1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Implements semantic analysis for C++ expressions.
12 //===----------------------------------------------------------------------===//
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TokenKinds.h"
32 #include "clang/Basic/TypeTraits.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/EnterExpressionEvaluationContext.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaInternal.h"
42 #include "clang/Sema/SemaLambda.h"
43 #include "clang/Sema/Template.h"
44 #include "clang/Sema/TemplateDeduction.h"
45 #include "llvm/ADT/APInt.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/TypeSize.h"
51 using namespace clang
;
54 /// Handle the result of the special case name lookup for inheriting
55 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
56 /// constructor names in member using declarations, even if 'X' is not the
57 /// name of the corresponding type.
58 ParsedType
Sema::getInheritingConstructorName(CXXScopeSpec
&SS
,
59 SourceLocation NameLoc
,
60 IdentifierInfo
&Name
) {
61 NestedNameSpecifier
*NNS
= SS
.getScopeRep();
63 // Convert the nested-name-specifier into a type.
65 switch (NNS
->getKind()) {
66 case NestedNameSpecifier::TypeSpec
:
67 case NestedNameSpecifier::TypeSpecWithTemplate
:
68 Type
= QualType(NNS
->getAsType(), 0);
71 case NestedNameSpecifier::Identifier
:
72 // Strip off the last layer of the nested-name-specifier and build a
73 // typename type for it.
74 assert(NNS
->getAsIdentifier() == &Name
&& "not a constructor name");
75 Type
= Context
.getDependentNameType(
76 ElaboratedTypeKeyword::None
, NNS
->getPrefix(), NNS
->getAsIdentifier());
79 case NestedNameSpecifier::Global
:
80 case NestedNameSpecifier::Super
:
81 case NestedNameSpecifier::Namespace
:
82 case NestedNameSpecifier::NamespaceAlias
:
83 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
86 // This reference to the type is located entirely at the location of the
87 // final identifier in the qualified-id.
88 return CreateParsedType(Type
,
89 Context
.getTrivialTypeSourceInfo(Type
, NameLoc
));
92 ParsedType
Sema::getConstructorName(IdentifierInfo
&II
,
93 SourceLocation NameLoc
,
94 Scope
*S
, CXXScopeSpec
&SS
,
95 bool EnteringContext
) {
96 CXXRecordDecl
*CurClass
= getCurrentClass(S
, &SS
);
97 assert(CurClass
&& &II
== CurClass
->getIdentifier() &&
98 "not a constructor name");
100 // When naming a constructor as a member of a dependent context (eg, in a
101 // friend declaration or an inherited constructor declaration), form an
102 // unresolved "typename" type.
103 if (CurClass
->isDependentContext() && !EnteringContext
&& SS
.getScopeRep()) {
104 QualType T
= Context
.getDependentNameType(ElaboratedTypeKeyword::None
,
105 SS
.getScopeRep(), &II
);
106 return ParsedType::make(T
);
109 if (SS
.isNotEmpty() && RequireCompleteDeclContext(SS
, CurClass
))
112 // Find the injected-class-name declaration. Note that we make no attempt to
113 // diagnose cases where the injected-class-name is shadowed: the only
114 // declaration that can validly shadow the injected-class-name is a
115 // non-static data member, and if the class contains both a non-static data
116 // member and a constructor then it is ill-formed (we check that in
117 // CheckCompletedCXXClass).
118 CXXRecordDecl
*InjectedClassName
= nullptr;
119 for (NamedDecl
*ND
: CurClass
->lookup(&II
)) {
120 auto *RD
= dyn_cast
<CXXRecordDecl
>(ND
);
121 if (RD
&& RD
->isInjectedClassName()) {
122 InjectedClassName
= RD
;
126 if (!InjectedClassName
) {
127 if (!CurClass
->isInvalidDecl()) {
128 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
129 // properly. Work around it here for now.
130 Diag(SS
.getLastQualifierNameLoc(),
131 diag::err_incomplete_nested_name_spec
) << CurClass
<< SS
.getRange();
136 QualType T
= Context
.getTypeDeclType(InjectedClassName
);
137 DiagnoseUseOfDecl(InjectedClassName
, NameLoc
);
138 MarkAnyDeclReferenced(NameLoc
, InjectedClassName
, /*OdrUse=*/false);
140 return ParsedType::make(T
);
143 ParsedType
Sema::getDestructorName(IdentifierInfo
&II
, SourceLocation NameLoc
,
144 Scope
*S
, CXXScopeSpec
&SS
,
145 ParsedType ObjectTypePtr
,
146 bool EnteringContext
) {
147 // Determine where to perform name lookup.
149 // FIXME: This area of the standard is very messy, and the current
150 // wording is rather unclear about which scopes we search for the
151 // destructor name; see core issues 399 and 555. Issue 399 in
152 // particular shows where the current description of destructor name
153 // lookup is completely out of line with existing practice, e.g.,
154 // this appears to be ill-formed:
157 // template <typename T> struct S {
162 // void f(N::S<int>* s) {
163 // s->N::S<int>::~S();
166 // See also PR6358 and PR6359.
168 // For now, we accept all the cases in which the name given could plausibly
169 // be interpreted as a correct destructor name, issuing off-by-default
170 // extension diagnostics on the cases that don't strictly conform to the
171 // C++20 rules. This basically means we always consider looking in the
172 // nested-name-specifier prefix, the complete nested-name-specifier, and
173 // the scope, and accept if we find the expected type in any of the three
179 // Whether we've failed with a diagnostic already.
182 llvm::SmallVector
<NamedDecl
*, 8> FoundDecls
;
183 llvm::SmallPtrSet
<CanonicalDeclPtr
<Decl
>, 8> FoundDeclSet
;
185 // If we have an object type, it's because we are in a
186 // pseudo-destructor-expression or a member access expression, and
187 // we know what type we're looking for.
188 QualType SearchType
=
189 ObjectTypePtr
? GetTypeFromParser(ObjectTypePtr
) : QualType();
191 auto CheckLookupResult
= [&](LookupResult
&Found
) -> ParsedType
{
192 auto IsAcceptableResult
= [&](NamedDecl
*D
) -> bool {
193 auto *Type
= dyn_cast
<TypeDecl
>(D
->getUnderlyingDecl());
197 if (SearchType
.isNull() || SearchType
->isDependentType())
200 QualType T
= Context
.getTypeDeclType(Type
);
201 return Context
.hasSameUnqualifiedType(T
, SearchType
);
204 unsigned NumAcceptableResults
= 0;
205 for (NamedDecl
*D
: Found
) {
206 if (IsAcceptableResult(D
))
207 ++NumAcceptableResults
;
209 // Don't list a class twice in the lookup failure diagnostic if it's
210 // found by both its injected-class-name and by the name in the enclosing
212 if (auto *RD
= dyn_cast
<CXXRecordDecl
>(D
))
213 if (RD
->isInjectedClassName())
214 D
= cast
<NamedDecl
>(RD
->getParent());
216 if (FoundDeclSet
.insert(D
).second
)
217 FoundDecls
.push_back(D
);
220 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
221 // results, and all non-matching results if we have a search type. It's not
222 // clear what the right behavior is if destructor lookup hits an ambiguity,
223 // but other compilers do generally accept at least some kinds of
225 if (Found
.isAmbiguous() && NumAcceptableResults
== 1) {
226 Diag(NameLoc
, diag::ext_dtor_name_ambiguous
);
227 LookupResult::Filter F
= Found
.makeFilter();
228 while (F
.hasNext()) {
229 NamedDecl
*D
= F
.next();
230 if (auto *TD
= dyn_cast
<TypeDecl
>(D
->getUnderlyingDecl()))
231 Diag(D
->getLocation(), diag::note_destructor_type_here
)
232 << Context
.getTypeDeclType(TD
);
234 Diag(D
->getLocation(), diag::note_destructor_nontype_here
);
236 if (!IsAcceptableResult(D
))
242 if (Found
.isAmbiguous())
245 if (TypeDecl
*Type
= Found
.getAsSingle
<TypeDecl
>()) {
246 if (IsAcceptableResult(Type
)) {
247 QualType T
= Context
.getTypeDeclType(Type
);
248 MarkAnyDeclReferenced(Type
->getLocation(), Type
, /*OdrUse=*/false);
249 return CreateParsedType(
250 Context
.getElaboratedType(ElaboratedTypeKeyword::None
, nullptr, T
),
251 Context
.getTrivialTypeSourceInfo(T
, NameLoc
));
258 bool IsDependent
= false;
260 auto LookupInObjectType
= [&]() -> ParsedType
{
261 if (Failed
|| SearchType
.isNull())
264 IsDependent
|= SearchType
->isDependentType();
266 LookupResult
Found(*this, &II
, NameLoc
, LookupDestructorName
);
267 DeclContext
*LookupCtx
= computeDeclContext(SearchType
);
270 LookupQualifiedName(Found
, LookupCtx
);
271 return CheckLookupResult(Found
);
274 auto LookupInNestedNameSpec
= [&](CXXScopeSpec
&LookupSS
) -> ParsedType
{
278 IsDependent
|= isDependentScopeSpecifier(LookupSS
);
279 DeclContext
*LookupCtx
= computeDeclContext(LookupSS
, EnteringContext
);
283 LookupResult
Found(*this, &II
, NameLoc
, LookupDestructorName
);
284 if (RequireCompleteDeclContext(LookupSS
, LookupCtx
)) {
288 LookupQualifiedName(Found
, LookupCtx
);
289 return CheckLookupResult(Found
);
292 auto LookupInScope
= [&]() -> ParsedType
{
296 LookupResult
Found(*this, &II
, NameLoc
, LookupDestructorName
);
297 LookupName(Found
, S
);
298 return CheckLookupResult(Found
);
301 // C++2a [basic.lookup.qual]p6:
302 // In a qualified-id of the form
304 // nested-name-specifier[opt] type-name :: ~ type-name
306 // the second type-name is looked up in the same scope as the first.
308 // We interpret this as meaning that if you do a dual-scope lookup for the
309 // first name, you also do a dual-scope lookup for the second name, per
310 // C++ [basic.lookup.classref]p4:
312 // If the id-expression in a class member access is a qualified-id of the
315 // class-name-or-namespace-name :: ...
317 // the class-name-or-namespace-name following the . or -> is first looked
318 // up in the class of the object expression and the name, if found, is used.
319 // Otherwise, it is looked up in the context of the entire
320 // postfix-expression.
322 // This looks in the same scopes as for an unqualified destructor name:
324 // C++ [basic.lookup.classref]p3:
325 // If the unqualified-id is ~ type-name, the type-name is looked up
326 // in the context of the entire postfix-expression. If the type T
327 // of the object expression is of a class type C, the type-name is
328 // also looked up in the scope of class C. At least one of the
329 // lookups shall find a name that refers to cv T.
331 // FIXME: The intent is unclear here. Should type-name::~type-name look in
332 // the scope anyway if it finds a non-matching name declared in the class?
333 // If both lookups succeed and find a dependent result, which result should
334 // we retain? (Same question for p->~type-name().)
336 if (NestedNameSpecifier
*Prefix
=
337 SS
.isSet() ? SS
.getScopeRep()->getPrefix() : nullptr) {
340 // nested-name-specifier type-name :: ~ type-name
342 // Look for the second type-name in the nested-name-specifier.
343 CXXScopeSpec PrefixSS
;
344 PrefixSS
.Adopt(NestedNameSpecifierLoc(Prefix
, SS
.location_data()));
345 if (ParsedType T
= LookupInNestedNameSpec(PrefixSS
))
350 // type-name :: ~ type-name
353 // Look in the scope and (if any) the object type.
354 if (ParsedType T
= LookupInScope())
356 if (ParsedType T
= LookupInObjectType())
364 // We didn't find our type, but that's OK: it's dependent anyway.
366 // FIXME: What if we have no nested-name-specifier?
368 CheckTypenameType(ElaboratedTypeKeyword::None
, SourceLocation(),
369 SS
.getWithLocInContext(Context
), II
, NameLoc
);
370 return ParsedType::make(T
);
373 // The remaining cases are all non-standard extensions imitating the behavior
374 // of various other compilers.
375 unsigned NumNonExtensionDecls
= FoundDecls
.size();
378 // For compatibility with older broken C++ rules and existing code,
380 // nested-name-specifier :: ~ type-name
382 // also looks for type-name within the nested-name-specifier.
383 if (ParsedType T
= LookupInNestedNameSpec(SS
)) {
384 Diag(SS
.getEndLoc(), diag::ext_dtor_named_in_wrong_scope
)
386 << FixItHint::CreateInsertion(SS
.getEndLoc(),
387 ("::" + II
.getName()).str());
391 // For compatibility with other compilers and older versions of Clang,
393 // nested-name-specifier type-name :: ~ type-name
395 // also looks for type-name in the scope. Unfortunately, we can't
396 // reasonably apply this fallback for dependent nested-name-specifiers.
397 if (SS
.isValid() && SS
.getScopeRep()->getPrefix()) {
398 if (ParsedType T
= LookupInScope()) {
399 Diag(SS
.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope
)
400 << FixItHint::CreateRemoval(SS
.getRange());
401 Diag(FoundDecls
.back()->getLocation(), diag::note_destructor_type_here
)
402 << GetTypeFromParser(T
);
408 // We didn't find anything matching; tell the user what we did find (if
411 // Don't tell the user about declarations we shouldn't have found.
412 FoundDecls
.resize(NumNonExtensionDecls
);
414 // List types before non-types.
415 std::stable_sort(FoundDecls
.begin(), FoundDecls
.end(),
416 [](NamedDecl
*A
, NamedDecl
*B
) {
417 return isa
<TypeDecl
>(A
->getUnderlyingDecl()) >
418 isa
<TypeDecl
>(B
->getUnderlyingDecl());
421 // Suggest a fixit to properly name the destroyed type.
422 auto MakeFixItHint
= [&]{
423 const CXXRecordDecl
*Destroyed
= nullptr;
424 // FIXME: If we have a scope specifier, suggest its last component?
425 if (!SearchType
.isNull())
426 Destroyed
= SearchType
->getAsCXXRecordDecl();
428 Destroyed
= dyn_cast_or_null
<CXXRecordDecl
>(S
->getEntity());
430 return FixItHint::CreateReplacement(SourceRange(NameLoc
),
431 Destroyed
->getNameAsString());
435 if (FoundDecls
.empty()) {
436 // FIXME: Attempt typo-correction?
437 Diag(NameLoc
, diag::err_undeclared_destructor_name
)
438 << &II
<< MakeFixItHint();
439 } else if (!SearchType
.isNull() && FoundDecls
.size() == 1) {
440 if (auto *TD
= dyn_cast
<TypeDecl
>(FoundDecls
[0]->getUnderlyingDecl())) {
441 assert(!SearchType
.isNull() &&
442 "should only reject a type result if we have a search type");
443 QualType T
= Context
.getTypeDeclType(TD
);
444 Diag(NameLoc
, diag::err_destructor_expr_type_mismatch
)
445 << T
<< SearchType
<< MakeFixItHint();
447 Diag(NameLoc
, diag::err_destructor_expr_nontype
)
448 << &II
<< MakeFixItHint();
451 Diag(NameLoc
, SearchType
.isNull() ? diag::err_destructor_name_nontype
452 : diag::err_destructor_expr_mismatch
)
453 << &II
<< SearchType
<< MakeFixItHint();
456 for (NamedDecl
*FoundD
: FoundDecls
) {
457 if (auto *TD
= dyn_cast
<TypeDecl
>(FoundD
->getUnderlyingDecl()))
458 Diag(FoundD
->getLocation(), diag::note_destructor_type_here
)
459 << Context
.getTypeDeclType(TD
);
461 Diag(FoundD
->getLocation(), diag::note_destructor_nontype_here
)
468 ParsedType
Sema::getDestructorTypeForDecltype(const DeclSpec
&DS
,
469 ParsedType ObjectType
) {
470 if (DS
.getTypeSpecType() == DeclSpec::TST_error
)
473 if (DS
.getTypeSpecType() == DeclSpec::TST_decltype_auto
) {
474 Diag(DS
.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid
);
478 assert(DS
.getTypeSpecType() == DeclSpec::TST_decltype
&&
479 "unexpected type in getDestructorType");
480 QualType T
= BuildDecltypeType(DS
.getRepAsExpr());
482 // If we know the type of the object, check that the correct destructor
483 // type was named now; we can give better diagnostics this way.
484 QualType SearchType
= GetTypeFromParser(ObjectType
);
485 if (!SearchType
.isNull() && !SearchType
->isDependentType() &&
486 !Context
.hasSameUnqualifiedType(T
, SearchType
)) {
487 Diag(DS
.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch
)
492 return ParsedType::make(T
);
495 bool Sema::checkLiteralOperatorId(const CXXScopeSpec
&SS
,
496 const UnqualifiedId
&Name
, bool IsUDSuffix
) {
497 assert(Name
.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId
);
501 // double operator""_Bq(long double); // OK: not a reserved identifier
502 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
503 IdentifierInfo
*II
= Name
.Identifier
;
504 ReservedIdentifierStatus Status
= II
->isReserved(PP
.getLangOpts());
505 SourceLocation Loc
= Name
.getEndLoc();
506 if (!PP
.getSourceManager().isInSystemHeader(Loc
)) {
507 if (auto Hint
= FixItHint::CreateReplacement(
508 Name
.getSourceRange(),
509 (StringRef("operator\"\"") + II
->getName()).str());
510 isReservedInAllContexts(Status
)) {
511 Diag(Loc
, diag::warn_reserved_extern_symbol
)
512 << II
<< static_cast<int>(Status
) << Hint
;
514 Diag(Loc
, diag::warn_deprecated_literal_operator_id
) << II
<< Hint
;
522 switch (SS
.getScopeRep()->getKind()) {
523 case NestedNameSpecifier::Identifier
:
524 case NestedNameSpecifier::TypeSpec
:
525 case NestedNameSpecifier::TypeSpecWithTemplate
:
526 // Per C++11 [over.literal]p2, literal operators can only be declared at
527 // namespace scope. Therefore, this unqualified-id cannot name anything.
528 // Reject it early, because we have no AST representation for this in the
529 // case where the scope is dependent.
530 Diag(Name
.getBeginLoc(), diag::err_literal_operator_id_outside_namespace
)
534 case NestedNameSpecifier::Global
:
535 case NestedNameSpecifier::Super
:
536 case NestedNameSpecifier::Namespace
:
537 case NestedNameSpecifier::NamespaceAlias
:
541 llvm_unreachable("unknown nested name specifier kind");
544 /// Build a C++ typeid expression with a type operand.
545 ExprResult
Sema::BuildCXXTypeId(QualType TypeInfoType
,
546 SourceLocation TypeidLoc
,
547 TypeSourceInfo
*Operand
,
548 SourceLocation RParenLoc
) {
549 // C++ [expr.typeid]p4:
550 // The top-level cv-qualifiers of the lvalue expression or the type-id
551 // that is the operand of typeid are always ignored.
552 // If the type of the type-id is a class type or a reference to a class
553 // type, the class shall be completely-defined.
556 = Context
.getUnqualifiedArrayType(Operand
->getType().getNonReferenceType(),
558 if (T
->getAs
<RecordType
>() &&
559 RequireCompleteType(TypeidLoc
, T
, diag::err_incomplete_typeid
))
562 if (T
->isVariablyModifiedType())
563 return ExprError(Diag(TypeidLoc
, diag::err_variably_modified_typeid
) << T
);
565 if (CheckQualifiedFunctionForTypeId(T
, TypeidLoc
))
568 return new (Context
) CXXTypeidExpr(TypeInfoType
.withConst(), Operand
,
569 SourceRange(TypeidLoc
, RParenLoc
));
572 /// Build a C++ typeid expression with an expression operand.
573 ExprResult
Sema::BuildCXXTypeId(QualType TypeInfoType
,
574 SourceLocation TypeidLoc
,
576 SourceLocation RParenLoc
) {
577 bool WasEvaluated
= false;
578 if (E
&& !E
->isTypeDependent()) {
579 if (E
->hasPlaceholderType()) {
580 ExprResult result
= CheckPlaceholderExpr(E
);
581 if (result
.isInvalid()) return ExprError();
585 QualType T
= E
->getType();
586 if (const RecordType
*RecordT
= T
->getAs
<RecordType
>()) {
587 CXXRecordDecl
*RecordD
= cast
<CXXRecordDecl
>(RecordT
->getDecl());
588 // C++ [expr.typeid]p3:
589 // [...] If the type of the expression is a class type, the class
590 // shall be completely-defined.
591 if (RequireCompleteType(TypeidLoc
, T
, diag::err_incomplete_typeid
))
594 // C++ [expr.typeid]p3:
595 // When typeid is applied to an expression other than an glvalue of a
596 // polymorphic class type [...] [the] expression is an unevaluated
598 if (RecordD
->isPolymorphic() && E
->isGLValue()) {
599 if (isUnevaluatedContext()) {
600 // The operand was processed in unevaluated context, switch the
601 // context and recheck the subexpression.
602 ExprResult Result
= TransformToPotentiallyEvaluated(E
);
603 if (Result
.isInvalid())
608 // We require a vtable to query the type at run time.
609 MarkVTableUsed(TypeidLoc
, RecordD
);
614 ExprResult Result
= CheckUnevaluatedOperand(E
);
615 if (Result
.isInvalid())
619 // C++ [expr.typeid]p4:
620 // [...] If the type of the type-id is a reference to a possibly
621 // cv-qualified type, the result of the typeid expression refers to a
622 // std::type_info object representing the cv-unqualified referenced
625 QualType UnqualT
= Context
.getUnqualifiedArrayType(T
, Quals
);
626 if (!Context
.hasSameType(T
, UnqualT
)) {
628 E
= ImpCastExprToType(E
, UnqualT
, CK_NoOp
, E
->getValueKind()).get();
632 if (E
->getType()->isVariablyModifiedType())
633 return ExprError(Diag(TypeidLoc
, diag::err_variably_modified_typeid
)
635 else if (!inTemplateInstantiation() &&
636 E
->HasSideEffects(Context
, WasEvaluated
)) {
637 // The expression operand for typeid is in an unevaluated expression
638 // context, so side effects could result in unintended consequences.
639 Diag(E
->getExprLoc(), WasEvaluated
640 ? diag::warn_side_effects_typeid
641 : diag::warn_side_effects_unevaluated_context
);
644 return new (Context
) CXXTypeidExpr(TypeInfoType
.withConst(), E
,
645 SourceRange(TypeidLoc
, RParenLoc
));
648 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
650 Sema::ActOnCXXTypeid(SourceLocation OpLoc
, SourceLocation LParenLoc
,
651 bool isType
, void *TyOrExpr
, SourceLocation RParenLoc
) {
652 // typeid is not supported in OpenCL.
653 if (getLangOpts().OpenCLCPlusPlus
) {
654 return ExprError(Diag(OpLoc
, diag::err_openclcxx_not_supported
)
658 // Find the std::type_info type.
659 if (!getStdNamespace())
660 return ExprError(Diag(OpLoc
, diag::err_need_header_before_typeid
));
662 if (!CXXTypeInfoDecl
) {
663 IdentifierInfo
*TypeInfoII
= &PP
.getIdentifierTable().get("type_info");
664 LookupResult
R(*this, TypeInfoII
, SourceLocation(), LookupTagName
);
665 LookupQualifiedName(R
, getStdNamespace());
666 CXXTypeInfoDecl
= R
.getAsSingle
<RecordDecl
>();
667 // Microsoft's typeinfo doesn't have type_info in std but in the global
668 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
669 if (!CXXTypeInfoDecl
&& LangOpts
.MSVCCompat
) {
670 LookupQualifiedName(R
, Context
.getTranslationUnitDecl());
671 CXXTypeInfoDecl
= R
.getAsSingle
<RecordDecl
>();
673 if (!CXXTypeInfoDecl
)
674 return ExprError(Diag(OpLoc
, diag::err_need_header_before_typeid
));
677 if (!getLangOpts().RTTI
) {
678 return ExprError(Diag(OpLoc
, diag::err_no_typeid_with_fno_rtti
));
681 QualType TypeInfoType
= Context
.getTypeDeclType(CXXTypeInfoDecl
);
684 // The operand is a type; handle it as such.
685 TypeSourceInfo
*TInfo
= nullptr;
686 QualType T
= GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr
),
692 TInfo
= Context
.getTrivialTypeSourceInfo(T
, OpLoc
);
694 return BuildCXXTypeId(TypeInfoType
, OpLoc
, TInfo
, RParenLoc
);
697 // The operand is an expression.
699 BuildCXXTypeId(TypeInfoType
, OpLoc
, (Expr
*)TyOrExpr
, RParenLoc
);
701 if (!getLangOpts().RTTIData
&& !Result
.isInvalid())
702 if (auto *CTE
= dyn_cast
<CXXTypeidExpr
>(Result
.get()))
703 if (CTE
->isPotentiallyEvaluated() && !CTE
->isMostDerived(Context
))
704 Diag(OpLoc
, diag::warn_no_typeid_with_rtti_disabled
)
705 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
706 DiagnosticOptions::MSVC
);
710 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
713 getUuidAttrOfType(Sema
&SemaRef
, QualType QT
,
714 llvm::SmallSetVector
<const UuidAttr
*, 1> &UuidAttrs
) {
715 // Optionally remove one level of pointer, reference or array indirection.
716 const Type
*Ty
= QT
.getTypePtr();
717 if (QT
->isPointerType() || QT
->isReferenceType())
718 Ty
= QT
->getPointeeType().getTypePtr();
719 else if (QT
->isArrayType())
720 Ty
= Ty
->getBaseElementTypeUnsafe();
722 const auto *TD
= Ty
->getAsTagDecl();
726 if (const auto *Uuid
= TD
->getMostRecentDecl()->getAttr
<UuidAttr
>()) {
727 UuidAttrs
.insert(Uuid
);
731 // __uuidof can grab UUIDs from template arguments.
732 if (const auto *CTSD
= dyn_cast
<ClassTemplateSpecializationDecl
>(TD
)) {
733 const TemplateArgumentList
&TAL
= CTSD
->getTemplateArgs();
734 for (const TemplateArgument
&TA
: TAL
.asArray()) {
735 const UuidAttr
*UuidForTA
= nullptr;
736 if (TA
.getKind() == TemplateArgument::Type
)
737 getUuidAttrOfType(SemaRef
, TA
.getAsType(), UuidAttrs
);
738 else if (TA
.getKind() == TemplateArgument::Declaration
)
739 getUuidAttrOfType(SemaRef
, TA
.getAsDecl()->getType(), UuidAttrs
);
742 UuidAttrs
.insert(UuidForTA
);
747 /// Build a Microsoft __uuidof expression with a type operand.
748 ExprResult
Sema::BuildCXXUuidof(QualType Type
,
749 SourceLocation TypeidLoc
,
750 TypeSourceInfo
*Operand
,
751 SourceLocation RParenLoc
) {
752 MSGuidDecl
*Guid
= nullptr;
753 if (!Operand
->getType()->isDependentType()) {
754 llvm::SmallSetVector
<const UuidAttr
*, 1> UuidAttrs
;
755 getUuidAttrOfType(*this, Operand
->getType(), UuidAttrs
);
756 if (UuidAttrs
.empty())
757 return ExprError(Diag(TypeidLoc
, diag::err_uuidof_without_guid
));
758 if (UuidAttrs
.size() > 1)
759 return ExprError(Diag(TypeidLoc
, diag::err_uuidof_with_multiple_guids
));
760 Guid
= UuidAttrs
.back()->getGuidDecl();
764 CXXUuidofExpr(Type
, Operand
, Guid
, SourceRange(TypeidLoc
, RParenLoc
));
767 /// Build a Microsoft __uuidof expression with an expression operand.
768 ExprResult
Sema::BuildCXXUuidof(QualType Type
, SourceLocation TypeidLoc
,
769 Expr
*E
, SourceLocation RParenLoc
) {
770 MSGuidDecl
*Guid
= nullptr;
771 if (!E
->getType()->isDependentType()) {
772 if (E
->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull
)) {
773 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
774 Guid
= Context
.getMSGuidDecl(MSGuidDecl::Parts
{});
776 llvm::SmallSetVector
<const UuidAttr
*, 1> UuidAttrs
;
777 getUuidAttrOfType(*this, E
->getType(), UuidAttrs
);
778 if (UuidAttrs
.empty())
779 return ExprError(Diag(TypeidLoc
, diag::err_uuidof_without_guid
));
780 if (UuidAttrs
.size() > 1)
781 return ExprError(Diag(TypeidLoc
, diag::err_uuidof_with_multiple_guids
));
782 Guid
= UuidAttrs
.back()->getGuidDecl();
787 CXXUuidofExpr(Type
, E
, Guid
, SourceRange(TypeidLoc
, RParenLoc
));
790 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
792 Sema::ActOnCXXUuidof(SourceLocation OpLoc
, SourceLocation LParenLoc
,
793 bool isType
, void *TyOrExpr
, SourceLocation RParenLoc
) {
794 QualType GuidType
= Context
.getMSGuidType();
798 // The operand is a type; handle it as such.
799 TypeSourceInfo
*TInfo
= nullptr;
800 QualType T
= GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr
),
806 TInfo
= Context
.getTrivialTypeSourceInfo(T
, OpLoc
);
808 return BuildCXXUuidof(GuidType
, OpLoc
, TInfo
, RParenLoc
);
811 // The operand is an expression.
812 return BuildCXXUuidof(GuidType
, OpLoc
, (Expr
*)TyOrExpr
, RParenLoc
);
815 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
817 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc
, tok::TokenKind Kind
) {
818 assert((Kind
== tok::kw_true
|| Kind
== tok::kw_false
) &&
819 "Unknown C++ Boolean value!");
821 CXXBoolLiteralExpr(Kind
== tok::kw_true
, Context
.BoolTy
, OpLoc
);
824 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
826 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc
) {
827 return new (Context
) CXXNullPtrLiteralExpr(Context
.NullPtrTy
, Loc
);
830 /// ActOnCXXThrow - Parse throw expressions.
832 Sema::ActOnCXXThrow(Scope
*S
, SourceLocation OpLoc
, Expr
*Ex
) {
833 bool IsThrownVarInScope
= false;
835 // C++0x [class.copymove]p31:
836 // When certain criteria are met, an implementation is allowed to omit the
837 // copy/move construction of a class object [...]
839 // - in a throw-expression, when the operand is the name of a
840 // non-volatile automatic object (other than a function or catch-
841 // clause parameter) whose scope does not extend beyond the end of the
842 // innermost enclosing try-block (if there is one), the copy/move
843 // operation from the operand to the exception object (15.1) can be
844 // omitted by constructing the automatic object directly into the
846 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(Ex
->IgnoreParens()))
847 if (const auto *Var
= dyn_cast
<VarDecl
>(DRE
->getDecl());
848 Var
&& Var
->hasLocalStorage() &&
849 !Var
->getType().isVolatileQualified()) {
850 for (; S
; S
= S
->getParent()) {
851 if (S
->isDeclScope(Var
)) {
852 IsThrownVarInScope
= true;
856 // FIXME: Many of the scope checks here seem incorrect.
858 (Scope::FnScope
| Scope::ClassScope
| Scope::BlockScope
|
859 Scope::ObjCMethodScope
| Scope::TryScope
))
865 return BuildCXXThrow(OpLoc
, Ex
, IsThrownVarInScope
);
868 ExprResult
Sema::BuildCXXThrow(SourceLocation OpLoc
, Expr
*Ex
,
869 bool IsThrownVarInScope
) {
870 const llvm::Triple
&T
= Context
.getTargetInfo().getTriple();
871 const bool IsOpenMPGPUTarget
=
872 getLangOpts().OpenMPIsTargetDevice
&& (T
.isNVPTX() || T
.isAMDGCN());
873 // Don't report an error if 'throw' is used in system headers or in an OpenMP
874 // target region compiled for a GPU architecture.
875 if (!IsOpenMPGPUTarget
&& !getLangOpts().CXXExceptions
&&
876 !getSourceManager().isInSystemHeader(OpLoc
) && !getLangOpts().CUDA
) {
877 // Delay error emission for the OpenMP device code.
878 targetDiag(OpLoc
, diag::err_exceptions_disabled
) << "throw";
881 // In OpenMP target regions, we replace 'throw' with a trap on GPU targets.
882 if (IsOpenMPGPUTarget
)
883 targetDiag(OpLoc
, diag::warn_throw_not_valid_on_target
) << T
.str();
885 // Exceptions aren't allowed in CUDA device code.
886 if (getLangOpts().CUDA
)
887 CUDADiagIfDeviceCode(OpLoc
, diag::err_cuda_device_exceptions
)
888 << "throw" << CurrentCUDATarget();
890 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
891 Diag(OpLoc
, diag::err_omp_simd_region_cannot_use_stmt
) << "throw";
893 if (Ex
&& !Ex
->isTypeDependent()) {
894 // Initialize the exception result. This implicitly weeds out
895 // abstract types or types with inaccessible copy constructors.
897 // C++0x [class.copymove]p31:
898 // When certain criteria are met, an implementation is allowed to omit the
899 // copy/move construction of a class object [...]
901 // - in a throw-expression, when the operand is the name of a
902 // non-volatile automatic object (other than a function or
904 // parameter) whose scope does not extend beyond the end of the
905 // innermost enclosing try-block (if there is one), the copy/move
906 // operation from the operand to the exception object (15.1) can be
907 // omitted by constructing the automatic object directly into the
909 NamedReturnInfo NRInfo
=
910 IsThrownVarInScope
? getNamedReturnInfo(Ex
) : NamedReturnInfo();
912 QualType ExceptionObjectTy
= Context
.getExceptionObjectType(Ex
->getType());
913 if (CheckCXXThrowOperand(OpLoc
, ExceptionObjectTy
, Ex
))
916 InitializedEntity Entity
=
917 InitializedEntity::InitializeException(OpLoc
, ExceptionObjectTy
);
918 ExprResult Res
= PerformMoveOrCopyInitialization(Entity
, NRInfo
, Ex
);
924 // PPC MMA non-pointer types are not allowed as throw expr types.
925 if (Ex
&& Context
.getTargetInfo().getTriple().isPPC64())
926 CheckPPCMMAType(Ex
->getType(), Ex
->getBeginLoc());
929 CXXThrowExpr(Ex
, Context
.VoidTy
, OpLoc
, IsThrownVarInScope
);
933 collectPublicBases(CXXRecordDecl
*RD
,
934 llvm::DenseMap
<CXXRecordDecl
*, unsigned> &SubobjectsSeen
,
935 llvm::SmallPtrSetImpl
<CXXRecordDecl
*> &VBases
,
936 llvm::SetVector
<CXXRecordDecl
*> &PublicSubobjectsSeen
,
937 bool ParentIsPublic
) {
938 for (const CXXBaseSpecifier
&BS
: RD
->bases()) {
939 CXXRecordDecl
*BaseDecl
= BS
.getType()->getAsCXXRecordDecl();
941 // Virtual bases constitute the same subobject. Non-virtual bases are
942 // always distinct subobjects.
944 NewSubobject
= VBases
.insert(BaseDecl
).second
;
949 ++SubobjectsSeen
[BaseDecl
];
951 // Only add subobjects which have public access throughout the entire chain.
952 bool PublicPath
= ParentIsPublic
&& BS
.getAccessSpecifier() == AS_public
;
954 PublicSubobjectsSeen
.insert(BaseDecl
);
956 // Recurse on to each base subobject.
957 collectPublicBases(BaseDecl
, SubobjectsSeen
, VBases
, PublicSubobjectsSeen
,
962 static void getUnambiguousPublicSubobjects(
963 CXXRecordDecl
*RD
, llvm::SmallVectorImpl
<CXXRecordDecl
*> &Objects
) {
964 llvm::DenseMap
<CXXRecordDecl
*, unsigned> SubobjectsSeen
;
965 llvm::SmallSet
<CXXRecordDecl
*, 2> VBases
;
966 llvm::SetVector
<CXXRecordDecl
*> PublicSubobjectsSeen
;
967 SubobjectsSeen
[RD
] = 1;
968 PublicSubobjectsSeen
.insert(RD
);
969 collectPublicBases(RD
, SubobjectsSeen
, VBases
, PublicSubobjectsSeen
,
970 /*ParentIsPublic=*/true);
972 for (CXXRecordDecl
*PublicSubobject
: PublicSubobjectsSeen
) {
973 // Skip ambiguous objects.
974 if (SubobjectsSeen
[PublicSubobject
] > 1)
977 Objects
.push_back(PublicSubobject
);
981 /// CheckCXXThrowOperand - Validate the operand of a throw.
982 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc
,
983 QualType ExceptionObjectTy
, Expr
*E
) {
984 // If the type of the exception would be an incomplete type or a pointer
985 // to an incomplete type other than (cv) void the program is ill-formed.
986 QualType Ty
= ExceptionObjectTy
;
987 bool isPointer
= false;
988 if (const PointerType
* Ptr
= Ty
->getAs
<PointerType
>()) {
989 Ty
= Ptr
->getPointeeType();
993 // Cannot throw WebAssembly reference type.
994 if (Ty
.isWebAssemblyReferenceType()) {
995 Diag(ThrowLoc
, diag::err_wasm_reftype_tc
) << 0 << E
->getSourceRange();
999 // Cannot throw WebAssembly table.
1000 if (isPointer
&& Ty
.isWebAssemblyReferenceType()) {
1001 Diag(ThrowLoc
, diag::err_wasm_table_art
) << 2 << E
->getSourceRange();
1005 if (!isPointer
|| !Ty
->isVoidType()) {
1006 if (RequireCompleteType(ThrowLoc
, Ty
,
1007 isPointer
? diag::err_throw_incomplete_ptr
1008 : diag::err_throw_incomplete
,
1009 E
->getSourceRange()))
1012 if (!isPointer
&& Ty
->isSizelessType()) {
1013 Diag(ThrowLoc
, diag::err_throw_sizeless
) << Ty
<< E
->getSourceRange();
1017 if (RequireNonAbstractType(ThrowLoc
, ExceptionObjectTy
,
1018 diag::err_throw_abstract_type
, E
))
1022 // If the exception has class type, we need additional handling.
1023 CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
1027 // If we are throwing a polymorphic class type or pointer thereof,
1028 // exception handling will make use of the vtable.
1029 MarkVTableUsed(ThrowLoc
, RD
);
1031 // If a pointer is thrown, the referenced object will not be destroyed.
1035 // If the class has a destructor, we must be able to call it.
1036 if (!RD
->hasIrrelevantDestructor()) {
1037 if (CXXDestructorDecl
*Destructor
= LookupDestructor(RD
)) {
1038 MarkFunctionReferenced(E
->getExprLoc(), Destructor
);
1039 CheckDestructorAccess(E
->getExprLoc(), Destructor
,
1040 PDiag(diag::err_access_dtor_exception
) << Ty
);
1041 if (DiagnoseUseOfDecl(Destructor
, E
->getExprLoc()))
1046 // The MSVC ABI creates a list of all types which can catch the exception
1047 // object. This list also references the appropriate copy constructor to call
1048 // if the object is caught by value and has a non-trivial copy constructor.
1049 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
1050 // We are only interested in the public, unambiguous bases contained within
1051 // the exception object. Bases which are ambiguous or otherwise
1052 // inaccessible are not catchable types.
1053 llvm::SmallVector
<CXXRecordDecl
*, 2> UnambiguousPublicSubobjects
;
1054 getUnambiguousPublicSubobjects(RD
, UnambiguousPublicSubobjects
);
1056 for (CXXRecordDecl
*Subobject
: UnambiguousPublicSubobjects
) {
1057 // Attempt to lookup the copy constructor. Various pieces of machinery
1058 // will spring into action, like template instantiation, which means this
1059 // cannot be a simple walk of the class's decls. Instead, we must perform
1060 // lookup and overload resolution.
1061 CXXConstructorDecl
*CD
= LookupCopyingConstructor(Subobject
, 0);
1062 if (!CD
|| CD
->isDeleted())
1065 // Mark the constructor referenced as it is used by this throw expression.
1066 MarkFunctionReferenced(E
->getExprLoc(), CD
);
1068 // Skip this copy constructor if it is trivial, we don't need to record it
1069 // in the catchable type data.
1070 if (CD
->isTrivial())
1073 // The copy constructor is non-trivial, create a mapping from this class
1074 // type to this constructor.
1075 // N.B. The selection of copy constructor is not sensitive to this
1076 // particular throw-site. Lookup will be performed at the catch-site to
1077 // ensure that the copy constructor is, in fact, accessible (via
1078 // friendship or any other means).
1079 Context
.addCopyConstructorForExceptionObject(Subobject
, CD
);
1081 // We don't keep the instantiated default argument expressions around so
1082 // we must rebuild them here.
1083 for (unsigned I
= 1, E
= CD
->getNumParams(); I
!= E
; ++I
) {
1084 if (CheckCXXDefaultArgExpr(ThrowLoc
, CD
, CD
->getParamDecl(I
)))
1090 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1091 // the runtime with no ability for the compiler to request additional
1092 // alignment. Warn if the exception type requires alignment beyond the minimum
1093 // guaranteed by the target C++ runtime.
1094 if (Context
.getTargetInfo().getCXXABI().isItaniumFamily()) {
1095 CharUnits TypeAlign
= Context
.getTypeAlignInChars(Ty
);
1096 CharUnits ExnObjAlign
= Context
.getExnObjectAlignment();
1097 if (ExnObjAlign
< TypeAlign
) {
1098 Diag(ThrowLoc
, diag::warn_throw_underaligned_obj
);
1099 Diag(ThrowLoc
, diag::note_throw_underaligned_obj
)
1100 << Ty
<< (unsigned)TypeAlign
.getQuantity()
1101 << (unsigned)ExnObjAlign
.getQuantity();
1104 if (!isPointer
&& getLangOpts().AssumeNothrowExceptionDtor
) {
1105 if (CXXDestructorDecl
*Dtor
= RD
->getDestructor()) {
1106 auto Ty
= Dtor
->getType();
1107 if (auto *FT
= Ty
.getTypePtr()->getAs
<FunctionProtoType
>()) {
1108 if (!isUnresolvedExceptionSpec(FT
->getExceptionSpecType()) &&
1110 Diag(ThrowLoc
, diag::err_throw_object_throwing_dtor
) << RD
;
1118 static QualType
adjustCVQualifiersForCXXThisWithinLambda(
1119 ArrayRef
<FunctionScopeInfo
*> FunctionScopes
, QualType ThisTy
,
1120 DeclContext
*CurSemaContext
, ASTContext
&ASTCtx
) {
1122 QualType ClassType
= ThisTy
->getPointeeType();
1123 LambdaScopeInfo
*CurLSI
= nullptr;
1124 DeclContext
*CurDC
= CurSemaContext
;
1126 // Iterate through the stack of lambdas starting from the innermost lambda to
1127 // the outermost lambda, checking if '*this' is ever captured by copy - since
1128 // that could change the cv-qualifiers of the '*this' object.
1129 // The object referred to by '*this' starts out with the cv-qualifiers of its
1130 // member function. We then start with the innermost lambda and iterate
1131 // outward checking to see if any lambda performs a by-copy capture of '*this'
1132 // - and if so, any nested lambda must respect the 'constness' of that
1133 // capturing lamdbda's call operator.
1136 // Since the FunctionScopeInfo stack is representative of the lexical
1137 // nesting of the lambda expressions during initial parsing (and is the best
1138 // place for querying information about captures about lambdas that are
1139 // partially processed) and perhaps during instantiation of function templates
1140 // that contain lambda expressions that need to be transformed BUT not
1141 // necessarily during instantiation of a nested generic lambda's function call
1142 // operator (which might even be instantiated at the end of the TU) - at which
1143 // time the DeclContext tree is mature enough to query capture information
1144 // reliably - we use a two pronged approach to walk through all the lexically
1145 // enclosing lambda expressions:
1147 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1148 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1149 // enclosed by the call-operator of the LSI below it on the stack (while
1150 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1151 // the stack represents the innermost lambda.
1153 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1154 // represents a lambda's call operator. If it does, we must be instantiating
1155 // a generic lambda's call operator (represented by the Current LSI, and
1156 // should be the only scenario where an inconsistency between the LSI and the
1157 // DeclContext should occur), so climb out the DeclContexts if they
1158 // represent lambdas, while querying the corresponding closure types
1159 // regarding capture information.
1161 // 1) Climb down the function scope info stack.
1162 for (int I
= FunctionScopes
.size();
1163 I
-- && isa
<LambdaScopeInfo
>(FunctionScopes
[I
]) &&
1164 (!CurLSI
|| !CurLSI
->Lambda
|| CurLSI
->Lambda
->getDeclContext() ==
1165 cast
<LambdaScopeInfo
>(FunctionScopes
[I
])->CallOperator
);
1166 CurDC
= getLambdaAwareParentOfDeclContext(CurDC
)) {
1167 CurLSI
= cast
<LambdaScopeInfo
>(FunctionScopes
[I
]);
1169 if (!CurLSI
->isCXXThisCaptured())
1172 auto C
= CurLSI
->getCXXThisCapture();
1174 if (C
.isCopyCapture()) {
1175 if (CurLSI
->lambdaCaptureShouldBeConst())
1176 ClassType
.addConst();
1177 return ASTCtx
.getPointerType(ClassType
);
1181 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1182 // can happen during instantiation of its nested generic lambda call
1183 // operator); 2. if we're in a lambda scope (lambda body).
1184 if (CurLSI
&& isLambdaCallOperator(CurDC
)) {
1185 assert(isGenericLambdaCallOperatorSpecialization(CurLSI
->CallOperator
) &&
1186 "While computing 'this' capture-type for a generic lambda, when we "
1187 "run out of enclosing LSI's, yet the enclosing DC is a "
1188 "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1189 "lambda call oeprator");
1190 assert(CurDC
== getLambdaAwareParentOfDeclContext(CurLSI
->CallOperator
));
1192 auto IsThisCaptured
=
1193 [](CXXRecordDecl
*Closure
, bool &IsByCopy
, bool &IsConst
) {
1196 for (auto &&C
: Closure
->captures()) {
1197 if (C
.capturesThis()) {
1198 if (C
.getCaptureKind() == LCK_StarThis
)
1200 if (Closure
->getLambdaCallOperator()->isConst())
1208 bool IsByCopyCapture
= false;
1209 bool IsConstCapture
= false;
1210 CXXRecordDecl
*Closure
= cast
<CXXRecordDecl
>(CurDC
->getParent());
1212 IsThisCaptured(Closure
, IsByCopyCapture
, IsConstCapture
)) {
1213 if (IsByCopyCapture
) {
1215 ClassType
.addConst();
1216 return ASTCtx
.getPointerType(ClassType
);
1218 Closure
= isLambdaCallOperator(Closure
->getParent())
1219 ? cast
<CXXRecordDecl
>(Closure
->getParent()->getParent())
1223 return ASTCtx
.getPointerType(ClassType
);
1226 QualType
Sema::getCurrentThisType() {
1227 DeclContext
*DC
= getFunctionLevelDeclContext();
1228 QualType ThisTy
= CXXThisTypeOverride
;
1230 if (CXXMethodDecl
*method
= dyn_cast
<CXXMethodDecl
>(DC
)) {
1231 if (method
&& method
->isImplicitObjectMemberFunction())
1232 ThisTy
= method
->getThisType().getNonReferenceType();
1235 if (ThisTy
.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext
) &&
1236 inTemplateInstantiation() && isa
<CXXRecordDecl
>(DC
)) {
1238 // This is a lambda call operator that is being instantiated as a default
1239 // initializer. DC must point to the enclosing class type, so we can recover
1240 // the 'this' type from it.
