[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / lib / Sema / SemaTemplateInstantiateDecl.cpp
blobd768bb72e07c09a3cdd8972f2dd1f7daa75b21ab
1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===/
7 //
8 // This file implements C++ template instantiation for declarations.
9 //
10 //===----------------------------------------------------------------------===/
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/DeclVisitor.h"
18 #include "clang/AST/DependentDiagnostic.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/PrettyDeclStackTrace.h"
22 #include "clang/AST/TypeLoc.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/EnterExpressionEvaluationContext.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/ScopeInfo.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateInstCallback.h"
32 #include "llvm/Support/TimeProfiler.h"
33 #include <optional>
35 using namespace clang;
37 static bool isDeclWithinFunction(const Decl *D) {
38 const DeclContext *DC = D->getDeclContext();
39 if (DC->isFunctionOrMethod())
40 return true;
42 if (DC->isRecord())
43 return cast<CXXRecordDecl>(DC)->isLocalClass();
45 return false;
48 template<typename DeclT>
49 static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl,
50 const MultiLevelTemplateArgumentList &TemplateArgs) {
51 if (!OldDecl->getQualifierLoc())
52 return false;
54 assert((NewDecl->getFriendObjectKind() ||
55 !OldDecl->getLexicalDeclContext()->isDependentContext()) &&
56 "non-friend with qualified name defined in dependent context");
57 Sema::ContextRAII SavedContext(
58 SemaRef,
59 const_cast<DeclContext *>(NewDecl->getFriendObjectKind()
60 ? NewDecl->getLexicalDeclContext()
61 : OldDecl->getLexicalDeclContext()));
63 NestedNameSpecifierLoc NewQualifierLoc
64 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(),
65 TemplateArgs);
67 if (!NewQualifierLoc)
68 return true;
70 NewDecl->setQualifierInfo(NewQualifierLoc);
71 return false;
74 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl,
75 DeclaratorDecl *NewDecl) {
76 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
79 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl,
80 TagDecl *NewDecl) {
81 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
84 // Include attribute instantiation code.
85 #include "clang/Sema/AttrTemplateInstantiate.inc"
87 static void instantiateDependentAlignedAttr(
88 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
89 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) {
90 if (Aligned->isAlignmentExpr()) {
91 // The alignment expression is a constant expression.
92 EnterExpressionEvaluationContext Unevaluated(
93 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
94 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs);
95 if (!Result.isInvalid())
96 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion);
97 } else {
98 if (TypeSourceInfo *Result =
99 S.SubstType(Aligned->getAlignmentType(), TemplateArgs,
100 Aligned->getLocation(), DeclarationName())) {
101 if (!S.CheckAlignasTypeArgument(Aligned->getSpelling(), Result,
102 Aligned->getLocation(),
103 Result->getTypeLoc().getSourceRange()))
104 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion);
109 static void instantiateDependentAlignedAttr(
110 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
111 const AlignedAttr *Aligned, Decl *New) {
112 if (!Aligned->isPackExpansion()) {
113 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
114 return;
117 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
118 if (Aligned->isAlignmentExpr())
119 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(),
120 Unexpanded);
121 else
122 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(),
123 Unexpanded);
124 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
126 // Determine whether we can expand this attribute pack yet.
127 bool Expand = true, RetainExpansion = false;
128 std::optional<unsigned> NumExpansions;
129 // FIXME: Use the actual location of the ellipsis.
130 SourceLocation EllipsisLoc = Aligned->getLocation();
131 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(),
132 Unexpanded, TemplateArgs, Expand,
133 RetainExpansion, NumExpansions))
134 return;
136 if (!Expand) {
137 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1);
138 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true);
139 } else {
140 for (unsigned I = 0; I != *NumExpansions; ++I) {
141 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
142 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
147 static void instantiateDependentAssumeAlignedAttr(
148 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
149 const AssumeAlignedAttr *Aligned, Decl *New) {
150 // The alignment expression is a constant expression.
151 EnterExpressionEvaluationContext Unevaluated(
152 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
154 Expr *E, *OE = nullptr;
155 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
156 if (Result.isInvalid())
157 return;
158 E = Result.getAs<Expr>();
160 if (Aligned->getOffset()) {
161 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs);
162 if (Result.isInvalid())
163 return;
164 OE = Result.getAs<Expr>();
167 S.AddAssumeAlignedAttr(New, *Aligned, E, OE);
170 static void instantiateDependentAlignValueAttr(
171 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
172 const AlignValueAttr *Aligned, Decl *New) {
173 // The alignment expression is a constant expression.
174 EnterExpressionEvaluationContext Unevaluated(
175 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
176 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
177 if (!Result.isInvalid())
178 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>());
181 static void instantiateDependentAllocAlignAttr(
182 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
183 const AllocAlignAttr *Align, Decl *New) {
184 Expr *Param = IntegerLiteral::Create(
185 S.getASTContext(),
186 llvm::APInt(64, Align->getParamIndex().getSourceIndex()),
187 S.getASTContext().UnsignedLongLongTy, Align->getLocation());
188 S.AddAllocAlignAttr(New, *Align, Param);
191 static void instantiateDependentAnnotationAttr(
192 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
193 const AnnotateAttr *Attr, Decl *New) {
194 EnterExpressionEvaluationContext Unevaluated(
195 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
197 // If the attribute has delayed arguments it will have to instantiate those
198 // and handle them as new arguments for the attribute.
199 bool HasDelayedArgs = Attr->delayedArgs_size();
201 ArrayRef<Expr *> ArgsToInstantiate =
202 HasDelayedArgs
203 ? ArrayRef<Expr *>{Attr->delayedArgs_begin(), Attr->delayedArgs_end()}
204 : ArrayRef<Expr *>{Attr->args_begin(), Attr->args_end()};
206 SmallVector<Expr *, 4> Args;
207 if (S.SubstExprs(ArgsToInstantiate,
208 /*IsCall=*/false, TemplateArgs, Args))
209 return;
211 StringRef Str = Attr->getAnnotation();
212 if (HasDelayedArgs) {
213 if (Args.size() < 1) {
214 S.Diag(Attr->getLoc(), diag::err_attribute_too_few_arguments)
215 << Attr << 1;
216 return;
219 if (!S.checkStringLiteralArgumentAttr(*Attr, Args[0], Str))
220 return;
222 llvm::SmallVector<Expr *, 4> ActualArgs;
223 ActualArgs.insert(ActualArgs.begin(), Args.begin() + 1, Args.end());
224 std::swap(Args, ActualArgs);
226 S.AddAnnotationAttr(New, *Attr, Str, Args);
229 static Expr *instantiateDependentFunctionAttrCondition(
230 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
231 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) {
232 Expr *Cond = nullptr;
234 Sema::ContextRAII SwitchContext(S, New);
235 EnterExpressionEvaluationContext Unevaluated(
236 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
237 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs);
238 if (Result.isInvalid())
239 return nullptr;
240 Cond = Result.getAs<Expr>();
242 if (!Cond->isTypeDependent()) {
243 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
244 if (Converted.isInvalid())
245 return nullptr;
246 Cond = Converted.get();
249 SmallVector<PartialDiagnosticAt, 8> Diags;
250 if (OldCond->isValueDependent() && !Cond->isValueDependent() &&
251 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) {
252 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A;
253 for (const auto &P : Diags)
254 S.Diag(P.first, P.second);
255 return nullptr;
257 return Cond;
260 static void instantiateDependentEnableIfAttr(
261 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
262 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) {
263 Expr *Cond = instantiateDependentFunctionAttrCondition(
264 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New);
266 if (Cond)
267 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA,
268 Cond, EIA->getMessage()));
271 static void instantiateDependentDiagnoseIfAttr(
272 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
273 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) {
274 Expr *Cond = instantiateDependentFunctionAttrCondition(
275 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New);
277 if (Cond)
278 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr(
279 S.getASTContext(), *DIA, Cond, DIA->getMessage(),
280 DIA->getDiagnosticType(), DIA->getArgDependent(), New));
283 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
284 // template A as the base and arguments from TemplateArgs.
285 static void instantiateDependentCUDALaunchBoundsAttr(
286 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
287 const CUDALaunchBoundsAttr &Attr, Decl *New) {
288 // The alignment expression is a constant expression.
289 EnterExpressionEvaluationContext Unevaluated(
290 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
292 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs);
293 if (Result.isInvalid())
294 return;
295 Expr *MaxThreads = Result.getAs<Expr>();
297 Expr *MinBlocks = nullptr;
298 if (Attr.getMinBlocks()) {
299 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs);
300 if (Result.isInvalid())
301 return;
302 MinBlocks = Result.getAs<Expr>();
305 Expr *MaxBlocks = nullptr;
306 if (Attr.getMaxBlocks()) {
307 Result = S.SubstExpr(Attr.getMaxBlocks(), TemplateArgs);
308 if (Result.isInvalid())
309 return;
310 MaxBlocks = Result.getAs<Expr>();
313 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks, MaxBlocks);
316 static void
317 instantiateDependentModeAttr(Sema &S,
318 const MultiLevelTemplateArgumentList &TemplateArgs,
319 const ModeAttr &Attr, Decl *New) {
320 S.AddModeAttr(New, Attr, Attr.getMode(),
321 /*InInstantiation=*/true);
324 /// Instantiation of 'declare simd' attribute and its arguments.
325 static void instantiateOMPDeclareSimdDeclAttr(
326 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
327 const OMPDeclareSimdDeclAttr &Attr, Decl *New) {
328 // Allow 'this' in clauses with varlists.
329 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
330 New = FTD->getTemplatedDecl();
331 auto *FD = cast<FunctionDecl>(New);
332 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
333 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps;
334 SmallVector<unsigned, 4> LinModifiers;
336 auto SubstExpr = [&](Expr *E) -> ExprResult {
337 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
338 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
339 Sema::ContextRAII SavedContext(S, FD);
340 LocalInstantiationScope Local(S);
341 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
342 Local.InstantiatedLocal(
343 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
344 return S.SubstExpr(E, TemplateArgs);
346 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
347 FD->isCXXInstanceMember());
348 return S.SubstExpr(E, TemplateArgs);
351 // Substitute a single OpenMP clause, which is a potentially-evaluated
352 // full-expression.
353 auto Subst = [&](Expr *E) -> ExprResult {
354 EnterExpressionEvaluationContext Evaluated(
355 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
356 ExprResult Res = SubstExpr(E);
357 if (Res.isInvalid())
358 return Res;
359 return S.ActOnFinishFullExpr(Res.get(), false);
362 ExprResult Simdlen;
363 if (auto *E = Attr.getSimdlen())
364 Simdlen = Subst(E);
366 if (Attr.uniforms_size() > 0) {
367 for(auto *E : Attr.uniforms()) {
368 ExprResult Inst = Subst(E);
369 if (Inst.isInvalid())
370 continue;
371 Uniforms.push_back(Inst.get());
375 auto AI = Attr.alignments_begin();
376 for (auto *E : Attr.aligneds()) {
377 ExprResult Inst = Subst(E);
378 if (Inst.isInvalid())
379 continue;
380 Aligneds.push_back(Inst.get());
381 Inst = ExprEmpty();
382 if (*AI)
383 Inst = S.SubstExpr(*AI, TemplateArgs);
384 Alignments.push_back(Inst.get());
385 ++AI;
388 auto SI = Attr.steps_begin();
389 for (auto *E : Attr.linears()) {
390 ExprResult Inst = Subst(E);
391 if (Inst.isInvalid())
392 continue;
393 Linears.push_back(Inst.get());
394 Inst = ExprEmpty();
395 if (*SI)
396 Inst = S.SubstExpr(*SI, TemplateArgs);
397 Steps.push_back(Inst.get());
398 ++SI;
400 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end());
401 (void)S.ActOnOpenMPDeclareSimdDirective(
402 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(),
403 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps,
404 Attr.getRange());
407 /// Instantiation of 'declare variant' attribute and its arguments.
408 static void instantiateOMPDeclareVariantAttr(
409 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
410 const OMPDeclareVariantAttr &Attr, Decl *New) {
411 // Allow 'this' in clauses with varlists.
412 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
413 New = FTD->getTemplatedDecl();
414 auto *FD = cast<FunctionDecl>(New);
415 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
417 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) {
418 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
419 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
420 Sema::ContextRAII SavedContext(S, FD);
421 LocalInstantiationScope Local(S);
422 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
423 Local.InstantiatedLocal(
424 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
425 return S.SubstExpr(E, TemplateArgs);
427 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
428 FD->isCXXInstanceMember());
429 return S.SubstExpr(E, TemplateArgs);
432 // Substitute a single OpenMP clause, which is a potentially-evaluated
433 // full-expression.
434 auto &&Subst = [&SubstExpr, &S](Expr *E) {
435 EnterExpressionEvaluationContext Evaluated(
436 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
437 ExprResult Res = SubstExpr(E);
438 if (Res.isInvalid())
439 return Res;
440 return S.ActOnFinishFullExpr(Res.get(), false);
443 ExprResult VariantFuncRef;
444 if (Expr *E = Attr.getVariantFuncRef()) {
445 // Do not mark function as is used to prevent its emission if this is the
446 // only place where it is used.
447 EnterExpressionEvaluationContext Unevaluated(
448 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
449 VariantFuncRef = Subst(E);
452 // Copy the template version of the OMPTraitInfo and run substitute on all
453 // score and condition expressiosn.
454 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo();
455 TI = *Attr.getTraitInfos();
457 // Try to substitute template parameters in score and condition expressions.
458 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) {
459 if (E) {
460 EnterExpressionEvaluationContext Unevaluated(
461 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
462 ExprResult ER = Subst(E);
463 if (ER.isUsable())
464 E = ER.get();
465 else
466 return true;
468 return false;
470 if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr))
471 return;
473 Expr *E = VariantFuncRef.get();
475 // Check function/variant ref for `omp declare variant` but not for `omp
476 // begin declare variant` (which use implicit attributes).
477 std::optional<std::pair<FunctionDecl *, Expr *>> DeclVarData =
478 S.checkOpenMPDeclareVariantFunction(S.ConvertDeclToDeclGroup(New), E, TI,
479 Attr.appendArgs_size(),
480 Attr.getRange());
482 if (!DeclVarData)
483 return;
485 E = DeclVarData->second;
486 FD = DeclVarData->first;
488 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
489 if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) {
490 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) {
491 if (!VariantFTD->isThisDeclarationADefinition())
492 return;
493 Sema::TentativeAnalysisScope Trap(S);
494 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy(
495 S.Context, TemplateArgs.getInnermost());
497 auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL,
498 New->getLocation());
499 if (!SubstFD)
500 return;
501 QualType NewType = S.Context.mergeFunctionTypes(
502 SubstFD->getType(), FD->getType(),
503 /* OfBlockPointer */ false,
504 /* Unqualified */ false, /* AllowCXX */ true);
505 if (NewType.isNull())
506 return;
507 S.InstantiateFunctionDefinition(
508 New->getLocation(), SubstFD, /* Recursive */ true,
509 /* DefinitionRequired */ false, /* AtEndOfTU */ false);
510 SubstFD->setInstantiationIsPending(!SubstFD->isDefined());
511 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(),
512 SourceLocation(), SubstFD,
513 /* RefersToEnclosingVariableOrCapture */ false,
514 /* NameLoc */ SubstFD->getLocation(),
515 SubstFD->getType(), ExprValueKind::VK_PRValue);
520 SmallVector<Expr *, 8> NothingExprs;
521 SmallVector<Expr *, 8> NeedDevicePtrExprs;
522 SmallVector<OMPInteropInfo, 4> AppendArgs;
524 for (Expr *E : Attr.adjustArgsNothing()) {
525 ExprResult ER = Subst(E);
526 if (ER.isInvalid())
527 continue;
528 NothingExprs.push_back(ER.get());
530 for (Expr *E : Attr.adjustArgsNeedDevicePtr()) {
531 ExprResult ER = Subst(E);
532 if (ER.isInvalid())
533 continue;
534 NeedDevicePtrExprs.push_back(ER.get());
536 for (OMPInteropInfo &II : Attr.appendArgs()) {
537 // When prefer_type is implemented for append_args handle them here too.
538 AppendArgs.emplace_back(II.IsTarget, II.IsTargetSync);
541 S.ActOnOpenMPDeclareVariantDirective(
542 FD, E, TI, NothingExprs, NeedDevicePtrExprs, AppendArgs, SourceLocation(),
543 SourceLocation(), Attr.getRange());
546 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
547 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
548 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) {
549 // Both min and max expression are constant expressions.
550 EnterExpressionEvaluationContext Unevaluated(
551 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
553 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
554 if (Result.isInvalid())
555 return;
556 Expr *MinExpr = Result.getAs<Expr>();
558 Result = S.SubstExpr(Attr.getMax(), TemplateArgs);
559 if (Result.isInvalid())
560 return;
561 Expr *MaxExpr = Result.getAs<Expr>();
563 S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr);
566 ExplicitSpecifier Sema::instantiateExplicitSpecifier(
567 const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES) {
568 if (!ES.getExpr())
569 return ES;
570 Expr *OldCond = ES.getExpr();
571 Expr *Cond = nullptr;
573 EnterExpressionEvaluationContext Unevaluated(
574 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
575 ExprResult SubstResult = SubstExpr(OldCond, TemplateArgs);
576 if (SubstResult.isInvalid()) {
577 return ExplicitSpecifier::Invalid();
579 Cond = SubstResult.get();
581 ExplicitSpecifier Result(Cond, ES.getKind());
582 if (!Cond->isTypeDependent())
583 tryResolveExplicitSpecifier(Result);
584 return Result;
587 static void instantiateDependentAMDGPUWavesPerEUAttr(
588 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
589 const AMDGPUWavesPerEUAttr &Attr, Decl *New) {
590 // Both min and max expression are constant expressions.
591 EnterExpressionEvaluationContext Unevaluated(
592 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
594 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
595 if (Result.isInvalid())
596 return;
597 Expr *MinExpr = Result.getAs<Expr>();
599 Expr *MaxExpr = nullptr;
600 if (auto Max = Attr.getMax()) {
601 Result = S.SubstExpr(Max, TemplateArgs);
602 if (Result.isInvalid())
603 return;
604 MaxExpr = Result.getAs<Expr>();
607 S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr);
610 // This doesn't take any template parameters, but we have a custom action that
611 // needs to happen when the kernel itself is instantiated. We need to run the
612 // ItaniumMangler to mark the names required to name this kernel.
613 static void instantiateDependentSYCLKernelAttr(
614 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
615 const SYCLKernelAttr &Attr, Decl *New) {
616 New->addAttr(Attr.clone(S.getASTContext()));
619 /// Determine whether the attribute A might be relevant to the declaration D.
620 /// If not, we can skip instantiating it. The attribute may or may not have
621 /// been instantiated yet.
622 static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) {
623 // 'preferred_name' is only relevant to the matching specialization of the
624 // template.
625 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) {
626 QualType T = PNA->getTypedefType();
627 const auto *RD = cast<CXXRecordDecl>(D);
628 if (!T->isDependentType() && !RD->isDependentContext() &&
629 !declaresSameEntity(T->getAsCXXRecordDecl(), RD))
630 return false;
631 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>())
632 if (S.Context.hasSameType(ExistingPNA->getTypedefType(),
633 PNA->getTypedefType()))
634 return false;
635 return true;
638 if (const auto *BA = dyn_cast<BuiltinAttr>(A)) {
639 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
640 switch (BA->getID()) {
641 case Builtin::BIforward:
642 // Do not treat 'std::forward' as a builtin if it takes an rvalue reference
643 // type and returns an lvalue reference type. The library implementation
644 // will produce an error in this case; don't get in its way.
645 if (FD && FD->getNumParams() >= 1 &&
646 FD->getParamDecl(0)->getType()->isRValueReferenceType() &&
647 FD->getReturnType()->isLValueReferenceType()) {
648 return false;
650 [[fallthrough]];
651 case Builtin::BImove:
652 case Builtin::BImove_if_noexcept:
653 // HACK: Super-old versions of libc++ (3.1 and earlier) provide
654 // std::forward and std::move overloads that sometimes return by value
655 // instead of by reference when building in C++98 mode. Don't treat such
656 // cases as builtins.
657 if (FD && !FD->getReturnType()->isReferenceType())
658 return false;
659 break;
663 return true;
666 static void instantiateDependentHLSLParamModifierAttr(
667 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
668 const HLSLParamModifierAttr *Attr, Decl *New) {
669 ParmVarDecl *P = cast<ParmVarDecl>(New);
670 P->addAttr(Attr->clone(S.getASTContext()));
671 P->setType(S.getASTContext().getLValueReferenceType(P->getType()));
674 void Sema::InstantiateAttrsForDecl(
675 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl,
676 Decl *New, LateInstantiatedAttrVec *LateAttrs,
677 LocalInstantiationScope *OuterMostScope) {
678 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) {
679 // FIXME: This function is called multiple times for the same template
680 // specialization. We should only instantiate attributes that were added
681 // since the previous instantiation.
682 for (const auto *TmplAttr : Tmpl->attrs()) {
683 if (!isRelevantAttr(*this, New, TmplAttr))
684 continue;
686 // FIXME: If any of the special case versions from InstantiateAttrs become
687 // applicable to template declaration, we'll need to add them here.
