer constants, at least one of which is non-integral; pointer
6864 // conversions and qualification conversions are performed to bring them
6865 // to their composite pointer type. The result is of the composite
6866 // pointer type.
6867 // -- The second and third operands have pointer to member type, or one has
6868 // pointer to member type and the other is a null pointer constant;
6869 // pointer to member conversions and qualification conversions are
6870 // performed to bring them to a common type, whose cv-qualification
6871 // shall match the cv-qualification of either the second or the third
6872 // operand. The result is of the common type.
6873 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6874 if (!Composite.isNull())
6875 return Composite;
6877 // Similarly, attempt to find composite type of two objective-c pointers.
6878 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6879 if (LHS.isInvalid() || RHS.isInvalid())
6880 return QualType();
6881 if (!Composite.isNull())
6882 return Composite;
6884 // Check if we are using a null with a non-pointer type.
6885 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6886 return QualType();
6888 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6889 << LHS.get()->getType() << RHS.get()->getType()
6890 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6891 return QualType();
6894 /// Find a merged pointer type and convert the two expressions to it.
6896 /// This finds the composite pointer type for \p E1 and \p E2 according to
6897 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6898 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6899 /// is \c true).
6901 /// \param Loc The location of the operator requiring these two expressions to
6902 /// be converted to the composite pointer type.
6904 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6905 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6906 Expr *&E1, Expr *&E2,
6907 bool ConvertArgs) {
6908 assert(getLangOpts().CPlusPlus && "This function assumes C++");
6910 // C++1z [expr]p14:
6911 // The composite pointer type of two operands p1 and p2 having types T1
6912 // and T2
6913 QualType T1 = E1->getType(), T2 = E2->getType();
6915 // where at least one is a pointer or pointer to member type or
6916 // std::nullptr_t is:
6917 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6918 T1->isNullPtrType();
6919 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6920 T2->isNullPtrType();
6921 if (!T1IsPointerLike && !T2IsPointerLike)
6922 return QualType();
6924 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6925 // This can't actually happen, following the standard, but we also use this
6926 // to implement the end of [expr.conv], which hits this case.
6928 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6929 if (T1IsPointerLike &&
6930 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6931 if (ConvertArgs)
6932 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6933 ? CK_NullToMemberPointer
6934 : CK_NullToPointer).get();
6935 return T1;
6937 if (T2IsPointerLike &&
6938 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6939 if (ConvertArgs)
6940 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6941 ? CK_NullToMemberPointer
6942 : CK_NullToPointer).get();
6943 return T2;
6946 // Now both have to be pointers or member pointers.
6947 if (!T1IsPointerLike || !T2IsPointerLike)
6948 return QualType();
6949 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6950 "nullptr_t should be a null pointer constant");
6952 struct Step {
6953 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6954 // Qualifiers to apply under the step kind.
6955 Qualifiers Quals;
6956 /// The class for a pointer-to-member; a constant array type with a bound
6957 /// (if any) for an array.
6958 const Type *ClassOrBound;
6960 Step(Kind K, const Type *ClassOrBound = nullptr)
6961 : K(K), ClassOrBound(ClassOrBound) {}
6962 QualType rebuild(ASTContext &Ctx, QualType T) const {
6963 T = Ctx.getQualifiedType(T, Quals);
6964 switch (K) {
6965 case Pointer:
6966 return Ctx.getPointerType(T);
6967 case MemberPointer:
6968 return Ctx.getMemberPointerType(T, ClassOrBound);
6969 case ObjCPointer:
6970 return Ctx.getObjCObjectPointerType(T);
6971 case Array:
6972 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6973 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6974 ArraySizeModifier::Normal, 0);
6975 else
6976 return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0);
6978 llvm_unreachable("unknown step kind");
6982 SmallVector<Step, 8> Steps;
6984 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6985 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6986 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6987 // respectively;
6988 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6989 // to member of C2 of type cv2 U2" for some non-function type U, where
6990 // C1 is reference-related to C2 or C2 is reference-related to C1, the
6991 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6992 // respectively;
6993 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6994 // T2;
6996 // Dismantle T1 and T2 to simultaneously determine whether they are similar
6997 // and to prepare to form the cv-combined type if so.
6998 QualType Composite1 = T1;
6999 QualType Composite2 = T2;
7000 unsigned NeedConstBefore = 0;
7001 while (true) {
7002 assert(!Composite1.isNull() && !Composite2.isNull());
7004 Qualifiers Q1, Q2;
7005 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
7006 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
7008 // Top-level qualifiers are ignored. Merge at all lower levels.
7009 if (!Steps.empty()) {
7010 // Find the qualifier union: (approximately) the unique minimal set of
7011 // qualifiers that is compatible with both types.
7012 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
7013 Q2.getCVRUQualifiers());
7015 // Under one level of pointer or pointer-to-member, we can change to an
7016 // unambiguous compatible address space.
7017 if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
7018 Quals.setAddressSpace(Q1.getAddressSpace());
7019 } else if (Steps.size() == 1) {
7020 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
7021 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
7022 if (MaybeQ1 == MaybeQ2) {
7023 // Exception for ptr size address spaces. Should be able to choose
7024 // either address space during comparison.
7025 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
7026 isPtrSizeAddressSpace(Q2.getAddressSpace()))
7027 MaybeQ1 = true;
7028 else
7029 return QualType(); // No unique best address space.
7031 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
7032 : Q2.getAddressSpace());
7033 } else {
7034 return QualType();
7037 // FIXME: In C, we merge __strong and none to __strong at the top level.
7038 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
7039 Quals.setObjCGCAttr(Q1.getObjCGCAttr());
7040 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7041 assert(Steps.size() == 1);
7042 else
7043 return QualType();
7045 // Mismatched lifetime qualifiers never compatibly include each other.
7046 if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
7047 Quals.setObjCLifetime(Q1.getObjCLifetime());
7048 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7049 assert(Steps.size() == 1);
7050 else
7051 return QualType();
7053 Steps.back().Quals = Quals;
7054 if (Q1 != Quals || Q2 != Quals)
7055 NeedConstBefore = Steps.size() - 1;
7058 // FIXME: Can we unify the following with UnwrapSimilarTypes?
7060 const ArrayType *Arr1, *Arr2;
7061 if ((Arr1 = Context.getAsArrayType(Composite1)) &&
7062 (Arr2 = Context.getAsArrayType(Composite2))) {
7063 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
7064 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
7065 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
7066 Composite1 = Arr1->getElementType();
7067 Composite2 = Arr2->getElementType();
7068 Steps.emplace_back(Step::Array, CAT1);
7069 continue;
7071 bool IAT1 = isa<IncompleteArrayType>(Arr1);
7072 bool IAT2 = isa<IncompleteArrayType>(Arr2);
7073 if ((IAT1 && IAT2) ||
7074 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
7075 ((bool)CAT1 != (bool)CAT2) &&
7076 (Steps.empty() || Steps.back().K != Step::Array))) {
7077 // In C++20 onwards, we can unify an array of N T with an array of
7078 // a different or unknown bound. But we can't form an array whose
7079 // element type is an array of unknown bound by doing so.
7080 Composite1 = Arr1->getElementType();
7081 Composite2 = Arr2->getElementType();
7082 Steps.emplace_back(Step::Array);
7083 if (CAT1 || CAT2)
7084 NeedConstBefore = Steps.size();
7085 continue;
7089 const PointerType *Ptr1, *Ptr2;
7090 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
7091 (Ptr2 = Composite2->getAs<PointerType>())) {
7092 Composite1 = Ptr1->getPointeeType();
7093 Composite2 = Ptr2->getPointeeType();
7094 Steps.emplace_back(Step::Pointer);
7095 continue;
7098 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
7099 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
7100 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
7101 Composite1 = ObjPtr1->getPointeeType();
7102 Composite2 = ObjPtr2->getPointeeType();
7103 Steps.emplace_back(Step::ObjCPointer);
7104 continue;
7107 const MemberPointerType *MemPtr1, *MemPtr2;
7108 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
7109 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
7110 Composite1 = MemPtr1->getPointeeType();
7111 Composite2 = MemPtr2->getPointeeType();
7113 // At the top level, we can perform a base-to-derived pointer-to-member
7114 // conversion:
7116 // - [...] where C1 is reference-related to C2 or C2 is
7117 // reference-related to C1
7119 // (Note that the only kinds of reference-relatedness in scope here are
7120 // "same type or derived from".) At any other level, the class must
7121 // exactly match.
7122 const Type *Class = nullptr;
7123 QualType Cls1(MemPtr1->getClass(), 0);
7124 QualType Cls2(MemPtr2->getClass(), 0);
7125 if (Context.hasSameType(Cls1, Cls2))
7126 Class = MemPtr1->getClass();
7127 else if (Steps.empty())
7128 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7129 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7130 if (!Class)
7131 return QualType();
7133 Steps.emplace_back(Step::MemberPointer, Class);
7134 continue;
7137 // Special case: at the top level, we can decompose an Objective-C pointer
7138 // and a 'cv void *'. Unify the qualifiers.
7139 if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7140 Composite2->isObjCObjectPointerType()) ||
7141 (Composite1->isObjCObjectPointerType() &&
7142 Composite2->isVoidPointerType()))) {
7143 Composite1 = Composite1->getPointeeType();
7144 Composite2 = Composite2->getPointeeType();
7145 Steps.emplace_back(Step::Pointer);
7146 continue;
7149 // FIXME: block pointer types?
7151 // Cannot unwrap any more types.