1241 QualType ClassTy
= Context
.getTypeDeclType(cast
<CXXRecordDecl
>(DC
));
1242 // There are no cv-qualifiers for 'this' within default initializers,
1243 // per [expr.prim.general]p4.
1244 ThisTy
= Context
.getPointerType(ClassTy
);
1247 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1248 // might need to be adjusted if the lambda or any of its enclosing lambda's
1249 // captures '*this' by copy.
1250 if (!ThisTy
.isNull() && isLambdaCallOperator(CurContext
))
1251 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes
, ThisTy
,
1252 CurContext
, Context
);
1256 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema
&S
,
1258 Qualifiers CXXThisTypeQuals
,
1260 : S(S
), OldCXXThisTypeOverride(S
.CXXThisTypeOverride
), Enabled(false)
1262 if (!Enabled
|| !ContextDecl
)
1265 CXXRecordDecl
*Record
= nullptr;
1266 if (ClassTemplateDecl
*Template
= dyn_cast
<ClassTemplateDecl
>(ContextDecl
))
1267 Record
= Template
->getTemplatedDecl();
1269 Record
= cast
<CXXRecordDecl
>(ContextDecl
);
1271 QualType T
= S
.Context
.getRecordType(Record
);
1272 T
= S
.getASTContext().getQualifiedType(T
, CXXThisTypeQuals
);
1274 S
.CXXThisTypeOverride
=
1275 S
.Context
.getLangOpts().HLSL
? T
: S
.Context
.getPointerType(T
);
1277 this->Enabled
= true;
1281 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1283 S
.CXXThisTypeOverride
= OldCXXThisTypeOverride
;
1287 static void buildLambdaThisCaptureFixit(Sema
&Sema
, LambdaScopeInfo
*LSI
) {
1288 SourceLocation DiagLoc
= LSI
->IntroducerRange
.getEnd();
1289 assert(!LSI
->isCXXThisCaptured());
1290 // [=, this] {}; // until C++20: Error: this when = is the default
1291 if (LSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_LambdaByval
&&
1292 !Sema
.getLangOpts().CPlusPlus20
)
1294 Sema
.Diag(DiagLoc
, diag::note_lambda_this_capture_fixit
)
1295 << FixItHint::CreateInsertion(
1296 DiagLoc
, LSI
->NumExplicitCaptures
> 0 ? ", this" : "this");
1299 bool Sema::CheckCXXThisCapture(SourceLocation Loc
, const bool Explicit
,
1300 bool BuildAndDiagnose
, const unsigned *const FunctionScopeIndexToStopAt
,
1301 const bool ByCopy
) {
1302 // We don't need to capture this in an unevaluated context.
1303 if (isUnevaluatedContext() && !Explicit
)
1306 assert((!ByCopy
|| Explicit
) && "cannot implicitly capture *this by value");
1308 const int MaxFunctionScopesIndex
= FunctionScopeIndexToStopAt
1309 ? *FunctionScopeIndexToStopAt
1310 : FunctionScopes
.size() - 1;
1312 // Check that we can capture the *enclosing object* (referred to by '*this')
1313 // by the capturing-entity/closure (lambda/block/etc) at
1314 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1316 // Note: The *enclosing object* can only be captured by-value by a
1317 // closure that is a lambda, using the explicit notation:
1319 // Every other capture of the *enclosing object* results in its by-reference
1322 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1323 // stack), we can capture the *enclosing object* only if:
1324 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1325 // - or, 'L' has an implicit capture.
1327 // -- there is no enclosing closure
1328 // -- or, there is some enclosing closure 'E' that has already captured the
1329 // *enclosing object*, and every intervening closure (if any) between 'E'
1330 // and 'L' can implicitly capture the *enclosing object*.
1331 // -- or, every enclosing closure can implicitly capture the
1332 // *enclosing object*
1335 unsigned NumCapturingClosures
= 0;
1336 for (int idx
= MaxFunctionScopesIndex
; idx
>= 0; idx
--) {
1337 if (CapturingScopeInfo
*CSI
=
1338 dyn_cast
<CapturingScopeInfo
>(FunctionScopes
[idx
])) {
1339 if (CSI
->CXXThisCaptureIndex
!= 0) {
1340 // 'this' is already being captured; there isn't anything more to do.
1341 CSI
->Captures
[CSI
->CXXThisCaptureIndex
- 1].markUsed(BuildAndDiagnose
);
1344 LambdaScopeInfo
*LSI
= dyn_cast
<LambdaScopeInfo
>(CSI
);
1345 if (LSI
&& isGenericLambdaCallOperatorSpecialization(LSI
->CallOperator
)) {
1346 // This context can't implicitly capture 'this'; fail out.
1347 if (BuildAndDiagnose
) {
1348 LSI
->CallOperator
->setInvalidDecl();
1349 Diag(Loc
, diag::err_this_capture
)
1350 << (Explicit
&& idx
== MaxFunctionScopesIndex
);
1352 buildLambdaThisCaptureFixit(*this, LSI
);
1356 if (CSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_LambdaByref
||
1357 CSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_LambdaByval
||
1358 CSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_Block
||
1359 CSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_CapturedRegion
||
1360 (Explicit
&& idx
== MaxFunctionScopesIndex
)) {
1361 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1362 // iteration through can be an explicit capture, all enclosing closures,
1363 // if any, must perform implicit captures.
1365 // This closure can capture 'this'; continue looking upwards.
1366 NumCapturingClosures
++;
1369 // This context can't implicitly capture 'this'; fail out.
1370 if (BuildAndDiagnose
) {
1371 LSI
->CallOperator
->setInvalidDecl();
1372 Diag(Loc
, diag::err_this_capture
)
1373 << (Explicit
&& idx
== MaxFunctionScopesIndex
);
1376 buildLambdaThisCaptureFixit(*this, LSI
);
1381 if (!BuildAndDiagnose
) return false;
1383 // If we got here, then the closure at MaxFunctionScopesIndex on the
1384 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1385 // (including implicit by-reference captures in any enclosing closures).
1387 // In the loop below, respect the ByCopy flag only for the closure requesting
1388 // the capture (i.e. first iteration through the loop below). Ignore it for
1389 // all enclosing closure's up to NumCapturingClosures (since they must be
1390 // implicitly capturing the *enclosing object* by reference (see loop
1393 isa
<LambdaScopeInfo
>(FunctionScopes
[MaxFunctionScopesIndex
])) &&
1394 "Only a lambda can capture the enclosing object (referred to by "
1396 QualType ThisTy
= getCurrentThisType();
1397 for (int idx
= MaxFunctionScopesIndex
; NumCapturingClosures
;
1398 --idx
, --NumCapturingClosures
) {
1399 CapturingScopeInfo
*CSI
= cast
<CapturingScopeInfo
>(FunctionScopes
[idx
]);
1401 // The type of the corresponding data member (not a 'this' pointer if 'by
1403 QualType CaptureType
= ByCopy
? ThisTy
->getPointeeType() : ThisTy
;
1405 bool isNested
= NumCapturingClosures
> 1;
1406 CSI
->addThisCapture(isNested
, Loc
, CaptureType
, ByCopy
);
1411 ExprResult
Sema::ActOnCXXThis(SourceLocation Loc
) {
1412 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1413 /// is a non-lvalue expression whose value is the address of the object for
1414 /// which the function is called.
1415 QualType ThisTy
= getCurrentThisType();
1417 if (ThisTy
.isNull()) {
1418 DeclContext
*DC
= getFunctionLevelDeclContext();
1420 if (const auto *Method
= dyn_cast
<CXXMethodDecl
>(DC
);
1421 Method
&& Method
->isExplicitObjectMemberFunction()) {
1422 return Diag(Loc
, diag::err_invalid_this_use
) << 1;
1425 if (isLambdaCallWithExplicitObjectParameter(CurContext
))
1426 return Diag(Loc
, diag::err_invalid_this_use
) << 1;
1428 return Diag(Loc
, diag::err_invalid_this_use
) << 0;
1431 return BuildCXXThisExpr(Loc
, ThisTy
, /*IsImplicit=*/false);
1434 Expr
*Sema::BuildCXXThisExpr(SourceLocation Loc
, QualType Type
,
1436 auto *This
= CXXThisExpr::Create(Context
, Loc
, Type
, IsImplicit
);
1437 MarkThisReferenced(This
);
1441 void Sema::MarkThisReferenced(CXXThisExpr
*This
) {
1442 CheckCXXThisCapture(This
->getExprLoc());
1445 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType
) {
1446 // If we're outside the body of a member function, then we'll have a specified
1448 if (CXXThisTypeOverride
.isNull())
1451 // Determine whether we're looking into a class that's currently being
1453 CXXRecordDecl
*Class
= BaseType
->getAsCXXRecordDecl();
1454 return Class
&& Class
->isBeingDefined();
1457 /// Parse construction of a specified type.
1458 /// Can be interpreted either as function-style casting ("int(x)")
1459 /// or class type construction ("ClassType(x,y,z)")
1460 /// or creation of a value-initialized type ("int()").
1462 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep
,
1463 SourceLocation LParenOrBraceLoc
,
1465 SourceLocation RParenOrBraceLoc
,
1466 bool ListInitialization
) {
1470 TypeSourceInfo
*TInfo
;
1471 QualType Ty
= GetTypeFromParser(TypeRep
, &TInfo
);
1473 TInfo
= Context
.getTrivialTypeSourceInfo(Ty
, SourceLocation());
1475 auto Result
= BuildCXXTypeConstructExpr(TInfo
, LParenOrBraceLoc
, exprs
,
1476 RParenOrBraceLoc
, ListInitialization
);
1477 // Avoid creating a non-type-dependent expression that contains typos.
1478 // Non-type-dependent expressions are liable to be discarded without
1479 // checking for embedded typos.
1480 if (!Result
.isInvalid() && Result
.get()->isInstantiationDependent() &&
1481 !Result
.get()->isTypeDependent())
1482 Result
= CorrectDelayedTyposInExpr(Result
.get());
1483 else if (Result
.isInvalid())
1484 Result
= CreateRecoveryExpr(TInfo
->getTypeLoc().getBeginLoc(),
1485 RParenOrBraceLoc
, exprs
, Ty
);
1490 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo
*TInfo
,
1491 SourceLocation LParenOrBraceLoc
,
1493 SourceLocation RParenOrBraceLoc
,
1494 bool ListInitialization
) {
1495 QualType Ty
= TInfo
->getType();
1496 SourceLocation TyBeginLoc
= TInfo
->getTypeLoc().getBeginLoc();
1498 assert((!ListInitialization
|| Exprs
.size() == 1) &&
1499 "List initialization must have exactly one expression.");
1500 SourceRange FullRange
= SourceRange(TyBeginLoc
, RParenOrBraceLoc
);
1502 InitializedEntity Entity
=
1503 InitializedEntity::InitializeTemporary(Context
, TInfo
);
1504 InitializationKind Kind
=
1506 ? ListInitialization
1507 ? InitializationKind::CreateDirectList(
1508 TyBeginLoc
, LParenOrBraceLoc
, RParenOrBraceLoc
)
1509 : InitializationKind::CreateDirect(TyBeginLoc
, LParenOrBraceLoc
,
1511 : InitializationKind::CreateValue(TyBeginLoc
, LParenOrBraceLoc
,
1514 // C++17 [expr.type.conv]p1:
1515 // If the type is a placeholder for a deduced class type, [...perform class
1516 // template argument deduction...]
1518 // Otherwise, if the type contains a placeholder type, it is replaced by the
1519 // type determined by placeholder type deduction.
1520 DeducedType
*Deduced
= Ty
->getContainedDeducedType();
1521 if (Deduced
&& !Deduced
->isDeduced() &&
1522 isa
<DeducedTemplateSpecializationType
>(Deduced
)) {
1523 Ty
= DeduceTemplateSpecializationFromInitializer(TInfo
, Entity
,
1527 Entity
= InitializedEntity::InitializeTemporary(TInfo
, Ty
);
1528 } else if (Deduced
&& !Deduced
->isDeduced()) {
1529 MultiExprArg Inits
= Exprs
;
1530 if (ListInitialization
) {
1531 auto *ILE
= cast
<InitListExpr
>(Exprs
[0]);
1532 Inits
= MultiExprArg(ILE
->getInits(), ILE
->getNumInits());
1536 return ExprError(Diag(TyBeginLoc
, diag::err_auto_expr_init_no_expression
)
1537 << Ty
<< FullRange
);
1538 if (Inits
.size() > 1) {
1539 Expr
*FirstBad
= Inits
[1];
1540 return ExprError(Diag(FirstBad
->getBeginLoc(),
1541 diag::err_auto_expr_init_multiple_expressions
)
1542 << Ty
<< FullRange
);
1544 if (getLangOpts().CPlusPlus23
) {
1545 if (Ty
->getAs
<AutoType
>())
1546 Diag(TyBeginLoc
, diag::warn_cxx20_compat_auto_expr
) << FullRange
;
1548 Expr
*Deduce
= Inits
[0];
1549 if (isa
<InitListExpr
>(Deduce
))
1551 Diag(Deduce
->getBeginLoc(), diag::err_auto_expr_init_paren_braces
)
1552 << ListInitialization
<< Ty
<< FullRange
);
1553 QualType DeducedType
;
1554 TemplateDeductionInfo
Info(Deduce
->getExprLoc());
1555 TemplateDeductionResult Result
=
1556 DeduceAutoType(TInfo
->getTypeLoc(), Deduce
, DeducedType
, Info
);
1557 if (Result
!= TDK_Success
&& Result
!= TDK_AlreadyDiagnosed
)
1558 return ExprError(Diag(TyBeginLoc
, diag::err_auto_expr_deduction_failure
)
1559 << Ty
<< Deduce
->getType() << FullRange
1560 << Deduce
->getSourceRange());
1561 if (DeducedType
.isNull()) {
1562 assert(Result
== TDK_AlreadyDiagnosed
);
1567 Entity
= InitializedEntity::InitializeTemporary(TInfo
, Ty
);
1570 if (Ty
->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs
))
1571 return CXXUnresolvedConstructExpr::Create(
1572 Context
, Ty
.getNonReferenceType(), TInfo
, LParenOrBraceLoc
, Exprs
,
1573 RParenOrBraceLoc
, ListInitialization
);
1575 // C++ [expr.type.conv]p1:
1576 // If the expression list is a parenthesized single expression, the type
1577 // conversion expression is equivalent (in definedness, and if defined in
1578 // meaning) to the corresponding cast expression.
1579 if (Exprs
.size() == 1 && !ListInitialization
&&
1580 !isa
<InitListExpr
>(Exprs
[0])) {
1581 Expr
*Arg
= Exprs
[0];
1582 return BuildCXXFunctionalCastExpr(TInfo
, Ty
, LParenOrBraceLoc
, Arg
,
1586 // For an expression of the form T(), T shall not be an array type.
1587 QualType ElemTy
= Ty
;
1588 if (Ty
->isArrayType()) {
1589 if (!ListInitialization
)
1590 return ExprError(Diag(TyBeginLoc
, diag::err_value_init_for_array_type
)
1592 ElemTy
= Context
.getBaseElementType(Ty
);
1595 // Only construct objects with object types.
1596 // The standard doesn't explicitly forbid function types here, but that's an
1597 // obvious oversight, as there's no way to dynamically construct a function
1599 if (Ty
->isFunctionType())
1600 return ExprError(Diag(TyBeginLoc
, diag::err_init_for_function_type
)
1601 << Ty
<< FullRange
);
1603 // C++17 [expr.type.conv]p2:
1604 // If the type is cv void and the initializer is (), the expression is a
1605 // prvalue of the specified type that performs no initialization.
1606 if (!Ty
->isVoidType() &&
1607 RequireCompleteType(TyBeginLoc
, ElemTy
,
1608 diag::err_invalid_incomplete_type_use
, FullRange
))
1611 // Otherwise, the expression is a prvalue of the specified type whose
1612 // result object is direct-initialized (11.6) with the initializer.
1613 InitializationSequence
InitSeq(*this, Entity
, Kind
, Exprs
);
1614 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
, Exprs
);
1616 if (Result
.isInvalid())
1619 Expr
*Inner
= Result
.get();
1620 if (CXXBindTemporaryExpr
*BTE
= dyn_cast_or_null
<CXXBindTemporaryExpr
>(Inner
))
1621 Inner
= BTE
->getSubExpr();
1622 if (auto *CE
= dyn_cast
<ConstantExpr
>(Inner
);
1623 CE
&& CE
->isImmediateInvocation())
1624 Inner
= CE
->getSubExpr();
1625 if (!isa
<CXXTemporaryObjectExpr
>(Inner
) &&
1626 !isa
<CXXScalarValueInitExpr
>(Inner
)) {
1627 // If we created a CXXTemporaryObjectExpr, that node also represents the
1628 // functional cast. Otherwise, create an explicit cast to represent
1629 // the syntactic form of a functional-style cast that was used here.
1631 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1632 // would give a more consistent AST representation than using a
1633 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1634 // is sometimes handled by initialization and sometimes not.
1635 QualType ResultType
= Result
.get()->getType();
1636 SourceRange Locs
= ListInitialization
1638 : SourceRange(LParenOrBraceLoc
, RParenOrBraceLoc
);
1639 Result
= CXXFunctionalCastExpr::Create(
1640 Context
, ResultType
, Expr::getValueKindForType(Ty
), TInfo
, CK_NoOp
,
1641 Result
.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1642 Locs
.getBegin(), Locs
.getEnd());
1648 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl
*Method
) {
1649 // [CUDA] Ignore this function, if we can't call it.
1650 const FunctionDecl
*Caller
= getCurFunctionDecl(/*AllowLambda=*/true);
1651 if (getLangOpts().CUDA
) {
1652 auto CallPreference
= IdentifyCUDAPreference(Caller
, Method
);
1653 // If it's not callable at all, it's not the right function.
1654 if (CallPreference
< CFP_WrongSide
)
1656 if (CallPreference
== CFP_WrongSide
) {
1657 // Maybe. We have to check if there are better alternatives.
1658 DeclContext::lookup_result R
=
1659 Method
->getDeclContext()->lookup(Method
->getDeclName());
1660 for (const auto *D
: R
) {
1661 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
1662 if (IdentifyCUDAPreference(Caller
, FD
) > CFP_WrongSide
)
1666 // We've found no better variants.
1670 SmallVector
<const FunctionDecl
*, 4> PreventedBy
;
1671 bool Result
= Method
->isUsualDeallocationFunction(PreventedBy
);
1673 if (Result
|| !getLangOpts().CUDA
|| PreventedBy
.empty())
1676 // In case of CUDA, return true if none of the 1-argument deallocator
1677 // functions are actually callable.
1678 return llvm::none_of(PreventedBy
, [&](const FunctionDecl
*FD
) {
1679 assert(FD
->getNumParams() == 1 &&
1680 "Only single-operand functions should be in PreventedBy");
1681 return IdentifyCUDAPreference(Caller
, FD
) >= CFP_HostDevice
;
1685 /// Determine whether the given function is a non-placement
1686 /// deallocation function.
1687 static bool isNonPlacementDeallocationFunction(Sema
&S
, FunctionDecl
*FD
) {
1688 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(FD
))
1689 return S
.isUsualDeallocationFunction(Method
);
1691 if (FD
->getOverloadedOperator() != OO_Delete
&&
1692 FD
->getOverloadedOperator() != OO_Array_Delete
)
1695 unsigned UsualParams
= 1;
1697 if (S
.getLangOpts().SizedDeallocation
&& UsualParams
< FD
->getNumParams() &&
1698 S
.Context
.hasSameUnqualifiedType(
1699 FD
->getParamDecl(UsualParams
)->getType(),
1700 S
.Context
.getSizeType()))
1703 if (S
.getLangOpts().AlignedAllocation
&& UsualParams
< FD
->getNumParams() &&
1704 S
.Context
.hasSameUnqualifiedType(
1705 FD
->getParamDecl(UsualParams
)->getType(),
1706 S
.Context
.getTypeDeclType(S
.getStdAlignValT())))
1709 return UsualParams
== FD
->getNumParams();
1713 struct UsualDeallocFnInfo
{
1714 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1715 UsualDeallocFnInfo(Sema
&S
, DeclAccessPair Found
)
1716 : Found(Found
), FD(dyn_cast
<FunctionDecl
>(Found
->getUnderlyingDecl())),
1717 Destroying(false), HasSizeT(false), HasAlignValT(false),
1718 CUDAPref(Sema::CFP_Native
) {
1719 // A function template declaration is never a usual deallocation function.
1722 unsigned NumBaseParams
= 1;
1723 if (FD
->isDestroyingOperatorDelete()) {
1728 if (NumBaseParams
< FD
->getNumParams() &&
1729 S
.Context
.hasSameUnqualifiedType(
1730 FD
->getParamDecl(NumBaseParams
)->getType(),
1731 S
.Context
.getSizeType())) {
1736 if (NumBaseParams
< FD
->getNumParams() &&
1737 FD
->getParamDecl(NumBaseParams
)->getType()->isAlignValT()) {
1739 HasAlignValT
= true;
1742 // In CUDA, determine how much we'd like / dislike to call this.
1743 if (S
.getLangOpts().CUDA
)
1744 CUDAPref
= S
.IdentifyCUDAPreference(
1745 S
.getCurFunctionDecl(/*AllowLambda=*/true), FD
);
1748 explicit operator bool() const { return FD
; }
1750 bool isBetterThan(const UsualDeallocFnInfo
&Other
, bool WantSize
,
1751 bool WantAlign
) const {
1753 // A destroying operator delete is preferred over a non-destroying
1755 if (Destroying
!= Other
.Destroying
)
1758 // C++17 [expr.delete]p10:
1759 // If the type has new-extended alignment, a function with a parameter
1760 // of type std::align_val_t is preferred; otherwise a function without
1761 // such a parameter is preferred
1762 if (HasAlignValT
!= Other
.HasAlignValT
)
1763 return HasAlignValT
== WantAlign
;
1765 if (HasSizeT
!= Other
.HasSizeT
)
1766 return HasSizeT
== WantSize
;
1768 // Use CUDA call preference as a tiebreaker.
1769 return CUDAPref
> Other
.CUDAPref
;
1772 DeclAccessPair Found
;
1774 bool Destroying
, HasSizeT
, HasAlignValT
;
1775 Sema::CUDAFunctionPreference CUDAPref
;
1779 /// Determine whether a type has new-extended alignment. This may be called when
1780 /// the type is incomplete (for a delete-expression with an incomplete pointee
1781 /// type), in which case it will conservatively return false if the alignment is
1783 static bool hasNewExtendedAlignment(Sema
&S
, QualType AllocType
) {
1784 return S
.getLangOpts().AlignedAllocation
&&
1785 S
.getASTContext().getTypeAlignIfKnown(AllocType
) >
1786 S
.getASTContext().getTargetInfo().getNewAlign();
1789 /// Select the correct "usual" deallocation function to use from a selection of
1790 /// deallocation functions (either global or class-scope).
1791 static UsualDeallocFnInfo
resolveDeallocationOverload(
1792 Sema
&S
, LookupResult
&R
, bool WantSize
, bool WantAlign
,
1793 llvm::SmallVectorImpl
<UsualDeallocFnInfo
> *BestFns
= nullptr) {
1794 UsualDeallocFnInfo Best
;
1796 for (auto I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
) {
1797 UsualDeallocFnInfo
Info(S
, I
.getPair());
1798 if (!Info
|| !isNonPlacementDeallocationFunction(S
, Info
.FD
) ||
1799 Info
.CUDAPref
== Sema::CFP_Never
)
1805 BestFns
->push_back(Info
);
1809 if (Best
.isBetterThan(Info
, WantSize
, WantAlign
))
1812 // If more than one preferred function is found, all non-preferred
1813 // functions are eliminated from further consideration.
1814 if (BestFns
&& Info
.isBetterThan(Best
, WantSize
, WantAlign
))
1819 BestFns
->push_back(Info
);
1825 /// Determine whether a given type is a class for which 'delete[]' would call
1826 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1827 /// we need to store the array size (even if the type is
1828 /// trivially-destructible).
1829 static bool doesUsualArrayDeleteWantSize(Sema
&S
, SourceLocation loc
,
1830 QualType allocType
) {
1831 const RecordType
*record
=
1832 allocType
->getBaseElementTypeUnsafe()->getAs
<RecordType
>();
1833 if (!record
) return false;
1835 // Try to find an operator delete[] in class scope.
1837 DeclarationName deleteName
=
1838 S
.Context
.DeclarationNames
.getCXXOperatorName(OO_Array_Delete
);
1839 LookupResult
ops(S
, deleteName
, loc
, Sema::LookupOrdinaryName
);
1840 S
.LookupQualifiedName(ops
, record
->getDecl());
1842 // We're just doing this for information.
1843 ops
.suppressDiagnostics();
1845 // Very likely: there's no operator delete[].
1846 if (ops
.empty()) return false;
1848 // If it's ambiguous, it should be illegal to call operator delete[]
1849 // on this thing, so it doesn't matter if we allocate extra space or not.
1850 if (ops
.isAmbiguous()) return false;
1852 // C++17 [expr.delete]p10:
1853 // If the deallocation functions have class scope, the one without a
1854 // parameter of type std::size_t is selected.
1855 auto Best
= resolveDeallocationOverload(
1856 S
, ops
, /*WantSize*/false,
1857 /*WantAlign*/hasNewExtendedAlignment(S
, allocType
));
1858 return Best
&& Best
.HasSizeT
;
1861 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1864 /// @code new (memory) int[size][4] @endcode
1866 /// @code ::new Foo(23, "hello") @endcode
1868 /// \param StartLoc The first location of the expression.
1869 /// \param UseGlobal True if 'new' was prefixed with '::'.
1870 /// \param PlacementLParen Opening paren of the placement arguments.
1871 /// \param PlacementArgs Placement new arguments.
1872 /// \param PlacementRParen Closing paren of the placement arguments.
1873 /// \param TypeIdParens If the type is in parens, the source range.
1874 /// \param D The type to be allocated, as well as array dimensions.
1875 /// \param Initializer The initializing expression or initializer-list, or null
1876 /// if there is none.
1878 Sema::ActOnCXXNew(SourceLocation StartLoc
, bool UseGlobal
,
1879 SourceLocation PlacementLParen
, MultiExprArg PlacementArgs
,
1880 SourceLocation PlacementRParen
, SourceRange TypeIdParens
,
1881 Declarator
&D
, Expr
*Initializer
) {
1882 std::optional
<Expr
*> ArraySize
;
1883 // If the specified type is an array, unwrap it and save the expression.
1884 if (D
.getNumTypeObjects() > 0 &&
1885 D
.getTypeObject(0).Kind
== DeclaratorChunk::Array
) {
1886 DeclaratorChunk
&Chunk
= D
.getTypeObject(0);
1887 if (D
.getDeclSpec().hasAutoTypeSpec())
1888 return ExprError(Diag(Chunk
.Loc
, diag::err_new_array_of_auto
)
1889 << D
.getSourceRange());
1890 if (Chunk
.Arr
.hasStatic
)
1891 return ExprError(Diag(Chunk
.Loc
, diag::err_static_illegal_in_new
)
1892 << D
.getSourceRange());
1893 if (!Chunk
.Arr
.NumElts
&& !Initializer
)
1894 return ExprError(Diag(Chunk
.Loc
, diag::err_array_new_needs_size
)
1895 << D
.getSourceRange());
1897 ArraySize
= static_cast<Expr
*>(Chunk
.Arr
.NumElts
);
1898 D
.DropFirstTypeObject();
1901 // Every dimension shall be of constant size.
1903 for (unsigned I
= 0, N
= D
.getNumTypeObjects(); I
< N
; ++I
) {
1904 if (D
.getTypeObject(I
).Kind
!= DeclaratorChunk::Array
)
1907 DeclaratorChunk::ArrayTypeInfo
&Array
= D
.getTypeObject(I
).Arr
;
1908 if (Expr
*NumElts
= (Expr
*)Array
.NumElts
) {
1909 if (!NumElts
->isTypeDependent() && !NumElts
->isValueDependent()) {
1910 // FIXME: GCC permits constant folding here. We should either do so consistently
1911 // or not do so at all, rather than changing behavior in C++14 onwards.
1912 if (getLangOpts().CPlusPlus14
) {
1913 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1914 // shall be a converted constant expression (5.19) of type std::size_t
1915 // and shall evaluate to a strictly positive value.
1916 llvm::APSInt
Value(Context
.getIntWidth(Context
.getSizeType()));
1918 = CheckConvertedConstantExpression(NumElts
, Context
.getSizeType(), Value
,
1923 VerifyIntegerConstantExpression(
1924 NumElts
, nullptr, diag::err_new_array_nonconst
, AllowFold
)
1934 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, /*Scope=*/nullptr);
1935 QualType AllocType
= TInfo
->getType();
1936 if (D
.isInvalidType())
1939 SourceRange DirectInitRange
;
1940 if (ParenListExpr
*List
= dyn_cast_or_null
<ParenListExpr
>(Initializer
))
1941 DirectInitRange
= List
->getSourceRange();
1943 return BuildCXXNew(SourceRange(StartLoc
, D
.getEndLoc()), UseGlobal
,
1944 PlacementLParen
, PlacementArgs
, PlacementRParen
,
1945 TypeIdParens
, AllocType
, TInfo
, ArraySize
, DirectInitRange
,
1949 static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style
,
1953 if (ParenListExpr
*PLE
= dyn_cast
<ParenListExpr
>(Init
))
1954 return PLE
->getNumExprs() == 0;
1955 if (isa
<ImplicitValueInitExpr
>(Init
))
1957 else if (CXXConstructExpr
*CCE
= dyn_cast
<CXXConstructExpr
>(Init
))
1958 return !CCE
->isListInitialization() &&
1959 CCE
->getConstructor()->isDefaultConstructor();
1960 else if (Style
== CXXNewInitializationStyle::List
) {
1961 assert(isa
<InitListExpr
>(Init
) &&
1962 "Shouldn't create list CXXConstructExprs for arrays.");
1969 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl
&FD
) const {
1970 if (!getLangOpts().AlignedAllocationUnavailable
)
1974 std::optional
<unsigned> AlignmentParam
;
1975 if (FD
.isReplaceableGlobalAllocationFunction(&AlignmentParam
) &&
1981 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1982 // implemented in the standard library is selected.
1983 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl
&FD
,
1984 SourceLocation Loc
) {
1985 if (isUnavailableAlignedAllocationFunction(FD
)) {
1986 const llvm::Triple
&T
= getASTContext().getTargetInfo().getTriple();
1987 StringRef OSName
= AvailabilityAttr::getPlatformNameSourceSpelling(
1988 getASTContext().getTargetInfo().getPlatformName());
1989 VersionTuple OSVersion
= alignedAllocMinVersion(T
.getOS());
1991 OverloadedOperatorKind Kind
= FD
.getDeclName().getCXXOverloadedOperator();
1992 bool IsDelete
= Kind
== OO_Delete
|| Kind
== OO_Array_Delete
;
1993 Diag(Loc
, diag::err_aligned_allocation_unavailable
)
1994 << IsDelete
<< FD
.getType().getAsString() << OSName
1995 << OSVersion
.getAsString() << OSVersion
.empty();
1996 Diag(Loc
, diag::note_silence_aligned_allocation_unavailable
);
2000 ExprResult
Sema::BuildCXXNew(SourceRange Range
, bool UseGlobal
,
2001 SourceLocation PlacementLParen
,
2002 MultiExprArg PlacementArgs
,
2003 SourceLocation PlacementRParen
,
2004 SourceRange TypeIdParens
, QualType AllocType
,
2005 TypeSourceInfo
*AllocTypeInfo
,
2006 std::optional
<Expr
*> ArraySize
,
2007 SourceRange DirectInitRange
, Expr
*Initializer
) {
2008 SourceRange TypeRange
= AllocTypeInfo
->getTypeLoc().getSourceRange();
2009 SourceLocation StartLoc
= Range
.getBegin();
2011 CXXNewInitializationStyle InitStyle
;
2012 if (DirectInitRange
.isValid()) {
2013 assert(Initializer
&& "Have parens but no initializer.");
2014 InitStyle
= CXXNewInitializationStyle::Call
;
2015 } else if (Initializer
&& isa
<InitListExpr
>(Initializer
))
2016 InitStyle
= CXXNewInitializationStyle::List
;
2018 assert((!Initializer
|| isa
<ImplicitValueInitExpr
>(Initializer
) ||
2019 isa
<CXXConstructExpr
>(Initializer
)) &&
2020 "Initializer expression that cannot have been implicitly created.");
2021 InitStyle
= CXXNewInitializationStyle::None
;
2024 MultiExprArg
Exprs(&Initializer
, Initializer
? 1 : 0);
2025 if (ParenListExpr
*List
= dyn_cast_or_null
<ParenListExpr
>(Initializer
)) {
2026 assert(InitStyle
== CXXNewInitializationStyle::Call
&&
2027 "paren init for non-call init");
2028 Exprs
= MultiExprArg(List
->getExprs(), List
->getNumExprs());
2031 // C++11 [expr.new]p15:
2032 // A new-expression that creates an object of type T initializes that
2033 // object as follows:
2034 InitializationKind Kind
= [&] {
2035 switch (InitStyle
) {
2036 // - If the new-initializer is omitted, the object is default-
2037 // initialized (8.5); if no initialization is performed,
2038 // the object has indeterminate value
2039 case CXXNewInitializationStyle::None
:
2040 case CXXNewInitializationStyle::Implicit
:
2041 return InitializationKind::CreateDefault(TypeRange
.getBegin());
2042 // - Otherwise, the new-initializer is interpreted according to the
2043 // initialization rules of 8.5 for direct-initialization.
2044 case CXXNewInitializationStyle::Call
:
2045 return InitializationKind::CreateDirect(TypeRange
.getBegin(),
2046 DirectInitRange
.getBegin(),
2047 DirectInitRange
.getEnd());
2048 case CXXNewInitializationStyle::List
:
2049 return InitializationKind::CreateDirectList(TypeRange
.getBegin(),
2050 Initializer
->getBeginLoc(),
2051 Initializer
->getEndLoc());
2053 llvm_unreachable("Unknown initialization kind");
2056 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2057 auto *Deduced
= AllocType
->getContainedDeducedType();
2058 if (Deduced
&& !Deduced
->isDeduced() &&
2059 isa
<DeducedTemplateSpecializationType
>(Deduced
)) {
2062 Diag(*ArraySize
? (*ArraySize
)->getExprLoc() : TypeRange
.getBegin(),
2063 diag::err_deduced_class_template_compound_type
)
2065 << (*ArraySize
? (*ArraySize
)->getSourceRange() : TypeRange
));
2067 InitializedEntity Entity
2068 = InitializedEntity::InitializeNew(StartLoc
, AllocType
);
2069 AllocType
= DeduceTemplateSpecializationFromInitializer(
2070 AllocTypeInfo
, Entity
, Kind
, Exprs
);
2071 if (AllocType
.isNull())
2073 } else if (Deduced
&& !Deduced
->isDeduced()) {
2074 MultiExprArg Inits
= Exprs
;
2075 bool Braced
= (InitStyle
== CXXNewInitializationStyle::List
);
2077 auto *ILE
= cast
<InitListExpr
>(Exprs
[0]);
2078 Inits
= MultiExprArg(ILE
->getInits(), ILE
->getNumInits());
2081 if (InitStyle
== CXXNewInitializationStyle::None
||
2082 InitStyle
== CXXNewInitializationStyle::Implicit
|| Inits
.empty())
2083 return ExprError(Diag(StartLoc
, diag::err_auto_new_requires_ctor_arg
)
2084 << AllocType
<< TypeRange
);
2085 if (Inits
.size() > 1) {
2086 Expr
*FirstBad
= Inits
[1];
2087 return ExprError(Diag(FirstBad
->getBeginLoc(),
2088 diag::err_auto_new_ctor_multiple_expressions
)
2089 << AllocType
<< TypeRange
);
2091 if (Braced
&& !getLangOpts().CPlusPlus17
)
2092 Diag(Initializer
->getBeginLoc(), diag::ext_auto_new_list_init
)
2093 << AllocType
<< TypeRange
;
2094 Expr
*Deduce
= Inits
[0];
2095 if (isa
<InitListExpr
>(Deduce
))
2097 Diag(Deduce
->getBeginLoc(), diag::err_auto_expr_init_paren_braces
)
2098 << Braced
<< AllocType
<< TypeRange
);
2099 QualType DeducedType
;
2100 TemplateDeductionInfo
Info(Deduce
->getExprLoc());
2101 TemplateDeductionResult Result
=
2102 DeduceAutoType(AllocTypeInfo
->getTypeLoc(), Deduce
, DeducedType
, Info
);
2103 if (Result
!= TDK_Success
&& Result
!= TDK_AlreadyDiagnosed
)
2104 return ExprError(Diag(StartLoc
, diag::err_auto_new_deduction_failure
)
2105 << AllocType
<< Deduce
->getType() << TypeRange
2106 << Deduce
->getSourceRange());
2107 if (DeducedType
.isNull()) {
2108 assert(Result
== TDK_AlreadyDiagnosed
);
2111 AllocType
= DeducedType
;
2114 // Per C++0x [expr.new]p5, the type being constructed may be a
2115 // typedef of an array type.
2117 if (const ConstantArrayType
*Array
2118 = Context
.getAsConstantArrayType(AllocType
)) {
2119 ArraySize
= IntegerLiteral::Create(Context
, Array
->getSize(),
2120 Context
.getSizeType(),
2121 TypeRange
.getEnd());
2122 AllocType
= Array
->getElementType();
2126 if (CheckAllocatedType(AllocType
, TypeRange
.getBegin(), TypeRange
))
2129 if (ArraySize
&& !checkArrayElementAlignment(AllocType
, TypeRange
.getBegin()))
2132 // In ARC, infer 'retaining' for the allocated
2133 if (getLangOpts().ObjCAutoRefCount
&&
2134 AllocType
.getObjCLifetime() == Qualifiers::OCL_None
&&
2135 AllocType
->isObjCLifetimeType()) {
2136 AllocType
= Context
.getLifetimeQualifiedType(AllocType
,
2137 AllocType
->getObjCARCImplicitLifetime());
2140 QualType ResultType
= Context
.getPointerType(AllocType
);
2142 if (ArraySize
&& *ArraySize
&&
2143 (*ArraySize
)->getType()->isNonOverloadPlaceholderType()) {
2144 ExprResult result
= CheckPlaceholderExpr(*ArraySize
);
2145 if (result
.isInvalid()) return ExprError();
2146 ArraySize
= result
.get();
2148 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2149 // integral or enumeration type with a non-negative value."
2150 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2151 // enumeration type, or a class type for which a single non-explicit
2152 // conversion function to integral or unscoped enumeration type exists.
2153 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2155 std::optional
<uint64_t> KnownArraySize
;
2156 if (ArraySize
&& *ArraySize
&& !(*ArraySize
)->isTypeDependent()) {
2157 ExprResult ConvertedSize
;
2158 if (getLangOpts().CPlusPlus14
) {
2159 assert(Context
.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2161 ConvertedSize
= PerformImplicitConversion(*ArraySize
, Context
.getSizeType(),
2164 if (!ConvertedSize
.isInvalid() &&
2165 (*ArraySize
)->getType()->getAs
<RecordType
>())
2166 // Diagnose the compatibility of this conversion.
2167 Diag(StartLoc
, diag::warn_cxx98_compat_array_size_conversion
)
2168 << (*ArraySize
)->getType() << 0 << "'size_t'";
2170 class SizeConvertDiagnoser
: public ICEConvertDiagnoser
{
2175 SizeConvertDiagnoser(Expr
*ArraySize
)
2176 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2177 ArraySize(ArraySize
) {}
2179 SemaDiagnosticBuilder
diagnoseNotInt(Sema
&S
, SourceLocation Loc
,
2180 QualType T
) override
{
2181 return S
.Diag(Loc
, diag::err_array_size_not_integral
)
2182 << S
.getLangOpts().CPlusPlus11
<< T
;
2185 SemaDiagnosticBuilder
diagnoseIncomplete(
2186 Sema
&S
, SourceLocation Loc
, QualType T
) override
{
2187 return S
.Diag(Loc
, diag::err_array_size_incomplete_type
)
2188 << T
<< ArraySize
->getSourceRange();
2191 SemaDiagnosticBuilder
diagnoseExplicitConv(
2192 Sema
&S
, SourceLocation Loc
, QualType T
, QualType ConvTy
) override
{
2193 return S
.Diag(Loc
, diag::err_array_size_explicit_conversion
) << T
<< ConvTy
;
2196 SemaDiagnosticBuilder
noteExplicitConv(
2197 Sema
&S
, CXXConversionDecl
*Conv
, QualType ConvTy
) override
{
2198 return S
.Diag(Conv
->getLocation(), diag::note_array_size_conversion
)
2199 << ConvTy
->isEnumeralType() << ConvTy
;
2202 SemaDiagnosticBuilder
diagnoseAmbiguous(
2203 Sema
&S
, SourceLocation Loc
, QualType T
) override
{
2204 return S
.Diag(Loc
, diag::err_array_size_ambiguous_conversion
) << T
;
2207 SemaDiagnosticBuilder
noteAmbiguous(
2208 Sema
&S
, CXXConversionDecl
*Conv
, QualType ConvTy
) override
{
2209 return S
.Diag(Conv
->getLocation(), diag::note_array_size_conversion
)
2210 << ConvTy
->isEnumeralType() << ConvTy
;
2213 SemaDiagnosticBuilder
diagnoseConversion(Sema
&S
, SourceLocation Loc
,
2215 QualType ConvTy
) override
{
2217 S
.getLangOpts().CPlusPlus11
2218 ? diag::warn_cxx98_compat_array_size_conversion
2219 : diag::ext_array_size_conversion
)
2220 << T
<< ConvTy
->isEnumeralType() << ConvTy
;
2222 } SizeDiagnoser(*ArraySize
);
2224 ConvertedSize
= PerformContextualImplicitConversion(StartLoc
, *ArraySize
,
2227 if (ConvertedSize
.isInvalid())
2230 ArraySize
= ConvertedSize
.get();
2231 QualType SizeType
= (*ArraySize
)->getType();
2233 if (!SizeType
->isIntegralOrUnscopedEnumerationType())
2236 // C++98 [expr.new]p7:
2237 // The expression in a direct-new-declarator shall have integral type
2238 // with a non-negative value.
2240 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2241 // per CWG1464. Otherwise, if it's not a constant, we must have an
2242 // unparenthesized array type.
2244 // We've already performed any required implicit conversion to integer or
2245 // unscoped enumeration type.
2246 // FIXME: Per CWG1464, we are required to check the value prior to
2247 // converting to size_t. This will never find a negative array size in
2248 // C++14 onwards, because Value is always unsigned here!
2249 if (std::optional
<llvm::APSInt
> Value
=
2250 (*ArraySize
)->getIntegerConstantExpr(Context
)) {
2251 if (Value
->isSigned() && Value
->isNegative()) {
2252 return ExprError(Diag((*ArraySize
)->getBeginLoc(),
2253 diag::err_typecheck_negative_array_size
)
2254 << (*ArraySize
)->getSourceRange());
2257 if (!AllocType
->isDependentType()) {
2258 unsigned ActiveSizeBits
=
2259 ConstantArrayType::getNumAddressingBits(Context
, AllocType
, *Value
);
2260 if (ActiveSizeBits
> ConstantArrayType::getMaxSizeBits(Context
))
2262 Diag((*ArraySize
)->getBeginLoc(), diag::err_array_too_large
)
2263 << toString(*Value
, 10) << (*ArraySize
)->getSourceRange());
2266 KnownArraySize
= Value
->getZExtValue();
2267 } else if (TypeIdParens
.isValid()) {
2268 // Can't have dynamic array size when the type-id is in parentheses.
2269 Diag((*ArraySize
)->getBeginLoc(), diag::ext_new_paren_array_nonconst
)
2270 << (*ArraySize
)->getSourceRange()
2271 << FixItHint::CreateRemoval(TypeIdParens
.getBegin())
2272 << FixItHint::CreateRemoval(TypeIdParens
.getEnd());
2274 TypeIdParens
= SourceRange();
2277 // Note that we do *not* convert the argument in any way. It can
2278 // be signed, larger than size_t, whatever.
2281 FunctionDecl
*OperatorNew
= nullptr;
2282 FunctionDecl
*OperatorDelete
= nullptr;
2283 unsigned Alignment
=
2284 AllocType
->isDependentType() ? 0 : Context
.getTypeAlign(AllocType
);
2285 unsigned NewAlignment
= Context
.getTargetInfo().getNewAlign();
2286 bool PassAlignment
= getLangOpts().AlignedAllocation
&&
2287 Alignment
> NewAlignment
;
2289 AllocationFunctionScope Scope
= UseGlobal
? AFS_Global
: AFS_Both
;
2290 if (!AllocType
->isDependentType() &&
2291 !Expr::hasAnyTypeDependentArguments(PlacementArgs
) &&
2292 FindAllocationFunctions(
2293 StartLoc
, SourceRange(PlacementLParen
, PlacementRParen
), Scope
, Scope
,
2294 AllocType
, ArraySize
.has_value(), PassAlignment
, PlacementArgs
,
2295 OperatorNew
, OperatorDelete
))
2298 // If this is an array allocation, compute whether the usual array
2299 // deallocation function for the type has a size_t parameter.
2300 bool UsualArrayDeleteWantsSize
= false;
2301 if (ArraySize
&& !AllocType
->isDependentType())
2302 UsualArrayDeleteWantsSize
=
2303 doesUsualArrayDeleteWantSize(*this, StartLoc
, AllocType
);
2305 SmallVector
<Expr
*, 8> AllPlaceArgs
;
2307 auto *Proto
= OperatorNew
->getType()->castAs
<FunctionProtoType
>();
2308 VariadicCallType CallType
= Proto
->isVariadic() ? VariadicFunction
2309 : VariadicDoesNotApply
;
2311 // We've already converted the placement args, just fill in any default
2312 // arguments. Skip the first parameter because we don't have a corresponding
2313 // argument. Skip the second parameter too if we're passing in the
2314 // alignment; we've already filled it in.
2315 unsigned NumImplicitArgs
= PassAlignment
? 2 : 1;
2316 if (GatherArgumentsForCall(PlacementLParen
, OperatorNew
, Proto
,
2317 NumImplicitArgs
, PlacementArgs
, AllPlaceArgs
,
2321 if (!AllPlaceArgs
.empty())
2322 PlacementArgs
= AllPlaceArgs
;
2324 // We would like to perform some checking on the given `operator new` call,
2325 // but the PlacementArgs does not contain the implicit arguments,
2326 // namely allocation size and maybe allocation alignment,
2327 // so we need to conjure them.
2329 QualType SizeTy
= Context
.getSizeType();
2330 unsigned SizeTyWidth
= Context
.getTypeSize(SizeTy
);
2332 llvm::APInt
SingleEltSize(
2333 SizeTyWidth
, Context
.getTypeSizeInChars(AllocType
).getQuantity());
2335 // How many bytes do we want to allocate here?
