[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / lib / Sema / SemaStmt.cpp
blob63348d27a8c94a1b4a24cb6fe4c4a4607a1655f9
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for statements.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/ASTDiagnostic.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/IgnoreExpr.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/Initialization.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Ownership.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/StringExtras.h"
44 using namespace clang;
45 using namespace sema;
47 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
48 if (FE.isInvalid())
49 return StmtError();
51 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
52 if (FE.isInvalid())
53 return StmtError();
55 // C99 6.8.3p2: The expression in an expression statement is evaluated as a
56 // void expression for its side effects. Conversion to void allows any
57 // operand, even incomplete types.
59 // Same thing in for stmt first clause (when expr) and third clause.
60 return StmtResult(FE.getAs<Stmt>());
64 StmtResult Sema::ActOnExprStmtError() {
65 DiscardCleanupsInEvaluationContext();
66 return StmtError();
69 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
70 bool HasLeadingEmptyMacro) {
71 return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
74 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
75 SourceLocation EndLoc) {
76 DeclGroupRef DG = dg.get();
78 // If we have an invalid decl, just return an error.
79 if (DG.isNull()) return StmtError();
81 return new (Context) DeclStmt(DG, StartLoc, EndLoc);
84 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
85 DeclGroupRef DG = dg.get();
87 // If we don't have a declaration, or we have an invalid declaration,
88 // just return.
89 if (DG.isNull() || !DG.isSingleDecl())
90 return;
92 Decl *decl = DG.getSingleDecl();
93 if (!decl || decl->isInvalidDecl())
94 return;
96 // Only variable declarations are permitted.
97 VarDecl *var = dyn_cast<VarDecl>(decl);
98 if (!var) {
99 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
100 decl->setInvalidDecl();
101 return;
104 // foreach variables are never actually initialized in the way that
105 // the parser came up with.
106 var->setInit(nullptr);
108 // In ARC, we don't need to retain the iteration variable of a fast
109 // enumeration loop. Rather than actually trying to catch that
110 // during declaration processing, we remove the consequences here.
111 if (getLangOpts().ObjCAutoRefCount) {
112 QualType type = var->getType();
114 // Only do this if we inferred the lifetime. Inferred lifetime
115 // will show up as a local qualifier because explicit lifetime
116 // should have shown up as an AttributedType instead.
117 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
118 // Add 'const' and mark the variable as pseudo-strong.
119 var->setType(type.withConst());
120 var->setARCPseudoStrong(true);
125 /// Diagnose unused comparisons, both builtin and overloaded operators.
126 /// For '==' and '!=', suggest fixits for '=' or '|='.
128 /// Adding a cast to void (or other expression wrappers) will prevent the
129 /// warning from firing.
130 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
131 SourceLocation Loc;
132 bool CanAssign;
133 enum { Equality, Inequality, Relational, ThreeWay } Kind;
135 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
136 if (!Op->isComparisonOp())
137 return false;
139 if (Op->getOpcode() == BO_EQ)
140 Kind = Equality;
141 else if (Op->getOpcode() == BO_NE)
142 Kind = Inequality;
143 else if (Op->getOpcode() == BO_Cmp)
144 Kind = ThreeWay;
145 else {
146 assert(Op->isRelationalOp());
147 Kind = Relational;
149 Loc = Op->getOperatorLoc();
150 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
151 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
152 switch (Op->getOperator()) {
153 case OO_EqualEqual:
154 Kind = Equality;
155 break;
156 case OO_ExclaimEqual:
157 Kind = Inequality;
158 break;
159 case OO_Less:
160 case OO_Greater:
161 case OO_GreaterEqual:
162 case OO_LessEqual:
163 Kind = Relational;
164 break;
165 case OO_Spaceship:
166 Kind = ThreeWay;
167 break;
168 default:
169 return false;
172 Loc = Op->getOperatorLoc();
173 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
174 } else {
175 // Not a typo-prone comparison.
176 return false;
179 // Suppress warnings when the operator, suspicious as it may be, comes from
180 // a macro expansion.
181 if (S.SourceMgr.isMacroBodyExpansion(Loc))
182 return false;
184 S.Diag(Loc, diag::warn_unused_comparison)
185 << (unsigned)Kind << E->getSourceRange();
187 // If the LHS is a plausible entity to assign to, provide a fixit hint to
188 // correct common typos.
189 if (CanAssign) {
190 if (Kind == Inequality)
191 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
192 << FixItHint::CreateReplacement(Loc, "|=");
193 else if (Kind == Equality)
194 S.Diag(Loc, diag::note_equality_comparison_to_assign)
195 << FixItHint::CreateReplacement(Loc, "=");
198 return true;
201 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
202 SourceLocation Loc, SourceRange R1,
203 SourceRange R2, bool IsCtor) {
204 if (!A)
205 return false;
206 StringRef Msg = A->getMessage();
208 if (Msg.empty()) {
209 if (IsCtor)
210 return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
211 return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
214 if (IsCtor)
215 return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
216 << R2;
217 return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
220 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) {
221 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
222 return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID);
224 const Expr *E = dyn_cast_or_null<Expr>(S);
225 if (!E)
226 return;
228 // If we are in an unevaluated expression context, then there can be no unused
229 // results because the results aren't expected to be used in the first place.
230 if (isUnevaluatedContext())
231 return;
233 SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
234 // In most cases, we don't want to warn if the expression is written in a
235 // macro body, or if the macro comes from a system header. If the offending
236 // expression is a call to a function with the warn_unused_result attribute,
237 // we warn no matter the location. Because of the order in which the various
238 // checks need to happen, we factor out the macro-related test here.
239 bool ShouldSuppress =
240 SourceMgr.isMacroBodyExpansion(ExprLoc) ||
241 SourceMgr.isInSystemMacro(ExprLoc);
243 const Expr *WarnExpr;
244 SourceLocation Loc;
245 SourceRange R1, R2;
246 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
247 return;
249 // If this is a GNU statement expression expanded from a macro, it is probably
250 // unused because it is a function-like macro that can be used as either an
251 // expression or statement. Don't warn, because it is almost certainly a
252 // false positive.
253 if (isa<StmtExpr>(E) && Loc.isMacroID())
254 return;
256 // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
257 // That macro is frequently used to suppress "unused parameter" warnings,
258 // but its implementation makes clang's -Wunused-value fire. Prevent this.
259 if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
260 SourceLocation SpellLoc = Loc;
261 if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
262 return;
265 // Okay, we have an unused result. Depending on what the base expression is,
266 // we might want to make a more specific diagnostic. Check for one of these
267 // cases now.
268 if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
269 E = Temps->getSubExpr();
270 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
271 E = TempExpr->getSubExpr();
273 if (DiagnoseUnusedComparison(*this, E))
274 return;
276 E = WarnExpr;
277 if (const auto *Cast = dyn_cast<CastExpr>(E))
278 if (Cast->getCastKind() == CK_NoOp ||
279 Cast->getCastKind() == CK_ConstructorConversion)
280 E = Cast->getSubExpr()->IgnoreImpCasts();
282 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
283 if (E->getType()->isVoidType())
284 return;
286 if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
287 CE->getUnusedResultAttr(Context)),
288 Loc, R1, R2, /*isCtor=*/false))
289 return;
291 // If the callee has attribute pure, const, or warn_unused_result, warn with
292 // a more specific message to make it clear what is happening. If the call
293 // is written in a macro body, only warn if it has the warn_unused_result
294 // attribute.
295 if (const Decl *FD = CE->getCalleeDecl()) {
296 if (ShouldSuppress)
297 return;
298 if (FD->hasAttr<PureAttr>()) {
299 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
300 return;
302 if (FD->hasAttr<ConstAttr>()) {
303 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
304 return;
307 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
308 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
309 const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
310 A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
311 if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
312 return;
314 } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
315 if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
317 if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
318 R2, /*isCtor=*/false))
319 return;
321 } else if (ShouldSuppress)
322 return;
324 E = WarnExpr;
325 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
326 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
327 Diag(Loc, diag::err_arc_unused_init_message) << R1;
328 return;
330 const ObjCMethodDecl *MD = ME->getMethodDecl();
331 if (MD) {
332 if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
333 R2, /*isCtor=*/false))
334 return;
336 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
337 const Expr *Source = POE->getSyntacticForm();
338 // Handle the actually selected call of an OpenMP specialized call.
339 if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
340 POE->getNumSemanticExprs() == 1 &&
341 isa<CallExpr>(POE->getSemanticExpr(0)))
342 return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID);
343 if (isa<ObjCSubscriptRefExpr>(Source))
344 DiagID = diag::warn_unused_container_subscript_expr;
345 else if (isa<ObjCPropertyRefExpr>(Source))
346 DiagID = diag::warn_unused_property_expr;
347 } else if (const CXXFunctionalCastExpr *FC
348 = dyn_cast<CXXFunctionalCastExpr>(E)) {
349 const Expr *E = FC->getSubExpr();
350 if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
351 E = TE->getSubExpr();
352 if (isa<CXXTemporaryObjectExpr>(E))
353 return;
354 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
355 if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
356 if (!RD->getAttr<WarnUnusedAttr>())
357 return;
359 // Diagnose "(void*) blah" as a typo for "(void) blah".
360 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
361 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
362 QualType T = TI->getType();
364 // We really do want to use the non-canonical type here.
365 if (T == Context.VoidPtrTy) {
366 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
368 Diag(Loc, diag::warn_unused_voidptr)
369 << FixItHint::CreateRemoval(TL.getStarLoc());
370 return;
374 // Tell the user to assign it into a variable to force a volatile load if this
375 // isn't an array.
376 if (E->isGLValue() && E->getType().isVolatileQualified() &&
377 !E->getType()->isArrayType()) {
378 Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
379 return;
382 // Do not diagnose use of a comma operator in a SFINAE context because the
383 // type of the left operand could be used for SFINAE, so technically it is
384 // *used*.
385 if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext())
386 DiagIfReachable(Loc, S ? llvm::ArrayRef(S) : std::nullopt,
387 PDiag(DiagID) << R1 << R2);
390 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
391 PushCompoundScope(IsStmtExpr);
394 void Sema::ActOnAfterCompoundStatementLeadingPragmas() {
395 if (getCurFPFeatures().isFPConstrained()) {
396 FunctionScopeInfo *FSI = getCurFunction();
397 assert(FSI);
398 FSI->setUsesFPIntrin();
402 void Sema::ActOnFinishOfCompoundStmt() {
403 PopCompoundScope();
406 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
407 return getCurFunction()->CompoundScopes.back();
410 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
411 ArrayRef<Stmt *> Elts, bool isStmtExpr) {
412 const unsigned NumElts = Elts.size();
414 // If we're in C mode, check that we don't have any decls after stmts. If
415 // so, emit an extension diagnostic in C89 and potentially a warning in later
416 // versions.
417 const unsigned MixedDeclsCodeID = getLangOpts().C99
418 ? diag::warn_mixed_decls_code
419 : diag::ext_mixed_decls_code;
420 if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) {
421 // Note that __extension__ can be around a decl.
422 unsigned i = 0;
423 // Skip over all declarations.
424 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
425 /*empty*/;
427 // We found the end of the list or a statement. Scan for another declstmt.
428 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
429 /*empty*/;
431 if (i != NumElts) {
432 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
433 Diag(D->getLocation(), MixedDeclsCodeID);
437 // Check for suspicious empty body (null statement) in `for' and `while'
438 // statements. Don't do anything for template instantiations, this just adds
439 // noise.
440 if (NumElts != 0 && !CurrentInstantiationScope &&
441 getCurCompoundScope().HasEmptyLoopBodies) {
442 for (unsigned i = 0; i != NumElts - 1; ++i)
443 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
446 // Calculate difference between FP options in this compound statement and in
447 // the enclosing one. If this is a function body, take the difference against
448 // default options. In this case the difference will indicate options that are
449 // changed upon entry to the statement.
450 FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1)
451 ? FPOptions(getLangOpts())
452 : getCurCompoundScope().InitialFPFeatures;
453 FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO);
455 return CompoundStmt::Create(Context, Elts, FPDiff, L, R);
458 ExprResult
459 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
460 if (!Val.get())
461 return Val;
463 if (DiagnoseUnexpandedParameterPack(Val.get()))
464 return ExprError();
466 // If we're not inside a switch, let the 'case' statement handling diagnose
467 // this. Just clean up after the expression as best we can.
468 if (getCurFunction()->SwitchStack.empty())
469 return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
470 getLangOpts().CPlusPlus11);
472 Expr *CondExpr =
473 getCurFunction()->SwitchStack.back().getPointer()->getCond();
474 if (!CondExpr)
475 return ExprError();
476 QualType CondType = CondExpr->getType();
478 auto CheckAndFinish = [&](Expr *E) {
479 if (CondType->isDependentType() || E->isTypeDependent())
480 return ExprResult(E);
482 if (getLangOpts().CPlusPlus11) {
483 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
484 // constant expression of the promoted type of the switch condition.
485 llvm::APSInt TempVal;
486 return CheckConvertedConstantExpression(E, CondType, TempVal,
487 CCEK_CaseValue);
490 ExprResult ER = E;
491 if (!E->isValueDependent())
492 ER = VerifyIntegerConstantExpression(E, AllowFold);
493 if (!ER.isInvalid())
494 ER = DefaultLvalueConversion(ER.get());
495 if (!ER.isInvalid())
496 ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
497 if (!ER.isInvalid())
498 ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
499 return ER;
502 ExprResult Converted = CorrectDelayedTyposInExpr(
503 Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
504 CheckAndFinish);
505 if (Converted.get() == Val.get())
506 Converted = CheckAndFinish(Val.get());
507 return Converted;
510 StmtResult
511 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
512 SourceLocation DotDotDotLoc, ExprResult RHSVal,
513 SourceLocation ColonLoc) {
514 assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
515 assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
516 : RHSVal.isInvalid() || RHSVal.get()) &&
517 "missing RHS value");
519 if (getCurFunction()->SwitchStack.empty()) {
520 Diag(CaseLoc, diag::err_case_not_in_switch);
521 return StmtError();
524 if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
525 getCurFunction()->SwitchStack.back().setInt(true);
526 return StmtError();
529 auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
530 CaseLoc, DotDotDotLoc, ColonLoc);
531 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
532 return CS;
535 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
536 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
537 cast<CaseStmt>(S)->setSubStmt(SubStmt);
540 StmtResult
541 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
542 Stmt *SubStmt, Scope *CurScope) {
543 if (getCurFunction()->SwitchStack.empty()) {
544 Diag(DefaultLoc, diag::err_default_not_in_switch);
545 return SubStmt;
548 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
549 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
550 return DS;
553 StmtResult
554 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
555 SourceLocation ColonLoc, Stmt *SubStmt) {
556 // If the label was multiply defined, reject it now.
557 if (TheDecl->getStmt()) {
558 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
559 Diag(TheDecl->getLocation(), diag::note_previous_definition);
560 return SubStmt;
563 ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts());
564 if (isReservedInAllContexts(Status) &&
565 !Context.getSourceManager().isInSystemHeader(IdentLoc))
566 Diag(IdentLoc, diag::warn_reserved_extern_symbol)
567 << TheDecl << static_cast<int>(Status);
569 // Otherwise, things are good. Fill in the declaration and return it.
570 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
571 TheDecl->setStmt(LS);
572 if (!TheDecl->isGnuLocal()) {
573 TheDecl->setLocStart(IdentLoc);
574 if (!TheDecl->isMSAsmLabel()) {
575 // Don't update the location of MS ASM labels. These will result in
576 // a diagnostic, and changing the location here will mess that up.
577 TheDecl->setLocation(IdentLoc);
580 return LS;
583 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc,
584 ArrayRef<const Attr *> Attrs,
585 Stmt *SubStmt) {
586 // FIXME: this code should move when a planned refactoring around statement
587 // attributes lands.
588 for (const auto *A : Attrs) {
589 if (A->getKind() == attr::MustTail) {
590 if (!checkAndRewriteMustTailAttr(SubStmt, *A)) {
591 return SubStmt;
593 setFunctionHasMustTail();
597 return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt);
600 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs,
601 Stmt *SubStmt) {
602 SmallVector<const Attr *, 1> SemanticAttrs;
603 ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs);
604 if (!SemanticAttrs.empty())
605 return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt);
606 // If none of the attributes applied, that's fine, we can recover by
607 // returning the substatement directly instead of making an AttributedStmt
608 // with no attributes on it.
609 return SubStmt;
612 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) {
613 ReturnStmt *R = cast<ReturnStmt>(St);
614 Expr *E = R->getRetValue();
616 if (CurContext->isDependentContext() || (E && E->isInstantiationDependent()))
617 // We have to suspend our check until template instantiation time.
618 return true;
620 if (!checkMustTailAttr(St, MTA))
621 return false;
623 // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function.
624 // Currently it does not skip implicit constructors in an initialization
625 // context.
626 auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * {
627 return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep,
628 IgnoreElidableImplicitConstructorSingleStep);
631 // Now that we have verified that 'musttail' is valid here, rewrite the
632 // return value to remove all implicit nodes, but retain parentheses.
633 R->setRetValue(IgnoreImplicitAsWritten(E));
634 return true;
637 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) {
638 assert(!CurContext->isDependentContext() &&
639 "musttail cannot be checked from a dependent context");
641 // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition.
642 auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * {
643 return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep,
644 IgnoreImplicitAsWrittenSingleStep,
645 IgnoreElidableImplicitConstructorSingleStep);
648 const Expr *E = cast<ReturnStmt>(St)->getRetValue();
649 const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E));
651 if (!CE) {
652 Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA;
653 return false;
656 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
657 if (EWC->cleanupsHaveSideEffects()) {
658 Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA;
659 return false;
663 // We need to determine the full function type (including "this" type, if any)
664 // for both caller and callee.
665 struct FuncType {
666 enum {
667 ft_non_member,
668 ft_static_member,
669 ft_non_static_member,
670 ft_pointer_to_member,
671 } MemberType = ft_non_member;
673 QualType This;
674 const FunctionProtoType *Func;
675 const CXXMethodDecl *Method = nullptr;
676 } CallerType, CalleeType;
678 auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type,
679 bool IsCallee) -> bool {
680 if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) {
681 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
682 << IsCallee << isa<CXXDestructorDecl>(CMD);
683 if (IsCallee)
684 Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden)
685 << isa<CXXDestructorDecl>(CMD);
686 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
687 return false;
689 if (CMD->isStatic())
690 Type.MemberType = FuncType::ft_static_member;
691 else {
692 Type.This = CMD->getFunctionObjectParameterType();
693 Type.MemberType = FuncType::ft_non_static_member;
695 Type.Func = CMD->getType()->castAs<FunctionProtoType>();
696 return true;
699 const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext);
701 // Find caller function signature.