7152 break;
7155 // - if T1 or T2 is "pointer to noexcept function" and the other type is
7156 // "pointer to function", where the function types are otherwise the same,
7157 // "pointer to function";
7158 // - if T1 or T2 is "pointer to member of C1 of type function", the other
7159 // type is "pointer to member of C2 of type noexcept function", and C1
7160 // is reference-related to C2 or C2 is reference-related to C1, where
7161 // the function types are otherwise the same, "pointer to member of C2 of
7162 // type function" or "pointer to member of C1 of type function",
7163 // respectively;
7165 // We also support 'noreturn' here, so as a Clang extension we generalize the
7166 // above to:
7168 // - [Clang] If T1 and T2 are both of type "pointer to function" or
7169 // "pointer to member function" and the pointee types can be unified
7170 // by a function pointer conversion, that conversion is applied
7171 // before checking the following rules.
7173 // We've already unwrapped down to the function types, and we want to merge
7174 // rather than just convert, so do this ourselves rather than calling
7175 // IsFunctionConversion.
7177 // FIXME: In order to match the standard wording as closely as possible, we
7178 // currently only do this under a single level of pointers. Ideally, we would
7179 // allow this in general, and set NeedConstBefore to the relevant depth on
7180 // the side(s) where we changed anything. If we permit that, we should also
7181 // consider this conversion when determining type similarity and model it as
7182 // a qualification conversion.
7183 if (Steps.size() == 1) {
7184 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7185 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7186 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7187 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7189 // The result is noreturn if both operands are.
7190 bool Noreturn =
7191 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7192 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7193 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7195 // The result is nothrow if both operands are.
7196 SmallVector<QualType, 8> ExceptionTypeStorage;
7197 EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7198 EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7199 getLangOpts().CPlusPlus17);
7201 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7202 FPT1->getParamTypes(), EPI1);
7203 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7204 FPT2->getParamTypes(), EPI2);
7209 // There are some more conversions we can perform under exactly one pointer.
7210 if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7211 !Context.hasSameType(Composite1, Composite2)) {
7212 // - if T1 or T2 is "pointer to cv1 void" and the other type is
7213 // "pointer to cv2 T", where T is an object type or void,
7214 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7215 if (Composite1->isVoidType() && Composite2->isObjectType())
7216 Composite2 = Composite1;
7217 else if (Composite2->isVoidType() && Composite1->isObjectType())
7218 Composite1 = Composite2;
7219 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7220 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7221 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7222 // T1, respectively;
7224 // The "similar type" handling covers all of this except for the "T1 is a
7225 // base class of T2" case in the definition of reference-related.
7226 else if (IsDerivedFrom(Loc, Composite1, Composite2))
7227 Composite1 = Composite2;
7228 else if (IsDerivedFrom(Loc, Composite2, Composite1))
7229 Composite2 = Composite1;
7232 // At this point, either the inner types are the same or we have failed to
7233 // find a composite pointer type.
7234 if (!Context.hasSameType(Composite1, Composite2))
7235 return QualType();
7237 // Per C++ [conv.qual]p3, add 'const' to every level before the last
7238 // differing qualifier.
7239 for (unsigned I = 0; I != NeedConstBefore; ++I)
7240 Steps[I].Quals.addConst();
7242 // Rebuild the composite type.
7243 QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7244 for (auto &S : llvm::reverse(Steps))
7245 Composite = S.rebuild(Context, Composite);
7247 if (ConvertArgs) {
7248 // Convert the expressions to the composite pointer type.
7249 InitializedEntity Entity =
7250 InitializedEntity::InitializeTemporary(Composite);
7251 InitializationKind Kind =
7252 InitializationKind::CreateCopy(Loc, SourceLocation());
7254 InitializationSequence E1ToC(*this, Entity, Kind, E1);
7255 if (!E1ToC)
7256 return QualType();
7258 InitializationSequence E2ToC(*this, Entity, Kind, E2);
7259 if (!E2ToC)
7260 return QualType();
7262 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7263 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7264 if (E1Result.isInvalid())
7265 return QualType();
7266 E1 = E1Result.get();
7268 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7269 if (E2Result.isInvalid())
7270 return QualType();
7271 E2 = E2Result.get();
7274 return Composite;
7277 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7278 if (!E)
7279 return ExprError();
7281 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7283 // If the result is a glvalue, we shouldn't bind it.
7284 if (E->isGLValue())
7285 return E;
7287 // In ARC, calls that return a retainable type can return retained,
7288 // in which case we have to insert a consuming cast.
7289 if (getLangOpts().ObjCAutoRefCount &&
7290 E->getType()->isObjCRetainableType()) {
7292 bool ReturnsRetained;
7294 // For actual calls, we compute this by examining the type of the
7295 // called value.
7296 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7297 Expr *Callee = Call->getCallee()->IgnoreParens();
7298 QualType T = Callee->getType();
7300 if (T == Context.BoundMemberTy) {
7301 // Handle pointer-to-members.
7302 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7303 T = BinOp->getRHS()->getType();
7304 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7305 T = Mem->getMemberDecl()->getType();
7308 if (const PointerType *Ptr = T->getAs<PointerType>())
7309 T = Ptr->getPointeeType();
7310 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7311 T = Ptr->getPointeeType();
7312 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7313 T = MemPtr->getPointeeType();
7315 auto *FTy = T->castAs<FunctionType>();
7316 ReturnsRetained = FTy->getExtInfo().getProducesResult();
7318 // ActOnStmtExpr arranges things so that StmtExprs of retainable
7319 // type always produce a +1 object.
7320 } else if (isa<StmtExpr>(E)) {
7321 ReturnsRetained = true;
7323 // We hit this case with the lambda conversion-to-block optimization;
7324 // we don't want any extra casts here.
7325 } else if (isa<CastExpr>(E) &&
7326 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7327 return E;
7329 // For message sends and property references, we try to find an
7330 // actual method. FIXME: we should infer retention by selector in
7331 // cases where we don't have an actual method.
7332 } else {
7333 ObjCMethodDecl *D = nullptr;
7334 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7335 D = Send->getMethodDecl();
7336 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7337 D = BoxedExpr->getBoxingMethod();
7338 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7339 // Don't do reclaims if we're using the zero-element array
7340 // constant.
7341 if (ArrayLit->getNumElements() == 0 &&
7342 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7343 return E;
7345 D = ArrayLit->getArrayWithObjectsMethod();
7346 } else if (ObjCDictionaryLiteral *DictLit
7347 = dyn_cast<ObjCDictionaryLiteral>(E)) {
7348 // Don't do reclaims if we're using the zero-element dictionary
7349 // constant.
7350 if (DictLit->getNumElements() == 0 &&
7351 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7352 return E;
7354 D = DictLit->getDictWithObjectsMethod();
7357 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7359 // Don't do reclaims on performSelector calls; despite their
7360 // return type, the invoked method doesn't necessarily actually
7361 // return an object.
7362 if (!ReturnsRetained &&
7363 D && D->getMethodFamily() == OMF_performSelector)
7364 return E;
7367 // Don't reclaim an object of Class type.
7368 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7369 return E;
7371 Cleanup.setExprNeedsCleanups(true);
7373 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7374 : CK_ARCReclaimReturnedObject);
7375 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7376 VK_PRValue, FPOptionsOverride());
7379 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7380 Cleanup.setExprNeedsCleanups(true);
7382 if (!getLangOpts().CPlusPlus)
7383 return E;
7385 // Search for the base element type (cf. ASTContext::getBaseElementType) with
7386 // a fast path for the common case that the type is directly a RecordType.
7387 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7388 const RecordType *RT = nullptr;
7389 while (!RT) {
7390 switch (T->getTypeClass()) {
7391 case Type::Record:
7392 RT = cast<RecordType>(T);
7393 break;
7394 case Type::ConstantArray:
7395 case Type::IncompleteArray:
7396 case Type::VariableArray:
7397 case Type::DependentSizedArray:
7398 T = cast<ArrayType>(T)->getElementType().getTypePtr();
7399 break;
7400 default:
7401 return E;
7405 // That should be enough to guarantee that this type is complete, if we're
7406 // not processing a decltype expression.
7407 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7408 if (RD->isInvalidDecl() || RD->isDependentContext())
7409 return E;
7411 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7412 ExpressionEvaluationContextRecord::EK_Decltype;
7413 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7415 if (Destructor) {
7416 MarkFunctionReferenced(E->getExprLoc(), Destructor);
7417 CheckDestructorAccess(E->getExprLoc(), Destructor,
7418 PDiag(diag::err_access_dtor_temp)
7419 << E->getType());
7420 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7421 return ExprError();
7423 // If destructor is trivial, we can avoid the extra copy.
7424 if (Destructor->isTrivial())
7425 return E;
7427 // We need a cleanup, but we don't need to remember the temporary.
7428 Cleanup.setExprNeedsCleanups(true);
7431 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7432 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7434 if (IsDecltype)
7435 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7437 return Bind;
7440 ExprResult
7441 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7442 if (SubExpr.isInvalid())
7443 return ExprError();
7445 return MaybeCreateExprWithCleanups(SubExpr.get());
7448 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7449 assert(SubExpr && "subexpression can't be null!");
7451 CleanupVarDeclMarking();
7453 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7454 assert(ExprCleanupObjects.size() >= FirstCleanup);
7455 assert(Cleanup.exprNeedsCleanups() ||
7456 ExprCleanupObjects.size() == FirstCleanup);
7457 if (!Cleanup.exprNeedsCleanups())
7458 return SubExpr;
7460 auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7461 ExprCleanupObjects.size() - FirstCleanup);
7463 auto *E = ExprWithCleanups::Create(
7464 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7465 DiscardCleanupsInEvaluationContext();
7467 return E;
7470 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7471 assert(SubStmt && "sub-statement can't be null!");
7473 CleanupVarDeclMarking();
7475 if (!Cleanup.exprNeedsCleanups())
7476 return SubStmt;
7478 // FIXME: In order to attach the temporaries, wrap the statement into
7479 // a StmtExpr; currently this is only used for asm statements.