2336 std::optional
<llvm::APInt
> AllocationSize
;
2337 if (!ArraySize
&& !AllocType
->isDependentType()) {
2338 // For non-array operator new, we only want to allocate one element.
2339 AllocationSize
= SingleEltSize
;
2340 } else if (KnownArraySize
&& !AllocType
->isDependentType()) {
2341 // For array operator new, only deal with static array size case.
2343 AllocationSize
= llvm::APInt(SizeTyWidth
, *KnownArraySize
)
2344 .umul_ov(SingleEltSize
, Overflow
);
2348 "Expected that all the overflows would have been handled already.");
2351 IntegerLiteral
AllocationSizeLiteral(
2352 Context
, AllocationSize
.value_or(llvm::APInt::getZero(SizeTyWidth
)),
2353 SizeTy
, SourceLocation());
2354 // Otherwise, if we failed to constant-fold the allocation size, we'll
2355 // just give up and pass-in something opaque, that isn't a null pointer.
2356 OpaqueValueExpr
OpaqueAllocationSize(SourceLocation(), SizeTy
, VK_PRValue
,
2357 OK_Ordinary
, /*SourceExpr=*/nullptr);
2359 // Let's synthesize the alignment argument in case we will need it.
2360 // Since we *really* want to allocate these on stack, this is slightly ugly
2361 // because there might not be a `std::align_val_t` type.
2362 EnumDecl
*StdAlignValT
= getStdAlignValT();
2363 QualType AlignValT
=
2364 StdAlignValT
? Context
.getTypeDeclType(StdAlignValT
) : SizeTy
;
2365 IntegerLiteral
AlignmentLiteral(
2367 llvm::APInt(Context
.getTypeSize(SizeTy
),
2368 Alignment
/ Context
.getCharWidth()),
2369 SizeTy
, SourceLocation());
2370 ImplicitCastExpr
DesiredAlignment(ImplicitCastExpr::OnStack
, AlignValT
,
2371 CK_IntegralCast
, &AlignmentLiteral
,
2372 VK_PRValue
, FPOptionsOverride());
2374 // Adjust placement args by prepending conjured size and alignment exprs.
2375 llvm::SmallVector
<Expr
*, 8> CallArgs
;
2376 CallArgs
.reserve(NumImplicitArgs
+ PlacementArgs
.size());
2377 CallArgs
.emplace_back(AllocationSize
2378 ? static_cast<Expr
*>(&AllocationSizeLiteral
)
2379 : &OpaqueAllocationSize
);
2381 CallArgs
.emplace_back(&DesiredAlignment
);
2382 CallArgs
.insert(CallArgs
.end(), PlacementArgs
.begin(), PlacementArgs
.end());
2384 DiagnoseSentinelCalls(OperatorNew
, PlacementLParen
, CallArgs
);
2386 checkCall(OperatorNew
, Proto
, /*ThisArg=*/nullptr, CallArgs
,
2387 /*IsMemberFunction=*/false, StartLoc
, Range
, CallType
);
2389 // Warn if the type is over-aligned and is being allocated by (unaligned)
2390 // global operator new.
2391 if (PlacementArgs
.empty() && !PassAlignment
&&
2392 (OperatorNew
->isImplicit() ||
2393 (OperatorNew
->getBeginLoc().isValid() &&
2394 getSourceManager().isInSystemHeader(OperatorNew
->getBeginLoc())))) {
2395 if (Alignment
> NewAlignment
)
2396 Diag(StartLoc
, diag::warn_overaligned_type
)
2398 << unsigned(Alignment
/ Context
.getCharWidth())
2399 << unsigned(NewAlignment
/ Context
.getCharWidth());
2403 // Array 'new' can't have any initializers except empty parentheses.
2404 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2405 // dialect distinction.
2406 if (ArraySize
&& !isLegalArrayNewInitializer(InitStyle
, Initializer
)) {
2407 SourceRange
InitRange(Exprs
.front()->getBeginLoc(),
2408 Exprs
.back()->getEndLoc());
2409 Diag(StartLoc
, diag::err_new_array_init_args
) << InitRange
;
2413 // If we can perform the initialization, and we've not already done so,
2415 if (!AllocType
->isDependentType() &&
2416 !Expr::hasAnyTypeDependentArguments(Exprs
)) {
2417 // The type we initialize is the complete type, including the array bound.
2420 InitType
= Context
.getConstantArrayType(
2422 llvm::APInt(Context
.getTypeSize(Context
.getSizeType()),
2424 *ArraySize
, ArraySizeModifier::Normal
, 0);
2426 InitType
= Context
.getIncompleteArrayType(AllocType
,
2427 ArraySizeModifier::Normal
, 0);
2429 InitType
= AllocType
;
2431 InitializedEntity Entity
2432 = InitializedEntity::InitializeNew(StartLoc
, InitType
);
2433 InitializationSequence
InitSeq(*this, Entity
, Kind
, Exprs
);
2434 ExprResult FullInit
= InitSeq
.Perform(*this, Entity
, Kind
, Exprs
);
2435 if (FullInit
.isInvalid())
2438 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2439 // we don't want the initialized object to be destructed.
2440 // FIXME: We should not create these in the first place.
2441 if (CXXBindTemporaryExpr
*Binder
=
2442 dyn_cast_or_null
<CXXBindTemporaryExpr
>(FullInit
.get()))
2443 FullInit
= Binder
->getSubExpr();
2445 Initializer
= FullInit
.get();
2446 // We don't know that we're generating an implicit initializer until now, so
2447 // we have to update the initialization style as well.
2449 // FIXME: it would be nice to determine the correct initialization style
2450 // earlier so InitStyle doesn't need adjusting.
2451 if (InitStyle
== CXXNewInitializationStyle::None
&& Initializer
) {
2452 InitStyle
= CXXNewInitializationStyle::Implicit
;
2455 // FIXME: If we have a KnownArraySize, check that the array bound of the
2456 // initializer is no greater than that constant value.
2458 if (ArraySize
&& !*ArraySize
) {
2459 auto *CAT
= Context
.getAsConstantArrayType(Initializer
->getType());
2461 // FIXME: Track that the array size was inferred rather than explicitly
2463 ArraySize
= IntegerLiteral::Create(
2464 Context
, CAT
->getSize(), Context
.getSizeType(), TypeRange
.getEnd());
2466 Diag(TypeRange
.getEnd(), diag::err_new_array_size_unknown_from_init
)
2467 << Initializer
->getSourceRange();
2472 // Mark the new and delete operators as referenced.
2474 if (DiagnoseUseOfDecl(OperatorNew
, StartLoc
))
2476 MarkFunctionReferenced(StartLoc
, OperatorNew
);
2478 if (OperatorDelete
) {
2479 if (DiagnoseUseOfDecl(OperatorDelete
, StartLoc
))
2481 MarkFunctionReferenced(StartLoc
, OperatorDelete
);
2484 return CXXNewExpr::Create(Context
, UseGlobal
, OperatorNew
, OperatorDelete
,
2485 PassAlignment
, UsualArrayDeleteWantsSize
,
2486 PlacementArgs
, TypeIdParens
, ArraySize
, InitStyle
,
2487 Initializer
, ResultType
, AllocTypeInfo
, Range
,
2491 /// Checks that a type is suitable as the allocated type
2492 /// in a new-expression.
2493 bool Sema::CheckAllocatedType(QualType AllocType
, SourceLocation Loc
,
2495 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2496 // abstract class type or array thereof.
2497 if (AllocType
->isFunctionType())
2498 return Diag(Loc
, diag::err_bad_new_type
)
2499 << AllocType
<< 0 << R
;
2500 else if (AllocType
->isReferenceType())
2501 return Diag(Loc
, diag::err_bad_new_type
)
2502 << AllocType
<< 1 << R
;
2503 else if (!AllocType
->isDependentType() &&
2504 RequireCompleteSizedType(
2505 Loc
, AllocType
, diag::err_new_incomplete_or_sizeless_type
, R
))
2507 else if (RequireNonAbstractType(Loc
, AllocType
,
2508 diag::err_allocation_of_abstract_type
))
2510 else if (AllocType
->isVariablyModifiedType())
2511 return Diag(Loc
, diag::err_variably_modified_new_type
)
2513 else if (AllocType
.getAddressSpace() != LangAS::Default
&&
2514 !getLangOpts().OpenCLCPlusPlus
)
2515 return Diag(Loc
, diag::err_address_space_qualified_new
)
2516 << AllocType
.getUnqualifiedType()
2517 << AllocType
.getQualifiers().getAddressSpaceAttributePrintValue();
2518 else if (getLangOpts().ObjCAutoRefCount
) {
2519 if (const ArrayType
*AT
= Context
.getAsArrayType(AllocType
)) {
2520 QualType BaseAllocType
= Context
.getBaseElementType(AT
);
2521 if (BaseAllocType
.getObjCLifetime() == Qualifiers::OCL_None
&&
2522 BaseAllocType
->isObjCLifetimeType())
2523 return Diag(Loc
, diag::err_arc_new_array_without_ownership
)
2531 static bool resolveAllocationOverload(
2532 Sema
&S
, LookupResult
&R
, SourceRange Range
, SmallVectorImpl
<Expr
*> &Args
,
2533 bool &PassAlignment
, FunctionDecl
*&Operator
,
2534 OverloadCandidateSet
*AlignedCandidates
, Expr
*AlignArg
, bool Diagnose
) {
2535 OverloadCandidateSet
Candidates(R
.getNameLoc(),
2536 OverloadCandidateSet::CSK_Normal
);
2537 for (LookupResult::iterator Alloc
= R
.begin(), AllocEnd
= R
.end();
2538 Alloc
!= AllocEnd
; ++Alloc
) {
2539 // Even member operator new/delete are implicitly treated as
2540 // static, so don't use AddMemberCandidate.
2541 NamedDecl
*D
= (*Alloc
)->getUnderlyingDecl();
2543 if (FunctionTemplateDecl
*FnTemplate
= dyn_cast
<FunctionTemplateDecl
>(D
)) {
2544 S
.AddTemplateOverloadCandidate(FnTemplate
, Alloc
.getPair(),
2545 /*ExplicitTemplateArgs=*/nullptr, Args
,
2547 /*SuppressUserConversions=*/false);
2551 FunctionDecl
*Fn
= cast
<FunctionDecl
>(D
);
2552 S
.AddOverloadCandidate(Fn
, Alloc
.getPair(), Args
, Candidates
,
2553 /*SuppressUserConversions=*/false);
2556 // Do the resolution.
2557 OverloadCandidateSet::iterator Best
;
2558 switch (Candidates
.BestViableFunction(S
, R
.getNameLoc(), Best
)) {
2561 FunctionDecl
*FnDecl
= Best
->Function
;
2562 if (S
.CheckAllocationAccess(R
.getNameLoc(), Range
, R
.getNamingClass(),
2563 Best
->FoundDecl
) == Sema::AR_inaccessible
)
2570 case OR_No_Viable_Function
:
2571 // C++17 [expr.new]p13:
2572 // If no matching function is found and the allocated object type has
2573 // new-extended alignment, the alignment argument is removed from the
2574 // argument list, and overload resolution is performed again.
2575 if (PassAlignment
) {
2576 PassAlignment
= false;
2578 Args
.erase(Args
.begin() + 1);
2579 return resolveAllocationOverload(S
, R
, Range
, Args
, PassAlignment
,
2580 Operator
, &Candidates
, AlignArg
,
2584 // MSVC will fall back on trying to find a matching global operator new
2585 // if operator new[] cannot be found. Also, MSVC will leak by not
2586 // generating a call to operator delete or operator delete[], but we
2587 // will not replicate that bug.
2588 // FIXME: Find out how this interacts with the std::align_val_t fallback
2589 // once MSVC implements it.
2590 if (R
.getLookupName().getCXXOverloadedOperator() == OO_Array_New
&&
2591 S
.Context
.getLangOpts().MSVCCompat
) {
2593 R
.setLookupName(S
.Context
.DeclarationNames
.getCXXOperatorName(OO_New
));
2594 S
.LookupQualifiedName(R
, S
.Context
.getTranslationUnitDecl());
2595 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2596 return resolveAllocationOverload(S
, R
, Range
, Args
, PassAlignment
,
2597 Operator
, /*Candidates=*/nullptr,
2598 /*AlignArg=*/nullptr, Diagnose
);
2602 // If this is an allocation of the form 'new (p) X' for some object
2603 // pointer p (or an expression that will decay to such a pointer),
2604 // diagnose the missing inclusion of <new>.
2605 if (!R
.isClassLookup() && Args
.size() == 2 &&
2606 (Args
[1]->getType()->isObjectPointerType() ||
2607 Args
[1]->getType()->isArrayType())) {
2608 S
.Diag(R
.getNameLoc(), diag::err_need_header_before_placement_new
)
2609 << R
.getLookupName() << Range
;
2610 // Listing the candidates is unlikely to be useful; skip it.
2614 // Finish checking all candidates before we note any. This checking can
2615 // produce additional diagnostics so can't be interleaved with our
2616 // emission of notes.
2618 // For an aligned allocation, separately check the aligned and unaligned
2619 // candidates with their respective argument lists.
2620 SmallVector
<OverloadCandidate
*, 32> Cands
;
2621 SmallVector
<OverloadCandidate
*, 32> AlignedCands
;
2622 llvm::SmallVector
<Expr
*, 4> AlignedArgs
;
2623 if (AlignedCandidates
) {
2624 auto IsAligned
= [](OverloadCandidate
&C
) {
2625 return C
.Function
->getNumParams() > 1 &&
2626 C
.Function
->getParamDecl(1)->getType()->isAlignValT();
2628 auto IsUnaligned
= [&](OverloadCandidate
&C
) { return !IsAligned(C
); };
2630 AlignedArgs
.reserve(Args
.size() + 1);
2631 AlignedArgs
.push_back(Args
[0]);
2632 AlignedArgs
.push_back(AlignArg
);
2633 AlignedArgs
.append(Args
.begin() + 1, Args
.end());
2634 AlignedCands
= AlignedCandidates
->CompleteCandidates(
2635 S
, OCD_AllCandidates
, AlignedArgs
, R
.getNameLoc(), IsAligned
);
2637 Cands
= Candidates
.CompleteCandidates(S
, OCD_AllCandidates
, Args
,
2638 R
.getNameLoc(), IsUnaligned
);
2640 Cands
= Candidates
.CompleteCandidates(S
, OCD_AllCandidates
, Args
,
2644 S
.Diag(R
.getNameLoc(), diag::err_ovl_no_viable_function_in_call
)
2645 << R
.getLookupName() << Range
;
2646 if (AlignedCandidates
)
2647 AlignedCandidates
->NoteCandidates(S
, AlignedArgs
, AlignedCands
, "",
2649 Candidates
.NoteCandidates(S
, Args
, Cands
, "", R
.getNameLoc());
2655 Candidates
.NoteCandidates(
2656 PartialDiagnosticAt(R
.getNameLoc(),
2657 S
.PDiag(diag::err_ovl_ambiguous_call
)
2658 << R
.getLookupName() << Range
),
2659 S
, OCD_AmbiguousCandidates
, Args
);
2665 Candidates
.NoteCandidates(
2666 PartialDiagnosticAt(R
.getNameLoc(),
2667 S
.PDiag(diag::err_ovl_deleted_call
)
2668 << R
.getLookupName() << Range
),
2669 S
, OCD_AllCandidates
, Args
);
2674 llvm_unreachable("Unreachable, bad result from BestViableFunction");
2677 bool Sema::FindAllocationFunctions(SourceLocation StartLoc
, SourceRange Range
,
2678 AllocationFunctionScope NewScope
,
2679 AllocationFunctionScope DeleteScope
,
2680 QualType AllocType
, bool IsArray
,
2681 bool &PassAlignment
, MultiExprArg PlaceArgs
,
2682 FunctionDecl
*&OperatorNew
,
2683 FunctionDecl
*&OperatorDelete
,
2685 // --- Choosing an allocation function ---
2686 // C++ 5.3.4p8 - 14 & 18
2687 // 1) If looking in AFS_Global scope for allocation functions, only look in
2688 // the global scope. Else, if AFS_Class, only look in the scope of the
2689 // allocated class. If AFS_Both, look in both.
2690 // 2) If an array size is given, look for operator new[], else look for
2692 // 3) The first argument is always size_t. Append the arguments from the
2695 SmallVector
<Expr
*, 8> AllocArgs
;
2696 AllocArgs
.reserve((PassAlignment
? 2 : 1) + PlaceArgs
.size());
2698 // We don't care about the actual value of these arguments.
2699 // FIXME: Should the Sema create the expression and embed it in the syntax
2700 // tree? Or should the consumer just recalculate the value?
2701 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2702 QualType SizeTy
= Context
.getSizeType();
2703 unsigned SizeTyWidth
= Context
.getTypeSize(SizeTy
);
2704 IntegerLiteral
Size(Context
, llvm::APInt::getZero(SizeTyWidth
), SizeTy
,
2706 AllocArgs
.push_back(&Size
);
2708 QualType AlignValT
= Context
.VoidTy
;
2709 if (PassAlignment
) {
2710 DeclareGlobalNewDelete();
2711 AlignValT
= Context
.getTypeDeclType(getStdAlignValT());
2713 CXXScalarValueInitExpr
Align(AlignValT
, nullptr, SourceLocation());
2715 AllocArgs
.push_back(&Align
);
2717 AllocArgs
.insert(AllocArgs
.end(), PlaceArgs
.begin(), PlaceArgs
.end());
2719 // C++ [expr.new]p8:
2720 // If the allocated type is a non-array type, the allocation
2721 // function's name is operator new and the deallocation function's
2722 // name is operator delete. If the allocated type is an array
2723 // type, the allocation function's name is operator new[] and the
2724 // deallocation function's name is operator delete[].
2725 DeclarationName NewName
= Context
.DeclarationNames
.getCXXOperatorName(
2726 IsArray
? OO_Array_New
: OO_New
);
2728 QualType AllocElemType
= Context
.getBaseElementType(AllocType
);
2730 // Find the allocation function.
2732 LookupResult
R(*this, NewName
, StartLoc
, LookupOrdinaryName
);
2734 // C++1z [expr.new]p9:
2735 // If the new-expression begins with a unary :: operator, the allocation
2736 // function's name is looked up in the global scope. Otherwise, if the
2737 // allocated type is a class type T or array thereof, the allocation
2738 // function's name is looked up in the scope of T.
2739 if (AllocElemType
->isRecordType() && NewScope
!= AFS_Global
)
2740 LookupQualifiedName(R
, AllocElemType
->getAsCXXRecordDecl());
2742 // We can see ambiguity here if the allocation function is found in
2743 // multiple base classes.
2744 if (R
.isAmbiguous())
2747 // If this lookup fails to find the name, or if the allocated type is not
2748 // a class type, the allocation function's name is looked up in the
2751 if (NewScope
== AFS_Class
)
2754 LookupQualifiedName(R
, Context
.getTranslationUnitDecl());
2757 if (getLangOpts().OpenCLCPlusPlus
&& R
.empty()) {
2758 if (PlaceArgs
.empty()) {
2759 Diag(StartLoc
, diag::err_openclcxx_not_supported
) << "default new";
2761 Diag(StartLoc
, diag::err_openclcxx_placement_new
);
2766 assert(!R
.empty() && "implicitly declared allocation functions not found");
2767 assert(!R
.isAmbiguous() && "global allocation functions are ambiguous");
2769 // We do our own custom access checks below.
2770 R
.suppressDiagnostics();
2772 if (resolveAllocationOverload(*this, R
, Range
, AllocArgs
, PassAlignment
,
2773 OperatorNew
, /*Candidates=*/nullptr,
2774 /*AlignArg=*/nullptr, Diagnose
))
2778 // We don't need an operator delete if we're running under -fno-exceptions.
2779 if (!getLangOpts().Exceptions
) {
2780 OperatorDelete
= nullptr;
2784 // Note, the name of OperatorNew might have been changed from array to
2785 // non-array by resolveAllocationOverload.
2786 DeclarationName DeleteName
= Context
.DeclarationNames
.getCXXOperatorName(
2787 OperatorNew
->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2791 // C++ [expr.new]p19:
2793 // If the new-expression begins with a unary :: operator, the
2794 // deallocation function's name is looked up in the global
2795 // scope. Otherwise, if the allocated type is a class type T or an
2796 // array thereof, the deallocation function's name is looked up in
2797 // the scope of T. If this lookup fails to find the name, or if
2798 // the allocated type is not a class type or array thereof, the
2799 // deallocation function's name is looked up in the global scope.
2800 LookupResult
FoundDelete(*this, DeleteName
, StartLoc
, LookupOrdinaryName
);
2801 if (AllocElemType
->isRecordType() && DeleteScope
!= AFS_Global
) {
2803 cast
<CXXRecordDecl
>(AllocElemType
->castAs
<RecordType
>()->getDecl());
2804 LookupQualifiedName(FoundDelete
, RD
);
2806 if (FoundDelete
.isAmbiguous())
2807 return true; // FIXME: clean up expressions?
2809 // Filter out any destroying operator deletes. We can't possibly call such a
2810 // function in this context, because we're handling the case where the object
2811 // was not successfully constructed.
2812 // FIXME: This is not covered by the language rules yet.
2814 LookupResult::Filter Filter
= FoundDelete
.makeFilter();
2815 while (Filter
.hasNext()) {
2816 auto *FD
= dyn_cast
<FunctionDecl
>(Filter
.next()->getUnderlyingDecl());
2817 if (FD
&& FD
->isDestroyingOperatorDelete())
2823 bool FoundGlobalDelete
= FoundDelete
.empty();
2824 if (FoundDelete
.empty()) {
2825 FoundDelete
.clear(LookupOrdinaryName
);
2827 if (DeleteScope
== AFS_Class
)
2830 DeclareGlobalNewDelete();
2831 LookupQualifiedName(FoundDelete
, Context
.getTranslationUnitDecl());
2834 FoundDelete
.suppressDiagnostics();
2836 SmallVector
<std::pair
<DeclAccessPair
,FunctionDecl
*>, 2> Matches
;
2838 // Whether we're looking for a placement operator delete is dictated
2839 // by whether we selected a placement operator new, not by whether
2840 // we had explicit placement arguments. This matters for things like
2841 // struct A { void *operator new(size_t, int = 0); ... };
2844 // We don't have any definition for what a "placement allocation function"
2845 // is, but we assume it's any allocation function whose
2846 // parameter-declaration-clause is anything other than (size_t).
2848 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2849 // This affects whether an exception from the constructor of an overaligned
2850 // type uses the sized or non-sized form of aligned operator delete.
2851 bool isPlacementNew
= !PlaceArgs
.empty() || OperatorNew
->param_size() != 1 ||
2852 OperatorNew
->isVariadic();
2854 if (isPlacementNew
) {
2855 // C++ [expr.new]p20:
2856 // A declaration of a placement deallocation function matches the
2857 // declaration of a placement allocation function if it has the
2858 // same number of parameters and, after parameter transformations
2859 // (8.3.5), all parameter types except the first are
2862 // To perform this comparison, we compute the function type that
2863 // the deallocation function should have, and use that type both
2864 // for template argument deduction and for comparison purposes.
2865 QualType ExpectedFunctionType
;
2867 auto *Proto
= OperatorNew
->getType()->castAs
<FunctionProtoType
>();
2869 SmallVector
<QualType
, 4> ArgTypes
;
2870 ArgTypes
.push_back(Context
.VoidPtrTy
);
2871 for (unsigned I
= 1, N
= Proto
->getNumParams(); I
< N
; ++I
)
2872 ArgTypes
.push_back(Proto
->getParamType(I
));
2874 FunctionProtoType::ExtProtoInfo EPI
;
2875 // FIXME: This is not part of the standard's rule.
2876 EPI
.Variadic
= Proto
->isVariadic();
2878 ExpectedFunctionType
2879 = Context
.getFunctionType(Context
.VoidTy
, ArgTypes
, EPI
);
2882 for (LookupResult::iterator D
= FoundDelete
.begin(),
2883 DEnd
= FoundDelete
.end();
2885 FunctionDecl
*Fn
= nullptr;
2886 if (FunctionTemplateDecl
*FnTmpl
=
2887 dyn_cast
<FunctionTemplateDecl
>((*D
)->getUnderlyingDecl())) {
2888 // Perform template argument deduction to try to match the
2889 // expected function type.
2890 TemplateDeductionInfo
Info(StartLoc
);
2891 if (DeduceTemplateArguments(FnTmpl
, nullptr, ExpectedFunctionType
, Fn
,
2895 Fn
= cast
<FunctionDecl
>((*D
)->getUnderlyingDecl());
2897 if (Context
.hasSameType(adjustCCAndNoReturn(Fn
->getType(),
2898 ExpectedFunctionType
,
2899 /*AdjustExcpetionSpec*/true),
2900 ExpectedFunctionType
))
2901 Matches
.push_back(std::make_pair(D
.getPair(), Fn
));
2904 if (getLangOpts().CUDA
)
2905 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2908 // C++1y [expr.new]p22:
2909 // For a non-placement allocation function, the normal deallocation
2910 // function lookup is used
2912 // Per [expr.delete]p10, this lookup prefers a member operator delete
2913 // without a size_t argument, but prefers a non-member operator delete
2914 // with a size_t where possible (which it always is in this case).
2915 llvm::SmallVector
<UsualDeallocFnInfo
, 4> BestDeallocFns
;
2916 UsualDeallocFnInfo Selected
= resolveDeallocationOverload(
2917 *this, FoundDelete
, /*WantSize*/ FoundGlobalDelete
,
2918 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType
),
2921 Matches
.push_back(std::make_pair(Selected
.Found
, Selected
.FD
));
2923 // If we failed to select an operator, all remaining functions are viable
2925 for (auto Fn
: BestDeallocFns
)
2926 Matches
.push_back(std::make_pair(Fn
.Found
, Fn
.FD
));
2930 // C++ [expr.new]p20:
2931 // [...] If the lookup finds a single matching deallocation
2932 // function, that function will be called; otherwise, no
2933 // deallocation function will be called.
2934 if (Matches
.size() == 1) {
2935 OperatorDelete
= Matches
[0].second
;
2937 // C++1z [expr.new]p23:
2938 // If the lookup finds a usual deallocation function (3.7.4.2)
2939 // with a parameter of type std::size_t and that function, considered
2940 // as a placement deallocation function, would have been
2941 // selected as a match for the allocation function, the program
2943 if (getLangOpts().CPlusPlus11
&& isPlacementNew
&&
2944 isNonPlacementDeallocationFunction(*this, OperatorDelete
)) {
2945 UsualDeallocFnInfo
Info(*this,
2946 DeclAccessPair::make(OperatorDelete
, AS_public
));
2947 // Core issue, per mail to core reflector, 2016-10-09:
2948 // If this is a member operator delete, and there is a corresponding
2949 // non-sized member operator delete, this isn't /really/ a sized
2950 // deallocation function, it just happens to have a size_t parameter.
2951 bool IsSizedDelete
= Info
.HasSizeT
;
2952 if (IsSizedDelete
&& !FoundGlobalDelete
) {
2953 auto NonSizedDelete
=
2954 resolveDeallocationOverload(*this, FoundDelete
, /*WantSize*/false,
2955 /*WantAlign*/Info
.HasAlignValT
);
2956 if (NonSizedDelete
&& !NonSizedDelete
.HasSizeT
&&
2957 NonSizedDelete
.HasAlignValT
== Info
.HasAlignValT
)
2958 IsSizedDelete
= false;
2961 if (IsSizedDelete
) {
2962 SourceRange R
= PlaceArgs
.empty()
2964 : SourceRange(PlaceArgs
.front()->getBeginLoc(),
2965 PlaceArgs
.back()->getEndLoc());
2966 Diag(StartLoc
, diag::err_placement_new_non_placement_delete
) << R
;
2967 if (!OperatorDelete
->isImplicit())
2968 Diag(OperatorDelete
->getLocation(), diag::note_previous_decl
)
2973 CheckAllocationAccess(StartLoc
, Range
, FoundDelete
.getNamingClass(),
2975 } else if (!Matches
.empty()) {
2976 // We found multiple suitable operators. Per [expr.new]p20, that means we
2977 // call no 'operator delete' function, but we should at least warn the user.
2978 // FIXME: Suppress this warning if the construction cannot throw.
2979 Diag(StartLoc
, diag::warn_ambiguous_suitable_delete_function_found
)
2980 << DeleteName
<< AllocElemType
;
2982 for (auto &Match
: Matches
)
2983 Diag(Match
.second
->getLocation(),
2984 diag::note_member_declared_here
) << DeleteName
;
2990 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2991 /// delete. These are:
2994 /// void* operator new(std::size_t) throw(std::bad_alloc);
2995 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2996 /// void operator delete(void *) throw();
2997 /// void operator delete[](void *) throw();
2999 /// void* operator new(std::size_t);
3000 /// void* operator new[](std::size_t);
3001 /// void operator delete(void *) noexcept;
3002 /// void operator delete[](void *) noexcept;
3004 /// void* operator new(std::size_t);
3005 /// void* operator new[](std::size_t);
3006 /// void operator delete(void *) noexcept;
3007 /// void operator delete[](void *) noexcept;
3008 /// void operator delete(void *, std::size_t) noexcept;
3009 /// void operator delete[](void *, std::size_t) noexcept;
3011 /// Note that the placement and nothrow forms of new are *not* implicitly
3012 /// declared. Their use requires including \<new\>.
3013 void Sema::DeclareGlobalNewDelete() {
3014 if (GlobalNewDeleteDeclared
)
3017 // The implicitly declared new and delete operators
3018 // are not supported in OpenCL.
3019 if (getLangOpts().OpenCLCPlusPlus
)
3022 // C++ [basic.stc.dynamic.general]p2:
3023 // The library provides default definitions for the global allocation
3024 // and deallocation functions. Some global allocation and deallocation
3025 // functions are replaceable ([new.delete]); these are attached to the
3026 // global module ([module.unit]).
3027 if (getLangOpts().CPlusPlusModules
&& getCurrentModule())
3028 PushGlobalModuleFragment(SourceLocation());
3030 // C++ [basic.std.dynamic]p2:
3031 // [...] The following allocation and deallocation functions (18.4) are
3032 // implicitly declared in global scope in each translation unit of a
3036 // void* operator new(std::size_t) throw(std::bad_alloc);
3037 // void* operator new[](std::size_t) throw(std::bad_alloc);
3038 // void operator delete(void*) throw();
3039 // void operator delete[](void*) throw();
3041 // void* operator new(std::size_t);
3042 // void* operator new[](std::size_t);
3043 // void operator delete(void*) noexcept;
3044 // void operator delete[](void*) noexcept;
3046 // void* operator new(std::size_t);
3047 // void* operator new[](std::size_t);
3048 // void operator delete(void*) noexcept;
3049 // void operator delete[](void*) noexcept;
3050 // void operator delete(void*, std::size_t) noexcept;
3051 // void operator delete[](void*, std::size_t) noexcept;
3053 // These implicit declarations introduce only the function names operator
3054 // new, operator new[], operator delete, operator delete[].
3056 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3057 // "std" or "bad_alloc" as necessary to form the exception specification.
3058 // However, we do not make these implicit declarations visible to name
3060 if (!StdBadAlloc
&& !getLangOpts().CPlusPlus11
) {
3061 // The "std::bad_alloc" class has not yet been declared, so build it
3063 StdBadAlloc
= CXXRecordDecl::Create(
3064 Context
, TagTypeKind::Class
, getOrCreateStdNamespace(),
3065 SourceLocation(), SourceLocation(),
3066 &PP
.getIdentifierTable().get("bad_alloc"), nullptr);
3067 getStdBadAlloc()->setImplicit(true);
3069 // The implicitly declared "std::bad_alloc" should live in global module
3071 if (TheGlobalModuleFragment
) {
3072 getStdBadAlloc()->setModuleOwnershipKind(
3073 Decl::ModuleOwnershipKind::ReachableWhenImported
);
3074 getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment
);
3077 if (!StdAlignValT
&& getLangOpts().AlignedAllocation
) {
3078 // The "std::align_val_t" enum class has not yet been declared, so build it
3080 auto *AlignValT
= EnumDecl::Create(
3081 Context
, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3082 &PP
.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3084 // The implicitly declared "std::align_val_t" should live in global module
3086 if (TheGlobalModuleFragment
) {
3087 AlignValT
->setModuleOwnershipKind(
3088 Decl::ModuleOwnershipKind::ReachableWhenImported
);
3089 AlignValT
->setLocalOwningModule(TheGlobalModuleFragment
);
3092 AlignValT
->setIntegerType(Context
.getSizeType());
3093 AlignValT
->setPromotionType(Context
.getSizeType());
3094 AlignValT
->setImplicit(true);
3096 StdAlignValT
= AlignValT
;
3099 GlobalNewDeleteDeclared
= true;
3101 QualType VoidPtr
= Context
.getPointerType(Context
.VoidTy
);
3102 QualType SizeT
= Context
.getSizeType();
3104 auto DeclareGlobalAllocationFunctions
= [&](OverloadedOperatorKind Kind
,
3105 QualType Return
, QualType Param
) {
3106 llvm::SmallVector
<QualType
, 3> Params
;
3107 Params
.push_back(Param
);
3109 // Create up to four variants of the function (sized/aligned).
3110 bool HasSizedVariant
= getLangOpts().SizedDeallocation
&&
3111 (Kind
== OO_Delete
|| Kind
== OO_Array_Delete
);
3112 bool HasAlignedVariant
= getLangOpts().AlignedAllocation
;
3114 int NumSizeVariants
= (HasSizedVariant
? 2 : 1);
3115 int NumAlignVariants
= (HasAlignedVariant
? 2 : 1);
3116 for (int Sized
= 0; Sized
< NumSizeVariants
; ++Sized
) {
3118 Params
.push_back(SizeT
);
3120 for (int Aligned
= 0; Aligned
< NumAlignVariants
; ++Aligned
) {
3122 Params
.push_back(Context
.getTypeDeclType(getStdAlignValT()));
3124 DeclareGlobalAllocationFunction(
3125 Context
.DeclarationNames
.getCXXOperatorName(Kind
), Return
, Params
);
3133 DeclareGlobalAllocationFunctions(OO_New
, VoidPtr
, SizeT
);
3134 DeclareGlobalAllocationFunctions(OO_Array_New
, VoidPtr
, SizeT
);
3135 DeclareGlobalAllocationFunctions(OO_Delete
, Context
.VoidTy
, VoidPtr
);
3136 DeclareGlobalAllocationFunctions(OO_Array_Delete
, Context
.VoidTy
, VoidPtr
);
3138 if (getLangOpts().CPlusPlusModules
&& getCurrentModule())
3139 PopGlobalModuleFragment();
3142 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3143 /// allocation function if it doesn't already exist.
3144 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name
,
3146 ArrayRef
<QualType
> Params
) {
3147 DeclContext
*GlobalCtx
= Context
.getTranslationUnitDecl();
3149 // Check if this function is already declared.
3150 DeclContext::lookup_result R
= GlobalCtx
->lookup(Name
);
3151 for (DeclContext::lookup_iterator Alloc
= R
.begin(), AllocEnd
= R
.end();
3152 Alloc
!= AllocEnd
; ++Alloc
) {
3153 // Only look at non-template functions, as it is the predefined,
3154 // non-templated allocation function we are trying to declare here.
3155 if (FunctionDecl
*Func
= dyn_cast
<FunctionDecl
>(*Alloc
)) {
3156 if (Func
->getNumParams() == Params
.size()) {
3157 llvm::SmallVector
<QualType
, 3> FuncParams
;
3158 for (auto *P
: Func
->parameters())
3159 FuncParams
.push_back(
3160 Context
.getCanonicalType(P
->getType().getUnqualifiedType()));
3161 if (llvm::ArrayRef(FuncParams
) == Params
) {
3162 // Make the function visible to name lookup, even if we found it in
3163 // an unimported module. It either is an implicitly-declared global
3164 // allocation function, or is suppressing that function.
3165 Func
->setVisibleDespiteOwningModule();
3172 FunctionProtoType::ExtProtoInfo
EPI(Context
.getDefaultCallingConvention(
3173 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3175 QualType BadAllocType
;
3176 bool HasBadAllocExceptionSpec
3177 = (Name
.getCXXOverloadedOperator() == OO_New
||
3178 Name
.getCXXOverloadedOperator() == OO_Array_New
);
3179 if (HasBadAllocExceptionSpec
) {
3180 if (!getLangOpts().CPlusPlus11
) {
3181 BadAllocType
= Context
.getTypeDeclType(getStdBadAlloc());
3182 assert(StdBadAlloc
&& "Must have std::bad_alloc declared");
3183 EPI
.ExceptionSpec
.Type
= EST_Dynamic
;
3184 EPI
.ExceptionSpec
.Exceptions
= llvm::ArrayRef(BadAllocType
);
3186 if (getLangOpts().NewInfallible
) {
3187 EPI
.ExceptionSpec
.Type
= EST_DynamicNone
;
3191 getLangOpts().CPlusPlus11
? EST_BasicNoexcept
: EST_DynamicNone
;
3194 auto CreateAllocationFunctionDecl
= [&](Attr
*ExtraAttr
) {
3195 QualType FnType
= Context
.getFunctionType(Return
, Params
, EPI
);
3196 FunctionDecl
*Alloc
= FunctionDecl::Create(
3197 Context
, GlobalCtx
, SourceLocation(), SourceLocation(), Name
, FnType
,
3198 /*TInfo=*/nullptr, SC_None
, getCurFPFeatures().isFPConstrained(), false,
3200 Alloc
->setImplicit();
3201 // Global allocation functions should always be visible.
3202 Alloc
->setVisibleDespiteOwningModule();
3204 if (HasBadAllocExceptionSpec
&& getLangOpts().NewInfallible
&&
3205 !getLangOpts().CheckNew
)
3207 ReturnsNonNullAttr::CreateImplicit(Context
, Alloc
->getLocation()));
3209 // C++ [basic.stc.dynamic.general]p2:
3210 // The library provides default definitions for the global allocation
3211 // and deallocation functions. Some global allocation and deallocation
3212 // functions are replaceable ([new.delete]); these are attached to the
3213 // global module ([module.unit]).
3215 // In the language wording, these functions are attched to the global
3216 // module all the time. But in the implementation, the global module
3217 // is only meaningful when we're in a module unit. So here we attach
3218 // these allocation functions to global module conditionally.
3219 if (TheGlobalModuleFragment
) {
3220 Alloc
->setModuleOwnershipKind(
3221 Decl::ModuleOwnershipKind::ReachableWhenImported
);
3222 Alloc
->setLocalOwningModule(TheGlobalModuleFragment
);
3225 Alloc
->addAttr(VisibilityAttr::CreateImplicit(
3226 Context
, LangOpts
.GlobalAllocationFunctionVisibilityHidden
3227 ? VisibilityAttr::Hidden
3228 : VisibilityAttr::Default
));
3230 llvm::SmallVector
<ParmVarDecl
*, 3> ParamDecls
;
3231 for (QualType T
: Params
) {
3232 ParamDecls
.push_back(ParmVarDecl::Create(
3233 Context
, Alloc
, SourceLocation(), SourceLocation(), nullptr, T
,
3234 /*TInfo=*/nullptr, SC_None
, nullptr));
3235 ParamDecls
.back()->setImplicit();
3237 Alloc
->setParams(ParamDecls
);
3239 Alloc
->addAttr(ExtraAttr
);
3240 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc
);
3241 Context
.getTranslationUnitDecl()->addDecl(Alloc
);
3242 IdResolver
.tryAddTopLevelDecl(Alloc
, Name
);
3246 CreateAllocationFunctionDecl(nullptr);
3248 // Host and device get their own declaration so each can be
3249 // defined or re-declared independently.
3250 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context
));
3251 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context
));
3255 FunctionDecl
*Sema::FindUsualDeallocationFunction(SourceLocation StartLoc
,
3256 bool CanProvideSize
,
3258 DeclarationName Name
) {
3259 DeclareGlobalNewDelete();
3261 LookupResult
FoundDelete(*this, Name
, StartLoc
, LookupOrdinaryName
);
3262 LookupQualifiedName(FoundDelete
, Context
.getTranslationUnitDecl());
3264 // FIXME: It's possible for this to result in ambiguity, through a
3265 // user-declared variadic operator delete or the enable_if attribute. We
3266 // should probably not consider those cases to be usual deallocation
3267 // functions. But for now we just make an arbitrary choice in that case.
3268 auto Result
= resolveDeallocationOverload(*this, FoundDelete
, CanProvideSize
,
3270 assert(Result
.FD
&& "operator delete missing from global scope?");
3274 FunctionDecl
*Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc
,
3275 CXXRecordDecl
*RD
) {
3276 DeclarationName Name
= Context
.DeclarationNames
.getCXXOperatorName(OO_Delete
);
3278 FunctionDecl
*OperatorDelete
= nullptr;
3279 if (FindDeallocationFunction(Loc
, RD
, Name
, OperatorDelete
))
3282 return OperatorDelete
;
3284 // If there's no class-specific operator delete, look up the global
3285 // non-array delete.
3286 return FindUsualDeallocationFunction(
3287 Loc
, true, hasNewExtendedAlignment(*this, Context
.getRecordType(RD
)),
3291 bool Sema::FindDeallocationFunction(SourceLocation StartLoc
, CXXRecordDecl
*RD
,
3292 DeclarationName Name
,
3293 FunctionDecl
*&Operator
, bool Diagnose
,
3294 bool WantSize
, bool WantAligned
) {
3295 LookupResult
Found(*this, Name
, StartLoc
, LookupOrdinaryName
);
3296 // Try to find operator delete/operator delete[] in class scope.
3297 LookupQualifiedName(Found
, RD
);
3299 if (Found
.isAmbiguous())
3302 Found
.suppressDiagnostics();
3305 WantAligned
|| hasNewExtendedAlignment(*this, Context
.getRecordType(RD
));
3307 // C++17 [expr.delete]p10:
3308 // If the deallocation functions have class scope, the one without a
3309 // parameter of type std::size_t is selected.
3310 llvm::SmallVector
<UsualDeallocFnInfo
, 4> Matches
;
3311 resolveDeallocationOverload(*this, Found
, /*WantSize*/ WantSize
,
3312 /*WantAlign*/ Overaligned
, &Matches
);
3314 // If we could find an overload, use it.
3315 if (Matches
.size() == 1) {
3316 Operator
= cast
<CXXMethodDecl
>(Matches
[0].FD
);
3318 // FIXME: DiagnoseUseOfDecl?
3319 if (Operator
->isDeleted()) {
3321 Diag(StartLoc
, diag::err_deleted_function_use
);
3322 NoteDeletedFunction(Operator
);
3327 if (CheckAllocationAccess(StartLoc
, SourceRange(), Found
.getNamingClass(),
3328 Matches
[0].Found
, Diagnose
) == AR_inaccessible
)
3334 // We found multiple suitable operators; complain about the ambiguity.
3335 // FIXME: The standard doesn't say to do this; it appears that the intent
3336 // is that this should never happen.
3337 if (!Matches
.empty()) {
3339 Diag(StartLoc
, diag::err_ambiguous_suitable_delete_member_function_found
)
3341 for (auto &Match
: Matches
)
3342 Diag(Match
.FD
->getLocation(), diag::note_member_declared_here
) << Name
;
3347 // We did find operator delete/operator delete[] declarations, but
3348 // none of them were suitable.
3349 if (!Found
.empty()) {
3351 Diag(StartLoc
, diag::err_no_suitable_delete_member_function_found
)
3354 for (NamedDecl
*D
: Found
)
3355 Diag(D
->getUnderlyingDecl()->getLocation(),
3356 diag::note_member_declared_here
) << Name
;
3366 /// Checks whether delete-expression, and new-expression used for
3367 /// initializing deletee have the same array form.
3368 class MismatchingNewDeleteDetector
{
3370 enum MismatchResult
{
3371 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3373 /// Indicates that variable is initialized with mismatching form of \a new.
3375 /// Indicates that member is initialized with mismatching form of \a new.
3376 MemberInitMismatches
,
3377 /// Indicates that 1 or more constructors' definitions could not been
3378 /// analyzed, and they will be checked again at the end of translation unit.
3382 /// \param EndOfTU True, if this is the final analysis at the end of
3383 /// translation unit. False, if this is the initial analysis at the point
3384 /// delete-expression was encountered.
3385 explicit MismatchingNewDeleteDetector(bool EndOfTU
)
3386 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU
),
3387 HasUndefinedConstructors(false) {}
3389 /// Checks whether pointee of a delete-expression is initialized with
3390 /// matching form of new-expression.
3392 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3393 /// point where delete-expression is encountered, then a warning will be
3394 /// issued immediately. If return value is \c AnalyzeLater at the point where
3395 /// delete-expression is seen, then member will be analyzed at the end of
3396 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3397 /// couldn't be analyzed. If at least one constructor initializes the member
3398 /// with matching type of new, the return value is \c NoMismatch.
3399 MismatchResult
analyzeDeleteExpr(const CXXDeleteExpr
*DE
);
3400 /// Analyzes a class member.
3401 /// \param Field Class member to analyze.
3402 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3403 /// for deleting the \p Field.
3404 MismatchResult
analyzeField(FieldDecl
*Field
, bool DeleteWasArrayForm
);
3406 /// List of mismatching new-expressions used for initialization of the pointee
3407 llvm::SmallVector
<const CXXNewExpr
*, 4> NewExprs
;
3408 /// Indicates whether delete-expression was in array form.
3413 /// Indicates that there is at least one constructor without body.
3414 bool HasUndefinedConstructors
;
3415 /// Returns \c CXXNewExpr from given initialization expression.
3416 /// \param E Expression used for initializing pointee in delete-expression.
3417 /// E can be a single-element \c InitListExpr consisting of new-expression.
3418 const CXXNewExpr
*getNewExprFromInitListOrExpr(const Expr
*E
);
3419 /// Returns whether member is initialized with mismatching form of
3420 /// \c new either by the member initializer or in-class initialization.
3422 /// If bodies of all constructors are not visible at the end of translation
3423 /// unit or at least one constructor initializes member with the matching
3424 /// form of \c new, mismatch cannot be proven, and this function will return
3426 MismatchResult
analyzeMemberExpr(const MemberExpr
*ME
);
3427 /// Returns whether variable is initialized with mismatching form of
3430 /// If variable is initialized with matching form of \c new or variable is not
3431 /// initialized with a \c new expression, this function will return true.
3432 /// If variable is initialized with mismatching form of \c new, returns false.
3433 /// \param D Variable to analyze.
3434 bool hasMatchingVarInit(const DeclRefExpr
*D
);
3435 /// Checks whether the constructor initializes pointee with mismatching
3438 /// Returns true, if member is initialized with matching form of \c new in
3439 /// member initializer list. Returns false, if member is initialized with the
3440 /// matching form of \c new in this constructor's initializer or given
3441 /// constructor isn't defined at the point where delete-expression is seen, or
3442 /// member isn't initialized by the constructor.
3443 bool hasMatchingNewInCtor(const CXXConstructorDecl
*CD
);
3444 /// Checks whether member is initialized with matching form of
3445 /// \c new in member initializer list.
3446 bool hasMatchingNewInCtorInit(const CXXCtorInitializer
*CI
);
3447 /// Checks whether member is initialized with mismatching form of \c new by
3448 /// in-class initializer.