702 if (!CallerDecl) {
703 int ContextType;
704 if (isa<BlockDecl>(CurContext))
705 ContextType = 0;
706 else if (isa<ObjCMethodDecl>(CurContext))
707 ContextType = 1;
708 else
709 ContextType = 2;
710 Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context)
711 << &MTA << ContextType;
712 return false;
713 } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) {
714 // Caller is a class/struct method.
715 if (!GetMethodType(CMD, CallerType, false))
716 return false;
717 } else {
718 // Caller is a non-method function.
719 CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>();
722 const Expr *CalleeExpr = CE->getCallee()->IgnoreParens();
723 const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr);
724 SourceLocation CalleeLoc = CE->getCalleeDecl()
725 ? CE->getCalleeDecl()->getBeginLoc()
726 : St->getBeginLoc();
728 // Find callee function signature.
729 if (const CXXMethodDecl *CMD =
730 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) {
731 // Call is: obj.method(), obj->method(), functor(), etc.
732 if (!GetMethodType(CMD, CalleeType, true))
733 return false;
734 } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) {
735 // Call is: obj->*method_ptr or obj.*method_ptr
736 const auto *MPT =
737 CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>();
738 CalleeType.This = QualType(MPT->getClass(), 0);
739 CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>();
740 CalleeType.MemberType = FuncType::ft_pointer_to_member;
741 } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
742 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
743 << /* IsCallee = */ 1 << /* IsDestructor = */ 1;
744 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
745 return false;
746 } else {
747 // Non-method function.
748 CalleeType.Func =
749 CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>();
752 // Both caller and callee must have a prototype (no K&R declarations).
753 if (!CalleeType.Func || !CallerType.Func) {
754 Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA;
755 if (!CalleeType.Func && CE->getDirectCallee()) {
756 Diag(CE->getDirectCallee()->getBeginLoc(),
757 diag::note_musttail_fix_non_prototype);
759 if (!CallerType.Func)
760 Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype);
761 return false;
764 // Caller and callee must have matching calling conventions.
766 // Some calling conventions are physically capable of supporting tail calls
767 // even if the function types don't perfectly match. LLVM is currently too
768 // strict to allow this, but if LLVM added support for this in the future, we
769 // could exit early here and skip the remaining checks if the functions are
770 // using such a calling convention.
771 if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) {
772 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
773 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch)
774 << true << ND->getDeclName();
775 else
776 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false;
777 Diag(CalleeLoc, diag::note_musttail_callconv_mismatch)
778 << FunctionType::getNameForCallConv(CallerType.Func->getCallConv())
779 << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv());
780 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
781 return false;
784 if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) {
785 Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA;
786 return false;
789 // Caller and callee must match in whether they have a "this" parameter.
790 if (CallerType.This.isNull() != CalleeType.This.isNull()) {
791 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
792 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
793 << CallerType.MemberType << CalleeType.MemberType << true
794 << ND->getDeclName();
795 Diag(CalleeLoc, diag::note_musttail_callee_defined_here)
796 << ND->getDeclName();
797 } else
798 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
799 << CallerType.MemberType << CalleeType.MemberType << false;
800 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
801 return false;
804 auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType,
805 PartialDiagnostic &PD) -> bool {
806 enum {
807 ft_different_class,
808 ft_parameter_arity,
809 ft_parameter_mismatch,
810 ft_return_type,
813 auto DoTypesMatch = [this, &PD](QualType A, QualType B,
814 unsigned Select) -> bool {
815 if (!Context.hasSimilarType(A, B)) {
816 PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType();
817 return false;
819 return true;
822 if (!CallerType.This.isNull() &&
823 !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class))
824 return false;
826 if (!DoTypesMatch(CallerType.Func->getReturnType(),
827 CalleeType.Func->getReturnType(), ft_return_type))
828 return false;
830 if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) {
831 PD << ft_parameter_arity << CallerType.Func->getNumParams()
832 << CalleeType.Func->getNumParams();
833 return false;
836 ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes();
837 ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes();
838 size_t N = CallerType.Func->getNumParams();
839 for (size_t I = 0; I < N; I++) {
840 if (!DoTypesMatch(CalleeParams[I], CallerParams[I],
841 ft_parameter_mismatch)) {
842 PD << static_cast<int>(I) + 1;
843 return false;
847 return true;
850 PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch);
851 if (!CheckTypesMatch(CallerType, CalleeType, PD)) {
852 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
853 Diag(St->getBeginLoc(), diag::err_musttail_mismatch)
854 << true << ND->getDeclName();
855 else
856 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false;
857 Diag(CalleeLoc, PD);
858 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
859 return false;
862 return true;
865 namespace {
866 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
867 typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
868 Sema &SemaRef;
869 public:
870 CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
871 void VisitBinaryOperator(BinaryOperator *E) {
872 if (E->getOpcode() == BO_Comma)
873 SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
874 EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
879 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc,
880 IfStatementKind StatementKind,
881 SourceLocation LParenLoc, Stmt *InitStmt,
882 ConditionResult Cond, SourceLocation RParenLoc,
883 Stmt *thenStmt, SourceLocation ElseLoc,
884 Stmt *elseStmt) {
885 if (Cond.isInvalid())
886 return StmtError();
888 bool ConstevalOrNegatedConsteval =
889 StatementKind == IfStatementKind::ConstevalNonNegated ||
890 StatementKind == IfStatementKind::ConstevalNegated;
892 Expr *CondExpr = Cond.get().second;
893 assert((CondExpr || ConstevalOrNegatedConsteval) &&
894 "If statement: missing condition");
895 // Only call the CommaVisitor when not C89 due to differences in scope flags.
896 if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
897 !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
898 CommaVisitor(*this).Visit(CondExpr);
900 if (!ConstevalOrNegatedConsteval && !elseStmt)
901 DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body);
903 if (ConstevalOrNegatedConsteval ||
904 StatementKind == IfStatementKind::Constexpr) {
905 auto DiagnoseLikelihood = [&](const Stmt *S) {
906 if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
907 Diags.Report(A->getLocation(),
908 diag::warn_attribute_has_no_effect_on_compile_time_if)
909 << A << ConstevalOrNegatedConsteval << A->getRange();
910 Diags.Report(IfLoc,
911 diag::note_attribute_has_no_effect_on_compile_time_if_here)
912 << ConstevalOrNegatedConsteval
913 << SourceRange(IfLoc, (ConstevalOrNegatedConsteval
914 ? thenStmt->getBeginLoc()
915 : LParenLoc)
916 .getLocWithOffset(-1));
919 DiagnoseLikelihood(thenStmt);
920 DiagnoseLikelihood(elseStmt);
921 } else {
922 std::tuple<bool, const Attr *, const Attr *> LHC =
923 Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
924 if (std::get<0>(LHC)) {
925 const Attr *ThenAttr = std::get<1>(LHC);
926 const Attr *ElseAttr = std::get<2>(LHC);
927 Diags.Report(ThenAttr->getLocation(),
928 diag::warn_attributes_likelihood_ifstmt_conflict)
929 << ThenAttr << ThenAttr->getRange();
930 Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
931 << ElseAttr << ElseAttr->getRange();
935 if (ConstevalOrNegatedConsteval) {
936 bool Immediate = ExprEvalContexts.back().Context ==
937 ExpressionEvaluationContext::ImmediateFunctionContext;
938 if (CurContext->isFunctionOrMethod()) {
939 const auto *FD =
940 dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext));
941 if (FD && FD->isImmediateFunction())
942 Immediate = true;
944 if (isUnevaluatedContext() || Immediate)
945 Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate;
948 return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc,
949 thenStmt, ElseLoc, elseStmt);
952 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc,
953 IfStatementKind StatementKind,
954 SourceLocation LParenLoc, Stmt *InitStmt,
955 ConditionResult Cond, SourceLocation RParenLoc,
956 Stmt *thenStmt, SourceLocation ElseLoc,
957 Stmt *elseStmt) {
958 if (Cond.isInvalid())
959 return StmtError();
961 if (StatementKind != IfStatementKind::Ordinary ||
962 isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
963 setFunctionHasBranchProtectedScope();
965 return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt,
966 Cond.get().first, Cond.get().second, LParenLoc,
967 RParenLoc, thenStmt, ElseLoc, elseStmt);
970 namespace {
971 struct CaseCompareFunctor {
972 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
973 const llvm::APSInt &RHS) {
974 return LHS.first < RHS;
976 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
977 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
978 return LHS.first < RHS.first;
980 bool operator()(const llvm::APSInt &LHS,
981 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
982 return LHS < RHS.first;
987 /// CmpCaseVals - Comparison predicate for sorting case values.
989 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
990 const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
991 if (lhs.first < rhs.first)
992 return true;
994 if (lhs.first == rhs.first &&
995 lhs.second->getCaseLoc() < rhs.second->getCaseLoc())
996 return true;
997 return false;
1000 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
1002 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1003 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1005 return lhs.first < rhs.first;
1008 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
1010 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1011 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1013 return lhs.first == rhs.first;
1016 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
1017 /// potentially integral-promoted expression @p expr.
1018 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
1019 if (const auto *FE = dyn_cast<FullExpr>(E))
1020 E = FE->getSubExpr();
1021 while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
1022 if (ImpCast->getCastKind() != CK_IntegralCast) break;
1023 E = ImpCast->getSubExpr();
1025 return E->getType();
1028 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
1029 class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
1030 Expr *Cond;
1032 public:
1033 SwitchConvertDiagnoser(Expr *Cond)
1034 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
1035 Cond(Cond) {}
1037 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1038 QualType T) override {
1039 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
1042 SemaDiagnosticBuilder diagnoseIncomplete(
1043 Sema &S, SourceLocation Loc, QualType T) override {
1044 return S.Diag(Loc, diag::err_switch_incomplete_class_type)
1045 << T << Cond->getSourceRange();
1048 SemaDiagnosticBuilder diagnoseExplicitConv(
1049 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1050 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
1053 SemaDiagnosticBuilder noteExplicitConv(
1054 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1055 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1056 << ConvTy->isEnumeralType() << ConvTy;
1059 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1060 QualType T) override {
1061 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
1064 SemaDiagnosticBuilder noteAmbiguous(
1065 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1066 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1067 << ConvTy->isEnumeralType() << ConvTy;
1070 SemaDiagnosticBuilder diagnoseConversion(
1071 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1072 llvm_unreachable("conversion functions are permitted");
1074 } SwitchDiagnoser(Cond);
1076 ExprResult CondResult =
1077 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
1078 if (CondResult.isInvalid())
1079 return ExprError();
1081 // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
1082 // failed and produced a diagnostic.
1083 Cond = CondResult.get();
1084 if (!Cond->isTypeDependent() &&
1085 !Cond->getType()->isIntegralOrEnumerationType())
1086 return ExprError();
1088 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
1089 return UsualUnaryConversions(Cond);
1092 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
1093 SourceLocation LParenLoc,
1094 Stmt *InitStmt, ConditionResult Cond,
1095 SourceLocation RParenLoc) {
1096 Expr *CondExpr = Cond.get().second;
1097 assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
1099 if (CondExpr && !CondExpr->isTypeDependent()) {
1100 // We have already converted the expression to an integral or enumeration
1101 // type, when we parsed the switch condition. There are cases where we don't
1102 // have an appropriate type, e.g. a typo-expr Cond was corrected to an
1103 // inappropriate-type expr, we just return an error.
1104 if (!CondExpr->getType()->isIntegralOrEnumerationType())
1105 return StmtError();
1106 if (CondExpr->isKnownToHaveBooleanValue()) {
1107 // switch(bool_expr) {...} is often a programmer error, e.g.
1108 // switch(n && mask) { ... } // Doh - should be "n & mask".
1109 // One can always use an if statement instead of switch(bool_expr).
1110 Diag(SwitchLoc, diag::warn_bool_switch_condition)
1111 << CondExpr->getSourceRange();
1115 setFunctionHasBranchIntoScope();
1117 auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
1118 LParenLoc, RParenLoc);
1119 getCurFunction()->SwitchStack.push_back(
1120 FunctionScopeInfo::SwitchInfo(SS, false));
1121 return SS;
1124 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
1125 Val = Val.extOrTrunc(BitWidth);
1126 Val.setIsSigned(IsSigned);
1129 /// Check the specified case value is in range for the given unpromoted switch
1130 /// type.
1131 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
1132 unsigned UnpromotedWidth, bool UnpromotedSign) {
1133 // In C++11 onwards, this is checked by the language rules.
1134 if (S.getLangOpts().CPlusPlus11)
1135 return;
1137 // If the case value was signed and negative and the switch expression is
1138 // unsigned, don't bother to warn: this is implementation-defined behavior.
1139 // FIXME: Introduce a second, default-ignored warning for this case?
1140 if (UnpromotedWidth < Val.getBitWidth()) {
1141 llvm::APSInt ConvVal(Val);
1142 AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
1143 AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
1144 // FIXME: Use different diagnostics for overflow in conversion to promoted
1145 // type versus "switch expression cannot have this value". Use proper
1146 // IntRange checking rather than just looking at the unpromoted type here.
1147 if (ConvVal != Val)
1148 S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10)
1149 << toString(ConvVal, 10);
1153 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
1155 /// Returns true if we should emit a diagnostic about this case expression not
1156 /// being a part of the enum used in the switch controlling expression.
1157 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
1158 const EnumDecl *ED,
1159 const Expr *CaseExpr,
1160 EnumValsTy::iterator &EI,
1161 EnumValsTy::iterator &EIEnd,
1162 const llvm::APSInt &Val) {
1163 if (!ED->isClosed())
1164 return false;
1166 if (const DeclRefExpr *DRE =
1167 dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
1168 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1169 QualType VarType = VD->getType();
1170 QualType EnumType = S.Context.getTypeDeclType(ED);
1171 if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
1172 S.Context.hasSameUnqualifiedType(EnumType, VarType))
1173 return false;
1177 if (ED->hasAttr<FlagEnumAttr>())
1178 return !S.IsValueInFlagEnum(ED, Val, false);
1180 while (EI != EIEnd && EI->first < Val)
1181 EI++;
1183 if (EI != EIEnd && EI->first == Val)
1184 return false;
1186 return true;
1189 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
1190 const Expr *Case) {
1191 QualType CondType = Cond->getType();
1192 QualType CaseType = Case->getType();
1194 const EnumType *CondEnumType = CondType->getAs<EnumType>();
1195 const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
1196 if (!CondEnumType || !CaseEnumType)
1197 return;
1199 // Ignore anonymous enums.
1200 if (!CondEnumType->getDecl()->getIdentifier() &&
1201 !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
1202 return;
1203 if (!CaseEnumType->getDecl()->getIdentifier() &&
1204 !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
1205 return;
1207 if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
1208 return;
1210 S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
1211 << CondType << CaseType << Cond->getSourceRange()
1212 << Case->getSourceRange();
1215 StmtResult
1216 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
1217 Stmt *BodyStmt) {
1218 SwitchStmt *SS = cast<SwitchStmt>(Switch);
1219 bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
1220 assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
1221 "switch stack missing push/pop!");
1223 getCurFunction()->SwitchStack.pop_back();
1225 if (!BodyStmt) return StmtError();
1226 SS->setBody(BodyStmt, SwitchLoc);
1228 Expr *CondExpr = SS->getCond();
1229 if (!CondExpr) return StmtError();
1231 QualType CondType = CondExpr->getType();
1233 // C++ 6.4.2.p2:
1234 // Integral promotions are performed (on the switch condition).
1236 // A case value unrepresentable by the original switch condition
1237 // type (before the promotion) doesn't make sense, even when it can
1238 // be represented by the promoted type. Therefore we need to find
1239 // the pre-promotion type of the switch condition.
1240 const Expr *CondExprBeforePromotion = CondExpr;
1241 QualType CondTypeBeforePromotion =
1242 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
1244 // Get the bitwidth of the switched-on value after promotions. We must
1245 // convert the integer case values to this width before comparison.
1246 bool HasDependentValue
1247 = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
1248 unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
1249 bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
1251 // Get the width and signedness that the condition might actually have, for
1252 // warning purposes.
1253 // FIXME: Grab an IntRange for the condition rather than using the unpromoted
1254 // type.
1255 unsigned CondWidthBeforePromotion
1256 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
1257 bool CondIsSignedBeforePromotion
1258 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
1260 // Accumulate all of the case values in a vector so that we can sort them
1261 // and detect duplicates. This vector contains the APInt for the case after
1262 // it has been converted to the condition type.
1263 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
1264 CaseValsTy CaseVals;
1266 // Keep track of any GNU case ranges we see. The APSInt is the low value.
1267 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
1268 CaseRangesTy CaseRanges;
1270 DefaultStmt *TheDefaultStmt = nullptr;
1272 bool CaseListIsErroneous = false;
1274 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
1275 SC = SC->getNextSwitchCase()) {
1277 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
1278 if (TheDefaultStmt) {
1279 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
1280 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
1282 // FIXME: Remove the default statement from the switch block so that
1283 // we'll return a valid AST. This requires recursing down the AST and
1284 // finding it, not something we are set up to do right now. For now,
1285 // just lop the entire switch stmt out of the AST.
1286 CaseListIsErroneous = true;
1288 TheDefaultStmt = DS;
1290 } else {
1291 CaseStmt *CS = cast<CaseStmt>(SC);
1293 Expr *Lo = CS->getLHS();
1295 if (Lo->isValueDependent()) {
1296 HasDependentValue = true;
1297 break;
1300 // We already verified that the expression has a constant value;
1301 // get that value (prior to conversions).
1302 const Expr *LoBeforePromotion = Lo;
1303 GetTypeBeforeIntegralPromotion(LoBeforePromotion);
1304 llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
1306 // Check the unconverted value is within the range of possible values of
1307 // the switch expression.
1308 checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
1309 CondIsSignedBeforePromotion);
1311 // FIXME: This duplicates the check performed for warn_not_in_enum below.
1312 checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
1313 LoBeforePromotion);
1315 // Convert the value to the same width/sign as the condition.
1316 AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
1318 // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
1319 if (CS->getRHS()) {
1320 if (CS->getRHS()->isValueDependent()) {
1321 HasDependentValue = true;
1322 break;
1324 CaseRanges.push_back(std::make_pair(LoVal, CS));
1325 } else
1326 CaseVals.push_back(std::make_pair(LoVal, CS));
1330 if (!TheDefaultStmt)
1331 Diag(SwitchLoc, diag::warn_switch_default);
1333 if (!HasDependentValue) {
1334 // If we don't have a default statement, check whether the
1335 // condition is constant.