7480 // This is hacky, either create a new CXXStmtWithTemporaries statement or
7481 // a new AsmStmtWithTemporaries.
7482 CompoundStmt *CompStmt =
7483 CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7484 SourceLocation(), SourceLocation());
7485 Expr *E = new (Context)
7486 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7487 /*FIXME TemplateDepth=*/0);
7488 return MaybeCreateExprWithCleanups(E);
7491 /// Process the expression contained within a decltype. For such expressions,
7492 /// certain semantic checks on temporaries are delayed until this point, and
7493 /// are omitted for the 'topmost' call in the decltype expression. If the
7494 /// topmost call bound a temporary, strip that temporary off the expression.
7495 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7496 assert(ExprEvalContexts.back().ExprContext ==
7497 ExpressionEvaluationContextRecord::EK_Decltype &&
7498 "not in a decltype expression");
7500 ExprResult Result = CheckPlaceholderExpr(E);
7501 if (Result.isInvalid())
7502 return ExprError();
7503 E = Result.get();
7505 // C++11 [expr.call]p11:
7506 // If a function call is a prvalue of object type,
7507 // -- if the function call is either
7508 // -- the operand of a decltype-specifier, or
7509 // -- the right operand of a comma operator that is the operand of a
7510 // decltype-specifier,
7511 // a temporary object is not introduced for the prvalue.
7513 // Recursively rebuild ParenExprs and comma expressions to strip out the
7514 // outermost CXXBindTemporaryExpr, if any.
7515 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7516 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7517 if (SubExpr.isInvalid())
7518 return ExprError();
7519 if (SubExpr.get() == PE->getSubExpr())
7520 return E;
7521 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7523 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7524 if (BO->getOpcode() == BO_Comma) {
7525 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7526 if (RHS.isInvalid())
7527 return ExprError();
7528 if (RHS.get() == BO->getRHS())
7529 return E;
7530 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7531 BO->getType(), BO->getValueKind(),
7532 BO->getObjectKind(), BO->getOperatorLoc(),
7533 BO->getFPFeatures());
7537 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7538 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7539 : nullptr;
7540 if (TopCall)
7541 E = TopCall;
7542 else
7543 TopBind = nullptr;
7545 // Disable the special decltype handling now.
7546 ExprEvalContexts.back().ExprContext =
7547 ExpressionEvaluationContextRecord::EK_Other;
7549 Result = CheckUnevaluatedOperand(E);
7550 if (Result.isInvalid())
7551 return ExprError();
7552 E = Result.get();
7554 // In MS mode, don't perform any extra checking of call return types within a
7555 // decltype expression.
7556 if (getLangOpts().MSVCCompat)
7557 return E;
7559 // Perform the semantic checks we delayed until this point.
7560 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7561 I != N; ++I) {
7562 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7563 if (Call == TopCall)
7564 continue;
7566 if (CheckCallReturnType(Call->getCallReturnType(Context),
7567 Call->getBeginLoc(), Call, Call->getDirectCallee()))
7568 return ExprError();
7571 // Now all relevant types are complete, check the destructors are accessible
7572 // and non-deleted, and annotate them on the temporaries.
7573 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7574 I != N; ++I) {
7575 CXXBindTemporaryExpr *Bind =
7576 ExprEvalContexts.back().DelayedDecltypeBinds[I];
7577 if (Bind == TopBind)
7578 continue;
7580 CXXTemporary *Temp = Bind->getTemporary();
7582 CXXRecordDecl *RD =
7583 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7584 CXXDestructorDecl *Destructor = LookupDestructor(RD);
7585 Temp->setDestructor(Destructor);
7587 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7588 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7589 PDiag(diag::err_access_dtor_temp)
7590 << Bind->getType());
7591 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7592 return ExprError();
7594 // We need a cleanup, but we don't need to remember the temporary.
7595 Cleanup.setExprNeedsCleanups(true);
7598 // Possibly strip off the top CXXBindTemporaryExpr.
7599 return E;
7602 /// Note a set of 'operator->' functions that were used for a member access.
7603 static void noteOperatorArrows(Sema &S,
7604 ArrayRef<FunctionDecl *> OperatorArrows) {
7605 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7606 // FIXME: Make this configurable?
7607 unsigned Limit = 9;
7608 if (OperatorArrows.size() > Limit) {
7609 // Produce Limit-1 normal notes and one 'skipping' note.
7610 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7611 SkipCount = OperatorArrows.size() - (Limit - 1);
7614 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7615 if (I == SkipStart) {
7616 S.Diag(OperatorArrows[I]->getLocation(),
7617 diag::note_operator_arrows_suppressed)
7618 << SkipCount;
7619 I += SkipCount;
7620 } else {
7621 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7622 << OperatorArrows[I]->getCallResultType();
7623 ++I;
7628 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7629 SourceLocation OpLoc,
7630 tok::TokenKind OpKind,
7631 ParsedType &ObjectType,
7632 bool &MayBePseudoDestructor) {
7633 // Since this might be a postfix expression, get rid of ParenListExprs.
7634 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7635 if (Result.isInvalid()) return ExprError();
7636 Base = Result.get();
7638 Result = CheckPlaceholderExpr(Base);
7639 if (Result.isInvalid()) return ExprError();
7640 Base = Result.get();
7642 QualType BaseType = Base->getType();
7643 MayBePseudoDestructor = false;
7644 if (BaseType->isDependentType()) {
7645 // If we have a pointer to a dependent type and are using the -> operator,
7646 // the object type is the type that the pointer points to. We might still
7647 // have enough information about that type to do something useful.
7648 if (OpKind == tok::arrow)
7649 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7650 BaseType = Ptr->getPointeeType();
7652 ObjectType = ParsedType::make(BaseType);
7653 MayBePseudoDestructor = true;
7654 return Base;
7657 // C++ [over.match.oper]p8:
7658 // [...] When operator->returns, the operator-> is applied to the value
7659 // returned, with the original second operand.
7660 if (OpKind == tok::arrow) {
7661 QualType StartingType = BaseType;
7662 bool NoArrowOperatorFound = false;
7663 bool FirstIteration = true;
7664 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7665 // The set of types we've considered so far.
7666 llvm::SmallPtrSet<CanQualType,8> CTypes;
7667 SmallVector<FunctionDecl*, 8> OperatorArrows;
7668 CTypes.insert(Context.getCanonicalType(BaseType));
7670 while (BaseType->isRecordType()) {
7671 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7672 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7673 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7674 noteOperatorArrows(*this, OperatorArrows);
7675 Diag(OpLoc, diag::note_operator_arrow_depth)
7676 << getLangOpts().ArrowDepth;
7677 return ExprError();
7680 Result = BuildOverloadedArrowExpr(
7681 S, Base, OpLoc,
7682 // When in a template specialization and on the first loop iteration,
7683 // potentially give the default diagnostic (with the fixit in a
7684 // separate note) instead of having the error reported back to here
7685 // and giving a diagnostic with a fixit attached to the error itself.
7686 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7687 ? nullptr
7688 : &NoArrowOperatorFound);
7689 if (Result.isInvalid()) {
7690 if (NoArrowOperatorFound) {
7691 if (FirstIteration) {
7692 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7693 << BaseType << 1 << Base->getSourceRange()
7694 << FixItHint::CreateReplacement(OpLoc, ".");
7695 OpKind = tok::period;
7696 break;
7698 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7699 << BaseType << Base->getSourceRange();
7700 CallExpr *CE = dyn_cast<CallExpr>(Base);
7701 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7702 Diag(CD->getBeginLoc(),
7703 diag::note_member_reference_arrow_from_operator_arrow);
7706 return ExprError();
7708 Base = Result.get();
7709 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7710 OperatorArrows.push_back(OpCall->getDirectCallee());
7711 BaseType = Base->getType();
7712 CanQualType CBaseType = Context.getCanonicalType(BaseType);
7713 if (!CTypes.insert(CBaseType).second) {
7714 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7715 noteOperatorArrows(*this, OperatorArrows);
7716 return ExprError();
7718 FirstIteration = false;
7721 if (OpKind == tok::arrow) {
7722 if (BaseType->isPointerType())
7723 BaseType = BaseType->getPointeeType();
7724 else if (auto *AT = Context.getAsArrayType(BaseType))
7725 BaseType = AT->getElementType();
7729 // Objective-C properties allow "." access on Objective-C pointer types,
7730 // so adjust the base type to the object type itself.
7731 if (BaseType->isObjCObjectPointerType())
7732 BaseType = BaseType->getPointeeType();
7734 // C++ [basic.lookup.classref]p2:
7735 // [...] If the type of the object expression is of pointer to scalar
7736 // type, the unqualified-id is looked up in the context of the complete
7737 // postfix-expression.
7739 // This also indicates that we could be parsing a pseudo-destructor-name.
7740 // Note that Objective-C class and object types can be pseudo-destructor
7741 // expressions or normal member (ivar or property) access expressions, and
7742 // it's legal for the type to be incomplete if this is a pseudo-destructor
7743 // call. We'll do more incomplete-type checks later in the lookup process,
7744 // so just skip this check for ObjC types.