3449 MismatchResult
analyzeInClassInitializer();
3453 MismatchingNewDeleteDetector::MismatchResult
3454 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr
*DE
) {
3456 assert(DE
&& "Expected delete-expression");
3457 IsArrayForm
= DE
->isArrayForm();
3458 const Expr
*E
= DE
->getArgument()->IgnoreParenImpCasts();
3459 if (const MemberExpr
*ME
= dyn_cast
<const MemberExpr
>(E
)) {
3460 return analyzeMemberExpr(ME
);
3461 } else if (const DeclRefExpr
*D
= dyn_cast
<const DeclRefExpr
>(E
)) {
3462 if (!hasMatchingVarInit(D
))
3463 return VarInitMismatches
;
3469 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr
*E
) {
3470 assert(E
!= nullptr && "Expected a valid initializer expression");
3471 E
= E
->IgnoreParenImpCasts();
3472 if (const InitListExpr
*ILE
= dyn_cast
<const InitListExpr
>(E
)) {
3473 if (ILE
->getNumInits() == 1)
3474 E
= dyn_cast
<const CXXNewExpr
>(ILE
->getInit(0)->IgnoreParenImpCasts());
3477 return dyn_cast_or_null
<const CXXNewExpr
>(E
);
3480 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3481 const CXXCtorInitializer
*CI
) {
3482 const CXXNewExpr
*NE
= nullptr;
3483 if (Field
== CI
->getMember() &&
3484 (NE
= getNewExprFromInitListOrExpr(CI
->getInit()))) {
3485 if (NE
->isArray() == IsArrayForm
)
3488 NewExprs
.push_back(NE
);
3493 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3494 const CXXConstructorDecl
*CD
) {
3495 if (CD
->isImplicit())
3497 const FunctionDecl
*Definition
= CD
;
3498 if (!CD
->isThisDeclarationADefinition() && !CD
->isDefined(Definition
)) {
3499 HasUndefinedConstructors
= true;
3502 for (const auto *CI
: cast
<const CXXConstructorDecl
>(Definition
)->inits()) {
3503 if (hasMatchingNewInCtorInit(CI
))
3509 MismatchingNewDeleteDetector::MismatchResult
3510 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3511 assert(Field
!= nullptr && "This should be called only for members");
3512 const Expr
*InitExpr
= Field
->getInClassInitializer();
3514 return EndOfTU
? NoMismatch
: AnalyzeLater
;
3515 if (const CXXNewExpr
*NE
= getNewExprFromInitListOrExpr(InitExpr
)) {
3516 if (NE
->isArray() != IsArrayForm
) {
3517 NewExprs
.push_back(NE
);
3518 return MemberInitMismatches
;
3524 MismatchingNewDeleteDetector::MismatchResult
3525 MismatchingNewDeleteDetector::analyzeField(FieldDecl
*Field
,
3526 bool DeleteWasArrayForm
) {
3527 assert(Field
!= nullptr && "Analysis requires a valid class member.");
3528 this->Field
= Field
;
3529 IsArrayForm
= DeleteWasArrayForm
;
3530 const CXXRecordDecl
*RD
= cast
<const CXXRecordDecl
>(Field
->getParent());
3531 for (const auto *CD
: RD
->ctors()) {
3532 if (hasMatchingNewInCtor(CD
))
3535 if (HasUndefinedConstructors
)
3536 return EndOfTU
? NoMismatch
: AnalyzeLater
;
3537 if (!NewExprs
.empty())
3538 return MemberInitMismatches
;
3539 return Field
->hasInClassInitializer() ? analyzeInClassInitializer()
3543 MismatchingNewDeleteDetector::MismatchResult
3544 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr
*ME
) {
3545 assert(ME
!= nullptr && "Expected a member expression");
3546 if (FieldDecl
*F
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl()))
3547 return analyzeField(F
, IsArrayForm
);
3551 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr
*D
) {
3552 const CXXNewExpr
*NE
= nullptr;
3553 if (const VarDecl
*VD
= dyn_cast
<const VarDecl
>(D
->getDecl())) {
3554 if (VD
->hasInit() && (NE
= getNewExprFromInitListOrExpr(VD
->getInit())) &&
3555 NE
->isArray() != IsArrayForm
) {
3556 NewExprs
.push_back(NE
);
3559 return NewExprs
.empty();
3563 DiagnoseMismatchedNewDelete(Sema
&SemaRef
, SourceLocation DeleteLoc
,
3564 const MismatchingNewDeleteDetector
&Detector
) {
3565 SourceLocation EndOfDelete
= SemaRef
.getLocForEndOfToken(DeleteLoc
);
3567 if (!Detector
.IsArrayForm
)
3568 H
= FixItHint::CreateInsertion(EndOfDelete
, "[]");
3570 SourceLocation RSquare
= Lexer::findLocationAfterToken(
3571 DeleteLoc
, tok::l_square
, SemaRef
.getSourceManager(),
3572 SemaRef
.getLangOpts(), true);
3573 if (RSquare
.isValid())
3574 H
= FixItHint::CreateRemoval(SourceRange(EndOfDelete
, RSquare
));
3576 SemaRef
.Diag(DeleteLoc
, diag::warn_mismatched_delete_new
)
3577 << Detector
.IsArrayForm
<< H
;
3579 for (const auto *NE
: Detector
.NewExprs
)
3580 SemaRef
.Diag(NE
->getExprLoc(), diag::note_allocated_here
)
3581 << Detector
.IsArrayForm
;
3584 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr
*DE
) {
3585 if (Diags
.isIgnored(diag::warn_mismatched_delete_new
, SourceLocation()))
3587 MismatchingNewDeleteDetector
Detector(/*EndOfTU=*/false);
3588 switch (Detector
.analyzeDeleteExpr(DE
)) {
3589 case MismatchingNewDeleteDetector::VarInitMismatches
:
3590 case MismatchingNewDeleteDetector::MemberInitMismatches
: {
3591 DiagnoseMismatchedNewDelete(*this, DE
->getBeginLoc(), Detector
);
3594 case MismatchingNewDeleteDetector::AnalyzeLater
: {
3595 DeleteExprs
[Detector
.Field
].push_back(
3596 std::make_pair(DE
->getBeginLoc(), DE
->isArrayForm()));
3599 case MismatchingNewDeleteDetector::NoMismatch
:
3604 void Sema::AnalyzeDeleteExprMismatch(FieldDecl
*Field
, SourceLocation DeleteLoc
,
3605 bool DeleteWasArrayForm
) {
3606 MismatchingNewDeleteDetector
Detector(/*EndOfTU=*/true);
3607 switch (Detector
.analyzeField(Field
, DeleteWasArrayForm
)) {
3608 case MismatchingNewDeleteDetector::VarInitMismatches
:
3609 llvm_unreachable("This analysis should have been done for class members.");
3610 case MismatchingNewDeleteDetector::AnalyzeLater
:
3611 llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3612 "translation unit.");
3613 case MismatchingNewDeleteDetector::MemberInitMismatches
:
3614 DiagnoseMismatchedNewDelete(*this, DeleteLoc
, Detector
);
3616 case MismatchingNewDeleteDetector::NoMismatch
:
3621 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3622 /// @code ::delete ptr; @endcode
3624 /// @code delete [] ptr; @endcode
3626 Sema::ActOnCXXDelete(SourceLocation StartLoc
, bool UseGlobal
,
3627 bool ArrayForm
, Expr
*ExE
) {
3628 // C++ [expr.delete]p1:
3629 // The operand shall have a pointer type, or a class type having a single
3630 // non-explicit conversion function to a pointer type. The result has type
3633 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3635 ExprResult Ex
= ExE
;
3636 FunctionDecl
*OperatorDelete
= nullptr;
3637 bool ArrayFormAsWritten
= ArrayForm
;
3638 bool UsualArrayDeleteWantsSize
= false;
3640 if (!Ex
.get()->isTypeDependent()) {
3641 // Perform lvalue-to-rvalue cast, if needed.
3642 Ex
= DefaultLvalueConversion(Ex
.get());
3646 QualType Type
= Ex
.get()->getType();
3648 class DeleteConverter
: public ContextualImplicitConverter
{
3650 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3652 bool match(QualType ConvType
) override
{
3653 // FIXME: If we have an operator T* and an operator void*, we must pick
3655 if (const PointerType
*ConvPtrType
= ConvType
->getAs
<PointerType
>())
3656 if (ConvPtrType
->getPointeeType()->isIncompleteOrObjectType())
3661 SemaDiagnosticBuilder
diagnoseNoMatch(Sema
&S
, SourceLocation Loc
,
3662 QualType T
) override
{
3663 return S
.Diag(Loc
, diag::err_delete_operand
) << T
;
3666 SemaDiagnosticBuilder
diagnoseIncomplete(Sema
&S
, SourceLocation Loc
,
3667 QualType T
) override
{
3668 return S
.Diag(Loc
, diag::err_delete_incomplete_class_type
) << T
;
3671 SemaDiagnosticBuilder
diagnoseExplicitConv(Sema
&S
, SourceLocation Loc
,
3673 QualType ConvTy
) override
{
3674 return S
.Diag(Loc
, diag::err_delete_explicit_conversion
) << T
<< ConvTy
;
3677 SemaDiagnosticBuilder
noteExplicitConv(Sema
&S
, CXXConversionDecl
*Conv
,
3678 QualType ConvTy
) override
{
3679 return S
.Diag(Conv
->getLocation(), diag::note_delete_conversion
)
3683 SemaDiagnosticBuilder
diagnoseAmbiguous(Sema
&S
, SourceLocation Loc
,
3684 QualType T
) override
{
3685 return S
.Diag(Loc
, diag::err_ambiguous_delete_operand
) << T
;
3688 SemaDiagnosticBuilder
noteAmbiguous(Sema
&S
, CXXConversionDecl
*Conv
,
3689 QualType ConvTy
) override
{
3690 return S
.Diag(Conv
->getLocation(), diag::note_delete_conversion
)
3694 SemaDiagnosticBuilder
diagnoseConversion(Sema
&S
, SourceLocation Loc
,
3696 QualType ConvTy
) override
{
3697 llvm_unreachable("conversion functions are permitted");
3701 Ex
= PerformContextualImplicitConversion(StartLoc
, Ex
.get(), Converter
);
3704 Type
= Ex
.get()->getType();
3705 if (!Converter
.match(Type
))
3706 // FIXME: PerformContextualImplicitConversion should return ExprError
3707 // itself in this case.
3710 QualType Pointee
= Type
->castAs
<PointerType
>()->getPointeeType();
3711 QualType PointeeElem
= Context
.getBaseElementType(Pointee
);
3713 if (Pointee
.getAddressSpace() != LangAS::Default
&&
3714 !getLangOpts().OpenCLCPlusPlus
)
3715 return Diag(Ex
.get()->getBeginLoc(),
3716 diag::err_address_space_qualified_delete
)
3717 << Pointee
.getUnqualifiedType()
3718 << Pointee
.getQualifiers().getAddressSpaceAttributePrintValue();
3720 CXXRecordDecl
*PointeeRD
= nullptr;
3721 if (Pointee
->isVoidType() && !isSFINAEContext()) {
3722 // The C++ standard bans deleting a pointer to a non-object type, which
3723 // effectively bans deletion of "void*". However, most compilers support
3724 // this, so we treat it as a warning unless we're in a SFINAE context.
3725 Diag(StartLoc
, diag::ext_delete_void_ptr_operand
)
3726 << Type
<< Ex
.get()->getSourceRange();
3727 } else if (Pointee
->isFunctionType() || Pointee
->isVoidType() ||
3728 Pointee
->isSizelessType()) {
3729 return ExprError(Diag(StartLoc
, diag::err_delete_operand
)
3730 << Type
<< Ex
.get()->getSourceRange());
3731 } else if (!Pointee
->isDependentType()) {
3732 // FIXME: This can result in errors if the definition was imported from a
3733 // module but is hidden.
3734 if (!RequireCompleteType(StartLoc
, Pointee
,
3735 diag::warn_delete_incomplete
, Ex
.get())) {
3736 if (const RecordType
*RT
= PointeeElem
->getAs
<RecordType
>())
3737 PointeeRD
= cast
<CXXRecordDecl
>(RT
->getDecl());
3741 if (Pointee
->isArrayType() && !ArrayForm
) {
3742 Diag(StartLoc
, diag::warn_delete_array_type
)
3743 << Type
<< Ex
.get()->getSourceRange()
3744 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc
), "[]");
3748 DeclarationName DeleteName
= Context
.DeclarationNames
.getCXXOperatorName(
3749 ArrayForm
? OO_Array_Delete
: OO_Delete
);
3753 FindDeallocationFunction(StartLoc
, PointeeRD
, DeleteName
,
3757 // If we're allocating an array of records, check whether the
3758 // usual operator delete[] has a size_t parameter.
3760 // If the user specifically asked to use the global allocator,
3761 // we'll need to do the lookup into the class.
3763 UsualArrayDeleteWantsSize
=
3764 doesUsualArrayDeleteWantSize(*this, StartLoc
, PointeeElem
);
3766 // Otherwise, the usual operator delete[] should be the
3767 // function we just found.
3768 else if (OperatorDelete
&& isa
<CXXMethodDecl
>(OperatorDelete
))
3769 UsualArrayDeleteWantsSize
=
3770 UsualDeallocFnInfo(*this,
3771 DeclAccessPair::make(OperatorDelete
, AS_public
))
3775 if (!PointeeRD
->hasIrrelevantDestructor())
3776 if (CXXDestructorDecl
*Dtor
= LookupDestructor(PointeeRD
)) {
3777 MarkFunctionReferenced(StartLoc
,
3778 const_cast<CXXDestructorDecl
*>(Dtor
));
3779 if (DiagnoseUseOfDecl(Dtor
, StartLoc
))
3783 CheckVirtualDtorCall(PointeeRD
->getDestructor(), StartLoc
,
3784 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3785 /*WarnOnNonAbstractTypes=*/!ArrayForm
,
3789 if (!OperatorDelete
) {
3790 if (getLangOpts().OpenCLCPlusPlus
) {
3791 Diag(StartLoc
, diag::err_openclcxx_not_supported
) << "default delete";
3795 bool IsComplete
= isCompleteType(StartLoc
, Pointee
);
3796 bool CanProvideSize
=
3797 IsComplete
&& (!ArrayForm
|| UsualArrayDeleteWantsSize
||
3798 Pointee
.isDestructedType());
3799 bool Overaligned
= hasNewExtendedAlignment(*this, Pointee
);
3801 // Look for a global declaration.
3802 OperatorDelete
= FindUsualDeallocationFunction(StartLoc
, CanProvideSize
,
3803 Overaligned
, DeleteName
);
3806 MarkFunctionReferenced(StartLoc
, OperatorDelete
);
3808 // Check access and ambiguity of destructor if we're going to call it.
3809 // Note that this is required even for a virtual delete.
3810 bool IsVirtualDelete
= false;
3812 if (CXXDestructorDecl
*Dtor
= LookupDestructor(PointeeRD
)) {
3813 CheckDestructorAccess(Ex
.get()->getExprLoc(), Dtor
,
3814 PDiag(diag::err_access_dtor
) << PointeeElem
);
3815 IsVirtualDelete
= Dtor
->isVirtual();
3819 DiagnoseUseOfDecl(OperatorDelete
, StartLoc
);
3821 // Convert the operand to the type of the first parameter of operator
3822 // delete. This is only necessary if we selected a destroying operator
3823 // delete that we are going to call (non-virtually); converting to void*
3824 // is trivial and left to AST consumers to handle.
3825 QualType ParamType
= OperatorDelete
->getParamDecl(0)->getType();
3826 if (!IsVirtualDelete
&& !ParamType
->getPointeeType()->isVoidType()) {
3827 Qualifiers Qs
= Pointee
.getQualifiers();
3828 if (Qs
.hasCVRQualifiers()) {
3829 // Qualifiers are irrelevant to this conversion; we're only looking
3830 // for access and ambiguity.
3831 Qs
.removeCVRQualifiers();
3832 QualType Unqual
= Context
.getPointerType(
3833 Context
.getQualifiedType(Pointee
.getUnqualifiedType(), Qs
));
3834 Ex
= ImpCastExprToType(Ex
.get(), Unqual
, CK_NoOp
);
3836 Ex
= PerformImplicitConversion(Ex
.get(), ParamType
, AA_Passing
);
3842 CXXDeleteExpr
*Result
= new (Context
) CXXDeleteExpr(
3843 Context
.VoidTy
, UseGlobal
, ArrayForm
, ArrayFormAsWritten
,
3844 UsualArrayDeleteWantsSize
, OperatorDelete
, Ex
.get(), StartLoc
);
3845 AnalyzeDeleteExprMismatch(Result
);
3849 static bool resolveBuiltinNewDeleteOverload(Sema
&S
, CallExpr
*TheCall
,
3851 FunctionDecl
*&Operator
) {
3853 DeclarationName NewName
= S
.Context
.DeclarationNames
.getCXXOperatorName(
3854 IsDelete
? OO_Delete
: OO_New
);
3856 LookupResult
R(S
, NewName
, TheCall
->getBeginLoc(), Sema::LookupOrdinaryName
);
3857 S
.LookupQualifiedName(R
, S
.Context
.getTranslationUnitDecl());
3858 assert(!R
.empty() && "implicitly declared allocation functions not found");
3859 assert(!R
.isAmbiguous() && "global allocation functions are ambiguous");
3861 // We do our own custom access checks below.
3862 R
.suppressDiagnostics();
3864 SmallVector
<Expr
*, 8> Args(TheCall
->arguments());
3865 OverloadCandidateSet
Candidates(R
.getNameLoc(),
3866 OverloadCandidateSet::CSK_Normal
);
3867 for (LookupResult::iterator FnOvl
= R
.begin(), FnOvlEnd
= R
.end();
3868 FnOvl
!= FnOvlEnd
; ++FnOvl
) {
3869 // Even member operator new/delete are implicitly treated as
3870 // static, so don't use AddMemberCandidate.
3871 NamedDecl
*D
= (*FnOvl
)->getUnderlyingDecl();
3873 if (FunctionTemplateDecl
*FnTemplate
= dyn_cast
<FunctionTemplateDecl
>(D
)) {
3874 S
.AddTemplateOverloadCandidate(FnTemplate
, FnOvl
.getPair(),
3875 /*ExplicitTemplateArgs=*/nullptr, Args
,
3877 /*SuppressUserConversions=*/false);
3881 FunctionDecl
*Fn
= cast
<FunctionDecl
>(D
);
3882 S
.AddOverloadCandidate(Fn
, FnOvl
.getPair(), Args
, Candidates
,
3883 /*SuppressUserConversions=*/false);
3886 SourceRange Range
= TheCall
->getSourceRange();
3888 // Do the resolution.
3889 OverloadCandidateSet::iterator Best
;
3890 switch (Candidates
.BestViableFunction(S
, R
.getNameLoc(), Best
)) {
3893 FunctionDecl
*FnDecl
= Best
->Function
;
3894 assert(R
.getNamingClass() == nullptr &&
3895 "class members should not be considered");
3897 if (!FnDecl
->isReplaceableGlobalAllocationFunction()) {
3898 S
.Diag(R
.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual
)
3899 << (IsDelete
? 1 : 0) << Range
;
3900 S
.Diag(FnDecl
->getLocation(), diag::note_non_usual_function_declared_here
)
3901 << R
.getLookupName() << FnDecl
->getSourceRange();
3909 case OR_No_Viable_Function
:
3910 Candidates
.NoteCandidates(
3911 PartialDiagnosticAt(R
.getNameLoc(),
3912 S
.PDiag(diag::err_ovl_no_viable_function_in_call
)
3913 << R
.getLookupName() << Range
),
3914 S
, OCD_AllCandidates
, Args
);
3918 Candidates
.NoteCandidates(
3919 PartialDiagnosticAt(R
.getNameLoc(),
3920 S
.PDiag(diag::err_ovl_ambiguous_call
)
3921 << R
.getLookupName() << Range
),
3922 S
, OCD_AmbiguousCandidates
, Args
);
3926 Candidates
.NoteCandidates(
3927 PartialDiagnosticAt(R
.getNameLoc(), S
.PDiag(diag::err_ovl_deleted_call
)
3928 << R
.getLookupName() << Range
),
3929 S
, OCD_AllCandidates
, Args
);
3933 llvm_unreachable("Unreachable, bad result from BestViableFunction");
3937 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult
,
3939 CallExpr
*TheCall
= cast
<CallExpr
>(TheCallResult
.get());
3940 if (!getLangOpts().CPlusPlus
) {
3941 Diag(TheCall
->getExprLoc(), diag::err_builtin_requires_language
)
3942 << (IsDelete
? "__builtin_operator_delete" : "__builtin_operator_new")
3946 // CodeGen assumes it can find the global new and delete to call,
3947 // so ensure that they are declared.
3948 DeclareGlobalNewDelete();
3950 FunctionDecl
*OperatorNewOrDelete
= nullptr;
3951 if (resolveBuiltinNewDeleteOverload(*this, TheCall
, IsDelete
,
3952 OperatorNewOrDelete
))
3954 assert(OperatorNewOrDelete
&& "should be found");
3956 DiagnoseUseOfDecl(OperatorNewOrDelete
, TheCall
->getExprLoc());
3957 MarkFunctionReferenced(TheCall
->getExprLoc(), OperatorNewOrDelete
);
3959 TheCall
->setType(OperatorNewOrDelete
->getReturnType());
3960 for (unsigned i
= 0; i
!= TheCall
->getNumArgs(); ++i
) {
3961 QualType ParamTy
= OperatorNewOrDelete
->getParamDecl(i
)->getType();
3962 InitializedEntity Entity
=
3963 InitializedEntity::InitializeParameter(Context
, ParamTy
, false);
3964 ExprResult Arg
= PerformCopyInitialization(
3965 Entity
, TheCall
->getArg(i
)->getBeginLoc(), TheCall
->getArg(i
));
3966 if (Arg
.isInvalid())
3968 TheCall
->setArg(i
, Arg
.get());
3970 auto Callee
= dyn_cast
<ImplicitCastExpr
>(TheCall
->getCallee());
3971 assert(Callee
&& Callee
->getCastKind() == CK_BuiltinFnToFnPtr
&&
3972 "Callee expected to be implicit cast to a builtin function pointer");
3973 Callee
->setType(OperatorNewOrDelete
->getType());
3975 return TheCallResult
;
3978 void Sema::CheckVirtualDtorCall(CXXDestructorDecl
*dtor
, SourceLocation Loc
,
3979 bool IsDelete
, bool CallCanBeVirtual
,
3980 bool WarnOnNonAbstractTypes
,
3981 SourceLocation DtorLoc
) {
3982 if (!dtor
|| dtor
->isVirtual() || !CallCanBeVirtual
|| isUnevaluatedContext())
3985 // C++ [expr.delete]p3:
3986 // In the first alternative (delete object), if the static type of the
3987 // object to be deleted is different from its dynamic type, the static
3988 // type shall be a base class of the dynamic type of the object to be
3989 // deleted and the static type shall have a virtual destructor or the
3990 // behavior is undefined.
3992 const CXXRecordDecl
*PointeeRD
= dtor
->getParent();
3993 // Note: a final class cannot be derived from, no issue there
3994 if (!PointeeRD
->isPolymorphic() || PointeeRD
->hasAttr
<FinalAttr
>())
3997 // If the superclass is in a system header, there's nothing that can be done.
3998 // The `delete` (where we emit the warning) can be in a system header,
3999 // what matters for this warning is where the deleted type is defined.
4000 if (getSourceManager().isInSystemHeader(PointeeRD
->getLocation()))
4003 QualType ClassType
= dtor
->getFunctionObjectParameterType();
4004 if (PointeeRD
->isAbstract()) {
4005 // If the class is abstract, we warn by default, because we're
4006 // sure the code has undefined behavior.
4007 Diag(Loc
, diag::warn_delete_abstract_non_virtual_dtor
) << (IsDelete
? 0 : 1)
4009 } else if (WarnOnNonAbstractTypes
) {
4010 // Otherwise, if this is not an array delete, it's a bit suspect,
4011 // but not necessarily wrong.
4012 Diag(Loc
, diag::warn_delete_non_virtual_dtor
) << (IsDelete
? 0 : 1)
4016 std::string TypeStr
;
4017 ClassType
.getAsStringInternal(TypeStr
, getPrintingPolicy());
4018 Diag(DtorLoc
, diag::note_delete_non_virtual
)
4019 << FixItHint::CreateInsertion(DtorLoc
, TypeStr
+ "::");
4023 Sema::ConditionResult
Sema::ActOnConditionVariable(Decl
*ConditionVar
,
4024 SourceLocation StmtLoc
,
4027 CheckConditionVariable(cast
<VarDecl
>(ConditionVar
), StmtLoc
, CK
);
4029 return ConditionError();
4030 return ConditionResult(*this, ConditionVar
, MakeFullExpr(E
.get(), StmtLoc
),
4031 CK
== ConditionKind::ConstexprIf
);
4034 /// Check the use of the given variable as a C++ condition in an if,
4035 /// while, do-while, or switch statement.
4036 ExprResult
Sema::CheckConditionVariable(VarDecl
*ConditionVar
,
4037 SourceLocation StmtLoc
,
4039 if (ConditionVar
->isInvalidDecl())
4042 QualType T
= ConditionVar
->getType();
4044 // C++ [stmt.select]p2:
4045 // The declarator shall not specify a function or an array.
4046 if (T
->isFunctionType())
4047 return ExprError(Diag(ConditionVar
->getLocation(),
4048 diag::err_invalid_use_of_function_type
)
4049 << ConditionVar
->getSourceRange());
4050 else if (T
->isArrayType())
4051 return ExprError(Diag(ConditionVar
->getLocation(),
4052 diag::err_invalid_use_of_array_type
)
4053 << ConditionVar
->getSourceRange());
4055 ExprResult Condition
= BuildDeclRefExpr(
4056 ConditionVar
, ConditionVar
->getType().getNonReferenceType(), VK_LValue
,
4057 ConditionVar
->getLocation());
4060 case ConditionKind::Boolean
:
4061 return CheckBooleanCondition(StmtLoc
, Condition
.get());
4063 case ConditionKind::ConstexprIf
:
4064 return CheckBooleanCondition(StmtLoc
, Condition
.get(), true);
4066 case ConditionKind::Switch
:
4067 return CheckSwitchCondition(StmtLoc
, Condition
.get());
4070 llvm_unreachable("unexpected condition kind");
4073 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
4074 ExprResult
Sema::CheckCXXBooleanCondition(Expr
*CondExpr
, bool IsConstexpr
) {
4076 // The value of a condition that is an initialized declaration in a statement
4077 // other than a switch statement is the value of the declared variable
4078 // implicitly converted to type bool. If that conversion is ill-formed, the
4079 // program is ill-formed.
4080 // The value of a condition that is an expression is the value of the
4081 // expression, implicitly converted to bool.
4084 // If the if statement is of the form if constexpr, the value of the condition
4085 // is contextually converted to bool and the converted expression shall be
4086 // a constant expression.
4089 ExprResult E
= PerformContextuallyConvertToBool(CondExpr
);
4090 if (!IsConstexpr
|| E
.isInvalid() || E
.get()->isValueDependent())
4093 // FIXME: Return this value to the caller so they don't need to recompute it.
4095 E
= VerifyIntegerConstantExpression(
4097 diag::err_constexpr_if_condition_expression_is_not_constant
);
4101 /// Helper function to determine whether this is the (deprecated) C++
4102 /// conversion from a string literal to a pointer to non-const char or
4103 /// non-const wchar_t (for narrow and wide string literals,
4106 Sema::IsStringLiteralToNonConstPointerConversion(Expr
*From
, QualType ToType
) {
4107 // Look inside the implicit cast, if it exists.
4108 if (ImplicitCastExpr
*Cast
= dyn_cast
<ImplicitCastExpr
>(From
))
4109 From
= Cast
->getSubExpr();
4111 // A string literal (2.13.4) that is not a wide string literal can
4112 // be converted to an rvalue of type "pointer to char"; a wide
4113 // string literal can be converted to an rvalue of type "pointer
4114 // to wchar_t" (C++ 4.2p2).
4115 if (StringLiteral
*StrLit
= dyn_cast
<StringLiteral
>(From
->IgnoreParens()))
4116 if (const PointerType
*ToPtrType
= ToType
->getAs
<PointerType
>())
4117 if (const BuiltinType
*ToPointeeType
4118 = ToPtrType
->getPointeeType()->getAs
<BuiltinType
>()) {
4119 // This conversion is considered only when there is an
4120 // explicit appropriate pointer target type (C++ 4.2p2).
4121 if (!ToPtrType
->getPointeeType().hasQualifiers()) {
4122 switch (StrLit
->getKind()) {
4123 case StringLiteralKind::UTF8
:
4124 case StringLiteralKind::UTF16
:
4125 case StringLiteralKind::UTF32
:
4126 // We don't allow UTF literals to be implicitly converted
4128 case StringLiteralKind::Ordinary
:
4129 return (ToPointeeType
->getKind() == BuiltinType::Char_U
||
4130 ToPointeeType
->getKind() == BuiltinType::Char_S
);
4131 case StringLiteralKind::Wide
:
4132 return Context
.typesAreCompatible(Context
.getWideCharType(),
4133 QualType(ToPointeeType
, 0));
4134 case StringLiteralKind::Unevaluated
:
4135 assert(false && "Unevaluated string literal in expression");
4144 static ExprResult
BuildCXXCastArgument(Sema
&S
,
4145 SourceLocation CastLoc
,
4148 CXXMethodDecl
*Method
,
4149 DeclAccessPair FoundDecl
,
4150 bool HadMultipleCandidates
,
4153 default: llvm_unreachable("Unhandled cast kind!");
4154 case CK_ConstructorConversion
: {
4155 CXXConstructorDecl
*Constructor
= cast
<CXXConstructorDecl
>(Method
);
4156 SmallVector
<Expr
*, 8> ConstructorArgs
;
4158 if (S
.RequireNonAbstractType(CastLoc
, Ty
,
4159 diag::err_allocation_of_abstract_type
))
4162 if (S
.CompleteConstructorCall(Constructor
, Ty
, From
, CastLoc
,
4166 S
.CheckConstructorAccess(CastLoc
, Constructor
, FoundDecl
,
4167 InitializedEntity::InitializeTemporary(Ty
));
4168 if (S
.DiagnoseUseOfDecl(Method
, CastLoc
))
4171 ExprResult Result
= S
.BuildCXXConstructExpr(
4172 CastLoc
, Ty
, FoundDecl
, cast
<CXXConstructorDecl
>(Method
),
4173 ConstructorArgs
, HadMultipleCandidates
,
4174 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4175 CXXConstructionKind::Complete
, SourceRange());
4176 if (Result
.isInvalid())
4179 return S
.MaybeBindToTemporary(Result
.getAs
<Expr
>());
4182 case CK_UserDefinedConversion
: {
4183 assert(!From
->getType()->isPointerType() && "Arg can't have pointer type!");
4185 S
.CheckMemberOperatorAccess(CastLoc
, From
, /*arg*/ nullptr, FoundDecl
);
4186 if (S
.DiagnoseUseOfDecl(Method
, CastLoc
))
4189 // Create an implicit call expr that calls it.
4190 CXXConversionDecl
*Conv
= cast
<CXXConversionDecl
>(Method
);
4191 ExprResult Result
= S
.BuildCXXMemberCallExpr(From
, FoundDecl
, Conv
,
4192 HadMultipleCandidates
);
4193 if (Result
.isInvalid())
4195 // Record usage of conversion in an implicit cast.
4196 Result
= ImplicitCastExpr::Create(S
.Context
, Result
.get()->getType(),
4197 CK_UserDefinedConversion
, Result
.get(),
4198 nullptr, Result
.get()->getValueKind(),
4199 S
.CurFPFeatureOverrides());
4201 return S
.MaybeBindToTemporary(Result
.get());
4206 /// PerformImplicitConversion - Perform an implicit conversion of the
4207 /// expression From to the type ToType using the pre-computed implicit
4208 /// conversion sequence ICS. Returns the converted
4209 /// expression. Action is the kind of conversion we're performing,
4210 /// used in the error message.
4212 Sema::PerformImplicitConversion(Expr
*From
, QualType ToType
,
4213 const ImplicitConversionSequence
&ICS
,
4214 AssignmentAction Action
,
4215 CheckedConversionKind CCK
) {
4216 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4217 if (CCK
== CCK_ForBuiltinOverloadedOp
&& !From
->getType()->isRecordType())
4220 switch (ICS
.getKind()) {
4221 case ImplicitConversionSequence::StandardConversion
: {
4222 ExprResult Res
= PerformImplicitConversion(From
, ToType
, ICS
.Standard
,
4224 if (Res
.isInvalid())
4230 case ImplicitConversionSequence::UserDefinedConversion
: {
4232 FunctionDecl
*FD
= ICS
.UserDefined
.ConversionFunction
;
4234 QualType BeforeToType
;
4235 assert(FD
&& "no conversion function for user-defined conversion seq");
4236 if (const CXXConversionDecl
*Conv
= dyn_cast
<CXXConversionDecl
>(FD
)) {
4237 CastKind
= CK_UserDefinedConversion
;
4239 // If the user-defined conversion is specified by a conversion function,
4240 // the initial standard conversion sequence converts the source type to
4241 // the implicit object parameter of the conversion function.
4242 BeforeToType
= Context
.getTagDeclType(Conv
->getParent());
4244 const CXXConstructorDecl
*Ctor
= cast
<CXXConstructorDecl
>(FD
);
4245 CastKind
= CK_ConstructorConversion
;
4246 // Do no conversion if dealing with ... for the first conversion.
4247 if (!ICS
.UserDefined
.EllipsisConversion
) {
4248 // If the user-defined conversion is specified by a constructor, the
4249 // initial standard conversion sequence converts the source type to
4250 // the type required by the argument of the constructor
4251 BeforeToType
= Ctor
->getParamDecl(0)->getType().getNonReferenceType();
4254 // Watch out for ellipsis conversion.
4255 if (!ICS
.UserDefined
.EllipsisConversion
) {
4257 PerformImplicitConversion(From
, BeforeToType
,
4258 ICS
.UserDefined
.Before
, AA_Converting
,
4260 if (Res
.isInvalid())
4265 ExprResult CastArg
= BuildCXXCastArgument(
4266 *this, From
->getBeginLoc(), ToType
.getNonReferenceType(), CastKind
,
4267 cast
<CXXMethodDecl
>(FD
), ICS
.UserDefined
.FoundConversionFunction
,
4268 ICS
.UserDefined
.HadMultipleCandidates
, From
);
4270 if (CastArg
.isInvalid())
4273 From
= CastArg
.get();
4275 // C++ [over.match.oper]p7:
4276 // [...] the second standard conversion sequence of a user-defined
4277 // conversion sequence is not applied.
4278 if (CCK
== CCK_ForBuiltinOverloadedOp
)
4281 return PerformImplicitConversion(From
, ToType
, ICS
.UserDefined
.After
,
4282 AA_Converting
, CCK
);
4285 case ImplicitConversionSequence::AmbiguousConversion
:
4286 ICS
.DiagnoseAmbiguousConversion(*this, From
->getExprLoc(),
4287 PDiag(diag::err_typecheck_ambiguous_condition
)
4288 << From
->getSourceRange());
4291 case ImplicitConversionSequence::EllipsisConversion
:
4292 case ImplicitConversionSequence::StaticObjectArgumentConversion
:
4293 llvm_unreachable("bad conversion");
4295 case ImplicitConversionSequence::BadConversion
:
4296 Sema::AssignConvertType ConvTy
=
4297 CheckAssignmentConstraints(From
->getExprLoc(), ToType
, From
->getType());
4298 bool Diagnosed
= DiagnoseAssignmentResult(
4299 ConvTy
== Compatible
? Incompatible
: ConvTy
, From
->getExprLoc(),
4300 ToType
, From
->getType(), From
, Action
);
4301 assert(Diagnosed
&& "failed to diagnose bad conversion"); (void)Diagnosed
;
4305 // Everything went well.
4309 /// PerformImplicitConversion - Perform an implicit conversion of the
4310 /// expression From to the type ToType by following the standard
4311 /// conversion sequence SCS. Returns the converted
4312 /// expression. Flavor is the context in which we're performing this
4313 /// conversion, for use in error messages.
4315 Sema::PerformImplicitConversion(Expr
*From
, QualType ToType
,
4316 const StandardConversionSequence
& SCS
,
4317 AssignmentAction Action
,
4318 CheckedConversionKind CCK
) {
4319 bool CStyle
= (CCK
== CCK_CStyleCast
|| CCK
== CCK_FunctionalCast
);
4321 // Overall FIXME: we are recomputing too many types here and doing far too
4322 // much extra work. What this means is that we need to keep track of more
4323 // information that is computed when we try the implicit conversion initially,
4324 // so that we don't need to recompute anything here.
4325 QualType FromType
= From
->getType();
4327 if (SCS
.CopyConstructor
) {
4328 // FIXME: When can ToType be a reference type?
4329 assert(!ToType
->isReferenceType());
4330 if (SCS
.Second
== ICK_Derived_To_Base
) {
4331 SmallVector
<Expr
*, 8> ConstructorArgs
;
4332 if (CompleteConstructorCall(
4333 cast
<CXXConstructorDecl
>(SCS
.CopyConstructor
), ToType
, From
,
4334 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs
))
4336 return BuildCXXConstructExpr(
4337 /*FIXME:ConstructLoc*/ SourceLocation(), ToType
,
4338 SCS
.FoundCopyConstructor
, SCS
.CopyConstructor
, ConstructorArgs
,
4339 /*HadMultipleCandidates*/ false,
4340 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4341 CXXConstructionKind::Complete
, SourceRange());
4343 return BuildCXXConstructExpr(
4344 /*FIXME:ConstructLoc*/ SourceLocation(), ToType
,
4345 SCS
.FoundCopyConstructor
, SCS
.CopyConstructor
, From
,
4346 /*HadMultipleCandidates*/ false,
4347 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4348 CXXConstructionKind::Complete
, SourceRange());
4351 // Resolve overloaded function references.
4352 if (Context
.hasSameType(FromType
, Context
.OverloadTy
)) {
4353 DeclAccessPair Found
;
4354 FunctionDecl
*Fn
= ResolveAddressOfOverloadedFunction(From
, ToType
,
4359 if (DiagnoseUseOfDecl(Fn
, From
->getBeginLoc()))
4362 ExprResult Res
= FixOverloadedFunctionReference(From
, Found
, Fn
);
4363 if (Res
.isInvalid())
4366 // We might get back another placeholder expression if we resolved to a
4368 Res
= CheckPlaceholderExpr(Res
.get());
4369 if (Res
.isInvalid())
4373 FromType
= From
->getType();
4376 // If we're converting to an atomic type, first convert to the corresponding
4378 QualType ToAtomicType
;
4379 if (const AtomicType
*ToAtomic
= ToType
->getAs
<AtomicType
>()) {
4380 ToAtomicType
= ToType
;
4381 ToType
= ToAtomic
->getValueType();
4384 QualType InitialFromType
= FromType
;
4385 // Perform the first implicit conversion.
4386 switch (SCS
.First
) {
4388 if (const AtomicType
*FromAtomic
= FromType
->getAs
<AtomicType
>()) {
4389 FromType
= FromAtomic
->getValueType().getUnqualifiedType();
4390 From
= ImplicitCastExpr::Create(Context
, FromType
, CK_AtomicToNonAtomic
,
4391 From
, /*BasePath=*/nullptr, VK_PRValue
,
4392 FPOptionsOverride());
4396 case ICK_Lvalue_To_Rvalue
: {
4397 assert(From
->getObjectKind() != OK_ObjCProperty
);
4398 ExprResult FromRes
= DefaultLvalueConversion(From
);
4399 if (FromRes
.isInvalid())
4402 From
= FromRes
.get();
4403 FromType
= From
->getType();
4407 case ICK_Array_To_Pointer
:
4408 FromType
= Context
.getArrayDecayedType(FromType
);
4409 From
= ImpCastExprToType(From
, FromType
, CK_ArrayToPointerDecay
, VK_PRValue
,
4410 /*BasePath=*/nullptr, CCK
)
4414 case ICK_Function_To_Pointer
:
4415 FromType
= Context
.getPointerType(FromType
);
4416 From
= ImpCastExprToType(From
, FromType
, CK_FunctionToPointerDecay
,
4417 VK_PRValue
, /*BasePath=*/nullptr, CCK
)
4422 llvm_unreachable("Improper first standard conversion");
4425 // Perform the second implicit conversion
4426 switch (SCS
.Second
) {
4428 // C++ [except.spec]p5:
4429 // [For] assignment to and initialization of pointers to functions,
4430 // pointers to member functions, and references to functions: the
4431 // target entity shall allow at least the exceptions allowed by the
4432 // source value in the assignment or initialization.
4435 case AA_Initializing
:
4436 // Note, function argument passing and returning are initialization.
4440 case AA_Passing_CFAudited
:
4441 if (CheckExceptionSpecCompatibility(From
, ToType
))
4447 // Casts and implicit conversions are not initialization, so are not
4448 // checked for exception specification mismatches.
4451 // Nothing else to do.
4454 case ICK_Integral_Promotion
:
4455 case ICK_Integral_Conversion
:
4456 if (ToType
->isBooleanType()) {
4457 assert(FromType
->castAs
<EnumType
>()->getDecl()->isFixed() &&
4458 SCS
.Second
== ICK_Integral_Promotion
&&
4459 "only enums with fixed underlying type can promote to bool");
4460 From
= ImpCastExprToType(From
, ToType
, CK_IntegralToBoolean
, VK_PRValue
,
4461 /*BasePath=*/nullptr, CCK
)
4464 From
= ImpCastExprToType(From
, ToType
, CK_IntegralCast
, VK_PRValue
,
4465 /*BasePath=*/nullptr, CCK
)
4470 case ICK_Floating_Promotion
:
4471 case ICK_Floating_Conversion
:
4472 From
= ImpCastExprToType(From
, ToType
, CK_FloatingCast
, VK_PRValue
,
4473 /*BasePath=*/nullptr, CCK
)
4477 case ICK_Complex_Promotion
:
4478 case ICK_Complex_Conversion
: {
4479 QualType FromEl
= From
->getType()->castAs
<ComplexType
>()->getElementType();
4480 QualType ToEl
= ToType
->castAs
<ComplexType
>()->getElementType();
4482 if (FromEl
->isRealFloatingType()) {
4483 if (ToEl
->isRealFloatingType())
4484 CK
= CK_FloatingComplexCast
;
4486 CK
= CK_FloatingComplexToIntegralComplex
;
4487 } else if (ToEl
->isRealFloatingType()) {
4488 CK
= CK_IntegralComplexToFloatingComplex
;
4490 CK
= CK_IntegralComplexCast
;
4492 From
= ImpCastExprToType(From
, ToType
, CK
, VK_PRValue
, /*BasePath=*/nullptr,
4498 case ICK_Floating_Integral
:
4499 if (ToType
->isRealFloatingType())
4500 From
= ImpCastExprToType(From
, ToType
, CK_IntegralToFloating
, VK_PRValue
,
4501 /*BasePath=*/nullptr, CCK
)
4504 From
= ImpCastExprToType(From
, ToType
, CK_FloatingToIntegral
, VK_PRValue
,
4505 /*BasePath=*/nullptr, CCK
)
4509 case ICK_Fixed_Point_Conversion
:
4510 assert((FromType
->isFixedPointType() || ToType
->isFixedPointType()) &&
4511 "Attempting implicit fixed point conversion without a fixed "
4513 if (FromType
->isFloatingType())
4514 From
= ImpCastExprToType(From
, ToType
, CK_FloatingToFixedPoint
,
4516 /*BasePath=*/nullptr, CCK
).get();
4517 else if (ToType
->isFloatingType())
4518 From
= ImpCastExprToType(From
, ToType
, CK_FixedPointToFloating
,
4520 /*BasePath=*/nullptr, CCK
).get();
4521 else if (FromType
->isIntegralType(Context
))
4522 From
= ImpCastExprToType(From
, ToType
, CK_IntegralToFixedPoint
,
4524 /*BasePath=*/nullptr, CCK
).get();
4525 else if (ToType
->isIntegralType(Context
))
4526 From
= ImpCastExprToType(From
, ToType
, CK_FixedPointToIntegral
,
4528 /*BasePath=*/nullptr, CCK
).get();
4529 else if (ToType
->isBooleanType())
4530 From
= ImpCastExprToType(From
, ToType
, CK_FixedPointToBoolean
,
4532 /*BasePath=*/nullptr, CCK
).get();
4534 From
= ImpCastExprToType(From
, ToType
, CK_FixedPointCast
,
4536 /*BasePath=*/nullptr, CCK
).get();
4539 case ICK_Compatible_Conversion
:
4540 From
= ImpCastExprToType(From
, ToType
, CK_NoOp
, From
->getValueKind(),
4541 /*BasePath=*/nullptr, CCK
).get();
4544 case ICK_Writeback_Conversion
:
4545 case ICK_Pointer_Conversion
: {
4546 if (SCS
.IncompatibleObjC
&& Action
!= AA_Casting
) {
4547 // Diagnose incompatible Objective-C conversions
4548 if (Action
== AA_Initializing
|| Action
== AA_Assigning
)
4549 Diag(From
->getBeginLoc(),
4550 diag::ext_typecheck_convert_incompatible_pointer
)
4551 << ToType
<< From
->getType() << Action
<< From
->getSourceRange()
4554 Diag(From
->getBeginLoc(),
4555 diag::ext_typecheck_convert_incompatible_pointer
)
4556 << From
->getType() << ToType
<< Action
<< From
->getSourceRange()
4559 if (From
->getType()->isObjCObjectPointerType() &&
4560 ToType
->isObjCObjectPointerType())
4561 EmitRelatedResultTypeNote(From
);
4562 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4563 !CheckObjCARCUnavailableWeakConversion(ToType
,
4565 if (Action
== AA_Initializing
)
4566 Diag(From
->getBeginLoc(), diag::err_arc_weak_unavailable_assign
);
4568 Diag(From
->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable
)
4569 << (Action
== AA_Casting
) << From
->getType() << ToType
4570 << From
->getSourceRange();
4573 // Defer address space conversion to the third conversion.
4574 QualType FromPteeType
= From
->getType()->getPointeeType();
4575 QualType ToPteeType
= ToType
->getPointeeType();
4576 QualType NewToType
= ToType
;
4577 if (!FromPteeType
.isNull() && !ToPteeType
.isNull() &&
4578 FromPteeType
.getAddressSpace() != ToPteeType
.getAddressSpace()) {
4579 NewToType
= Context
.removeAddrSpaceQualType(ToPteeType
);
4580 NewToType
= Context
.getAddrSpaceQualType(NewToType
,
4581 FromPteeType
.getAddressSpace());
4582 if (ToType
->isObjCObjectPointerType())
4583 NewToType
= Context
.getObjCObjectPointerType(NewToType
);
4584 else if (ToType
->isBlockPointerType())
4585 NewToType
= Context
.getBlockPointerType(NewToType
);
4587 NewToType
= Context
.getPointerType(NewToType
);
4591 CXXCastPath BasePath
;
4592 if (CheckPointerConversion(From
, NewToType
, Kind
, BasePath
, CStyle
))
4595 // Make sure we extend blocks if necessary.