688 CXXThisScopeRAII ThisScope(
689 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()),
690 Qualifiers(), ND->isCXXInstanceMember());
692 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl(
693 TmplAttr, Context, *this, TemplateArgs);
694 if (NewAttr && isRelevantAttr(*this, New, NewAttr))
695 New->addAttr(NewAttr);
700 static Sema::RetainOwnershipKind
701 attrToRetainOwnershipKind(const Attr *A) {
702 switch (A->getKind()) {
703 case clang::attr::CFConsumed:
704 return Sema::RetainOwnershipKind::CF;
705 case clang::attr::OSConsumed:
706 return Sema::RetainOwnershipKind::OS;
707 case clang::attr::NSConsumed:
708 return Sema::RetainOwnershipKind::NS;
709 default:
710 llvm_unreachable("Wrong argument supplied");
714 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
715 const Decl *Tmpl, Decl *New,
716 LateInstantiatedAttrVec *LateAttrs,
717 LocalInstantiationScope *OuterMostScope) {
718 for (const auto *TmplAttr : Tmpl->attrs()) {
719 if (!isRelevantAttr(*this, New, TmplAttr))
720 continue;
722 // FIXME: This should be generalized to more than just the AlignedAttr.
723 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr);
724 if (Aligned && Aligned->isAlignmentDependent()) {
725 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New);
726 continue;
729 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) {
730 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New);
731 continue;
734 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) {
735 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New);
736 continue;
739 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) {
740 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New);
741 continue;
744 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) {
745 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New);
746 continue;
749 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) {
750 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
751 cast<FunctionDecl>(New));
752 continue;
755 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) {
756 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl,
757 cast<FunctionDecl>(New));
758 continue;
761 if (const auto *CUDALaunchBounds =
762 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) {
763 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs,
764 *CUDALaunchBounds, New);
765 continue;
768 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) {
769 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New);
770 continue;
773 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) {
774 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New);
775 continue;
778 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) {
779 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New);
780 continue;
783 if (const auto *AMDGPUFlatWorkGroupSize =
784 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) {
785 instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
786 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New);
789 if (const auto *AMDGPUFlatWorkGroupSize =
790 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) {
791 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs,
792 *AMDGPUFlatWorkGroupSize, New);
795 if (const auto *ParamAttr = dyn_cast<HLSLParamModifierAttr>(TmplAttr)) {
796 instantiateDependentHLSLParamModifierAttr(*this, TemplateArgs, ParamAttr,
797 New);
798 continue;
801 // Existing DLL attribute on the instantiation takes precedence.
802 if (TmplAttr->getKind() == attr::DLLExport ||
803 TmplAttr->getKind() == attr::DLLImport) {
804 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) {
805 continue;
809 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) {
810 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI());
811 continue;
814 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) ||
815 isa<CFConsumedAttr>(TmplAttr)) {
816 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr),
817 /*template instantiation=*/true);
818 continue;
821 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) {
822 if (!New->hasAttr<PointerAttr>())
823 New->addAttr(A->clone(Context));
824 continue;
827 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) {
828 if (!New->hasAttr<OwnerAttr>())
829 New->addAttr(A->clone(Context));
830 continue;
833 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) {
834 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New);
835 continue;
838 assert(!TmplAttr->isPackExpansion());
839 if (TmplAttr->isLateParsed() && LateAttrs) {
840 // Late parsed attributes must be instantiated and attached after the
841 // enclosing class has been instantiated. See Sema::InstantiateClass.
842 LocalInstantiationScope *Saved = nullptr;
843 if (CurrentInstantiationScope)
844 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope);
845 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New));
846 } else {
847 // Allow 'this' within late-parsed attributes.
848 auto *ND = cast<NamedDecl>(New);
849 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
850 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(),
851 ND->isCXXInstanceMember());
853 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context,
854 *this, TemplateArgs);
855 if (NewAttr && isRelevantAttr(*this, New, TmplAttr))
856 New->addAttr(NewAttr);
861 /// Update instantiation attributes after template was late parsed.
863 /// Some attributes are evaluated based on the body of template. If it is
864 /// late parsed, such attributes cannot be evaluated when declaration is
865 /// instantiated. This function is used to update instantiation attributes when
866 /// template definition is ready.
867 void Sema::updateAttrsForLateParsedTemplate(const Decl *Pattern, Decl *Inst) {
868 for (const auto *Attr : Pattern->attrs()) {
869 if (auto *A = dyn_cast<StrictFPAttr>(Attr)) {
870 if (!Inst->hasAttr<StrictFPAttr>())
871 Inst->addAttr(A->clone(getASTContext()));
872 continue;
877 /// In the MS ABI, we need to instantiate default arguments of dllexported
878 /// default constructors along with the constructor definition. This allows IR
879 /// gen to emit a constructor closure which calls the default constructor with
880 /// its default arguments.
881 void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) {
882 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
883 Ctor->isDefaultConstructor());
884 unsigned NumParams = Ctor->getNumParams();
885 if (NumParams == 0)
886 return;
887 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>();
888 if (!Attr)
889 return;
890 for (unsigned I = 0; I != NumParams; ++I) {
891 (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor,
892 Ctor->getParamDecl(I));
893 CleanupVarDeclMarking();
897 /// Get the previous declaration of a declaration for the purposes of template
898 /// instantiation. If this finds a previous declaration, then the previous
899 /// declaration of the instantiation of D should be an instantiation of the
900 /// result of this function.
901 template<typename DeclT>
902 static DeclT *getPreviousDeclForInstantiation(DeclT *D) {
903 DeclT *Result = D->getPreviousDecl();
905 // If the declaration is within a class, and the previous declaration was
906 // merged from a different definition of that class, then we don't have a
907 // previous declaration for the purpose of template instantiation.
908 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) &&
909 D->getLexicalDeclContext() != Result->getLexicalDeclContext())
910 return nullptr;
912 return Result;
915 Decl *
916 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
917 llvm_unreachable("Translation units cannot be instantiated");
920 Decl *TemplateDeclInstantiator::VisitHLSLBufferDecl(HLSLBufferDecl *Decl) {
921 llvm_unreachable("HLSL buffer declarations cannot be instantiated");
924 Decl *
925 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
926 llvm_unreachable("pragma comment cannot be instantiated");
929 Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl(
930 PragmaDetectMismatchDecl *D) {
931 llvm_unreachable("pragma comment cannot be instantiated");
934 Decl *
935 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) {
936 llvm_unreachable("extern \"C\" context cannot be instantiated");
939 Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) {
940 llvm_unreachable("GUID declaration cannot be instantiated");
943 Decl *TemplateDeclInstantiator::VisitUnnamedGlobalConstantDecl(
944 UnnamedGlobalConstantDecl *D) {
945 llvm_unreachable("UnnamedGlobalConstantDecl cannot be instantiated");
948 Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl(
949 TemplateParamObjectDecl *D) {
950 llvm_unreachable("template parameter objects cannot be instantiated");
953 Decl *
954 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) {
955 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(),
956 D->getIdentifier());
957 Owner->addDecl(Inst);
958 return Inst;
961 Decl *
962 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
963 llvm_unreachable("Namespaces cannot be instantiated");
966 Decl *
967 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
968 NamespaceAliasDecl *Inst
969 = NamespaceAliasDecl::Create(SemaRef.Context, Owner,
970 D->getNamespaceLoc(),
971 D->getAliasLoc(),
972 D->getIdentifier(),
973 D->getQualifierLoc(),
974 D->getTargetNameLoc(),
975 D->getNamespace());
976 Owner->addDecl(Inst);
977 return Inst;
980 Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D,
981 bool IsTypeAlias) {
982 bool Invalid = false;
983 TypeSourceInfo *DI = D->getTypeSourceInfo();
984 if (DI->getType()->isInstantiationDependentType() ||
985 DI->getType()->isVariablyModifiedType()) {
986 DI = SemaRef.SubstType(DI, TemplateArgs,
987 D->getLocation(), D->getDeclName());
988 if (!DI) {
989 Invalid = true;
990 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy);
992 } else {
993 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
996 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong.
997 // libstdc++ relies upon this bug in its implementation of common_type. If we
998 // happen to be processing that implementation, fake up the g++ ?:
999 // semantics. See LWG issue 2141 for more information on the bug. The bugs
1000 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22).
1001 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>();
1002 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
1003 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) &&
1004 DT->isReferenceType() &&
1005 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() &&
1006 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") &&
1007 D->getIdentifier() && D->getIdentifier()->isStr("type") &&
1008 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc()))
1009 // Fold it to the (non-reference) type which g++ would have produced.
1010 DI = SemaRef.Context.getTrivialTypeSourceInfo(
1011 DI->getType().getNonReferenceType());
1013 // Create the new typedef
1014 TypedefNameDecl *Typedef;
1015 if (IsTypeAlias)
1016 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
1017 D->getLocation(), D->getIdentifier(), DI);
1018 else
1019 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
1020 D->getLocation(), D->getIdentifier(), DI);
1021 if (Invalid)
1022 Typedef->setInvalidDecl();
1024 // If the old typedef was the name for linkage purposes of an anonymous
1025 // tag decl, re-establish that relationship for the new typedef.
1026 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) {
1027 TagDecl *oldTag = oldTagType->getDecl();
1028 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) {
1029 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl();
1030 assert(!newTag->hasNameForLinkage());
1031 newTag->setTypedefNameForAnonDecl(Typedef);
1035 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) {
1036 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev,
1037 TemplateArgs);
1038 if (!InstPrev)
1039 return nullptr;
1041 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev);
1043 // If the typedef types are not identical, reject them.
1044 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef);
1046 Typedef->setPreviousDecl(InstPrevTypedef);
1049 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef);
1051 if (D->getUnderlyingType()->getAs<DependentNameType>())
1052 SemaRef.inferGslPointerAttribute(Typedef);
1054 Typedef->setAccess(D->getAccess());
1055 Typedef->setReferenced(D->isReferenced());
1057 return Typedef;
1060 Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
1061 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false);
1062 if (Typedef)
1063 Owner->addDecl(Typedef);
1064 return Typedef;
1067 Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) {
1068 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true);
1069 if (Typedef)
1070 Owner->addDecl(Typedef);
1071 return Typedef;
1074 Decl *
1075 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
1076 // Create a local instantiation scope for this type alias template, which
1077 // will contain the instantiations of the template parameters.
1078 LocalInstantiationScope Scope(SemaRef);
1080 TemplateParameterList *TempParams = D->getTemplateParameters();
1081 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1082 if (!InstParams)
1083 return nullptr;
1085 TypeAliasDecl *Pattern = D->getTemplatedDecl();
1087 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr;
1088 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) {
1089 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1090 if (!Found.empty()) {
1091 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front());
1095 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>(
1096 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true));
1097 if (!AliasInst)
1098 return nullptr;
1100 TypeAliasTemplateDecl *Inst
1101 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1102 D->getDeclName(), InstParams, AliasInst);
1103 AliasInst->setDescribedAliasTemplate(Inst);
1104 if (PrevAliasTemplate)
1105 Inst->setPreviousDecl(PrevAliasTemplate);
1107 Inst->setAccess(D->getAccess());
1109 if (!PrevAliasTemplate)
1110 Inst->setInstantiatedFromMemberTemplate(D);
1112 Owner->addDecl(Inst);
1114 return Inst;
1117 Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) {
1118 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1119 D->getIdentifier());
1120 NewBD->setReferenced(D->isReferenced());
1121 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD);
1122 return NewBD;
1125 Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) {
1126 // Transform the bindings first.
1127 SmallVector<BindingDecl*, 16> NewBindings;
1128 for (auto *OldBD : D->bindings())
1129 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD)));
1130 ArrayRef<BindingDecl*> NewBindingArray = NewBindings;
1132 auto *NewDD = cast_or_null<DecompositionDecl>(
1133 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray));
1135 if (!NewDD || NewDD->isInvalidDecl())
1136 for (auto *NewBD : NewBindings)
1137 NewBD->setInvalidDecl();
1139 return NewDD;
1142 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
1143 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false);
1146 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D,
1147 bool InstantiatingVarTemplate,
1148 ArrayRef<BindingDecl*> *Bindings) {
1150 // Do substitution on the type of the declaration
1151 TypeSourceInfo *DI = SemaRef.SubstType(
1152 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(),
1153 D->getDeclName(), /*AllowDeducedTST*/true);
1154 if (!DI)
1155 return nullptr;
1157 if (DI->getType()->isFunctionType()) {
1158 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
1159 << D->isStaticDataMember() << DI->getType();
1160 return nullptr;
1163 DeclContext *DC = Owner;
1164 if (D->isLocalExternDecl())
1165 SemaRef.adjustContextForLocalExternDecl(DC);
1167 // Build the instantiated declaration.
1168 VarDecl *Var;
1169 if (Bindings)
1170 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1171 D->getLocation(), DI->getType(), DI,
1172 D->getStorageClass(), *Bindings);
1173 else
1174 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1175 D->getLocation(), D->getIdentifier(), DI->getType(),
1176 DI, D->getStorageClass());
1178 // In ARC, infer 'retaining' for variables of retainable type.
1179 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1180 SemaRef.inferObjCARCLifetime(Var))
1181 Var->setInvalidDecl();
1183 if (SemaRef.getLangOpts().OpenCL)
1184 SemaRef.deduceOpenCLAddressSpace(Var);
1186 // Substitute the nested name specifier, if any.
1187 if (SubstQualifier(D, Var))
1188 return nullptr;
1190 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
1191 StartingScope, InstantiatingVarTemplate);
1192 if (D->isNRVOVariable() && !Var->isInvalidDecl()) {
1193 QualType RT;
1194 if (auto *F = dyn_cast<FunctionDecl>(DC))
1195 RT = F->getReturnType();
1196 else if (isa<BlockDecl>(DC))
1197 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType)
1198 ->getReturnType();
1199 else
1200 llvm_unreachable("Unknown context type");
1202 // This is the last chance we have of checking copy elision eligibility
1203 // for functions in dependent contexts. The sema actions for building
1204 // the return statement during template instantiation will have no effect
1205 // regarding copy elision, since NRVO propagation runs on the scope exit
1206 // actions, and these are not run on instantiation.
1207 // This might run through some VarDecls which were returned from non-taken
1208 // 'if constexpr' branches, and these will end up being constructed on the
1209 // return slot even if they will never be returned, as a sort of accidental
1210 // 'optimization'. Notably, functions with 'auto' return types won't have it
1211 // deduced by this point. Coupled with the limitation described
1212 // previously, this makes it very hard to support copy elision for these.
1213 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var);
1214 bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr;
1215 Var->setNRVOVariable(NRVO);
1218 Var->setImplicit(D->isImplicit());
1220 if (Var->isStaticLocal())
1221 SemaRef.CheckStaticLocalForDllExport(Var);
1223 if (Var->getTLSKind())
1224 SemaRef.CheckThreadLocalForLargeAlignment(Var);
1226 return Var;
1229 Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) {
1230 AccessSpecDecl* AD
1231 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner,
1232 D->getAccessSpecifierLoc(), D->getColonLoc());
1233 Owner->addHiddenDecl(AD);
1234 return AD;
1237 Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
1238 bool Invalid = false;
1239 TypeSourceInfo *DI = D->getTypeSourceInfo();
1240 if (DI->getType()->isInstantiationDependentType() ||
1241 DI->getType()->isVariablyModifiedType()) {
1242 DI = SemaRef.SubstType(DI, TemplateArgs,
1243 D->getLocation(), D->getDeclName());
1244 if (!DI) {
1245 DI = D->getTypeSourceInfo();
1246 Invalid = true;
1247 } else if (DI->getType()->isFunctionType()) {
1248 // C++ [temp.arg.type]p3:
1249 // If a declaration acquires a function type through a type
1250 // dependent on a template-parameter and this causes a
1251 // declaration that does not use the syntactic form of a
1252 // function declarator to have function type, the program is
1253 // ill-formed.
1254 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1255 << DI->getType();
1256 Invalid = true;
1258 } else {
1259 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1262 Expr *BitWidth = D->getBitWidth();
1263 if (Invalid)
1264 BitWidth = nullptr;
1265 else if (BitWidth) {
1266 // The bit-width expression is a constant expression.
1267 EnterExpressionEvaluationContext Unevaluated(
1268 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1270 ExprResult InstantiatedBitWidth
1271 = SemaRef.SubstExpr(BitWidth, TemplateArgs);
1272 if (InstantiatedBitWidth.isInvalid()) {
1273 Invalid = true;
1274 BitWidth = nullptr;
1275 } else
1276 BitWidth = InstantiatedBitWidth.getAs<Expr>();
1279 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(),
1280 DI->getType(), DI,
1281 cast<RecordDecl>(Owner),
1282 D->getLocation(),
1283 D->isMutable(),
1284 BitWidth,
1285 D->getInClassInitStyle(),
1286 D->getInnerLocStart(),
1287 D->getAccess(),
1288 nullptr);
1289 if (!Field) {
1290 cast<Decl>(Owner)->setInvalidDecl();
1291 return nullptr;
1294 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope);
1296 if (Field->hasAttrs())
1297 SemaRef.CheckAlignasUnderalignment(Field);
1299 if (Invalid)
1300 Field->setInvalidDecl();
1302 if (!Field->getDeclName()) {
1303 // Keep track of where this decl came from.
1304 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D);
1306 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) {
1307 if (Parent->isAnonymousStructOrUnion() &&
1308 Parent->getRedeclContext()->isFunctionOrMethod())
1309 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field);
1312 Field->setImplicit(D->isImplicit());
1313 Field->setAccess(D->getAccess());
1314 Owner->addDecl(Field);
1316 return Field;
1319 Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) {
1320 bool Invalid = false;
1321 TypeSourceInfo *DI = D->getTypeSourceInfo();
1323 if (DI->getType()->isVariablyModifiedType()) {
1324 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified)
1325 << D;
1326 Invalid = true;
1327 } else if (DI->getType()->isInstantiationDependentType()) {
1328 DI = SemaRef.SubstType(DI, TemplateArgs,
1329 D->getLocation(), D->getDeclName());
1330 if (!DI) {
1331 DI = D->getTypeSourceInfo();
1332 Invalid = true;
1333 } else if (DI->getType()->isFunctionType()) {
1334 // C++ [temp.arg.type]p3:
1335 // If a declaration acquires a function type through a type
1336 // dependent on a template-parameter and this causes a
1337 // declaration that does not use the syntactic form of a
1338 // function declarator to have function type, the program is
1339 // ill-formed.
1340 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1341 << DI->getType();
1342 Invalid = true;
1344 } else {
1345 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1348 MSPropertyDecl *Property = MSPropertyDecl::Create(
1349 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(),
1350 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId());
1352 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs,
1353 StartingScope);
1355 if (Invalid)
1356 Property->setInvalidDecl();
1358 Property->setAccess(D->getAccess());
1359 Owner->addDecl(Property);
1361 return Property;
1364 Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
1365 NamedDecl **NamedChain =
1366 new (SemaRef.Context)NamedDecl*[D->getChainingSize()];
1368 int i = 0;
1369 for (auto *PI : D->chain()) {
1370 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI,
1371 TemplateArgs);
1372 if (!Next)
1373 return nullptr;
1375 NamedChain[i++] = Next;
1378 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType();
1379 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
1380 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T,
1381 {NamedChain, D->getChainingSize()});
1383 for (const auto *Attr : D->attrs())
1384 IndirectField->addAttr(Attr->clone(SemaRef.Context));
1386 IndirectField->setImplicit(D->isImplicit());
1387 IndirectField->setAccess(D->getAccess());
1388 Owner->addDecl(IndirectField);
1389 return IndirectField;
1392 Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
1393 // Handle friend type expressions by simply substituting template
1394 // parameters into the pattern type and checking the result.
1395 if (TypeSourceInfo *Ty = D->getFriendType()) {
1396 TypeSourceInfo *InstTy;
1397 // If this is an unsupported friend, don't bother substituting template
1398 // arguments into it. The actual type referred to won't be used by any
1399 // parts of Clang, and may not be valid for instantiating. Just use the
1400 // same info for the instantiated friend.
1401 if (D->isUnsupportedFriend()) {
1402 InstTy = Ty;
1403 } else {
1404 InstTy = SemaRef.SubstType(Ty, TemplateArgs,
1405 D->getLocation(), DeclarationName());
1407 if (!InstTy)
1408 return nullptr;
1410 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(),
1411 D->getFriendLoc(), InstTy);
1412 if (!FD)
1413 return nullptr;
1415 FD->setAccess(AS_public);
1416 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1417 Owner->addDecl(FD);
1418 return FD;
1421 NamedDecl *ND = D->getFriendDecl();
1422 assert(ND && "friend decl must be a decl or a type!");
1424 // All of the Visit implementations for the various potential friend
1425 // declarations have to be carefully written to work for friend
1426 // objects, with the most important detail being that the target
1427 // decl should almost certainly not be placed in Owner.
1428 Decl *NewND = Visit(ND);
1429 if (!NewND) return nullptr;
1431 FriendDecl *FD =
1432 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1433 cast<NamedDecl>(NewND), D->getFriendLoc());
1434 FD->setAccess(AS_public);
1435 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1436 Owner->addDecl(FD);
1437 return FD;
1440 Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
1441 Expr *AssertExpr = D->getAssertExpr();
1443 // The expression in a static assertion is a constant expression.