7745 if (!BaseType->isRecordType()) {
7746 ObjectType = ParsedType::make(BaseType);
7747 MayBePseudoDestructor = true;
7748 return Base;
7751 // The object type must be complete (or dependent), or
7752 // C++11 [expr.prim.general]p3:
7753 // Unlike the object expression in other contexts, *this is not required to
7754 // be of complete type for purposes of class member access (5.2.5) outside
7755 // the member function body.
7756 if (!BaseType->isDependentType() &&
7757 !isThisOutsideMemberFunctionBody(BaseType) &&
7758 RequireCompleteType(OpLoc, BaseType,
7759 diag::err_incomplete_member_access)) {
7760 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7763 // C++ [basic.lookup.classref]p2:
7764 // If the id-expression in a class member access (5.2.5) is an
7765 // unqualified-id, and the type of the object expression is of a class
7766 // type C (or of pointer to a class type C), the unqualified-id is looked
7767 // up in the scope of class C. [...]
7768 ObjectType = ParsedType::make(BaseType);
7769 return Base;
7772 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7773 tok::TokenKind &OpKind, SourceLocation OpLoc) {
7774 if (Base->hasPlaceholderType()) {
7775 ExprResult result = S.CheckPlaceholderExpr(Base);
7776 if (result.isInvalid()) return true;
7777 Base = result.get();
7779 ObjectType = Base->getType();
7781 // C++ [expr.pseudo]p2:
7782 // The left-hand side of the dot operator shall be of scalar type. The
7783 // left-hand side of the arrow operator shall be of pointer to scalar type.
7784 // This scalar type is the object type.
7785 // Note that this is rather different from the normal handling for the
7786 // arrow operator.
7787 if (OpKind == tok::arrow) {
7788 // The operator requires a prvalue, so perform lvalue conversions.
7789 // Only do this if we might plausibly end with a pointer, as otherwise
7790 // this was likely to be intended to be a '.'.
7791 if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7792 ObjectType->isFunctionType()) {
7793 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7794 if (BaseResult.isInvalid())
7795 return true;
7796 Base = BaseResult.get();
7797 ObjectType = Base->getType();
7800 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7801 ObjectType = Ptr->getPointeeType();
7802 } else if (!Base->isTypeDependent()) {
7803 // The user wrote "p->" when they probably meant "p."; fix it.
7804 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7805 << ObjectType << true
7806 << FixItHint::CreateReplacement(OpLoc, ".");
7807 if (S.isSFINAEContext())
7808 return true;
7810 OpKind = tok::period;
7814 return false;
7817 /// Check if it's ok to try and recover dot pseudo destructor calls on
7818 /// pointer objects.
7819 static bool
7820 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7821 QualType DestructedType) {
7822 // If this is a record type, check if its destructor is callable.
7823 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7824 if (RD->hasDefinition())
7825 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7826 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7827 return false;
7830 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7831 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7832 DestructedType->isVectorType();
7835 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7836 SourceLocation OpLoc,
7837 tok::TokenKind OpKind,
7838 const CXXScopeSpec &SS,
7839 TypeSourceInfo *ScopeTypeInfo,
7840 SourceLocation CCLoc,
7841 SourceLocation TildeLoc,
7842 PseudoDestructorTypeStorage Destructed) {
7843 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7845 QualType ObjectType;
7846 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7847 return ExprError();
7849 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7850 !ObjectType->isVectorType()) {
7851 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7852 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7853 else {
7854 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7855 << ObjectType << Base->getSourceRange();
7856 return ExprError();
7860 // C++ [expr.pseudo]p2:
7861 // [...] The cv-unqualified versions of the object type and of the type
7862 // designated by the pseudo-destructor-name shall be the same type.
7863 if (DestructedTypeInfo) {
7864 QualType DestructedType = DestructedTypeInfo->getType();
7865 SourceLocation DestructedTypeStart =
7866 DestructedTypeInfo->getTypeLoc().getBeginLoc();
7867 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7868 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7869 // Detect dot pseudo destructor calls on pointer objects, e.g.:
7870 // Foo *foo;
7871 // foo.~Foo();
7872 if (OpKind == tok::period && ObjectType->isPointerType() &&
7873 Context.hasSameUnqualifiedType(DestructedType,
7874 ObjectType->getPointeeType())) {
7875 auto Diagnostic =
7876 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7877 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7879 // Issue a fixit only when the destructor is valid.
7880 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7881 *this, DestructedType))
7882 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7884 // Recover by setting the object type to the destructed type and the
7885 // operator to '->'.
7886 ObjectType = DestructedType;
7887 OpKind = tok::arrow;
7888 } else {
7889 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7890 << ObjectType << DestructedType << Base->getSourceRange()
7891 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7893 // Recover by setting the destructed type to the object type.
7894 DestructedType = ObjectType;
7895 DestructedTypeInfo =
7896 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7897 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7899 } else if (DestructedType.getObjCLifetime() !=
7900 ObjectType.getObjCLifetime()) {
7902 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7903 // Okay: just pretend that the user provided the correctly-qualified
7904 // type.
7905 } else {
7906 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7907 << ObjectType << DestructedType << Base->getSourceRange()
7908 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7911 // Recover by setting the destructed type to the object type.
7912 DestructedType = ObjectType;
7913 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7914 DestructedTypeStart);
7915 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7920 // C++ [expr.pseudo]p2:
7921 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7922 // form
7924 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7926 // shall designate the same scalar type.
7927 if (ScopeTypeInfo) {
7928 QualType ScopeType = ScopeTypeInfo->getType();
7929 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7930 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7932 Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
7933 diag::err_pseudo_dtor_type_mismatch)
7934 << ObjectType << ScopeType << Base->getSourceRange()
7935 << ScopeTypeInfo->getTypeLoc().getSourceRange();
7937 ScopeType = QualType();
7938 ScopeTypeInfo = nullptr;
7942 Expr *Result
7943 = new (Context) CXXPseudoDestructorExpr(Context, Base,
7944 OpKind == tok::arrow, OpLoc,
7945 SS.getWithLocInContext(Context),
7946 ScopeTypeInfo,
7947 CCLoc,
7948 TildeLoc,
7949 Destructed);
7951 return Result;
7954 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7955 SourceLocation OpLoc,
7956 tok::TokenKind OpKind,
7957 CXXScopeSpec &SS,
7958 UnqualifiedId &FirstTypeName,
7959 SourceLocation CCLoc,
7960 SourceLocation TildeLoc,
7961 UnqualifiedId &SecondTypeName) {
7962 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7963 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7964 "Invalid first type name in pseudo-destructor");
7965 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7966 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7967 "Invalid second type name in pseudo-destructor");
7969 QualType ObjectType;
7970 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7971 return ExprError();
7973 // Compute the object type that we should use for name lookup purposes. Only
7974 // record types and dependent types matter.
7975 ParsedType ObjectTypePtrForLookup;
7976 if (!SS.isSet()) {
7977 if (ObjectType->isRecordType())
7978 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7979 else if (ObjectType->isDependentType())
7980 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7983 // Convert the name of the type being destructed (following the ~) into a
7984 // type (with source-location information).
7985 QualType DestructedType;
7986 TypeSourceInfo *DestructedTypeInfo = nullptr;
7987 PseudoDestructorTypeStorage Destructed;
7988 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7989 ParsedType T = getTypeName(*SecondTypeName.Identifier,
7990 SecondTypeName.StartLocation,
7991 S, &SS, true, false, ObjectTypePtrForLookup,
7992 /*IsCtorOrDtorName*/true);
7993 if (!T &&
7994 ((SS.isSet() && !computeDeclContext(SS, false)) ||
7995 (!SS.isSet() && ObjectType->isDependentType()))) {
7996 // The name of the type being destroyed is a dependent name, and we
7997 // couldn't find anything useful in scope. Just store the identifier and
7998 // it's location, and we'll perform (qualified) name lookup again at
7999 // template instantiation time.
8000 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
8001 SecondTypeName.StartLocation);
8002 } else if (!T) {
8003 Diag(SecondTypeName.StartLocation,
8004 diag::err_pseudo_dtor_destructor_non_type)
8005 << SecondTypeName.Identifier << ObjectType;
8006 if (isSFINAEContext())
8007 return ExprError();
8009 // Recover by assuming we had the right type all along.
8010 DestructedType = ObjectType;
8011 } else
8012 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
8013 } else {
8014 // Resolve the template-id to a type.
8015 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
8016 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8017 TemplateId->NumArgs);
8018 TypeResult T = ActOnTemplateIdType(S,
8020 TemplateId->TemplateKWLoc,
8021 TemplateId->Template,
8022 TemplateId->Name,
8023 TemplateId->TemplateNameLoc,
8024 TemplateId->LAngleLoc,
8025 TemplateArgsPtr,
8026 TemplateId->RAngleLoc,
8027 /*IsCtorOrDtorName*/true);
8028 if (T.isInvalid() || !T.get()) {
8029 // Recover by assuming we had the right type all along.
8030 DestructedType = ObjectType;
8031 } else
8032 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
8035 // If we've performed some kind of recovery, (re-)build the type source
8036 // information.
8037 if (!DestructedType.isNull()) {
8038 if (!DestructedTypeInfo)
8039 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
8040 SecondTypeName.StartLocation);
8041 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8044 // Convert the name of the scope type (the type prior to '::') into a type.