4596 // FIXME: doing this here is really ugly.
4597 if (Kind
== CK_BlockPointerToObjCPointerCast
) {
4598 ExprResult E
= From
;
4599 (void) PrepareCastToObjCObjectPointer(E
);
4602 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4603 CheckObjCConversion(SourceRange(), NewToType
, From
, CCK
);
4604 From
= ImpCastExprToType(From
, NewToType
, Kind
, VK_PRValue
, &BasePath
, CCK
)
4609 case ICK_Pointer_Member
: {
4611 CXXCastPath BasePath
;
4612 if (CheckMemberPointerConversion(From
, ToType
, Kind
, BasePath
, CStyle
))
4614 if (CheckExceptionSpecCompatibility(From
, ToType
))
4617 // We may not have been able to figure out what this member pointer resolved
4618 // to up until this exact point. Attempt to lock-in it's inheritance model.
4619 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
4620 (void)isCompleteType(From
->getExprLoc(), From
->getType());
4621 (void)isCompleteType(From
->getExprLoc(), ToType
);
4625 ImpCastExprToType(From
, ToType
, Kind
, VK_PRValue
, &BasePath
, CCK
).get();
4629 case ICK_Boolean_Conversion
:
4630 // Perform half-to-boolean conversion via float.
4631 if (From
->getType()->isHalfType()) {
4632 From
= ImpCastExprToType(From
, Context
.FloatTy
, CK_FloatingCast
).get();
4633 FromType
= Context
.FloatTy
;
4636 From
= ImpCastExprToType(From
, Context
.BoolTy
,
4637 ScalarTypeToBooleanCastKind(FromType
), VK_PRValue
,
4638 /*BasePath=*/nullptr, CCK
)
4642 case ICK_Derived_To_Base
: {
4643 CXXCastPath BasePath
;
4644 if (CheckDerivedToBaseConversion(
4645 From
->getType(), ToType
.getNonReferenceType(), From
->getBeginLoc(),
4646 From
->getSourceRange(), &BasePath
, CStyle
))
4649 From
= ImpCastExprToType(From
, ToType
.getNonReferenceType(),
4650 CK_DerivedToBase
, From
->getValueKind(),
4651 &BasePath
, CCK
).get();
4655 case ICK_Vector_Conversion
:
4656 From
= ImpCastExprToType(From
, ToType
, CK_BitCast
, VK_PRValue
,
4657 /*BasePath=*/nullptr, CCK
)
4661 case ICK_SVE_Vector_Conversion
:
4662 case ICK_RVV_Vector_Conversion
:
4663 From
= ImpCastExprToType(From
, ToType
, CK_BitCast
, VK_PRValue
,
4664 /*BasePath=*/nullptr, CCK
)
4668 case ICK_Vector_Splat
: {
4669 // Vector splat from any arithmetic type to a vector.
4670 Expr
*Elem
= prepareVectorSplat(ToType
, From
).get();
4671 From
= ImpCastExprToType(Elem
, ToType
, CK_VectorSplat
, VK_PRValue
,
4672 /*BasePath=*/nullptr, CCK
)
4677 case ICK_Complex_Real
:
4678 // Case 1. x -> _Complex y
4679 if (const ComplexType
*ToComplex
= ToType
->getAs
<ComplexType
>()) {
4680 QualType ElType
= ToComplex
->getElementType();
4681 bool isFloatingComplex
= ElType
->isRealFloatingType();
4684 if (Context
.hasSameUnqualifiedType(ElType
, From
->getType())) {
4686 } else if (From
->getType()->isRealFloatingType()) {
4687 From
= ImpCastExprToType(From
, ElType
,
4688 isFloatingComplex
? CK_FloatingCast
: CK_FloatingToIntegral
).get();
4690 assert(From
->getType()->isIntegerType());
4691 From
= ImpCastExprToType(From
, ElType
,
4692 isFloatingComplex
? CK_IntegralToFloating
: CK_IntegralCast
).get();
4695 From
= ImpCastExprToType(From
, ToType
,
4696 isFloatingComplex
? CK_FloatingRealToComplex
4697 : CK_IntegralRealToComplex
).get();
4699 // Case 2. _Complex x -> y
4701 auto *FromComplex
= From
->getType()->castAs
<ComplexType
>();
4702 QualType ElType
= FromComplex
->getElementType();
4703 bool isFloatingComplex
= ElType
->isRealFloatingType();
4706 From
= ImpCastExprToType(From
, ElType
,
4707 isFloatingComplex
? CK_FloatingComplexToReal
4708 : CK_IntegralComplexToReal
,
4709 VK_PRValue
, /*BasePath=*/nullptr, CCK
)
4713 if (Context
.hasSameUnqualifiedType(ElType
, ToType
)) {
4715 } else if (ToType
->isRealFloatingType()) {
4716 From
= ImpCastExprToType(From
, ToType
,
4717 isFloatingComplex
? CK_FloatingCast
4718 : CK_IntegralToFloating
,
4719 VK_PRValue
, /*BasePath=*/nullptr, CCK
)
4722 assert(ToType
->isIntegerType());
4723 From
= ImpCastExprToType(From
, ToType
,
4724 isFloatingComplex
? CK_FloatingToIntegral
4726 VK_PRValue
, /*BasePath=*/nullptr, CCK
)
4732 case ICK_Block_Pointer_Conversion
: {
4734 ToType
->castAs
<BlockPointerType
>()->getPointeeType().getAddressSpace();
4736 FromType
->castAs
<BlockPointerType
>()->getPointeeType().getAddressSpace();
4737 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL
, AddrSpaceR
) &&
4740 AddrSpaceL
!= AddrSpaceR
? CK_AddressSpaceConversion
: CK_BitCast
;
4741 From
= ImpCastExprToType(From
, ToType
.getUnqualifiedType(), Kind
,
4742 VK_PRValue
, /*BasePath=*/nullptr, CCK
)
4747 case ICK_TransparentUnionConversion
: {
4748 ExprResult FromRes
= From
;
4749 Sema::AssignConvertType ConvTy
=
4750 CheckTransparentUnionArgumentConstraints(ToType
, FromRes
);
4751 if (FromRes
.isInvalid())
4753 From
= FromRes
.get();
4754 assert ((ConvTy
== Sema::Compatible
) &&
4755 "Improper transparent union conversion");
4760 case ICK_Zero_Event_Conversion
:
4761 case ICK_Zero_Queue_Conversion
:
4762 From
= ImpCastExprToType(From
, ToType
,
4763 CK_ZeroToOCLOpaqueType
,
4764 From
->getValueKind()).get();
4767 case ICK_Lvalue_To_Rvalue
:
4768 case ICK_Array_To_Pointer
:
4769 case ICK_Function_To_Pointer
:
4770 case ICK_Function_Conversion
:
4771 case ICK_Qualification
:
4772 case ICK_Num_Conversion_Kinds
:
4773 case ICK_C_Only_Conversion
:
4774 case ICK_Incompatible_Pointer_Conversion
:
4775 llvm_unreachable("Improper second standard conversion");
4778 switch (SCS
.Third
) {
4783 case ICK_Function_Conversion
:
4784 // If both sides are functions (or pointers/references to them), there could
4785 // be incompatible exception declarations.
4786 if (CheckExceptionSpecCompatibility(From
, ToType
))
4789 From
= ImpCastExprToType(From
, ToType
, CK_NoOp
, VK_PRValue
,
4790 /*BasePath=*/nullptr, CCK
)
4794 case ICK_Qualification
: {
4795 ExprValueKind VK
= From
->getValueKind();
4796 CastKind CK
= CK_NoOp
;
4798 if (ToType
->isReferenceType() &&
4799 ToType
->getPointeeType().getAddressSpace() !=
4800 From
->getType().getAddressSpace())
4801 CK
= CK_AddressSpaceConversion
;
4803 if (ToType
->isPointerType() &&
4804 ToType
->getPointeeType().getAddressSpace() !=
4805 From
->getType()->getPointeeType().getAddressSpace())
4806 CK
= CK_AddressSpaceConversion
;
4809 !ToType
->getPointeeType().getQualifiers().hasUnaligned() &&
4810 From
->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4811 Diag(From
->getBeginLoc(), diag::warn_imp_cast_drops_unaligned
)
4812 << InitialFromType
<< ToType
;
4815 From
= ImpCastExprToType(From
, ToType
.getNonLValueExprType(Context
), CK
, VK
,
4816 /*BasePath=*/nullptr, CCK
)
4819 if (SCS
.DeprecatedStringLiteralToCharPtr
&&
4820 !getLangOpts().WritableStrings
) {
4821 Diag(From
->getBeginLoc(),
4822 getLangOpts().CPlusPlus11
4823 ? diag::ext_deprecated_string_literal_conversion
4824 : diag::warn_deprecated_string_literal_conversion
)
4825 << ToType
.getNonReferenceType();
4832 llvm_unreachable("Improper third standard conversion");
4835 // If this conversion sequence involved a scalar -> atomic conversion, perform
4836 // that conversion now.
4837 if (!ToAtomicType
.isNull()) {
4838 assert(Context
.hasSameType(
4839 ToAtomicType
->castAs
<AtomicType
>()->getValueType(), From
->getType()));
4840 From
= ImpCastExprToType(From
, ToAtomicType
, CK_NonAtomicToAtomic
,
4841 VK_PRValue
, nullptr, CCK
)
4845 // Materialize a temporary if we're implicitly converting to a reference
4846 // type. This is not required by the C++ rules but is necessary to maintain
4848 if (ToType
->isReferenceType() && From
->isPRValue()) {
4849 ExprResult Res
= TemporaryMaterializationConversion(From
);
4850 if (Res
.isInvalid())
4855 // If this conversion sequence succeeded and involved implicitly converting a
4856 // _Nullable type to a _Nonnull one, complain.
4858 diagnoseNullableToNonnullConversion(ToType
, InitialFromType
,
4859 From
->getBeginLoc());
4864 /// Check the completeness of a type in a unary type trait.
4866 /// If the particular type trait requires a complete type, tries to complete
4867 /// it. If completing the type fails, a diagnostic is emitted and false
4868 /// returned. If completing the type succeeds or no completion was required,
4870 static bool CheckUnaryTypeTraitTypeCompleteness(Sema
&S
, TypeTrait UTT
,
4873 // C++0x [meta.unary.prop]p3:
4874 // For all of the class templates X declared in this Clause, instantiating
4875 // that template with a template argument that is a class template
4876 // specialization may result in the implicit instantiation of the template
4877 // argument if and only if the semantics of X require that the argument
4878 // must be a complete type.
4879 // We apply this rule to all the type trait expressions used to implement
4880 // these class templates. We also try to follow any GCC documented behavior
4881 // in these expressions to ensure portability of standard libraries.
4883 default: llvm_unreachable("not a UTT");
4884 // is_complete_type somewhat obviously cannot require a complete type.
4885 case UTT_IsCompleteType
:
4888 // These traits are modeled on the type predicates in C++0x
4889 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4890 // requiring a complete type, as whether or not they return true cannot be
4891 // impacted by the completeness of the type.
4893 case UTT_IsIntegral
:
4894 case UTT_IsFloatingPoint
:
4896 case UTT_IsBoundedArray
:
4898 case UTT_IsNullPointer
:
4899 case UTT_IsReferenceable
:
4900 case UTT_IsLvalueReference
:
4901 case UTT_IsRvalueReference
:
4902 case UTT_IsMemberFunctionPointer
:
4903 case UTT_IsMemberObjectPointer
:
4905 case UTT_IsScopedEnum
:
4908 case UTT_IsFunction
:
4909 case UTT_IsReference
:
4910 case UTT_IsArithmetic
:
4911 case UTT_IsFundamental
:
4914 case UTT_IsCompound
:
4915 case UTT_IsMemberPointer
:
4918 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4919 // which requires some of its traits to have the complete type. However,
4920 // the completeness of the type cannot impact these traits' semantics, and
4921 // so they don't require it. This matches the comments on these traits in
4924 case UTT_IsVolatile
:
4926 case UTT_IsUnboundedArray
:
4927 case UTT_IsUnsigned
:
4929 // This type trait always returns false, checking the type is moot.
4930 case UTT_IsInterfaceClass
:
4933 // C++14 [meta.unary.prop]:
4934 // If T is a non-union class type, T shall be a complete type.
4936 case UTT_IsPolymorphic
:
4937 case UTT_IsAbstract
:
4938 if (const auto *RD
= ArgTy
->getAsCXXRecordDecl())
4940 return !S
.RequireCompleteType(
4941 Loc
, ArgTy
, diag::err_incomplete_type_used_in_type_trait_expr
);
4944 // C++14 [meta.unary.prop]:
4945 // If T is a class type, T shall be a complete type.
4948 if (ArgTy
->getAsCXXRecordDecl())
4949 return !S
.RequireCompleteType(
4950 Loc
, ArgTy
, diag::err_incomplete_type_used_in_type_trait_expr
);
4953 // LWG3823: T shall be an array type, a complete type, or cv void.
4954 case UTT_IsAggregate
:
4955 if (ArgTy
->isArrayType() || ArgTy
->isVoidType())
4958 return !S
.RequireCompleteType(
4959 Loc
, ArgTy
, diag::err_incomplete_type_used_in_type_trait_expr
);
4961 // C++1z [meta.unary.prop]:
4962 // remove_all_extents_t<T> shall be a complete type or cv void.
4964 case UTT_IsTriviallyCopyable
:
4965 case UTT_IsStandardLayout
:
4968 // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
4969 // impose the same constraints.
4970 case UTT_IsTriviallyRelocatable
:
4971 case UTT_IsTriviallyEqualityComparable
:
4972 case UTT_CanPassInRegs
:
4973 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4974 // or an array of unknown bound. But GCC actually imposes the same constraints
4976 case UTT_HasNothrowAssign
:
4977 case UTT_HasNothrowMoveAssign
:
4978 case UTT_HasNothrowConstructor
:
4979 case UTT_HasNothrowCopy
:
4980 case UTT_HasTrivialAssign
:
4981 case UTT_HasTrivialMoveAssign
:
4982 case UTT_HasTrivialDefaultConstructor
:
4983 case UTT_HasTrivialMoveConstructor
:
4984 case UTT_HasTrivialCopy
:
4985 case UTT_HasTrivialDestructor
:
4986 case UTT_HasVirtualDestructor
:
4987 ArgTy
= QualType(ArgTy
->getBaseElementTypeUnsafe(), 0);
4990 // C++1z [meta.unary.prop]:
4991 // T shall be a complete type, cv void, or an array of unknown bound.
4992 case UTT_IsDestructible
:
4993 case UTT_IsNothrowDestructible
:
4994 case UTT_IsTriviallyDestructible
:
4995 case UTT_HasUniqueObjectRepresentations
:
4996 if (ArgTy
->isIncompleteArrayType() || ArgTy
->isVoidType())
4999 return !S
.RequireCompleteType(
5000 Loc
, ArgTy
, diag::err_incomplete_type_used_in_type_trait_expr
);
5004 static bool HasNoThrowOperator(const RecordType
*RT
, OverloadedOperatorKind Op
,
5005 Sema
&Self
, SourceLocation KeyLoc
, ASTContext
&C
,
5006 bool (CXXRecordDecl::*HasTrivial
)() const,
5007 bool (CXXRecordDecl::*HasNonTrivial
)() const,
5008 bool (CXXMethodDecl::*IsDesiredOp
)() const)
5010 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RT
->getDecl());
5011 if ((RD
->*HasTrivial
)() && !(RD
->*HasNonTrivial
)())
5014 DeclarationName Name
= C
.DeclarationNames
.getCXXOperatorName(Op
);
5015 DeclarationNameInfo
NameInfo(Name
, KeyLoc
);
5016 LookupResult
Res(Self
, NameInfo
, Sema::LookupOrdinaryName
);
5017 if (Self
.LookupQualifiedName(Res
, RD
)) {
5018 bool FoundOperator
= false;
5019 Res
.suppressDiagnostics();
5020 for (LookupResult::iterator Op
= Res
.begin(), OpEnd
= Res
.end();
5021 Op
!= OpEnd
; ++Op
) {
5022 if (isa
<FunctionTemplateDecl
>(*Op
))
5025 CXXMethodDecl
*Operator
= cast
<CXXMethodDecl
>(*Op
);
5026 if((Operator
->*IsDesiredOp
)()) {
5027 FoundOperator
= true;
5028 auto *CPT
= Operator
->getType()->castAs
<FunctionProtoType
>();
5029 CPT
= Self
.ResolveExceptionSpec(KeyLoc
, CPT
);
5030 if (!CPT
|| !CPT
->isNothrow())
5034 return FoundOperator
;
5039 static bool EvaluateUnaryTypeTrait(Sema
&Self
, TypeTrait UTT
,
5040 SourceLocation KeyLoc
, QualType T
) {
5041 assert(!T
->isDependentType() && "Cannot evaluate traits of dependent type");
5043 ASTContext
&C
= Self
.Context
;
5045 default: llvm_unreachable("not a UTT");
5046 // Type trait expressions corresponding to the primary type category
5047 // predicates in C++0x [meta.unary.cat].
5049 return T
->isVoidType();
5050 case UTT_IsIntegral
:
5051 return T
->isIntegralType(C
);
5052 case UTT_IsFloatingPoint
:
5053 return T
->isFloatingType();
5055 return T
->isArrayType();
5056 case UTT_IsBoundedArray
:
5057 if (!T
->isVariableArrayType()) {
5058 return T
->isArrayType() && !T
->isIncompleteArrayType();
5061 Self
.Diag(KeyLoc
, diag::err_vla_unsupported
)
5062 << 1 << tok::kw___is_bounded_array
;
5064 case UTT_IsUnboundedArray
:
5065 if (!T
->isVariableArrayType()) {
5066 return T
->isIncompleteArrayType();
5069 Self
.Diag(KeyLoc
, diag::err_vla_unsupported
)
5070 << 1 << tok::kw___is_unbounded_array
;
5073 return T
->isAnyPointerType();
5074 case UTT_IsNullPointer
:
5075 return T
->isNullPtrType();
5076 case UTT_IsLvalueReference
:
5077 return T
->isLValueReferenceType();
5078 case UTT_IsRvalueReference
:
5079 return T
->isRValueReferenceType();
5080 case UTT_IsMemberFunctionPointer
:
5081 return T
->isMemberFunctionPointerType();
5082 case UTT_IsMemberObjectPointer
:
5083 return T
->isMemberDataPointerType();
5085 return T
->isEnumeralType();
5086 case UTT_IsScopedEnum
:
5087 return T
->isScopedEnumeralType();
5089 return T
->isUnionType();
5091 return T
->isClassType() || T
->isStructureType() || T
->isInterfaceType();
5092 case UTT_IsFunction
:
5093 return T
->isFunctionType();
5095 // Type trait expressions which correspond to the convenient composition
5096 // predicates in C++0x [meta.unary.comp].
5097 case UTT_IsReference
:
5098 return T
->isReferenceType();
5099 case UTT_IsArithmetic
:
5100 return T
->isArithmeticType() && !T
->isEnumeralType();
5101 case UTT_IsFundamental
:
5102 return T
->isFundamentalType();
5104 return T
->isObjectType();
5106 // Note: semantic analysis depends on Objective-C lifetime types to be
5107 // considered scalar types. However, such types do not actually behave
5108 // like scalar types at run time (since they may require retain/release
5109 // operations), so we report them as non-scalar.
5110 if (T
->isObjCLifetimeType()) {
5111 switch (T
.getObjCLifetime()) {
5112 case Qualifiers::OCL_None
:
5113 case Qualifiers::OCL_ExplicitNone
:
5116 case Qualifiers::OCL_Strong
:
5117 case Qualifiers::OCL_Weak
:
5118 case Qualifiers::OCL_Autoreleasing
:
5123 return T
->isScalarType();
5124 case UTT_IsCompound
:
5125 return T
->isCompoundType();
5126 case UTT_IsMemberPointer
:
5127 return T
->isMemberPointerType();
5129 // Type trait expressions which correspond to the type property predicates
5130 // in C++0x [meta.unary.prop].
5132 return T
.isConstQualified();
5133 case UTT_IsVolatile
:
5134 return T
.isVolatileQualified();
5136 return T
.isTrivialType(C
);
5137 case UTT_IsTriviallyCopyable
:
5138 return T
.isTriviallyCopyableType(C
);
5139 case UTT_IsStandardLayout
:
5140 return T
->isStandardLayoutType();
5142 return T
.isPODType(C
);
5144 return T
->isLiteralType(C
);
5146 if (const CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
5147 return !RD
->isUnion() && RD
->isEmpty();
5149 case UTT_IsPolymorphic
:
5150 if (const CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
5151 return !RD
->isUnion() && RD
->isPolymorphic();
5153 case UTT_IsAbstract
:
5154 if (const CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
5155 return !RD
->isUnion() && RD
->isAbstract();
5157 case UTT_IsAggregate
:
5158 // Report vector extensions and complex types as aggregates because they
5159 // support aggregate initialization. GCC mirrors this behavior for vectors
5160 // but not _Complex.
5161 return T
->isAggregateType() || T
->isVectorType() || T
->isExtVectorType() ||
5162 T
->isAnyComplexType();
5163 // __is_interface_class only returns true when CL is invoked in /CLR mode and
5164 // even then only when it is used with the 'interface struct ...' syntax
5165 // Clang doesn't support /CLR which makes this type trait moot.
5166 case UTT_IsInterfaceClass
:
5170 if (const CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
5171 return RD
->hasAttr
<FinalAttr
>();
5174 // Enum types should always return false.
5175 // Floating points should always return true.
5176 return T
->isFloatingType() ||
5177 (T
->isSignedIntegerType() && !T
->isEnumeralType());
5178 case UTT_IsUnsigned
:
5179 // Enum types should always return false.
5180 return T
->isUnsignedIntegerType() && !T
->isEnumeralType();
5182 // Type trait expressions which query classes regarding their construction,
5183 // destruction, and copying. Rather than being based directly on the
5184 // related type predicates in the standard, they are specified by both
5185 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5188 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5189 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5191 // Note that these builtins do not behave as documented in g++: if a class
5192 // has both a trivial and a non-trivial special member of a particular kind,
5193 // they return false! For now, we emulate this behavior.
5194 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5195 // does not correctly compute triviality in the presence of multiple special
5196 // members of the same kind. Revisit this once the g++ bug is fixed.
5197 case UTT_HasTrivialDefaultConstructor
:
5198 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5199 // If __is_pod (type) is true then the trait is true, else if type is
5200 // a cv class or union type (or array thereof) with a trivial default
5201 // constructor ([class.ctor]) then the trait is true, else it is false.
5204 if (CXXRecordDecl
*RD
= C
.getBaseElementType(T
)->getAsCXXRecordDecl())
5205 return RD
->hasTrivialDefaultConstructor() &&
5206 !RD
->hasNonTrivialDefaultConstructor();
5208 case UTT_HasTrivialMoveConstructor
:
5209 // This trait is implemented by MSVC 2012 and needed to parse the
5210 // standard library headers. Specifically this is used as the logic
5211 // behind std::is_trivially_move_constructible (20.9.4.3).
5214 if (CXXRecordDecl
*RD
= C
.getBaseElementType(T
)->getAsCXXRecordDecl())
5215 return RD
->hasTrivialMoveConstructor() && !RD
->hasNonTrivialMoveConstructor();
5217 case UTT_HasTrivialCopy
:
5218 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5219 // If __is_pod (type) is true or type is a reference type then
5220 // the trait is true, else if type is a cv class or union type
5221 // with a trivial copy constructor ([class.copy]) then the trait
5222 // is true, else it is false.
5223 if (T
.isPODType(C
) || T
->isReferenceType())
5225 if (CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
5226 return RD
->hasTrivialCopyConstructor() &&
5227 !RD
->hasNonTrivialCopyConstructor();
5229 case UTT_HasTrivialMoveAssign
:
5230 // This trait is implemented by MSVC 2012 and needed to parse the
5231 // standard library headers. Specifically it is used as the logic
5232 // behind std::is_trivially_move_assignable (20.9.4.3)
5235 if (CXXRecordDecl
*RD
= C
.getBaseElementType(T
)->getAsCXXRecordDecl())
5236 return RD
->hasTrivialMoveAssignment() && !RD
->hasNonTrivialMoveAssignment();
5238 case UTT_HasTrivialAssign
:
5239 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5240 // If type is const qualified or is a reference type then the
5241 // trait is false. Otherwise if __is_pod (type) is true then the
5242 // trait is true, else if type is a cv class or union type with
5243 // a trivial copy assignment ([class.copy]) then the trait is
5244 // true, else it is false.
5245 // Note: the const and reference restrictions are interesting,
5246 // given that const and reference members don't prevent a class
5247 // from having a trivial copy assignment operator (but do cause
5248 // errors if the copy assignment operator is actually used, q.v.
5249 // [class.copy]p12).
5251 if (T
.isConstQualified())
5255 if (CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
5256 return RD
->hasTrivialCopyAssignment() &&
5257 !RD
->hasNonTrivialCopyAssignment();
5259 case UTT_IsDestructible
:
5260 case UTT_IsTriviallyDestructible
:
5261 case UTT_IsNothrowDestructible
:
5262 // C++14 [meta.unary.prop]:
5263 // For reference types, is_destructible<T>::value is true.
5264 if (T
->isReferenceType())
5267 // Objective-C++ ARC: autorelease types don't require destruction.
5268 if (T
->isObjCLifetimeType() &&
5269 T
.getObjCLifetime() == Qualifiers::OCL_Autoreleasing
)
5272 // C++14 [meta.unary.prop]:
5273 // For incomplete types and function types, is_destructible<T>::value is
5275 if (T
->isIncompleteType() || T
->isFunctionType())
5278 // A type that requires destruction (via a non-trivial destructor or ARC
5279 // lifetime semantics) is not trivially-destructible.
5280 if (UTT
== UTT_IsTriviallyDestructible
&& T
.isDestructedType())
5283 // C++14 [meta.unary.prop]:
5284 // For object types and given U equal to remove_all_extents_t<T>, if the
5285 // expression std::declval<U&>().~U() is well-formed when treated as an
5286 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5287 if (auto *RD
= C
.getBaseElementType(T
)->getAsCXXRecordDecl()) {
5288 CXXDestructorDecl
*Destructor
= Self
.LookupDestructor(RD
);
5291 // C++14 [dcl.fct.def.delete]p2:
5292 // A program that refers to a deleted function implicitly or
5293 // explicitly, other than to declare it, is ill-formed.
5294 if (Destructor
->isDeleted())
5296 if (C
.getLangOpts().AccessControl
&& Destructor
->getAccess() != AS_public
)
5298 if (UTT
== UTT_IsNothrowDestructible
) {
5299 auto *CPT
= Destructor
->getType()->castAs
<FunctionProtoType
>();
5300 CPT
= Self
.ResolveExceptionSpec(KeyLoc
, CPT
);
5301 if (!CPT
|| !CPT
->isNothrow())
5307 case UTT_HasTrivialDestructor
:
5308 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5309 // If __is_pod (type) is true or type is a reference type
5310 // then the trait is true, else if type is a cv class or union
5311 // type (or array thereof) with a trivial destructor
5312 // ([class.dtor]) then the trait is true, else it is
5314 if (T
.isPODType(C
) || T
->isReferenceType())
5317 // Objective-C++ ARC: autorelease types don't require destruction.
5318 if (T
->isObjCLifetimeType() &&
5319 T
.getObjCLifetime() == Qualifiers::OCL_Autoreleasing
)
5322 if (CXXRecordDecl
*RD
= C
.getBaseElementType(T
)->getAsCXXRecordDecl())
5323 return RD
->hasTrivialDestructor();
5325 // TODO: Propagate nothrowness for implicitly declared special members.
5326 case UTT_HasNothrowAssign
:
5327 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5328 // If type is const qualified or is a reference type then the
5329 // trait is false. Otherwise if __has_trivial_assign (type)
5330 // is true then the trait is true, else if type is a cv class
5331 // or union type with copy assignment operators that are known
5332 // not to throw an exception then the trait is true, else it is
5334 if (C
.getBaseElementType(T
).isConstQualified())
5336 if (T
->isReferenceType())
5338 if (T
.isPODType(C
) || T
->isObjCLifetimeType())
5341 if (const RecordType
*RT
= T
->getAs
<RecordType
>())
5342 return HasNoThrowOperator(RT
, OO_Equal
, Self
, KeyLoc
, C
,
5343 &CXXRecordDecl::hasTrivialCopyAssignment
,
5344 &CXXRecordDecl::hasNonTrivialCopyAssignment
,
5345 &CXXMethodDecl::isCopyAssignmentOperator
);
5347 case UTT_HasNothrowMoveAssign
:
5348 // This trait is implemented by MSVC 2012 and needed to parse the
5349 // standard library headers. Specifically this is used as the logic
5350 // behind std::is_nothrow_move_assignable (20.9.4.3).
5354 if (const RecordType
*RT
= C
.getBaseElementType(T
)->getAs
<RecordType
>())
5355 return HasNoThrowOperator(RT
, OO_Equal
, Self
, KeyLoc
, C
,
5356 &CXXRecordDecl::hasTrivialMoveAssignment
,
5357 &CXXRecordDecl::hasNonTrivialMoveAssignment
,
5358 &CXXMethodDecl::isMoveAssignmentOperator
);
5360 case UTT_HasNothrowCopy
:
5361 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5362 // If __has_trivial_copy (type) is true then the trait is true, else
5363 // if type is a cv class or union type with copy constructors that are
5364 // known not to throw an exception then the trait is true, else it is
5366 if (T
.isPODType(C
) || T
->isReferenceType() || T
->isObjCLifetimeType())
5368 if (CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl()) {
5369 if (RD
->hasTrivialCopyConstructor() &&
5370 !RD
->hasNonTrivialCopyConstructor())
5373 bool FoundConstructor
= false;
5375 for (const auto *ND
: Self
.LookupConstructors(RD
)) {
5376 // A template constructor is never a copy constructor.
5377 // FIXME: However, it may actually be selected at the actual overload
5378 // resolution point.
5379 if (isa
<FunctionTemplateDecl
>(ND
->getUnderlyingDecl()))
5381 // UsingDecl itself is not a constructor
5382 if (isa
<UsingDecl
>(ND
))
5384 auto *Constructor
= cast
<CXXConstructorDecl
>(ND
->getUnderlyingDecl());
5385 if (Constructor
->isCopyConstructor(FoundTQs
)) {
5386 FoundConstructor
= true;
5387 auto *CPT
= Constructor
->getType()->castAs
<FunctionProtoType
>();
5388 CPT
= Self
.ResolveExceptionSpec(KeyLoc
, CPT
);
5391 // TODO: check whether evaluating default arguments can throw.
5392 // For now, we'll be conservative and assume that they can throw.
5393 if (!CPT
->isNothrow() || CPT
->getNumParams() > 1)
5398 return FoundConstructor
;
5401 case UTT_HasNothrowConstructor
:
5402 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5403 // If __has_trivial_constructor (type) is true then the trait is
5404 // true, else if type is a cv class or union type (or array
5405 // thereof) with a default constructor that is known not to
5406 // throw an exception then the trait is true, else it is false.
5407 if (T
.isPODType(C
) || T
->isObjCLifetimeType())
5409 if (CXXRecordDecl
*RD
= C
.getBaseElementType(T
)->getAsCXXRecordDecl()) {
5410 if (RD
->hasTrivialDefaultConstructor() &&
5411 !RD
->hasNonTrivialDefaultConstructor())
5414 bool FoundConstructor
= false;
5415 for (const auto *ND
: Self
.LookupConstructors(RD
)) {
5416 // FIXME: In C++0x, a constructor template can be a default constructor.
5417 if (isa
<FunctionTemplateDecl
>(ND
->getUnderlyingDecl()))
5419 // UsingDecl itself is not a constructor
5420 if (isa
<UsingDecl
>(ND
))
5422 auto *Constructor
= cast
<CXXConstructorDecl
>(ND
->getUnderlyingDecl());
5423 if (Constructor
->isDefaultConstructor()) {
5424 FoundConstructor
= true;
5425 auto *CPT
= Constructor
->getType()->castAs
<FunctionProtoType
>();
5426 CPT
= Self
.ResolveExceptionSpec(KeyLoc
, CPT
);
5429 // FIXME: check whether evaluating default arguments can throw.
5430 // For now, we'll be conservative and assume that they can throw.
5431 if (!CPT
->isNothrow() || CPT
->getNumParams() > 0)
5435 return FoundConstructor
;
5438 case UTT_HasVirtualDestructor
:
5439 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5440 // If type is a class type with a virtual destructor ([class.dtor])
5441 // then the trait is true, else it is false.
5442 if (CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
5443 if (CXXDestructorDecl
*Destructor
= Self
.LookupDestructor(RD
))
5444 return Destructor
->isVirtual();
5447 // These type trait expressions are modeled on the specifications for the
5448 // Embarcadero C++0x type trait functions:
5449 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5450 case UTT_IsCompleteType
:
5451 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5452 // Returns True if and only if T is a complete type at the point of the
5454 return !T
->isIncompleteType();
5455 case UTT_HasUniqueObjectRepresentations
:
5456 return C
.hasUniqueObjectRepresentations(T
);
5457 case UTT_IsTriviallyRelocatable
:
5458 return T
.isTriviallyRelocatableType(C
);
5459 case UTT_IsReferenceable
:
5460 return T
.isReferenceable();
5461 case UTT_CanPassInRegs
:
5462 if (CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl(); RD
&& !T
.hasQualifiers())
5463 return RD
->canPassInRegisters();
5464 Self
.Diag(KeyLoc
, diag::err_builtin_pass_in_regs_non_class
) << T
;
5466 case UTT_IsTriviallyEqualityComparable
:
5467 return T
.isTriviallyEqualityComparableType(C
);
5471 static bool EvaluateBinaryTypeTrait(Sema
&Self
, TypeTrait BTT
, QualType LhsT
,
5472 QualType RhsT
, SourceLocation KeyLoc
);
5474 static bool EvaluateBooleanTypeTrait(Sema
&S
, TypeTrait Kind
,
5475 SourceLocation KWLoc
,
5476 ArrayRef
<TypeSourceInfo
*> Args
,
5477 SourceLocation RParenLoc
,
5482 if (Kind
<= UTT_Last
)
5483 return EvaluateUnaryTypeTrait(S
, Kind
, KWLoc
, Args
[0]->getType());
5485 // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary
5486 // alongside the IsConstructible traits to avoid duplication.
5487 if (Kind
<= BTT_Last
&& Kind
!= BTT_ReferenceBindsToTemporary
&& Kind
!= BTT_ReferenceConstructsFromTemporary
)
5488 return EvaluateBinaryTypeTrait(S
, Kind
, Args
[0]->getType(),
5489 Args
[1]->getType(), RParenLoc
);
5492 case clang::BTT_ReferenceBindsToTemporary
:
5493 case clang::BTT_ReferenceConstructsFromTemporary
:
5494 case clang::TT_IsConstructible
:
5495 case clang::TT_IsNothrowConstructible
:
5496 case clang::TT_IsTriviallyConstructible
: {
5497 // C++11 [meta.unary.prop]:
5498 // is_trivially_constructible is defined as:
5500 // is_constructible<T, Args...>::value is true and the variable
5501 // definition for is_constructible, as defined below, is known to call
5502 // no operation that is not trivial.
5504 // The predicate condition for a template specialization
5505 // is_constructible<T, Args...> shall be satisfied if and only if the
5506 // following variable definition would be well-formed for some invented
5509 // T t(create<Args>()...);
5510 assert(!Args
.empty());
5512 // Precondition: T and all types in the parameter pack Args shall be
5513 // complete types, (possibly cv-qualified) void, or arrays of
5515 for (const auto *TSI
: Args
) {
5516 QualType ArgTy
= TSI
->getType();
5517 if (ArgTy
->isVoidType() || ArgTy
->isIncompleteArrayType())
5520 if (S
.RequireCompleteType(KWLoc
, ArgTy
,
5521 diag::err_incomplete_type_used_in_type_trait_expr
))
5525 // Make sure the first argument is not incomplete nor a function type.
5526 QualType T
= Args
[0]->getType();
5527 if (T
->isIncompleteType() || T
->isFunctionType())
5530 // Make sure the first argument is not an abstract type.
5531 CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl();
5532 if (RD
&& RD
->isAbstract())
5535 llvm::BumpPtrAllocator OpaqueExprAllocator
;
5536 SmallVector
<Expr
*, 2> ArgExprs
;
5537 ArgExprs
.reserve(Args
.size() - 1);
5538 for (unsigned I
= 1, N
= Args
.size(); I
!= N
; ++I
) {
5539 QualType ArgTy
= Args
[I
]->getType();
5540 if (ArgTy
->isObjectType() || ArgTy
->isFunctionType())
5541 ArgTy
= S
.Context
.getRValueReferenceType(ArgTy
);
5543 new (OpaqueExprAllocator
.Allocate
<OpaqueValueExpr
>())
5544 OpaqueValueExpr(Args
[I
]->getTypeLoc().getBeginLoc(),
5545 ArgTy
.getNonLValueExprType(S
.Context
),
5546 Expr::getValueKindForType(ArgTy
)));
5549 // Perform the initialization in an unevaluated context within a SFINAE
5550 // trap at translation unit scope.
5551 EnterExpressionEvaluationContext
Unevaluated(
5552 S
, Sema::ExpressionEvaluationContext::Unevaluated
);
5553 Sema::SFINAETrap
SFINAE(S
, /*AccessCheckingSFINAE=*/true);
5554 Sema::ContextRAII
TUContext(S
, S
.Context
.getTranslationUnitDecl());
5555 InitializedEntity
To(
5556 InitializedEntity::InitializeTemporary(S
.Context
, Args
[0]));
5557 InitializationKind
InitKind(InitializationKind::CreateDirect(KWLoc
, KWLoc
,
5559 InitializationSequence
Init(S
, To
, InitKind
, ArgExprs
);
5563 ExprResult Result
= Init
.Perform(S
, To
, InitKind
, ArgExprs
);
5564 if (Result
.isInvalid() || SFINAE
.hasErrorOccurred())
5567 if (Kind
== clang::TT_IsConstructible
)
5570 if (Kind
== clang::BTT_ReferenceBindsToTemporary
|| Kind
== clang::BTT_ReferenceConstructsFromTemporary
) {
5571 if (!T
->isReferenceType())
5574 if (!Init
.isDirectReferenceBinding())
5577 if (Kind
== clang::BTT_ReferenceBindsToTemporary
)
5580 QualType U
= Args
[1]->getType();
5581 if (U
->isReferenceType())
5584 QualType TPtr
= S
.Context
.getPointerType(S
.BuiltinRemoveReference(T
, UnaryTransformType::RemoveCVRef
, {}));
5585 QualType UPtr
= S
.Context
.getPointerType(S
.BuiltinRemoveReference(U
, UnaryTransformType::RemoveCVRef
, {}));
5586 return EvaluateBinaryTypeTrait(S
, TypeTrait::BTT_IsConvertibleTo
, UPtr
, TPtr
, RParenLoc
);
5589 if (Kind
== clang::TT_IsNothrowConstructible
)
5590 return S
.canThrow(Result
.get()) == CT_Cannot
;
5592 if (Kind
== clang::TT_IsTriviallyConstructible
) {
5593 // Under Objective-C ARC and Weak, if the destination has non-trivial
5594 // Objective-C lifetime, this is a non-trivial construction.
5595 if (T
.getNonReferenceType().hasNonTrivialObjCLifetime())
5598 // The initialization succeeded; now make sure there are no non-trivial
5600 return !Result
.get()->hasNonTrivialCall(S
.Context
);
5603 llvm_unreachable("unhandled type trait");
5606 default: llvm_unreachable("not a TT");
5613 void DiagnoseBuiltinDeprecation(Sema
& S
, TypeTrait Kind
,
5614 SourceLocation KWLoc
) {
5615 TypeTrait Replacement
;
5617 case UTT_HasNothrowAssign
:
5618 case UTT_HasNothrowMoveAssign
:
5619 Replacement
= BTT_IsNothrowAssignable
;
5621 case UTT_HasNothrowCopy
:
5622 case UTT_HasNothrowConstructor
:
5623 Replacement
= TT_IsNothrowConstructible
;
5625 case UTT_HasTrivialAssign
:
5626 case UTT_HasTrivialMoveAssign
:
5627 Replacement
= BTT_IsTriviallyAssignable
;
5629 case UTT_HasTrivialCopy
:
5630 Replacement
= UTT_IsTriviallyCopyable
;
5632 case UTT_HasTrivialDefaultConstructor
:
5633 case UTT_HasTrivialMoveConstructor
:
5634 Replacement
= TT_IsTriviallyConstructible
;
5636 case UTT_HasTrivialDestructor
:
5637 Replacement
= UTT_IsTriviallyDestructible
;
5642 S
.Diag(KWLoc
, diag::warn_deprecated_builtin
)
5643 << getTraitSpelling(Kind
) << getTraitSpelling(Replacement
);
5647 bool Sema::CheckTypeTraitArity(unsigned Arity
, SourceLocation Loc
, size_t N
) {
5648 if (Arity
&& N
!= Arity
) {
5649 Diag(Loc
, diag::err_type_trait_arity
)
5650 << Arity
<< 0 << (Arity
> 1) << (int)N
<< SourceRange(Loc
);
5654 if (!Arity
&& N
== 0) {
5655 Diag(Loc
, diag::err_type_trait_arity
)
5656 << 1 << 1 << 1 << (int)N
<< SourceRange(Loc
);
5662 enum class TypeTraitReturnType
{
5666 static TypeTraitReturnType
GetReturnType(TypeTrait Kind
) {
5667 return TypeTraitReturnType::Bool
;
5670 ExprResult
Sema::BuildTypeTrait(TypeTrait Kind
, SourceLocation KWLoc
,
5671 ArrayRef
<TypeSourceInfo
*> Args
,
5672 SourceLocation RParenLoc
) {
5673 if (!CheckTypeTraitArity(getTypeTraitArity(Kind
), KWLoc
, Args
.size()))
5676 if (Kind
<= UTT_Last
&& !CheckUnaryTypeTraitTypeCompleteness(
5677 *this, Kind
, KWLoc
, Args
[0]->getType()))
5680 DiagnoseBuiltinDeprecation(*this, Kind
, KWLoc
);
5682 bool Dependent
= false;
5683 for (unsigned I
= 0, N
= Args
.size(); I
!= N
; ++I
) {
5684 if (Args
[I
]->getType()->isDependentType()) {
5690 switch (GetReturnType(Kind
)) {
5691 case TypeTraitReturnType::Bool
: {
5692 bool Result
= EvaluateBooleanTypeTrait(*this, Kind
, KWLoc
, Args
, RParenLoc
,
5694 return TypeTraitExpr::Create(Context
, Context
.getLogicalOperationType(),
5695 KWLoc
, Kind
, Args
, RParenLoc
, Result
);
5698 llvm_unreachable("unhandled type trait return type");
5701 ExprResult
Sema::ActOnTypeTrait(TypeTrait Kind
, SourceLocation KWLoc
,
5702 ArrayRef
<ParsedType
> Args
,
5703 SourceLocation RParenLoc
) {
5704 SmallVector
<TypeSourceInfo
*, 4> ConvertedArgs
;
5705 ConvertedArgs
.reserve(Args
.size());
5707 for (unsigned I
= 0, N
= Args
.size(); I
!= N
; ++I
) {
5708 TypeSourceInfo
*TInfo
;
5709 QualType T
= GetTypeFromParser(Args
[I
], &TInfo
);
5711 TInfo
= Context
.getTrivialTypeSourceInfo(T
, KWLoc
);
5713 ConvertedArgs
.push_back(TInfo
);
5716 return BuildTypeTrait(Kind
, KWLoc
, ConvertedArgs
, RParenLoc
);
5719 static bool EvaluateBinaryTypeTrait(Sema
&Self
, TypeTrait BTT
, QualType LhsT
,
5720 QualType RhsT
, SourceLocation KeyLoc
) {
5721 assert(!LhsT
->isDependentType() && !RhsT
->isDependentType() &&
5722 "Cannot evaluate traits of dependent types");
5725 case BTT_IsBaseOf
: {
5726 // C++0x [meta.rel]p2
5727 // Base is a base class of Derived without regard to cv-qualifiers or
5728 // Base and Derived are not unions and name the same class type without
5729 // regard to cv-qualifiers.
5731 const RecordType
*lhsRecord
= LhsT
->getAs
<RecordType
>();
5732 const RecordType
*rhsRecord
= RhsT
->getAs
<RecordType
>();
5733 if (!rhsRecord
|| !lhsRecord
) {
5734 const ObjCObjectType
*LHSObjTy
= LhsT
->getAs
<ObjCObjectType
>();
5735 const ObjCObjectType
*RHSObjTy
= RhsT
->getAs
<ObjCObjectType
>();
5736 if (!LHSObjTy
|| !RHSObjTy
)
5739 ObjCInterfaceDecl
*BaseInterface
= LHSObjTy
->getInterface();
5740 ObjCInterfaceDecl
*DerivedInterface
= RHSObjTy
->getInterface();
5741 if (!BaseInterface
|| !DerivedInterface
)
5744 if (Self
.RequireCompleteType(
5745 KeyLoc
, RhsT
, diag::err_incomplete_type_used_in_type_trait_expr
))
5748 return BaseInterface
->isSuperClassOf(DerivedInterface
);
5751 assert(Self
.Context
.hasSameUnqualifiedType(LhsT
, RhsT
)
5752 == (lhsRecord
== rhsRecord
));
5754 // Unions are never base classes, and never have base classes.
5755 // It doesn't matter if they are complete or not. See PR#41843
5756 if (lhsRecord
&& lhsRecord
->getDecl()->isUnion())
5758 if (rhsRecord
&& rhsRecord
->getDecl()->isUnion())
5761 if (lhsRecord
== rhsRecord
)
5764 // C++0x [meta.rel]p2:
5765 // If Base and Derived are class types and are different types
5766 // (ignoring possible cv-qualifiers) then Derived shall be a
5768 if (Self
.RequireCompleteType(KeyLoc
, RhsT
,
5769 diag::err_incomplete_type_used_in_type_trait_expr
))
5772 return cast
<CXXRecordDecl
>(rhsRecord
->getDecl())
5773 ->isDerivedFrom(cast
<CXXRecordDecl
>(lhsRecord
->getDecl()));
5776 return Self
.Context
.hasSameType(LhsT
, RhsT
);
5777 case BTT_TypeCompatible
: {
5778 // GCC ignores cv-qualifiers on arrays for this builtin.
5779 Qualifiers LhsQuals
, RhsQuals
;
5780 QualType Lhs
= Self
.getASTContext().getUnqualifiedArrayType(LhsT
, LhsQuals
);
5781 QualType Rhs
= Self
.getASTContext().getUnqualifiedArrayType(RhsT
, RhsQuals
);
5782 return Self
.Context
.typesAreCompatible(Lhs
, Rhs
);
5784 case BTT_IsConvertible
:
5785 case BTT_IsConvertibleTo
: {
5786 // C++0x [meta.rel]p4:
5787 // Given the following function prototype:
5789 // template <class T>
5790 // typename add_rvalue_reference<T>::type create();
5792 // the predicate condition for a template specialization
5793 // is_convertible<From, To> shall be satisfied if and only if
5794 // the return expression in the following code would be
5795 // well-formed, including any implicit conversions to the return
5796 // type of the function:
5799 // return create<From>();
5802 // Access checking is performed as if in a context unrelated to To and
5803 // From. Only the validity of the immediate context of the expression
5804 // of the return-statement (including conversions to the return type)
5807 // We model the initialization as a copy-initialization of a temporary
5808 // of the appropriate type, which for this expression is identical to the
5809 // return statement (since NRVO doesn't apply).