1444 EnterExpressionEvaluationContext Unevaluated(
1445 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1447 ExprResult InstantiatedAssertExpr
1448 = SemaRef.SubstExpr(AssertExpr, TemplateArgs);
1449 if (InstantiatedAssertExpr.isInvalid())
1450 return nullptr;
1452 ExprResult InstantiatedMessageExpr =
1453 SemaRef.SubstExpr(D->getMessage(), TemplateArgs);
1454 if (InstantiatedMessageExpr.isInvalid())
1455 return nullptr;
1457 return SemaRef.BuildStaticAssertDeclaration(
1458 D->getLocation(), InstantiatedAssertExpr.get(),
1459 InstantiatedMessageExpr.get(), D->getRParenLoc(), D->isFailed());
1462 Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
1463 EnumDecl *PrevDecl = nullptr;
1464 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1465 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1466 PatternPrev,
1467 TemplateArgs);
1468 if (!Prev) return nullptr;
1469 PrevDecl = cast<EnumDecl>(Prev);
1472 EnumDecl *Enum =
1473 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
1474 D->getLocation(), D->getIdentifier(), PrevDecl,
1475 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed());
1476 if (D->isFixed()) {
1477 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) {
1478 // If we have type source information for the underlying type, it means it
1479 // has been explicitly set by the user. Perform substitution on it before
1480 // moving on.
1481 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1482 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc,
1483 DeclarationName());
1484 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI))
1485 Enum->setIntegerType(SemaRef.Context.IntTy);
1486 else
1487 Enum->setIntegerTypeSourceInfo(NewTI);
1488 } else {
1489 assert(!D->getIntegerType()->isDependentType()
1490 && "Dependent type without type source info");
1491 Enum->setIntegerType(D->getIntegerType());
1495 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum);
1497 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation);
1498 Enum->setAccess(D->getAccess());
1499 // Forward the mangling number from the template to the instantiated decl.
1500 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D));
1501 // See if the old tag was defined along with a declarator.
1502 // If it did, mark the new tag as being associated with that declarator.
1503 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1504 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD);
1505 // See if the old tag was defined along with a typedef.
1506 // If it did, mark the new tag as being associated with that typedef.
1507 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1508 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND);
1509 if (SubstQualifier(D, Enum)) return nullptr;
1510 Owner->addDecl(Enum);
1512 EnumDecl *Def = D->getDefinition();
1513 if (Def && Def != D) {
1514 // If this is an out-of-line definition of an enum member template, check
1515 // that the underlying types match in the instantiation of both
1516 // declarations.
1517 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) {
1518 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1519 QualType DefnUnderlying =
1520 SemaRef.SubstType(TI->getType(), TemplateArgs,
1521 UnderlyingLoc, DeclarationName());
1522 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(),
1523 DefnUnderlying, /*IsFixed=*/true, Enum);
1527 // C++11 [temp.inst]p1: The implicit instantiation of a class template
1528 // specialization causes the implicit instantiation of the declarations, but
1529 // not the definitions of scoped member enumerations.
1531 // DR1484 clarifies that enumeration definitions inside of a template
1532 // declaration aren't considered entities that can be separately instantiated
1533 // from the rest of the entity they are declared inside of.
1534 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) {
1535 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
1536 InstantiateEnumDefinition(Enum, Def);
1539 return Enum;
1542 void TemplateDeclInstantiator::InstantiateEnumDefinition(
1543 EnumDecl *Enum, EnumDecl *Pattern) {
1544 Enum->startDefinition();
1546 // Update the location to refer to the definition.
1547 Enum->setLocation(Pattern->getLocation());
1549 SmallVector<Decl*, 4> Enumerators;
1551 EnumConstantDecl *LastEnumConst = nullptr;
1552 for (auto *EC : Pattern->enumerators()) {
1553 // The specified value for the enumerator.
1554 ExprResult Value((Expr *)nullptr);
1555 if (Expr *UninstValue = EC->getInitExpr()) {
1556 // The enumerator's value expression is a constant expression.
1557 EnterExpressionEvaluationContext Unevaluated(
1558 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1560 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs);
1563 // Drop the initial value and continue.
1564 bool isInvalid = false;
1565 if (Value.isInvalid()) {
1566 Value = nullptr;
1567 isInvalid = true;
1570 EnumConstantDecl *EnumConst
1571 = SemaRef.CheckEnumConstant(Enum, LastEnumConst,
1572 EC->getLocation(), EC->getIdentifier(),
1573 Value.get());
1575 if (isInvalid) {
1576 if (EnumConst)
1577 EnumConst->setInvalidDecl();
1578 Enum->setInvalidDecl();
1581 if (EnumConst) {
1582 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst);
1584 EnumConst->setAccess(Enum->getAccess());
1585 Enum->addDecl(EnumConst);
1586 Enumerators.push_back(EnumConst);
1587 LastEnumConst = EnumConst;
1589 if (Pattern->getDeclContext()->isFunctionOrMethod() &&
1590 !Enum->isScoped()) {
1591 // If the enumeration is within a function or method, record the enum
1592 // constant as a local.
1593 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst);
1598 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum,
1599 Enumerators, nullptr, ParsedAttributesView());
1602 Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
1603 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.");
1606 Decl *
1607 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
1608 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated.");
1611 Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
1612 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
1614 // Create a local instantiation scope for this class template, which
1615 // will contain the instantiations of the template parameters.
1616 LocalInstantiationScope Scope(SemaRef);
1617 TemplateParameterList *TempParams = D->getTemplateParameters();
1618 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1619 if (!InstParams)
1620 return nullptr;
1622 CXXRecordDecl *Pattern = D->getTemplatedDecl();
1624 // Instantiate the qualifier. We have to do this first in case
1625 // we're a friend declaration, because if we are then we need to put
1626 // the new declaration in the appropriate context.
1627 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc();
1628 if (QualifierLoc) {
1629 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
1630 TemplateArgs);
1631 if (!QualifierLoc)
1632 return nullptr;
1635 CXXRecordDecl *PrevDecl = nullptr;
1636 ClassTemplateDecl *PrevClassTemplate = nullptr;
1638 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) {
1639 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1640 if (!Found.empty()) {
1641 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front());
1642 if (PrevClassTemplate)
1643 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1647 // If this isn't a friend, then it's a member template, in which
1648 // case we just want to build the instantiation in the
1649 // specialization. If it is a friend, we want to build it in
1650 // the appropriate context.
1651 DeclContext *DC = Owner;
1652 if (isFriend) {
1653 if (QualifierLoc) {
1654 CXXScopeSpec SS;
1655 SS.Adopt(QualifierLoc);
1656 DC = SemaRef.computeDeclContext(SS);
1657 if (!DC) return nullptr;
1658 } else {
1659 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(),
1660 Pattern->getDeclContext(),
1661 TemplateArgs);
1664 // Look for a previous declaration of the template in the owning
1665 // context.
1666 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(),
1667 Sema::LookupOrdinaryName,
1668 SemaRef.forRedeclarationInCurContext());
1669 SemaRef.LookupQualifiedName(R, DC);
1671 if (R.isSingleResult()) {
1672 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>();
1673 if (PrevClassTemplate)
1674 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1677 if (!PrevClassTemplate && QualifierLoc) {
1678 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope)
1679 << llvm::to_underlying(D->getTemplatedDecl()->getTagKind())
1680 << Pattern->getDeclName() << DC << QualifierLoc.getSourceRange();
1681 return nullptr;
1685 CXXRecordDecl *RecordInst = CXXRecordDecl::Create(
1686 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(),
1687 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl,
1688 /*DelayTypeCreation=*/true);
1689 if (QualifierLoc)
1690 RecordInst->setQualifierInfo(QualifierLoc);
1692 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs,
1693 StartingScope);
1695 ClassTemplateDecl *Inst
1696 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(),
1697 D->getIdentifier(), InstParams, RecordInst);
1698 RecordInst->setDescribedClassTemplate(Inst);
1700 if (isFriend) {
1701 assert(!Owner->isDependentContext());
1702 Inst->setLexicalDeclContext(Owner);
1703 RecordInst->setLexicalDeclContext(Owner);
1705 if (PrevClassTemplate) {
1706 Inst->setCommonPtr(PrevClassTemplate->getCommonPtr());
1707 RecordInst->setTypeForDecl(
1708 PrevClassTemplate->getTemplatedDecl()->getTypeForDecl());
1709 const ClassTemplateDecl *MostRecentPrevCT =
1710 PrevClassTemplate->getMostRecentDecl();
1711 TemplateParameterList *PrevParams =
1712 MostRecentPrevCT->getTemplateParameters();
1714 // Make sure the parameter lists match.
1715 if (!SemaRef.TemplateParameterListsAreEqual(
1716 RecordInst, InstParams, MostRecentPrevCT->getTemplatedDecl(),
1717 PrevParams, true, Sema::TPL_TemplateMatch))
1718 return nullptr;
1720 // Do some additional validation, then merge default arguments
1721 // from the existing declarations.
1722 if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
1723 Sema::TPC_ClassTemplate))
1724 return nullptr;
1726 Inst->setAccess(PrevClassTemplate->getAccess());
1727 } else {
1728 Inst->setAccess(D->getAccess());
1731 Inst->setObjectOfFriendDecl();
1732 // TODO: do we want to track the instantiation progeny of this
1733 // friend target decl?
1734 } else {
1735 Inst->setAccess(D->getAccess());
1736 if (!PrevClassTemplate)
1737 Inst->setInstantiatedFromMemberTemplate(D);
1740 Inst->setPreviousDecl(PrevClassTemplate);
1742 // Trigger creation of the type for the instantiation.
1743 SemaRef.Context.getInjectedClassNameType(
1744 RecordInst, Inst->getInjectedClassNameSpecialization());
1746 // Finish handling of friends.
1747 if (isFriend) {
1748 DC->makeDeclVisibleInContext(Inst);
1749 return Inst;
1752 if (D->isOutOfLine()) {
1753 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1754 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext());
1757 Owner->addDecl(Inst);
1759 if (!PrevClassTemplate) {
1760 // Queue up any out-of-line partial specializations of this member
1761 // class template; the client will force their instantiation once
1762 // the enclosing class has been instantiated.
1763 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1764 D->getPartialSpecializations(PartialSpecs);
1765 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1766 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1767 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I]));
1770 return Inst;
1773 Decl *
1774 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
1775 ClassTemplatePartialSpecializationDecl *D) {
1776 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
1778 // Lookup the already-instantiated declaration in the instantiation
1779 // of the class template and return that.
1780 DeclContext::lookup_result Found
1781 = Owner->lookup(ClassTemplate->getDeclName());
1782 if (Found.empty())
1783 return nullptr;
1785 ClassTemplateDecl *InstClassTemplate
1786 = dyn_cast<ClassTemplateDecl>(Found.front());
1787 if (!InstClassTemplate)
1788 return nullptr;
1790 if (ClassTemplatePartialSpecializationDecl *Result
1791 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D))
1792 return Result;
1794 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D);
1797 Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) {
1798 assert(D->getTemplatedDecl()->isStaticDataMember() &&
1799 "Only static data member templates are allowed.");
1801 // Create a local instantiation scope for this variable template, which
1802 // will contain the instantiations of the template parameters.
1803 LocalInstantiationScope Scope(SemaRef);
1804 TemplateParameterList *TempParams = D->getTemplateParameters();
1805 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1806 if (!InstParams)
1807 return nullptr;
1809 VarDecl *Pattern = D->getTemplatedDecl();
1810 VarTemplateDecl *PrevVarTemplate = nullptr;
1812 if (getPreviousDeclForInstantiation(Pattern)) {
1813 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1814 if (!Found.empty())
1815 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1818 VarDecl *VarInst =
1819 cast_or_null<VarDecl>(VisitVarDecl(Pattern,
1820 /*InstantiatingVarTemplate=*/true));
1821 if (!VarInst) return nullptr;
1823 DeclContext *DC = Owner;
1825 VarTemplateDecl *Inst = VarTemplateDecl::Create(
1826 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams,
1827 VarInst);
1828 VarInst->setDescribedVarTemplate(Inst);
1829 Inst->setPreviousDecl(PrevVarTemplate);
1831 Inst->setAccess(D->getAccess());
1832 if (!PrevVarTemplate)
1833 Inst->setInstantiatedFromMemberTemplate(D);
1835 if (D->isOutOfLine()) {
1836 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1837 VarInst->setLexicalDeclContext(D->getLexicalDeclContext());
1840 Owner->addDecl(Inst);
1842 if (!PrevVarTemplate) {
1843 // Queue up any out-of-line partial specializations of this member
1844 // variable template; the client will force their instantiation once
1845 // the enclosing class has been instantiated.
1846 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1847 D->getPartialSpecializations(PartialSpecs);
1848 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1849 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1850 OutOfLineVarPartialSpecs.push_back(
1851 std::make_pair(Inst, PartialSpecs[I]));
1854 return Inst;
1857 Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
1858 VarTemplatePartialSpecializationDecl *D) {
1859 assert(D->isStaticDataMember() &&
1860 "Only static data member templates are allowed.");
1862 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
1864 // Lookup the already-instantiated declaration and return that.
1865 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName());
1866 assert(!Found.empty() && "Instantiation found nothing?");
1868 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1869 assert(InstVarTemplate && "Instantiation did not find a variable template?");
1871 if (VarTemplatePartialSpecializationDecl *Result =
1872 InstVarTemplate->findPartialSpecInstantiatedFromMember(D))
1873 return Result;
1875 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D);
1878 Decl *
1879 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
1880 // Create a local instantiation scope for this function template, which
1881 // will contain the instantiations of the template parameters and then get
1882 // merged with the local instantiation scope for the function template
1883 // itself.
1884 LocalInstantiationScope Scope(SemaRef);
1885 Sema::ConstraintEvalRAII<TemplateDeclInstantiator> RAII(*this);
1887 TemplateParameterList *TempParams = D->getTemplateParameters();
1888 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1889 if (!InstParams)
1890 return nullptr;
1892 FunctionDecl *Instantiated = nullptr;
1893 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl()))
1894 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod,
1895 InstParams));
1896 else
1897 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl(
1898 D->getTemplatedDecl(),
1899 InstParams));
1901 if (!Instantiated)
1902 return nullptr;
1904 // Link the instantiated function template declaration to the function
1905 // template from which it was instantiated.
1906 FunctionTemplateDecl *InstTemplate
1907 = Instantiated->getDescribedFunctionTemplate();
1908 InstTemplate->setAccess(D->getAccess());
1909 assert(InstTemplate &&
1910 "VisitFunctionDecl/CXXMethodDecl didn't create a template!");
1912 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None);
1914 // Link the instantiation back to the pattern *unless* this is a
1915 // non-definition friend declaration.
1916 if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
1917 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition()))
1918 InstTemplate->setInstantiatedFromMemberTemplate(D);
1920 // Make declarations visible in the appropriate context.
1921 if (!isFriend) {
1922 Owner->addDecl(InstTemplate);
1923 } else if (InstTemplate->getDeclContext()->isRecord() &&
1924 !getPreviousDeclForInstantiation(D)) {
1925 SemaRef.CheckFriendAccess(InstTemplate);
1928 return InstTemplate;
1931 Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
1932 CXXRecordDecl *PrevDecl = nullptr;
1933 if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1934 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1935 PatternPrev,
1936 TemplateArgs);
1937 if (!Prev) return nullptr;
1938 PrevDecl = cast<CXXRecordDecl>(Prev);
1941 CXXRecordDecl *Record = nullptr;
1942 bool IsInjectedClassName = D->isInjectedClassName();
1943 if (D->isLambda())
1944 Record = CXXRecordDecl::CreateLambda(
1945 SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(),
1946 D->getLambdaDependencyKind(), D->isGenericLambda(),
1947 D->getLambdaCaptureDefault());
1948 else
1949 Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner,
1950 D->getBeginLoc(), D->getLocation(),
1951 D->getIdentifier(), PrevDecl,
1952 /*DelayTypeCreation=*/IsInjectedClassName);
1953 // Link the type of the injected-class-name to that of the outer class.
1954 if (IsInjectedClassName)
1955 (void)SemaRef.Context.getTypeDeclType(Record, cast<CXXRecordDecl>(Owner));
1957 // Substitute the nested name specifier, if any.
1958 if (SubstQualifier(D, Record))
1959 return nullptr;
1961 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs,
1962 StartingScope);
1964 Record->setImplicit(D->isImplicit());
1965 // FIXME: Check against AS_none is an ugly hack to work around the issue that
1966 // the tag decls introduced by friend class declarations don't have an access
1967 // specifier. Remove once this area of the code gets sorted out.
1968 if (D->getAccess() != AS_none)
1969 Record->setAccess(D->getAccess());
1970 if (!IsInjectedClassName)
1971 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
1973 // If the original function was part of a friend declaration,
1974 // inherit its namespace state.
1975 if (D->getFriendObjectKind())
1976 Record->setObjectOfFriendDecl();
1978 // Make sure that anonymous structs and unions are recorded.
1979 if (D->isAnonymousStructOrUnion())
1980 Record->setAnonymousStructOrUnion(true);
1982 if (D->isLocalClass())
1983 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record);
1985 // Forward the mangling number from the template to the instantiated decl.
1986 SemaRef.Context.setManglingNumber(Record,
1987 SemaRef.Context.getManglingNumber(D));
1989 // See if the old tag was defined along with a declarator.
1990 // If it did, mark the new tag as being associated with that declarator.
1991 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1992 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD);
1994 // See if the old tag was defined along with a typedef.
1995 // If it did, mark the new tag as being associated with that typedef.
1996 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1997 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND);
1999 Owner->addDecl(Record);
2001 // DR1484 clarifies that the members of a local class are instantiated as part
2002 // of the instantiation of their enclosing entity.
2003 if (D->isCompleteDefinition() && D->isLocalClass()) {
2004 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef);
2006 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs,
2007 TSK_ImplicitInstantiation,
2008 /*Complain=*/true);
2010 // For nested local classes, we will instantiate the members when we
2011 // reach the end of the outermost (non-nested) local class.
2012 if (!D->isCXXClassMember())
2013 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs,
2014 TSK_ImplicitInstantiation);
2016 // This class may have local implicit instantiations that need to be
2017 // performed within this scope.
2018 LocalInstantiations.perform();
2021 SemaRef.DiagnoseUnusedNestedTypedefs(Record);
2023 if (IsInjectedClassName)
2024 assert(Record->isInjectedClassName() && "Broken injected-class-name");
2026 return Record;
2029 /// Adjust the given function type for an instantiation of the
2030 /// given declaration, to cope with modifications to the function's type that
2031 /// aren't reflected in the type-source information.
2033 /// \param D The declaration we're instantiating.
2034 /// \param TInfo The already-instantiated type.
2035 static QualType adjustFunctionTypeForInstantiation(ASTContext &Context,
2036 FunctionDecl *D,
2037 TypeSourceInfo *TInfo) {
2038 const FunctionProtoType *OrigFunc
2039 = D->getType()->castAs<FunctionProtoType>();
2040 const FunctionProtoType *NewFunc
2041 = TInfo->getType()->castAs<FunctionProtoType>();
2042 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo())
2043 return TInfo->getType();
2045 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo();
2046 NewEPI.ExtInfo = OrigFunc->getExtInfo();
2047 return Context.getFunctionType(NewFunc->getReturnType(),
2048 NewFunc->getParamTypes(), NewEPI);
2051 /// Normal class members are of more specific types and therefore
2052 /// don't make it here. This function serves three purposes:
2053 /// 1) instantiating function templates
2054 /// 2) substituting friend and local function declarations
2055 /// 3) substituting deduction guide declarations for nested class templates
2056 Decl *TemplateDeclInstantiator::VisitFunctionDecl(
2057 FunctionDecl *D, TemplateParameterList *TemplateParams,
2058 RewriteKind FunctionRewriteKind) {
2059 // Check whether there is already a function template specialization for
2060 // this declaration.
2061 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2062 if (FunctionTemplate && !TemplateParams) {
2063 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2065 void *InsertPos = nullptr;
2066 FunctionDecl *SpecFunc
2067 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
2069 // If we already have a function template specialization, return it.
2070 if (SpecFunc)
2071 return SpecFunc;
2074 bool isFriend;
2075 if (FunctionTemplate)
2076 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2077 else
2078 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2080 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2081 Owner->isFunctionOrMethod() ||
2082 !(isa<Decl>(Owner) &&
2083 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
2084 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2086 ExplicitSpecifier InstantiatedExplicitSpecifier;
2087 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
2088 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier(
2089 TemplateArgs, DGuide->getExplicitSpecifier());
2090 if (InstantiatedExplicitSpecifier.isInvalid())
2091 return nullptr;
2094 SmallVector<ParmVarDecl *, 4> Params;
2095 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2096 if (!TInfo)
2097 return nullptr;
2098 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
2100 if (TemplateParams && TemplateParams->size()) {
2101 auto *LastParam =
2102 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
2103 if (LastParam && LastParam->isImplicit() &&
2104 LastParam->hasTypeConstraint()) {
2105 // In abbreviated templates, the type-constraints of invented template
2106 // type parameters are instantiated with the function type, invalidating
2107 // the TemplateParameterList which relied on the template type parameter
2108 // not having a type constraint. Recreate the TemplateParameterList with
2109 // the updated parameter list.
2110 TemplateParams = TemplateParameterList::Create(
2111 SemaRef.Context, TemplateParams->getTemplateLoc(),
2112 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
2113 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
2117 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2118 if (QualifierLoc) {
2119 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2120 TemplateArgs);
2121 if (!QualifierLoc)
2122 return nullptr;
2125 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2127 // If we're instantiating a local function declaration, put the result
2128 // in the enclosing namespace; otherwise we need to find the instantiated
2129 // context.