8045 TypeSourceInfo *ScopeTypeInfo = nullptr;
8046 QualType ScopeType;
8047 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8048 FirstTypeName.Identifier) {
8049 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8050 ParsedType T = getTypeName(*FirstTypeName.Identifier,
8051 FirstTypeName.StartLocation,
8052 S, &SS, true, false, ObjectTypePtrForLookup,
8053 /*IsCtorOrDtorName*/true);
8054 if (!T) {
8055 Diag(FirstTypeName.StartLocation,
8056 diag::err_pseudo_dtor_destructor_non_type)
8057 << FirstTypeName.Identifier << ObjectType;
8059 if (isSFINAEContext())
8060 return ExprError();
8062 // Just drop this type. It's unnecessary anyway.
8063 ScopeType = QualType();
8064 } else
8065 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
8066 } else {
8067 // Resolve the template-id to a type.
8068 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
8069 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8070 TemplateId->NumArgs);
8071 TypeResult T = ActOnTemplateIdType(S,
8073 TemplateId->TemplateKWLoc,
8074 TemplateId->Template,
8075 TemplateId->Name,
8076 TemplateId->TemplateNameLoc,
8077 TemplateId->LAngleLoc,
8078 TemplateArgsPtr,
8079 TemplateId->RAngleLoc,
8080 /*IsCtorOrDtorName*/true);
8081 if (T.isInvalid() || !T.get()) {
8082 // Recover by dropping this type.
8083 ScopeType = QualType();
8084 } else
8085 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
8089 if (!ScopeType.isNull() && !ScopeTypeInfo)
8090 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
8091 FirstTypeName.StartLocation);
8094 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
8095 ScopeTypeInfo, CCLoc, TildeLoc,
8096 Destructed);
8099 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8100 SourceLocation OpLoc,
8101 tok::TokenKind OpKind,
8102 SourceLocation TildeLoc,
8103 const DeclSpec& DS) {
8104 QualType ObjectType;
8105 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8106 return ExprError();
8108 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
8109 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
8110 return true;
8113 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
8115 TypeLocBuilder TLB;
8116 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
8117 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
8118 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
8119 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8120 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8122 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
8123 nullptr, SourceLocation(), TildeLoc,
8124 Destructed);
8127 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8128 SourceLocation RParen) {
8129 // If the operand is an unresolved lookup expression, the expression is ill-
8130 // formed per [over.over]p1, because overloaded function names cannot be used
8131 // without arguments except in explicit contexts.
8132 ExprResult R = CheckPlaceholderExpr(Operand);
8133 if (R.isInvalid())
8134 return R;
8136 R = CheckUnevaluatedOperand(R.get());
8137 if (R.isInvalid())
8138 return ExprError();
8140 Operand = R.get();
8142 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8143 Operand->HasSideEffects(Context, false)) {
8144 // The expression operand for noexcept is in an unevaluated expression
8145 // context, so side effects could result in unintended consequences.
8146 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8149 CanThrowResult CanThrow = canThrow(Operand);
8150 return new (Context)
8151 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8154 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8155 Expr *Operand, SourceLocation RParen) {
8156 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8159 static void MaybeDecrementCount(
8160 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8161 DeclRefExpr *LHS = nullptr;
8162 bool IsCompoundAssign = false;
8163 bool isIncrementDecrementUnaryOp = false;
8164 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8165 if (BO->getLHS()->getType()->isDependentType() ||
8166 BO->getRHS()->getType()->isDependentType()) {
8167 if (BO->getOpcode() != BO_Assign)
8168 return;
8169 } else if (!BO->isAssignmentOp())
8170 return;
8171 else
8172 IsCompoundAssign = BO->isCompoundAssignmentOp();
8173 LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8174 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8175 if (COCE->getOperator() != OO_Equal)
8176 return;
8177 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8178 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8179 if (!UO->isIncrementDecrementOp())
8180 return;
8181 isIncrementDecrementUnaryOp = true;
8182 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8184 if (!LHS)
8185 return;
8186 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8187 if (!VD)
8188 return;
8189 // Don't decrement RefsMinusAssignments if volatile variable with compound
8190 // assignment (+=, ...) or increment/decrement unary operator to avoid
8191 // potential unused-but-set-variable warning.
8192 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8193 VD->getType().isVolatileQualified())
8194 return;
8195 auto iter = RefsMinusAssignments.find(VD);
8196 if (iter == RefsMinusAssignments.end())
8197 return;
8198 iter->getSecond()--;
8201 /// Perform the conversions required for an expression used in a
8202 /// context that ignores the result.
8203 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8204 MaybeDecrementCount(E, RefsMinusAssignments);
8206 if (E->hasPlaceholderType()) {
8207 ExprResult result = CheckPlaceholderExpr(E);
8208 if (result.isInvalid()) return E;
8209 E = result.get();
8212 // C99 6.3.2.1:
8213 // [Except in specific positions,] an lvalue that does not have
8214 // array type is converted to the value stored in the
8215 // designated object (and is no longer an lvalue).
8216 if (E->isPRValue()) {
8217 // In C, function designators (i.e. expressions of function type)
8218 // are r-values, but we still want to do function-to-pointer decay
8219 // on them. This is both technically correct and convenient for
8220 // some clients.
8221 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8222 return DefaultFunctionArrayConversion(E);
8224 return E;
8227 if (getLangOpts().CPlusPlus) {
8228 // The C++11 standard defines the notion of a discarded-value expression;
8229 // normally, we don't need to do anything to handle it, but if it is a
8230 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8231 // conversion.
8232 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8233 ExprResult Res = DefaultLvalueConversion(E);
8234 if (Res.isInvalid())
8235 return E;
8236 E = Res.get();
8237 } else {
8238 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8239 // it occurs as a discarded-value expression.
8240 CheckUnusedVolatileAssignment(E);
8243 // C++1z:
8244 // If the expression is a prvalue after this optional conversion, the
8245 // temporary materialization conversion is applied.
8247 // We skip this step: IR generation is able to synthesize the storage for
8248 // itself in the aggregate case, and adding the extra node to the AST is
8249 // just clutter.
8250 // FIXME: We don't emit lifetime markers for the temporaries due to this.
8251 // FIXME: Do any other AST consumers care about this?
8252 return E;
8255 // GCC seems to also exclude expressions of incomplete enum type.
8256 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8257 if (!T->getDecl()->isComplete()) {
8258 // FIXME: stupid workaround for a codegen bug!
8259 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8260 return E;
8264 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8265 if (Res.isInvalid())
8266 return E;
8267 E = Res.get();
8269 if (!E->getType()->isVoidType())
8270 RequireCompleteType(E->getExprLoc(), E->getType(),
8271 diag::err_incomplete_type);
8272 return E;
8275 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8276 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8277 // it occurs as an unevaluated operand.
8278 CheckUnusedVolatileAssignment(E);
8280 return E;
8283 // If we can unambiguously determine whether Var can never be used
8284 // in a constant expression, return true.
8285 // - if the variable and its initializer are non-dependent, then
8286 // we can unambiguously check if the variable is a constant expression.
8287 // - if the initializer is not value dependent - we can determine whether
8288 // it can be used to initialize a constant expression. If Init can not
8289 // be used to initialize a constant expression we conclude that Var can
8290 // never be a constant expression.
8291 // - FXIME: if the initializer is dependent, we can still do some analysis and
8292 // identify certain cases unambiguously as non-const by using a Visitor:
8293 // - such as those that involve odr-use of a ParmVarDecl, involve a new
8294 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8295 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8296 ASTContext &Context) {
8297 if (isa<ParmVarDecl>(Var)) return true;
8298 const VarDecl *DefVD = nullptr;
8300 // If there is no initializer - this can not be a constant expression.
8301 const Expr *Init = Var->getAnyInitializer(DefVD);
8302 if (!Init)
8303 return true;
8304 assert(DefVD);
8305 if (DefVD->isWeak())
8306 return false;
8308 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8309 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8310 // of value-dependent expressions, and use it here to determine whether the
8311 // initializer is a potential constant expression.
8312 return false;
8315 return !Var->isUsableInConstantExpressions(Context);
8318 /// Check if the current lambda has any potential captures
8319 /// that must be captured by any of its enclosing lambdas that are ready to
8320 /// capture. If there is a lambda that can capture a nested
8321 /// potential-capture, go ahead and do so. Also, check to see if any
8322 /// variables are uncaptureable or do not involve an odr-use so do not
8323 /// need to be captured.
8325 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8326 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8328 assert(!S.isUnevaluatedContext());
8329 assert(S.CurContext->isDependentContext());
8330 #ifndef NDEBUG
8331 DeclContext *DC = S.CurContext;
8332 while (DC && isa<CapturedDecl>(DC))
8333 DC = DC->getParent();
8334 assert(
8335 CurrentLSI->CallOperator == DC &&
8336 "The current call operator must be synchronized with Sema's CurContext");
8337 #endif // NDEBUG
8339 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8341 // All the potentially captureable variables in the current nested
8342 // lambda (within a generic outer lambda), must be captured by an
8343 // outer lambda that is enclosed within a non-dependent context.
8344 CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8345 // If the variable is clearly identified as non-odr-used and the full
8346 // expression is not instantiation dependent, only then do we not
8347 // need to check enclosing lambda's for speculative captures.
8348 // For e.g.:
8349 // Even though 'x' is not odr-used, it should be captured.
8350 // int test() {
8351 // const int x = 10;
8352 // auto L = [=](auto a) {
8353 // (void) +x + a;
8354 // };
8355 // }
8356 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8357 !IsFullExprInstantiationDependent)
8358 return;
8360 VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8361 if (!UnderlyingVar)
8362 return;
8364 // If we have a capture-capable lambda for the variable, go ahead and
8365 // capture the variable in that lambda (and all its enclosing lambdas).