1336 llvm::APSInt ConstantCondValue;
1337 bool HasConstantCond = false;
1338 if (!TheDefaultStmt) {
1339 Expr::EvalResult Result;
1340 HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
1341 Expr::SE_AllowSideEffects);
1342 if (Result.Val.isInt())
1343 ConstantCondValue = Result.Val.getInt();
1344 assert(!HasConstantCond ||
1345 (ConstantCondValue.getBitWidth() == CondWidth &&
1346 ConstantCondValue.isSigned() == CondIsSigned));
1348 bool ShouldCheckConstantCond = HasConstantCond;
1350 // Sort all the scalar case values so we can easily detect duplicates.
1351 llvm::stable_sort(CaseVals, CmpCaseVals);
1353 if (!CaseVals.empty()) {
1354 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
1355 if (ShouldCheckConstantCond &&
1356 CaseVals[i].first == ConstantCondValue)
1357 ShouldCheckConstantCond = false;
1359 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1360 // If we have a duplicate, report it.
1361 // First, determine if either case value has a name
1362 StringRef PrevString, CurrString;
1363 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1364 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1365 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1366 PrevString = DeclRef->getDecl()->getName();
1368 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1369 CurrString = DeclRef->getDecl()->getName();
1371 SmallString<16> CaseValStr;
1372 CaseVals[i-1].first.toString(CaseValStr);
1374 if (PrevString == CurrString)
1375 Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1376 diag::err_duplicate_case)
1377 << (PrevString.empty() ? CaseValStr.str() : PrevString);
1378 else
1379 Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1380 diag::err_duplicate_case_differing_expr)
1381 << (PrevString.empty() ? CaseValStr.str() : PrevString)
1382 << (CurrString.empty() ? CaseValStr.str() : CurrString)
1383 << CaseValStr;
1385 Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1386 diag::note_duplicate_case_prev);
1387 // FIXME: We really want to remove the bogus case stmt from the
1388 // substmt, but we have no way to do this right now.
1389 CaseListIsErroneous = true;
1394 // Detect duplicate case ranges, which usually don't exist at all in
1395 // the first place.
1396 if (!CaseRanges.empty()) {
1397 // Sort all the case ranges by their low value so we can easily detect
1398 // overlaps between ranges.
1399 llvm::stable_sort(CaseRanges);
1401 // Scan the ranges, computing the high values and removing empty ranges.
1402 std::vector<llvm::APSInt> HiVals;
1403 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1404 llvm::APSInt &LoVal = CaseRanges[i].first;
1405 CaseStmt *CR = CaseRanges[i].second;
1406 Expr *Hi = CR->getRHS();
1408 const Expr *HiBeforePromotion = Hi;
1409 GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1410 llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1412 // Check the unconverted value is within the range of possible values of
1413 // the switch expression.
1414 checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1415 CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1417 // Convert the value to the same width/sign as the condition.
1418 AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1420 // If the low value is bigger than the high value, the case is empty.
1421 if (LoVal > HiVal) {
1422 Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1423 << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1424 CaseRanges.erase(CaseRanges.begin()+i);
1425 --i;
1426 --e;
1427 continue;
1430 if (ShouldCheckConstantCond &&
1431 LoVal <= ConstantCondValue &&
1432 ConstantCondValue <= HiVal)
1433 ShouldCheckConstantCond = false;
1435 HiVals.push_back(HiVal);
1438 // Rescan the ranges, looking for overlap with singleton values and other
1439 // ranges. Since the range list is sorted, we only need to compare case
1440 // ranges with their neighbors.
1441 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1442 llvm::APSInt &CRLo = CaseRanges[i].first;
1443 llvm::APSInt &CRHi = HiVals[i];
1444 CaseStmt *CR = CaseRanges[i].second;
1446 // Check to see whether the case range overlaps with any
1447 // singleton cases.
1448 CaseStmt *OverlapStmt = nullptr;
1449 llvm::APSInt OverlapVal(32);
1451 // Find the smallest value >= the lower bound. If I is in the
1452 // case range, then we have overlap.
1453 CaseValsTy::iterator I =
1454 llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1455 if (I != CaseVals.end() && I->first < CRHi) {
1456 OverlapVal = I->first; // Found overlap with scalar.
1457 OverlapStmt = I->second;
1460 // Find the smallest value bigger than the upper bound.
1461 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1462 if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1463 OverlapVal = (I-1)->first; // Found overlap with scalar.
1464 OverlapStmt = (I-1)->second;
1467 // Check to see if this case stmt overlaps with the subsequent
1468 // case range.
1469 if (i && CRLo <= HiVals[i-1]) {
1470 OverlapVal = HiVals[i-1]; // Found overlap with range.
1471 OverlapStmt = CaseRanges[i-1].second;
1474 if (OverlapStmt) {
1475 // If we have a duplicate, report it.
1476 Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1477 << toString(OverlapVal, 10);
1478 Diag(OverlapStmt->getLHS()->getBeginLoc(),
1479 diag::note_duplicate_case_prev);
1480 // FIXME: We really want to remove the bogus case stmt from the
1481 // substmt, but we have no way to do this right now.
1482 CaseListIsErroneous = true;
1487 // Complain if we have a constant condition and we didn't find a match.
1488 if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1489 ShouldCheckConstantCond) {
1490 // TODO: it would be nice if we printed enums as enums, chars as
1491 // chars, etc.
1492 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1493 << toString(ConstantCondValue, 10)
1494 << CondExpr->getSourceRange();
1497 // Check to see if switch is over an Enum and handles all of its
1498 // values. We only issue a warning if there is not 'default:', but
1499 // we still do the analysis to preserve this information in the AST
1500 // (which can be used by flow-based analyes).
1502 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1504 // If switch has default case, then ignore it.
1505 if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1506 ET && ET->getDecl()->isCompleteDefinition() &&
1507 !ET->getDecl()->enumerators().empty()) {
1508 const EnumDecl *ED = ET->getDecl();
1509 EnumValsTy EnumVals;
1511 // Gather all enum values, set their type and sort them,
1512 // allowing easier comparison with CaseVals.
1513 for (auto *EDI : ED->enumerators()) {
1514 llvm::APSInt Val = EDI->getInitVal();
1515 AdjustAPSInt(Val, CondWidth, CondIsSigned);
1516 EnumVals.push_back(std::make_pair(Val, EDI));
1518 llvm::stable_sort(EnumVals, CmpEnumVals);
1519 auto EI = EnumVals.begin(), EIEnd =
1520 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1522 // See which case values aren't in enum.
1523 for (CaseValsTy::const_iterator CI = CaseVals.begin();
1524 CI != CaseVals.end(); CI++) {
1525 Expr *CaseExpr = CI->second->getLHS();
1526 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1527 CI->first))
1528 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1529 << CondTypeBeforePromotion;
1532 // See which of case ranges aren't in enum
1533 EI = EnumVals.begin();
1534 for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1535 RI != CaseRanges.end(); RI++) {
1536 Expr *CaseExpr = RI->second->getLHS();
1537 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1538 RI->first))
1539 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1540 << CondTypeBeforePromotion;
1542 llvm::APSInt Hi =
1543 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1544 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1546 CaseExpr = RI->second->getRHS();
1547 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1548 Hi))
1549 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1550 << CondTypeBeforePromotion;
1553 // Check which enum vals aren't in switch
1554 auto CI = CaseVals.begin();
1555 auto RI = CaseRanges.begin();
1556 bool hasCasesNotInSwitch = false;
1558 SmallVector<DeclarationName,8> UnhandledNames;
1560 for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1561 // Don't warn about omitted unavailable EnumConstantDecls.
1562 switch (EI->second->getAvailability()) {
1563 case AR_Deprecated:
1564 // Omitting a deprecated constant is ok; it should never materialize.
1565 case AR_Unavailable:
1566 continue;
1568 case AR_NotYetIntroduced:
1569 // Partially available enum constants should be present. Note that we
1570 // suppress -Wunguarded-availability diagnostics for such uses.
1571 case AR_Available:
1572 break;
1575 if (EI->second->hasAttr<UnusedAttr>())
1576 continue;
1578 // Drop unneeded case values
1579 while (CI != CaseVals.end() && CI->first < EI->first)
1580 CI++;
1582 if (CI != CaseVals.end() && CI->first == EI->first)
1583 continue;
1585 // Drop unneeded case ranges
1586 for (; RI != CaseRanges.end(); RI++) {
1587 llvm::APSInt Hi =
1588 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1589 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1590 if (EI->first <= Hi)
1591 break;
1594 if (RI == CaseRanges.end() || EI->first < RI->first) {
1595 hasCasesNotInSwitch = true;
1596 UnhandledNames.push_back(EI->second->getDeclName());
1600 if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1601 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1603 // Produce a nice diagnostic if multiple values aren't handled.
1604 if (!UnhandledNames.empty()) {
1605 auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
1606 ? diag::warn_def_missing_case
1607 : diag::warn_missing_case)
1608 << CondExpr->getSourceRange() << (int)UnhandledNames.size();
1610 for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1611 I != E; ++I)
1612 DB << UnhandledNames[I];
1615 if (!hasCasesNotInSwitch)
1616 SS->setAllEnumCasesCovered();
1620 if (BodyStmt)
1621 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1622 diag::warn_empty_switch_body);
1624 // FIXME: If the case list was broken is some way, we don't have a good system
1625 // to patch it up. Instead, just return the whole substmt as broken.
1626 if (CaseListIsErroneous)
1627 return StmtError();
1629 return SS;
1632 void
1633 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1634 Expr *SrcExpr) {
1635 if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1636 return;
1638 if (const EnumType *ET = DstType->getAs<EnumType>())
1639 if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1640 SrcType->isIntegerType()) {
1641 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1642 SrcExpr->isIntegerConstantExpr(Context)) {
1643 // Get the bitwidth of the enum value before promotions.
1644 unsigned DstWidth = Context.getIntWidth(DstType);
1645 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1647 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1648 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1649 const EnumDecl *ED = ET->getDecl();
1651 if (!ED->isClosed())
1652 return;
1654 if (ED->hasAttr<FlagEnumAttr>()) {
1655 if (!IsValueInFlagEnum(ED, RhsVal, true))
1656 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1657 << DstType.getUnqualifiedType();
1658 } else {
1659 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1660 EnumValsTy;
1661 EnumValsTy EnumVals;
1663 // Gather all enum values, set their type and sort them,
1664 // allowing easier comparison with rhs constant.
1665 for (auto *EDI : ED->enumerators()) {
1666 llvm::APSInt Val = EDI->getInitVal();
1667 AdjustAPSInt(Val, DstWidth, DstIsSigned);
1668 EnumVals.push_back(std::make_pair(Val, EDI));
1670 if (EnumVals.empty())
1671 return;
1672 llvm::stable_sort(EnumVals, CmpEnumVals);
1673 EnumValsTy::iterator EIend =
1674 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1676 // See which values aren't in the enum.
1677 EnumValsTy::const_iterator EI = EnumVals.begin();
1678 while (EI != EIend && EI->first < RhsVal)
1679 EI++;
1680 if (EI == EIend || EI->first != RhsVal) {
1681 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1682 << DstType.getUnqualifiedType();
1689 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
1690 SourceLocation LParenLoc, ConditionResult Cond,
1691 SourceLocation RParenLoc, Stmt *Body) {
1692 if (Cond.isInvalid())
1693 return StmtError();
1695 auto CondVal = Cond.get();
1696 CheckBreakContinueBinding(CondVal.second);
1698 if (CondVal.second &&
1699 !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1700 CommaVisitor(*this).Visit(CondVal.second);
1702 if (isa<NullStmt>(Body))
1703 getCurCompoundScope().setHasEmptyLoopBodies();
1705 return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1706 WhileLoc, LParenLoc, RParenLoc);
1709 StmtResult
1710 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1711 SourceLocation WhileLoc, SourceLocation CondLParen,
1712 Expr *Cond, SourceLocation CondRParen) {
1713 assert(Cond && "ActOnDoStmt(): missing expression");
1715 CheckBreakContinueBinding(Cond);
1716 ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1717 if (CondResult.isInvalid())
1718 return StmtError();
1719 Cond = CondResult.get();
1721 CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1722 if (CondResult.isInvalid())
1723 return StmtError();
1724 Cond = CondResult.get();
1726 // Only call the CommaVisitor for C89 due to differences in scope flags.
1727 if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1728 !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1729 CommaVisitor(*this).Visit(Cond);
1731 return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1734 namespace {
1735 // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1736 using DeclSetVector = llvm::SmallSetVector<VarDecl *, 8>;
1738 // This visitor will traverse a conditional statement and store all
1739 // the evaluated decls into a vector. Simple is set to true if none
1740 // of the excluded constructs are used.
1741 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1742 DeclSetVector &Decls;
1743 SmallVectorImpl<SourceRange> &Ranges;
1744 bool Simple;
1745 public:
1746 typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1748 DeclExtractor(Sema &S, DeclSetVector &Decls,
1749 SmallVectorImpl<SourceRange> &Ranges) :
1750 Inherited(S.Context),
1751 Decls(Decls),
1752 Ranges(Ranges),
1753 Simple(true) {}
1755 bool isSimple() { return Simple; }
1757 // Replaces the method in EvaluatedExprVisitor.
1758 void VisitMemberExpr(MemberExpr* E) {
1759 Simple = false;
1762 // Any Stmt not explicitly listed will cause the condition to be marked
1763 // complex.
1764 void VisitStmt(Stmt *S) { Simple = false; }
1766 void VisitBinaryOperator(BinaryOperator *E) {
1767 Visit(E->getLHS());
1768 Visit(E->getRHS());
1771 void VisitCastExpr(CastExpr *E) {
1772 Visit(E->getSubExpr());
1775 void VisitUnaryOperator(UnaryOperator *E) {
1776 // Skip checking conditionals with derefernces.
1777 if (E->getOpcode() == UO_Deref)
1778 Simple = false;
1779 else
1780 Visit(E->getSubExpr());
1783 void VisitConditionalOperator(ConditionalOperator *E) {
1784 Visit(E->getCond());
1785 Visit(E->getTrueExpr());
1786 Visit(E->getFalseExpr());
1789 void VisitParenExpr(ParenExpr *E) {
1790 Visit(E->getSubExpr());
1793 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1794 Visit(E->getOpaqueValue()->getSourceExpr());
1795 Visit(E->getFalseExpr());
1798 void VisitIntegerLiteral(IntegerLiteral *E) { }
1799 void VisitFloatingLiteral(FloatingLiteral *E) { }
1800 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1801 void VisitCharacterLiteral(CharacterLiteral *E) { }
1802 void VisitGNUNullExpr(GNUNullExpr *E) { }
1803 void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1805 void VisitDeclRefExpr(DeclRefExpr *E) {
1806 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1807 if (!VD) {
1808 // Don't allow unhandled Decl types.
1809 Simple = false;
1810 return;
1813 Ranges.push_back(E->getSourceRange());
1815 Decls.insert(VD);
1818 }; // end class DeclExtractor
1820 // DeclMatcher checks to see if the decls are used in a non-evaluated
1821 // context.
1822 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1823 DeclSetVector &Decls;
1824 bool FoundDecl;
1826 public:
1827 typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1829 DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1830 Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1831 if (!Statement) return;
1833 Visit(Statement);
1836 void VisitReturnStmt(ReturnStmt *S) {
1837 FoundDecl = true;
1840 void VisitBreakStmt(BreakStmt *S) {
1841 FoundDecl = true;
1844 void VisitGotoStmt(GotoStmt *S) {
1845 FoundDecl = true;
1848 void VisitCastExpr(CastExpr *E) {
1849 if (E->getCastKind() == CK_LValueToRValue)
1850 CheckLValueToRValueCast(E->getSubExpr());
1851 else
1852 Visit(E->getSubExpr());
1855 void CheckLValueToRValueCast(Expr *E) {
1856 E = E->IgnoreParenImpCasts();
1858 if (isa<DeclRefExpr>(E)) {
1859 return;
1862 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1863 Visit(CO->getCond());
1864 CheckLValueToRValueCast(CO->getTrueExpr());
1865 CheckLValueToRValueCast(CO->getFalseExpr());
1866 return;
1869 if (BinaryConditionalOperator *BCO =
1870 dyn_cast<BinaryConditionalOperator>(E)) {
1871 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1872 CheckLValueToRValueCast(BCO->getFalseExpr());
1873 return;
1876 Visit(E);
1879 void VisitDeclRefExpr(DeclRefExpr *E) {
1880 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1881 if (Decls.count(VD))
1882 FoundDecl = true;
1885 void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1886 // Only need to visit the semantics for POE.
1887 // SyntaticForm doesn't really use the Decal.
1888 for (auto *S : POE->semantics()) {
1889 if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1890 // Look past the OVE into the expression it binds.
1891 Visit(OVE->getSourceExpr());
1892 else
1893 Visit(S);
1897 bool FoundDeclInUse() { return FoundDecl; }
1899 }; // end class DeclMatcher
1901 void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1902 Expr *Third, Stmt *Body) {
1903 // Condition is empty
1904 if (!Second) return;
1906 if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1907 Second->getBeginLoc()))
1908 return;
1910 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1911 DeclSetVector Decls;
1912 SmallVector<SourceRange, 10> Ranges;
1913 DeclExtractor DE(S, Decls, Ranges);
1914 DE.Visit(Second);
1916 // Don't analyze complex conditionals.
1917 if (!DE.isSimple()) return;
1919 // No decls found.
1920 if (Decls.size() == 0) return;
1922 // Don't warn on volatile, static, or global variables.
1923 for (auto *VD : Decls)
1924 if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1925 return;
1927 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1928 DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1929 DeclMatcher(S, Decls, Body).FoundDeclInUse())
1930 return;
1932 // Load decl names into diagnostic.
1933 if (Decls.size() > 4) {
1934 PDiag << 0;
1935 } else {
1936 PDiag << (unsigned)Decls.size();
1937 for (auto *VD : Decls)
1938 PDiag << VD->getDeclName();
1941 for (auto Range : Ranges)
1942 PDiag << Range;
1944 S.Diag(Ranges.begin()->getBegin(), PDiag);
1947 // If Statement is an incemement or decrement, return true and sets the
1948 // variables Increment and DRE.