2130 DeclContext *DC;
2131 if (D->isLocalExternDecl()) {
2132 DC = Owner;
2133 SemaRef.adjustContextForLocalExternDecl(DC);
2134 } else if (isFriend && QualifierLoc) {
2135 CXXScopeSpec SS;
2136 SS.Adopt(QualifierLoc);
2137 DC = SemaRef.computeDeclContext(SS);
2138 if (!DC) return nullptr;
2139 } else {
2140 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(),
2141 TemplateArgs);
2144 DeclarationNameInfo NameInfo
2145 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2147 if (FunctionRewriteKind != RewriteKind::None)
2148 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2150 FunctionDecl *Function;
2151 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
2152 Function = CXXDeductionGuideDecl::Create(
2153 SemaRef.Context, DC, D->getInnerLocStart(),
2154 InstantiatedExplicitSpecifier, NameInfo, T, TInfo,
2155 D->getSourceRange().getEnd(), DGuide->getCorrespondingConstructor(),
2156 DGuide->getDeductionCandidateKind());
2157 Function->setAccess(D->getAccess());
2158 } else {
2159 Function = FunctionDecl::Create(
2160 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo,
2161 D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(),
2162 D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(),
2163 TrailingRequiresClause);
2164 Function->setFriendConstraintRefersToEnclosingTemplate(
2165 D->FriendConstraintRefersToEnclosingTemplate());
2166 Function->setRangeEnd(D->getSourceRange().getEnd());
2169 if (D->isInlined())
2170 Function->setImplicitlyInline();
2172 if (QualifierLoc)
2173 Function->setQualifierInfo(QualifierLoc);
2175 if (D->isLocalExternDecl())
2176 Function->setLocalExternDecl();
2178 DeclContext *LexicalDC = Owner;
2179 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) {
2180 assert(D->getDeclContext()->isFileContext());
2181 LexicalDC = D->getDeclContext();
2183 else if (D->isLocalExternDecl()) {
2184 LexicalDC = SemaRef.CurContext;
2187 Function->setLexicalDeclContext(LexicalDC);
2189 // Attach the parameters
2190 for (unsigned P = 0; P < Params.size(); ++P)
2191 if (Params[P])
2192 Params[P]->setOwningFunction(Function);
2193 Function->setParams(Params);
2195 if (TrailingRequiresClause)
2196 Function->setTrailingRequiresClause(TrailingRequiresClause);
2198 if (TemplateParams) {
2199 // Our resulting instantiation is actually a function template, since we
2200 // are substituting only the outer template parameters. For example, given
2202 // template<typename T>
2203 // struct X {
2204 // template<typename U> friend void f(T, U);
2205 // };
2207 // X<int> x;
2209 // We are instantiating the friend function template "f" within X<int>,
2210 // which means substituting int for T, but leaving "f" as a friend function
2211 // template.
2212 // Build the function template itself.
2213 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC,
2214 Function->getLocation(),
2215 Function->getDeclName(),
2216 TemplateParams, Function);
2217 Function->setDescribedFunctionTemplate(FunctionTemplate);
2219 FunctionTemplate->setLexicalDeclContext(LexicalDC);
2221 if (isFriend && D->isThisDeclarationADefinition()) {
2222 FunctionTemplate->setInstantiatedFromMemberTemplate(
2223 D->getDescribedFunctionTemplate());
2225 } else if (FunctionTemplate) {
2226 // Record this function template specialization.
2227 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2228 Function->setFunctionTemplateSpecialization(FunctionTemplate,
2229 TemplateArgumentList::CreateCopy(SemaRef.Context,
2230 Innermost),
2231 /*InsertPos=*/nullptr);
2232 } else if (isFriend && D->isThisDeclarationADefinition()) {
2233 // Do not connect the friend to the template unless it's actually a
2234 // definition. We don't want non-template functions to be marked as being
2235 // template instantiations.
2236 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2237 } else if (!isFriend) {
2238 // If this is not a function template, and this is not a friend (that is,
2239 // this is a locally declared function), save the instantiation relationship
2240 // for the purposes of constraint instantiation.
2241 Function->setInstantiatedFromDecl(D);
2244 if (isFriend) {
2245 Function->setObjectOfFriendDecl();
2246 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate())
2247 FT->setObjectOfFriendDecl();
2250 if (InitFunctionInstantiation(Function, D))
2251 Function->setInvalidDecl();
2253 bool IsExplicitSpecialization = false;
2255 LookupResult Previous(
2256 SemaRef, Function->getDeclName(), SourceLocation(),
2257 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
2258 : Sema::LookupOrdinaryName,
2259 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration
2260 : SemaRef.forRedeclarationInCurContext());
2262 if (DependentFunctionTemplateSpecializationInfo *DFTSI =
2263 D->getDependentSpecializationInfo()) {
2264 assert(isFriend && "dependent specialization info on "
2265 "non-member non-friend function?");
2267 // Instantiate the explicit template arguments.
2268 TemplateArgumentListInfo ExplicitArgs;
2269 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) {
2270 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc());
2271 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc());
2272 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs,
2273 ExplicitArgs))
2274 return nullptr;
2277 // Map the candidates for the primary template to their instantiations.
2278 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) {
2279 if (NamedDecl *ND =
2280 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs))
2281 Previous.addDecl(ND);
2282 else
2283 return nullptr;
2286 if (SemaRef.CheckFunctionTemplateSpecialization(
2287 Function,
2288 DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr,
2289 Previous))
2290 Function->setInvalidDecl();
2292 IsExplicitSpecialization = true;
2293 } else if (const ASTTemplateArgumentListInfo *ArgsWritten =
2294 D->getTemplateSpecializationArgsAsWritten()) {
2295 // The name of this function was written as a template-id.
2296 SemaRef.LookupQualifiedName(Previous, DC);
2298 // Instantiate the explicit template arguments.
2299 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(),
2300 ArgsWritten->getRAngleLoc());
2301 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs,
2302 ExplicitArgs))
2303 return nullptr;
2305 if (SemaRef.CheckFunctionTemplateSpecialization(Function,
2306 &ExplicitArgs,
2307 Previous))
2308 Function->setInvalidDecl();
2310 IsExplicitSpecialization = true;
2311 } else if (TemplateParams || !FunctionTemplate) {
2312 // Look only into the namespace where the friend would be declared to
2313 // find a previous declaration. This is the innermost enclosing namespace,
2314 // as described in ActOnFriendFunctionDecl.
2315 SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext());
2317 // In C++, the previous declaration we find might be a tag type
2318 // (class or enum). In this case, the new declaration will hide the
2319 // tag type. Note that this does not apply if we're declaring a
2320 // typedef (C++ [dcl.typedef]p4).
2321 if (Previous.isSingleTagDecl())
2322 Previous.clear();
2324 // Filter out previous declarations that don't match the scope. The only
2325 // effect this has is to remove declarations found in inline namespaces
2326 // for friend declarations with unqualified names.
2327 if (isFriend && !QualifierLoc) {
2328 SemaRef.FilterLookupForScope(Previous, DC, /*Scope=*/ nullptr,
2329 /*ConsiderLinkage=*/ true,
2330 QualifierLoc.hasQualifier());
2334 // Per [temp.inst], default arguments in function declarations at local scope
2335 // are instantiated along with the enclosing declaration. For example:
2337 // template<typename T>
2338 // void ft() {
2339 // void f(int = []{ return T::value; }());
2340 // }
2341 // template void ft<int>(); // error: type 'int' cannot be used prior
2342 // to '::' because it has no members
2344 // The error is issued during instantiation of ft<int>() because substitution
2345 // into the default argument fails; the default argument is instantiated even
2346 // though it is never used.
2347 if (Function->isLocalExternDecl()) {
2348 for (ParmVarDecl *PVD : Function->parameters()) {
2349 if (!PVD->hasDefaultArg())
2350 continue;
2351 if (SemaRef.SubstDefaultArgument(D->getInnerLocStart(), PVD, TemplateArgs)) {
2352 // If substitution fails, the default argument is set to a
2353 // RecoveryExpr that wraps the uninstantiated default argument so
2354 // that downstream diagnostics are omitted.
2355 Expr *UninstExpr = PVD->getUninstantiatedDefaultArg();
2356 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr(
2357 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(),
2358 { UninstExpr }, UninstExpr->getType());
2359 if (ErrorResult.isUsable())
2360 PVD->setDefaultArg(ErrorResult.get());
2365 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous,
2366 IsExplicitSpecialization,
2367 Function->isThisDeclarationADefinition());
2369 // Check the template parameter list against the previous declaration. The
2370 // goal here is to pick up default arguments added since the friend was
2371 // declared; we know the template parameter lists match, since otherwise
2372 // we would not have picked this template as the previous declaration.
2373 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) {
2374 SemaRef.CheckTemplateParameterList(
2375 TemplateParams,
2376 FunctionTemplate->getPreviousDecl()->getTemplateParameters(),
2377 Function->isThisDeclarationADefinition()
2378 ? Sema::TPC_FriendFunctionTemplateDefinition
2379 : Sema::TPC_FriendFunctionTemplate);
2382 // If we're introducing a friend definition after the first use, trigger
2383 // instantiation.
2384 // FIXME: If this is a friend function template definition, we should check
2385 // to see if any specializations have been used.
2386 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) {
2387 if (MemberSpecializationInfo *MSInfo =
2388 Function->getMemberSpecializationInfo()) {
2389 if (MSInfo->getPointOfInstantiation().isInvalid()) {
2390 SourceLocation Loc = D->getLocation(); // FIXME
2391 MSInfo->setPointOfInstantiation(Loc);
2392 SemaRef.PendingLocalImplicitInstantiations.push_back(
2393 std::make_pair(Function, Loc));
2398 if (D->isExplicitlyDefaulted()) {
2399 if (SubstDefaultedFunction(Function, D))
2400 return nullptr;
2402 if (D->isDeleted())
2403 SemaRef.SetDeclDeleted(Function, D->getLocation());
2405 NamedDecl *PrincipalDecl =
2406 (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function);
2408 // If this declaration lives in a different context from its lexical context,
2409 // add it to the corresponding lookup table.
2410 if (isFriend ||
2411 (Function->isLocalExternDecl() && !Function->getPreviousDecl()))
2412 DC->makeDeclVisibleInContext(PrincipalDecl);
2414 if (Function->isOverloadedOperator() && !DC->isRecord() &&
2415 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
2416 PrincipalDecl->setNonMemberOperator();
2418 return Function;
2421 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(
2422 CXXMethodDecl *D, TemplateParameterList *TemplateParams,
2423 RewriteKind FunctionRewriteKind) {
2424 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2425 if (FunctionTemplate && !TemplateParams) {
2426 // We are creating a function template specialization from a function
2427 // template. Check whether there is already a function template
2428 // specialization for this particular set of template arguments.
2429 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2431 void *InsertPos = nullptr;
2432 FunctionDecl *SpecFunc
2433 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
2435 // If we already have a function template specialization, return it.
2436 if (SpecFunc)
2437 return SpecFunc;
2440 bool isFriend;
2441 if (FunctionTemplate)
2442 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2443 else
2444 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2446 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2447 !(isa<Decl>(Owner) &&
2448 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
2449 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2451 Sema::LambdaScopeForCallOperatorInstantiationRAII LambdaScope(
2452 SemaRef, const_cast<CXXMethodDecl *>(D), TemplateArgs, Scope);
2454 // Instantiate enclosing template arguments for friends.
2455 SmallVector<TemplateParameterList *, 4> TempParamLists;
2456 unsigned NumTempParamLists = 0;
2457 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) {
2458 TempParamLists.resize(NumTempParamLists);
2459 for (unsigned I = 0; I != NumTempParamLists; ++I) {
2460 TemplateParameterList *TempParams = D->getTemplateParameterList(I);
2461 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
2462 if (!InstParams)
2463 return nullptr;
2464 TempParamLists[I] = InstParams;
2468 auto InstantiatedExplicitSpecifier = ExplicitSpecifier::getFromDecl(D);
2469 // deduction guides need this
2470 const bool CouldInstantiate =
2471 InstantiatedExplicitSpecifier.getExpr() == nullptr ||
2472 !InstantiatedExplicitSpecifier.getExpr()->isValueDependent();
2474 // Delay the instantiation of the explicit-specifier until after the
2475 // constraints are checked during template argument deduction.
2476 if (CouldInstantiate ||
2477 SemaRef.CodeSynthesisContexts.back().Kind !=
2478 Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution) {
2479 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier(
2480 TemplateArgs, InstantiatedExplicitSpecifier);
2482 if (InstantiatedExplicitSpecifier.isInvalid())
2483 return nullptr;
2484 } else {
2485 InstantiatedExplicitSpecifier.setKind(ExplicitSpecKind::Unresolved);
2488 // Implicit destructors/constructors created for local classes in
2489 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI.
2490 // Unfortunately there isn't enough context in those functions to
2491 // conditionally populate the TSI without breaking non-template related use
2492 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get
2493 // a proper transformation.
2494 if (cast<CXXRecordDecl>(D->getParent())->isLambda() &&
2495 !D->getTypeSourceInfo() &&
2496 isa<CXXConstructorDecl, CXXDestructorDecl>(D)) {
2497 TypeSourceInfo *TSI =
2498 SemaRef.Context.getTrivialTypeSourceInfo(D->getType());
2499 D->setTypeSourceInfo(TSI);
2502 SmallVector<ParmVarDecl *, 4> Params;
2503 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2504 if (!TInfo)
2505 return nullptr;
2506 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
2508 if (TemplateParams && TemplateParams->size()) {
2509 auto *LastParam =
2510 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
2511 if (LastParam && LastParam->isImplicit() &&
2512 LastParam->hasTypeConstraint()) {
2513 // In abbreviated templates, the type-constraints of invented template
2514 // type parameters are instantiated with the function type, invalidating
2515 // the TemplateParameterList which relied on the template type parameter
2516 // not having a type constraint. Recreate the TemplateParameterList with
2517 // the updated parameter list.
2518 TemplateParams = TemplateParameterList::Create(
2519 SemaRef.Context, TemplateParams->getTemplateLoc(),
2520 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
2521 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
2525 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2526 if (QualifierLoc) {
2527 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2528 TemplateArgs);
2529 if (!QualifierLoc)
2530 return nullptr;
2533 DeclContext *DC = Owner;
2534 if (isFriend) {
2535 if (QualifierLoc) {
2536 CXXScopeSpec SS;
2537 SS.Adopt(QualifierLoc);
2538 DC = SemaRef.computeDeclContext(SS);
2540 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC))
2541 return nullptr;
2542 } else {
2543 DC = SemaRef.FindInstantiatedContext(D->getLocation(),
2544 D->getDeclContext(),
2545 TemplateArgs);
2547 if (!DC) return nullptr;
2550 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
2551 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2553 DeclarationNameInfo NameInfo
2554 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2556 if (FunctionRewriteKind != RewriteKind::None)
2557 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2559 // Build the instantiated method declaration.
2560 CXXMethodDecl *Method = nullptr;
2562 SourceLocation StartLoc = D->getInnerLocStart();
2563 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
2564 Method = CXXConstructorDecl::Create(
2565 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2566 InstantiatedExplicitSpecifier, Constructor->UsesFPIntrin(),
2567 Constructor->isInlineSpecified(), false,
2568 Constructor->getConstexprKind(), InheritedConstructor(),
2569 TrailingRequiresClause);
2570 Method->setRangeEnd(Constructor->getEndLoc());
2571 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
2572 Method = CXXDestructorDecl::Create(
2573 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2574 Destructor->UsesFPIntrin(), Destructor->isInlineSpecified(), false,
2575 Destructor->getConstexprKind(), TrailingRequiresClause);
2576 Method->setIneligibleOrNotSelected(true);
2577 Method->setRangeEnd(Destructor->getEndLoc());
2578 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName(
2579 SemaRef.Context.getCanonicalType(
2580 SemaRef.Context.getTypeDeclType(Record))));
2581 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
2582 Method = CXXConversionDecl::Create(
2583 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2584 Conversion->UsesFPIntrin(), Conversion->isInlineSpecified(),
2585 InstantiatedExplicitSpecifier, Conversion->getConstexprKind(),
2586 Conversion->getEndLoc(), TrailingRequiresClause);
2587 } else {
2588 StorageClass SC = D->isStatic() ? SC_Static : SC_None;
2589 Method = CXXMethodDecl::Create(
2590 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC,
2591 D->UsesFPIntrin(), D->isInlineSpecified(), D->getConstexprKind(),
2592 D->getEndLoc(), TrailingRequiresClause);
2595 if (D->isInlined())
2596 Method->setImplicitlyInline();
2598 if (QualifierLoc)
2599 Method->setQualifierInfo(QualifierLoc);
2601 if (TemplateParams) {
2602 // Our resulting instantiation is actually a function template, since we
2603 // are substituting only the outer template parameters. For example, given
2605 // template<typename T>
2606 // struct X {
2607 // template<typename U> void f(T, U);
2608 // };
2610 // X<int> x;
2612 // We are instantiating the member template "f" within X<int>, which means
2613 // substituting int for T, but leaving "f" as a member function template.
2614 // Build the function template itself.
2615 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record,
2616 Method->getLocation(),
2617 Method->getDeclName(),
2618 TemplateParams, Method);
2619 if (isFriend) {
2620 FunctionTemplate->setLexicalDeclContext(Owner);
2621 FunctionTemplate->setObjectOfFriendDecl();
2622 } else if (D->isOutOfLine())
2623 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
2624 Method->setDescribedFunctionTemplate(FunctionTemplate);
2625 } else if (FunctionTemplate) {
2626 // Record this function template specialization.
2627 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2628 Method->setFunctionTemplateSpecialization(FunctionTemplate,
2629 TemplateArgumentList::CreateCopy(SemaRef.Context,
2630 Innermost),
2631 /*InsertPos=*/nullptr);
2632 } else if (!isFriend) {
2633 // Record that this is an instantiation of a member function.
2634 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2637 // If we are instantiating a member function defined
2638 // out-of-line, the instantiation will have the same lexical
2639 // context (which will be a namespace scope) as the template.
2640 if (isFriend) {
2641 if (NumTempParamLists)
2642 Method->setTemplateParameterListsInfo(
2643 SemaRef.Context,
2644 llvm::ArrayRef(TempParamLists.data(), NumTempParamLists));
2646 Method->setLexicalDeclContext(Owner);
2647 Method->setObjectOfFriendDecl();
2648 } else if (D->isOutOfLine())
2649 Method->setLexicalDeclContext(D->getLexicalDeclContext());
2651 // Attach the parameters
2652 for (unsigned P = 0; P < Params.size(); ++P)
2653 Params[P]->setOwningFunction(Method);
2654 Method->setParams(Params);
2656 if (InitMethodInstantiation(Method, D))
2657 Method->setInvalidDecl();
2659 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName,
2660 Sema::ForExternalRedeclaration);
2662 bool IsExplicitSpecialization = false;
2664 // If the name of this function was written as a template-id, instantiate
2665 // the explicit template arguments.
2666 if (DependentFunctionTemplateSpecializationInfo *DFTSI =
2667 D->getDependentSpecializationInfo()) {
2668 // Instantiate the explicit template arguments.
2669 TemplateArgumentListInfo ExplicitArgs;
2670 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) {
2671 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc());
2672 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc());
2673 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs,
2674 ExplicitArgs))
2675 return nullptr;
2678 // Map the candidates for the primary template to their instantiations.
2679 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) {
2680 if (NamedDecl *ND =
2681 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs))
2682 Previous.addDecl(ND);
2683 else
2684 return nullptr;
2687 if (SemaRef.CheckFunctionTemplateSpecialization(
2688 Method, DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr,
2689 Previous))
2690 Method->setInvalidDecl();
2692 IsExplicitSpecialization = true;
2693 } else if (const ASTTemplateArgumentListInfo *ArgsWritten =
2694 D->getTemplateSpecializationArgsAsWritten()) {
2695 SemaRef.LookupQualifiedName(Previous, DC);
2697 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(),
2698 ArgsWritten->getRAngleLoc());
2700 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs,
2701 ExplicitArgs))
2702 return nullptr;
2704 if (SemaRef.CheckFunctionTemplateSpecialization(Method,
2705 &ExplicitArgs,
2706 Previous))
2707 Method->setInvalidDecl();
2709 IsExplicitSpecialization = true;
2710 } else if (!FunctionTemplate || TemplateParams || isFriend) {
2711 SemaRef.LookupQualifiedName(Previous, Record);
2713 // In C++, the previous declaration we find might be a tag type
2714 // (class or enum). In this case, the new declaration will hide the
2715 // tag type. Note that this does not apply if we're declaring a
2716 // typedef (C++ [dcl.typedef]p4).
2717 if (Previous.isSingleTagDecl())
2718 Previous.clear();
2721 // Per [temp.inst], default arguments in member functions of local classes
2722 // are instantiated along with the member function declaration. For example:
2724 // template<typename T>
2725 // void ft() {
2726 // struct lc {
2727 // int operator()(int p = []{ return T::value; }());
2728 // };
2729 // }
2730 // template void ft<int>(); // error: type 'int' cannot be used prior
2731 // to '::'because it has no members
2733 // The error is issued during instantiation of ft<int>()::lc::operator()
2734 // because substitution into the default argument fails; the default argument
2735 // is instantiated even though it is never used.
2736 if (D->isInLocalScopeForInstantiation()) {
2737 for (unsigned P = 0; P < Params.size(); ++P) {
2738 if (!Params[P]->hasDefaultArg())
2739 continue;
2740 if (SemaRef.SubstDefaultArgument(StartLoc, Params[P], TemplateArgs)) {
2741 // If substitution fails, the default argument is set to a
2742 // RecoveryExpr that wraps the uninstantiated default argument so
2743 // that downstream diagnostics are omitted.