8366 if (const std::optional<unsigned> Index =
8367 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8368 S.FunctionScopes, Var, S))
8369 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8370 const bool IsVarNeverAConstantExpression =
8371 VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8372 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8373 // This full expression is not instantiation dependent or the variable
8374 // can not be used in a constant expression - which means
8375 // this variable must be odr-used here, so diagnose a
8376 // capture violation early, if the variable is un-captureable.
8377 // This is purely for diagnosing errors early. Otherwise, this
8378 // error would get diagnosed when the lambda becomes capture ready.
8379 QualType CaptureType, DeclRefType;
8380 SourceLocation ExprLoc = VarExpr->getExprLoc();
8381 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8382 /*EllipsisLoc*/ SourceLocation(),
8383 /*BuildAndDiagnose*/false, CaptureType,
8384 DeclRefType, nullptr)) {
8385 // We will never be able to capture this variable, and we need
8386 // to be able to in any and all instantiations, so diagnose it.
8387 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8388 /*EllipsisLoc*/ SourceLocation(),
8389 /*BuildAndDiagnose*/true, CaptureType,
8390 DeclRefType, nullptr);
8395 // Check if 'this' needs to be captured.
8396 if (CurrentLSI->hasPotentialThisCapture()) {
8397 // If we have a capture-capable lambda for 'this', go ahead and capture
8398 // 'this' in that lambda (and all its enclosing lambdas).
8399 if (const std::optional<unsigned> Index =
8400 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8401 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8402 const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8403 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8404 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8405 &FunctionScopeIndexOfCapturableLambda);
8409 // Reset all the potential captures at the end of each full-expression.
8410 CurrentLSI->clearPotentialCaptures();
8413 static ExprResult attemptRecovery(Sema &SemaRef,
8414 const TypoCorrectionConsumer &Consumer,
8415 const TypoCorrection &TC) {
8416 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8417 Consumer.getLookupResult().getLookupKind());
8418 const CXXScopeSpec *SS = Consumer.getSS();
8419 CXXScopeSpec NewSS;
8421 // Use an approprate CXXScopeSpec for building the expr.
8422 if (auto *NNS = TC.getCorrectionSpecifier())
8423 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8424 else if (SS && !TC.WillReplaceSpecifier())
8425 NewSS = *SS;
8427 if (auto *ND = TC.getFoundDecl()) {
8428 R.setLookupName(ND->getDeclName());
8429 R.addDecl(ND);
8430 if (ND->isCXXClassMember()) {
8431 // Figure out the correct naming class to add to the LookupResult.
8432 CXXRecordDecl *Record = nullptr;
8433 if (auto *NNS = TC.getCorrectionSpecifier())
8434 Record = NNS->getAsType()->getAsCXXRecordDecl();
8435 if (!Record)
8436 Record =
8437 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8438 if (Record)
8439 R.setNamingClass(Record);
8441 // Detect and handle the case where the decl might be an implicit
8442 // member.
8443 bool MightBeImplicitMember;
8444 if (!Consumer.isAddressOfOperand())
8445 MightBeImplicitMember = true;
8446 else if (!NewSS.isEmpty())
8447 MightBeImplicitMember = false;
8448 else if (R.isOverloadedResult())
8449 MightBeImplicitMember = false;
8450 else if (R.isUnresolvableResult())
8451 MightBeImplicitMember = true;
8452 else
8453 MightBeImplicitMember = isa<FieldDecl>(ND) ||
8454 isa<IndirectFieldDecl>(ND) ||
8455 isa<MSPropertyDecl>(ND);
8457 if (MightBeImplicitMember)
8458 return SemaRef.BuildPossibleImplicitMemberExpr(
8459 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8460 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8461 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8462 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8463 Ivar->getIdentifier());
8467 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8468 /*AcceptInvalidDecl*/ true);
8471 namespace {
8472 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8473 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8475 public:
8476 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8477 : TypoExprs(TypoExprs) {}
8478 bool VisitTypoExpr(TypoExpr *TE) {
8479 TypoExprs.insert(TE);
8480 return true;
8484 class TransformTypos : public TreeTransform<TransformTypos> {
8485 typedef TreeTransform<TransformTypos> BaseTransform;
8487 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8488 // process of being initialized.
8489 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8490 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8491 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8492 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8494 /// Emit diagnostics for all of the TypoExprs encountered.
8496 /// If the TypoExprs were successfully corrected, then the diagnostics should
8497 /// suggest the corrections. Otherwise the diagnostics will not suggest
8498 /// anything (having been passed an empty TypoCorrection).
8500 /// If we've failed to correct due to ambiguous corrections, we need to
8501 /// be sure to pass empty corrections and replacements. Otherwise it's
8502 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8503 /// and we don't want to report those diagnostics.
8504 void EmitAllDiagnostics(bool IsAmbiguous) {
8505 for (TypoExpr *TE : TypoExprs) {
8506 auto &State = SemaRef.getTypoExprState(TE);
8507 if (State.DiagHandler) {
8508 TypoCorrection TC = IsAmbiguous
8509 ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8510 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8512 // Extract the NamedDecl from the transformed TypoExpr and add it to the
8513 // TypoCorrection, replacing the existing decls. This ensures the right
8514 // NamedDecl is used in diagnostics e.g. in the case where overload
8515 // resolution was used to select one from several possible decls that
8516 // had been stored in the TypoCorrection.
8517 if (auto *ND = getDeclFromExpr(
8518 Replacement.isInvalid() ? nullptr : Replacement.get()))
8519 TC.setCorrectionDecl(ND);
8521 State.DiagHandler(TC);
8523 SemaRef.clearDelayedTypo(TE);
8527 /// Try to advance the typo correction state of the first unfinished TypoExpr.
8528 /// We allow advancement of the correction stream by removing it from the
8529 /// TransformCache which allows `TransformTypoExpr` to advance during the
8530 /// next transformation attempt.
8532 /// Any substitution attempts for the previous TypoExprs (which must have been
8533 /// finished) will need to be retried since it's possible that they will now
8534 /// be invalid given the latest advancement.
8536 /// We need to be sure that we're making progress - it's possible that the
8537 /// tree is so malformed that the transform never makes it to the
8538 /// `TransformTypoExpr`.
8540 /// Returns true if there are any untried correction combinations.
8541 bool CheckAndAdvanceTypoExprCorrectionStreams() {
8542 for (auto *TE : TypoExprs) {
8543 auto &State = SemaRef.getTypoExprState(TE);
8544 TransformCache.erase(TE);
8545 if (!State.Consumer->hasMadeAnyCorrectionProgress())
8546 return false;
8547 if (!State.Consumer->finished())
8548 return true;
8549 State.Consumer->resetCorrectionStream();
8551 return false;
8554 NamedDecl *getDeclFromExpr(Expr *E) {
8555 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8556 E = OverloadResolution[OE];
8558 if (!E)
8559 return nullptr;
8560 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8561 return DRE->getFoundDecl();
8562 if (auto *ME = dyn_cast<MemberExpr>(E))
8563 return ME->getFoundDecl();
8564 // FIXME: Add any other expr types that could be seen by the delayed typo
8565 // correction TreeTransform for which the corresponding TypoCorrection could
8566 // contain multiple decls.
8567 return nullptr;
8570 ExprResult TryTransform(Expr *E) {
8571 Sema::SFINAETrap Trap(SemaRef);
8572 ExprResult Res = TransformExpr(E);
8573 if (Trap.hasErrorOccurred() || Res.isInvalid())
8574 return ExprError();
8576 return ExprFilter(Res.get());
8579 // Since correcting typos may intoduce new TypoExprs, this function
8580 // checks for new TypoExprs and recurses if it finds any. Note that it will
8581 // only succeed if it is able to correct all typos in the given expression.
8582 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8583 if (Res.isInvalid()) {
8584 return Res;
8586 // Check to see if any new TypoExprs were created. If so, we need to recurse
8587 // to check their validity.
8588 Expr *FixedExpr = Res.get();
8590 auto SavedTypoExprs = std::move(TypoExprs);
8591 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8592 TypoExprs.clear();
8593 AmbiguousTypoExprs.clear();
8595 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8596 if (!TypoExprs.empty()) {
8597 // Recurse to handle newly created TypoExprs. If we're not able to
8598 // handle them, discard these TypoExprs.
8599 ExprResult RecurResult =
8600 RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8601 if (RecurResult.isInvalid()) {
8602 Res = ExprError();
8603 // Recursive corrections didn't work, wipe them away and don't add
8604 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8605 // since we don't want to clear them twice. Note: it's possible the
8606 // TypoExprs were created recursively and thus won't be in our
8607 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8608 auto &SemaTypoExprs = SemaRef.TypoExprs;
8609 for (auto *TE : TypoExprs) {
8610 TransformCache.erase(TE);
8611 SemaRef.clearDelayedTypo(TE);
8613 auto SI = find(SemaTypoExprs, TE);
8614 if (SI != SemaTypoExprs.end()) {
8615 SemaTypoExprs.erase(SI);
8618 } else {
8619 // TypoExpr is valid: add newly created TypoExprs since we were
8620 // able to correct them.
8621 Res = RecurResult;
8622 SavedTypoExprs.set_union(TypoExprs);
8626 TypoExprs = std::move(SavedTypoExprs);
8627 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8629 return Res;
8632 // Try to transform the given expression, looping through the correction
8633 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8635 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8636 // true and this method immediately will return an `ExprError`.