5811 // Functions aren't allowed to return function or array types.
5812 if (RhsT
->isFunctionType() || RhsT
->isArrayType())
5815 // A return statement in a void function must have void type.
5816 if (RhsT
->isVoidType())
5817 return LhsT
->isVoidType();
5819 // A function definition requires a complete, non-abstract return type.
5820 if (!Self
.isCompleteType(KeyLoc
, RhsT
) || Self
.isAbstractType(KeyLoc
, RhsT
))
5823 // Compute the result of add_rvalue_reference.
5824 if (LhsT
->isObjectType() || LhsT
->isFunctionType())
5825 LhsT
= Self
.Context
.getRValueReferenceType(LhsT
);
5827 // Build a fake source and destination for initialization.
5828 InitializedEntity
To(InitializedEntity::InitializeTemporary(RhsT
));
5829 OpaqueValueExpr
From(KeyLoc
, LhsT
.getNonLValueExprType(Self
.Context
),
5830 Expr::getValueKindForType(LhsT
));
5831 Expr
*FromPtr
= &From
;
5832 InitializationKind
Kind(InitializationKind::CreateCopy(KeyLoc
,
5835 // Perform the initialization in an unevaluated context within a SFINAE
5836 // trap at translation unit scope.
5837 EnterExpressionEvaluationContext
Unevaluated(
5838 Self
, Sema::ExpressionEvaluationContext::Unevaluated
);
5839 Sema::SFINAETrap
SFINAE(Self
, /*AccessCheckingSFINAE=*/true);
5840 Sema::ContextRAII
TUContext(Self
, Self
.Context
.getTranslationUnitDecl());
5841 InitializationSequence
Init(Self
, To
, Kind
, FromPtr
);
5845 ExprResult Result
= Init
.Perform(Self
, To
, Kind
, FromPtr
);
5846 return !Result
.isInvalid() && !SFINAE
.hasErrorOccurred();
5849 case BTT_IsAssignable
:
5850 case BTT_IsNothrowAssignable
:
5851 case BTT_IsTriviallyAssignable
: {
5852 // C++11 [meta.unary.prop]p3:
5853 // is_trivially_assignable is defined as:
5854 // is_assignable<T, U>::value is true and the assignment, as defined by
5855 // is_assignable, is known to call no operation that is not trivial
5857 // is_assignable is defined as:
5858 // The expression declval<T>() = declval<U>() is well-formed when
5859 // treated as an unevaluated operand (Clause 5).
5861 // For both, T and U shall be complete types, (possibly cv-qualified)
5862 // void, or arrays of unknown bound.
5863 if (!LhsT
->isVoidType() && !LhsT
->isIncompleteArrayType() &&
5864 Self
.RequireCompleteType(KeyLoc
, LhsT
,
5865 diag::err_incomplete_type_used_in_type_trait_expr
))
5867 if (!RhsT
->isVoidType() && !RhsT
->isIncompleteArrayType() &&
5868 Self
.RequireCompleteType(KeyLoc
, RhsT
,
5869 diag::err_incomplete_type_used_in_type_trait_expr
))
5872 // cv void is never assignable.
5873 if (LhsT
->isVoidType() || RhsT
->isVoidType())
5876 // Build expressions that emulate the effect of declval<T>() and
5878 if (LhsT
->isObjectType() || LhsT
->isFunctionType())
5879 LhsT
= Self
.Context
.getRValueReferenceType(LhsT
);
5880 if (RhsT
->isObjectType() || RhsT
->isFunctionType())
5881 RhsT
= Self
.Context
.getRValueReferenceType(RhsT
);
5882 OpaqueValueExpr
Lhs(KeyLoc
, LhsT
.getNonLValueExprType(Self
.Context
),
5883 Expr::getValueKindForType(LhsT
));
5884 OpaqueValueExpr
Rhs(KeyLoc
, RhsT
.getNonLValueExprType(Self
.Context
),
5885 Expr::getValueKindForType(RhsT
));
5887 // Attempt the assignment in an unevaluated context within a SFINAE
5888 // trap at translation unit scope.
5889 EnterExpressionEvaluationContext
Unevaluated(
5890 Self
, Sema::ExpressionEvaluationContext::Unevaluated
);
5891 Sema::SFINAETrap
SFINAE(Self
, /*AccessCheckingSFINAE=*/true);
5892 Sema::ContextRAII
TUContext(Self
, Self
.Context
.getTranslationUnitDecl());
5893 ExprResult Result
= Self
.BuildBinOp(/*S=*/nullptr, KeyLoc
, BO_Assign
, &Lhs
,
5895 if (Result
.isInvalid())
5898 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5899 Self
.CheckUnusedVolatileAssignment(Result
.get());
5901 if (SFINAE
.hasErrorOccurred())
5904 if (BTT
== BTT_IsAssignable
)
5907 if (BTT
== BTT_IsNothrowAssignable
)
5908 return Self
.canThrow(Result
.get()) == CT_Cannot
;
5910 if (BTT
== BTT_IsTriviallyAssignable
) {
5911 // Under Objective-C ARC and Weak, if the destination has non-trivial
5912 // Objective-C lifetime, this is a non-trivial assignment.
5913 if (LhsT
.getNonReferenceType().hasNonTrivialObjCLifetime())
5916 return !Result
.get()->hasNonTrivialCall(Self
.Context
);
5919 llvm_unreachable("unhandled type trait");
5922 default: llvm_unreachable("not a BTT");
5924 llvm_unreachable("Unknown type trait or not implemented");
5927 ExprResult
Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT
,
5928 SourceLocation KWLoc
,
5931 SourceLocation RParen
) {
5932 TypeSourceInfo
*TSInfo
;
5933 QualType T
= GetTypeFromParser(Ty
, &TSInfo
);
5935 TSInfo
= Context
.getTrivialTypeSourceInfo(T
);
5937 return BuildArrayTypeTrait(ATT
, KWLoc
, TSInfo
, DimExpr
, RParen
);
5940 static uint64_t EvaluateArrayTypeTrait(Sema
&Self
, ArrayTypeTrait ATT
,
5941 QualType T
, Expr
*DimExpr
,
5942 SourceLocation KeyLoc
) {
5943 assert(!T
->isDependentType() && "Cannot evaluate traits of dependent type");
5947 if (T
->isArrayType()) {
5949 while (const ArrayType
*AT
= Self
.Context
.getAsArrayType(T
)) {
5951 T
= AT
->getElementType();
5957 case ATT_ArrayExtent
: {
5960 if (Self
.VerifyIntegerConstantExpression(
5961 DimExpr
, &Value
, diag::err_dimension_expr_not_constant_integer
)
5964 if (Value
.isSigned() && Value
.isNegative()) {
5965 Self
.Diag(KeyLoc
, diag::err_dimension_expr_not_constant_integer
)
5966 << DimExpr
->getSourceRange();
5969 Dim
= Value
.getLimitedValue();
5971 if (T
->isArrayType()) {
5973 bool Matched
= false;
5974 while (const ArrayType
*AT
= Self
.Context
.getAsArrayType(T
)) {
5980 T
= AT
->getElementType();
5983 if (Matched
&& T
->isArrayType()) {
5984 if (const ConstantArrayType
*CAT
= Self
.Context
.getAsConstantArrayType(T
))
5985 return CAT
->getSize().getLimitedValue();
5991 llvm_unreachable("Unknown type trait or not implemented");
5994 ExprResult
Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT
,
5995 SourceLocation KWLoc
,
5996 TypeSourceInfo
*TSInfo
,
5998 SourceLocation RParen
) {
5999 QualType T
= TSInfo
->getType();
6001 // FIXME: This should likely be tracked as an APInt to remove any host
6002 // assumptions about the width of size_t on the target.
6004 if (!T
->isDependentType())
6005 Value
= EvaluateArrayTypeTrait(*this, ATT
, T
, DimExpr
, KWLoc
);
6007 // While the specification for these traits from the Embarcadero C++
6008 // compiler's documentation says the return type is 'unsigned int', Clang
6009 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
6010 // compiler, there is no difference. On several other platforms this is an
6011 // important distinction.
6012 return new (Context
) ArrayTypeTraitExpr(KWLoc
, ATT
, TSInfo
, Value
, DimExpr
,
6013 RParen
, Context
.getSizeType());
6016 ExprResult
Sema::ActOnExpressionTrait(ExpressionTrait ET
,
6017 SourceLocation KWLoc
,
6019 SourceLocation RParen
) {
6020 // If error parsing the expression, ignore.
6024 ExprResult Result
= BuildExpressionTrait(ET
, KWLoc
, Queried
, RParen
);
6029 static bool EvaluateExpressionTrait(ExpressionTrait ET
, Expr
*E
) {
6031 case ET_IsLValueExpr
: return E
->isLValue();
6032 case ET_IsRValueExpr
:
6033 return E
->isPRValue();
6035 llvm_unreachable("Expression trait not covered by switch");
6038 ExprResult
Sema::BuildExpressionTrait(ExpressionTrait ET
,
6039 SourceLocation KWLoc
,
6041 SourceLocation RParen
) {
6042 if (Queried
->isTypeDependent()) {
6043 // Delay type-checking for type-dependent expressions.
6044 } else if (Queried
->hasPlaceholderType()) {
6045 ExprResult PE
= CheckPlaceholderExpr(Queried
);
6046 if (PE
.isInvalid()) return ExprError();
6047 return BuildExpressionTrait(ET
, KWLoc
, PE
.get(), RParen
);
6050 bool Value
= EvaluateExpressionTrait(ET
, Queried
);
6052 return new (Context
)
6053 ExpressionTraitExpr(KWLoc
, ET
, Queried
, Value
, RParen
, Context
.BoolTy
);
6056 QualType
Sema::CheckPointerToMemberOperands(ExprResult
&LHS
, ExprResult
&RHS
,
6060 assert(!LHS
.get()->hasPlaceholderType() && !RHS
.get()->hasPlaceholderType() &&
6061 "placeholders should have been weeded out by now");
6063 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
6064 // temporary materialization conversion otherwise.
6066 LHS
= DefaultLvalueConversion(LHS
.get());
6067 else if (LHS
.get()->isPRValue())
6068 LHS
= TemporaryMaterializationConversion(LHS
.get());
6069 if (LHS
.isInvalid())
6072 // The RHS always undergoes lvalue conversions.
6073 RHS
= DefaultLvalueConversion(RHS
.get());
6074 if (RHS
.isInvalid()) return QualType();
6076 const char *OpSpelling
= isIndirect
? "->*" : ".*";
6078 // The binary operator .* [p3: ->*] binds its second operand, which shall
6079 // be of type "pointer to member of T" (where T is a completely-defined
6080 // class type) [...]
6081 QualType RHSType
= RHS
.get()->getType();
6082 const MemberPointerType
*MemPtr
= RHSType
->getAs
<MemberPointerType
>();
6084 Diag(Loc
, diag::err_bad_memptr_rhs
)
6085 << OpSpelling
<< RHSType
<< RHS
.get()->getSourceRange();
6089 QualType
Class(MemPtr
->getClass(), 0);
6091 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6092 // member pointer points must be completely-defined. However, there is no
6093 // reason for this semantic distinction, and the rule is not enforced by
6094 // other compilers. Therefore, we do not check this property, as it is
6095 // likely to be considered a defect.
6098 // [...] to its first operand, which shall be of class T or of a class of
6099 // which T is an unambiguous and accessible base class. [p3: a pointer to
6101 QualType LHSType
= LHS
.get()->getType();
6103 if (const PointerType
*Ptr
= LHSType
->getAs
<PointerType
>())
6104 LHSType
= Ptr
->getPointeeType();
6106 Diag(Loc
, diag::err_bad_memptr_lhs
)
6107 << OpSpelling
<< 1 << LHSType
6108 << FixItHint::CreateReplacement(SourceRange(Loc
), ".*");
6113 if (!Context
.hasSameUnqualifiedType(Class
, LHSType
)) {
6114 // If we want to check the hierarchy, we need a complete type.
6115 if (RequireCompleteType(Loc
, LHSType
, diag::err_bad_memptr_lhs
,
6116 OpSpelling
, (int)isIndirect
)) {
6120 if (!IsDerivedFrom(Loc
, LHSType
, Class
)) {
6121 Diag(Loc
, diag::err_bad_memptr_lhs
) << OpSpelling
6122 << (int)isIndirect
<< LHS
.get()->getType();
6126 CXXCastPath BasePath
;
6127 if (CheckDerivedToBaseConversion(
6128 LHSType
, Class
, Loc
,
6129 SourceRange(LHS
.get()->getBeginLoc(), RHS
.get()->getEndLoc()),
6133 // Cast LHS to type of use.
6134 QualType UseType
= Context
.getQualifiedType(Class
, LHSType
.getQualifiers());
6136 UseType
= Context
.getPointerType(UseType
);
6137 ExprValueKind VK
= isIndirect
? VK_PRValue
: LHS
.get()->getValueKind();
6138 LHS
= ImpCastExprToType(LHS
.get(), UseType
, CK_DerivedToBase
, VK
,
6142 if (isa
<CXXScalarValueInitExpr
>(RHS
.get()->IgnoreParens())) {
6143 // Diagnose use of pointer-to-member type which when used as
6144 // the functional cast in a pointer-to-member expression.
6145 Diag(Loc
, diag::err_pointer_to_member_type
) << isIndirect
;
6150 // The result is an object or a function of the type specified by the
6152 // The cv qualifiers are the union of those in the pointer and the left side,
6153 // in accordance with 5.5p5 and 5.2.5.
6154 QualType Result
= MemPtr
->getPointeeType();
6155 Result
= Context
.getCVRQualifiedType(Result
, LHSType
.getCVRQualifiers());
6157 // C++0x [expr.mptr.oper]p6:
6158 // In a .* expression whose object expression is an rvalue, the program is
6159 // ill-formed if the second operand is a pointer to member function with
6160 // ref-qualifier &. In a ->* expression or in a .* expression whose object
6161 // expression is an lvalue, the program is ill-formed if the second operand
6162 // is a pointer to member function with ref-qualifier &&.
6163 if (const FunctionProtoType
*Proto
= Result
->getAs
<FunctionProtoType
>()) {
6164 switch (Proto
->getRefQualifier()) {
6170 if (!isIndirect
&& !LHS
.get()->Classify(Context
).isLValue()) {
6171 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6172 // is (exactly) 'const'.
6173 if (Proto
->isConst() && !Proto
->isVolatile())
6174 Diag(Loc
, getLangOpts().CPlusPlus20
6175 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6176 : diag::ext_pointer_to_const_ref_member_on_rvalue
);
6178 Diag(Loc
, diag::err_pointer_to_member_oper_value_classify
)
6179 << RHSType
<< 1 << LHS
.get()->getSourceRange();
6184 if (isIndirect
|| !LHS
.get()->Classify(Context
).isRValue())
6185 Diag(Loc
, diag::err_pointer_to_member_oper_value_classify
)
6186 << RHSType
<< 0 << LHS
.get()->getSourceRange();
6191 // C++ [expr.mptr.oper]p6:
6192 // The result of a .* expression whose second operand is a pointer
6193 // to a data member is of the same value category as its
6194 // first operand. The result of a .* expression whose second
6195 // operand is a pointer to a member function is a prvalue. The
6196 // result of an ->* expression is an lvalue if its second operand
6197 // is a pointer to data member and a prvalue otherwise.
6198 if (Result
->isFunctionType()) {
6200 return Context
.BoundMemberTy
;
6201 } else if (isIndirect
) {
6204 VK
= LHS
.get()->getValueKind();
6210 /// Try to convert a type to another according to C++11 5.16p3.
6212 /// This is part of the parameter validation for the ? operator. If either
6213 /// value operand is a class type, the two operands are attempted to be
6214 /// converted to each other. This function does the conversion in one direction.
6215 /// It returns true if the program is ill-formed and has already been diagnosed
6217 static bool TryClassUnification(Sema
&Self
, Expr
*From
, Expr
*To
,
6218 SourceLocation QuestionLoc
,
6219 bool &HaveConversion
,
6221 HaveConversion
= false;
6222 ToType
= To
->getType();
6224 InitializationKind Kind
=
6225 InitializationKind::CreateCopy(To
->getBeginLoc(), SourceLocation());
6227 // The process for determining whether an operand expression E1 of type T1
6228 // can be converted to match an operand expression E2 of type T2 is defined
6230 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6231 // implicitly converted to type "lvalue reference to T2", subject to the
6232 // constraint that in the conversion the reference must bind directly to
6234 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6235 // implicitly converted to the type "rvalue reference to R2", subject to
6236 // the constraint that the reference must bind directly.
6237 if (To
->isGLValue()) {
6238 QualType T
= Self
.Context
.getReferenceQualifiedType(To
);
6239 InitializedEntity Entity
= InitializedEntity::InitializeTemporary(T
);
6241 InitializationSequence
InitSeq(Self
, Entity
, Kind
, From
);
6242 if (InitSeq
.isDirectReferenceBinding()) {
6244 HaveConversion
= true;
6248 if (InitSeq
.isAmbiguous())
6249 return InitSeq
.Diagnose(Self
, Entity
, Kind
, From
);
6252 // -- If E2 is an rvalue, or if the conversion above cannot be done:
6253 // -- if E1 and E2 have class type, and the underlying class types are
6254 // the same or one is a base class of the other:
6255 QualType FTy
= From
->getType();
6256 QualType TTy
= To
->getType();
6257 const RecordType
*FRec
= FTy
->getAs
<RecordType
>();
6258 const RecordType
*TRec
= TTy
->getAs
<RecordType
>();
6259 bool FDerivedFromT
= FRec
&& TRec
&& FRec
!= TRec
&&
6260 Self
.IsDerivedFrom(QuestionLoc
, FTy
, TTy
);
6261 if (FRec
&& TRec
&& (FRec
== TRec
|| FDerivedFromT
||
6262 Self
.IsDerivedFrom(QuestionLoc
, TTy
, FTy
))) {
6263 // E1 can be converted to match E2 if the class of T2 is the
6264 // same type as, or a base class of, the class of T1, and
6266 if (FRec
== TRec
|| FDerivedFromT
) {
6267 if (TTy
.isAtLeastAsQualifiedAs(FTy
)) {
6268 InitializedEntity Entity
= InitializedEntity::InitializeTemporary(TTy
);
6269 InitializationSequence
InitSeq(Self
, Entity
, Kind
, From
);
6271 HaveConversion
= true;
6275 if (InitSeq
.isAmbiguous())
6276 return InitSeq
.Diagnose(Self
, Entity
, Kind
, From
);
6283 // -- Otherwise: E1 can be converted to match E2 if E1 can be
6284 // implicitly converted to the type that expression E2 would have
6285 // if E2 were converted to an rvalue (or the type it has, if E2 is
6288 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6289 // to the array-to-pointer or function-to-pointer conversions.
6290 TTy
= TTy
.getNonLValueExprType(Self
.Context
);
6292 InitializedEntity Entity
= InitializedEntity::InitializeTemporary(TTy
);
6293 InitializationSequence
InitSeq(Self
, Entity
, Kind
, From
);
6294 HaveConversion
= !InitSeq
.Failed();
6296 if (InitSeq
.isAmbiguous())
6297 return InitSeq
.Diagnose(Self
, Entity
, Kind
, From
);
6302 /// Try to find a common type for two according to C++0x 5.16p5.
6304 /// This is part of the parameter validation for the ? operator. If either
6305 /// value operand is a class type, overload resolution is used to find a
6306 /// conversion to a common type.
6307 static bool FindConditionalOverload(Sema
&Self
, ExprResult
&LHS
, ExprResult
&RHS
,
6308 SourceLocation QuestionLoc
) {
6309 Expr
*Args
[2] = { LHS
.get(), RHS
.get() };
6310 OverloadCandidateSet
CandidateSet(QuestionLoc
,
6311 OverloadCandidateSet::CSK_Operator
);
6312 Self
.AddBuiltinOperatorCandidates(OO_Conditional
, QuestionLoc
, Args
,
6315 OverloadCandidateSet::iterator Best
;
6316 switch (CandidateSet
.BestViableFunction(Self
, QuestionLoc
, Best
)) {
6318 // We found a match. Perform the conversions on the arguments and move on.
6319 ExprResult LHSRes
= Self
.PerformImplicitConversion(
6320 LHS
.get(), Best
->BuiltinParamTypes
[0], Best
->Conversions
[0],
6321 Sema::AA_Converting
);
6322 if (LHSRes
.isInvalid())
6326 ExprResult RHSRes
= Self
.PerformImplicitConversion(
6327 RHS
.get(), Best
->BuiltinParamTypes
[1], Best
->Conversions
[1],
6328 Sema::AA_Converting
);
6329 if (RHSRes
.isInvalid())
6333 Self
.MarkFunctionReferenced(QuestionLoc
, Best
->Function
);
6337 case OR_No_Viable_Function
:
6339 // Emit a better diagnostic if one of the expressions is a null pointer
6340 // constant and the other is a pointer type. In this case, the user most
6341 // likely forgot to take the address of the other expression.
6342 if (Self
.DiagnoseConditionalForNull(LHS
.get(), RHS
.get(), QuestionLoc
))
6345 Self
.Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands
)
6346 << LHS
.get()->getType() << RHS
.get()->getType()
6347 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
6351 Self
.Diag(QuestionLoc
, diag::err_conditional_ambiguous_ovl
)
6352 << LHS
.get()->getType() << RHS
.get()->getType()
6353 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
6354 // FIXME: Print the possible common types by printing the return types of
6355 // the viable candidates.
6359 llvm_unreachable("Conditional operator has only built-in overloads");
6364 /// Perform an "extended" implicit conversion as returned by
6365 /// TryClassUnification.
6366 static bool ConvertForConditional(Sema
&Self
, ExprResult
&E
, QualType T
) {
6367 InitializedEntity Entity
= InitializedEntity::InitializeTemporary(T
);
6368 InitializationKind Kind
=
6369 InitializationKind::CreateCopy(E
.get()->getBeginLoc(), SourceLocation());
6370 Expr
*Arg
= E
.get();
6371 InitializationSequence
InitSeq(Self
, Entity
, Kind
, Arg
);
6372 ExprResult Result
= InitSeq
.Perform(Self
, Entity
, Kind
, Arg
);
6373 if (Result
.isInvalid())
6380 // Check the condition operand of ?: to see if it is valid for the GCC
6382 static bool isValidVectorForConditionalCondition(ASTContext
&Ctx
,
6384 if (!CondTy
->isVectorType() && !CondTy
->isExtVectorType())
6386 const QualType EltTy
=
6387 cast
<VectorType
>(CondTy
.getCanonicalType())->getElementType();
6388 assert(!EltTy
->isEnumeralType() && "Vectors cant be enum types");
6389 return EltTy
->isIntegralType(Ctx
);
6392 static bool isValidSizelessVectorForConditionalCondition(ASTContext
&Ctx
,
6394 if (!CondTy
->isSveVLSBuiltinType())
6396 const QualType EltTy
=
6397 cast
<BuiltinType
>(CondTy
.getCanonicalType())->getSveEltType(Ctx
);
6398 assert(!EltTy
->isEnumeralType() && "Vectors cant be enum types");
6399 return EltTy
->isIntegralType(Ctx
);
6402 QualType
Sema::CheckVectorConditionalTypes(ExprResult
&Cond
, ExprResult
&LHS
,
6404 SourceLocation QuestionLoc
) {
6405 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
6406 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
6408 QualType CondType
= Cond
.get()->getType();
6409 const auto *CondVT
= CondType
->castAs
<VectorType
>();
6410 QualType CondElementTy
= CondVT
->getElementType();
6411 unsigned CondElementCount
= CondVT
->getNumElements();
6412 QualType LHSType
= LHS
.get()->getType();
6413 const auto *LHSVT
= LHSType
->getAs
<VectorType
>();
6414 QualType RHSType
= RHS
.get()->getType();
6415 const auto *RHSVT
= RHSType
->getAs
<VectorType
>();
6417 QualType ResultType
;
6420 if (LHSVT
&& RHSVT
) {
6421 if (isa
<ExtVectorType
>(CondVT
) != isa
<ExtVectorType
>(LHSVT
)) {
6422 Diag(QuestionLoc
, diag::err_conditional_vector_cond_result_mismatch
)
6423 << /*isExtVector*/ isa
<ExtVectorType
>(CondVT
);
6427 // If both are vector types, they must be the same type.
6428 if (!Context
.hasSameType(LHSType
, RHSType
)) {
6429 Diag(QuestionLoc
, diag::err_conditional_vector_mismatched
)
6430 << LHSType
<< RHSType
;
6433 ResultType
= Context
.getCommonSugaredType(LHSType
, RHSType
);
6434 } else if (LHSVT
|| RHSVT
) {
6435 ResultType
= CheckVectorOperands(
6436 LHS
, RHS
, QuestionLoc
, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6437 /*AllowBoolConversions*/ false,
6438 /*AllowBoolOperation*/ true,
6439 /*ReportInvalid*/ true);
6440 if (ResultType
.isNull())
6444 LHSType
= LHSType
.getUnqualifiedType();
6445 RHSType
= RHSType
.getUnqualifiedType();
6446 QualType ResultElementTy
=
6447 Context
.hasSameType(LHSType
, RHSType
)
6448 ? Context
.getCommonSugaredType(LHSType
, RHSType
)
6449 : UsualArithmeticConversions(LHS
, RHS
, QuestionLoc
,
6452 if (ResultElementTy
->isEnumeralType()) {
6453 Diag(QuestionLoc
, diag::err_conditional_vector_operand_type
)
6457 if (CondType
->isExtVectorType())
6459 Context
.getExtVectorType(ResultElementTy
, CondVT
->getNumElements());
6461 ResultType
= Context
.getVectorType(
6462 ResultElementTy
, CondVT
->getNumElements(), VectorKind::Generic
);
6464 LHS
= ImpCastExprToType(LHS
.get(), ResultType
, CK_VectorSplat
);
6465 RHS
= ImpCastExprToType(RHS
.get(), ResultType
, CK_VectorSplat
);
6468 assert(!ResultType
.isNull() && ResultType
->isVectorType() &&
6469 (!CondType
->isExtVectorType() || ResultType
->isExtVectorType()) &&
6470 "Result should have been a vector type");
6471 auto *ResultVectorTy
= ResultType
->castAs
<VectorType
>();
6472 QualType ResultElementTy
= ResultVectorTy
->getElementType();
6473 unsigned ResultElementCount
= ResultVectorTy
->getNumElements();
6475 if (ResultElementCount
!= CondElementCount
) {
6476 Diag(QuestionLoc
, diag::err_conditional_vector_size
) << CondType
6481 if (Context
.getTypeSize(ResultElementTy
) !=
6482 Context
.getTypeSize(CondElementTy
)) {
6483 Diag(QuestionLoc
, diag::err_conditional_vector_element_size
) << CondType
6491 QualType
Sema::CheckSizelessVectorConditionalTypes(ExprResult
&Cond
,
6494 SourceLocation QuestionLoc
) {
6495 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
6496 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
6498 QualType CondType
= Cond
.get()->getType();
6499 const auto *CondBT
= CondType
->castAs
<BuiltinType
>();
6500 QualType CondElementTy
= CondBT
->getSveEltType(Context
);
6501 llvm::ElementCount CondElementCount
=
6502 Context
.getBuiltinVectorTypeInfo(CondBT
).EC
;
6504 QualType LHSType
= LHS
.get()->getType();
6506 LHSType
->isSveVLSBuiltinType() ? LHSType
->getAs
<BuiltinType
>() : nullptr;
6507 QualType RHSType
= RHS
.get()->getType();
6509 RHSType
->isSveVLSBuiltinType() ? RHSType
->getAs
<BuiltinType
>() : nullptr;
6511 QualType ResultType
;
6513 if (LHSBT
&& RHSBT
) {
6514 // If both are sizeless vector types, they must be the same type.
6515 if (!Context
.hasSameType(LHSType
, RHSType
)) {
6516 Diag(QuestionLoc
, diag::err_conditional_vector_mismatched
)
6517 << LHSType
<< RHSType
;
6520 ResultType
= LHSType
;
6521 } else if (LHSBT
|| RHSBT
) {
6522 ResultType
= CheckSizelessVectorOperands(
6523 LHS
, RHS
, QuestionLoc
, /*IsCompAssign*/ false, ACK_Conditional
);
6524 if (ResultType
.isNull())
6527 // Both are scalar so splat
6528 QualType ResultElementTy
;
6529 LHSType
= LHSType
.getCanonicalType().getUnqualifiedType();
6530 RHSType
= RHSType
.getCanonicalType().getUnqualifiedType();
6532 if (Context
.hasSameType(LHSType
, RHSType
))
6533 ResultElementTy
= LHSType
;
6536 UsualArithmeticConversions(LHS
, RHS
, QuestionLoc
, ACK_Conditional
);
6538 if (ResultElementTy
->isEnumeralType()) {
6539 Diag(QuestionLoc
, diag::err_conditional_vector_operand_type
)
6544 ResultType
= Context
.getScalableVectorType(
6545 ResultElementTy
, CondElementCount
.getKnownMinValue());
6547 LHS
= ImpCastExprToType(LHS
.get(), ResultType
, CK_VectorSplat
);
6548 RHS
= ImpCastExprToType(RHS
.get(), ResultType
, CK_VectorSplat
);
6551 assert(!ResultType
.isNull() && ResultType
->isSveVLSBuiltinType() &&
6552 "Result should have been a vector type");
6553 auto *ResultBuiltinTy
= ResultType
->castAs
<BuiltinType
>();
6554 QualType ResultElementTy
= ResultBuiltinTy
->getSveEltType(Context
);
6555 llvm::ElementCount ResultElementCount
=
6556 Context
.getBuiltinVectorTypeInfo(ResultBuiltinTy
).EC
;
6558 if (ResultElementCount
!= CondElementCount
) {
6559 Diag(QuestionLoc
, diag::err_conditional_vector_size
)
6560 << CondType
<< ResultType
;
6564 if (Context
.getTypeSize(ResultElementTy
) !=
6565 Context
.getTypeSize(CondElementTy
)) {
6566 Diag(QuestionLoc
, diag::err_conditional_vector_element_size
)
6567 << CondType
<< ResultType
;
6574 /// Check the operands of ?: under C++ semantics.
6576 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6577 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6579 /// This function also implements GCC's vector extension and the
6580 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6581 /// permit the use of a?b:c where the type of a is that of a integer vector with
6582 /// the same number of elements and size as the vectors of b and c. If one of
6583 /// either b or c is a scalar it is implicitly converted to match the type of
6584 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6585 /// scalars, then b and c are checked and converted to the type of a if
6588 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6589 /// For the GCC extension, the ?: operator is evaluated as
6590 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6591 /// For the OpenCL extensions, the ?: operator is evaluated as
6592 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
6593 /// most-significant-bit-set(a[n]) ? b[n] : c[n]).
6594 QualType
Sema::CXXCheckConditionalOperands(ExprResult
&Cond
, ExprResult
&LHS
,
6595 ExprResult
&RHS
, ExprValueKind
&VK
,
6597 SourceLocation QuestionLoc
) {
6598 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6604 bool IsVectorConditional
=
6605 isValidVectorForConditionalCondition(Context
, Cond
.get()->getType());
6607 bool IsSizelessVectorConditional
=
6608 isValidSizelessVectorForConditionalCondition(Context
,
6609 Cond
.get()->getType());
6611 // C++11 [expr.cond]p1
6612 // The first expression is contextually converted to bool.
6613 if (!Cond
.get()->isTypeDependent()) {
6614 ExprResult CondRes
= IsVectorConditional
|| IsSizelessVectorConditional
6615 ? DefaultFunctionArrayLvalueConversion(Cond
.get())
6616 : CheckCXXBooleanCondition(Cond
.get());
6617 if (CondRes
.isInvalid())
6621 // To implement C++, the first expression typically doesn't alter the result
6622 // type of the conditional, however the GCC compatible vector extension
6623 // changes the result type to be that of the conditional. Since we cannot
6624 // know if this is a vector extension here, delay the conversion of the
6625 // LHS/RHS below until later.
6626 return Context
.DependentTy
;
6630 // Either of the arguments dependent?
6631 if (LHS
.get()->isTypeDependent() || RHS
.get()->isTypeDependent())
6632 return Context
.DependentTy
;
6634 // C++11 [expr.cond]p2
6635 // If either the second or the third operand has type (cv) void, ...
6636 QualType LTy
= LHS
.get()->getType();
6637 QualType RTy
= RHS
.get()->getType();
6638 bool LVoid
= LTy
->isVoidType();
6639 bool RVoid
= RTy
->isVoidType();
6640 if (LVoid
|| RVoid
) {
6641 // ... one of the following shall hold:
6642 // -- The second or the third operand (but not both) is a (possibly
6643 // parenthesized) throw-expression; the result is of the type
6644 // and value category of the other.
6645 bool LThrow
= isa
<CXXThrowExpr
>(LHS
.get()->IgnoreParenImpCasts());
6646 bool RThrow
= isa
<CXXThrowExpr
>(RHS
.get()->IgnoreParenImpCasts());
6648 // Void expressions aren't legal in the vector-conditional expressions.
6649 if (IsVectorConditional
) {
6650 SourceRange DiagLoc
=
6651 LVoid
? LHS
.get()->getSourceRange() : RHS
.get()->getSourceRange();
6652 bool IsThrow
= LVoid
? LThrow
: RThrow
;
6653 Diag(DiagLoc
.getBegin(), diag::err_conditional_vector_has_void
)
6654 << DiagLoc
<< IsThrow
;
6658 if (LThrow
!= RThrow
) {
6659 Expr
*NonThrow
= LThrow
? RHS
.get() : LHS
.get();
6660 VK
= NonThrow
->getValueKind();
6661 // DR (no number yet): the result is a bit-field if the
6662 // non-throw-expression operand is a bit-field.
6663 OK
= NonThrow
->getObjectKind();
6664 return NonThrow
->getType();
6667 // -- Both the second and third operands have type void; the result is of
6668 // type void and is a prvalue.
6670 return Context
.getCommonSugaredType(LTy
, RTy
);
6672 // Neither holds, error.
6673 Diag(QuestionLoc
, diag::err_conditional_void_nonvoid
)
6674 << (LVoid
? RTy
: LTy
) << (LVoid
? 0 : 1)
6675 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
6680 if (IsVectorConditional
)
6681 return CheckVectorConditionalTypes(Cond
, LHS
, RHS
, QuestionLoc
);
6683 if (IsSizelessVectorConditional
)
6684 return CheckSizelessVectorConditionalTypes(Cond
, LHS
, RHS
, QuestionLoc
);
6686 // WebAssembly tables are not allowed as conditional LHS or RHS.
6687 if (LTy
->isWebAssemblyTableType() || RTy
->isWebAssemblyTableType()) {
6688 Diag(QuestionLoc
, diag::err_wasm_table_conditional_expression
)
6689 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
6693 // C++11 [expr.cond]p3
6694 // Otherwise, if the second and third operand have different types, and
6695 // either has (cv) class type [...] an attempt is made to convert each of
6696 // those operands to the type of the other.
6697 if (!Context
.hasSameType(LTy
, RTy
) &&
6698 (LTy
->isRecordType() || RTy
->isRecordType())) {
6699 // These return true if a single direction is already ambiguous.
6700 QualType L2RType
, R2LType
;
6701 bool HaveL2R
, HaveR2L
;
6702 if (TryClassUnification(*this, LHS
.get(), RHS
.get(), QuestionLoc
, HaveL2R
, L2RType
))
6704 if (TryClassUnification(*this, RHS
.get(), LHS
.get(), QuestionLoc
, HaveR2L
, R2LType
))
6707 // If both can be converted, [...] the program is ill-formed.
6708 if (HaveL2R
&& HaveR2L
) {
6709 Diag(QuestionLoc
, diag::err_conditional_ambiguous
)
6710 << LTy
<< RTy
<< LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
6714 // If exactly one conversion is possible, that conversion is applied to
6715 // the chosen operand and the converted operands are used in place of the
6716 // original operands for the remainder of this section.
6718 if (ConvertForConditional(*this, LHS
, L2RType
) || LHS
.isInvalid())
6720 LTy
= LHS
.get()->getType();
6721 } else if (HaveR2L
) {
6722 if (ConvertForConditional(*this, RHS
, R2LType
) || RHS
.isInvalid())
6724 RTy
= RHS
.get()->getType();
6728 // C++11 [expr.cond]p3
6729 // if both are glvalues of the same value category and the same type except
6730 // for cv-qualification, an attempt is made to convert each of those
6731 // operands to the type of the other.
6733 // Resolving a defect in P0012R1: we extend this to cover all cases where
6734 // one of the operands is reference-compatible with the other, in order
6735 // to support conditionals between functions differing in noexcept. This
6736 // will similarly cover difference in array bounds after P0388R4.
6737 // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6739 ExprValueKind LVK
= LHS
.get()->getValueKind();
6740 ExprValueKind RVK
= RHS
.get()->getValueKind();
6741 if (!Context
.hasSameType(LTy
, RTy
) && LVK
== RVK
&& LVK
!= VK_PRValue
) {
6742 // DerivedToBase was already handled by the class-specific case above.
6743 // FIXME: Should we allow ObjC conversions here?
6744 const ReferenceConversions AllowedConversions
=
6745 ReferenceConversions::Qualification
|
6746 ReferenceConversions::NestedQualification
|
6747 ReferenceConversions::Function
;
6749 ReferenceConversions RefConv
;
6750 if (CompareReferenceRelationship(QuestionLoc
, LTy
, RTy
, &RefConv
) ==
6752 !(RefConv
& ~AllowedConversions
) &&
6753 // [...] subject to the constraint that the reference must bind
6755 !RHS
.get()->refersToBitField() && !RHS
.get()->refersToVectorElement()) {
6756 RHS
= ImpCastExprToType(RHS
.get(), LTy
, CK_NoOp
, RVK
);
6757 RTy
= RHS
.get()->getType();
6758 } else if (CompareReferenceRelationship(QuestionLoc
, RTy
, LTy
, &RefConv
) ==
6760 !(RefConv
& ~AllowedConversions
) &&
6761 !LHS
.get()->refersToBitField() &&
6762 !LHS
.get()->refersToVectorElement()) {
6763 LHS
= ImpCastExprToType(LHS
.get(), RTy
, CK_NoOp
, LVK
);
6764 LTy
= LHS
.get()->getType();
6768 // C++11 [expr.cond]p4
6769 // If the second and third operands are glvalues of the same value
6770 // category and have the same type, the result is of that type and
6771 // value category and it is a bit-field if the second or the third
6772 // operand is a bit-field, or if both are bit-fields.
6773 // We only extend this to bitfields, not to the crazy other kinds of
6775 bool Same
= Context
.hasSameType(LTy
, RTy
);
6776 if (Same
&& LVK
== RVK
&& LVK
!= VK_PRValue
&&
6777 LHS
.get()->isOrdinaryOrBitFieldObject() &&
6778 RHS
.get()->isOrdinaryOrBitFieldObject()) {
6779 VK
= LHS
.get()->getValueKind();
6780 if (LHS
.get()->getObjectKind() == OK_BitField
||
6781 RHS
.get()->getObjectKind() == OK_BitField
)
6783 return Context
.getCommonSugaredType(LTy
, RTy
);
6786 // C++11 [expr.cond]p5
6787 // Otherwise, the result is a prvalue. If the second and third operands
6788 // do not have the same type, and either has (cv) class type, ...
6789 if (!Same
&& (LTy
->isRecordType() || RTy
->isRecordType())) {
6790 // ... overload resolution is used to determine the conversions (if any)
6791 // to be applied to the operands. If the overload resolution fails, the
6792 // program is ill-formed.
6793 if (FindConditionalOverload(*this, LHS
, RHS
, QuestionLoc
))
6797 // C++11 [expr.cond]p6
6798 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6799 // conversions are performed on the second and third operands.
6800 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
6801 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
6802 if (LHS
.isInvalid() || RHS
.isInvalid())
6804 LTy
= LHS
.get()->getType();
6805 RTy
= RHS
.get()->getType();
6807 // After those conversions, one of the following shall hold:
6808 // -- The second and third operands have the same type; the result
6809 // is of that type. If the operands have class type, the result
6810 // is a prvalue temporary of the result type, which is
6811 // copy-initialized from either the second operand or the third
6812 // operand depending on the value of the first operand.
6813 if (Context
.hasSameType(LTy
, RTy
)) {
6814 if (LTy
->isRecordType()) {
6815 // The operands have class type. Make a temporary copy.
6816 ExprResult LHSCopy
= PerformCopyInitialization(
6817 InitializedEntity::InitializeTemporary(LTy
), SourceLocation(), LHS
);
6818 if (LHSCopy
.isInvalid())
6821 ExprResult RHSCopy
= PerformCopyInitialization(
6822 InitializedEntity::InitializeTemporary(RTy
), SourceLocation(), RHS
);
6823 if (RHSCopy
.isInvalid())
6829 return Context
.getCommonSugaredType(LTy
, RTy
);
6832 // Extension: conditional operator involving vector types.
6833 if (LTy
->isVectorType() || RTy
->isVectorType())
6834 return CheckVectorOperands(LHS
, RHS
, QuestionLoc
, /*isCompAssign*/ false,
6835 /*AllowBothBool*/ true,
6836 /*AllowBoolConversions*/ false,
6837 /*AllowBoolOperation*/ false,
6838 /*ReportInvalid*/ true);
6840 // -- The second and third operands have arithmetic or enumeration type;
6841 // the usual arithmetic conversions are performed to bring them to a
6842 // common type, and the result is of that type.
6843 if (LTy
->isArithmeticType() && RTy
->isArithmeticType()) {
6845 UsualArithmeticConversions(LHS
, RHS
, QuestionLoc
, ACK_Conditional
);
6846 if (LHS
.isInvalid() || RHS
.isInvalid())
6848 if (ResTy
.isNull()) {
6850 diag::err_typecheck_cond_incompatible_operands
) << LTy
<< RTy
6851 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
6855 LHS
= ImpCastExprToType(LHS
.get(), ResTy
, PrepareScalarCast(LHS
, ResTy
));
6856 RHS
= ImpCastExprToType(RHS
.get(), ResTy
, PrepareScalarCast(RHS
, ResTy
));
6861 // -- The second and third operands have pointer type, or one has pointer
6862 // type and the other is a null pointer constant, or both are null
6863 // pointer constants, at least one of which is non-integral; pointer
6864 // conversions and qualification conversions are performed to bring them
6865 // to their composite pointer type. The result is of the composite
6867 // -- The second and third operands have pointer to member type, or one has
6868 // pointer to member type and the other is a null pointer constant;
6869 // pointer to member conversions and qualification conversions are
6870 // performed to bring them to a common type, whose cv-qualification
6871 // shall match the cv-qualification of either the second or the third
6872 // operand. The result is of the common type.
6873 QualType Composite
= FindCompositePointerType(QuestionLoc
, LHS
, RHS
);
6874 if (!Composite
.isNull())
6877 // Similarly, attempt to find composite type of two objective-c pointers.
6878 Composite
= FindCompositeObjCPointerType(LHS
, RHS
, QuestionLoc
);
6879 if (LHS
.isInvalid() || RHS
.isInvalid())
6881 if (!Composite
.isNull())
6884 // Check if we are using a null with a non-pointer type.
6885 if (DiagnoseConditionalForNull(LHS
.get(), RHS
.get(), QuestionLoc
))
6888 Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands
)
6889 << LHS
.get()->getType() << RHS
.get()->getType()
6890 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
6894 /// Find a merged pointer type and convert the two expressions to it.
6896 /// This finds the composite pointer type for \p E1 and \p E2 according to
6897 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6898 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6901 /// \param Loc The location of the operator requiring these two expressions to
6902 /// be converted to the composite pointer type.
6904 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6905 QualType
Sema::FindCompositePointerType(SourceLocation Loc
,
6906 Expr
*&E1
, Expr
*&E2
,
6908 assert(getLangOpts().CPlusPlus
&& "This function assumes C++");
6911 // The composite pointer type of two operands p1 and p2 having types T1
6913 QualType T1
= E1
->getType(), T2
= E2
->getType();
6915 // where at least one is a pointer or pointer to member type or
6916 // std::nullptr_t is:
6917 bool T1IsPointerLike
= T1
->isAnyPointerType() || T1
->isMemberPointerType() ||
6918 T1
->isNullPtrType();
6919 bool T2IsPointerLike
= T2
->isAnyPointerType() || T2
->isMemberPointerType() ||
6920 T2
->isNullPtrType();
6921 if (!T1IsPointerLike
&& !T2IsPointerLike
)
6924 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6925 // This can't actually happen, following the standard, but we also use this
6926 // to implement the end of [expr.conv], which hits this case.
6928 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6929 if (T1IsPointerLike
&&
6930 E2
->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull
)) {
6932 E2
= ImpCastExprToType(E2
, T1
, T1
->isMemberPointerType()
6933 ? CK_NullToMemberPointer
6934 : CK_NullToPointer
).get();
6937 if (T2IsPointerLike
&&
6938 E1
->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull
)) {
6940 E1
= ImpCastExprToType(E1
, T2
, T2
->isMemberPointerType()
6941 ? CK_NullToMemberPointer
6942 : CK_NullToPointer
).get();
6946 // Now both have to be pointers or member pointers.
6947 if (!T1IsPointerLike
|| !T2IsPointerLike
)
6949 assert(!T1
->isNullPtrType() && !T2
->isNullPtrType() &&
6950 "nullptr_t should be a null pointer constant");
6953 enum Kind
{ Pointer
, ObjCPointer
, MemberPointer
, Array
} K
;
6954 // Qualifiers to apply under the step kind.
6956 /// The class for a pointer-to-member; a constant array type with a bound
6957 /// (if any) for an array.
6958 const Type
*ClassOrBound
;
6960 Step(Kind K
, const Type
*ClassOrBound
= nullptr)
6961 : K(K
), ClassOrBound(ClassOrBound
) {}
6962 QualType
rebuild(ASTContext
&Ctx
, QualType T
) const {
6963 T
= Ctx
.getQualifiedType(T
, Quals
);
6966 return Ctx
.getPointerType(T
);
6968 return Ctx
.getMemberPointerType(T
, ClassOrBound
);
6970 return Ctx
.getObjCObjectPointerType(T
);
6972 if (auto *CAT
= cast_or_null
<ConstantArrayType
>(ClassOrBound
))
6973 return Ctx
.getConstantArrayType(T
, CAT
->getSize(), nullptr,
6974 ArraySizeModifier::Normal
, 0);
6976 return Ctx
.getIncompleteArrayType(T
, ArraySizeModifier::Normal
, 0);
6978 llvm_unreachable("unknown step kind");
6982 SmallVector
<Step
, 8> Steps
;
6984 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6985 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6986 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6988 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6989 // to member of C2 of type cv2 U2" for some non-function type U, where
6990 // C1 is reference-related to C2 or C2 is reference-related to C1, the
6991 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6993 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6996 // Dismantle T1 and T2 to simultaneously determine whether they are similar
6997 // and to prepare to form the cv-combined type if so.