2744 Expr *UninstExpr = Params[P]->getUninstantiatedDefaultArg();
2745 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr(
2746 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(),
2747 { UninstExpr }, UninstExpr->getType());
2748 if (ErrorResult.isUsable())
2749 Params[P]->setDefaultArg(ErrorResult.get());
2754 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous,
2755 IsExplicitSpecialization,
2756 Method->isThisDeclarationADefinition());
2758 if (D->isPure())
2759 SemaRef.CheckPureMethod(Method, SourceRange());
2761 // Propagate access. For a non-friend declaration, the access is
2762 // whatever we're propagating from. For a friend, it should be the
2763 // previous declaration we just found.
2764 if (isFriend && Method->getPreviousDecl())
2765 Method->setAccess(Method->getPreviousDecl()->getAccess());
2766 else
2767 Method->setAccess(D->getAccess());
2768 if (FunctionTemplate)
2769 FunctionTemplate->setAccess(Method->getAccess());
2771 SemaRef.CheckOverrideControl(Method);
2773 // If a function is defined as defaulted or deleted, mark it as such now.
2774 if (D->isExplicitlyDefaulted()) {
2775 if (SubstDefaultedFunction(Method, D))
2776 return nullptr;
2778 if (D->isDeletedAsWritten())
2779 SemaRef.SetDeclDeleted(Method, Method->getLocation());
2781 // If this is an explicit specialization, mark the implicitly-instantiated
2782 // template specialization as being an explicit specialization too.
2783 // FIXME: Is this necessary?
2784 if (IsExplicitSpecialization && !isFriend)
2785 SemaRef.CompleteMemberSpecialization(Method, Previous);
2787 // If the method is a special member function, we need to mark it as
2788 // ineligible so that Owner->addDecl() won't mark the class as non trivial.
2789 // At the end of the class instantiation, we calculate eligibility again and
2790 // then we adjust trivility if needed.
2791 // We need this check to happen only after the method parameters are set,
2792 // because being e.g. a copy constructor depends on the instantiated
2793 // arguments.
2794 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
2795 if (Constructor->isDefaultConstructor() ||
2796 Constructor->isCopyOrMoveConstructor())
2797 Method->setIneligibleOrNotSelected(true);
2798 } else if (Method->isCopyAssignmentOperator() ||
2799 Method->isMoveAssignmentOperator()) {
2800 Method->setIneligibleOrNotSelected(true);
2803 // If there's a function template, let our caller handle it.
2804 if (FunctionTemplate) {
2805 // do nothing
2807 // Don't hide a (potentially) valid declaration with an invalid one.
2808 } else if (Method->isInvalidDecl() && !Previous.empty()) {
2809 // do nothing
2811 // Otherwise, check access to friends and make them visible.
2812 } else if (isFriend) {
2813 // We only need to re-check access for methods which we didn't
2814 // manage to match during parsing.
2815 if (!D->getPreviousDecl())
2816 SemaRef.CheckFriendAccess(Method);
2818 Record->makeDeclVisibleInContext(Method);
2820 // Otherwise, add the declaration. We don't need to do this for
2821 // class-scope specializations because we'll have matched them with
2822 // the appropriate template.
2823 } else {
2824 Owner->addDecl(Method);
2827 // PR17480: Honor the used attribute to instantiate member function
2828 // definitions
2829 if (Method->hasAttr<UsedAttr>()) {
2830 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) {
2831 SourceLocation Loc;
2832 if (const MemberSpecializationInfo *MSInfo =
2833 A->getMemberSpecializationInfo())
2834 Loc = MSInfo->getPointOfInstantiation();
2835 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A))
2836 Loc = Spec->getPointOfInstantiation();
2837 SemaRef.MarkFunctionReferenced(Loc, Method);
2841 return Method;
2844 Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
2845 return VisitCXXMethodDecl(D);
2848 Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
2849 return VisitCXXMethodDecl(D);
2852 Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
2853 return VisitCXXMethodDecl(D);
2856 Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
2857 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0,
2858 std::nullopt,
2859 /*ExpectParameterPack=*/false);
2862 Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
2863 TemplateTypeParmDecl *D) {
2864 assert(D->getTypeForDecl()->isTemplateTypeParmType());
2866 std::optional<unsigned> NumExpanded;
2868 if (const TypeConstraint *TC = D->getTypeConstraint()) {
2869 if (D->isPackExpansion() && !D->isExpandedParameterPack()) {
2870 assert(TC->getTemplateArgsAsWritten() &&
2871 "type parameter can only be an expansion when explicit arguments "
2872 "are specified");
2873 // The template type parameter pack's type is a pack expansion of types.
2874 // Determine whether we need to expand this parameter pack into separate
2875 // types.
2876 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2877 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2878 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded);
2880 // Determine whether the set of unexpanded parameter packs can and should
2881 // be expanded.
2882 bool Expand = true;
2883 bool RetainExpansion = false;
2884 if (SemaRef.CheckParameterPacksForExpansion(
2885 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2886 ->getEllipsisLoc(),
2887 SourceRange(TC->getConceptNameLoc(),
2888 TC->hasExplicitTemplateArgs() ?
2889 TC->getTemplateArgsAsWritten()->getRAngleLoc() :
2890 TC->getConceptNameInfo().getEndLoc()),
2891 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded))
2892 return nullptr;
2896 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(
2897 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(),
2898 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(),
2899 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(),
2900 D->hasTypeConstraint(), NumExpanded);
2902 Inst->setAccess(AS_public);
2903 Inst->setImplicit(D->isImplicit());
2904 if (auto *TC = D->getTypeConstraint()) {
2905 if (!D->isImplicit()) {
2906 // Invented template parameter type constraints will be instantiated
2907 // with the corresponding auto-typed parameter as it might reference
2908 // other parameters.
2909 if (SemaRef.SubstTypeConstraint(Inst, TC, TemplateArgs,
2910 EvaluateConstraints))
2911 return nullptr;
2914 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
2915 TypeSourceInfo *InstantiatedDefaultArg =
2916 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs,
2917 D->getDefaultArgumentLoc(), D->getDeclName());
2918 if (InstantiatedDefaultArg)
2919 Inst->setDefaultArgument(InstantiatedDefaultArg);
2922 // Introduce this template parameter's instantiation into the instantiation
2923 // scope.
2924 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
2926 return Inst;
2929 Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
2930 NonTypeTemplateParmDecl *D) {
2931 // Substitute into the type of the non-type template parameter.
2932 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc();
2933 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten;
2934 SmallVector<QualType, 4> ExpandedParameterPackTypes;
2935 bool IsExpandedParameterPack = false;
2936 TypeSourceInfo *DI;
2937 QualType T;
2938 bool Invalid = false;
2940 if (D->isExpandedParameterPack()) {
2941 // The non-type template parameter pack is an already-expanded pack
2942 // expansion of types. Substitute into each of the expanded types.
2943 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes());
2944 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes());
2945 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
2946 TypeSourceInfo *NewDI =
2947 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs,
2948 D->getLocation(), D->getDeclName());
2949 if (!NewDI)
2950 return nullptr;
2952 QualType NewT =
2953 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2954 if (NewT.isNull())
2955 return nullptr;
2957 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
2958 ExpandedParameterPackTypes.push_back(NewT);
2961 IsExpandedParameterPack = true;
2962 DI = D->getTypeSourceInfo();
2963 T = DI->getType();
2964 } else if (D->isPackExpansion()) {
2965 // The non-type template parameter pack's type is a pack expansion of types.
2966 // Determine whether we need to expand this parameter pack into separate
2967 // types.
2968 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>();
2969 TypeLoc Pattern = Expansion.getPatternLoc();
2970 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2971 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
2973 // Determine whether the set of unexpanded parameter packs can and should
2974 // be expanded.
2975 bool Expand = true;
2976 bool RetainExpansion = false;
2977 std::optional<unsigned> OrigNumExpansions =
2978 Expansion.getTypePtr()->getNumExpansions();
2979 std::optional<unsigned> NumExpansions = OrigNumExpansions;
2980 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(),
2981 Pattern.getSourceRange(),
2982 Unexpanded,
2983 TemplateArgs,
2984 Expand, RetainExpansion,
2985 NumExpansions))
2986 return nullptr;
2988 if (Expand) {
2989 for (unsigned I = 0; I != *NumExpansions; ++I) {
2990 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
2991 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs,
2992 D->getLocation(),
2993 D->getDeclName());
2994 if (!NewDI)
2995 return nullptr;
2997 QualType NewT =
2998 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2999 if (NewT.isNull())
3000 return nullptr;
3002 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
3003 ExpandedParameterPackTypes.push_back(NewT);
3006 // Note that we have an expanded parameter pack. The "type" of this
3007 // expanded parameter pack is the original expansion type, but callers
3008 // will end up using the expanded parameter pack types for type-checking.
3009 IsExpandedParameterPack = true;
3010 DI = D->getTypeSourceInfo();
3011 T = DI->getType();
3012 } else {
3013 // We cannot fully expand the pack expansion now, so substitute into the
3014 // pattern and create a new pack expansion type.
3015 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3016 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs,
3017 D->getLocation(),
3018 D->getDeclName());
3019 if (!NewPattern)
3020 return nullptr;
3022 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation());
3023 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(),
3024 NumExpansions);
3025 if (!DI)
3026 return nullptr;
3028 T = DI->getType();
3030 } else {
3031 // Simple case: substitution into a parameter that is not a parameter pack.
3032 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
3033 D->getLocation(), D->getDeclName());
3034 if (!DI)
3035 return nullptr;
3037 // Check that this type is acceptable for a non-type template parameter.
3038 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation());
3039 if (T.isNull()) {
3040 T = SemaRef.Context.IntTy;
3041 Invalid = true;
3045 NonTypeTemplateParmDecl *Param;
3046 if (IsExpandedParameterPack)
3047 Param = NonTypeTemplateParmDecl::Create(
3048 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3049 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3050 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes,
3051 ExpandedParameterPackTypesAsWritten);
3052 else
3053 Param = NonTypeTemplateParmDecl::Create(
3054 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3055 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3056 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI);
3058 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc())
3059 if (AutoLoc.isConstrained())
3060 // Note: We attach the uninstantiated constriant here, so that it can be
3061 // instantiated relative to the top level, like all our other constraints.
3062 if (SemaRef.AttachTypeConstraint(
3063 AutoLoc, Param, D,
3064 IsExpandedParameterPack
3065 ? DI->getTypeLoc().getAs<PackExpansionTypeLoc>()
3066 .getEllipsisLoc()
3067 : SourceLocation()))
3068 Invalid = true;
3070 Param->setAccess(AS_public);
3071 Param->setImplicit(D->isImplicit());
3072 if (Invalid)
3073 Param->setInvalidDecl();
3075 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3076 EnterExpressionEvaluationContext ConstantEvaluated(
3077 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3078 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs);
3079 if (!Value.isInvalid())
3080 Param->setDefaultArgument(Value.get());
3083 // Introduce this template parameter's instantiation into the instantiation
3084 // scope.
3085 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3086 return Param;
3089 static void collectUnexpandedParameterPacks(
3090 Sema &S,
3091 TemplateParameterList *Params,
3092 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
3093 for (const auto &P : *Params) {
3094 if (P->isTemplateParameterPack())
3095 continue;
3096 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P))
3097 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(),
3098 Unexpanded);
3099 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P))
3100 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(),
3101 Unexpanded);
3105 Decl *
3106 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
3107 TemplateTemplateParmDecl *D) {
3108 // Instantiate the template parameter list of the template template parameter.
3109 TemplateParameterList *TempParams = D->getTemplateParameters();
3110 TemplateParameterList *InstParams;
3111 SmallVector<TemplateParameterList*, 8> ExpandedParams;
3113 bool IsExpandedParameterPack = false;
3115 if (D->isExpandedParameterPack()) {
3116 // The template template parameter pack is an already-expanded pack
3117 // expansion of template parameters. Substitute into each of the expanded
3118 // parameters.
3119 ExpandedParams.reserve(D->getNumExpansionTemplateParameters());
3120 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
3121 I != N; ++I) {
3122 LocalInstantiationScope Scope(SemaRef);
3123 TemplateParameterList *Expansion =
3124 SubstTemplateParams(D->getExpansionTemplateParameters(I));
3125 if (!Expansion)
3126 return nullptr;
3127 ExpandedParams.push_back(Expansion);
3130 IsExpandedParameterPack = true;
3131 InstParams = TempParams;
3132 } else if (D->isPackExpansion()) {
3133 // The template template parameter pack expands to a pack of template
3134 // template parameters. Determine whether we need to expand this parameter
3135 // pack into separate parameters.
3136 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3137 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(),
3138 Unexpanded);
3140 // Determine whether the set of unexpanded parameter packs can and should
3141 // be expanded.
3142 bool Expand = true;
3143 bool RetainExpansion = false;
3144 std::optional<unsigned> NumExpansions;
3145 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(),
3146 TempParams->getSourceRange(),
3147 Unexpanded,
3148 TemplateArgs,
3149 Expand, RetainExpansion,
3150 NumExpansions))
3151 return nullptr;
3153 if (Expand) {
3154 for (unsigned I = 0; I != *NumExpansions; ++I) {
3155 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3156 LocalInstantiationScope Scope(SemaRef);
3157 TemplateParameterList *Expansion = SubstTemplateParams(TempParams);
3158 if (!Expansion)
3159 return nullptr;
3160 ExpandedParams.push_back(Expansion);
3163 // Note that we have an expanded parameter pack. The "type" of this
3164 // expanded parameter pack is the original expansion type, but callers
3165 // will end up using the expanded parameter pack types for type-checking.
3166 IsExpandedParameterPack = true;
3167 InstParams = TempParams;
3168 } else {
3169 // We cannot fully expand the pack expansion now, so just substitute
3170 // into the pattern.
3171 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3173 LocalInstantiationScope Scope(SemaRef);
3174 InstParams = SubstTemplateParams(TempParams);
3175 if (!InstParams)
3176 return nullptr;
3178 } else {
3179 // Perform the actual substitution of template parameters within a new,
3180 // local instantiation scope.
3181 LocalInstantiationScope Scope(SemaRef);
3182 InstParams = SubstTemplateParams(TempParams);
3183 if (!InstParams)
3184 return nullptr;
3187 // Build the template template parameter.
3188 TemplateTemplateParmDecl *Param;
3189 if (IsExpandedParameterPack)
3190 Param = TemplateTemplateParmDecl::Create(
3191 SemaRef.Context, Owner, D->getLocation(),
3192 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3193 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams);
3194 else
3195 Param = TemplateTemplateParmDecl::Create(
3196 SemaRef.Context, Owner, D->getLocation(),
3197 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3198 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams);
3199 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3200 NestedNameSpecifierLoc QualifierLoc =
3201 D->getDefaultArgument().getTemplateQualifierLoc();
3202 QualifierLoc =
3203 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs);
3204 TemplateName TName = SemaRef.SubstTemplateName(
3205 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(),
3206 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs);
3207 if (!TName.isNull())
3208 Param->setDefaultArgument(
3209 SemaRef.Context,
3210 TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName),
3211 D->getDefaultArgument().getTemplateQualifierLoc(),
3212 D->getDefaultArgument().getTemplateNameLoc()));
3214 Param->setAccess(AS_public);
3215 Param->setImplicit(D->isImplicit());
3217 // Introduce this template parameter's instantiation into the instantiation
3218 // scope.
3219 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3221 return Param;
3224 Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
3225 // Using directives are never dependent (and never contain any types or
3226 // expressions), so they require no explicit instantiation work.
3228 UsingDirectiveDecl *Inst
3229 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(),
3230 D->getNamespaceKeyLocation(),
3231 D->getQualifierLoc(),
3232 D->getIdentLocation(),
3233 D->getNominatedNamespace(),
3234 D->getCommonAncestor());
3236 // Add the using directive to its declaration context
3237 // only if this is not a function or method.
3238 if (!Owner->isFunctionOrMethod())
3239 Owner->addDecl(Inst);
3241 return Inst;
3244 Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D,
3245 BaseUsingDecl *Inst,
3246 LookupResult *Lookup) {
3248 bool isFunctionScope = Owner->isFunctionOrMethod();
3250 for (auto *Shadow : D->shadows()) {
3251 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so
3252 // reconstruct it in the case where it matters. Hm, can we extract it from
3253 // the DeclSpec when parsing and save it in the UsingDecl itself?
3254 NamedDecl *OldTarget = Shadow->getTargetDecl();
3255 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow))
3256 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl())
3257 OldTarget = BaseShadow;
3259 NamedDecl *InstTarget = nullptr;
3260 if (auto *EmptyD =
3261 dyn_cast<UnresolvedUsingIfExistsDecl>(Shadow->getTargetDecl())) {
3262 InstTarget = UnresolvedUsingIfExistsDecl::Create(
3263 SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName());
3264 } else {
3265 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl(
3266 Shadow->getLocation(), OldTarget, TemplateArgs));
3268 if (!InstTarget)
3269 return nullptr;
3271 UsingShadowDecl *PrevDecl = nullptr;
3272 if (Lookup &&
3273 SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl))
3274 continue;
3276 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow))
3277 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl(
3278 Shadow->getLocation(), OldPrev, TemplateArgs));
3280 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl(
3281 /*Scope*/ nullptr, Inst, InstTarget, PrevDecl);
3282 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow);
3284 if (isFunctionScope)
3285 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
3288 return Inst;
3291 Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
3293 // The nested name specifier may be dependent, for example
3294 // template <typename T> struct t {
3295 // struct s1 { T f1(); };
3296 // struct s2 : s1 { using s1::f1; };
3297 // };
3298 // template struct t<int>;
3299 // Here, in using s1::f1, s1 refers to t<T>::s1;
3300 // we need to substitute for t<int>::s1.
3301 NestedNameSpecifierLoc QualifierLoc
3302 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3303 TemplateArgs);
3304 if (!QualifierLoc)
3305 return nullptr;
3307 // For an inheriting constructor declaration, the name of the using
3308 // declaration is the name of a constructor in this class, not in the
3309 // base class.
3310 DeclarationNameInfo NameInfo = D->getNameInfo();
3311 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3312 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext))
3313 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName(
3314 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD))));
3316 // We only need to do redeclaration lookups if we're in a class scope (in
3317 // fact, it's not really even possible in non-class scopes).
3318 bool CheckRedeclaration = Owner->isRecord();
3319 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName,
3320 Sema::ForVisibleRedeclaration);
3322 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner,
3323 D->getUsingLoc(),
3324 QualifierLoc,
3325 NameInfo,
3326 D->hasTypename());
3328 CXXScopeSpec SS;
3329 SS.Adopt(QualifierLoc);
3330 if (CheckRedeclaration) {
3331 Prev.setHideTags(false);
3332 SemaRef.LookupQualifiedName(Prev, Owner);
3334 // Check for invalid redeclarations.
3335 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(),
3336 D->hasTypename(), SS,
3337 D->getLocation(), Prev))
3338 NewUD->setInvalidDecl();
3341 if (!NewUD->isInvalidDecl() &&
3342 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS,
3343 NameInfo, D->getLocation(), nullptr, D))
3344 NewUD->setInvalidDecl();
3346 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
3347 NewUD->setAccess(D->getAccess());
3348 Owner->addDecl(NewUD);
3350 // Don't process the shadow decls for an invalid decl.
3351 if (NewUD->isInvalidDecl())
3352 return NewUD;
3354 // If the using scope was dependent, or we had dependent bases, we need to
3355 // recheck the inheritance
3356 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3357 SemaRef.CheckInheritingConstructorUsingDecl(NewUD);
3359 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr);
3362 Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) {
3363 // Cannot be a dependent type, but still could be an instantiation
3364 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl(
3365 D->getLocation(), D->getEnumDecl(), TemplateArgs));
3367 if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation()))
3368 return nullptr;
3370 TypeSourceInfo *TSI = SemaRef.SubstType(D->getEnumType(), TemplateArgs,
3371 D->getLocation(), D->getDeclName());
3372 UsingEnumDecl *NewUD =
3373 UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(),
3374 D->getEnumLoc(), D->getLocation(), TSI);
3376 SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D);
3377 NewUD->setAccess(D->getAccess());
3378 Owner->addDecl(NewUD);
3380 // Don't process the shadow decls for an invalid decl.
3381 if (NewUD->isInvalidDecl())
3382 return NewUD;
3384 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it
3385 // cannot be dependent, and will therefore have been checked during template
3386 // definition.
3388 return VisitBaseUsingDecls(D, NewUD, nullptr);
3391 Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
3392 // Ignore these; we handle them in bulk when processing the UsingDecl.
3393 return nullptr;
3396 Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl(
3397 ConstructorUsingShadowDecl *D) {
3398 // Ignore these; we handle them in bulk when processing the UsingDecl.
3399 return nullptr;
3402 template <typename T>
3403 Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl(
3404 T *D, bool InstantiatingPackElement) {
3405 // If this is a pack expansion, expand it now.
3406 if (D->isPackExpansion() && !InstantiatingPackElement) {
3407 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3408 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded);
3409 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded);
3411 // Determine whether the set of unexpanded parameter packs can and should
3412 // be expanded.
3413 bool Expand = true;
3414 bool RetainExpansion = false;
3415 std::optional<unsigned> NumExpansions;
3416 if (SemaRef.CheckParameterPacksForExpansion(
3417 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs,
3418 Expand, RetainExpansion, NumExpansions))
3419 return nullptr;
3421 // This declaration cannot appear within a function template signature,
3422 // so we can't have a partial argument list for a parameter pack.
3423 assert(!RetainExpansion &&
3424 "should never need to retain an expansion for UsingPackDecl");
3426 if (!Expand) {
3427 // We cannot fully expand the pack expansion now, so substitute into the
3428 // pattern and create a new pack expansion.
3429 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3430 return instantiateUnresolvedUsingDecl(D, true);
3433 // Within a function, we don't have any normal way to check for conflicts
3434 // between shadow declarations from different using declarations in the
3435 // same pack expansion, but this is always ill-formed because all expansions
3436 // must produce (conflicting) enumerators.