1949 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1950 DeclRefExpr *&DRE) {
1951 if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1952 if (!Cleanups->cleanupsHaveSideEffects())
1953 Statement = Cleanups->getSubExpr();
1955 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1956 switch (UO->getOpcode()) {
1957 default: return false;
1958 case UO_PostInc:
1959 case UO_PreInc:
1960 Increment = true;
1961 break;
1962 case UO_PostDec:
1963 case UO_PreDec:
1964 Increment = false;
1965 break;
1967 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1968 return DRE;
1971 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1972 FunctionDecl *FD = Call->getDirectCallee();
1973 if (!FD || !FD->isOverloadedOperator()) return false;
1974 switch (FD->getOverloadedOperator()) {
1975 default: return false;
1976 case OO_PlusPlus:
1977 Increment = true;
1978 break;
1979 case OO_MinusMinus:
1980 Increment = false;
1981 break;
1983 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1984 return DRE;
1987 return false;
1990 // A visitor to determine if a continue or break statement is a
1991 // subexpression.
1992 class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1993 SourceLocation BreakLoc;
1994 SourceLocation ContinueLoc;
1995 bool InSwitch = false;
1997 public:
1998 BreakContinueFinder(Sema &S, const Stmt* Body) :
1999 Inherited(S.Context) {
2000 Visit(Body);
2003 typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
2005 void VisitContinueStmt(const ContinueStmt* E) {
2006 ContinueLoc = E->getContinueLoc();
2009 void VisitBreakStmt(const BreakStmt* E) {
2010 if (!InSwitch)
2011 BreakLoc = E->getBreakLoc();
2014 void VisitSwitchStmt(const SwitchStmt* S) {
2015 if (const Stmt *Init = S->getInit())
2016 Visit(Init);
2017 if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
2018 Visit(CondVar);
2019 if (const Stmt *Cond = S->getCond())
2020 Visit(Cond);
2022 // Don't return break statements from the body of a switch.
2023 InSwitch = true;
2024 if (const Stmt *Body = S->getBody())
2025 Visit(Body);
2026 InSwitch = false;
2029 void VisitForStmt(const ForStmt *S) {
2030 // Only visit the init statement of a for loop; the body
2031 // has a different break/continue scope.
2032 if (const Stmt *Init = S->getInit())
2033 Visit(Init);
2036 void VisitWhileStmt(const WhileStmt *) {
2037 // Do nothing; the children of a while loop have a different
2038 // break/continue scope.
2041 void VisitDoStmt(const DoStmt *) {
2042 // Do nothing; the children of a while loop have a different
2043 // break/continue scope.
2046 void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
2047 // Only visit the initialization of a for loop; the body
2048 // has a different break/continue scope.
2049 if (const Stmt *Init = S->getInit())
2050 Visit(Init);
2051 if (const Stmt *Range = S->getRangeStmt())
2052 Visit(Range);
2053 if (const Stmt *Begin = S->getBeginStmt())
2054 Visit(Begin);
2055 if (const Stmt *End = S->getEndStmt())
2056 Visit(End);
2059 void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
2060 // Only visit the initialization of a for loop; the body
2061 // has a different break/continue scope.
2062 if (const Stmt *Element = S->getElement())
2063 Visit(Element);
2064 if (const Stmt *Collection = S->getCollection())
2065 Visit(Collection);
2068 bool ContinueFound() { return ContinueLoc.isValid(); }
2069 bool BreakFound() { return BreakLoc.isValid(); }
2070 SourceLocation GetContinueLoc() { return ContinueLoc; }
2071 SourceLocation GetBreakLoc() { return BreakLoc; }
2073 }; // end class BreakContinueFinder
2075 // Emit a warning when a loop increment/decrement appears twice per loop
2076 // iteration. The conditions which trigger this warning are:
2077 // 1) The last statement in the loop body and the third expression in the
2078 // for loop are both increment or both decrement of the same variable
2079 // 2) No continue statements in the loop body.
2080 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
2081 // Return when there is nothing to check.
2082 if (!Body || !Third) return;
2084 if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
2085 Third->getBeginLoc()))
2086 return;
2088 // Get the last statement from the loop body.
2089 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
2090 if (!CS || CS->body_empty()) return;
2091 Stmt *LastStmt = CS->body_back();
2092 if (!LastStmt) return;
2094 bool LoopIncrement, LastIncrement;
2095 DeclRefExpr *LoopDRE, *LastDRE;
2097 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
2098 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
2100 // Check that the two statements are both increments or both decrements
2101 // on the same variable.
2102 if (LoopIncrement != LastIncrement ||
2103 LoopDRE->getDecl() != LastDRE->getDecl()) return;
2105 if (BreakContinueFinder(S, Body).ContinueFound()) return;
2107 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
2108 << LastDRE->getDecl() << LastIncrement;
2109 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
2110 << LoopIncrement;
2113 } // end namespace
2116 void Sema::CheckBreakContinueBinding(Expr *E) {
2117 if (!E || getLangOpts().CPlusPlus)
2118 return;
2119 BreakContinueFinder BCFinder(*this, E);
2120 Scope *BreakParent = CurScope->getBreakParent();
2121 if (BCFinder.BreakFound() && BreakParent) {
2122 if (BreakParent->getFlags() & Scope::SwitchScope) {
2123 Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
2124 } else {
2125 Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
2126 << "break";
2128 } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
2129 Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
2130 << "continue";
2134 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
2135 Stmt *First, ConditionResult Second,
2136 FullExprArg third, SourceLocation RParenLoc,
2137 Stmt *Body) {
2138 if (Second.isInvalid())
2139 return StmtError();
2141 if (!getLangOpts().CPlusPlus) {
2142 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
2143 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2144 // declare identifiers for objects having storage class 'auto' or
2145 // 'register'.
2146 const Decl *NonVarSeen = nullptr;
2147 bool VarDeclSeen = false;
2148 for (auto *DI : DS->decls()) {
2149 if (VarDecl *VD = dyn_cast<VarDecl>(DI)) {
2150 VarDeclSeen = true;
2151 if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) {
2152 Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
2153 DI->setInvalidDecl();
2155 } else if (!NonVarSeen) {
2156 // Keep track of the first non-variable declaration we saw so that
2157 // we can diagnose if we don't see any variable declarations. This
2158 // covers a case like declaring a typedef, function, or structure
2159 // type rather than a variable.
2160 NonVarSeen = DI;
2163 // Diagnose if we saw a non-variable declaration but no variable
2164 // declarations.
2165 if (NonVarSeen && !VarDeclSeen)
2166 Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for);
2170 CheckBreakContinueBinding(Second.get().second);
2171 CheckBreakContinueBinding(third.get());
2173 if (!Second.get().first)
2174 CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
2175 Body);
2176 CheckForRedundantIteration(*this, third.get(), Body);
2178 if (Second.get().second &&
2179 !Diags.isIgnored(diag::warn_comma_operator,
2180 Second.get().second->getExprLoc()))
2181 CommaVisitor(*this).Visit(Second.get().second);
2183 Expr *Third = third.release().getAs<Expr>();
2184 if (isa<NullStmt>(Body))
2185 getCurCompoundScope().setHasEmptyLoopBodies();
2187 return new (Context)
2188 ForStmt(Context, First, Second.get().second, Second.get().first, Third,
2189 Body, ForLoc, LParenLoc, RParenLoc);
2192 /// In an Objective C collection iteration statement:
2193 /// for (x in y)
2194 /// x can be an arbitrary l-value expression. Bind it up as a
2195 /// full-expression.
2196 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
2197 // Reduce placeholder expressions here. Note that this rejects the
2198 // use of pseudo-object l-values in this position.
2199 ExprResult result = CheckPlaceholderExpr(E);
2200 if (result.isInvalid()) return StmtError();
2201 E = result.get();
2203 ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2204 if (FullExpr.isInvalid())
2205 return StmtError();
2206 return StmtResult(static_cast<Stmt*>(FullExpr.get()));
2209 ExprResult
2210 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
2211 if (!collection)
2212 return ExprError();
2214 ExprResult result = CorrectDelayedTyposInExpr(collection);
2215 if (!result.isUsable())
2216 return ExprError();
2217 collection = result.get();
2219 // Bail out early if we've got a type-dependent expression.
2220 if (collection->isTypeDependent()) return collection;
2222 // Perform normal l-value conversion.
2223 result = DefaultFunctionArrayLvalueConversion(collection);
2224 if (result.isInvalid())
2225 return ExprError();
2226 collection = result.get();
2228 // The operand needs to have object-pointer type.
2229 // TODO: should we do a contextual conversion?
2230 const ObjCObjectPointerType *pointerType =
2231 collection->getType()->getAs<ObjCObjectPointerType>();
2232 if (!pointerType)
2233 return Diag(forLoc, diag::err_collection_expr_type)
2234 << collection->getType() << collection->getSourceRange();
2236 // Check that the operand provides
2237 // - countByEnumeratingWithState:objects:count:
2238 const ObjCObjectType *objectType = pointerType->getObjectType();
2239 ObjCInterfaceDecl *iface = objectType->getInterface();
2241 // If we have a forward-declared type, we can't do this check.
2242 // Under ARC, it is an error not to have a forward-declared class.
2243 if (iface &&
2244 (getLangOpts().ObjCAutoRefCount
2245 ? RequireCompleteType(forLoc, QualType(objectType, 0),
2246 diag::err_arc_collection_forward, collection)
2247 : !isCompleteType(forLoc, QualType(objectType, 0)))) {
2248 // Otherwise, if we have any useful type information, check that
2249 // the type declares the appropriate method.
2250 } else if (iface || !objectType->qual_empty()) {
2251 IdentifierInfo *selectorIdents[] = {
2252 &Context.Idents.get("countByEnumeratingWithState"),
2253 &Context.Idents.get("objects"),
2254 &Context.Idents.get("count")
2256 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
2258 ObjCMethodDecl *method = nullptr;
2260 // If there's an interface, look in both the public and private APIs.
2261 if (iface) {
2262 method = iface->lookupInstanceMethod(selector);
2263 if (!method) method = iface->lookupPrivateMethod(selector);
2266 // Also check protocol qualifiers.
2267 if (!method)
2268 method = LookupMethodInQualifiedType(selector, pointerType,
2269 /*instance*/ true);
2271 // If we didn't find it anywhere, give up.
2272 if (!method) {
2273 Diag(forLoc, diag::warn_collection_expr_type)
2274 << collection->getType() << selector << collection->getSourceRange();
2277 // TODO: check for an incompatible signature?
2280 // Wrap up any cleanups in the expression.
2281 return collection;
2284 StmtResult
2285 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
2286 Stmt *First, Expr *collection,
2287 SourceLocation RParenLoc) {
2288 setFunctionHasBranchProtectedScope();
2290 ExprResult CollectionExprResult =
2291 CheckObjCForCollectionOperand(ForLoc, collection);
2293 if (First) {
2294 QualType FirstType;
2295 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
2296 if (!DS->isSingleDecl())
2297 return StmtError(Diag((*DS->decl_begin())->getLocation(),
2298 diag::err_toomany_element_decls));
2300 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
2301 if (!D || D->isInvalidDecl())
2302 return StmtError();
2304 FirstType = D->getType();
2305 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2306 // declare identifiers for objects having storage class 'auto' or
2307 // 'register'.
2308 if (!D->hasLocalStorage())
2309 return StmtError(Diag(D->getLocation(),
2310 diag::err_non_local_variable_decl_in_for));
2312 // If the type contained 'auto', deduce the 'auto' to 'id'.
2313 if (FirstType->getContainedAutoType()) {
2314 SourceLocation Loc = D->getLocation();
2315 OpaqueValueExpr OpaqueId(Loc, Context.getObjCIdType(), VK_PRValue);
2316 Expr *DeducedInit = &OpaqueId;
2317 TemplateDeductionInfo Info(Loc);
2318 FirstType = QualType();
2319 TemplateDeductionResult Result = DeduceAutoType(
2320 D->getTypeSourceInfo()->getTypeLoc(), DeducedInit, FirstType, Info);
2321 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2322 DiagnoseAutoDeductionFailure(D, DeducedInit);
2323 if (FirstType.isNull()) {
2324 D->setInvalidDecl();
2325 return StmtError();
2328 D->setType(FirstType);
2330 if (!inTemplateInstantiation()) {
2331 SourceLocation Loc =
2332 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
2333 Diag(Loc, diag::warn_auto_var_is_id)
2334 << D->getDeclName();
2338 } else {
2339 Expr *FirstE = cast<Expr>(First);
2340 if (!FirstE->isTypeDependent() && !FirstE->isLValue())
2341 return StmtError(
2342 Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
2343 << First->getSourceRange());
2345 FirstType = static_cast<Expr*>(First)->getType();
2346 if (FirstType.isConstQualified())
2347 Diag(ForLoc, diag::err_selector_element_const_type)
2348 << FirstType << First->getSourceRange();
2350 if (!FirstType->isDependentType() &&
2351 !FirstType->isObjCObjectPointerType() &&
2352 !FirstType->isBlockPointerType())
2353 return StmtError(Diag(ForLoc, diag::err_selector_element_type)
2354 << FirstType << First->getSourceRange());
2357 if (CollectionExprResult.isInvalid())
2358 return StmtError();
2360 CollectionExprResult =
2361 ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
2362 if (CollectionExprResult.isInvalid())
2363 return StmtError();
2365 return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
2366 nullptr, ForLoc, RParenLoc);
2369 /// Finish building a variable declaration for a for-range statement.
2370 /// \return true if an error occurs.
2371 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2372 SourceLocation Loc, int DiagID) {
2373 if (Decl->getType()->isUndeducedType()) {
2374 ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2375 if (!Res.isUsable()) {
2376 Decl->setInvalidDecl();
2377 return true;
2379 Init = Res.get();
2382 // Deduce the type for the iterator variable now rather than leaving it to
2383 // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2384 QualType InitType;
2385 if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) {
2386 SemaRef.Diag(Loc, DiagID) << Init->getType();
2387 } else {
2388 TemplateDeductionInfo Info(Init->getExprLoc());
2389 Sema::TemplateDeductionResult Result = SemaRef.DeduceAutoType(
2390 Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info);
2391 if (Result != Sema::TDK_Success && Result != Sema::TDK_AlreadyDiagnosed)
2392 SemaRef.Diag(Loc, DiagID) << Init->getType();
2395 if (InitType.isNull()) {
2396 Decl->setInvalidDecl();
2397 return true;
2399 Decl->setType(InitType);
2401 // In ARC, infer lifetime.
2402 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2403 // we're doing the equivalent of fast iteration.
2404 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2405 SemaRef.inferObjCARCLifetime(Decl))
2406 Decl->setInvalidDecl();
2408 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2409 SemaRef.FinalizeDeclaration(Decl);
2410 SemaRef.CurContext->addHiddenDecl(Decl);
2411 return false;
2414 namespace {
2415 // An enum to represent whether something is dealing with a call to begin()
2416 // or a call to end() in a range-based for loop.
2417 enum BeginEndFunction {
2418 BEF_begin,
2419 BEF_end
2422 /// Produce a note indicating which begin/end function was implicitly called
2423 /// by a C++11 for-range statement. This is often not obvious from the code,
2424 /// nor from the diagnostics produced when analysing the implicit expressions
2425 /// required in a for-range statement.
2426 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2427 BeginEndFunction BEF) {
2428 CallExpr *CE = dyn_cast<CallExpr>(E);
2429 if (!CE)
2430 return;
2431 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2432 if (!D)
2433 return;
2434 SourceLocation Loc = D->getLocation();
2436 std::string Description;
2437 bool IsTemplate = false;
2438 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2439 Description = SemaRef.getTemplateArgumentBindingsText(
2440 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2441 IsTemplate = true;
2444 SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2445 << BEF << IsTemplate << Description << E->getType();
2448 /// Build a variable declaration for a for-range statement.
2449 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2450 QualType Type, StringRef Name) {
2451 DeclContext *DC = SemaRef.CurContext;
2452 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2453 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2454 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2455 TInfo, SC_None);
2456 Decl->setImplicit();
2457 return Decl;
2462 static bool ObjCEnumerationCollection(Expr *Collection) {
2463 return !Collection->isTypeDependent()
2464 && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2467 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2469 /// C++11 [stmt.ranged]:
2470 /// A range-based for statement is equivalent to
2472 /// {
2473 /// auto && __range = range-init;
2474 /// for ( auto __begin = begin-expr,
2475 /// __end = end-expr;
2476 /// __begin != __end;
2477 /// ++__begin ) {
2478 /// for-range-declaration = *__begin;
2479 /// statement
2480 /// }
2481 /// }
2483 /// The body of the loop is not available yet, since it cannot be analysed until
2484 /// we have determined the type of the for-range-declaration.
2485 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2486 SourceLocation CoawaitLoc, Stmt *InitStmt,
2487 Stmt *First, SourceLocation ColonLoc,
2488 Expr *Range, SourceLocation RParenLoc,
2489 BuildForRangeKind Kind) {
2490 // FIXME: recover in order to allow the body to be parsed.
2491 if (!First)
2492 return StmtError();
2494 if (Range && ObjCEnumerationCollection(Range)) {
2495 // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2496 if (InitStmt)
2497 return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2498 << InitStmt->getSourceRange();
2499 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2502 DeclStmt *DS = dyn_cast<DeclStmt>(First);
2503 assert(DS && "first part of for range not a decl stmt");
2505 if (!DS->isSingleDecl()) {
2506 Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2507 return StmtError();
2510 // This function is responsible for attaching an initializer to LoopVar. We
2511 // must call ActOnInitializerError if we fail to do so.
2512 Decl *LoopVar = DS->getSingleDecl();
2513 if (LoopVar->isInvalidDecl() || !Range ||
2514 DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2515 ActOnInitializerError(LoopVar);
2516 return StmtError();
2519 // Build the coroutine state immediately and not later during template
2520 // instantiation
2521 if (!CoawaitLoc.isInvalid()) {
2522 if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2523 ActOnInitializerError(LoopVar);
2524 return StmtError();
2528 // Build auto && __range = range-init
2529 // Divide by 2, since the variables are in the inner scope (loop body).
2530 const auto DepthStr = std::to_string(S->getDepth() / 2);
2531 SourceLocation RangeLoc = Range->getBeginLoc();
2532 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2533 Context.getAutoRRefDeductType(),
2534 std::string("__range") + DepthStr);
2535 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2536 diag::err_for_range_deduction_failure)) {
2537 ActOnInitializerError(LoopVar);
2538 return StmtError();
2541 // Claim the type doesn't contain auto: we've already done the checking.
2542 DeclGroupPtrTy RangeGroup =
2543 BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2544 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2545 if (RangeDecl.isInvalid()) {
2546 ActOnInitializerError(LoopVar);
2547 return StmtError();
2550 StmtResult R = BuildCXXForRangeStmt(
2551 ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2552 /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2553 /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2554 if (R.isInvalid()) {
2555 ActOnInitializerError(LoopVar);
2556 return StmtError();
2559 return R;
2562 /// Create the initialization, compare, and increment steps for
2563 /// the range-based for loop expression.