6998 QualType Composite1
= T1
;
6999 QualType Composite2
= T2
;
7000 unsigned NeedConstBefore
= 0;
7002 assert(!Composite1
.isNull() && !Composite2
.isNull());
7005 Composite1
= Context
.getUnqualifiedArrayType(Composite1
, Q1
);
7006 Composite2
= Context
.getUnqualifiedArrayType(Composite2
, Q2
);
7008 // Top-level qualifiers are ignored. Merge at all lower levels.
7009 if (!Steps
.empty()) {
7010 // Find the qualifier union: (approximately) the unique minimal set of
7011 // qualifiers that is compatible with both types.
7012 Qualifiers Quals
= Qualifiers::fromCVRUMask(Q1
.getCVRUQualifiers() |
7013 Q2
.getCVRUQualifiers());
7015 // Under one level of pointer or pointer-to-member, we can change to an
7016 // unambiguous compatible address space.
7017 if (Q1
.getAddressSpace() == Q2
.getAddressSpace()) {
7018 Quals
.setAddressSpace(Q1
.getAddressSpace());
7019 } else if (Steps
.size() == 1) {
7020 bool MaybeQ1
= Q1
.isAddressSpaceSupersetOf(Q2
);
7021 bool MaybeQ2
= Q2
.isAddressSpaceSupersetOf(Q1
);
7022 if (MaybeQ1
== MaybeQ2
) {
7023 // Exception for ptr size address spaces. Should be able to choose
7024 // either address space during comparison.
7025 if (isPtrSizeAddressSpace(Q1
.getAddressSpace()) ||
7026 isPtrSizeAddressSpace(Q2
.getAddressSpace()))
7029 return QualType(); // No unique best address space.
7031 Quals
.setAddressSpace(MaybeQ1
? Q1
.getAddressSpace()
7032 : Q2
.getAddressSpace());
7037 // FIXME: In C, we merge __strong and none to __strong at the top level.
7038 if (Q1
.getObjCGCAttr() == Q2
.getObjCGCAttr())
7039 Quals
.setObjCGCAttr(Q1
.getObjCGCAttr());
7040 else if (T1
->isVoidPointerType() || T2
->isVoidPointerType())
7041 assert(Steps
.size() == 1);
7045 // Mismatched lifetime qualifiers never compatibly include each other.
7046 if (Q1
.getObjCLifetime() == Q2
.getObjCLifetime())
7047 Quals
.setObjCLifetime(Q1
.getObjCLifetime());
7048 else if (T1
->isVoidPointerType() || T2
->isVoidPointerType())
7049 assert(Steps
.size() == 1);
7053 Steps
.back().Quals
= Quals
;
7054 if (Q1
!= Quals
|| Q2
!= Quals
)
7055 NeedConstBefore
= Steps
.size() - 1;
7058 // FIXME: Can we unify the following with UnwrapSimilarTypes?
7060 const ArrayType
*Arr1
, *Arr2
;
7061 if ((Arr1
= Context
.getAsArrayType(Composite1
)) &&
7062 (Arr2
= Context
.getAsArrayType(Composite2
))) {
7063 auto *CAT1
= dyn_cast
<ConstantArrayType
>(Arr1
);
7064 auto *CAT2
= dyn_cast
<ConstantArrayType
>(Arr2
);
7065 if (CAT1
&& CAT2
&& CAT1
->getSize() == CAT2
->getSize()) {
7066 Composite1
= Arr1
->getElementType();
7067 Composite2
= Arr2
->getElementType();
7068 Steps
.emplace_back(Step::Array
, CAT1
);
7071 bool IAT1
= isa
<IncompleteArrayType
>(Arr1
);
7072 bool IAT2
= isa
<IncompleteArrayType
>(Arr2
);
7073 if ((IAT1
&& IAT2
) ||
7074 (getLangOpts().CPlusPlus20
&& (IAT1
!= IAT2
) &&
7075 ((bool)CAT1
!= (bool)CAT2
) &&
7076 (Steps
.empty() || Steps
.back().K
!= Step::Array
))) {
7077 // In C++20 onwards, we can unify an array of N T with an array of
7078 // a different or unknown bound. But we can't form an array whose
7079 // element type is an array of unknown bound by doing so.
7080 Composite1
= Arr1
->getElementType();
7081 Composite2
= Arr2
->getElementType();
7082 Steps
.emplace_back(Step::Array
);
7084 NeedConstBefore
= Steps
.size();
7089 const PointerType
*Ptr1
, *Ptr2
;
7090 if ((Ptr1
= Composite1
->getAs
<PointerType
>()) &&
7091 (Ptr2
= Composite2
->getAs
<PointerType
>())) {
7092 Composite1
= Ptr1
->getPointeeType();
7093 Composite2
= Ptr2
->getPointeeType();
7094 Steps
.emplace_back(Step::Pointer
);
7098 const ObjCObjectPointerType
*ObjPtr1
, *ObjPtr2
;
7099 if ((ObjPtr1
= Composite1
->getAs
<ObjCObjectPointerType
>()) &&
7100 (ObjPtr2
= Composite2
->getAs
<ObjCObjectPointerType
>())) {
7101 Composite1
= ObjPtr1
->getPointeeType();
7102 Composite2
= ObjPtr2
->getPointeeType();
7103 Steps
.emplace_back(Step::ObjCPointer
);
7107 const MemberPointerType
*MemPtr1
, *MemPtr2
;
7108 if ((MemPtr1
= Composite1
->getAs
<MemberPointerType
>()) &&
7109 (MemPtr2
= Composite2
->getAs
<MemberPointerType
>())) {
7110 Composite1
= MemPtr1
->getPointeeType();
7111 Composite2
= MemPtr2
->getPointeeType();
7113 // At the top level, we can perform a base-to-derived pointer-to-member
7116 // - [...] where C1 is reference-related to C2 or C2 is
7117 // reference-related to C1
7119 // (Note that the only kinds of reference-relatedness in scope here are
7120 // "same type or derived from".) At any other level, the class must
7122 const Type
*Class
= nullptr;
7123 QualType
Cls1(MemPtr1
->getClass(), 0);
7124 QualType
Cls2(MemPtr2
->getClass(), 0);
7125 if (Context
.hasSameType(Cls1
, Cls2
))
7126 Class
= MemPtr1
->getClass();
7127 else if (Steps
.empty())
7128 Class
= IsDerivedFrom(Loc
, Cls1
, Cls2
) ? MemPtr1
->getClass() :
7129 IsDerivedFrom(Loc
, Cls2
, Cls1
) ? MemPtr2
->getClass() : nullptr;
7133 Steps
.emplace_back(Step::MemberPointer
, Class
);
7137 // Special case: at the top level, we can decompose an Objective-C pointer
7138 // and a 'cv void *'. Unify the qualifiers.
7139 if (Steps
.empty() && ((Composite1
->isVoidPointerType() &&
7140 Composite2
->isObjCObjectPointerType()) ||
7141 (Composite1
->isObjCObjectPointerType() &&
7142 Composite2
->isVoidPointerType()))) {
7143 Composite1
= Composite1
->getPointeeType();
7144 Composite2
= Composite2
->getPointeeType();
7145 Steps
.emplace_back(Step::Pointer
);
7149 // FIXME: block pointer types?
7151 // Cannot unwrap any more types.
7155 // - if T1 or T2 is "pointer to noexcept function" and the other type is
7156 // "pointer to function", where the function types are otherwise the same,
7157 // "pointer to function";
7158 // - if T1 or T2 is "pointer to member of C1 of type function", the other
7159 // type is "pointer to member of C2 of type noexcept function", and C1
7160 // is reference-related to C2 or C2 is reference-related to C1, where
7161 // the function types are otherwise the same, "pointer to member of C2 of
7162 // type function" or "pointer to member of C1 of type function",
7165 // We also support 'noreturn' here, so as a Clang extension we generalize the
7168 // - [Clang] If T1 and T2 are both of type "pointer to function" or
7169 // "pointer to member function" and the pointee types can be unified
7170 // by a function pointer conversion, that conversion is applied
7171 // before checking the following rules.
7173 // We've already unwrapped down to the function types, and we want to merge
7174 // rather than just convert, so do this ourselves rather than calling
7175 // IsFunctionConversion.
7177 // FIXME: In order to match the standard wording as closely as possible, we
7178 // currently only do this under a single level of pointers. Ideally, we would
7179 // allow this in general, and set NeedConstBefore to the relevant depth on
7180 // the side(s) where we changed anything. If we permit that, we should also
7181 // consider this conversion when determining type similarity and model it as
7182 // a qualification conversion.
7183 if (Steps
.size() == 1) {
7184 if (auto *FPT1
= Composite1
->getAs
<FunctionProtoType
>()) {
7185 if (auto *FPT2
= Composite2
->getAs
<FunctionProtoType
>()) {
7186 FunctionProtoType::ExtProtoInfo EPI1
= FPT1
->getExtProtoInfo();
7187 FunctionProtoType::ExtProtoInfo EPI2
= FPT2
->getExtProtoInfo();
7189 // The result is noreturn if both operands are.
7191 EPI1
.ExtInfo
.getNoReturn() && EPI2
.ExtInfo
.getNoReturn();
7192 EPI1
.ExtInfo
= EPI1
.ExtInfo
.withNoReturn(Noreturn
);
7193 EPI2
.ExtInfo
= EPI2
.ExtInfo
.withNoReturn(Noreturn
);
7195 // The result is nothrow if both operands are.
7196 SmallVector
<QualType
, 8> ExceptionTypeStorage
;
7197 EPI1
.ExceptionSpec
= EPI2
.ExceptionSpec
= Context
.mergeExceptionSpecs(
7198 EPI1
.ExceptionSpec
, EPI2
.ExceptionSpec
, ExceptionTypeStorage
,
7199 getLangOpts().CPlusPlus17
);
7201 Composite1
= Context
.getFunctionType(FPT1
->getReturnType(),
7202 FPT1
->getParamTypes(), EPI1
);
7203 Composite2
= Context
.getFunctionType(FPT2
->getReturnType(),
7204 FPT2
->getParamTypes(), EPI2
);
7209 // There are some more conversions we can perform under exactly one pointer.
7210 if (Steps
.size() == 1 && Steps
.front().K
== Step::Pointer
&&
7211 !Context
.hasSameType(Composite1
, Composite2
)) {
7212 // - if T1 or T2 is "pointer to cv1 void" and the other type is
7213 // "pointer to cv2 T", where T is an object type or void,
7214 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7215 if (Composite1
->isVoidType() && Composite2
->isObjectType())
7216 Composite2
= Composite1
;
7217 else if (Composite2
->isVoidType() && Composite1
->isObjectType())
7218 Composite1
= Composite2
;
7219 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7220 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7221 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7222 // T1, respectively;
7224 // The "similar type" handling covers all of this except for the "T1 is a
7225 // base class of T2" case in the definition of reference-related.
7226 else if (IsDerivedFrom(Loc
, Composite1
, Composite2
))
7227 Composite1
= Composite2
;
7228 else if (IsDerivedFrom(Loc
, Composite2
, Composite1
))
7229 Composite2
= Composite1
;
7232 // At this point, either the inner types are the same or we have failed to
7233 // find a composite pointer type.
7234 if (!Context
.hasSameType(Composite1
, Composite2
))
7237 // Per C++ [conv.qual]p3, add 'const' to every level before the last
7238 // differing qualifier.
7239 for (unsigned I
= 0; I
!= NeedConstBefore
; ++I
)
7240 Steps
[I
].Quals
.addConst();
7242 // Rebuild the composite type.
7243 QualType Composite
= Context
.getCommonSugaredType(Composite1
, Composite2
);
7244 for (auto &S
: llvm::reverse(Steps
))
7245 Composite
= S
.rebuild(Context
, Composite
);
7248 // Convert the expressions to the composite pointer type.
7249 InitializedEntity Entity
=
7250 InitializedEntity::InitializeTemporary(Composite
);
7251 InitializationKind Kind
=
7252 InitializationKind::CreateCopy(Loc
, SourceLocation());
7254 InitializationSequence
E1ToC(*this, Entity
, Kind
, E1
);
7258 InitializationSequence
E2ToC(*this, Entity
, Kind
, E2
);
7262 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7263 ExprResult E1Result
= E1ToC
.Perform(*this, Entity
, Kind
, E1
);
7264 if (E1Result
.isInvalid())
7266 E1
= E1Result
.get();
7268 ExprResult E2Result
= E2ToC
.Perform(*this, Entity
, Kind
, E2
);
7269 if (E2Result
.isInvalid())
7271 E2
= E2Result
.get();
7277 ExprResult
Sema::MaybeBindToTemporary(Expr
*E
) {
7281 assert(!isa
<CXXBindTemporaryExpr
>(E
) && "Double-bound temporary?");
7283 // If the result is a glvalue, we shouldn't bind it.
7287 // In ARC, calls that return a retainable type can return retained,
7288 // in which case we have to insert a consuming cast.
7289 if (getLangOpts().ObjCAutoRefCount
&&
7290 E
->getType()->isObjCRetainableType()) {
7292 bool ReturnsRetained
;
7294 // For actual calls, we compute this by examining the type of the
7296 if (CallExpr
*Call
= dyn_cast
<CallExpr
>(E
)) {
7297 Expr
*Callee
= Call
->getCallee()->IgnoreParens();
7298 QualType T
= Callee
->getType();
7300 if (T
== Context
.BoundMemberTy
) {
7301 // Handle pointer-to-members.
7302 if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(Callee
))
7303 T
= BinOp
->getRHS()->getType();
7304 else if (MemberExpr
*Mem
= dyn_cast
<MemberExpr
>(Callee
))
7305 T
= Mem
->getMemberDecl()->getType();
7308 if (const PointerType
*Ptr
= T
->getAs
<PointerType
>())
7309 T
= Ptr
->getPointeeType();
7310 else if (const BlockPointerType
*Ptr
= T
->getAs
<BlockPointerType
>())
7311 T
= Ptr
->getPointeeType();
7312 else if (const MemberPointerType
*MemPtr
= T
->getAs
<MemberPointerType
>())
7313 T
= MemPtr
->getPointeeType();
7315 auto *FTy
= T
->castAs
<FunctionType
>();
7316 ReturnsRetained
= FTy
->getExtInfo().getProducesResult();
7318 // ActOnStmtExpr arranges things so that StmtExprs of retainable
7319 // type always produce a +1 object.
7320 } else if (isa
<StmtExpr
>(E
)) {
7321 ReturnsRetained
= true;
7323 // We hit this case with the lambda conversion-to-block optimization;
7324 // we don't want any extra casts here.
7325 } else if (isa
<CastExpr
>(E
) &&
7326 isa
<BlockExpr
>(cast
<CastExpr
>(E
)->getSubExpr())) {
7329 // For message sends and property references, we try to find an
7330 // actual method. FIXME: we should infer retention by selector in
7331 // cases where we don't have an actual method.
7333 ObjCMethodDecl
*D
= nullptr;
7334 if (ObjCMessageExpr
*Send
= dyn_cast
<ObjCMessageExpr
>(E
)) {
7335 D
= Send
->getMethodDecl();
7336 } else if (ObjCBoxedExpr
*BoxedExpr
= dyn_cast
<ObjCBoxedExpr
>(E
)) {
7337 D
= BoxedExpr
->getBoxingMethod();
7338 } else if (ObjCArrayLiteral
*ArrayLit
= dyn_cast
<ObjCArrayLiteral
>(E
)) {
7339 // Don't do reclaims if we're using the zero-element array
7341 if (ArrayLit
->getNumElements() == 0 &&
7342 Context
.getLangOpts().ObjCRuntime
.hasEmptyCollections())
7345 D
= ArrayLit
->getArrayWithObjectsMethod();
7346 } else if (ObjCDictionaryLiteral
*DictLit
7347 = dyn_cast
<ObjCDictionaryLiteral
>(E
)) {
7348 // Don't do reclaims if we're using the zero-element dictionary
7350 if (DictLit
->getNumElements() == 0 &&
7351 Context
.getLangOpts().ObjCRuntime
.hasEmptyCollections())
7354 D
= DictLit
->getDictWithObjectsMethod();
7357 ReturnsRetained
= (D
&& D
->hasAttr
<NSReturnsRetainedAttr
>());
7359 // Don't do reclaims on performSelector calls; despite their
7360 // return type, the invoked method doesn't necessarily actually
7361 // return an object.
7362 if (!ReturnsRetained
&&
7363 D
&& D
->getMethodFamily() == OMF_performSelector
)
7367 // Don't reclaim an object of Class type.
7368 if (!ReturnsRetained
&& E
->getType()->isObjCARCImplicitlyUnretainedType())
7371 Cleanup
.setExprNeedsCleanups(true);
7373 CastKind ck
= (ReturnsRetained
? CK_ARCConsumeObject
7374 : CK_ARCReclaimReturnedObject
);
7375 return ImplicitCastExpr::Create(Context
, E
->getType(), ck
, E
, nullptr,
7376 VK_PRValue
, FPOptionsOverride());
7379 if (E
->getType().isDestructedType() == QualType::DK_nontrivial_c_struct
)
7380 Cleanup
.setExprNeedsCleanups(true);
7382 if (!getLangOpts().CPlusPlus
)
7385 // Search for the base element type (cf. ASTContext::getBaseElementType) with
7386 // a fast path for the common case that the type is directly a RecordType.
7387 const Type
*T
= Context
.getCanonicalType(E
->getType().getTypePtr());
7388 const RecordType
*RT
= nullptr;
7390 switch (T
->getTypeClass()) {
7392 RT
= cast
<RecordType
>(T
);
7394 case Type::ConstantArray
:
7395 case Type::IncompleteArray
:
7396 case Type::VariableArray
:
7397 case Type::DependentSizedArray
:
7398 T
= cast
<ArrayType
>(T
)->getElementType().getTypePtr();
7405 // That should be enough to guarantee that this type is complete, if we're
7406 // not processing a decltype expression.
7407 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RT
->getDecl());
7408 if (RD
->isInvalidDecl() || RD
->isDependentContext())
7411 bool IsDecltype
= ExprEvalContexts
.back().ExprContext
==
7412 ExpressionEvaluationContextRecord::EK_Decltype
;
7413 CXXDestructorDecl
*Destructor
= IsDecltype
? nullptr : LookupDestructor(RD
);
7416 MarkFunctionReferenced(E
->getExprLoc(), Destructor
);
7417 CheckDestructorAccess(E
->getExprLoc(), Destructor
,
7418 PDiag(diag::err_access_dtor_temp
)
7420 if (DiagnoseUseOfDecl(Destructor
, E
->getExprLoc()))
7423 // If destructor is trivial, we can avoid the extra copy.
7424 if (Destructor
->isTrivial())
7427 // We need a cleanup, but we don't need to remember the temporary.
7428 Cleanup
.setExprNeedsCleanups(true);
7431 CXXTemporary
*Temp
= CXXTemporary::Create(Context
, Destructor
);
7432 CXXBindTemporaryExpr
*Bind
= CXXBindTemporaryExpr::Create(Context
, Temp
, E
);
7435 ExprEvalContexts
.back().DelayedDecltypeBinds
.push_back(Bind
);
7441 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr
) {
7442 if (SubExpr
.isInvalid())
7445 return MaybeCreateExprWithCleanups(SubExpr
.get());
7448 Expr
*Sema::MaybeCreateExprWithCleanups(Expr
*SubExpr
) {
7449 assert(SubExpr
&& "subexpression can't be null!");
7451 CleanupVarDeclMarking();
7453 unsigned FirstCleanup
= ExprEvalContexts
.back().NumCleanupObjects
;
7454 assert(ExprCleanupObjects
.size() >= FirstCleanup
);
7455 assert(Cleanup
.exprNeedsCleanups() ||
7456 ExprCleanupObjects
.size() == FirstCleanup
);
7457 if (!Cleanup
.exprNeedsCleanups())
7460 auto Cleanups
= llvm::ArrayRef(ExprCleanupObjects
.begin() + FirstCleanup
,
7461 ExprCleanupObjects
.size() - FirstCleanup
);
7463 auto *E
= ExprWithCleanups::Create(
7464 Context
, SubExpr
, Cleanup
.cleanupsHaveSideEffects(), Cleanups
);
7465 DiscardCleanupsInEvaluationContext();
7470 Stmt
*Sema::MaybeCreateStmtWithCleanups(Stmt
*SubStmt
) {
7471 assert(SubStmt
&& "sub-statement can't be null!");
7473 CleanupVarDeclMarking();
7475 if (!Cleanup
.exprNeedsCleanups())
7478 // FIXME: In order to attach the temporaries, wrap the statement into
7479 // a StmtExpr; currently this is only used for asm statements.
7480 // This is hacky, either create a new CXXStmtWithTemporaries statement or
7481 // a new AsmStmtWithTemporaries.
7482 CompoundStmt
*CompStmt
=
7483 CompoundStmt::Create(Context
, SubStmt
, FPOptionsOverride(),
7484 SourceLocation(), SourceLocation());
7485 Expr
*E
= new (Context
)
7486 StmtExpr(CompStmt
, Context
.VoidTy
, SourceLocation(), SourceLocation(),
7487 /*FIXME TemplateDepth=*/0);
7488 return MaybeCreateExprWithCleanups(E
);
7491 /// Process the expression contained within a decltype. For such expressions,
7492 /// certain semantic checks on temporaries are delayed until this point, and
7493 /// are omitted for the 'topmost' call in the decltype expression. If the
7494 /// topmost call bound a temporary, strip that temporary off the expression.
7495 ExprResult
Sema::ActOnDecltypeExpression(Expr
*E
) {
7496 assert(ExprEvalContexts
.back().ExprContext
==
7497 ExpressionEvaluationContextRecord::EK_Decltype
&&
7498 "not in a decltype expression");
7500 ExprResult Result
= CheckPlaceholderExpr(E
);
7501 if (Result
.isInvalid())
7505 // C++11 [expr.call]p11:
7506 // If a function call is a prvalue of object type,
7507 // -- if the function call is either
7508 // -- the operand of a decltype-specifier, or
7509 // -- the right operand of a comma operator that is the operand of a
7510 // decltype-specifier,
7511 // a temporary object is not introduced for the prvalue.
7513 // Recursively rebuild ParenExprs and comma expressions to strip out the
7514 // outermost CXXBindTemporaryExpr, if any.
7515 if (ParenExpr
*PE
= dyn_cast
<ParenExpr
>(E
)) {
7516 ExprResult SubExpr
= ActOnDecltypeExpression(PE
->getSubExpr());
7517 if (SubExpr
.isInvalid())
7519 if (SubExpr
.get() == PE
->getSubExpr())
7521 return ActOnParenExpr(PE
->getLParen(), PE
->getRParen(), SubExpr
.get());
7523 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
7524 if (BO
->getOpcode() == BO_Comma
) {
7525 ExprResult RHS
= ActOnDecltypeExpression(BO
->getRHS());
7526 if (RHS
.isInvalid())
7528 if (RHS
.get() == BO
->getRHS())
7530 return BinaryOperator::Create(Context
, BO
->getLHS(), RHS
.get(), BO_Comma
,
7531 BO
->getType(), BO
->getValueKind(),
7532 BO
->getObjectKind(), BO
->getOperatorLoc(),
7533 BO
->getFPFeatures());
7537 CXXBindTemporaryExpr
*TopBind
= dyn_cast
<CXXBindTemporaryExpr
>(E
);
7538 CallExpr
*TopCall
= TopBind
? dyn_cast
<CallExpr
>(TopBind
->getSubExpr())
7545 // Disable the special decltype handling now.
7546 ExprEvalContexts
.back().ExprContext
=
7547 ExpressionEvaluationContextRecord::EK_Other
;
7549 Result
= CheckUnevaluatedOperand(E
);
7550 if (Result
.isInvalid())
7554 // In MS mode, don't perform any extra checking of call return types within a
7555 // decltype expression.
7556 if (getLangOpts().MSVCCompat
)
7559 // Perform the semantic checks we delayed until this point.
7560 for (unsigned I
= 0, N
= ExprEvalContexts
.back().DelayedDecltypeCalls
.size();
7562 CallExpr
*Call
= ExprEvalContexts
.back().DelayedDecltypeCalls
[I
];
7563 if (Call
== TopCall
)
7566 if (CheckCallReturnType(Call
->getCallReturnType(Context
),
7567 Call
->getBeginLoc(), Call
, Call
->getDirectCallee()))
7571 // Now all relevant types are complete, check the destructors are accessible
7572 // and non-deleted, and annotate them on the temporaries.
7573 for (unsigned I
= 0, N
= ExprEvalContexts
.back().DelayedDecltypeBinds
.size();
7575 CXXBindTemporaryExpr
*Bind
=
7576 ExprEvalContexts
.back().DelayedDecltypeBinds
[I
];
7577 if (Bind
== TopBind
)
7580 CXXTemporary
*Temp
= Bind
->getTemporary();
7583 Bind
->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7584 CXXDestructorDecl
*Destructor
= LookupDestructor(RD
);
7585 Temp
->setDestructor(Destructor
);
7587 MarkFunctionReferenced(Bind
->getExprLoc(), Destructor
);
7588 CheckDestructorAccess(Bind
->getExprLoc(), Destructor
,
7589 PDiag(diag::err_access_dtor_temp
)
7590 << Bind
->getType());
7591 if (DiagnoseUseOfDecl(Destructor
, Bind
->getExprLoc()))
7594 // We need a cleanup, but we don't need to remember the temporary.
7595 Cleanup
.setExprNeedsCleanups(true);
7598 // Possibly strip off the top CXXBindTemporaryExpr.
7602 /// Note a set of 'operator->' functions that were used for a member access.
7603 static void noteOperatorArrows(Sema
&S
,
7604 ArrayRef
<FunctionDecl
*> OperatorArrows
) {
7605 unsigned SkipStart
= OperatorArrows
.size(), SkipCount
= 0;
7606 // FIXME: Make this configurable?
7608 if (OperatorArrows
.size() > Limit
) {
7609 // Produce Limit-1 normal notes and one 'skipping' note.
7610 SkipStart
= (Limit
- 1) / 2 + (Limit
- 1) % 2;
7611 SkipCount
= OperatorArrows
.size() - (Limit
- 1);
7614 for (unsigned I
= 0; I
< OperatorArrows
.size(); /**/) {
7615 if (I
== SkipStart
) {
7616 S
.Diag(OperatorArrows
[I
]->getLocation(),
7617 diag::note_operator_arrows_suppressed
)
7621 S
.Diag(OperatorArrows
[I
]->getLocation(), diag::note_operator_arrow_here
)
7622 << OperatorArrows
[I
]->getCallResultType();
7628 ExprResult
Sema::ActOnStartCXXMemberReference(Scope
*S
, Expr
*Base
,
7629 SourceLocation OpLoc
,
7630 tok::TokenKind OpKind
,
7631 ParsedType
&ObjectType
,
7632 bool &MayBePseudoDestructor
) {
7633 // Since this might be a postfix expression, get rid of ParenListExprs.
7634 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Base
);
7635 if (Result
.isInvalid()) return ExprError();
7636 Base
= Result
.get();
7638 Result
= CheckPlaceholderExpr(Base
);
7639 if (Result
.isInvalid()) return ExprError();
7640 Base
= Result
.get();
7642 QualType BaseType
= Base
->getType();
7643 MayBePseudoDestructor
= false;
7644 if (BaseType
->isDependentType()) {
7645 // If we have a pointer to a dependent type and are using the -> operator,
7646 // the object type is the type that the pointer points to. We might still
7647 // have enough information about that type to do something useful.
7648 if (OpKind
== tok::arrow
)
7649 if (const PointerType
*Ptr
= BaseType
->getAs
<PointerType
>())
7650 BaseType
= Ptr
->getPointeeType();
7652 ObjectType
= ParsedType::make(BaseType
);
7653 MayBePseudoDestructor
= true;
7657 // C++ [over.match.oper]p8:
7658 // [...] When operator->returns, the operator-> is applied to the value
7659 // returned, with the original second operand.
7660 if (OpKind
== tok::arrow
) {
7661 QualType StartingType
= BaseType
;
7662 bool NoArrowOperatorFound
= false;
7663 bool FirstIteration
= true;
7664 FunctionDecl
*CurFD
= dyn_cast
<FunctionDecl
>(CurContext
);
7665 // The set of types we've considered so far.
7666 llvm::SmallPtrSet
<CanQualType
,8> CTypes
;
7667 SmallVector
<FunctionDecl
*, 8> OperatorArrows
;
7668 CTypes
.insert(Context
.getCanonicalType(BaseType
));
7670 while (BaseType
->isRecordType()) {
7671 if (OperatorArrows
.size() >= getLangOpts().ArrowDepth
) {
7672 Diag(OpLoc
, diag::err_operator_arrow_depth_exceeded
)
7673 << StartingType
<< getLangOpts().ArrowDepth
<< Base
->getSourceRange();
7674 noteOperatorArrows(*this, OperatorArrows
);
7675 Diag(OpLoc
, diag::note_operator_arrow_depth
)
7676 << getLangOpts().ArrowDepth
;
7680 Result
= BuildOverloadedArrowExpr(
7682 // When in a template specialization and on the first loop iteration,
7683 // potentially give the default diagnostic (with the fixit in a
7684 // separate note) instead of having the error reported back to here
7685 // and giving a diagnostic with a fixit attached to the error itself.
7686 (FirstIteration
&& CurFD
&& CurFD
->isFunctionTemplateSpecialization())
7688 : &NoArrowOperatorFound
);
7689 if (Result
.isInvalid()) {
7690 if (NoArrowOperatorFound
) {
7691 if (FirstIteration
) {
7692 Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
7693 << BaseType
<< 1 << Base
->getSourceRange()
7694 << FixItHint::CreateReplacement(OpLoc
, ".");
7695 OpKind
= tok::period
;
7698 Diag(OpLoc
, diag::err_typecheck_member_reference_arrow
)
7699 << BaseType
<< Base
->getSourceRange();
7700 CallExpr
*CE
= dyn_cast
<CallExpr
>(Base
);
7701 if (Decl
*CD
= (CE
? CE
->getCalleeDecl() : nullptr)) {
7702 Diag(CD
->getBeginLoc(),
7703 diag::note_member_reference_arrow_from_operator_arrow
);
7708 Base
= Result
.get();
7709 if (CXXOperatorCallExpr
*OpCall
= dyn_cast
<CXXOperatorCallExpr
>(Base
))
7710 OperatorArrows
.push_back(OpCall
->getDirectCallee());
7711 BaseType
= Base
->getType();
7712 CanQualType CBaseType
= Context
.getCanonicalType(BaseType
);
7713 if (!CTypes
.insert(CBaseType
).second
) {
7714 Diag(OpLoc
, diag::err_operator_arrow_circular
) << StartingType
;
7715 noteOperatorArrows(*this, OperatorArrows
);
7718 FirstIteration
= false;
7721 if (OpKind
== tok::arrow
) {
7722 if (BaseType
->isPointerType())
7723 BaseType
= BaseType
->getPointeeType();
7724 else if (auto *AT
= Context
.getAsArrayType(BaseType
))
7725 BaseType
= AT
->getElementType();
7729 // Objective-C properties allow "." access on Objective-C pointer types,
7730 // so adjust the base type to the object type itself.
7731 if (BaseType
->isObjCObjectPointerType())
7732 BaseType
= BaseType
->getPointeeType();
7734 // C++ [basic.lookup.classref]p2:
7735 // [...] If the type of the object expression is of pointer to scalar
7736 // type, the unqualified-id is looked up in the context of the complete
7737 // postfix-expression.
7739 // This also indicates that we could be parsing a pseudo-destructor-name.
7740 // Note that Objective-C class and object types can be pseudo-destructor
7741 // expressions or normal member (ivar or property) access expressions, and
7742 // it's legal for the type to be incomplete if this is a pseudo-destructor
7743 // call. We'll do more incomplete-type checks later in the lookup process,
7744 // so just skip this check for ObjC types.
7745 if (!BaseType
->isRecordType()) {
7746 ObjectType
= ParsedType::make(BaseType
);
7747 MayBePseudoDestructor
= true;
7751 // The object type must be complete (or dependent), or
7752 // C++11 [expr.prim.general]p3:
7753 // Unlike the object expression in other contexts, *this is not required to
7754 // be of complete type for purposes of class member access (5.2.5) outside
7755 // the member function body.
7756 if (!BaseType
->isDependentType() &&
7757 !isThisOutsideMemberFunctionBody(BaseType
) &&
7758 RequireCompleteType(OpLoc
, BaseType
,
7759 diag::err_incomplete_member_access
)) {
7760 return CreateRecoveryExpr(Base
->getBeginLoc(), Base
->getEndLoc(), {Base
});
7763 // C++ [basic.lookup.classref]p2:
7764 // If the id-expression in a class member access (5.2.5) is an
7765 // unqualified-id, and the type of the object expression is of a class
7766 // type C (or of pointer to a class type C), the unqualified-id is looked
7767 // up in the scope of class C. [...]
7768 ObjectType
= ParsedType::make(BaseType
);
7772 static bool CheckArrow(Sema
&S
, QualType
&ObjectType
, Expr
*&Base
,
7773 tok::TokenKind
&OpKind
, SourceLocation OpLoc
) {
7774 if (Base
->hasPlaceholderType()) {
7775 ExprResult result
= S
.CheckPlaceholderExpr(Base
);
7776 if (result
.isInvalid()) return true;
7777 Base
= result
.get();
7779 ObjectType
= Base
->getType();
7781 // C++ [expr.pseudo]p2:
7782 // The left-hand side of the dot operator shall be of scalar type. The
7783 // left-hand side of the arrow operator shall be of pointer to scalar type.
7784 // This scalar type is the object type.
7785 // Note that this is rather different from the normal handling for the
7787 if (OpKind
== tok::arrow
) {
7788 // The operator requires a prvalue, so perform lvalue conversions.
7789 // Only do this if we might plausibly end with a pointer, as otherwise
7790 // this was likely to be intended to be a '.'.
7791 if (ObjectType
->isPointerType() || ObjectType
->isArrayType() ||
7792 ObjectType
->isFunctionType()) {
7793 ExprResult BaseResult
= S
.DefaultFunctionArrayLvalueConversion(Base
);
7794 if (BaseResult
.isInvalid())
7796 Base
= BaseResult
.get();
7797 ObjectType
= Base
->getType();
7800 if (const PointerType
*Ptr
= ObjectType
->getAs
<PointerType
>()) {
7801 ObjectType
= Ptr
->getPointeeType();
7802 } else if (!Base
->isTypeDependent()) {
7803 // The user wrote "p->" when they probably meant "p."; fix it.
7804 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
7805 << ObjectType
<< true
7806 << FixItHint::CreateReplacement(OpLoc
, ".");
7807 if (S
.isSFINAEContext())
7810 OpKind
= tok::period
;
7817 /// Check if it's ok to try and recover dot pseudo destructor calls on
7818 /// pointer objects.
7820 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema
&SemaRef
,
7821 QualType DestructedType
) {
7822 // If this is a record type, check if its destructor is callable.
7823 if (auto *RD
= DestructedType
->getAsCXXRecordDecl()) {
7824 if (RD
->hasDefinition())
7825 if (CXXDestructorDecl
*D
= SemaRef
.LookupDestructor(RD
))
7826 return SemaRef
.CanUseDecl(D
, /*TreatUnavailableAsInvalid=*/false);
7830 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7831 return DestructedType
->isDependentType() || DestructedType
->isScalarType() ||
7832 DestructedType
->isVectorType();
7835 ExprResult
Sema::BuildPseudoDestructorExpr(Expr
*Base
,
7836 SourceLocation OpLoc
,
7837 tok::TokenKind OpKind
,
7838 const CXXScopeSpec
&SS
,
7839 TypeSourceInfo
*ScopeTypeInfo
,
7840 SourceLocation CCLoc
,
7841 SourceLocation TildeLoc
,
7842 PseudoDestructorTypeStorage Destructed
) {
7843 TypeSourceInfo
*DestructedTypeInfo
= Destructed
.getTypeSourceInfo();
7845 QualType ObjectType
;
7846 if (CheckArrow(*this, ObjectType
, Base
, OpKind
, OpLoc
))
7849 if (!ObjectType
->isDependentType() && !ObjectType
->isScalarType() &&
7850 !ObjectType
->isVectorType()) {
7851 if (getLangOpts().MSVCCompat
&& ObjectType
->isVoidType())
7852 Diag(OpLoc
, diag::ext_pseudo_dtor_on_void
) << Base
->getSourceRange();
7854 Diag(OpLoc
, diag::err_pseudo_dtor_base_not_scalar
)
7855 << ObjectType
<< Base
->getSourceRange();
7860 // C++ [expr.pseudo]p2:
7861 // [...] The cv-unqualified versions of the object type and of the type
7862 // designated by the pseudo-destructor-name shall be the same type.
7863 if (DestructedTypeInfo
) {
7864 QualType DestructedType
= DestructedTypeInfo
->getType();
7865 SourceLocation DestructedTypeStart
=
7866 DestructedTypeInfo
->getTypeLoc().getBeginLoc();
7867 if (!DestructedType
->isDependentType() && !ObjectType
->isDependentType()) {
7868 if (!Context
.hasSameUnqualifiedType(DestructedType
, ObjectType
)) {
7869 // Detect dot pseudo destructor calls on pointer objects, e.g.:
7872 if (OpKind
== tok::period
&& ObjectType
->isPointerType() &&
7873 Context
.hasSameUnqualifiedType(DestructedType
,
7874 ObjectType
->getPointeeType())) {
7876 Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
7877 << ObjectType
<< /*IsArrow=*/0 << Base
->getSourceRange();
7879 // Issue a fixit only when the destructor is valid.
7880 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7881 *this, DestructedType
))
7882 Diagnostic
<< FixItHint::CreateReplacement(OpLoc
, "->");
7884 // Recover by setting the object type to the destructed type and the
7885 // operator to '->'.
7886 ObjectType
= DestructedType
;
7887 OpKind
= tok::arrow
;
7889 Diag(DestructedTypeStart
, diag::err_pseudo_dtor_type_mismatch
)
7890 << ObjectType
<< DestructedType
<< Base
->getSourceRange()
7891 << DestructedTypeInfo
->getTypeLoc().getSourceRange();
7893 // Recover by setting the destructed type to the object type.
7894 DestructedType
= ObjectType
;
7895 DestructedTypeInfo
=
7896 Context
.getTrivialTypeSourceInfo(ObjectType
, DestructedTypeStart
);
7897 Destructed
= PseudoDestructorTypeStorage(DestructedTypeInfo
);
7899 } else if (DestructedType
.getObjCLifetime() !=
7900 ObjectType
.getObjCLifetime()) {
7902 if (DestructedType
.getObjCLifetime() == Qualifiers::OCL_None
) {
7903 // Okay: just pretend that the user provided the correctly-qualified
7906 Diag(DestructedTypeStart
, diag::err_arc_pseudo_dtor_inconstant_quals
)
7907 << ObjectType
<< DestructedType
<< Base
->getSourceRange()
7908 << DestructedTypeInfo
->getTypeLoc().getSourceRange();
7911 // Recover by setting the destructed type to the object type.
7912 DestructedType
= ObjectType
;
7913 DestructedTypeInfo
= Context
.getTrivialTypeSourceInfo(ObjectType
,
7914 DestructedTypeStart
);
7915 Destructed
= PseudoDestructorTypeStorage(DestructedTypeInfo
);
7920 // C++ [expr.pseudo]p2:
7921 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7924 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7926 // shall designate the same scalar type.
7927 if (ScopeTypeInfo
) {
7928 QualType ScopeType
= ScopeTypeInfo
->getType();
7929 if (!ScopeType
->isDependentType() && !ObjectType
->isDependentType() &&
7930 !Context
.hasSameUnqualifiedType(ScopeType
, ObjectType
)) {
7932 Diag(ScopeTypeInfo
->getTypeLoc().getSourceRange().getBegin(),
7933 diag::err_pseudo_dtor_type_mismatch
)
7934 << ObjectType
<< ScopeType
<< Base
->getSourceRange()
7935 << ScopeTypeInfo
->getTypeLoc().getSourceRange();
7937 ScopeType
= QualType();
7938 ScopeTypeInfo
= nullptr;
7943 = new (Context
) CXXPseudoDestructorExpr(Context
, Base
,
7944 OpKind
== tok::arrow
, OpLoc
,
7945 SS
.getWithLocInContext(Context
),
7954 ExprResult
Sema::ActOnPseudoDestructorExpr(Scope
*S
, Expr
*Base
,
7955 SourceLocation OpLoc
,
7956 tok::TokenKind OpKind
,
7958 UnqualifiedId
&FirstTypeName
,
7959 SourceLocation CCLoc
,
7960 SourceLocation TildeLoc
,
7961 UnqualifiedId
&SecondTypeName
) {
7962 assert((FirstTypeName
.getKind() == UnqualifiedIdKind::IK_TemplateId
||
7963 FirstTypeName
.getKind() == UnqualifiedIdKind::IK_Identifier
) &&
7964 "Invalid first type name in pseudo-destructor");
7965 assert((SecondTypeName
.getKind() == UnqualifiedIdKind::IK_TemplateId
||
7966 SecondTypeName
.getKind() == UnqualifiedIdKind::IK_Identifier
) &&
7967 "Invalid second type name in pseudo-destructor");
7969 QualType ObjectType
;
7970 if (CheckArrow(*this, ObjectType
, Base
, OpKind
, OpLoc
))
7973 // Compute the object type that we should use for name lookup purposes. Only
7974 // record types and dependent types matter.
7975 ParsedType ObjectTypePtrForLookup
;
7977 if (ObjectType
->isRecordType())
7978 ObjectTypePtrForLookup
= ParsedType::make(ObjectType
);
7979 else if (ObjectType
->isDependentType())
7980 ObjectTypePtrForLookup
= ParsedType::make(Context
.DependentTy
);
7983 // Convert the name of the type being destructed (following the ~) into a
7984 // type (with source-location information).
7985 QualType DestructedType
;
7986 TypeSourceInfo
*DestructedTypeInfo
= nullptr;
7987 PseudoDestructorTypeStorage Destructed
;
7988 if (SecondTypeName
.getKind() == UnqualifiedIdKind::IK_Identifier
) {
7989 ParsedType T
= getTypeName(*SecondTypeName
.Identifier
,
7990 SecondTypeName
.StartLocation
,
7991 S
, &SS
, true, false, ObjectTypePtrForLookup
,
7992 /*IsCtorOrDtorName*/true);
7994 ((SS
.isSet() && !computeDeclContext(SS
, false)) ||
7995 (!SS
.isSet() && ObjectType
->isDependentType()))) {
7996 // The name of the type being destroyed is a dependent name, and we
7997 // couldn't find anything useful in scope. Just store the identifier and
7998 // it's location, and we'll perform (qualified) name lookup again at
7999 // template instantiation time.
8000 Destructed
= PseudoDestructorTypeStorage(SecondTypeName
.Identifier
,
8001 SecondTypeName
.StartLocation
);
8003 Diag(SecondTypeName
.StartLocation
,
8004 diag::err_pseudo_dtor_destructor_non_type
)
8005 << SecondTypeName
.Identifier
<< ObjectType
;
8006 if (isSFINAEContext())
8009 // Recover by assuming we had the right type all along.
8010 DestructedType
= ObjectType
;
8012 DestructedType
= GetTypeFromParser(T
, &DestructedTypeInfo
);
8014 // Resolve the template-id to a type.
8015 TemplateIdAnnotation
*TemplateId
= SecondTypeName
.TemplateId
;
8016 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
8017 TemplateId
->NumArgs
);
8018 TypeResult T
= ActOnTemplateIdType(S
,
8020 TemplateId
->TemplateKWLoc
,
8021 TemplateId
->Template
,
8023 TemplateId
->TemplateNameLoc
,
8024 TemplateId
->LAngleLoc
,
8026 TemplateId
->RAngleLoc
,
8027 /*IsCtorOrDtorName*/true);
8028 if (T
.isInvalid() || !T
.get()) {
8029 // Recover by assuming we had the right type all along.
8030 DestructedType
= ObjectType
;
8032 DestructedType
= GetTypeFromParser(T
.get(), &DestructedTypeInfo
);
8035 // If we've performed some kind of recovery, (re-)build the type source
8037 if (!DestructedType
.isNull()) {
8038 if (!DestructedTypeInfo
)
8039 DestructedTypeInfo
= Context
.getTrivialTypeSourceInfo(DestructedType
,
8040 SecondTypeName
.StartLocation
);
8041 Destructed
= PseudoDestructorTypeStorage(DestructedTypeInfo
);
8044 // Convert the name of the scope type (the type prior to '::') into a type.
8045 TypeSourceInfo
*ScopeTypeInfo
= nullptr;
8047 if (FirstTypeName
.getKind() == UnqualifiedIdKind::IK_TemplateId
||
8048 FirstTypeName
.Identifier
) {
8049 if (FirstTypeName
.getKind() == UnqualifiedIdKind::IK_Identifier
) {
8050 ParsedType T
= getTypeName(*FirstTypeName
.Identifier
,
8051 FirstTypeName
.StartLocation
,
8052 S
, &SS
, true, false, ObjectTypePtrForLookup
,
8053 /*IsCtorOrDtorName*/true);
8055 Diag(FirstTypeName
.StartLocation
,
8056 diag::err_pseudo_dtor_destructor_non_type
)
8057 << FirstTypeName
.Identifier
<< ObjectType
;
8059 if (isSFINAEContext())
8062 // Just drop this type. It's unnecessary anyway.
8063 ScopeType
= QualType();
8065 ScopeType
= GetTypeFromParser(T
, &ScopeTypeInfo
);
8067 // Resolve the template-id to a type.
8068 TemplateIdAnnotation
*TemplateId
= FirstTypeName
.TemplateId
;
8069 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
8070 TemplateId
->NumArgs
);
8071 TypeResult T
= ActOnTemplateIdType(S
,
8073 TemplateId
->TemplateKWLoc
,
8074 TemplateId
->Template
,
8076 TemplateId
->TemplateNameLoc
,
8077 TemplateId
->LAngleLoc
,
8079 TemplateId
->RAngleLoc
,
8080 /*IsCtorOrDtorName*/true);
8081 if (T
.isInvalid() || !T
.get()) {
8082 // Recover by dropping this type.