3438 // Sadly we can't just reject this in the template definition because it
3439 // could be valid if the pack is empty or has exactly one expansion.
3440 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) {
3441 SemaRef.Diag(D->getEllipsisLoc(),
3442 diag::err_using_decl_redeclaration_expansion);
3443 return nullptr;
3446 // Instantiate the slices of this pack and build a UsingPackDecl.
3447 SmallVector<NamedDecl*, 8> Expansions;
3448 for (unsigned I = 0; I != *NumExpansions; ++I) {
3449 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3450 Decl *Slice = instantiateUnresolvedUsingDecl(D, true);
3451 if (!Slice)
3452 return nullptr;
3453 // Note that we can still get unresolved using declarations here, if we
3454 // had arguments for all packs but the pattern also contained other
3455 // template arguments (this only happens during partial substitution, eg
3456 // into the body of a generic lambda in a function template).
3457 Expansions.push_back(cast<NamedDecl>(Slice));
3460 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3461 if (isDeclWithinFunction(D))
3462 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3463 return NewD;
3466 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D);
3467 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation();
3469 NestedNameSpecifierLoc QualifierLoc
3470 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3471 TemplateArgs);
3472 if (!QualifierLoc)
3473 return nullptr;
3475 CXXScopeSpec SS;
3476 SS.Adopt(QualifierLoc);
3478 DeclarationNameInfo NameInfo
3479 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
3481 // Produce a pack expansion only if we're not instantiating a particular
3482 // slice of a pack expansion.
3483 bool InstantiatingSlice = D->getEllipsisLoc().isValid() &&
3484 SemaRef.ArgumentPackSubstitutionIndex != -1;
3485 SourceLocation EllipsisLoc =
3486 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc();
3488 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>();
3489 NamedDecl *UD = SemaRef.BuildUsingDeclaration(
3490 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(),
3491 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc,
3492 ParsedAttributesView(),
3493 /*IsInstantiation*/ true, IsUsingIfExists);
3494 if (UD) {
3495 SemaRef.InstantiateAttrs(TemplateArgs, D, UD);
3496 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D);
3499 return UD;
3502 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl(
3503 UnresolvedUsingTypenameDecl *D) {
3504 return instantiateUnresolvedUsingDecl(D);
3507 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl(
3508 UnresolvedUsingValueDecl *D) {
3509 return instantiateUnresolvedUsingDecl(D);
3512 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl(
3513 UnresolvedUsingIfExistsDecl *D) {
3514 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl");
3517 Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) {
3518 SmallVector<NamedDecl*, 8> Expansions;
3519 for (auto *UD : D->expansions()) {
3520 if (NamedDecl *NewUD =
3521 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs))
3522 Expansions.push_back(NewUD);
3523 else
3524 return nullptr;
3527 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3528 if (isDeclWithinFunction(D))
3529 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3530 return NewD;
3533 Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
3534 OMPThreadPrivateDecl *D) {
3535 SmallVector<Expr *, 5> Vars;
3536 for (auto *I : D->varlists()) {
3537 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3538 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr");
3539 Vars.push_back(Var);
3542 OMPThreadPrivateDecl *TD =
3543 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars);
3545 TD->setAccess(AS_public);
3546 Owner->addDecl(TD);
3548 return TD;
3551 Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) {
3552 SmallVector<Expr *, 5> Vars;
3553 for (auto *I : D->varlists()) {
3554 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3555 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr");
3556 Vars.push_back(Var);
3558 SmallVector<OMPClause *, 4> Clauses;
3559 // Copy map clauses from the original mapper.
3560 for (OMPClause *C : D->clauselists()) {
3561 OMPClause *IC = nullptr;
3562 if (auto *AC = dyn_cast<OMPAllocatorClause>(C)) {
3563 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs);
3564 if (!NewE.isUsable())
3565 continue;
3566 IC = SemaRef.ActOnOpenMPAllocatorClause(
3567 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc());
3568 } else if (auto *AC = dyn_cast<OMPAlignClause>(C)) {
3569 ExprResult NewE = SemaRef.SubstExpr(AC->getAlignment(), TemplateArgs);
3570 if (!NewE.isUsable())
3571 continue;
3572 IC = SemaRef.ActOnOpenMPAlignClause(NewE.get(), AC->getBeginLoc(),
3573 AC->getLParenLoc(), AC->getEndLoc());
3574 // If align clause value ends up being invalid, this can end up null.
3575 if (!IC)
3576 continue;
3578 Clauses.push_back(IC);
3581 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective(
3582 D->getLocation(), Vars, Clauses, Owner);
3583 if (Res.get().isNull())
3584 return nullptr;
3585 return Res.get().getSingleDecl();
3588 Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) {
3589 llvm_unreachable(
3590 "Requires directive cannot be instantiated within a dependent context");
3593 Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl(
3594 OMPDeclareReductionDecl *D) {
3595 // Instantiate type and check if it is allowed.
3596 const bool RequiresInstantiation =
3597 D->getType()->isDependentType() ||
3598 D->getType()->isInstantiationDependentType() ||
3599 D->getType()->containsUnexpandedParameterPack();
3600 QualType SubstReductionType;
3601 if (RequiresInstantiation) {
3602 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType(
3603 D->getLocation(),
3604 ParsedType::make(SemaRef.SubstType(
3605 D->getType(), TemplateArgs, D->getLocation(), DeclarationName())));
3606 } else {
3607 SubstReductionType = D->getType();
3609 if (SubstReductionType.isNull())
3610 return nullptr;
3611 Expr *Combiner = D->getCombiner();
3612 Expr *Init = D->getInitializer();
3613 bool IsCorrect = true;
3614 // Create instantiated copy.
3615 std::pair<QualType, SourceLocation> ReductionTypes[] = {
3616 std::make_pair(SubstReductionType, D->getLocation())};
3617 auto *PrevDeclInScope = D->getPrevDeclInScope();
3618 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3619 PrevDeclInScope = cast<OMPDeclareReductionDecl>(
3620 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3621 ->get<Decl *>());
3623 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart(
3624 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(),
3625 PrevDeclInScope);
3626 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl());
3627 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD);
3628 Expr *SubstCombiner = nullptr;
3629 Expr *SubstInitializer = nullptr;
3630 // Combiners instantiation sequence.
3631 if (Combiner) {
3632 SemaRef.ActOnOpenMPDeclareReductionCombinerStart(
3633 /*S=*/nullptr, NewDRD);
3634 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3635 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(),
3636 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl());
3637 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3638 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(),
3639 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl());
3640 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3641 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3642 ThisContext);
3643 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get();
3644 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner);
3646 // Initializers instantiation sequence.
3647 if (Init) {
3648 VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart(
3649 /*S=*/nullptr, NewDRD);
3650 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3651 cast<DeclRefExpr>(D->getInitOrig())->getDecl(),
3652 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl());
3653 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3654 cast<DeclRefExpr>(D->getInitPriv())->getDecl(),
3655 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl());
3656 if (D->getInitializerKind() == OMPDeclareReductionInitKind::Call) {
3657 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get();
3658 } else {
3659 auto *OldPrivParm =
3660 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl());
3661 IsCorrect = IsCorrect && OldPrivParm->hasInit();
3662 if (IsCorrect)
3663 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm,
3664 TemplateArgs);
3666 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer,
3667 OmpPrivParm);
3669 IsCorrect = IsCorrect && SubstCombiner &&
3670 (!Init ||
3671 (D->getInitializerKind() == OMPDeclareReductionInitKind::Call &&
3672 SubstInitializer) ||
3673 (D->getInitializerKind() != OMPDeclareReductionInitKind::Call &&
3674 !SubstInitializer));
3676 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(
3677 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl());
3679 return NewDRD;
3682 Decl *
3683 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) {
3684 // Instantiate type and check if it is allowed.
3685 const bool RequiresInstantiation =
3686 D->getType()->isDependentType() ||
3687 D->getType()->isInstantiationDependentType() ||
3688 D->getType()->containsUnexpandedParameterPack();
3689 QualType SubstMapperTy;
3690 DeclarationName VN = D->getVarName();
3691 if (RequiresInstantiation) {
3692 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType(
3693 D->getLocation(),
3694 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs,
3695 D->getLocation(), VN)));
3696 } else {
3697 SubstMapperTy = D->getType();
3699 if (SubstMapperTy.isNull())
3700 return nullptr;
3701 // Create an instantiated copy of mapper.
3702 auto *PrevDeclInScope = D->getPrevDeclInScope();
3703 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3704 PrevDeclInScope = cast<OMPDeclareMapperDecl>(
3705 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3706 ->get<Decl *>());
3708 bool IsCorrect = true;
3709 SmallVector<OMPClause *, 6> Clauses;
3710 // Instantiate the mapper variable.
3711 DeclarationNameInfo DirName;
3712 SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName,
3713 /*S=*/nullptr,
3714 (*D->clauselist_begin())->getBeginLoc());
3715 ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl(
3716 /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN);
3717 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3718 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(),
3719 cast<DeclRefExpr>(MapperVarRef.get())->getDecl());
3720 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3721 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3722 ThisContext);
3723 // Instantiate map clauses.
3724 for (OMPClause *C : D->clauselists()) {
3725 auto *OldC = cast<OMPMapClause>(C);
3726 SmallVector<Expr *, 4> NewVars;
3727 for (Expr *OE : OldC->varlists()) {
3728 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get();
3729 if (!NE) {
3730 IsCorrect = false;
3731 break;
3733 NewVars.push_back(NE);
3735 if (!IsCorrect)
3736 break;
3737 NestedNameSpecifierLoc NewQualifierLoc =
3738 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(),
3739 TemplateArgs);
3740 CXXScopeSpec SS;
3741 SS.Adopt(NewQualifierLoc);
3742 DeclarationNameInfo NewNameInfo =
3743 SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs);
3744 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(),
3745 OldC->getEndLoc());
3746 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause(
3747 OldC->getIteratorModifier(), OldC->getMapTypeModifiers(),
3748 OldC->getMapTypeModifiersLoc(), SS, NewNameInfo, OldC->getMapType(),
3749 OldC->isImplicitMapType(), OldC->getMapLoc(), OldC->getColonLoc(),
3750 NewVars, Locs);
3751 Clauses.push_back(NewC);
3753 SemaRef.EndOpenMPDSABlock(nullptr);
3754 if (!IsCorrect)
3755 return nullptr;
3756 Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective(
3757 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(),
3758 VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope);
3759 Decl *NewDMD = DG.get().getSingleDecl();
3760 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD);
3761 return NewDMD;
3764 Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl(
3765 OMPCapturedExprDecl * /*D*/) {
3766 llvm_unreachable("Should not be met in templates");
3769 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) {
3770 return VisitFunctionDecl(D, nullptr);
3773 Decl *
3774 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
3775 Decl *Inst = VisitFunctionDecl(D, nullptr);
3776 if (Inst && !D->getDescribedFunctionTemplate())
3777 Owner->addDecl(Inst);
3778 return Inst;
3781 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) {
3782 return VisitCXXMethodDecl(D, nullptr);
3785 Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) {
3786 llvm_unreachable("There are only CXXRecordDecls in C++");
3789 Decl *
3790 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
3791 ClassTemplateSpecializationDecl *D) {
3792 // As a MS extension, we permit class-scope explicit specialization
3793 // of member class templates.
3794 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
3795 assert(ClassTemplate->getDeclContext()->isRecord() &&
3796 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
3797 "can only instantiate an explicit specialization "
3798 "for a member class template");
3800 // Lookup the already-instantiated declaration in the instantiation
3801 // of the class template.
3802 ClassTemplateDecl *InstClassTemplate =
3803 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl(
3804 D->getLocation(), ClassTemplate, TemplateArgs));
3805 if (!InstClassTemplate)
3806 return nullptr;
3808 // Substitute into the template arguments of the class template explicit
3809 // specialization.
3810 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc().
3811 castAs<TemplateSpecializationTypeLoc>();
3812 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(),
3813 Loc.getRAngleLoc());
3814 SmallVector<TemplateArgumentLoc, 4> ArgLocs;
3815 for (unsigned I = 0; I != Loc.getNumArgs(); ++I)
3816 ArgLocs.push_back(Loc.getArgLoc(I));
3817 if (SemaRef.SubstTemplateArguments(ArgLocs, TemplateArgs, InstTemplateArgs))
3818 return nullptr;
3820 // Check that the template argument list is well-formed for this
3821 // class template.
3822 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3823 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, D->getLocation(),
3824 InstTemplateArgs, false,
3825 SugaredConverted, CanonicalConverted,
3826 /*UpdateArgsWithConversions=*/true))
3827 return nullptr;
3829 // Figure out where to insert this class template explicit specialization
3830 // in the member template's set of class template explicit specializations.
3831 void *InsertPos = nullptr;
3832 ClassTemplateSpecializationDecl *PrevDecl =
3833 InstClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
3835 // Check whether we've already seen a conflicting instantiation of this
3836 // declaration (for instance, if there was a prior implicit instantiation).
3837 bool Ignored;
3838 if (PrevDecl &&
3839 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(),
3840 D->getSpecializationKind(),
3841 PrevDecl,
3842 PrevDecl->getSpecializationKind(),
3843 PrevDecl->getPointOfInstantiation(),
3844 Ignored))
3845 return nullptr;
3847 // If PrevDecl was a definition and D is also a definition, diagnose.
3848 // This happens in cases like:
3850 // template<typename T, typename U>
3851 // struct Outer {
3852 // template<typename X> struct Inner;
3853 // template<> struct Inner<T> {};
3854 // template<> struct Inner<U> {};
3855 // };
3857 // Outer<int, int> outer; // error: the explicit specializations of Inner
3858 // // have the same signature.
3859 if (PrevDecl && PrevDecl->getDefinition() &&
3860 D->isThisDeclarationADefinition()) {
3861 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl;
3862 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(),
3863 diag::note_previous_definition);
3864 return nullptr;
3867 // Create the class template partial specialization declaration.
3868 ClassTemplateSpecializationDecl *InstD =
3869 ClassTemplateSpecializationDecl::Create(
3870 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(),
3871 D->getLocation(), InstClassTemplate, CanonicalConverted, PrevDecl);
3873 // Add this partial specialization to the set of class template partial
3874 // specializations.
3875 if (!PrevDecl)
3876 InstClassTemplate->AddSpecialization(InstD, InsertPos);
3878 // Substitute the nested name specifier, if any.
3879 if (SubstQualifier(D, InstD))
3880 return nullptr;
3882 // Build the canonical type that describes the converted template
3883 // arguments of the class template explicit specialization.
3884 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
3885 TemplateName(InstClassTemplate), CanonicalConverted,
3886 SemaRef.Context.getRecordType(InstD));
3888 // Build the fully-sugared type for this class template
3889 // specialization as the user wrote in the specialization
3890 // itself. This means that we'll pretty-print the type retrieved
3891 // from the specialization's declaration the way that the user
3892 // actually wrote the specialization, rather than formatting the
3893 // name based on the "canonical" representation used to store the
3894 // template arguments in the specialization.
3895 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
3896 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs,
3897 CanonType);
3899 InstD->setAccess(D->getAccess());
3900 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
3901 InstD->setSpecializationKind(D->getSpecializationKind());
3902 InstD->setTypeAsWritten(WrittenTy);
3903 InstD->setExternLoc(D->getExternLoc());
3904 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc());
3906 Owner->addDecl(InstD);
3908 // Instantiate the members of the class-scope explicit specialization eagerly.
3909 // We don't have support for lazy instantiation of an explicit specialization
3910 // yet, and MSVC eagerly instantiates in this case.
3911 // FIXME: This is wrong in standard C++.
3912 if (D->isThisDeclarationADefinition() &&
3913 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs,
3914 TSK_ImplicitInstantiation,
3915 /*Complain=*/true))
3916 return nullptr;
3918 return InstD;
3921 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3922 VarTemplateSpecializationDecl *D) {
3924 TemplateArgumentListInfo VarTemplateArgsInfo;
3925 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
3926 assert(VarTemplate &&
3927 "A template specialization without specialized template?");
3929 VarTemplateDecl *InstVarTemplate =
3930 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl(
3931 D->getLocation(), VarTemplate, TemplateArgs));
3932 if (!InstVarTemplate)
3933 return nullptr;
3935 // Substitute the current template arguments.
3936 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo =
3937 D->getTemplateArgsInfo()) {
3938 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo->getLAngleLoc());
3939 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo->getRAngleLoc());
3941 if (SemaRef.SubstTemplateArguments(TemplateArgsInfo->arguments(),
3942 TemplateArgs, VarTemplateArgsInfo))
3943 return nullptr;
3946 // Check that the template argument list is well-formed for this template.
3947 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3948 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(),
3949 VarTemplateArgsInfo, false,
3950 SugaredConverted, CanonicalConverted,
3951 /*UpdateArgsWithConversions=*/true))
3952 return nullptr;
3954 // Check whether we've already seen a declaration of this specialization.
3955 void *InsertPos = nullptr;
3956 VarTemplateSpecializationDecl *PrevDecl =
3957 InstVarTemplate->findSpecialization(CanonicalConverted, InsertPos);
3959 // Check whether we've already seen a conflicting instantiation of this
3960 // declaration (for instance, if there was a prior implicit instantiation).
3961 bool Ignored;
3962 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(
3963 D->getLocation(), D->getSpecializationKind(), PrevDecl,
3964 PrevDecl->getSpecializationKind(),
3965 PrevDecl->getPointOfInstantiation(), Ignored))
3966 return nullptr;
3968 return VisitVarTemplateSpecializationDecl(
3969 InstVarTemplate, D, VarTemplateArgsInfo, CanonicalConverted, PrevDecl);
3972 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3973 VarTemplateDecl *VarTemplate, VarDecl *D,
3974 const TemplateArgumentListInfo &TemplateArgsInfo,
3975 ArrayRef<TemplateArgument> Converted,
3976 VarTemplateSpecializationDecl *PrevDecl) {
3978 // Do substitution on the type of the declaration
3979 TypeSourceInfo *DI =
3980 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
3981 D->getTypeSpecStartLoc(), D->getDeclName());
3982 if (!DI)
3983 return nullptr;
3985 if (DI->getType()->isFunctionType()) {
3986 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
3987 << D->isStaticDataMember() << DI->getType();
3988 return nullptr;
3991 // Build the instantiated declaration
3992 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create(
3993 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3994 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted);
3995 Var->setTemplateArgsInfo(TemplateArgsInfo);
3996 if (!PrevDecl) {
3997 void *InsertPos = nullptr;
3998 VarTemplate->findSpecialization(Converted, InsertPos);
3999 VarTemplate->AddSpecialization(Var, InsertPos);
4002 if (SemaRef.getLangOpts().OpenCL)
4003 SemaRef.deduceOpenCLAddressSpace(Var);
4005 // Substitute the nested name specifier, if any.
4006 if (SubstQualifier(D, Var))
4007 return nullptr;
4009 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
4010 StartingScope, false, PrevDecl);
4012 return Var;
4015 Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
4016 llvm_unreachable("@defs is not supported in Objective-C++");
4019 Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
4020 // FIXME: We need to be able to instantiate FriendTemplateDecls.
4021 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
4022 DiagnosticsEngine::Error,
4023 "cannot instantiate %0 yet");
4024 SemaRef.Diag(D->getLocation(), DiagID)
4025 << D->getDeclKindName();
4027 return nullptr;
4030 Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) {
4031 llvm_unreachable("Concept definitions cannot reside inside a template");
4034 Decl *TemplateDeclInstantiator::VisitImplicitConceptSpecializationDecl(
4035 ImplicitConceptSpecializationDecl *D) {
4036 llvm_unreachable("Concept specializations cannot reside inside a template");
4039 Decl *
4040 TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) {
4041 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(),
4042 D->getBeginLoc());
4045 Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) {
4046 llvm_unreachable("Unexpected decl");
4049 Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
4050 const MultiLevelTemplateArgumentList &TemplateArgs) {
4051 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
4052 if (D->isInvalidDecl())
4053 return nullptr;
4055 Decl *SubstD;
4056 runWithSufficientStackSpace(D->getLocation(), [&] {
4057 SubstD = Instantiator.Visit(D);
4059 return SubstD;
4062 void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK,
4063 FunctionDecl *Orig, QualType &T,
4064 TypeSourceInfo *&TInfo,
4065 DeclarationNameInfo &NameInfo) {
4066 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual);
4068 // C++2a [class.compare.default]p3:
4069 // the return type is replaced with bool
4070 auto *FPT = T->castAs<FunctionProtoType>();
4071 T = SemaRef.Context.getFunctionType(
4072 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo());
4074 // Update the return type in the source info too. The most straightforward
4075 // way is to create new TypeSourceInfo for the new type. Use the location of
4076 // the '= default' as the location of the new type.
4078 // FIXME: Set the correct return type when we initially transform the type,
4079 // rather than delaying it to now.