2564 /// This function does not handle array-based for loops,
2565 /// which are created in Sema::BuildCXXForRangeStmt.
2567 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2568 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2569 /// CandidateSet and BEF are set and some non-success value is returned on
2570 /// failure.
2571 static Sema::ForRangeStatus
2572 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2573 QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2574 SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2575 OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2576 ExprResult *EndExpr, BeginEndFunction *BEF) {
2577 DeclarationNameInfo BeginNameInfo(
2578 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2579 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2580 ColonLoc);
2582 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2583 Sema::LookupMemberName);
2584 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2586 auto BuildBegin = [&] {
2587 *BEF = BEF_begin;
2588 Sema::ForRangeStatus RangeStatus =
2589 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2590 BeginMemberLookup, CandidateSet,
2591 BeginRange, BeginExpr);
2593 if (RangeStatus != Sema::FRS_Success) {
2594 if (RangeStatus == Sema::FRS_DiagnosticIssued)
2595 SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2596 << ColonLoc << BEF_begin << BeginRange->getType();
2597 return RangeStatus;
2599 if (!CoawaitLoc.isInvalid()) {
2600 // FIXME: getCurScope() should not be used during template instantiation.
2601 // We should pick up the set of unqualified lookup results for operator
2602 // co_await during the initial parse.
2603 *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2604 BeginExpr->get());
2605 if (BeginExpr->isInvalid())
2606 return Sema::FRS_DiagnosticIssued;
2608 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2609 diag::err_for_range_iter_deduction_failure)) {
2610 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2611 return Sema::FRS_DiagnosticIssued;
2613 return Sema::FRS_Success;
2616 auto BuildEnd = [&] {
2617 *BEF = BEF_end;
2618 Sema::ForRangeStatus RangeStatus =
2619 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2620 EndMemberLookup, CandidateSet,
2621 EndRange, EndExpr);
2622 if (RangeStatus != Sema::FRS_Success) {
2623 if (RangeStatus == Sema::FRS_DiagnosticIssued)
2624 SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2625 << ColonLoc << BEF_end << EndRange->getType();
2626 return RangeStatus;
2628 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2629 diag::err_for_range_iter_deduction_failure)) {
2630 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2631 return Sema::FRS_DiagnosticIssued;
2633 return Sema::FRS_Success;
2636 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2637 // - if _RangeT is a class type, the unqualified-ids begin and end are
2638 // looked up in the scope of class _RangeT as if by class member access
2639 // lookup (3.4.5), and if either (or both) finds at least one
2640 // declaration, begin-expr and end-expr are __range.begin() and
2641 // __range.end(), respectively;
2642 SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2643 if (BeginMemberLookup.isAmbiguous())
2644 return Sema::FRS_DiagnosticIssued;
2646 SemaRef.LookupQualifiedName(EndMemberLookup, D);
2647 if (EndMemberLookup.isAmbiguous())
2648 return Sema::FRS_DiagnosticIssued;
2650 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2651 // Look up the non-member form of the member we didn't find, first.
2652 // This way we prefer a "no viable 'end'" diagnostic over a "i found
2653 // a 'begin' but ignored it because there was no member 'end'"
2654 // diagnostic.
2655 auto BuildNonmember = [&](
2656 BeginEndFunction BEFFound, LookupResult &Found,
2657 llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2658 llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2659 LookupResult OldFound = std::move(Found);
2660 Found.clear();
2662 if (Sema::ForRangeStatus Result = BuildNotFound())
2663 return Result;
2665 switch (BuildFound()) {
2666 case Sema::FRS_Success:
2667 return Sema::FRS_Success;
2669 case Sema::FRS_NoViableFunction:
2670 CandidateSet->NoteCandidates(
2671 PartialDiagnosticAt(BeginRange->getBeginLoc(),
2672 SemaRef.PDiag(diag::err_for_range_invalid)
2673 << BeginRange->getType() << BEFFound),
2674 SemaRef, OCD_AllCandidates, BeginRange);
2675 [[fallthrough]];
2677 case Sema::FRS_DiagnosticIssued:
2678 for (NamedDecl *D : OldFound) {
2679 SemaRef.Diag(D->getLocation(),
2680 diag::note_for_range_member_begin_end_ignored)
2681 << BeginRange->getType() << BEFFound;
2683 return Sema::FRS_DiagnosticIssued;
2685 llvm_unreachable("unexpected ForRangeStatus");
2687 if (BeginMemberLookup.empty())
2688 return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2689 return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2691 } else {
2692 // - otherwise, begin-expr and end-expr are begin(__range) and
2693 // end(__range), respectively, where begin and end are looked up with
2694 // argument-dependent lookup (3.4.2). For the purposes of this name
2695 // lookup, namespace std is an associated namespace.
2698 if (Sema::ForRangeStatus Result = BuildBegin())
2699 return Result;
2700 return BuildEnd();
2703 /// Speculatively attempt to dereference an invalid range expression.
2704 /// If the attempt fails, this function will return a valid, null StmtResult
2705 /// and emit no diagnostics.
2706 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2707 SourceLocation ForLoc,
2708 SourceLocation CoawaitLoc,
2709 Stmt *InitStmt,
2710 Stmt *LoopVarDecl,
2711 SourceLocation ColonLoc,
2712 Expr *Range,
2713 SourceLocation RangeLoc,
2714 SourceLocation RParenLoc) {
2715 // Determine whether we can rebuild the for-range statement with a
2716 // dereferenced range expression.
2717 ExprResult AdjustedRange;
2719 Sema::SFINAETrap Trap(SemaRef);
2721 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2722 if (AdjustedRange.isInvalid())
2723 return StmtResult();
2725 StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2726 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2727 AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2728 if (SR.isInvalid())
2729 return StmtResult();
2732 // The attempt to dereference worked well enough that it could produce a valid
2733 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2734 // case there are any other (non-fatal) problems with it.
2735 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2736 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2737 return SemaRef.ActOnCXXForRangeStmt(
2738 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2739 AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2742 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2743 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2744 SourceLocation CoawaitLoc, Stmt *InitStmt,
2745 SourceLocation ColonLoc, Stmt *RangeDecl,
2746 Stmt *Begin, Stmt *End, Expr *Cond,
2747 Expr *Inc, Stmt *LoopVarDecl,
2748 SourceLocation RParenLoc,
2749 BuildForRangeKind Kind) {
2750 // FIXME: This should not be used during template instantiation. We should
2751 // pick up the set of unqualified lookup results for the != and + operators
2752 // in the initial parse.
2754 // Testcase (accepts-invalid):
2755 // template<typename T> void f() { for (auto x : T()) {} }
2756 // namespace N { struct X { X begin(); X end(); int operator*(); }; }
2757 // bool operator!=(N::X, N::X); void operator++(N::X);
2758 // void g() { f<N::X>(); }
2759 Scope *S = getCurScope();
2761 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2762 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2763 QualType RangeVarType = RangeVar->getType();
2765 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2766 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2768 StmtResult BeginDeclStmt = Begin;
2769 StmtResult EndDeclStmt = End;
2770 ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2772 if (RangeVarType->isDependentType()) {
2773 // The range is implicitly used as a placeholder when it is dependent.
2774 RangeVar->markUsed(Context);
2776 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2777 // them in properly when we instantiate the loop.
2778 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2779 if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2780 for (auto *Binding : DD->bindings())
2781 Binding->setType(Context.DependentTy);
2782 LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType()));
2784 } else if (!BeginDeclStmt.get()) {
2785 SourceLocation RangeLoc = RangeVar->getLocation();
2787 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2789 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2790 VK_LValue, ColonLoc);
2791 if (BeginRangeRef.isInvalid())
2792 return StmtError();
2794 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2795 VK_LValue, ColonLoc);
2796 if (EndRangeRef.isInvalid())
2797 return StmtError();
2799 QualType AutoType = Context.getAutoDeductType();
2800 Expr *Range = RangeVar->getInit();
2801 if (!Range)
2802 return StmtError();
2803 QualType RangeType = Range->getType();
2805 if (RequireCompleteType(RangeLoc, RangeType,
2806 diag::err_for_range_incomplete_type))
2807 return StmtError();
2809 // Build auto __begin = begin-expr, __end = end-expr.
2810 // Divide by 2, since the variables are in the inner scope (loop body).
2811 const auto DepthStr = std::to_string(S->getDepth() / 2);
2812 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2813 std::string("__begin") + DepthStr);
2814 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2815 std::string("__end") + DepthStr);
2817 // Build begin-expr and end-expr and attach to __begin and __end variables.
2818 ExprResult BeginExpr, EndExpr;
2819 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2820 // - if _RangeT is an array type, begin-expr and end-expr are __range and
2821 // __range + __bound, respectively, where __bound is the array bound. If
2822 // _RangeT is an array of unknown size or an array of incomplete type,
2823 // the program is ill-formed;
2825 // begin-expr is __range.
2826 BeginExpr = BeginRangeRef;
2827 if (!CoawaitLoc.isInvalid()) {
2828 BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2829 if (BeginExpr.isInvalid())
2830 return StmtError();
2832 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2833 diag::err_for_range_iter_deduction_failure)) {
2834 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2835 return StmtError();
2838 // Find the array bound.
2839 ExprResult BoundExpr;
2840 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2841 BoundExpr = IntegerLiteral::Create(
2842 Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2843 else if (const VariableArrayType *VAT =
2844 dyn_cast<VariableArrayType>(UnqAT)) {
2845 // For a variably modified type we can't just use the expression within
2846 // the array bounds, since we don't want that to be re-evaluated here.
2847 // Rather, we need to determine what it was when the array was first
2848 // created - so we resort to using sizeof(vla)/sizeof(element).
2849 // For e.g.
2850 // void f(int b) {
2851 // int vla[b];
2852 // b = -1; <-- This should not affect the num of iterations below
2853 // for (int &c : vla) { .. }
2854 // }
2856 // FIXME: This results in codegen generating IR that recalculates the
2857 // run-time number of elements (as opposed to just using the IR Value
2858 // that corresponds to the run-time value of each bound that was
2859 // generated when the array was created.) If this proves too embarrassing
2860 // even for unoptimized IR, consider passing a magic-value/cookie to
2861 // codegen that then knows to simply use that initial llvm::Value (that
2862 // corresponds to the bound at time of array creation) within
2863 // getelementptr. But be prepared to pay the price of increasing a
2864 // customized form of coupling between the two components - which could
2865 // be hard to maintain as the codebase evolves.
2867 ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2868 EndVar->getLocation(), UETT_SizeOf,
2869 /*IsType=*/true,
2870 CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2871 VAT->desugar(), RangeLoc))
2872 .getAsOpaquePtr(),
2873 EndVar->getSourceRange());
2874 if (SizeOfVLAExprR.isInvalid())
2875 return StmtError();
2877 ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2878 EndVar->getLocation(), UETT_SizeOf,
2879 /*IsType=*/true,
2880 CreateParsedType(VAT->desugar(),
2881 Context.getTrivialTypeSourceInfo(
2882 VAT->getElementType(), RangeLoc))
2883 .getAsOpaquePtr(),
2884 EndVar->getSourceRange());
2885 if (SizeOfEachElementExprR.isInvalid())
2886 return StmtError();
2888 BoundExpr =
2889 ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2890 SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2891 if (BoundExpr.isInvalid())
2892 return StmtError();
2894 } else {
2895 // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2896 // UnqAT is not incomplete and Range is not type-dependent.
2897 llvm_unreachable("Unexpected array type in for-range");
2900 // end-expr is __range + __bound.
2901 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2902 BoundExpr.get());
2903 if (EndExpr.isInvalid())
2904 return StmtError();
2905 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2906 diag::err_for_range_iter_deduction_failure)) {
2907 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2908 return StmtError();
2910 } else {
2911 OverloadCandidateSet CandidateSet(RangeLoc,
2912 OverloadCandidateSet::CSK_Normal);
2913 BeginEndFunction BEFFailure;
2914 ForRangeStatus RangeStatus = BuildNonArrayForRange(
2915 *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2916 EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2917 &BEFFailure);
2919 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2920 BEFFailure == BEF_begin) {
2921 // If the range is being built from an array parameter, emit a
2922 // a diagnostic that it is being treated as a pointer.
2923 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2924 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2925 QualType ArrayTy = PVD->getOriginalType();
2926 QualType PointerTy = PVD->getType();
2927 if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2928 Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2929 << RangeLoc << PVD << ArrayTy << PointerTy;
2930 Diag(PVD->getLocation(), diag::note_declared_at);
2931 return StmtError();
2936 // If building the range failed, try dereferencing the range expression
2937 // unless a diagnostic was issued or the end function is problematic.
2938 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2939 CoawaitLoc, InitStmt,
2940 LoopVarDecl, ColonLoc,
2941 Range, RangeLoc,
2942 RParenLoc);
2943 if (SR.isInvalid() || SR.isUsable())
2944 return SR;
2947 // Otherwise, emit diagnostics if we haven't already.
2948 if (RangeStatus == FRS_NoViableFunction) {
2949 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2950 CandidateSet.NoteCandidates(
2951 PartialDiagnosticAt(Range->getBeginLoc(),
2952 PDiag(diag::err_for_range_invalid)
2953 << RangeLoc << Range->getType()
2954 << BEFFailure),
2955 *this, OCD_AllCandidates, Range);
2957 // Return an error if no fix was discovered.
2958 if (RangeStatus != FRS_Success)
2959 return StmtError();
2962 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2963 "invalid range expression in for loop");
2965 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2966 // C++1z removes this restriction.
2967 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2968 if (!Context.hasSameType(BeginType, EndType)) {
2969 Diag(RangeLoc, getLangOpts().CPlusPlus17
2970 ? diag::warn_for_range_begin_end_types_differ
2971 : diag::ext_for_range_begin_end_types_differ)
2972 << BeginType << EndType;
2973 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2974 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2977 BeginDeclStmt =
2978 ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2979 EndDeclStmt =
2980 ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2982 const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2983 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2984 VK_LValue, ColonLoc);
2985 if (BeginRef.isInvalid())
2986 return StmtError();
2988 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2989 VK_LValue, ColonLoc);
2990 if (EndRef.isInvalid())
2991 return StmtError();
2993 // Build and check __begin != __end expression.
2994 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2995 BeginRef.get(), EndRef.get());
2996 if (!NotEqExpr.isInvalid())
2997 NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2998 if (!NotEqExpr.isInvalid())
2999 NotEqExpr =
3000 ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
3001 if (NotEqExpr.isInvalid()) {
3002 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3003 << RangeLoc << 0 << BeginRangeRef.get()->getType();
3004 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3005 if (!Context.hasSameType(BeginType, EndType))
3006 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
3007 return StmtError();
3010 // Build and check ++__begin expression.
3011 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3012 VK_LValue, ColonLoc);
3013 if (BeginRef.isInvalid())
3014 return StmtError();
3016 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
3017 if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
3018 // FIXME: getCurScope() should not be used during template instantiation.
3019 // We should pick up the set of unqualified lookup results for operator
3020 // co_await during the initial parse.
3021 IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
3022 if (!IncrExpr.isInvalid())
3023 IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
3024 if (IncrExpr.isInvalid()) {
3025 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3026 << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
3027 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3028 return StmtError();
3031 // Build and check *__begin expression.
3032 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3033 VK_LValue, ColonLoc);
3034 if (BeginRef.isInvalid())
3035 return StmtError();
3037 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
3038 if (DerefExpr.isInvalid()) {
3039 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3040 << RangeLoc << 1 << BeginRangeRef.get()->getType();
3041 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3042 return StmtError();
3045 // Attach *__begin as initializer for VD. Don't touch it if we're just
3046 // trying to determine whether this would be a valid range.
3047 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
3048 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
3049 if (LoopVar->isInvalidDecl() ||
3050 (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
3051 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3055 // Don't bother to actually allocate the result if we're just trying to
3056 // determine whether it would be valid.
3057 if (Kind == BFRK_Check)
3058 return StmtResult();
3060 // In OpenMP loop region loop control variable must be private. Perform
3061 // analysis of first part (if any).
3062 if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
3063 ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
3065 return new (Context) CXXForRangeStmt(
3066 InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
3067 cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
3068 IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
3069 ColonLoc, RParenLoc);
3072 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
3073 /// statement.
3074 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
3075 if (!S || !B)
3076 return StmtError();
3077 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
3079 ForStmt->setBody(B);
3080 return S;
3083 // Warn when the loop variable is a const reference that creates a copy.
3084 // Suggest using the non-reference type for copies. If a copy can be prevented
3085 // suggest the const reference type that would do so.
3086 // For instance, given "for (const &Foo : Range)", suggest
3087 // "for (const Foo : Range)" to denote a copy is made for the loop. If
3088 // possible, also suggest "for (const &Bar : Range)" if this type prevents
3089 // the copy altogether.
3090 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
3091 const VarDecl *VD,
3092 QualType RangeInitType) {
3093 const Expr *InitExpr = VD->getInit();
3094 if (!InitExpr)
3095 return;
3097 QualType VariableType = VD->getType();
3099 if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
3100 if (!Cleanups->cleanupsHaveSideEffects())
3101 InitExpr = Cleanups->getSubExpr();
3103 const MaterializeTemporaryExpr *MTE =
3104 dyn_cast<MaterializeTemporaryExpr>(InitExpr);
3106 // No copy made.
3107 if (!MTE)
3108 return;
3110 const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
3112 // Searching for either UnaryOperator for dereference of a pointer or
3113 // CXXOperatorCallExpr for handling iterators.
3114 while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
3115 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
3116 E = CCE->getArg(0);
3117 } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
3118 const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
3119 E = ME->getBase();
3120 } else {
3121 const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
3122 E = MTE->getSubExpr();
3124 E = E->IgnoreImpCasts();
3127 QualType ReferenceReturnType;
3128 if (isa<UnaryOperator>(E)) {
3129 ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
3130 } else {
3131 const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
3132 const FunctionDecl *FD = Call->getDirectCallee();
3133 QualType ReturnType = FD->getReturnType();
3134 if (ReturnType->isReferenceType())
3135 ReferenceReturnType = ReturnType;
3138 if (!ReferenceReturnType.isNull()) {
3139 // Loop variable creates a temporary. Suggest either to go with
3140 // non-reference loop variable to indicate a copy is made, or
3141 // the correct type to bind a const reference.