8637 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8638 ExprResult Res;
8639 auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8640 SemaRef.TypoExprs.clear();
8642 while (true) {
8643 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8645 // Recursion encountered an ambiguous correction. This means that our
8646 // correction itself is ambiguous, so stop now.
8647 if (IsAmbiguous)
8648 break;
8650 // If the transform is still valid after checking for any new typos,
8651 // it's good to go.
8652 if (!Res.isInvalid())
8653 break;
8655 // The transform was invalid, see if we have any TypoExprs with untried
8656 // correction candidates.
8657 if (!CheckAndAdvanceTypoExprCorrectionStreams())
8658 break;
8661 // If we found a valid result, double check to make sure it's not ambiguous.
8662 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8663 auto SavedTransformCache =
8664 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8666 // Ensure none of the TypoExprs have multiple typo correction candidates
8667 // with the same edit length that pass all the checks and filters.
8668 while (!AmbiguousTypoExprs.empty()) {
8669 auto TE = AmbiguousTypoExprs.back();
8671 // TryTransform itself can create new Typos, adding them to the TypoExpr map
8672 // and invalidating our TypoExprState, so always fetch it instead of storing.
8673 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8675 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8676 TypoCorrection Next;
8677 do {
8678 // Fetch the next correction by erasing the typo from the cache and calling
8679 // `TryTransform` which will iterate through corrections in
8680 // `TransformTypoExpr`.
8681 TransformCache.erase(TE);
8682 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8684 if (!AmbigRes.isInvalid() || IsAmbiguous) {
8685 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8686 SavedTransformCache.erase(TE);
8687 Res = ExprError();
8688 IsAmbiguous = true;
8689 break;
8691 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8692 Next.getEditDistance(false) == TC.getEditDistance(false));
8694 if (IsAmbiguous)
8695 break;
8697 AmbiguousTypoExprs.remove(TE);
8698 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8699 TransformCache[TE] = SavedTransformCache[TE];
8701 TransformCache = std::move(SavedTransformCache);
8704 // Wipe away any newly created TypoExprs that we don't know about. Since we
8705 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8706 // possible if a `TypoExpr` is created during a transformation but then
8707 // fails before we can discover it.
8708 auto &SemaTypoExprs = SemaRef.TypoExprs;
8709 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8710 auto TE = *Iterator;
8711 auto FI = find(TypoExprs, TE);
8712 if (FI != TypoExprs.end()) {
8713 Iterator++;
8714 continue;
8716 SemaRef.clearDelayedTypo(TE);
8717 Iterator = SemaTypoExprs.erase(Iterator);
8719 SemaRef.TypoExprs = std::move(SavedTypoExprs);
8721 return Res;
8724 public:
8725 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8726 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8728 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8729 MultiExprArg Args,
8730 SourceLocation RParenLoc,
8731 Expr *ExecConfig = nullptr) {
8732 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8733 RParenLoc, ExecConfig);
8734 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8735 if (Result.isUsable()) {
8736 Expr *ResultCall = Result.get();
8737 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8738 ResultCall = BE->getSubExpr();
8739 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8740 OverloadResolution[OE] = CE->getCallee();
8743 return Result;
8746 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8748 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8750 ExprResult Transform(Expr *E) {
8751 bool IsAmbiguous = false;
8752 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8754 if (!Res.isUsable())
8755 FindTypoExprs(TypoExprs).TraverseStmt(E);
8757 EmitAllDiagnostics(IsAmbiguous);
8759 return Res;
8762 ExprResult TransformTypoExpr(TypoExpr *E) {
8763 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8764 // cached transformation result if there is one and the TypoExpr isn't the
8765 // first one that was encountered.
8766 auto &CacheEntry = TransformCache[E];
8767 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8768 return CacheEntry;
8771 auto &State = SemaRef.getTypoExprState(E);
8772 assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8774 // For the first TypoExpr and an uncached TypoExpr, find the next likely
8775 // typo correction and return it.
8776 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8777 if (InitDecl && TC.getFoundDecl() == InitDecl)
8778 continue;
8779 // FIXME: If we would typo-correct to an invalid declaration, it's
8780 // probably best to just suppress all errors from this typo correction.
8781 ExprResult NE = State.RecoveryHandler ?
8782 State.RecoveryHandler(SemaRef, E, TC) :
8783 attemptRecovery(SemaRef, *State.Consumer, TC);
8784 if (!NE.isInvalid()) {
8785 // Check whether there may be a second viable correction with the same
8786 // edit distance; if so, remember this TypoExpr may have an ambiguous
8787 // correction so it can be more thoroughly vetted later.
8788 TypoCorrection Next;
8789 if ((Next = State.Consumer->peekNextCorrection()) &&
8790 Next.getEditDistance(false) == TC.getEditDistance(false)) {
8791 AmbiguousTypoExprs.insert(E);
8792 } else {
8793 AmbiguousTypoExprs.remove(E);
8795 assert(!NE.isUnset() &&
8796 "Typo was transformed into a valid-but-null ExprResult");
8797 return CacheEntry = NE;
8800 return CacheEntry = ExprError();
8805 ExprResult
8806 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8807 bool RecoverUncorrectedTypos,
8808 llvm::function_ref<ExprResult(Expr *)> Filter) {
8809 // If the current evaluation context indicates there are uncorrected typos
8810 // and the current expression isn't guaranteed to not have typos, try to
8811 // resolve any TypoExpr nodes that might be in the expression.
8812 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8813 (E->isTypeDependent() || E->isValueDependent() ||
8814 E->isInstantiationDependent())) {
8815 auto TyposResolved = DelayedTypos.size();
8816 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8817 TyposResolved -= DelayedTypos.size();
8818 if (Result.isInvalid() || Result.get() != E) {
8819 ExprEvalContexts.back().NumTypos -= TyposResolved;
8820 if (Result.isInvalid() && RecoverUncorrectedTypos) {
8821 struct TyposReplace : TreeTransform<TyposReplace> {
8822 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8823 ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8824 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8825 E->getEndLoc(), {});
8827 } TT(*this);
8828 return TT.TransformExpr(E);
8830 return Result;
8832 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8834 return E;
8837 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8838 bool DiscardedValue, bool IsConstexpr,
8839 bool IsTemplateArgument) {
8840 ExprResult FullExpr = FE;
8842 if (!FullExpr.get())
8843 return ExprError();
8845 if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
8846 return ExprError();
8848 if (DiscardedValue) {
8849 // Top-level expressions default to 'id' when we're in a debugger.
8850 if (getLangOpts().DebuggerCastResultToId &&
8851 FullExpr.get()->getType() == Context.UnknownAnyTy) {
8852 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8853 if (FullExpr.isInvalid())
8854 return ExprError();
8857 FullExpr = CheckPlaceholderExpr(FullExpr.get());
8858 if (FullExpr.isInvalid())
8859 return ExprError();
8861 FullExpr = IgnoredValueConversions(FullExpr.get());
8862 if (FullExpr.isInvalid())
8863 return ExprError();
8865 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8868 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8869 /*RecoverUncorrectedTypos=*/true);
8870 if (FullExpr.isInvalid())
8871 return ExprError();
8873 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8875 // At the end of this full expression (which could be a deeply nested
8876 // lambda), if there is a potential capture within the nested lambda,
8877 // have the outer capture-able lambda try and capture it.
8878 // Consider the following code:
8879 // void f(int, int);
8880 // void f(const int&, double);
8881 // void foo() {
8882 // const int x = 10, y = 20;
8883 // auto L = [=](auto a) {
8884 // auto M = [=](auto b) {
8885 // f(x, b); <-- requires x to be captured by L and M
8886 // f(y, a); <-- requires y to be captured by L, but not all Ms
8887 // };
8888 // };
8889 // }
8891 // FIXME: Also consider what happens for something like this that involves
8892 // the gnu-extension statement-expressions or even lambda-init-captures:
8893 // void f() {
8894 // const int n = 0;
8895 // auto L = [&](auto a) {
8896 // +n + ({ 0; a; });
8897 // };
8898 // }
8900 // Here, we see +n, and then the full-expression 0; ends, so we don't
8901 // capture n (and instead remove it from our list of potential captures),
8902 // and then the full-expression +n + ({ 0; }); ends, but it's too late
8903 // for us to see that we need to capture n after all.
8905 LambdaScopeInfo *const CurrentLSI =
8906 getCurLambda(/*IgnoreCapturedRegions=*/true);
8907 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8908 // even if CurContext is not a lambda call operator. Refer to that Bug Report
8909 // for an example of the code that might cause this asynchrony.
8910 // By ensuring we are in the context of a lambda's call operator
8911 // we can fix the bug (we only need to check whether we need to capture
8912 // if we are within a lambda's body); but per the comments in that
8913 // PR, a proper fix would entail :
8914 // "Alternative suggestion:
8915 // - Add to Sema an integer holding the smallest (outermost) scope
8916 // index that we are *lexically* within, and save/restore/set to
8917 // FunctionScopes.size() in InstantiatingTemplate's
8918 // constructor/destructor.
8919 // - Teach the handful of places that iterate over FunctionScopes to
8920 // stop at the outermost enclosing lexical scope."