4080 TypeSourceInfo *NewTInfo =
4081 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc());
4082 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>();
4083 assert(OldLoc && "type of function is not a function type?");
4084 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>();
4085 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I)
4086 NewLoc.setParam(I, OldLoc.getParam(I));
4087 TInfo = NewTInfo;
4089 // and the declarator-id is replaced with operator==
4090 NameInfo.setName(
4091 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual));
4094 FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
4095 FunctionDecl *Spaceship) {
4096 if (Spaceship->isInvalidDecl())
4097 return nullptr;
4099 // C++2a [class.compare.default]p3:
4100 // an == operator function is declared implicitly [...] with the same
4101 // access and function-definition and in the same class scope as the
4102 // three-way comparison operator function
4103 MultiLevelTemplateArgumentList NoTemplateArgs;
4104 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite);
4105 NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth());
4106 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs);
4107 Decl *R;
4108 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) {
4109 R = Instantiator.VisitCXXMethodDecl(
4110 MD, /*TemplateParams=*/nullptr,
4111 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
4112 } else {
4113 assert(Spaceship->getFriendObjectKind() &&
4114 "defaulted spaceship is neither a member nor a friend");
4116 R = Instantiator.VisitFunctionDecl(
4117 Spaceship, /*TemplateParams=*/nullptr,
4118 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
4119 if (!R)
4120 return nullptr;
4122 FriendDecl *FD =
4123 FriendDecl::Create(Context, RD, Spaceship->getLocation(),
4124 cast<NamedDecl>(R), Spaceship->getBeginLoc());
4125 FD->setAccess(AS_public);
4126 RD->addDecl(FD);
4128 return cast_or_null<FunctionDecl>(R);
4131 /// Instantiates a nested template parameter list in the current
4132 /// instantiation context.
4134 /// \param L The parameter list to instantiate
4136 /// \returns NULL if there was an error
4137 TemplateParameterList *
4138 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
4139 // Get errors for all the parameters before bailing out.
4140 bool Invalid = false;
4142 unsigned N = L->size();
4143 typedef SmallVector<NamedDecl *, 8> ParamVector;
4144 ParamVector Params;
4145 Params.reserve(N);
4146 for (auto &P : *L) {
4147 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P));
4148 Params.push_back(D);
4149 Invalid = Invalid || !D || D->isInvalidDecl();
4152 // Clean up if we had an error.
4153 if (Invalid)
4154 return nullptr;
4156 Expr *InstRequiresClause = L->getRequiresClause();
4158 TemplateParameterList *InstL
4159 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(),
4160 L->getLAngleLoc(), Params,
4161 L->getRAngleLoc(), InstRequiresClause);
4162 return InstL;
4165 TemplateParameterList *
4166 Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
4167 const MultiLevelTemplateArgumentList &TemplateArgs,
4168 bool EvaluateConstraints) {
4169 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
4170 Instantiator.setEvaluateConstraints(EvaluateConstraints);
4171 return Instantiator.SubstTemplateParams(Params);
4174 /// Instantiate the declaration of a class template partial
4175 /// specialization.
4177 /// \param ClassTemplate the (instantiated) class template that is partially
4178 // specialized by the instantiation of \p PartialSpec.
4180 /// \param PartialSpec the (uninstantiated) class template partial
4181 /// specialization that we are instantiating.
4183 /// \returns The instantiated partial specialization, if successful; otherwise,
4184 /// NULL to indicate an error.
4185 ClassTemplatePartialSpecializationDecl *
4186 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
4187 ClassTemplateDecl *ClassTemplate,
4188 ClassTemplatePartialSpecializationDecl *PartialSpec) {
4189 // Create a local instantiation scope for this class template partial
4190 // specialization, which will contain the instantiations of the template
4191 // parameters.
4192 LocalInstantiationScope Scope(SemaRef);
4194 // Substitute into the template parameters of the class template partial
4195 // specialization.
4196 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4197 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4198 if (!InstParams)
4199 return nullptr;
4201 // Substitute into the template arguments of the class template partial
4202 // specialization.
4203 const ASTTemplateArgumentListInfo *TemplArgInfo
4204 = PartialSpec->getTemplateArgsAsWritten();
4205 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4206 TemplArgInfo->RAngleLoc);
4207 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs,
4208 InstTemplateArgs))
4209 return nullptr;
4211 // Check that the template argument list is well-formed for this
4212 // class template.
4213 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4214 if (SemaRef.CheckTemplateArgumentList(
4215 ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs,
4216 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted))
4217 return nullptr;
4219 // Check these arguments are valid for a template partial specialization.
4220 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4221 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(),
4222 CanonicalConverted))
4223 return nullptr;
4225 // Figure out where to insert this class template partial specialization
4226 // in the member template's set of class template partial specializations.
4227 void *InsertPos = nullptr;
4228 ClassTemplateSpecializationDecl *PrevDecl =
4229 ClassTemplate->findPartialSpecialization(CanonicalConverted, InstParams,
4230 InsertPos);
4232 // Build the canonical type that describes the converted template
4233 // arguments of the class template partial specialization.
4234 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4235 TemplateName(ClassTemplate), CanonicalConverted);
4237 // Build the fully-sugared type for this class template
4238 // specialization as the user wrote in the specialization
4239 // itself. This means that we'll pretty-print the type retrieved
4240 // from the specialization's declaration the way that the user
4241 // actually wrote the specialization, rather than formatting the
4242 // name based on the "canonical" representation used to store the
4243 // template arguments in the specialization.
4244 TypeSourceInfo *WrittenTy
4245 = SemaRef.Context.getTemplateSpecializationTypeInfo(
4246 TemplateName(ClassTemplate),
4247 PartialSpec->getLocation(),
4248 InstTemplateArgs,
4249 CanonType);
4251 if (PrevDecl) {
4252 // We've already seen a partial specialization with the same template
4253 // parameters and template arguments. This can happen, for example, when
4254 // substituting the outer template arguments ends up causing two
4255 // class template partial specializations of a member class template
4256 // to have identical forms, e.g.,
4258 // template<typename T, typename U>
4259 // struct Outer {
4260 // template<typename X, typename Y> struct Inner;
4261 // template<typename Y> struct Inner<T, Y>;
4262 // template<typename Y> struct Inner<U, Y>;
4263 // };
4265 // Outer<int, int> outer; // error: the partial specializations of Inner
4266 // // have the same signature.
4267 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
4268 << WrittenTy->getType();
4269 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
4270 << SemaRef.Context.getTypeDeclType(PrevDecl);
4271 return nullptr;
4275 // Create the class template partial specialization declaration.
4276 ClassTemplatePartialSpecializationDecl *InstPartialSpec =
4277 ClassTemplatePartialSpecializationDecl::Create(
4278 SemaRef.Context, PartialSpec->getTagKind(), Owner,
4279 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams,
4280 ClassTemplate, CanonicalConverted, InstTemplateArgs, CanonType,
4281 nullptr);
4282 // Substitute the nested name specifier, if any.
4283 if (SubstQualifier(PartialSpec, InstPartialSpec))
4284 return nullptr;
4286 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4287 InstPartialSpec->setTypeAsWritten(WrittenTy);
4289 // Check the completed partial specialization.
4290 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4292 // Add this partial specialization to the set of class template partial
4293 // specializations.
4294 ClassTemplate->AddPartialSpecialization(InstPartialSpec,
4295 /*InsertPos=*/nullptr);
4296 return InstPartialSpec;
4299 /// Instantiate the declaration of a variable template partial
4300 /// specialization.
4302 /// \param VarTemplate the (instantiated) variable template that is partially
4303 /// specialized by the instantiation of \p PartialSpec.
4305 /// \param PartialSpec the (uninstantiated) variable template partial
4306 /// specialization that we are instantiating.
4308 /// \returns The instantiated partial specialization, if successful; otherwise,
4309 /// NULL to indicate an error.
4310 VarTemplatePartialSpecializationDecl *
4311 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
4312 VarTemplateDecl *VarTemplate,
4313 VarTemplatePartialSpecializationDecl *PartialSpec) {
4314 // Create a local instantiation scope for this variable template partial
4315 // specialization, which will contain the instantiations of the template
4316 // parameters.
4317 LocalInstantiationScope Scope(SemaRef);
4319 // Substitute into the template parameters of the variable template partial
4320 // specialization.
4321 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4322 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4323 if (!InstParams)
4324 return nullptr;
4326 // Substitute into the template arguments of the variable template partial
4327 // specialization.
4328 const ASTTemplateArgumentListInfo *TemplArgInfo
4329 = PartialSpec->getTemplateArgsAsWritten();
4330 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4331 TemplArgInfo->RAngleLoc);
4332 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs,
4333 InstTemplateArgs))
4334 return nullptr;
4336 // Check that the template argument list is well-formed for this
4337 // class template.
4338 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4339 if (SemaRef.CheckTemplateArgumentList(
4340 VarTemplate, PartialSpec->getLocation(), InstTemplateArgs,
4341 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted))
4342 return nullptr;
4344 // Check these arguments are valid for a template partial specialization.
4345 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4346 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(),
4347 CanonicalConverted))
4348 return nullptr;
4350 // Figure out where to insert this variable template partial specialization
4351 // in the member template's set of variable template partial specializations.
4352 void *InsertPos = nullptr;
4353 VarTemplateSpecializationDecl *PrevDecl =
4354 VarTemplate->findPartialSpecialization(CanonicalConverted, InstParams,
4355 InsertPos);
4357 // Build the canonical type that describes the converted template
4358 // arguments of the variable template partial specialization.
4359 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4360 TemplateName(VarTemplate), CanonicalConverted);
4362 // Build the fully-sugared type for this variable template
4363 // specialization as the user wrote in the specialization
4364 // itself. This means that we'll pretty-print the type retrieved
4365 // from the specialization's declaration the way that the user
4366 // actually wrote the specialization, rather than formatting the
4367 // name based on the "canonical" representation used to store the
4368 // template arguments in the specialization.
4369 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
4370 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs,
4371 CanonType);
4373 if (PrevDecl) {
4374 // We've already seen a partial specialization with the same template
4375 // parameters and template arguments. This can happen, for example, when
4376 // substituting the outer template arguments ends up causing two
4377 // variable template partial specializations of a member variable template
4378 // to have identical forms, e.g.,
4380 // template<typename T, typename U>
4381 // struct Outer {
4382 // template<typename X, typename Y> pair<X,Y> p;
4383 // template<typename Y> pair<T, Y> p;
4384 // template<typename Y> pair<U, Y> p;
4385 // };
4387 // Outer<int, int> outer; // error: the partial specializations of Inner
4388 // // have the same signature.
4389 SemaRef.Diag(PartialSpec->getLocation(),
4390 diag::err_var_partial_spec_redeclared)
4391 << WrittenTy->getType();
4392 SemaRef.Diag(PrevDecl->getLocation(),
4393 diag::note_var_prev_partial_spec_here);
4394 return nullptr;
4397 // Do substitution on the type of the declaration
4398 TypeSourceInfo *DI = SemaRef.SubstType(
4399 PartialSpec->getTypeSourceInfo(), TemplateArgs,
4400 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName());
4401 if (!DI)
4402 return nullptr;
4404 if (DI->getType()->isFunctionType()) {
4405 SemaRef.Diag(PartialSpec->getLocation(),
4406 diag::err_variable_instantiates_to_function)
4407 << PartialSpec->isStaticDataMember() << DI->getType();
4408 return nullptr;
4411 // Create the variable template partial specialization declaration.
4412 VarTemplatePartialSpecializationDecl *InstPartialSpec =
4413 VarTemplatePartialSpecializationDecl::Create(
4414 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(),
4415 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(),
4416 DI, PartialSpec->getStorageClass(), CanonicalConverted,
4417 InstTemplateArgs);
4419 // Substitute the nested name specifier, if any.
4420 if (SubstQualifier(PartialSpec, InstPartialSpec))
4421 return nullptr;
4423 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4424 InstPartialSpec->setTypeAsWritten(WrittenTy);
4426 // Check the completed partial specialization.
4427 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4429 // Add this partial specialization to the set of variable template partial
4430 // specializations. The instantiation of the initializer is not necessary.
4431 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr);
4433 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs,
4434 LateAttrs, Owner, StartingScope);
4436 return InstPartialSpec;
4439 TypeSourceInfo*
4440 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
4441 SmallVectorImpl<ParmVarDecl *> &Params) {
4442 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo();
4443 assert(OldTInfo && "substituting function without type source info");
4444 assert(Params.empty() && "parameter vector is non-empty at start");
4446 CXXRecordDecl *ThisContext = nullptr;
4447 Qualifiers ThisTypeQuals;
4448 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4449 ThisContext = cast<CXXRecordDecl>(Owner);
4450 ThisTypeQuals = Method->getFunctionObjectParameterType().getQualifiers();
4453 TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType(
4454 OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(),
4455 ThisContext, ThisTypeQuals, EvaluateConstraints);
4456 if (!NewTInfo)
4457 return nullptr;
4459 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens();
4460 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) {
4461 if (NewTInfo != OldTInfo) {
4462 // Get parameters from the new type info.
4463 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens();
4464 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>();
4465 unsigned NewIdx = 0;
4466 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams();
4467 OldIdx != NumOldParams; ++OldIdx) {
4468 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx);
4469 if (!OldParam)
4470 return nullptr;
4472 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope;
4474 std::optional<unsigned> NumArgumentsInExpansion;
4475 if (OldParam->isParameterPack())
4476 NumArgumentsInExpansion =
4477 SemaRef.getNumArgumentsInExpansion(OldParam->getType(),
4478 TemplateArgs);
4479 if (!NumArgumentsInExpansion) {
4480 // Simple case: normal parameter, or a parameter pack that's
4481 // instantiated to a (still-dependent) parameter pack.
4482 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4483 Params.push_back(NewParam);
4484 Scope->InstantiatedLocal(OldParam, NewParam);
4485 } else {
4486 // Parameter pack expansion: make the instantiation an argument pack.
4487 Scope->MakeInstantiatedLocalArgPack(OldParam);
4488 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) {
4489 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4490 Params.push_back(NewParam);
4491 Scope->InstantiatedLocalPackArg(OldParam, NewParam);
4495 } else {
4496 // The function type itself was not dependent and therefore no
4497 // substitution occurred. However, we still need to instantiate
4498 // the function parameters themselves.
4499 const FunctionProtoType *OldProto =
4500 cast<FunctionProtoType>(OldProtoLoc.getType());
4501 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end;
4502 ++i) {
4503 ParmVarDecl *OldParam = OldProtoLoc.getParam(i);
4504 if (!OldParam) {
4505 Params.push_back(SemaRef.BuildParmVarDeclForTypedef(
4506 D, D->getLocation(), OldProto->getParamType(i)));
4507 continue;
4510 ParmVarDecl *Parm =
4511 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam));
4512 if (!Parm)
4513 return nullptr;
4514 Params.push_back(Parm);
4517 } else {
4518 // If the type of this function, after ignoring parentheses, is not
4519 // *directly* a function type, then we're instantiating a function that
4520 // was declared via a typedef or with attributes, e.g.,
4522 // typedef int functype(int, int);
4523 // functype func;
4524 // int __cdecl meth(int, int);
4526 // In this case, we'll just go instantiate the ParmVarDecls that we
4527 // synthesized in the method declaration.
4528 SmallVector<QualType, 4> ParamTypes;
4529 Sema::ExtParameterInfoBuilder ExtParamInfos;
4530 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr,
4531 TemplateArgs, ParamTypes, &Params,
4532 ExtParamInfos))
4533 return nullptr;
4536 return NewTInfo;
4539 /// Introduce the instantiated local variables into the local
4540 /// instantiation scope.
4541 void Sema::addInstantiatedLocalVarsToScope(FunctionDecl *Function,
4542 const FunctionDecl *PatternDecl,
4543 LocalInstantiationScope &Scope) {
4544 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(getFunctionScopes().back());
4546 for (auto *decl : PatternDecl->decls()) {
4547 if (!isa<VarDecl>(decl) || isa<ParmVarDecl>(decl))
4548 continue;
4550 VarDecl *VD = cast<VarDecl>(decl);
4551 IdentifierInfo *II = VD->getIdentifier();
4553 auto it = llvm::find_if(Function->decls(), [&](Decl *inst) {
4554 VarDecl *InstVD = dyn_cast<VarDecl>(inst);
4555 return InstVD && InstVD->isLocalVarDecl() &&
4556 InstVD->getIdentifier() == II;
4559 if (it == Function->decls().end())
4560 continue;
4562 Scope.InstantiatedLocal(VD, *it);
4563 LSI->addCapture(cast<VarDecl>(*it), /*isBlock=*/false, /*isByref=*/false,
4564 /*isNested=*/false, VD->getLocation(), SourceLocation(),
4565 VD->getType(), /*Invalid=*/false);
4569 /// Introduce the instantiated function parameters into the local
4570 /// instantiation scope, and set the parameter names to those used
4571 /// in the template.
4572 bool Sema::addInstantiatedParametersToScope(
4573 FunctionDecl *Function, const FunctionDecl *PatternDecl,
4574 LocalInstantiationScope &Scope,
4575 const MultiLevelTemplateArgumentList &TemplateArgs) {
4576 unsigned FParamIdx = 0;
4577 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) {
4578 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I);
4579 if (!PatternParam->isParameterPack()) {
4580 // Simple case: not a parameter pack.
4581 assert(FParamIdx < Function->getNumParams());
4582 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4583 FunctionParam->setDeclName(PatternParam->getDeclName());
4584 // If the parameter's type is not dependent, update it to match the type
4585 // in the pattern. They can differ in top-level cv-qualifiers, and we want
4586 // the pattern's type here. If the type is dependent, they can't differ,
4587 // per core issue 1668. Substitute into the type from the pattern, in case
4588 // it's instantiation-dependent.
4589 // FIXME: Updating the type to work around this is at best fragile.
4590 if (!PatternDecl->getType()->isDependentType()) {
4591 QualType T = SubstType(PatternParam->getType(), TemplateArgs,
4592 FunctionParam->getLocation(),
4593 FunctionParam->getDeclName());
4594 if (T.isNull())
4595 return true;
4596 FunctionParam->setType(T);
4599 Scope.InstantiatedLocal(PatternParam, FunctionParam);
4600 ++FParamIdx;
4601 continue;
4604 // Expand the parameter pack.
4605 Scope.MakeInstantiatedLocalArgPack(PatternParam);
4606 std::optional<unsigned> NumArgumentsInExpansion =
4607 getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs);
4608 if (NumArgumentsInExpansion) {
4609 QualType PatternType =
4610 PatternParam->getType()->castAs<PackExpansionType>()->getPattern();
4611 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) {
4612 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4613 FunctionParam->setDeclName(PatternParam->getDeclName());
4614 if (!PatternDecl->getType()->isDependentType()) {
4615 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, Arg);
4616 QualType T =
4617 SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(),
4618 FunctionParam->getDeclName());
4619 if (T.isNull())
4620 return true;
4621 FunctionParam->setType(T);
4624 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam);
4625 ++FParamIdx;
4630 return false;
4633 bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
4634 ParmVarDecl *Param) {
4635 assert(Param->hasUninstantiatedDefaultArg());
4637 // Instantiate the expression.
4639 // FIXME: Pass in a correct Pattern argument, otherwise
4640 // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4642 // template<typename T>
4643 // struct A {
4644 // static int FooImpl();
4646 // template<typename Tp>
4647 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4648 // // template argument list [[T], [Tp]], should be [[Tp]].
4649 // friend A<Tp> Foo(int a);
4650 // };
4652 // template<typename T>
4653 // A<T> Foo(int a = A<T>::FooImpl());
4654 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
4655 FD, FD->getLexicalDeclContext(), /*Final=*/false, nullptr,
4656 /*RelativeToPrimary=*/true);
4658 if (SubstDefaultArgument(CallLoc, Param, TemplateArgs, /*ForCallExpr*/ true))
4659 return true;
4661 if (ASTMutationListener *L = getASTMutationListener())
4662 L->DefaultArgumentInstantiated(Param);
4664 return false;
4667 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
4668 FunctionDecl *Decl) {
4669 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>();
4670 if (Proto->getExceptionSpecType() != EST_Uninstantiated)
4671 return;
4673 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl,
4674 InstantiatingTemplate::ExceptionSpecification());
4675 if (Inst.isInvalid()) {
4676 // We hit the instantiation depth limit. Clear the exception specification
4677 // so that our callers don't have to cope with EST_Uninstantiated.
4678 UpdateExceptionSpec(Decl, EST_None);
4679 return;
4681 if (Inst.isAlreadyInstantiating()) {
4682 // This exception specification indirectly depends on itself. Reject.
4683 // FIXME: Corresponding rule in the standard?
4684 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl;
4685 UpdateExceptionSpec(Decl, EST_None);
4686 return;
4689 // Enter the scope of this instantiation. We don't use
4690 // PushDeclContext because we don't have a scope.
4691 Sema::ContextRAII savedContext(*this, Decl);
4692 LocalInstantiationScope Scope(*this);
4694 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
4695 Decl, Decl->getLexicalDeclContext(), /*Final=*/false, nullptr,
4696 /*RelativeToPrimary*/ true);
4698 // FIXME: We can't use getTemplateInstantiationPattern(false) in general
4699 // here, because for a non-defining friend declaration in a class template,
4700 // we don't store enough information to map back to the friend declaration in
4701 // the template.
4702 FunctionDecl *Template = Proto->getExceptionSpecTemplate();
4703 if (addInstantiatedParametersToScope(Decl, Template, Scope, TemplateArgs)) {
4704 UpdateExceptionSpec(Decl, EST_None);
4705 return;
4708 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(),
4709 TemplateArgs);
4712 /// Initializes the common fields of an instantiation function
4713 /// declaration (New) from the corresponding fields of its template (Tmpl).
4715 /// \returns true if there was an error
4716 bool
4717 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
4718 FunctionDecl *Tmpl) {
4719 New->setImplicit(Tmpl->isImplicit());
4721 // Forward the mangling number from the template to the instantiated decl.