3142 SemaRef.Diag(VD->getLocation(),
3143 diag::warn_for_range_const_ref_binds_temp_built_from_ref)
3144 << VD << VariableType << ReferenceReturnType;
3145 QualType NonReferenceType = VariableType.getNonReferenceType();
3146 NonReferenceType.removeLocalConst();
3147 QualType NewReferenceType =
3148 SemaRef.Context.getLValueReferenceType(E->getType().withConst());
3149 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
3150 << NonReferenceType << NewReferenceType << VD->getSourceRange()
3151 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3152 } else if (!VariableType->isRValueReferenceType()) {
3153 // The range always returns a copy, so a temporary is always created.
3154 // Suggest removing the reference from the loop variable.
3155 // If the type is a rvalue reference do not warn since that changes the
3156 // semantic of the code.
3157 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
3158 << VD << RangeInitType;
3159 QualType NonReferenceType = VariableType.getNonReferenceType();
3160 NonReferenceType.removeLocalConst();
3161 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
3162 << NonReferenceType << VD->getSourceRange()
3163 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3167 /// Determines whether the @p VariableType's declaration is a record with the
3168 /// clang::trivial_abi attribute.
3169 static bool hasTrivialABIAttr(QualType VariableType) {
3170 if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
3171 return RD->hasAttr<TrivialABIAttr>();
3173 return false;
3176 // Warns when the loop variable can be changed to a reference type to
3177 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
3178 // "for (const Foo &x : Range)" if this form does not make a copy.
3179 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
3180 const VarDecl *VD) {
3181 const Expr *InitExpr = VD->getInit();
3182 if (!InitExpr)
3183 return;
3185 QualType VariableType = VD->getType();
3187 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
3188 if (!CE->getConstructor()->isCopyConstructor())
3189 return;
3190 } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
3191 if (CE->getCastKind() != CK_LValueToRValue)
3192 return;
3193 } else {
3194 return;
3197 // Small trivially copyable types are cheap to copy. Do not emit the
3198 // diagnostic for these instances. 64 bytes is a common size of a cache line.
3199 // (The function `getTypeSize` returns the size in bits.)
3200 ASTContext &Ctx = SemaRef.Context;
3201 if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
3202 (VariableType.isTriviallyCopyableType(Ctx) ||
3203 hasTrivialABIAttr(VariableType)))
3204 return;
3206 // Suggest changing from a const variable to a const reference variable
3207 // if doing so will prevent a copy.
3208 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
3209 << VD << VariableType;
3210 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
3211 << SemaRef.Context.getLValueReferenceType(VariableType)
3212 << VD->getSourceRange()
3213 << FixItHint::CreateInsertion(VD->getLocation(), "&");
3216 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
3217 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
3218 /// using "const foo x" to show that a copy is made
3219 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
3220 /// Suggest either "const bar x" to keep the copying or "const foo& x" to
3221 /// prevent the copy.
3222 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
3223 /// Suggest "const foo &x" to prevent the copy.
3224 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
3225 const CXXForRangeStmt *ForStmt) {
3226 if (SemaRef.inTemplateInstantiation())
3227 return;
3229 if (SemaRef.Diags.isIgnored(
3230 diag::warn_for_range_const_ref_binds_temp_built_from_ref,
3231 ForStmt->getBeginLoc()) &&
3232 SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
3233 ForStmt->getBeginLoc()) &&
3234 SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
3235 ForStmt->getBeginLoc())) {
3236 return;
3239 const VarDecl *VD = ForStmt->getLoopVariable();
3240 if (!VD)
3241 return;
3243 QualType VariableType = VD->getType();
3245 if (VariableType->isIncompleteType())
3246 return;
3248 const Expr *InitExpr = VD->getInit();
3249 if (!InitExpr)
3250 return;
3252 if (InitExpr->getExprLoc().isMacroID())
3253 return;
3255 if (VariableType->isReferenceType()) {
3256 DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
3257 ForStmt->getRangeInit()->getType());
3258 } else if (VariableType.isConstQualified()) {
3259 DiagnoseForRangeConstVariableCopies(SemaRef, VD);
3263 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
3264 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
3265 /// body cannot be performed until after the type of the range variable is
3266 /// determined.
3267 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
3268 if (!S || !B)
3269 return StmtError();
3271 if (isa<ObjCForCollectionStmt>(S))
3272 return FinishObjCForCollectionStmt(S, B);
3274 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
3275 ForStmt->setBody(B);
3277 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
3278 diag::warn_empty_range_based_for_body);
3280 DiagnoseForRangeVariableCopies(*this, ForStmt);
3282 return S;
3285 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
3286 SourceLocation LabelLoc,
3287 LabelDecl *TheDecl) {
3288 setFunctionHasBranchIntoScope();
3289 TheDecl->markUsed(Context);
3290 return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
3293 StmtResult
3294 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
3295 Expr *E) {
3296 // Convert operand to void*
3297 if (!E->isTypeDependent()) {
3298 QualType ETy = E->getType();
3299 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
3300 ExprResult ExprRes = E;
3301 AssignConvertType ConvTy =
3302 CheckSingleAssignmentConstraints(DestTy, ExprRes);
3303 if (ExprRes.isInvalid())
3304 return StmtError();
3305 E = ExprRes.get();
3306 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
3307 return StmtError();
3310 ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
3311 if (ExprRes.isInvalid())
3312 return StmtError();
3313 E = ExprRes.get();
3315 setFunctionHasIndirectGoto();
3317 return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
3320 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
3321 const Scope &DestScope) {
3322 if (!S.CurrentSEHFinally.empty() &&
3323 DestScope.Contains(*S.CurrentSEHFinally.back())) {
3324 S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
3328 StmtResult
3329 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
3330 Scope *S = CurScope->getContinueParent();
3331 if (!S) {
3332 // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
3333 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
3335 if (S->isConditionVarScope()) {
3336 // We cannot 'continue;' from within a statement expression in the
3337 // initializer of a condition variable because we would jump past the
3338 // initialization of that variable.
3339 return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init));
3341 CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
3343 return new (Context) ContinueStmt(ContinueLoc);
3346 StmtResult
3347 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
3348 Scope *S = CurScope->getBreakParent();
3349 if (!S) {
3350 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
3351 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
3353 if (S->isOpenMPLoopScope())
3354 return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
3355 << "break");
3356 CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
3358 return new (Context) BreakStmt(BreakLoc);
3361 /// Determine whether the given expression might be move-eligible or
3362 /// copy-elidable in either a (co_)return statement or throw expression,
3363 /// without considering function return type, if applicable.
3365 /// \param E The expression being returned from the function or block,
3366 /// being thrown, or being co_returned from a coroutine. This expression
3367 /// might be modified by the implementation.
3369 /// \param Mode Overrides detection of current language mode
3370 /// and uses the rules for C++23.
3372 /// \returns An aggregate which contains the Candidate and isMoveEligible
3373 /// and isCopyElidable methods. If Candidate is non-null, it means
3374 /// isMoveEligible() would be true under the most permissive language standard.
3375 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E,
3376 SimplerImplicitMoveMode Mode) {
3377 if (!E)
3378 return NamedReturnInfo();
3379 // - in a return statement in a function [where] ...
3380 // ... the expression is the name of a non-volatile automatic object ...
3381 const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3382 if (!DR || DR->refersToEnclosingVariableOrCapture())
3383 return NamedReturnInfo();
3384 const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
3385 if (!VD)
3386 return NamedReturnInfo();
3387 NamedReturnInfo Res = getNamedReturnInfo(VD);
3388 if (Res.Candidate && !E->isXValue() &&
3389 (Mode == SimplerImplicitMoveMode::ForceOn ||
3390 (Mode != SimplerImplicitMoveMode::ForceOff &&
3391 getLangOpts().CPlusPlus23))) {
3392 E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(),
3393 CK_NoOp, E, nullptr, VK_XValue,
3394 FPOptionsOverride());
3396 return Res;
3399 /// Determine whether the given NRVO candidate variable is move-eligible or
3400 /// copy-elidable, without considering function return type.
3402 /// \param VD The NRVO candidate variable.
3404 /// \returns An aggregate which contains the Candidate and isMoveEligible
3405 /// and isCopyElidable methods. If Candidate is non-null, it means
3406 /// isMoveEligible() would be true under the most permissive language standard.
3407 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) {
3408 NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable};
3410 // C++20 [class.copy.elision]p3:
3411 // - in a return statement in a function with ...
3412 // (other than a function ... parameter)
3413 if (VD->getKind() == Decl::ParmVar)
3414 Info.S = NamedReturnInfo::MoveEligible;
3415 else if (VD->getKind() != Decl::Var)
3416 return NamedReturnInfo();
3418 // (other than ... a catch-clause parameter)
3419 if (VD->isExceptionVariable())
3420 Info.S = NamedReturnInfo::MoveEligible;
3422 // ...automatic...
3423 if (!VD->hasLocalStorage())
3424 return NamedReturnInfo();
3426 // We don't want to implicitly move out of a __block variable during a return
3427 // because we cannot assume the variable will no longer be used.
3428 if (VD->hasAttr<BlocksAttr>())
3429 return NamedReturnInfo();
3431 QualType VDType = VD->getType();
3432 if (VDType->isObjectType()) {
3433 // C++17 [class.copy.elision]p3:
3434 // ...non-volatile automatic object...
3435 if (VDType.isVolatileQualified())
3436 return NamedReturnInfo();
3437 } else if (VDType->isRValueReferenceType()) {
3438 // C++20 [class.copy.elision]p3:
3439 // ...either a non-volatile object or an rvalue reference to a non-volatile
3440 // object type...
3441 QualType VDReferencedType = VDType.getNonReferenceType();
3442 if (VDReferencedType.isVolatileQualified() ||
3443 !VDReferencedType->isObjectType())
3444 return NamedReturnInfo();
3445 Info.S = NamedReturnInfo::MoveEligible;
3446 } else {
3447 return NamedReturnInfo();
3450 // Variables with higher required alignment than their type's ABI
3451 // alignment cannot use NRVO.
3452 if (!VD->hasDependentAlignment() &&
3453 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType))
3454 Info.S = NamedReturnInfo::MoveEligible;
3456 return Info;
3459 /// Updates given NamedReturnInfo's move-eligible and
3460 /// copy-elidable statuses, considering the function
3461 /// return type criteria as applicable to return statements.
3463 /// \param Info The NamedReturnInfo object to update.
3465 /// \param ReturnType This is the return type of the function.
3466 /// \returns The copy elision candidate, in case the initial return expression
3467 /// was copy elidable, or nullptr otherwise.
3468 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info,
3469 QualType ReturnType) {
3470 if (!Info.Candidate)
3471 return nullptr;
3473 auto invalidNRVO = [&] {
3474 Info = NamedReturnInfo();
3475 return nullptr;
3478 // If we got a non-deduced auto ReturnType, we are in a dependent context and
3479 // there is no point in allowing copy elision since we won't have it deduced
3480 // by the point the VardDecl is instantiated, which is the last chance we have
3481 // of deciding if the candidate is really copy elidable.
3482 if ((ReturnType->getTypeClass() == Type::TypeClass::Auto &&
3483 ReturnType->isCanonicalUnqualified()) ||
3484 ReturnType->isSpecificBuiltinType(BuiltinType::Dependent))
3485 return invalidNRVO();
3487 if (!ReturnType->isDependentType()) {
3488 // - in a return statement in a function with ...
3489 // ... a class return type ...
3490 if (!ReturnType->isRecordType())
3491 return invalidNRVO();
3493 QualType VDType = Info.Candidate->getType();
3494 // ... the same cv-unqualified type as the function return type ...
3495 // When considering moving this expression out, allow dissimilar types.
3496 if (!VDType->isDependentType() &&
3497 !Context.hasSameUnqualifiedType(ReturnType, VDType))
3498 Info.S = NamedReturnInfo::MoveEligible;
3500 return Info.isCopyElidable() ? Info.Candidate : nullptr;
3503 /// Verify that the initialization sequence that was picked for the
3504 /// first overload resolution is permissible under C++98.
3506 /// Reject (possibly converting) constructors not taking an rvalue reference,
3507 /// or user conversion operators which are not ref-qualified.
3508 static bool
3509 VerifyInitializationSequenceCXX98(const Sema &S,
3510 const InitializationSequence &Seq) {
3511 const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) {
3512 return Step.Kind == InitializationSequence::SK_ConstructorInitialization ||
3513 Step.Kind == InitializationSequence::SK_UserConversion;
3515 if (Step != Seq.step_end()) {
3516 const auto *FD = Step->Function.Function;
3517 if (isa<CXXConstructorDecl>(FD)
3518 ? !FD->getParamDecl(0)->getType()->isRValueReferenceType()
3519 : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None)
3520 return false;
3522 return true;
3525 /// Perform the initialization of a potentially-movable value, which
3526 /// is the result of return value.
3528 /// This routine implements C++20 [class.copy.elision]p3, which attempts to
3529 /// treat returned lvalues as rvalues in certain cases (to prefer move
3530 /// construction), then falls back to treating them as lvalues if that failed.
3531 ExprResult Sema::PerformMoveOrCopyInitialization(
3532 const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value,
3533 bool SupressSimplerImplicitMoves) {
3534 if (getLangOpts().CPlusPlus &&
3535 (!getLangOpts().CPlusPlus23 || SupressSimplerImplicitMoves) &&
3536 NRInfo.isMoveEligible()) {
3537 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3538 CK_NoOp, Value, VK_XValue, FPOptionsOverride());
3539 Expr *InitExpr = &AsRvalue;
3540 auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(),
3541 Value->getBeginLoc());
3542 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3543 auto Res = Seq.getFailedOverloadResult();
3544 if ((Res == OR_Success || Res == OR_Deleted) &&
3545 (getLangOpts().CPlusPlus11 ||
3546 VerifyInitializationSequenceCXX98(*this, Seq))) {
3547 // Promote "AsRvalue" to the heap, since we now need this
3548 // expression node to persist.
3549 Value =
3550 ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value,
3551 nullptr, VK_XValue, FPOptionsOverride());
3552 // Complete type-checking the initialization of the return type
3553 // using the constructor we found.
3554 return Seq.Perform(*this, Entity, Kind, Value);
3557 // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3558 // above, or overload resolution failed. Either way, we need to try
3559 // (again) now with the return value expression as written.
3560 return PerformCopyInitialization(Entity, SourceLocation(), Value);
3563 /// Determine whether the declared return type of the specified function
3564 /// contains 'auto'.
3565 static bool hasDeducedReturnType(FunctionDecl *FD) {
3566 const FunctionProtoType *FPT =
3567 FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3568 return FPT->getReturnType()->isUndeducedType();
3571 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3572 /// for capturing scopes.
3574 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,
3575 Expr *RetValExp,
3576 NamedReturnInfo &NRInfo,
3577 bool SupressSimplerImplicitMoves) {
3578 // If this is the first return we've seen, infer the return type.
3579 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3580 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3581 QualType FnRetType = CurCap->ReturnType;
3582 LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3583 if (CurLambda && CurLambda->CallOperator->getType().isNull())
3584 return StmtError();
3585 bool HasDeducedReturnType =
3586 CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3588 if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3589 (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3590 if (RetValExp) {
3591 ExprResult ER =
3592 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3593 if (ER.isInvalid())
3594 return StmtError();
3595 RetValExp = ER.get();
3597 return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3598 /* NRVOCandidate=*/nullptr);
3601 if (HasDeducedReturnType) {
3602 FunctionDecl *FD = CurLambda->CallOperator;
3603 // If we've already decided this lambda is invalid, e.g. because
3604 // we saw a `return` whose expression had an error, don't keep
3605 // trying to deduce its return type.
3606 if (FD->isInvalidDecl())
3607 return StmtError();
3608 // In C++1y, the return type may involve 'auto'.
3609 // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3610 if (CurCap->ReturnType.isNull())
3611 CurCap->ReturnType = FD->getReturnType();
3613 AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3614 assert(AT && "lost auto type from lambda return type");
3615 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3616 FD->setInvalidDecl();
3617 // FIXME: preserve the ill-formed return expression.
3618 return StmtError();
3620 CurCap->ReturnType = FnRetType = FD->getReturnType();
3621 } else if (CurCap->HasImplicitReturnType) {
3622 // For blocks/lambdas with implicit return types, we check each return
3623 // statement individually, and deduce the common return type when the block
3624 // or lambda is completed.
3625 // FIXME: Fold this into the 'auto' codepath above.
3626 if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3627 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3628 if (Result.isInvalid())
3629 return StmtError();
3630 RetValExp = Result.get();
3632 // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3633 // when deducing a return type for a lambda-expression (or by extension
3634 // for a block). These rules differ from the stated C++11 rules only in
3635 // that they remove top-level cv-qualifiers.
3636 if (!CurContext->isDependentContext())
3637 FnRetType = RetValExp->getType().getUnqualifiedType();
3638 else
3639 FnRetType = CurCap->ReturnType = Context.DependentTy;
3640 } else {
3641 if (RetValExp) {
3642 // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3643 // initializer list, because it is not an expression (even
3644 // though we represent it as one). We still deduce 'void'.
3645 Diag(ReturnLoc, diag::err_lambda_return_init_list)
3646 << RetValExp->getSourceRange();
3649 FnRetType = Context.VoidTy;
3652 // Although we'll properly infer the type of the block once it's completed,
3653 // make sure we provide a return type now for better error recovery.
3654 if (CurCap->ReturnType.isNull())
3655 CurCap->ReturnType = FnRetType;
3657 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3659 if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3660 if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3661 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3662 return StmtError();
3664 } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3665 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3666 return StmtError();
3667 } else {
3668 assert(CurLambda && "unknown kind of captured scope");
3669 if (CurLambda->CallOperator->getType()
3670 ->castAs<FunctionType>()
3671 ->getNoReturnAttr()) {
3672 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3673 return StmtError();
3677 // Otherwise, verify that this result type matches the previous one. We are
3678 // pickier with blocks than for normal functions because we don't have GCC
3679 // compatibility to worry about here.
3680 if (FnRetType->isDependentType()) {
3681 // Delay processing for now. TODO: there are lots of dependent
3682 // types we can conclusively prove aren't void.
3683 } else if (FnRetType->isVoidType()) {
3684 if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3685 !(getLangOpts().CPlusPlus &&
3686 (RetValExp->isTypeDependent() ||
3687 RetValExp->getType()->isVoidType()))) {
3688 if (!getLangOpts().CPlusPlus &&
3689 RetValExp->getType()->isVoidType())
3690 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3691 else {
3692 Diag(ReturnLoc, diag::err_return_block_has_expr);
3693 RetValExp = nullptr;
3696 } else if (!RetValExp) {
3697 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3698 } else if (!RetValExp->isTypeDependent()) {
3699 // we have a non-void block with an expression, continue checking
3701 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3702 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3703 // function return.