8083 ScopeType
= QualType();
8085 ScopeType
= GetTypeFromParser(T
.get(), &ScopeTypeInfo
);
8089 if (!ScopeType
.isNull() && !ScopeTypeInfo
)
8090 ScopeTypeInfo
= Context
.getTrivialTypeSourceInfo(ScopeType
,
8091 FirstTypeName
.StartLocation
);
8094 return BuildPseudoDestructorExpr(Base
, OpLoc
, OpKind
, SS
,
8095 ScopeTypeInfo
, CCLoc
, TildeLoc
,
8099 ExprResult
Sema::ActOnPseudoDestructorExpr(Scope
*S
, Expr
*Base
,
8100 SourceLocation OpLoc
,
8101 tok::TokenKind OpKind
,
8102 SourceLocation TildeLoc
,
8103 const DeclSpec
& DS
) {
8104 QualType ObjectType
;
8105 if (CheckArrow(*this, ObjectType
, Base
, OpKind
, OpLoc
))
8108 if (DS
.getTypeSpecType() == DeclSpec::TST_decltype_auto
) {
8109 Diag(DS
.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid
);
8113 QualType T
= BuildDecltypeType(DS
.getRepAsExpr(), /*AsUnevaluated=*/false);
8116 DecltypeTypeLoc DecltypeTL
= TLB
.push
<DecltypeTypeLoc
>(T
);
8117 DecltypeTL
.setDecltypeLoc(DS
.getTypeSpecTypeLoc());
8118 DecltypeTL
.setRParenLoc(DS
.getTypeofParensRange().getEnd());
8119 TypeSourceInfo
*DestructedTypeInfo
= TLB
.getTypeSourceInfo(Context
, T
);
8120 PseudoDestructorTypeStorage
Destructed(DestructedTypeInfo
);
8122 return BuildPseudoDestructorExpr(Base
, OpLoc
, OpKind
, CXXScopeSpec(),
8123 nullptr, SourceLocation(), TildeLoc
,
8127 ExprResult
Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc
, Expr
*Operand
,
8128 SourceLocation RParen
) {
8129 // If the operand is an unresolved lookup expression, the expression is ill-
8130 // formed per [over.over]p1, because overloaded function names cannot be used
8131 // without arguments except in explicit contexts.
8132 ExprResult R
= CheckPlaceholderExpr(Operand
);
8136 R
= CheckUnevaluatedOperand(R
.get());
8142 if (!inTemplateInstantiation() && !Operand
->isInstantiationDependent() &&
8143 Operand
->HasSideEffects(Context
, false)) {
8144 // The expression operand for noexcept is in an unevaluated expression
8145 // context, so side effects could result in unintended consequences.
8146 Diag(Operand
->getExprLoc(), diag::warn_side_effects_unevaluated_context
);
8149 CanThrowResult CanThrow
= canThrow(Operand
);
8150 return new (Context
)
8151 CXXNoexceptExpr(Context
.BoolTy
, Operand
, CanThrow
, KeyLoc
, RParen
);
8154 ExprResult
Sema::ActOnNoexceptExpr(SourceLocation KeyLoc
, SourceLocation
,
8155 Expr
*Operand
, SourceLocation RParen
) {
8156 return BuildCXXNoexceptExpr(KeyLoc
, Operand
, RParen
);
8159 static void MaybeDecrementCount(
8160 Expr
*E
, llvm::DenseMap
<const VarDecl
*, int> &RefsMinusAssignments
) {
8161 DeclRefExpr
*LHS
= nullptr;
8162 bool IsCompoundAssign
= false;
8163 bool isIncrementDecrementUnaryOp
= false;
8164 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
8165 if (BO
->getLHS()->getType()->isDependentType() ||
8166 BO
->getRHS()->getType()->isDependentType()) {
8167 if (BO
->getOpcode() != BO_Assign
)
8169 } else if (!BO
->isAssignmentOp())
8172 IsCompoundAssign
= BO
->isCompoundAssignmentOp();
8173 LHS
= dyn_cast
<DeclRefExpr
>(BO
->getLHS());
8174 } else if (CXXOperatorCallExpr
*COCE
= dyn_cast
<CXXOperatorCallExpr
>(E
)) {
8175 if (COCE
->getOperator() != OO_Equal
)
8177 LHS
= dyn_cast
<DeclRefExpr
>(COCE
->getArg(0));
8178 } else if (UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(E
)) {
8179 if (!UO
->isIncrementDecrementOp())
8181 isIncrementDecrementUnaryOp
= true;
8182 LHS
= dyn_cast
<DeclRefExpr
>(UO
->getSubExpr());
8186 VarDecl
*VD
= dyn_cast
<VarDecl
>(LHS
->getDecl());
8189 // Don't decrement RefsMinusAssignments if volatile variable with compound
8190 // assignment (+=, ...) or increment/decrement unary operator to avoid
8191 // potential unused-but-set-variable warning.
8192 if ((IsCompoundAssign
|| isIncrementDecrementUnaryOp
) &&
8193 VD
->getType().isVolatileQualified())
8195 auto iter
= RefsMinusAssignments
.find(VD
);
8196 if (iter
== RefsMinusAssignments
.end())
8198 iter
->getSecond()--;
8201 /// Perform the conversions required for an expression used in a
8202 /// context that ignores the result.
8203 ExprResult
Sema::IgnoredValueConversions(Expr
*E
) {
8204 MaybeDecrementCount(E
, RefsMinusAssignments
);
8206 if (E
->hasPlaceholderType()) {
8207 ExprResult result
= CheckPlaceholderExpr(E
);
8208 if (result
.isInvalid()) return E
;
8213 // [Except in specific positions,] an lvalue that does not have
8214 // array type is converted to the value stored in the
8215 // designated object (and is no longer an lvalue).
8216 if (E
->isPRValue()) {
8217 // In C, function designators (i.e. expressions of function type)
8218 // are r-values, but we still want to do function-to-pointer decay
8219 // on them. This is both technically correct and convenient for
8221 if (!getLangOpts().CPlusPlus
&& E
->getType()->isFunctionType())
8222 return DefaultFunctionArrayConversion(E
);
8227 if (getLangOpts().CPlusPlus
) {
8228 // The C++11 standard defines the notion of a discarded-value expression;
8229 // normally, we don't need to do anything to handle it, but if it is a
8230 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8232 if (getLangOpts().CPlusPlus11
&& E
->isReadIfDiscardedInCPlusPlus11()) {
8233 ExprResult Res
= DefaultLvalueConversion(E
);
8234 if (Res
.isInvalid())
8238 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8239 // it occurs as a discarded-value expression.
8240 CheckUnusedVolatileAssignment(E
);
8244 // If the expression is a prvalue after this optional conversion, the
8245 // temporary materialization conversion is applied.
8247 // We skip this step: IR generation is able to synthesize the storage for
8248 // itself in the aggregate case, and adding the extra node to the AST is
8250 // FIXME: We don't emit lifetime markers for the temporaries due to this.
8251 // FIXME: Do any other AST consumers care about this?
8255 // GCC seems to also exclude expressions of incomplete enum type.
8256 if (const EnumType
*T
= E
->getType()->getAs
<EnumType
>()) {
8257 if (!T
->getDecl()->isComplete()) {
8258 // FIXME: stupid workaround for a codegen bug!
8259 E
= ImpCastExprToType(E
, Context
.VoidTy
, CK_ToVoid
).get();
8264 ExprResult Res
= DefaultFunctionArrayLvalueConversion(E
);
8265 if (Res
.isInvalid())
8269 if (!E
->getType()->isVoidType())
8270 RequireCompleteType(E
->getExprLoc(), E
->getType(),
8271 diag::err_incomplete_type
);
8275 ExprResult
Sema::CheckUnevaluatedOperand(Expr
*E
) {
8276 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8277 // it occurs as an unevaluated operand.
8278 CheckUnusedVolatileAssignment(E
);
8283 // If we can unambiguously determine whether Var can never be used
8284 // in a constant expression, return true.
8285 // - if the variable and its initializer are non-dependent, then
8286 // we can unambiguously check if the variable is a constant expression.
8287 // - if the initializer is not value dependent - we can determine whether
8288 // it can be used to initialize a constant expression. If Init can not
8289 // be used to initialize a constant expression we conclude that Var can
8290 // never be a constant expression.
8291 // - FXIME: if the initializer is dependent, we can still do some analysis and
8292 // identify certain cases unambiguously as non-const by using a Visitor:
8293 // - such as those that involve odr-use of a ParmVarDecl, involve a new
8294 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8295 static inline bool VariableCanNeverBeAConstantExpression(VarDecl
*Var
,
8296 ASTContext
&Context
) {
8297 if (isa
<ParmVarDecl
>(Var
)) return true;
8298 const VarDecl
*DefVD
= nullptr;
8300 // If there is no initializer - this can not be a constant expression.
8301 const Expr
*Init
= Var
->getAnyInitializer(DefVD
);
8305 if (DefVD
->isWeak())
8308 if (Var
->getType()->isDependentType() || Init
->isValueDependent()) {
8309 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8310 // of value-dependent expressions, and use it here to determine whether the
8311 // initializer is a potential constant expression.
8315 return !Var
->isUsableInConstantExpressions(Context
);
8318 /// Check if the current lambda has any potential captures
8319 /// that must be captured by any of its enclosing lambdas that are ready to
8320 /// capture. If there is a lambda that can capture a nested
8321 /// potential-capture, go ahead and do so. Also, check to see if any
8322 /// variables are uncaptureable or do not involve an odr-use so do not
8323 /// need to be captured.
8325 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8326 Expr
*const FE
, LambdaScopeInfo
*const CurrentLSI
, Sema
&S
) {
8328 assert(!S
.isUnevaluatedContext());
8329 assert(S
.CurContext
->isDependentContext());
8331 DeclContext
*DC
= S
.CurContext
;
8332 while (DC
&& isa
<CapturedDecl
>(DC
))
8333 DC
= DC
->getParent();
8335 CurrentLSI
->CallOperator
== DC
&&
8336 "The current call operator must be synchronized with Sema's CurContext");
8339 const bool IsFullExprInstantiationDependent
= FE
->isInstantiationDependent();
8341 // All the potentially captureable variables in the current nested
8342 // lambda (within a generic outer lambda), must be captured by an
8343 // outer lambda that is enclosed within a non-dependent context.
8344 CurrentLSI
->visitPotentialCaptures([&](ValueDecl
*Var
, Expr
*VarExpr
) {
8345 // If the variable is clearly identified as non-odr-used and the full
8346 // expression is not instantiation dependent, only then do we not
8347 // need to check enclosing lambda's for speculative captures.
8349 // Even though 'x' is not odr-used, it should be captured.
8351 // const int x = 10;
8352 // auto L = [=](auto a) {
8356 if (CurrentLSI
->isVariableExprMarkedAsNonODRUsed(VarExpr
) &&
8357 !IsFullExprInstantiationDependent
)
8360 VarDecl
*UnderlyingVar
= Var
->getPotentiallyDecomposedVarDecl();
8364 // If we have a capture-capable lambda for the variable, go ahead and
8365 // capture the variable in that lambda (and all its enclosing lambdas).
8366 if (const std::optional
<unsigned> Index
=
8367 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8368 S
.FunctionScopes
, Var
, S
))
8369 S
.MarkCaptureUsedInEnclosingContext(Var
, VarExpr
->getExprLoc(), *Index
);
8370 const bool IsVarNeverAConstantExpression
=
8371 VariableCanNeverBeAConstantExpression(UnderlyingVar
, S
.Context
);
8372 if (!IsFullExprInstantiationDependent
|| IsVarNeverAConstantExpression
) {
8373 // This full expression is not instantiation dependent or the variable
8374 // can not be used in a constant expression - which means
8375 // this variable must be odr-used here, so diagnose a
8376 // capture violation early, if the variable is un-captureable.
8377 // This is purely for diagnosing errors early. Otherwise, this
8378 // error would get diagnosed when the lambda becomes capture ready.
8379 QualType CaptureType
, DeclRefType
;
8380 SourceLocation ExprLoc
= VarExpr
->getExprLoc();
8381 if (S
.tryCaptureVariable(Var
, ExprLoc
, S
.TryCapture_Implicit
,
8382 /*EllipsisLoc*/ SourceLocation(),
8383 /*BuildAndDiagnose*/false, CaptureType
,
8384 DeclRefType
, nullptr)) {
8385 // We will never be able to capture this variable, and we need
8386 // to be able to in any and all instantiations, so diagnose it.
8387 S
.tryCaptureVariable(Var
, ExprLoc
, S
.TryCapture_Implicit
,
8388 /*EllipsisLoc*/ SourceLocation(),
8389 /*BuildAndDiagnose*/true, CaptureType
,
8390 DeclRefType
, nullptr);
8395 // Check if 'this' needs to be captured.
8396 if (CurrentLSI
->hasPotentialThisCapture()) {
8397 // If we have a capture-capable lambda for 'this', go ahead and capture
8398 // 'this' in that lambda (and all its enclosing lambdas).
8399 if (const std::optional
<unsigned> Index
=
8400 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8401 S
.FunctionScopes
, /*0 is 'this'*/ nullptr, S
)) {
8402 const unsigned FunctionScopeIndexOfCapturableLambda
= *Index
;
8403 S
.CheckCXXThisCapture(CurrentLSI
->PotentialThisCaptureLocation
,
8404 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8405 &FunctionScopeIndexOfCapturableLambda
);
8409 // Reset all the potential captures at the end of each full-expression.
8410 CurrentLSI
->clearPotentialCaptures();
8413 static ExprResult
attemptRecovery(Sema
&SemaRef
,
8414 const TypoCorrectionConsumer
&Consumer
,
8415 const TypoCorrection
&TC
) {
8416 LookupResult
R(SemaRef
, Consumer
.getLookupResult().getLookupNameInfo(),
8417 Consumer
.getLookupResult().getLookupKind());
8418 const CXXScopeSpec
*SS
= Consumer
.getSS();
8421 // Use an approprate CXXScopeSpec for building the expr.
8422 if (auto *NNS
= TC
.getCorrectionSpecifier())
8423 NewSS
.MakeTrivial(SemaRef
.Context
, NNS
, TC
.getCorrectionRange());
8424 else if (SS
&& !TC
.WillReplaceSpecifier())
8427 if (auto *ND
= TC
.getFoundDecl()) {
8428 R
.setLookupName(ND
->getDeclName());
8430 if (ND
->isCXXClassMember()) {
8431 // Figure out the correct naming class to add to the LookupResult.
8432 CXXRecordDecl
*Record
= nullptr;
8433 if (auto *NNS
= TC
.getCorrectionSpecifier())
8434 Record
= NNS
->getAsType()->getAsCXXRecordDecl();
8437 dyn_cast
<CXXRecordDecl
>(ND
->getDeclContext()->getRedeclContext());
8439 R
.setNamingClass(Record
);
8441 // Detect and handle the case where the decl might be an implicit
8443 bool MightBeImplicitMember
;
8444 if (!Consumer
.isAddressOfOperand())
8445 MightBeImplicitMember
= true;
8446 else if (!NewSS
.isEmpty())
8447 MightBeImplicitMember
= false;
8448 else if (R
.isOverloadedResult())
8449 MightBeImplicitMember
= false;
8450 else if (R
.isUnresolvableResult())
8451 MightBeImplicitMember
= true;
8453 MightBeImplicitMember
= isa
<FieldDecl
>(ND
) ||
8454 isa
<IndirectFieldDecl
>(ND
) ||
8455 isa
<MSPropertyDecl
>(ND
);
8457 if (MightBeImplicitMember
)
8458 return SemaRef
.BuildPossibleImplicitMemberExpr(
8459 NewSS
, /*TemplateKWLoc*/ SourceLocation(), R
,
8460 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8461 } else if (auto *Ivar
= dyn_cast
<ObjCIvarDecl
>(ND
)) {
8462 return SemaRef
.LookupInObjCMethod(R
, Consumer
.getScope(),
8463 Ivar
->getIdentifier());
8467 return SemaRef
.BuildDeclarationNameExpr(NewSS
, R
, /*NeedsADL*/ false,
8468 /*AcceptInvalidDecl*/ true);
8472 class FindTypoExprs
: public RecursiveASTVisitor
<FindTypoExprs
> {
8473 llvm::SmallSetVector
<TypoExpr
*, 2> &TypoExprs
;
8476 explicit FindTypoExprs(llvm::SmallSetVector
<TypoExpr
*, 2> &TypoExprs
)
8477 : TypoExprs(TypoExprs
) {}
8478 bool VisitTypoExpr(TypoExpr
*TE
) {
8479 TypoExprs
.insert(TE
);
8484 class TransformTypos
: public TreeTransform
<TransformTypos
> {
8485 typedef TreeTransform
<TransformTypos
> BaseTransform
;
8487 VarDecl
*InitDecl
; // A decl to avoid as a correction because it is in the
8488 // process of being initialized.
8489 llvm::function_ref
<ExprResult(Expr
*)> ExprFilter
;
8490 llvm::SmallSetVector
<TypoExpr
*, 2> TypoExprs
, AmbiguousTypoExprs
;
8491 llvm::SmallDenseMap
<TypoExpr
*, ExprResult
, 2> TransformCache
;
8492 llvm::SmallDenseMap
<OverloadExpr
*, Expr
*, 4> OverloadResolution
;
8494 /// Emit diagnostics for all of the TypoExprs encountered.
8496 /// If the TypoExprs were successfully corrected, then the diagnostics should
8497 /// suggest the corrections. Otherwise the diagnostics will not suggest
8498 /// anything (having been passed an empty TypoCorrection).
8500 /// If we've failed to correct due to ambiguous corrections, we need to
8501 /// be sure to pass empty corrections and replacements. Otherwise it's
8502 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8503 /// and we don't want to report those diagnostics.
8504 void EmitAllDiagnostics(bool IsAmbiguous
) {
8505 for (TypoExpr
*TE
: TypoExprs
) {
8506 auto &State
= SemaRef
.getTypoExprState(TE
);
8507 if (State
.DiagHandler
) {
8508 TypoCorrection TC
= IsAmbiguous
8509 ? TypoCorrection() : State
.Consumer
->getCurrentCorrection();
8510 ExprResult Replacement
= IsAmbiguous
? ExprError() : TransformCache
[TE
];
8512 // Extract the NamedDecl from the transformed TypoExpr and add it to the
8513 // TypoCorrection, replacing the existing decls. This ensures the right
8514 // NamedDecl is used in diagnostics e.g. in the case where overload
8515 // resolution was used to select one from several possible decls that
8516 // had been stored in the TypoCorrection.
8517 if (auto *ND
= getDeclFromExpr(
8518 Replacement
.isInvalid() ? nullptr : Replacement
.get()))
8519 TC
.setCorrectionDecl(ND
);
8521 State
.DiagHandler(TC
);
8523 SemaRef
.clearDelayedTypo(TE
);
8527 /// Try to advance the typo correction state of the first unfinished TypoExpr.
8528 /// We allow advancement of the correction stream by removing it from the
8529 /// TransformCache which allows `TransformTypoExpr` to advance during the
8530 /// next transformation attempt.
8532 /// Any substitution attempts for the previous TypoExprs (which must have been
8533 /// finished) will need to be retried since it's possible that they will now
8534 /// be invalid given the latest advancement.
8536 /// We need to be sure that we're making progress - it's possible that the
8537 /// tree is so malformed that the transform never makes it to the
8538 /// `TransformTypoExpr`.
8540 /// Returns true if there are any untried correction combinations.
8541 bool CheckAndAdvanceTypoExprCorrectionStreams() {
8542 for (auto *TE
: TypoExprs
) {
8543 auto &State
= SemaRef
.getTypoExprState(TE
);
8544 TransformCache
.erase(TE
);
8545 if (!State
.Consumer
->hasMadeAnyCorrectionProgress())
8547 if (!State
.Consumer
->finished())
8549 State
.Consumer
->resetCorrectionStream();
8554 NamedDecl
*getDeclFromExpr(Expr
*E
) {
8555 if (auto *OE
= dyn_cast_or_null
<OverloadExpr
>(E
))
8556 E
= OverloadResolution
[OE
];
8560 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
8561 return DRE
->getFoundDecl();
8562 if (auto *ME
= dyn_cast
<MemberExpr
>(E
))
8563 return ME
->getFoundDecl();
8564 // FIXME: Add any other expr types that could be seen by the delayed typo
8565 // correction TreeTransform for which the corresponding TypoCorrection could
8566 // contain multiple decls.
8570 ExprResult
TryTransform(Expr
*E
) {
8571 Sema::SFINAETrap
Trap(SemaRef
);
8572 ExprResult Res
= TransformExpr(E
);
8573 if (Trap
.hasErrorOccurred() || Res
.isInvalid())
8576 return ExprFilter(Res
.get());
8579 // Since correcting typos may intoduce new TypoExprs, this function
8580 // checks for new TypoExprs and recurses if it finds any. Note that it will
8581 // only succeed if it is able to correct all typos in the given expression.
8582 ExprResult
CheckForRecursiveTypos(ExprResult Res
, bool &IsAmbiguous
) {
8583 if (Res
.isInvalid()) {
8586 // Check to see if any new TypoExprs were created. If so, we need to recurse
8587 // to check their validity.
8588 Expr
*FixedExpr
= Res
.get();
8590 auto SavedTypoExprs
= std::move(TypoExprs
);
8591 auto SavedAmbiguousTypoExprs
= std::move(AmbiguousTypoExprs
);
8593 AmbiguousTypoExprs
.clear();
8595 FindTypoExprs(TypoExprs
).TraverseStmt(FixedExpr
);
8596 if (!TypoExprs
.empty()) {
8597 // Recurse to handle newly created TypoExprs. If we're not able to
8598 // handle them, discard these TypoExprs.
8599 ExprResult RecurResult
=
8600 RecursiveTransformLoop(FixedExpr
, IsAmbiguous
);
8601 if (RecurResult
.isInvalid()) {
8603 // Recursive corrections didn't work, wipe them away and don't add
8604 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8605 // since we don't want to clear them twice. Note: it's possible the
8606 // TypoExprs were created recursively and thus won't be in our
8607 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8608 auto &SemaTypoExprs
= SemaRef
.TypoExprs
;
8609 for (auto *TE
: TypoExprs
) {
8610 TransformCache
.erase(TE
);
8611 SemaRef
.clearDelayedTypo(TE
);
8613 auto SI
= find(SemaTypoExprs
, TE
);
8614 if (SI
!= SemaTypoExprs
.end()) {
8615 SemaTypoExprs
.erase(SI
);
8619 // TypoExpr is valid: add newly created TypoExprs since we were
8620 // able to correct them.
8622 SavedTypoExprs
.set_union(TypoExprs
);
8626 TypoExprs
= std::move(SavedTypoExprs
);
8627 AmbiguousTypoExprs
= std::move(SavedAmbiguousTypoExprs
);
8632 // Try to transform the given expression, looping through the correction
8633 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8635 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8636 // true and this method immediately will return an `ExprError`.
8637 ExprResult
RecursiveTransformLoop(Expr
*E
, bool &IsAmbiguous
) {
8639 auto SavedTypoExprs
= std::move(SemaRef
.TypoExprs
);
8640 SemaRef
.TypoExprs
.clear();
8643 Res
= CheckForRecursiveTypos(TryTransform(E
), IsAmbiguous
);
8645 // Recursion encountered an ambiguous correction. This means that our
8646 // correction itself is ambiguous, so stop now.
8650 // If the transform is still valid after checking for any new typos,
8652 if (!Res
.isInvalid())
8655 // The transform was invalid, see if we have any TypoExprs with untried
8656 // correction candidates.
8657 if (!CheckAndAdvanceTypoExprCorrectionStreams())
8661 // If we found a valid result, double check to make sure it's not ambiguous.
8662 if (!IsAmbiguous
&& !Res
.isInvalid() && !AmbiguousTypoExprs
.empty()) {
8663 auto SavedTransformCache
=
8664 llvm::SmallDenseMap
<TypoExpr
*, ExprResult
, 2>(TransformCache
);
8666 // Ensure none of the TypoExprs have multiple typo correction candidates
8667 // with the same edit length that pass all the checks and filters.
8668 while (!AmbiguousTypoExprs
.empty()) {
8669 auto TE
= AmbiguousTypoExprs
.back();
8671 // TryTransform itself can create new Typos, adding them to the TypoExpr map
8672 // and invalidating our TypoExprState, so always fetch it instead of storing.
8673 SemaRef
.getTypoExprState(TE
).Consumer
->saveCurrentPosition();
8675 TypoCorrection TC
= SemaRef
.getTypoExprState(TE
).Consumer
->peekNextCorrection();
8676 TypoCorrection Next
;
8678 // Fetch the next correction by erasing the typo from the cache and calling
8679 // `TryTransform` which will iterate through corrections in
8680 // `TransformTypoExpr`.
8681 TransformCache
.erase(TE
);
8682 ExprResult AmbigRes
= CheckForRecursiveTypos(TryTransform(E
), IsAmbiguous
);
8684 if (!AmbigRes
.isInvalid() || IsAmbiguous
) {
8685 SemaRef
.getTypoExprState(TE
).Consumer
->resetCorrectionStream();
8686 SavedTransformCache
.erase(TE
);
8691 } while ((Next
= SemaRef
.getTypoExprState(TE
).Consumer
->peekNextCorrection()) &&
8692 Next
.getEditDistance(false) == TC
.getEditDistance(false));
8697 AmbiguousTypoExprs
.remove(TE
);
8698 SemaRef
.getTypoExprState(TE
).Consumer
->restoreSavedPosition();
8699 TransformCache
[TE
] = SavedTransformCache
[TE
];
8701 TransformCache
= std::move(SavedTransformCache
);
8704 // Wipe away any newly created TypoExprs that we don't know about. Since we
8705 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8706 // possible if a `TypoExpr` is created during a transformation but then
8707 // fails before we can discover it.
8708 auto &SemaTypoExprs
= SemaRef
.TypoExprs
;
8709 for (auto Iterator
= SemaTypoExprs
.begin(); Iterator
!= SemaTypoExprs
.end();) {
8710 auto TE
= *Iterator
;
8711 auto FI
= find(TypoExprs
, TE
);
8712 if (FI
!= TypoExprs
.end()) {
8716 SemaRef
.clearDelayedTypo(TE
);
8717 Iterator
= SemaTypoExprs
.erase(Iterator
);
8719 SemaRef
.TypoExprs
= std::move(SavedTypoExprs
);
8725 TransformTypos(Sema
&SemaRef
, VarDecl
*InitDecl
, llvm::function_ref
<ExprResult(Expr
*)> Filter
)
8726 : BaseTransform(SemaRef
), InitDecl(InitDecl
), ExprFilter(Filter
) {}
8728 ExprResult
RebuildCallExpr(Expr
*Callee
, SourceLocation LParenLoc
,
8730 SourceLocation RParenLoc
,
8731 Expr
*ExecConfig
= nullptr) {
8732 auto Result
= BaseTransform::RebuildCallExpr(Callee
, LParenLoc
, Args
,
8733 RParenLoc
, ExecConfig
);
8734 if (auto *OE
= dyn_cast
<OverloadExpr
>(Callee
)) {
8735 if (Result
.isUsable()) {
8736 Expr
*ResultCall
= Result
.get();
8737 if (auto *BE
= dyn_cast
<CXXBindTemporaryExpr
>(ResultCall
))
8738 ResultCall
= BE
->getSubExpr();
8739 if (auto *CE
= dyn_cast
<CallExpr
>(ResultCall
))
8740 OverloadResolution
[OE
] = CE
->getCallee();
8746 ExprResult
TransformLambdaExpr(LambdaExpr
*E
) { return Owned(E
); }
8748 ExprResult
TransformBlockExpr(BlockExpr
*E
) { return Owned(E
); }
8750 ExprResult
Transform(Expr
*E
) {
8751 bool IsAmbiguous
= false;
8752 ExprResult Res
= RecursiveTransformLoop(E
, IsAmbiguous
);
8754 if (!Res
.isUsable())
8755 FindTypoExprs(TypoExprs
).TraverseStmt(E
);
8757 EmitAllDiagnostics(IsAmbiguous
);
8762 ExprResult
TransformTypoExpr(TypoExpr
*E
) {
8763 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8764 // cached transformation result if there is one and the TypoExpr isn't the
8765 // first one that was encountered.
8766 auto &CacheEntry
= TransformCache
[E
];
8767 if (!TypoExprs
.insert(E
) && !CacheEntry
.isUnset()) {
8771 auto &State
= SemaRef
.getTypoExprState(E
);
8772 assert(State
.Consumer
&& "Cannot transform a cleared TypoExpr");
8774 // For the first TypoExpr and an uncached TypoExpr, find the next likely
8775 // typo correction and return it.
8776 while (TypoCorrection TC
= State
.Consumer
->getNextCorrection()) {
8777 if (InitDecl
&& TC
.getFoundDecl() == InitDecl
)
8779 // FIXME: If we would typo-correct to an invalid declaration, it's
8780 // probably best to just suppress all errors from this typo correction.
8781 ExprResult NE
= State
.RecoveryHandler
?
8782 State
.RecoveryHandler(SemaRef
, E
, TC
) :
8783 attemptRecovery(SemaRef
, *State
.Consumer
, TC
);
8784 if (!NE
.isInvalid()) {
8785 // Check whether there may be a second viable correction with the same
8786 // edit distance; if so, remember this TypoExpr may have an ambiguous
8787 // correction so it can be more thoroughly vetted later.
8788 TypoCorrection Next
;
8789 if ((Next
= State
.Consumer
->peekNextCorrection()) &&
8790 Next
.getEditDistance(false) == TC
.getEditDistance(false)) {
8791 AmbiguousTypoExprs
.insert(E
);
8793 AmbiguousTypoExprs
.remove(E
);
8795 assert(!NE
.isUnset() &&
8796 "Typo was transformed into a valid-but-null ExprResult");
8797 return CacheEntry
= NE
;
8800 return CacheEntry
= ExprError();
8806 Sema::CorrectDelayedTyposInExpr(Expr
*E
, VarDecl
*InitDecl
,
8807 bool RecoverUncorrectedTypos
,
8808 llvm::function_ref
<ExprResult(Expr
*)> Filter
) {
8809 // If the current evaluation context indicates there are uncorrected typos
8810 // and the current expression isn't guaranteed to not have typos, try to
8811 // resolve any TypoExpr nodes that might be in the expression.
8812 if (E
&& !ExprEvalContexts
.empty() && ExprEvalContexts
.back().NumTypos
&&
8813 (E
->isTypeDependent() || E
->isValueDependent() ||
8814 E
->isInstantiationDependent())) {
8815 auto TyposResolved
= DelayedTypos
.size();
8816 auto Result
= TransformTypos(*this, InitDecl
, Filter
).Transform(E
);
8817 TyposResolved
-= DelayedTypos
.size();
8818 if (Result
.isInvalid() || Result
.get() != E
) {
8819 ExprEvalContexts
.back().NumTypos
-= TyposResolved
;
8820 if (Result
.isInvalid() && RecoverUncorrectedTypos
) {
8821 struct TyposReplace
: TreeTransform
<TyposReplace
> {
8822 TyposReplace(Sema
&SemaRef
) : TreeTransform(SemaRef
) {}
8823 ExprResult
TransformTypoExpr(clang::TypoExpr
*E
) {
8824 return this->SemaRef
.CreateRecoveryExpr(E
->getBeginLoc(),
8825 E
->getEndLoc(), {});
8828 return TT
.TransformExpr(E
);
8832 assert(TyposResolved
== 0 && "Corrected typo but got same Expr back?");
8837 ExprResult
Sema::ActOnFinishFullExpr(Expr
*FE
, SourceLocation CC
,
8838 bool DiscardedValue
, bool IsConstexpr
,
8839 bool IsTemplateArgument
) {
8840 ExprResult FullExpr
= FE
;
8842 if (!FullExpr
.get())
8845 if (!IsTemplateArgument
&& DiagnoseUnexpandedParameterPack(FullExpr
.get()))
8848 if (DiscardedValue
) {
8849 // Top-level expressions default to 'id' when we're in a debugger.
8850 if (getLangOpts().DebuggerCastResultToId
&&
8851 FullExpr
.get()->getType() == Context
.UnknownAnyTy
) {
8852 FullExpr
= forceUnknownAnyToType(FullExpr
.get(), Context
.getObjCIdType());
8853 if (FullExpr
.isInvalid())
8857 FullExpr
= CheckPlaceholderExpr(FullExpr
.get());
8858 if (FullExpr
.isInvalid())
8861 FullExpr
= IgnoredValueConversions(FullExpr
.get());
8862 if (FullExpr
.isInvalid())
8865 DiagnoseUnusedExprResult(FullExpr
.get(), diag::warn_unused_expr
);
8868 FullExpr
= CorrectDelayedTyposInExpr(FullExpr
.get(), /*InitDecl=*/nullptr,
8869 /*RecoverUncorrectedTypos=*/true);
8870 if (FullExpr
.isInvalid())
8873 CheckCompletedExpr(FullExpr
.get(), CC
, IsConstexpr
);
8875 // At the end of this full expression (which could be a deeply nested
8876 // lambda), if there is a potential capture within the nested lambda,
8877 // have the outer capture-able lambda try and capture it.
8878 // Consider the following code:
8879 // void f(int, int);
8880 // void f(const int&, double);
8882 // const int x = 10, y = 20;
8883 // auto L = [=](auto a) {
8884 // auto M = [=](auto b) {
8885 // f(x, b); <-- requires x to be captured by L and M
8886 // f(y, a); <-- requires y to be captured by L, but not all Ms
8891 // FIXME: Also consider what happens for something like this that involves
8892 // the gnu-extension statement-expressions or even lambda-init-captures:
8895 // auto L = [&](auto a) {
8896 // +n + ({ 0; a; });
8900 // Here, we see +n, and then the full-expression 0; ends, so we don't
8901 // capture n (and instead remove it from our list of potential captures),
8902 // and then the full-expression +n + ({ 0; }); ends, but it's too late
8903 // for us to see that we need to capture n after all.
8905 LambdaScopeInfo
*const CurrentLSI
=
8906 getCurLambda(/*IgnoreCapturedRegions=*/true);
8907 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8908 // even if CurContext is not a lambda call operator. Refer to that Bug Report
8909 // for an example of the code that might cause this asynchrony.
8910 // By ensuring we are in the context of a lambda's call operator
8911 // we can fix the bug (we only need to check whether we need to capture
8912 // if we are within a lambda's body); but per the comments in that
8913 // PR, a proper fix would entail :
8914 // "Alternative suggestion:
8915 // - Add to Sema an integer holding the smallest (outermost) scope
8916 // index that we are *lexically* within, and save/restore/set to
8917 // FunctionScopes.size() in InstantiatingTemplate's
8918 // constructor/destructor.
8919 // - Teach the handful of places that iterate over FunctionScopes to
8920 // stop at the outermost enclosing lexical scope."
8921 DeclContext
*DC
= CurContext
;
8922 while (DC
&& isa
<CapturedDecl
>(DC
))
8923 DC
= DC
->getParent();
8924 const bool IsInLambdaDeclContext
= isLambdaCallOperator(DC
);
8925 if (IsInLambdaDeclContext
&& CurrentLSI
&&
8926 CurrentLSI
->hasPotentialCaptures() && !FullExpr
.isInvalid())
8927 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE
, CurrentLSI
,
8929 return MaybeCreateExprWithCleanups(FullExpr
);
8932 StmtResult
Sema::ActOnFinishFullStmt(Stmt
*FullStmt
) {
8933 if (!FullStmt
) return StmtError();
8935 return MaybeCreateStmtWithCleanups(FullStmt
);
8938 Sema::IfExistsResult
8939 Sema::CheckMicrosoftIfExistsSymbol(Scope
*S
,
8941 const DeclarationNameInfo
&TargetNameInfo
) {
8942 DeclarationName TargetName
= TargetNameInfo
.getName();
8944 return IER_DoesNotExist
;
8946 // If the name itself is dependent, then the result is dependent.
8947 if (TargetName
.isDependentName())
8948 return IER_Dependent
;
8950 // Do the redeclaration lookup in the current scope.
8951 LookupResult
R(*this, TargetNameInfo
, Sema::LookupAnyName
,
8952 Sema::NotForRedeclaration
);
8953 LookupParsedName(R
, S
, &SS
);
8954 R
.suppressDiagnostics();
8956 switch (R
.getResultKind()) {
8957 case LookupResult::Found
:
8958 case LookupResult::FoundOverloaded
:
8959 case LookupResult::FoundUnresolvedValue
:
8960 case LookupResult::Ambiguous
:
8963 case LookupResult::NotFound
:
8964 return IER_DoesNotExist
;
8966 case LookupResult::NotFoundInCurrentInstantiation
:
8967 return IER_Dependent
;
8970 llvm_unreachable("Invalid LookupResult Kind!");
8973 Sema::IfExistsResult
8974 Sema::CheckMicrosoftIfExistsSymbol(Scope
*S
, SourceLocation KeywordLoc
,
8975 bool IsIfExists
, CXXScopeSpec
&SS
,
8976 UnqualifiedId
&Name
) {
8977 DeclarationNameInfo TargetNameInfo
= GetNameFromUnqualifiedId(Name
);
8979 // Check for an unexpanded parameter pack.
8980 auto UPPC
= IsIfExists
? UPPC_IfExists
: UPPC_IfNotExists
;
8981 if (DiagnoseUnexpandedParameterPack(SS
, UPPC
) ||
8982 DiagnoseUnexpandedParameterPack(TargetNameInfo
, UPPC
))
8985 return CheckMicrosoftIfExistsSymbol(S
, SS
, TargetNameInfo
);
8988 concepts::Requirement
*Sema::ActOnSimpleRequirement(Expr
*E
) {
8989 return BuildExprRequirement(E
, /*IsSimple=*/true,
8990 /*NoexceptLoc=*/SourceLocation(),
8991 /*ReturnTypeRequirement=*/{});
8994 concepts::Requirement
*
8995 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc
, CXXScopeSpec
&SS
,
8996 SourceLocation NameLoc
, IdentifierInfo
*TypeName
,
8997 TemplateIdAnnotation
*TemplateId
) {
8998 assert(((!TypeName
&& TemplateId
) || (TypeName
&& !TemplateId
)) &&
8999 "Exactly one of TypeName and TemplateId must be specified.");
9000 TypeSourceInfo
*TSI
= nullptr;
9003 CheckTypenameType(ElaboratedTypeKeyword::Typename
, TypenameKWLoc
,
9004 SS
.getWithLocInContext(Context
), *TypeName
, NameLoc
,
9005 &TSI
, /*DeducedTSTContext=*/false);
9009 ASTTemplateArgsPtr
ArgsPtr(TemplateId
->getTemplateArgs(),
9010 TemplateId
->NumArgs
);
9011 TypeResult T
= ActOnTypenameType(CurScope
, TypenameKWLoc
, SS
,
9012 TemplateId
->TemplateKWLoc
,
9013 TemplateId
->Template
, TemplateId
->Name
,
9014 TemplateId
->TemplateNameLoc
,
9015 TemplateId
->LAngleLoc
, ArgsPtr
,
9016 TemplateId
->RAngleLoc
);
9019 if (GetTypeFromParser(T
.get(), &TSI
).isNull())
9022 return BuildTypeRequirement(TSI
);
9025 concepts::Requirement
*
9026 Sema::ActOnCompoundRequirement(Expr
*E
, SourceLocation NoexceptLoc
) {
9027 return BuildExprRequirement(E
, /*IsSimple=*/false, NoexceptLoc
,
9028 /*ReturnTypeRequirement=*/{});
9031 concepts::Requirement
*
9032 Sema::ActOnCompoundRequirement(
9033 Expr
*E
, SourceLocation NoexceptLoc
, CXXScopeSpec
&SS
,
9034 TemplateIdAnnotation
*TypeConstraint
, unsigned Depth
) {
9035 // C++2a [expr.prim.req.compound] p1.3.3
9036 // [..] the expression is deduced against an invented function template
9037 // F [...] F is a void function template with a single type template
9038 // parameter T declared with the constrained-parameter. Form a new
9039 // cv-qualifier-seq cv by taking the union of const and volatile specifiers
9040 // around the constrained-parameter. F has a single parameter whose
9041 // type-specifier is cv T followed by the abstract-declarator. [...]
9043 // The cv part is done in the calling function - we get the concept with
9044 // arguments and the abstract declarator with the correct CV qualification and
9045 // have to synthesize T and the single parameter of F.
9046 auto &II
= Context
.Idents
.get("expr-type");
9047 auto *TParam
= TemplateTypeParmDecl::Create(Context
, CurContext
,
9049 SourceLocation(), Depth
,
9052 /*ParameterPack=*/false,
9053 /*HasTypeConstraint=*/true);
9055 if (BuildTypeConstraint(SS
, TypeConstraint
, TParam
,
9056 /*EllipsisLoc=*/SourceLocation(),
9057 /*AllowUnexpandedPack=*/true))
9058 // Just produce a requirement with no type requirements.
9059 return BuildExprRequirement(E
, /*IsSimple=*/false, NoexceptLoc
, {});
9061 auto *TPL
= TemplateParameterList::Create(Context
, SourceLocation(),
9063 ArrayRef
<NamedDecl
*>(TParam
),
9065 /*RequiresClause=*/nullptr);
9066 return BuildExprRequirement(
9067 E
, /*IsSimple=*/false, NoexceptLoc
,
9068 concepts::ExprRequirement::ReturnTypeRequirement(TPL
));
9071 concepts::ExprRequirement
*
9072 Sema::BuildExprRequirement(
9073 Expr
*E
, bool IsSimple
, SourceLocation NoexceptLoc
,
9074 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement
) {
9075 auto Status
= concepts::ExprRequirement::SS_Satisfied
;
9076 ConceptSpecializationExpr
*SubstitutedConstraintExpr
= nullptr;
9077 if (E
->isInstantiationDependent() || E
->getType()->isPlaceholderType() ||
9078 ReturnTypeRequirement
.isDependent())
9079 Status
= concepts::ExprRequirement::SS_Dependent
;
9080 else if (NoexceptLoc
.isValid() && canThrow(E
) == CanThrowResult::CT_Can
)
9081 Status
= concepts::ExprRequirement::SS_NoexceptNotMet
;
9082 else if (ReturnTypeRequirement
.isSubstitutionFailure())
9083 Status
= concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure
;
9084 else if (ReturnTypeRequirement
.isTypeConstraint()) {
9085 // C++2a [expr.prim.req]p1.3.3
9086 // The immediately-declared constraint ([temp]) of decltype((E)) shall
9088 TemplateParameterList
*TPL
=
9089 ReturnTypeRequirement
.getTypeConstraintTemplateParameterList();
9090 QualType MatchedType
=
9091 Context
.getReferenceQualifiedType(E
).getCanonicalType();
9092 llvm::SmallVector
<TemplateArgument
, 1> Args
;
9093 Args
.push_back(TemplateArgument(MatchedType
));
9095 auto *Param
= cast
<TemplateTypeParmDecl
>(TPL
->getParam(0));
9097 TemplateArgumentList
TAL(TemplateArgumentList::OnStack
, Args
);
9098 MultiLevelTemplateArgumentList
MLTAL(Param
, TAL
.asArray(),
9100 MLTAL
.addOuterRetainedLevels(TPL
->getDepth());
9101 const TypeConstraint
*TC
= Param
->getTypeConstraint();
9102 assert(TC
&& "Type Constraint cannot be null here");
9103 auto *IDC
= TC
->getImmediatelyDeclaredConstraint();
9104 assert(IDC
&& "ImmediatelyDeclaredConstraint can't be null here.");
9105 ExprResult Constraint
= SubstExpr(IDC
, MLTAL
);
9106 if (Constraint
.isInvalid()) {
9107 return new (Context
) concepts::ExprRequirement(
9108 concepts::createSubstDiagAt(*this, IDC
->getExprLoc(),
9109 [&](llvm::raw_ostream
&OS
) {
9110 IDC
->printPretty(OS
, /*Helper=*/nullptr,
9111 getPrintingPolicy());
9113 IsSimple
, NoexceptLoc
, ReturnTypeRequirement
);
9115 SubstitutedConstraintExpr
=
9116 cast
<ConceptSpecializationExpr
>(Constraint
.get());
9117 if (!SubstitutedConstraintExpr
->isSatisfied())
9118 Status
= concepts::ExprRequirement::SS_ConstraintsNotSatisfied
;
9120 return new (Context
) concepts::ExprRequirement(E
, IsSimple
, NoexceptLoc
,
9121 ReturnTypeRequirement
, Status
,
9122 SubstitutedConstraintExpr
);
9125 concepts::ExprRequirement
*
9126 Sema::BuildExprRequirement(
9127 concepts::Requirement::SubstitutionDiagnostic
*ExprSubstitutionDiagnostic
,
9128 bool IsSimple
, SourceLocation NoexceptLoc
,
9129 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement
) {
9130 return new (Context
) concepts::ExprRequirement(ExprSubstitutionDiagnostic
,
9131 IsSimple
, NoexceptLoc
,
9132 ReturnTypeRequirement
);
9135 concepts::TypeRequirement
*
9136 Sema::BuildTypeRequirement(TypeSourceInfo
*Type
) {
9137 return new (Context
) concepts::TypeRequirement(Type
);
9140 concepts::TypeRequirement
*
9141 Sema::BuildTypeRequirement(
9142 concepts::Requirement::SubstitutionDiagnostic
*SubstDiag
) {
9143 return new (Context
) concepts::TypeRequirement(SubstDiag
);
9146 concepts::Requirement
*Sema::ActOnNestedRequirement(Expr
*Constraint
) {
9147 return BuildNestedRequirement(Constraint
);
9150 concepts::NestedRequirement
*
9151 Sema::BuildNestedRequirement(Expr
*Constraint
) {
9152 ConstraintSatisfaction Satisfaction
;
9153 if (!Constraint
->isInstantiationDependent() &&
9154 CheckConstraintSatisfaction(nullptr, {Constraint
}, /*TemplateArgs=*/{},
9155 Constraint
->getSourceRange(), Satisfaction
))
9157 return new (Context
) concepts::NestedRequirement(Context
, Constraint
,
9161 concepts::NestedRequirement
*
9162 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity
,
9163 const ASTConstraintSatisfaction
&Satisfaction
) {
9164 return new (Context
) concepts::NestedRequirement(
9165 InvalidConstraintEntity
,
9166 ASTConstraintSatisfaction::Rebuild(Context
, Satisfaction
));
9169 RequiresExprBodyDecl
*
9170 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc
,
9171 ArrayRef
<ParmVarDecl
*> LocalParameters
,
9175 RequiresExprBodyDecl
*Body
= RequiresExprBodyDecl::Create(Context
, CurContext
,
9178 PushDeclContext(BodyScope
, Body
);
9180 for (ParmVarDecl
*Param
: LocalParameters
) {
9181 if (Param
->hasDefaultArg())
9182 // C++2a [expr.prim.req] p4
9183 // [...] A local parameter of a requires-expression shall not have a
9184 // default argument. [...]
9185 Diag(Param
->getDefaultArgRange().getBegin(),
9186 diag::err_requires_expr_local_parameter_default_argument
);
9187 // Ignore default argument and move on
9189 Param
->setDeclContext(Body
);
9190 // If this has an identifier, add it to the scope stack.
9191 if (Param
->getIdentifier()) {
9192 CheckShadow(BodyScope
, Param
);
9193 PushOnScopeChains(Param
, BodyScope
);
9199 void Sema::ActOnFinishRequiresExpr() {
9200 assert(CurContext
&& "DeclContext imbalance!");
9201 CurContext
= CurContext
->getLexicalParent();
9202 assert(CurContext
&& "Popped translation unit!");
9205 ExprResult
Sema::ActOnRequiresExpr(
9206 SourceLocation RequiresKWLoc
, RequiresExprBodyDecl
*Body
,
9207 SourceLocation LParenLoc
, ArrayRef
<ParmVarDecl
*> LocalParameters
,
9208 SourceLocation RParenLoc
, ArrayRef
<concepts::Requirement
*> Requirements
,
9209 SourceLocation ClosingBraceLoc
) {
9210 auto *RE
= RequiresExpr::Create(Context
, RequiresKWLoc
, Body
, LParenLoc
,
9211 LocalParameters
, RParenLoc
, Requirements
,
9213 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE
))