8921 DeclContext *DC = CurContext;
8922 while (DC && isa<CapturedDecl>(DC))
8923 DC = DC->getParent();
8924 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8925 if (IsInLambdaDeclContext && CurrentLSI &&
8926 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8927 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8928 *this);
8929 return MaybeCreateExprWithCleanups(FullExpr);
8932 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8933 if (!FullStmt) return StmtError();
8935 return MaybeCreateStmtWithCleanups(FullStmt);
8938 Sema::IfExistsResult
8939 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8940 CXXScopeSpec &SS,
8941 const DeclarationNameInfo &TargetNameInfo) {
8942 DeclarationName TargetName = TargetNameInfo.getName();
8943 if (!TargetName)
8944 return IER_DoesNotExist;
8946 // If the name itself is dependent, then the result is dependent.
8947 if (TargetName.isDependentName())
8948 return IER_Dependent;
8950 // Do the redeclaration lookup in the current scope.
8951 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8952 Sema::NotForRedeclaration);
8953 LookupParsedName(R, S, &SS);
8954 R.suppressDiagnostics();
8956 switch (R.getResultKind()) {
8957 case LookupResult::Found:
8958 case LookupResult::FoundOverloaded:
8959 case LookupResult::FoundUnresolvedValue:
8960 case LookupResult::Ambiguous:
8961 return IER_Exists;
8963 case LookupResult::NotFound:
8964 return IER_DoesNotExist;
8966 case LookupResult::NotFoundInCurrentInstantiation:
8967 return IER_Dependent;
8970 llvm_unreachable("Invalid LookupResult Kind!");
8973 Sema::IfExistsResult
8974 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8975 bool IsIfExists, CXXScopeSpec &SS,
8976 UnqualifiedId &Name) {
8977 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8979 // Check for an unexpanded parameter pack.
8980 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8981 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8982 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8983 return IER_Error;
8985 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8988 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8989 return BuildExprRequirement(E, /*IsSimple=*/true,
8990 /*NoexceptLoc=*/SourceLocation(),
8991 /*ReturnTypeRequirement=*/{});
8994 concepts::Requirement *
8995 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8996 SourceLocation NameLoc, IdentifierInfo *TypeName,
8997 TemplateIdAnnotation *TemplateId) {
8998 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8999 "Exactly one of TypeName and TemplateId must be specified.");
9000 TypeSourceInfo *TSI = nullptr;
9001 if (TypeName) {
9002 QualType T =
9003 CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc,
9004 SS.getWithLocInContext(Context), *TypeName, NameLoc,
9005 &TSI, /*DeducedTSTContext=*/false);
9006 if (T.isNull())
9007 return nullptr;
9008 } else {
9009 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
9010 TemplateId->NumArgs);
9011 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
9012 TemplateId->TemplateKWLoc,
9013 TemplateId->Template, TemplateId->Name,
9014 TemplateId->TemplateNameLoc,
9015 TemplateId->LAngleLoc, ArgsPtr,
9016 TemplateId->RAngleLoc);
9017 if (T.isInvalid())
9018 return nullptr;
9019 if (GetTypeFromParser(T.get(), &TSI).isNull())
9020 return nullptr;
9022 return BuildTypeRequirement(TSI);
9025 concepts::Requirement *
9026 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
9027 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
9028 /*ReturnTypeRequirement=*/{});
9031 concepts::Requirement *
9032 Sema::ActOnCompoundRequirement(
9033 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
9034 TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
9035 // C++2a [expr.prim.req.compound] p1.3.3
9036 // [..] the expression is deduced against an invented function template
9037 // F [...] F is a void function template with a single type template
9038 // parameter T declared with the constrained-parameter. Form a new
9039 // cv-qualifier-seq cv by taking the union of const and volatile specifiers
9040 // around the constrained-parameter. F has a single parameter whose
9041 // type-specifier is cv T followed by the abstract-declarator. [...]
9043 // The cv part is done in the calling function - we get the concept with
9044 // arguments and the abstract declarator with the correct CV qualification and
9045 // have to synthesize T and the single parameter of F.
9046 auto &II = Context.Idents.get("expr-type");
9047 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
9048 SourceLocation(),
9049 SourceLocation(), Depth,
9050 /*Index=*/0, &II,
9051 /*Typename=*/true,
9052 /*ParameterPack=*/false,
9053 /*HasTypeConstraint=*/true);
9055 if (BuildTypeConstraint(SS, TypeConstraint, TParam,
9056 /*EllipsisLoc=*/SourceLocation(),
9057 /*AllowUnexpandedPack=*/true))
9058 // Just produce a requirement with no type requirements.
9059 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
9061 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
9062 SourceLocation(),
9063 ArrayRef<NamedDecl *>(TParam),
9064 SourceLocation(),
9065 /*RequiresClause=*/nullptr);
9066 return BuildExprRequirement(
9067 E, /*IsSimple=*/false, NoexceptLoc,
9068 concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9071 concepts::ExprRequirement *
9072 Sema::BuildExprRequirement(
9073 Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9074 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9075 auto Status = concepts::ExprRequirement::SS_Satisfied;
9076 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9077 if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() ||
9078 ReturnTypeRequirement.isDependent())
9079 Status = concepts::ExprRequirement::SS_Dependent;
9080 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9081 Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9082 else if (ReturnTypeRequirement.isSubstitutionFailure())
9083 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9084 else if (ReturnTypeRequirement.isTypeConstraint()) {
9085 // C++2a [expr.prim.req]p1.3.3
9086 // The immediately-declared constraint ([temp]) of decltype((E)) shall
9087 // be satisfied.
9088 TemplateParameterList *TPL =
9089 ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9090 QualType MatchedType =
9091 Context.getReferenceQualifiedType(E).getCanonicalType();
9092 llvm::SmallVector<TemplateArgument, 1> Args;
9093 Args.push_back(TemplateArgument(MatchedType));
9095 auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9097 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
9098 MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(),
9099 /*Final=*/false);
9100 MLTAL.addOuterRetainedLevels(TPL->getDepth());
9101 const TypeConstraint *TC = Param->getTypeConstraint();
9102 assert(TC && "Type Constraint cannot be null here");
9103 auto *IDC = TC->getImmediatelyDeclaredConstraint();
9104 assert(IDC && "ImmediatelyDeclaredConstraint can't be null here.");
9105 ExprResult Constraint = SubstExpr(IDC, MLTAL);
9106 if (Constraint.isInvalid()) {
9107 return new (Context) concepts::ExprRequirement(
9108 concepts::createSubstDiagAt(*this, IDC->getExprLoc(),
9109 [&](llvm::raw_ostream &OS) {
9110 IDC->printPretty(OS, /*Helper=*/nullptr,
9111 getPrintingPolicy());
9113 IsSimple, NoexceptLoc, ReturnTypeRequirement);
9115 SubstitutedConstraintExpr =
9116 cast<ConceptSpecializationExpr>(Constraint.get());
9117 if (!SubstitutedConstraintExpr->isSatisfied())
9118 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9120 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9121 ReturnTypeRequirement, Status,
9122 SubstitutedConstraintExpr);
9125 concepts::ExprRequirement *
9126 Sema::BuildExprRequirement(
9127 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9128 bool IsSimple, SourceLocation NoexceptLoc,
9129 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9130 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9131 IsSimple, NoexceptLoc,
9132 ReturnTypeRequirement);
9135 concepts::TypeRequirement *
9136 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9137 return new (Context) concepts::TypeRequirement(Type);
9140 concepts::TypeRequirement *
9141 Sema::BuildTypeRequirement(
9142 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9143 return new (Context) concepts::TypeRequirement(SubstDiag);
9146 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9147 return BuildNestedRequirement(Constraint);
9150 concepts::NestedRequirement *
9151 Sema::BuildNestedRequirement(Expr *Constraint) {
9152 ConstraintSatisfaction Satisfaction;
9153 if (!Constraint->isInstantiationDependent() &&
9154 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9155 Constraint->getSourceRange(), Satisfaction))
9156 return nullptr;
9157 return new (Context) concepts::NestedRequirement(Context, Constraint,
9158 Satisfaction);
9161 concepts::NestedRequirement *
9162 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9163 const ASTConstraintSatisfaction &Satisfaction) {
9164 return new (Context) concepts::NestedRequirement(
9165 InvalidConstraintEntity,
9166 ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9169 RequiresExprBodyDecl *
9170 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9171 ArrayRef<ParmVarDecl *> LocalParameters,
9172 Scope *BodyScope) {
9173 assert(BodyScope);
9175 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9176 RequiresKWLoc);
9178 PushDeclContext(BodyScope, Body);
9180 for (ParmVarDecl *Param : LocalParameters) {
9181 if (Param->hasDefaultArg())
9182 // C++2a [expr.prim.req] p4
9183 // [...] A local parameter of a requires-expression shall not have a
9184 // default argument. [...]
9185 Diag(Param->getDefaultArgRange().getBegin(),
9186 diag::err_requires_expr_local_parameter_default_argument);
9187 // Ignore default argument and move on
9189 Param->setDeclContext(Body);
9190 // If this has an identifier, add it to the scope stack.
9191 if (Param->getIdentifier()) {
9192 CheckShadow(BodyScope, Param);
9193 PushOnScopeChains(Param, BodyScope);
9196 return Body;
9199 void Sema::ActOnFinishRequiresExpr() {
9200 assert(CurContext && "DeclContext imbalance!");
9201 CurContext = CurContext->getLexicalParent();
9202 assert(CurContext && "Popped translation unit!");
9205 ExprResult Sema::ActOnRequiresExpr(
9206 SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body,
9207 SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters,
9208 SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements,
9209 SourceLocation ClosingBraceLoc) {
9210 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc,
9211 LocalParameters, RParenLoc, Requirements,
9212 ClosingBraceLoc);
9213 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9214 return ExprError();
9215 return RE;