3705 // In C++ the return statement is handled via a copy initialization.
3706 // the C version of which boils down to CheckSingleAssignmentConstraints.
3707 InitializedEntity Entity =
3708 InitializedEntity::InitializeResult(ReturnLoc, FnRetType);
3709 ExprResult Res = PerformMoveOrCopyInitialization(
3710 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
3711 if (Res.isInvalid()) {
3712 // FIXME: Cleanup temporaries here, anyway?
3713 return StmtError();
3715 RetValExp = Res.get();
3716 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3719 if (RetValExp) {
3720 ExprResult ER =
3721 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3722 if (ER.isInvalid())
3723 return StmtError();
3724 RetValExp = ER.get();
3726 auto *Result =
3727 ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3729 // If we need to check for the named return value optimization,
3730 // or if we need to infer the return type,
3731 // save the return statement in our scope for later processing.
3732 if (CurCap->HasImplicitReturnType || NRVOCandidate)
3733 FunctionScopes.back()->Returns.push_back(Result);
3735 if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3736 FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3738 if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap);
3739 CurBlock && CurCap->HasImplicitReturnType && RetValExp &&
3740 RetValExp->containsErrors())
3741 CurBlock->TheDecl->setInvalidDecl();
3743 return Result;
3746 namespace {
3747 /// Marks all typedefs in all local classes in a type referenced.
3749 /// In a function like
3750 /// auto f() {
3751 /// struct S { typedef int a; };
3752 /// return S();
3753 /// }
3755 /// the local type escapes and could be referenced in some TUs but not in
3756 /// others. Pretend that all local typedefs are always referenced, to not warn
3757 /// on this. This isn't necessary if f has internal linkage, or the typedef
3758 /// is private.
3759 class LocalTypedefNameReferencer
3760 : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3761 public:
3762 LocalTypedefNameReferencer(Sema &S) : S(S) {}
3763 bool VisitRecordType(const RecordType *RT);
3764 private:
3765 Sema &S;
3767 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3768 auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3769 if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3770 R->isDependentType())
3771 return true;
3772 for (auto *TmpD : R->decls())
3773 if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3774 if (T->getAccess() != AS_private || R->hasFriends())
3775 S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3776 return true;
3780 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3781 return FD->getTypeSourceInfo()
3782 ->getTypeLoc()
3783 .getAsAdjusted<FunctionProtoTypeLoc>()
3784 .getReturnLoc();
3787 /// Deduce the return type for a function from a returned expression, per
3788 /// C++1y [dcl.spec.auto]p6.
3789 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3790 SourceLocation ReturnLoc,
3791 Expr *RetExpr, const AutoType *AT) {
3792 // If this is the conversion function for a lambda, we choose to deduce its
3793 // type from the corresponding call operator, not from the synthesized return
3794 // statement within it. See Sema::DeduceReturnType.
3795 if (isLambdaConversionOperator(FD))
3796 return false;
3798 if (RetExpr && isa<InitListExpr>(RetExpr)) {
3799 // If the deduction is for a return statement and the initializer is
3800 // a braced-init-list, the program is ill-formed.
3801 Diag(RetExpr->getExprLoc(),
3802 getCurLambda() ? diag::err_lambda_return_init_list
3803 : diag::err_auto_fn_return_init_list)
3804 << RetExpr->getSourceRange();
3805 return true;
3808 if (FD->isDependentContext()) {
3809 // C++1y [dcl.spec.auto]p12:
3810 // Return type deduction [...] occurs when the definition is
3811 // instantiated even if the function body contains a return
3812 // statement with a non-type-dependent operand.
3813 assert(AT->isDeduced() && "should have deduced to dependent type");
3814 return false;
3817 TypeLoc OrigResultType = getReturnTypeLoc(FD);
3818 // In the case of a return with no operand, the initializer is considered
3819 // to be void().
3820 CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation());
3821 if (!RetExpr) {
3822 // For a function with a deduced result type to return with omitted
3823 // expression, the result type as written must be 'auto' or
3824 // 'decltype(auto)', possibly cv-qualified or constrained, but not
3825 // ref-qualified.
3826 if (!OrigResultType.getType()->getAs<AutoType>()) {
3827 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3828 << OrigResultType.getType();
3829 return true;
3831 RetExpr = &VoidVal;
3834 QualType Deduced = AT->getDeducedType();
3836 // Otherwise, [...] deduce a value for U using the rules of template
3837 // argument deduction.
3838 auto RetExprLoc = RetExpr->getExprLoc();
3839 TemplateDeductionInfo Info(RetExprLoc);
3840 SourceLocation TemplateSpecLoc;
3841 if (RetExpr->getType() == Context.OverloadTy) {
3842 auto FindResult = OverloadExpr::find(RetExpr);
3843 if (FindResult.Expression)
3844 TemplateSpecLoc = FindResult.Expression->getNameLoc();
3846 TemplateSpecCandidateSet FailedTSC(TemplateSpecLoc);
3847 TemplateDeductionResult Res = DeduceAutoType(
3848 OrigResultType, RetExpr, Deduced, Info, /*DependentDeduction=*/false,
3849 /*IgnoreConstraints=*/false, &FailedTSC);
3850 if (Res != TDK_Success && FD->isInvalidDecl())
3851 return true;
3852 switch (Res) {
3853 case TDK_Success:
3854 break;
3855 case TDK_AlreadyDiagnosed:
3856 return true;
3857 case TDK_Inconsistent: {
3858 // If a function with a declared return type that contains a placeholder
3859 // type has multiple return statements, the return type is deduced for
3860 // each return statement. [...] if the type deduced is not the same in
3861 // each deduction, the program is ill-formed.
3862 const LambdaScopeInfo *LambdaSI = getCurLambda();
3863 if (LambdaSI && LambdaSI->HasImplicitReturnType)
3864 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3865 << Info.SecondArg << Info.FirstArg << true /*IsLambda*/;
3866 else
3867 Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3868 << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg
3869 << Info.FirstArg;
3870 return true;
3872 default:
3873 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3874 << OrigResultType.getType() << RetExpr->getType();
3875 FailedTSC.NoteCandidates(*this, RetExprLoc);
3876 return true;
3880 // If a local type is part of the returned type, mark its fields as
3881 // referenced.
3882 LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType());
3884 // CUDA: Kernel function must have 'void' return type.
3885 if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() &&
3886 !Deduced->isVoidType()) {
3887 Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3888 << FD->getType() << FD->getSourceRange();
3889 return true;
3892 if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced)
3893 // Update all declarations of the function to have the deduced return type.
3894 Context.adjustDeducedFunctionResultType(FD, Deduced);
3896 return false;
3899 StmtResult
3900 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3901 Scope *CurScope) {
3902 // Correct typos, in case the containing function returns 'auto' and
3903 // RetValExp should determine the deduced type.
3904 ExprResult RetVal = CorrectDelayedTyposInExpr(
3905 RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
3906 if (RetVal.isInvalid())
3907 return StmtError();
3908 StmtResult R =
3909 BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true);
3910 if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext())
3911 return R;
3913 VarDecl *VD =
3914 const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate());
3916 CurScope->updateNRVOCandidate(VD);
3918 CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3920 return R;
3923 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S,
3924 const Expr *E) {
3925 if (!E || !S.getLangOpts().CPlusPlus23 || !S.getLangOpts().MSVCCompat)
3926 return false;
3927 const Decl *D = E->getReferencedDeclOfCallee();
3928 if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation()))
3929 return false;
3930 for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) {
3931 if (DC->isStdNamespace())
3932 return true;
3934 return false;
3937 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3938 bool AllowRecovery) {
3939 // Check for unexpanded parameter packs.
3940 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3941 return StmtError();
3943 // HACK: We suppress simpler implicit move here in msvc compatibility mode
3944 // just as a temporary work around, as the MSVC STL has issues with
3945 // this change.
3946 bool SupressSimplerImplicitMoves =
3947 CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp);
3948 NamedReturnInfo NRInfo = getNamedReturnInfo(
3949 RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff
3950 : SimplerImplicitMoveMode::Normal);
3952 if (isa<CapturingScopeInfo>(getCurFunction()))
3953 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo,
3954 SupressSimplerImplicitMoves);
3956 QualType FnRetType;
3957 QualType RelatedRetType;
3958 const AttrVec *Attrs = nullptr;
3959 bool isObjCMethod = false;
3961 if (const FunctionDecl *FD = getCurFunctionDecl()) {
3962 FnRetType = FD->getReturnType();
3963 if (FD->hasAttrs())
3964 Attrs = &FD->getAttrs();
3965 if (FD->isNoReturn())
3966 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
3967 if (FD->isMain() && RetValExp)
3968 if (isa<CXXBoolLiteralExpr>(RetValExp))
3969 Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3970 << RetValExp->getSourceRange();
3971 if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3972 if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3973 if (RT->getDecl()->isOrContainsUnion())
3974 Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3977 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3978 FnRetType = MD->getReturnType();
3979 isObjCMethod = true;
3980 if (MD->hasAttrs())
3981 Attrs = &MD->getAttrs();
3982 if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3983 // In the implementation of a method with a related return type, the
3984 // type used to type-check the validity of return statements within the
3985 // method body is a pointer to the type of the class being implemented.
3986 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3987 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3989 } else // If we don't have a function/method context, bail.
3990 return StmtError();
3992 if (RetValExp) {
3993 const auto *ATy = dyn_cast<ArrayType>(RetValExp->getType());
3994 if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
3995 Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
3996 return StmtError();
4000 // C++1z: discarded return statements are not considered when deducing a
4001 // return type.
4002 if (ExprEvalContexts.back().isDiscardedStatementContext() &&
4003 FnRetType->getContainedAutoType()) {
4004 if (RetValExp) {
4005 ExprResult ER =
4006 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4007 if (ER.isInvalid())
4008 return StmtError();
4009 RetValExp = ER.get();
4011 return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4012 /* NRVOCandidate=*/nullptr);
4015 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
4016 // deduction.
4017 if (getLangOpts().CPlusPlus14) {
4018 if (AutoType *AT = FnRetType->getContainedAutoType()) {
4019 FunctionDecl *FD = cast<FunctionDecl>(CurContext);
4020 // If we've already decided this function is invalid, e.g. because
4021 // we saw a `return` whose expression had an error, don't keep
4022 // trying to deduce its return type.
4023 // (Some return values may be needlessly wrapped in RecoveryExpr).
4024 if (FD->isInvalidDecl() ||
4025 DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
4026 FD->setInvalidDecl();
4027 if (!AllowRecovery)
4028 return StmtError();
4029 // The deduction failure is diagnosed and marked, try to recover.
4030 if (RetValExp) {
4031 // Wrap return value with a recovery expression of the previous type.
4032 // If no deduction yet, use DependentTy.
4033 auto Recovery = CreateRecoveryExpr(
4034 RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp,
4035 AT->isDeduced() ? FnRetType : QualType());
4036 if (Recovery.isInvalid())
4037 return StmtError();
4038 RetValExp = Recovery.get();
4039 } else {
4040 // Nothing to do: a ReturnStmt with no value is fine recovery.
4042 } else {
4043 FnRetType = FD->getReturnType();
4047 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
4049 bool HasDependentReturnType = FnRetType->isDependentType();
4051 ReturnStmt *Result = nullptr;
4052 if (FnRetType->isVoidType()) {
4053 if (RetValExp) {
4054 if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) {
4055 // We simply never allow init lists as the return value of void
4056 // functions. This is compatible because this was never allowed before,
4057 // so there's no legacy code to deal with.
4058 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4059 int FunctionKind = 0;
4060 if (isa<ObjCMethodDecl>(CurDecl))
4061 FunctionKind = 1;
4062 else if (isa<CXXConstructorDecl>(CurDecl))
4063 FunctionKind = 2;
4064 else if (isa<CXXDestructorDecl>(CurDecl))
4065 FunctionKind = 3;
4067 Diag(ReturnLoc, diag::err_return_init_list)
4068 << CurDecl << FunctionKind << RetValExp->getSourceRange();
4070 // Preserve the initializers in the AST.
4071 RetValExp = AllowRecovery
4072 ? CreateRecoveryExpr(ILE->getLBraceLoc(),
4073 ILE->getRBraceLoc(), ILE->inits())
4074 .get()
4075 : nullptr;
4076 } else if (!RetValExp->isTypeDependent()) {
4077 // C99 6.8.6.4p1 (ext_ since GCC warns)
4078 unsigned D = diag::ext_return_has_expr;
4079 if (RetValExp->getType()->isVoidType()) {
4080 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4081 if (isa<CXXConstructorDecl>(CurDecl) ||
4082 isa<CXXDestructorDecl>(CurDecl))
4083 D = diag::err_ctor_dtor_returns_void;
4084 else
4085 D = diag::ext_return_has_void_expr;
4087 else {
4088 ExprResult Result = RetValExp;
4089 Result = IgnoredValueConversions(Result.get());
4090 if (Result.isInvalid())
4091 return StmtError();
4092 RetValExp = Result.get();
4093 RetValExp = ImpCastExprToType(RetValExp,
4094 Context.VoidTy, CK_ToVoid).get();
4096 // return of void in constructor/destructor is illegal in C++.
4097 if (D == diag::err_ctor_dtor_returns_void) {
4098 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4099 Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
4100 << RetValExp->getSourceRange();
4102 // return (some void expression); is legal in C++.
4103 else if (D != diag::ext_return_has_void_expr ||
4104 !getLangOpts().CPlusPlus) {
4105 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4107 int FunctionKind = 0;
4108 if (isa<ObjCMethodDecl>(CurDecl))
4109 FunctionKind = 1;
4110 else if (isa<CXXConstructorDecl>(CurDecl))
4111 FunctionKind = 2;
4112 else if (isa<CXXDestructorDecl>(CurDecl))
4113 FunctionKind = 3;
4115 Diag(ReturnLoc, D)
4116 << CurDecl << FunctionKind << RetValExp->getSourceRange();
4120 if (RetValExp) {
4121 ExprResult ER =
4122 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4123 if (ER.isInvalid())
4124 return StmtError();
4125 RetValExp = ER.get();
4129 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4130 /* NRVOCandidate=*/nullptr);
4131 } else if (!RetValExp && !HasDependentReturnType) {
4132 FunctionDecl *FD = getCurFunctionDecl();
4134 if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) {
4135 // The intended return type might have been "void", so don't warn.
4136 } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
4137 // C++11 [stmt.return]p2
4138 Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
4139 << FD << FD->isConsteval();
4140 FD->setInvalidDecl();
4141 } else {
4142 // C99 6.8.6.4p1 (ext_ since GCC warns)
4143 // C90 6.6.6.4p4
4144 unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
4145 : diag::warn_return_missing_expr;
4146 // Note that at this point one of getCurFunctionDecl() or
4147 // getCurMethodDecl() must be non-null (see above).
4148 assert((getCurFunctionDecl() || getCurMethodDecl()) &&
4149 "Not in a FunctionDecl or ObjCMethodDecl?");
4150 bool IsMethod = FD == nullptr;
4151 const NamedDecl *ND =
4152 IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
4153 Diag(ReturnLoc, DiagID) << ND << IsMethod;
4156 Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
4157 /* NRVOCandidate=*/nullptr);
4158 } else {
4159 assert(RetValExp || HasDependentReturnType);
4160 QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
4162 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
4163 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
4164 // function return.
4166 // In C++ the return statement is handled via a copy initialization,
4167 // the C version of which boils down to CheckSingleAssignmentConstraints.
4168 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
4169 // we have a non-void function with an expression, continue checking
4170 InitializedEntity Entity =
4171 InitializedEntity::InitializeResult(ReturnLoc, RetType);
4172 ExprResult Res = PerformMoveOrCopyInitialization(
4173 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
4174 if (Res.isInvalid() && AllowRecovery)
4175 Res = CreateRecoveryExpr(RetValExp->getBeginLoc(),
4176 RetValExp->getEndLoc(), RetValExp, RetType);
4177 if (Res.isInvalid()) {
4178 // FIXME: Clean up temporaries here anyway?
4179 return StmtError();
4181 RetValExp = Res.getAs<Expr>();
4183 // If we have a related result type, we need to implicitly
4184 // convert back to the formal result type. We can't pretend to
4185 // initialize the result again --- we might end double-retaining
4186 // --- so instead we initialize a notional temporary.
4187 if (!RelatedRetType.isNull()) {
4188 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
4189 FnRetType);
4190 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
4191 if (Res.isInvalid()) {
4192 // FIXME: Clean up temporaries here anyway?
4193 return StmtError();
4195 RetValExp = Res.getAs<Expr>();
4198 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
4199 getCurFunctionDecl());
4202 if (RetValExp) {
4203 ExprResult ER =
4204 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4205 if (ER.isInvalid())
4206 return StmtError();
4207 RetValExp = ER.get();
4209 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
4212 // If we need to check for the named return value optimization, save the
4213 // return statement in our scope for later processing.
4214 if (Result->getNRVOCandidate())
4215 FunctionScopes.back()->Returns.push_back(Result);
4217 if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
4218 FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
4220 return Result;
4223 StmtResult
4224 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
4225 SourceLocation RParen, Decl *Parm,
4226 Stmt *Body) {
4227 VarDecl *Var = cast_or_null<VarDecl>(Parm);
4228 if (Var && Var->isInvalidDecl())
4229 return StmtError();
4231 return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
4234 StmtResult
4235 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
4236 return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
4239 StmtResult
4240 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4241 MultiStmtArg CatchStmts, Stmt *Finally) {
4242 if (!getLangOpts().ObjCExceptions)
4243 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
4245 // Objective-C try is incompatible with SEH __try.
4246 sema::FunctionScopeInfo *FSI = getCurFunction();
4247 if (FSI->FirstSEHTryLoc.isValid()) {
4248 Diag(AtLoc, diag::err_mixing_cxx_try_seh_try) << 1;
4249 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4252 FSI->setHasObjCTry(AtLoc);
4253 unsigned NumCatchStmts = CatchStmts.size();
4254 return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
4255 NumCatchStmts, Finally);
4258 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
4259 if (Throw) {
4260 ExprResult Result = DefaultLvalueConversion(Throw);
4261 if (Result.isInvalid())
4262 return StmtError();
4264 Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
4265 if (Result.isInvalid())
4266 return StmtError();
4267 Throw = Result.get();
4269 QualType ThrowType = Throw->getType();
4270 // Make sure the expression type is an ObjC pointer or "void *".
4271 if (!ThrowType->isDependentType() &&
4272 !ThrowType->isObjCObjectPointerType()) {
4273 const PointerType *PT = ThrowType->getAs<PointerType>();
4274 if (!PT || !PT->getPointeeType()->isVoidType())
4275 return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
4276 << Throw->getType() << Throw->getSourceRange());
4280 return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
4283 StmtResult
4284 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4285 Scope *CurScope) {
4286 if (!getLangOpts().ObjCExceptions)
4287 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
4289 if (!Throw) {
4290 // @throw without an expression designates a rethrow (which must occur
4291 // in the context of an @catch clause).
4292 Scope *AtCatchParent = CurScope;
4293 while (AtCatchParent && !AtCatchParent->isAtCatchScope())
4294 AtCatchParent = AtCatchParent->getParent();
4295 if (!AtCatchParent)
4296 return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
4298 return BuildObjCAtThrowStmt(AtLoc, Throw);
4301 ExprResult
4302 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
4303 ExprResult result = DefaultLvalueConversion(operand);
4304 if (result.isInvalid())
4305 return ExprError();
4306 operand = result.get();
4308 // Make sure the expression type is an ObjC pointer or "void *".
4309 QualType type = operand->getType();
4310 if (!type->isDependentType() &&
4311 !type->isObjCObjectPointerType()) {
4312 const PointerType *pointerType = type->getAs<PointerType>();
4313 if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
4314 if (getLangOpts().CPlusPlus) {
4315 if (RequireCompleteType(atLoc, type,
4316 diag::err_incomplete_receiver_type))
4317 return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4318 << type << operand->getSourceRange();
4320 ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
4321 if (result.isInvalid())
4322 return ExprError();
4323 if (!result.isUsable())
4324 return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4325 << type << operand->getSourceRange();
4327 operand = result.get();
4328 } else {
4329 return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4330 << type << operand->getSourceRange();
4335 // The operand to @synchronized is a full-expression.
4336 return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
4339 StmtResult
4340 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
4341 Stmt *SyncBody) {
4342 // We can't jump into or indirect-jump out of a @synchronized block.
4343 setFunctionHasBranchProtectedScope();
4344 return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
4347 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
4348 /// and creates a proper catch handler from them.
4349 StmtResult
4350 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
4351 Stmt *HandlerBlock) {
4352 // There's nothing to test that ActOnExceptionDecl didn't already test.
4353 return new (Context)
4354 CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
4357 StmtResult
4358 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
4359 setFunctionHasBranchProtectedScope();
4360 return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
4363 namespace {
4364 class CatchHandlerType {
4365 QualType QT;
4366 unsigned IsPointer : 1;
4368 // This is a special constructor to be used only with DenseMapInfo's
4369 // getEmptyKey() and getTombstoneKey() functions.
4370 friend struct llvm::DenseMapInfo<CatchHandlerType>;
4371 enum Unique { ForDenseMap };
4372 CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4374 public:
4375 /// Used when creating a CatchHandlerType from a handler type; will determine
4376 /// whether the type is a pointer or reference and will strip off the top
4377 /// level pointer and cv-qualifiers.
4378 CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4379 if (QT->isPointerType())
4380 IsPointer = true;
4382 QT = QT.getUnqualifiedType();
4383 if (IsPointer || QT->isReferenceType())
4384 QT = QT->getPointeeType();
4387 /// Used when creating a CatchHandlerType from a base class type; pretends the
4388 /// type passed in had the pointer qualifier, does not need to get an
4389 /// unqualified type.
4390 CatchHandlerType(QualType QT, bool IsPointer)
4391 : QT(QT), IsPointer(IsPointer) {}
4393 QualType underlying() const { return QT; }
4394 bool isPointer() const { return IsPointer; }
4396 friend bool operator==(const CatchHandlerType &LHS,
4397 const CatchHandlerType &RHS) {
4398 // If the pointer qualification does not match, we can return early.
4399 if (LHS.IsPointer != RHS.IsPointer)
4400 return false;
4401 // Otherwise, check the underlying type without cv-qualifiers.
4402 return LHS.QT == RHS.QT;
4405 } // namespace
4407 namespace llvm {
4408 template <> struct DenseMapInfo<CatchHandlerType> {
4409 static CatchHandlerType getEmptyKey() {
4410 return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4411 CatchHandlerType::ForDenseMap);
4414 static CatchHandlerType getTombstoneKey() {
4415 return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4416 CatchHandlerType::ForDenseMap);
4419 static unsigned getHashValue(const CatchHandlerType &Base) {
4420 return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4423 static bool isEqual(const CatchHandlerType &LHS,
4424 const CatchHandlerType &RHS) {
4425 return LHS == RHS;
4430 namespace {
4431 class CatchTypePublicBases {
4432 const llvm::DenseMap<QualType, CXXCatchStmt *> &TypesToCheck;
4434 CXXCatchStmt *FoundHandler;
4435 QualType FoundHandlerType;
4436 QualType TestAgainstType;
4438 public:
4439 CatchTypePublicBases(const llvm::DenseMap<QualType, CXXCatchStmt *> &T,
4440 QualType QT)
4441 : TypesToCheck(T), FoundHandler(nullptr), TestAgainstType(QT) {}
4443 CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4444 QualType getFoundHandlerType() const { return FoundHandlerType; }
4446 bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4447 if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4448 QualType Check = S->getType().getCanonicalType();
4449 const auto &M = TypesToCheck;
4450 auto I = M.find(Check);
4451 if (I != M.end()) {
4452 // We're pretty sure we found what we need to find. However, we still
4453 // need to make sure that we properly compare for pointers and
4454 // references, to handle cases like:
4456 // } catch (Base *b) {
4457 // } catch (Derived &d) {
4458 // }
4460 // where there is a qualification mismatch that disqualifies this
4461 // handler as a potential problem.
4462 if (I->second->getCaughtType()->isPointerType() ==
4463 TestAgainstType->isPointerType()) {
4464 FoundHandler = I->second;
4465 FoundHandlerType = Check;
4466 return true;
4470 return false;
4475 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4476 /// handlers and creates a try statement from them.
4477 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4478 ArrayRef<Stmt *> Handlers) {
4479 const llvm::Triple &T = Context.getTargetInfo().getTriple();
4480 const bool IsOpenMPGPUTarget =
4481 getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
4482 // Don't report an error if 'try' is used in system headers or in an OpenMP
4483 // target region compiled for a GPU architecture.
4484 if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
4485 !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4486 // Delay error emission for the OpenMP device code.
4487 targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4490 // In OpenMP target regions, we assume that catch is never reached on GPU
4491 // targets.
4492 if (IsOpenMPGPUTarget)
4493 targetDiag(TryLoc, diag::warn_try_not_valid_on_target) << T.str();
4495 // Exceptions aren't allowed in CUDA device code.
4496 if (getLangOpts().CUDA)
4497 CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4498 << "try" << CurrentCUDATarget();
4500 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4501 Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4503 sema::FunctionScopeInfo *FSI = getCurFunction();
4505 // C++ try is incompatible with SEH __try.
4506 if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4507 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0;
4508 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4511 const unsigned NumHandlers = Handlers.size();
4512 assert(!Handlers.empty() &&
4513 "The parser shouldn't call this if there are no handlers.");
4515 llvm::DenseMap<QualType, CXXCatchStmt *> HandledBaseTypes;
4516 llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4517 for (unsigned i = 0; i < NumHandlers; ++i) {
4518 CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4520 // Diagnose when the handler is a catch-all handler, but it isn't the last
4521 // handler for the try block. [except.handle]p5. Also, skip exception
4522 // declarations that are invalid, since we can't usefully report on them.
4523 if (!H->getExceptionDecl()) {
4524 if (i < NumHandlers - 1)
4525 return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4526 continue;
4527 } else if (H->getExceptionDecl()->isInvalidDecl())
4528 continue;
4530 // Walk the type hierarchy to diagnose when this type has already been
4531 // handled (duplication), or cannot be handled (derivation inversion). We
4532 // ignore top-level cv-qualifiers, per [except.handle]p3
4533 CatchHandlerType HandlerCHT = H->getCaughtType().getCanonicalType();
4535 // We can ignore whether the type is a reference or a pointer; we need the
4536 // underlying declaration type in order to get at the underlying record
4537 // decl, if there is one.
4538 QualType Underlying = HandlerCHT.underlying();
4539 if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4540 if (!RD->hasDefinition())
4541 continue;
4542 // Check that none of the public, unambiguous base classes are in the
4543 // map ([except.handle]p1). Give the base classes the same pointer
4544 // qualification as the original type we are basing off of. This allows
4545 // comparison against the handler type using the same top-level pointer
4546 // as the original type.
4547 CXXBasePaths Paths;
4548 Paths.setOrigin(RD);
4549 CatchTypePublicBases CTPB(HandledBaseTypes,
4550 H->getCaughtType().getCanonicalType());
4551 if (RD->lookupInBases(CTPB, Paths)) {
4552 const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4553 if (!Paths.isAmbiguous(
4554 CanQualType::CreateUnsafe(CTPB.getFoundHandlerType()))) {
4555 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4556 diag::warn_exception_caught_by_earlier_handler)
4557 << H->getCaughtType();
4558 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4559 diag::note_previous_exception_handler)
4560 << Problem->getCaughtType();
4563 // Strip the qualifiers here because we're going to be comparing this
4564 // type to the base type specifiers of a class, which are ignored in a
4565 // base specifier per [class.derived.general]p2.
4566 HandledBaseTypes[Underlying.getUnqualifiedType()] = H;
4569 // Add the type the list of ones we have handled; diagnose if we've already
4570 // handled it.
4571 auto R = HandledTypes.insert(
4572 std::make_pair(H->getCaughtType().getCanonicalType(), H));
4573 if (!R.second) {
4574 const CXXCatchStmt *Problem = R.first->second;
4575 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4576 diag::warn_exception_caught_by_earlier_handler)
4577 << H->getCaughtType();
4578 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4579 diag::note_previous_exception_handler)
4580 << Problem->getCaughtType();
4584 FSI->setHasCXXTry(TryLoc);
4586 return CXXTryStmt::Create(Context, TryLoc, cast<CompoundStmt>(TryBlock),
4587 Handlers);
4590 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4591 Stmt *TryBlock, Stmt *Handler) {
4592 assert(TryBlock && Handler);
4594 sema::FunctionScopeInfo *FSI = getCurFunction();
4596 // SEH __try is incompatible with C++ try. Borland appears to support this,
4597 // however.
4598 if (!getLangOpts().Borland) {
4599 if (FSI->FirstCXXOrObjCTryLoc.isValid()) {
4600 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType;
4601 Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here)
4602 << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX
4603 ? "'try'"
4604 : "'@try'");
4608 FSI->setHasSEHTry(TryLoc);
4610 // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4611 // track if they use SEH.
4612 DeclContext *DC = CurContext;
4613 while (DC && !DC->isFunctionOrMethod())
4614 DC = DC->getParent();
4615 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4616 if (FD)
4617 FD->setUsesSEHTry(true);
4618 else
4619 Diag(TryLoc, diag::err_seh_try_outside_functions);
4621 // Reject __try on unsupported targets.
4622 if (!Context.getTargetInfo().isSEHTrySupported())
4623 Diag(TryLoc, diag::err_seh_try_unsupported);
4625 return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4628 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4629 Stmt *Block) {
4630 assert(FilterExpr && Block);
4631 QualType FTy = FilterExpr->getType();
4632 if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4633 return StmtError(
4634 Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4635 << FTy);
4637 return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4640 void Sema::ActOnStartSEHFinallyBlock() {
4641 CurrentSEHFinally.push_back(CurScope);
4644 void Sema::ActOnAbortSEHFinallyBlock() {
4645 CurrentSEHFinally.pop_back();
4648 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4649 assert(Block);
4650 CurrentSEHFinally.pop_back();
4651 return SEHFinallyStmt::Create(Context, Loc, Block);
4654 StmtResult
4655 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4656 Scope *SEHTryParent = CurScope;
4657 while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4658 SEHTryParent = SEHTryParent->getParent();
4659 if (!SEHTryParent)
4660 return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4661 CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4663 return new (Context) SEHLeaveStmt(Loc);
4666 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4667 bool IsIfExists,
4668 NestedNameSpecifierLoc QualifierLoc,
4669 DeclarationNameInfo NameInfo,
4670 Stmt *Nested)
4672 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4673 QualifierLoc, NameInfo,
4674 cast<CompoundStmt>(Nested));
4678 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4679 bool IsIfExists,
4680 CXXScopeSpec &SS,
4681 UnqualifiedId &Name,
4682 Stmt *Nested) {
4683 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4684 SS.getWithLocInContext(Context),
4685 GetNameFromUnqualifiedId(Name),
4686 Nested);
4689 RecordDecl*
4690 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4691 unsigned NumParams) {
4692 DeclContext *DC = CurContext;
4693 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4694 DC = DC->getParent();
4696 RecordDecl *RD = nullptr;
4697 if (getLangOpts().CPlusPlus)
4698 RD = CXXRecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4699 /*Id=*/nullptr);
4700 else
4701 RD = RecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4702 /*Id=*/nullptr);
4704 RD->setCapturedRecord();
4705 DC->addDecl(RD);
4706 RD->setImplicit();
4707 RD->startDefinition();
4709 assert(NumParams > 0 && "CapturedStmt requires context parameter");
4710 CD = CapturedDecl::Create(Context, CurContext, NumParams);
4711 DC->addDecl(CD);
4712 return RD;
4715 static bool
4716 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4717 SmallVectorImpl<CapturedStmt::Capture> &Captures,
4718 SmallVectorImpl<Expr *> &CaptureInits) {
4719 for (const sema::Capture &Cap : RSI->Captures) {
4720 if (Cap.isInvalid())
4721 continue;
4723 // Form the initializer for the capture.
4724 ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4725 RSI->CapRegionKind == CR_OpenMP);
4727 // FIXME: Bail out now if the capture is not used and the initializer has
4728 // no side-effects.
4730 // Create a field for this capture.
4731 FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4733 // Add the capture to our list of captures.
4734 if (Cap.isThisCapture()) {
4735 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4736 CapturedStmt::VCK_This));
4737 } else if (Cap.isVLATypeCapture()) {
4738 Captures.push_back(
4739 CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4740 } else {
4741 assert(Cap.isVariableCapture() && "unknown kind of capture");
4743 if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4744 S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4746 Captures.push_back(CapturedStmt::Capture(
4747 Cap.getLocation(),
4748 Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef
4749 : CapturedStmt::VCK_ByCopy,
4750 cast<VarDecl>(Cap.getVariable())));
4752 CaptureInits.push_back(Init.get());
4754 return false;
4757 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4758 CapturedRegionKind Kind,
4759 unsigned NumParams) {
4760 CapturedDecl *CD = nullptr;
4761 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4763 // Build the context parameter
4764 DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4765 IdentifierInfo *ParamName = &Context.Idents.get("__context");
4766 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4767 auto *Param =
4768 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4769 ImplicitParamKind::CapturedContext);
4770 DC->addDecl(Param);
4772 CD->setContextParam(0, Param);
4774 // Enter the capturing scope for this captured region.
4775 PushCapturedRegionScope(CurScope, CD, RD, Kind);
4777 if (CurScope)
4778 PushDeclContext(CurScope, CD);
4779 else
4780 CurContext = CD;
4782 PushExpressionEvaluationContext(
4783 ExpressionEvaluationContext::PotentiallyEvaluated);
4784 ExprEvalContexts.back().InImmediateEscalatingFunctionContext = false;
4787 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4788 CapturedRegionKind Kind,
4789 ArrayRef<CapturedParamNameType> Params,
4790 unsigned OpenMPCaptureLevel) {
4791 CapturedDecl *CD = nullptr;
4792 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4794 // Build the context parameter
4795 DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4796 bool ContextIsFound = false;
4797 unsigned ParamNum = 0;
4798 for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4799 E = Params.end();
4800 I != E; ++I, ++ParamNum) {
4801 if (I->second.isNull()) {
4802 assert(!ContextIsFound &&
4803 "null type has been found already for '__context' parameter");
4804 IdentifierInfo *ParamName = &Context.Idents.get("__context");
4805 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4806 .withConst()
4807 .withRestrict();
4808 auto *Param =
4809 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4810 ImplicitParamKind::CapturedContext);
4811 DC->addDecl(Param);
4812 CD->setContextParam(ParamNum, Param);
4813 ContextIsFound = true;
4814 } else {
4815 IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4816 auto *Param =
4817 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4818 ImplicitParamKind::CapturedContext);
4819 DC->addDecl(Param);
4820 CD->setParam(ParamNum, Param);
4823 assert(ContextIsFound && "no null type for '__context' parameter");
4824 if (!ContextIsFound) {
4825 // Add __context implicitly if it is not specified.
4826 IdentifierInfo *ParamName = &Context.Idents.get("__context");
4827 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4828 auto *Param =
4829 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4830 ImplicitParamKind::CapturedContext);
4831 DC->addDecl(Param);
4832 CD->setContextParam(ParamNum, Param);
4834 // Enter the capturing scope for this captured region.
4835 PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4837 if (CurScope)
4838 PushDeclContext(CurScope, CD);
4839 else
4840 CurContext = CD;
4842 PushExpressionEvaluationContext(
4843 ExpressionEvaluationContext::PotentiallyEvaluated);
4846 void Sema::ActOnCapturedRegionError() {
4847 DiscardCleanupsInEvaluationContext();
4848 PopExpressionEvaluationContext();
4849 PopDeclContext();
4850 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4851 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4853 RecordDecl *Record = RSI->TheRecordDecl;
4854 Record->setInvalidDecl();
4856 SmallVector<Decl*, 4> Fields(Record->fields());
4857 ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4858 SourceLocation(), SourceLocation(), ParsedAttributesView());
4861 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4862 // Leave the captured scope before we start creating captures in the
4863 // enclosing scope.
4864 DiscardCleanupsInEvaluationContext();
4865 PopExpressionEvaluationContext();
4866 PopDeclContext();
4867 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4868 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4870 SmallVector<CapturedStmt::Capture, 4> Captures;
4871 SmallVector<Expr *, 4> CaptureInits;
4872 if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4873 return StmtError();
4875 CapturedDecl *CD = RSI->TheCapturedDecl;
4876 RecordDecl *RD = RSI->TheRecordDecl;
4878 CapturedStmt *Res = CapturedStmt::Create(
4879 getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4880 Captures, CaptureInits, CD, RD);
4882 CD->setBody(Res->getCapturedStmt());
4883 RD->completeDefinition();
4885 return Res;