4722 SemaRef.Context.setManglingNumber(New,
4723 SemaRef.Context.getManglingNumber(Tmpl));
4725 // If we are performing substituting explicitly-specified template arguments
4726 // or deduced template arguments into a function template and we reach this
4727 // point, we are now past the point where SFINAE applies and have committed
4728 // to keeping the new function template specialization. We therefore
4729 // convert the active template instantiation for the function template
4730 // into a template instantiation for this specific function template
4731 // specialization, which is not a SFINAE context, so that we diagnose any
4732 // further errors in the declaration itself.
4734 // FIXME: This is a hack.
4735 typedef Sema::CodeSynthesisContext ActiveInstType;
4736 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back();
4737 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
4738 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
4739 if (isa<FunctionTemplateDecl>(ActiveInst.Entity)) {
4740 SemaRef.InstantiatingSpecializations.erase(
4741 {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind});
4742 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4743 ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
4744 ActiveInst.Entity = New;
4745 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4749 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
4750 assert(Proto && "Function template without prototype?");
4752 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) {
4753 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4755 // DR1330: In C++11, defer instantiation of a non-trivial
4756 // exception specification.
4757 // DR1484: Local classes and their members are instantiated along with the
4758 // containing function.
4759 if (SemaRef.getLangOpts().CPlusPlus11 &&
4760 EPI.ExceptionSpec.Type != EST_None &&
4761 EPI.ExceptionSpec.Type != EST_DynamicNone &&
4762 EPI.ExceptionSpec.Type != EST_BasicNoexcept &&
4763 !Tmpl->isInLocalScopeForInstantiation()) {
4764 FunctionDecl *ExceptionSpecTemplate = Tmpl;
4765 if (EPI.ExceptionSpec.Type == EST_Uninstantiated)
4766 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate;
4767 ExceptionSpecificationType NewEST = EST_Uninstantiated;
4768 if (EPI.ExceptionSpec.Type == EST_Unevaluated)
4769 NewEST = EST_Unevaluated;
4771 // Mark the function has having an uninstantiated exception specification.
4772 const FunctionProtoType *NewProto
4773 = New->getType()->getAs<FunctionProtoType>();
4774 assert(NewProto && "Template instantiation without function prototype?");
4775 EPI = NewProto->getExtProtoInfo();
4776 EPI.ExceptionSpec.Type = NewEST;
4777 EPI.ExceptionSpec.SourceDecl = New;
4778 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate;
4779 New->setType(SemaRef.Context.getFunctionType(
4780 NewProto->getReturnType(), NewProto->getParamTypes(), EPI));
4781 } else {
4782 Sema::ContextRAII SwitchContext(SemaRef, New);
4783 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs);
4787 // Get the definition. Leaves the variable unchanged if undefined.
4788 const FunctionDecl *Definition = Tmpl;
4789 Tmpl->isDefined(Definition);
4791 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New,
4792 LateAttrs, StartingScope);
4794 return false;
4797 /// Initializes common fields of an instantiated method
4798 /// declaration (New) from the corresponding fields of its template
4799 /// (Tmpl).
4801 /// \returns true if there was an error
4802 bool
4803 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
4804 CXXMethodDecl *Tmpl) {
4805 if (InitFunctionInstantiation(New, Tmpl))
4806 return true;
4808 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11)
4809 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New));
4811 New->setAccess(Tmpl->getAccess());
4812 if (Tmpl->isVirtualAsWritten())
4813 New->setVirtualAsWritten(true);
4815 // FIXME: New needs a pointer to Tmpl
4816 return false;
4819 bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New,
4820 FunctionDecl *Tmpl) {
4821 // Transfer across any unqualified lookups.
4822 if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) {
4823 SmallVector<DeclAccessPair, 32> Lookups;
4824 Lookups.reserve(DFI->getUnqualifiedLookups().size());
4825 bool AnyChanged = false;
4826 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) {
4827 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(),
4828 DA.getDecl(), TemplateArgs);
4829 if (!D)
4830 return true;
4831 AnyChanged |= (D != DA.getDecl());
4832 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess()));
4835 // It's unlikely that substitution will change any declarations. Don't
4836 // store an unnecessary copy in that case.
4837 New->setDefaultedFunctionInfo(
4838 AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create(
4839 SemaRef.Context, Lookups)
4840 : DFI);
4843 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation());
4844 return false;
4847 /// Instantiate (or find existing instantiation of) a function template with a
4848 /// given set of template arguments.
4850 /// Usually this should not be used, and template argument deduction should be
4851 /// used in its place.
4852 FunctionDecl *
4853 Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
4854 const TemplateArgumentList *Args,
4855 SourceLocation Loc) {
4856 FunctionDecl *FD = FTD->getTemplatedDecl();
4858 sema::TemplateDeductionInfo Info(Loc);
4859 InstantiatingTemplate Inst(
4860 *this, Loc, FTD, Args->asArray(),
4861 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
4862 if (Inst.isInvalid())
4863 return nullptr;
4865 ContextRAII SavedContext(*this, FD);
4866 MultiLevelTemplateArgumentList MArgs(FTD, Args->asArray(),
4867 /*Final=*/false);
4869 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs));
4872 /// Instantiate the definition of the given function from its
4873 /// template.
4875 /// \param PointOfInstantiation the point at which the instantiation was
4876 /// required. Note that this is not precisely a "point of instantiation"
4877 /// for the function, but it's close.
4879 /// \param Function the already-instantiated declaration of a
4880 /// function template specialization or member function of a class template
4881 /// specialization.
4883 /// \param Recursive if true, recursively instantiates any functions that
4884 /// are required by this instantiation.
4886 /// \param DefinitionRequired if true, then we are performing an explicit
4887 /// instantiation where the body of the function is required. Complain if
4888 /// there is no such body.
4889 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
4890 FunctionDecl *Function,
4891 bool Recursive,
4892 bool DefinitionRequired,
4893 bool AtEndOfTU) {
4894 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Function))
4895 return;
4897 // Never instantiate an explicit specialization except if it is a class scope
4898 // explicit specialization.
4899 TemplateSpecializationKind TSK =
4900 Function->getTemplateSpecializationKindForInstantiation();
4901 if (TSK == TSK_ExplicitSpecialization)
4902 return;
4904 // Never implicitly instantiate a builtin; we don't actually need a function
4905 // body.
4906 if (Function->getBuiltinID() && TSK == TSK_ImplicitInstantiation &&
4907 !DefinitionRequired)
4908 return;
4910 // Don't instantiate a definition if we already have one.
4911 const FunctionDecl *ExistingDefn = nullptr;
4912 if (Function->isDefined(ExistingDefn,
4913 /*CheckForPendingFriendDefinition=*/true)) {
4914 if (ExistingDefn->isThisDeclarationADefinition())
4915 return;
4917 // If we're asked to instantiate a function whose body comes from an
4918 // instantiated friend declaration, attach the instantiated body to the
4919 // corresponding declaration of the function.
4920 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition());
4921 Function = const_cast<FunctionDecl*>(ExistingDefn);
4924 // Find the function body that we'll be substituting.
4925 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
4926 assert(PatternDecl && "instantiating a non-template");
4928 const FunctionDecl *PatternDef = PatternDecl->getDefinition();
4929 Stmt *Pattern = nullptr;
4930 if (PatternDef) {
4931 Pattern = PatternDef->getBody(PatternDef);
4932 PatternDecl = PatternDef;
4933 if (PatternDef->willHaveBody())
4934 PatternDef = nullptr;
4937 // FIXME: We need to track the instantiation stack in order to know which
4938 // definitions should be visible within this instantiation.
4939 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function,
4940 Function->getInstantiatedFromMemberFunction(),
4941 PatternDecl, PatternDef, TSK,
4942 /*Complain*/DefinitionRequired)) {
4943 if (DefinitionRequired)
4944 Function->setInvalidDecl();
4945 else if (TSK == TSK_ExplicitInstantiationDefinition ||
4946 (Function->isConstexpr() && !Recursive)) {
4947 // Try again at the end of the translation unit (at which point a
4948 // definition will be required).
4949 assert(!Recursive);
4950 Function->setInstantiationIsPending(true);
4951 PendingInstantiations.push_back(
4952 std::make_pair(Function, PointOfInstantiation));
4953 } else if (TSK == TSK_ImplicitInstantiation) {
4954 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
4955 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
4956 Diag(PointOfInstantiation, diag::warn_func_template_missing)
4957 << Function;
4958 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
4959 if (getLangOpts().CPlusPlus11)
4960 Diag(PointOfInstantiation, diag::note_inst_declaration_hint)
4961 << Function;
4965 return;
4968 // Postpone late parsed template instantiations.
4969 if (PatternDecl->isLateTemplateParsed() &&
4970 !LateTemplateParser) {
4971 Function->setInstantiationIsPending(true);
4972 LateParsedInstantiations.push_back(
4973 std::make_pair(Function, PointOfInstantiation));
4974 return;
4977 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() {
4978 std::string Name;
4979 llvm::raw_string_ostream OS(Name);
4980 Function->getNameForDiagnostic(OS, getPrintingPolicy(),
4981 /*Qualified=*/true);
4982 return Name;
4985 // If we're performing recursive template instantiation, create our own
4986 // queue of pending implicit instantiations that we will instantiate later,
4987 // while we're still within our own instantiation context.
4988 // This has to happen before LateTemplateParser below is called, so that
4989 // it marks vtables used in late parsed templates as used.
4990 GlobalEagerInstantiationScope GlobalInstantiations(*this,
4991 /*Enabled=*/Recursive);
4992 LocalEagerInstantiationScope LocalInstantiations(*this);
4994 // Call the LateTemplateParser callback if there is a need to late parse
4995 // a templated function definition.
4996 if (!Pattern && PatternDecl->isLateTemplateParsed() &&
4997 LateTemplateParser) {
4998 // FIXME: Optimize to allow individual templates to be deserialized.
4999 if (PatternDecl->isFromASTFile())
5000 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap);
5002 auto LPTIter = LateParsedTemplateMap.find(PatternDecl);
5003 assert(LPTIter != LateParsedTemplateMap.end() &&
5004 "missing LateParsedTemplate");
5005 LateTemplateParser(OpaqueParser, *LPTIter->second);
5006 Pattern = PatternDecl->getBody(PatternDecl);
5007 updateAttrsForLateParsedTemplate(PatternDecl, Function);
5010 // Note, we should never try to instantiate a deleted function template.
5011 assert((Pattern || PatternDecl->isDefaulted() ||
5012 PatternDecl->hasSkippedBody()) &&
5013 "unexpected kind of function template definition");
5015 // C++1y [temp.explicit]p10:
5016 // Except for inline functions, declarations with types deduced from their
5017 // initializer or return value, and class template specializations, other
5018 // explicit instantiation declarations have the effect of suppressing the
5019 // implicit instantiation of the entity to which they refer.
5020 if (TSK == TSK_ExplicitInstantiationDeclaration &&
5021 !PatternDecl->isInlined() &&
5022 !PatternDecl->getReturnType()->getContainedAutoType())
5023 return;
5025 if (PatternDecl->isInlined()) {
5026 // Function, and all later redeclarations of it (from imported modules,
5027 // for instance), are now implicitly inline.
5028 for (auto *D = Function->getMostRecentDecl(); /**/;
5029 D = D->getPreviousDecl()) {
5030 D->setImplicitlyInline();
5031 if (D == Function)
5032 break;
5036 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
5037 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5038 return;
5039 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(),
5040 "instantiating function definition");
5042 // The instantiation is visible here, even if it was first declared in an
5043 // unimported module.
5044 Function->setVisibleDespiteOwningModule();
5046 // Copy the source locations from the pattern.
5047 Function->setLocation(PatternDecl->getLocation());
5048 Function->setInnerLocStart(PatternDecl->getInnerLocStart());
5049 Function->setRangeEnd(PatternDecl->getEndLoc());
5051 EnterExpressionEvaluationContext EvalContext(
5052 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
5054 // Introduce a new scope where local variable instantiations will be
5055 // recorded, unless we're actually a member function within a local
5056 // class, in which case we need to merge our results with the parent
5057 // scope (of the enclosing function). The exception is instantiating
5058 // a function template specialization, since the template to be
5059 // instantiated already has references to locals properly substituted.
5060 bool MergeWithParentScope = false;
5061 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
5062 MergeWithParentScope =
5063 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization();
5065 LocalInstantiationScope Scope(*this, MergeWithParentScope);
5066 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() {
5067 // Special members might get their TypeSourceInfo set up w.r.t the
5068 // PatternDecl context, in which case parameters could still be pointing
5069 // back to the original class, make sure arguments are bound to the
5070 // instantiated record instead.
5071 assert(PatternDecl->isDefaulted() &&
5072 "Special member needs to be defaulted");
5073 auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember();
5074 if (!(PatternSM == Sema::CXXCopyConstructor ||
5075 PatternSM == Sema::CXXCopyAssignment ||
5076 PatternSM == Sema::CXXMoveConstructor ||
5077 PatternSM == Sema::CXXMoveAssignment))
5078 return;
5080 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext());
5081 const auto *PatternRec =
5082 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext());
5083 if (!NewRec || !PatternRec)
5084 return;
5085 if (!PatternRec->isLambda())
5086 return;
5088 struct SpecialMemberTypeInfoRebuilder
5089 : TreeTransform<SpecialMemberTypeInfoRebuilder> {
5090 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>;
5091 const CXXRecordDecl *OldDecl;
5092 CXXRecordDecl *NewDecl;
5094 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O,
5095 CXXRecordDecl *N)
5096 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {}
5098 bool TransformExceptionSpec(SourceLocation Loc,
5099 FunctionProtoType::ExceptionSpecInfo &ESI,
5100 SmallVectorImpl<QualType> &Exceptions,
5101 bool &Changed) {
5102 return false;
5105 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) {
5106 const RecordType *T = TL.getTypePtr();
5107 RecordDecl *Record = cast_or_null<RecordDecl>(
5108 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()));
5109 if (Record != OldDecl)
5110 return Base::TransformRecordType(TLB, TL);
5112 QualType Result = getDerived().RebuildRecordType(NewDecl);
5113 if (Result.isNull())
5114 return QualType();
5116 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
5117 NewTL.setNameLoc(TL.getNameLoc());
5118 return Result;
5120 } IR{*this, PatternRec, NewRec};
5122 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo());
5123 assert(NewSI && "Type Transform failed?");
5124 Function->setType(NewSI->getType());
5125 Function->setTypeSourceInfo(NewSI);
5127 ParmVarDecl *Parm = Function->getParamDecl(0);
5128 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo());
5129 Parm->setType(NewParmSI->getType());
5130 Parm->setTypeSourceInfo(NewParmSI);
5133 if (PatternDecl->isDefaulted()) {
5134 RebuildTypeSourceInfoForDefaultSpecialMembers();
5135 SetDeclDefaulted(Function, PatternDecl->getLocation());
5136 } else {
5137 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
5138 Function, Function->getLexicalDeclContext(), /*Final=*/false, nullptr,
5139 false, PatternDecl);
5141 // Substitute into the qualifier; we can get a substitution failure here
5142 // through evil use of alias templates.
5143 // FIXME: Is CurContext correct for this? Should we go to the (instantiation
5144 // of the) lexical context of the pattern?
5145 SubstQualifier(*this, PatternDecl, Function, TemplateArgs);
5147 ActOnStartOfFunctionDef(nullptr, Function);
5149 // Enter the scope of this instantiation. We don't use
5150 // PushDeclContext because we don't have a scope.
5151 Sema::ContextRAII savedContext(*this, Function);
5153 FPFeaturesStateRAII SavedFPFeatures(*this);
5154 CurFPFeatures = FPOptions(getLangOpts());
5155 FpPragmaStack.CurrentValue = FPOptionsOverride();
5157 if (addInstantiatedParametersToScope(Function, PatternDecl, Scope,
5158 TemplateArgs))
5159 return;
5161 StmtResult Body;
5162 if (PatternDecl->hasSkippedBody()) {
5163 ActOnSkippedFunctionBody(Function);
5164 Body = nullptr;
5165 } else {
5166 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) {
5167 // If this is a constructor, instantiate the member initializers.
5168 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl),
5169 TemplateArgs);
5171 // If this is an MS ABI dllexport default constructor, instantiate any
5172 // default arguments.
5173 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5174 Ctor->isDefaultConstructor()) {
5175 InstantiateDefaultCtorDefaultArgs(Ctor);
5179 // Instantiate the function body.
5180 Body = SubstStmt(Pattern, TemplateArgs);
5182 if (Body.isInvalid())
5183 Function->setInvalidDecl();
5185 // FIXME: finishing the function body while in an expression evaluation
5186 // context seems wrong. Investigate more.
5187 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true);
5189 PerformDependentDiagnostics(PatternDecl, TemplateArgs);
5191 if (auto *Listener = getASTMutationListener())
5192 Listener->FunctionDefinitionInstantiated(Function);
5194 savedContext.pop();
5197 DeclGroupRef DG(Function);
5198 Consumer.HandleTopLevelDecl(DG);
5200 // This class may have local implicit instantiations that need to be
5201 // instantiation within this scope.
5202 LocalInstantiations.perform();
5203 Scope.Exit();
5204 GlobalInstantiations.perform();
5207 VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation(
5208 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
5209 const TemplateArgumentList &TemplateArgList,
5210 const TemplateArgumentListInfo &TemplateArgsInfo,
5211 SmallVectorImpl<TemplateArgument> &Converted,
5212 SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs,
5213 LocalInstantiationScope *StartingScope) {
5214 if (FromVar->isInvalidDecl())
5215 return nullptr;
5217 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar);
5218 if (Inst.isInvalid())
5219 return nullptr;
5221 // Instantiate the first declaration of the variable template: for a partial
5222 // specialization of a static data member template, the first declaration may
5223 // or may not be the declaration in the class; if it's in the class, we want
5224 // to instantiate a member in the class (a declaration), and if it's outside,
5225 // we want to instantiate a definition.
5227 // If we're instantiating an explicitly-specialized member template or member
5228 // partial specialization, don't do this. The member specialization completely
5229 // replaces the original declaration in this case.
5230 bool IsMemberSpec = false;
5231 MultiLevelTemplateArgumentList MultiLevelList;
5232 if (auto *PartialSpec =
5233 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) {
5234 IsMemberSpec = PartialSpec->isMemberSpecialization();
5235 MultiLevelList.addOuterTemplateArguments(
5236 PartialSpec, TemplateArgList.asArray(), /*Final=*/false);
5237 } else {
5238 assert(VarTemplate == FromVar->getDescribedVarTemplate());
5239 IsMemberSpec = VarTemplate->isMemberSpecialization();
5240 MultiLevelList.addOuterTemplateArguments(
5241 VarTemplate, TemplateArgList.asArray(), /*Final=*/false);
5243 if (!IsMemberSpec)
5244 FromVar = FromVar->getFirstDecl();
5246 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(),
5247 MultiLevelList);
5249 // TODO: Set LateAttrs and StartingScope ...
5251 return cast_or_null<VarTemplateSpecializationDecl>(
5252 Instantiator.VisitVarTemplateSpecializationDecl(
5253 VarTemplate, FromVar, TemplateArgsInfo, Converted));
5256 /// Instantiates a variable template specialization by completing it
5257 /// with appropriate type information and initializer.
5258 VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl(
5259 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
5260 const MultiLevelTemplateArgumentList &TemplateArgs) {
5261 assert(PatternDecl->isThisDeclarationADefinition() &&
5262 "don't have a definition to instantiate from");
5264 // Do substitution on the type of the declaration
5265 TypeSourceInfo *DI =
5266 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs,
5267 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName());
5268 if (!DI)
5269 return nullptr;
5271 // Update the type of this variable template specialization.
5272 VarSpec->setType(DI->getType());
5274 // Convert the declaration into a definition now.
5275 VarSpec->setCompleteDefinition();
5277 // Instantiate the initializer.
5278 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs);
5280 if (getLangOpts().OpenCL)
5281 deduceOpenCLAddressSpace(VarSpec);
5283 return VarSpec;
5286 /// BuildVariableInstantiation - Used after a new variable has been created.
5287 /// Sets basic variable data and decides whether to postpone the
5288 /// variable instantiation.
5289 void Sema::BuildVariableInstantiation(
5290 VarDecl *NewVar, VarDecl *OldVar,
5291 const MultiLevelTemplateArgumentList &TemplateArgs,
5292 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner,
5293 LocalInstantiationScope *StartingScope,
5294 bool InstantiatingVarTemplate,
5295 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) {
5296 // Instantiating a partial specialization to produce a partial
5297 // specialization.
5298 bool InstantiatingVarTemplatePartialSpec =
5299 isa<VarTemplatePartialSpecializationDecl>(OldVar) &&
5300 isa<VarTemplatePartialSpecializationDecl>(NewVar);
5301 // Instantiating from a variable template (or partial specialization) to
5302 // produce a variable template specialization.
5303 bool InstantiatingSpecFromTemplate =
5304 isa<VarTemplateSpecializationDecl>(NewVar) &&
5305 (OldVar->getDescribedVarTemplate() ||
5306 isa<VarTemplatePartialSpecializationDecl>(OldVar));
5308 // If we are instantiating a local extern declaration, the
5309 // instantiation belongs lexically to the containing function.
5310 // If we are instantiating a static data member defined
5311 // out-of-line, the instantiation will have the same lexical
5312 // context (which will be a namespace scope) as the template.
5313 if (OldVar->isLocalExternDecl()) {
5314 NewVar->setLocalExternDecl();
5315 NewVar->setLexicalDeclContext(Owner);
5316 } else if (OldVar->isOutOfLine())
5317 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext());
5318 NewVar->setTSCSpec(OldVar->getTSCSpec());
5319 NewVar->setInitStyle(OldVar->getInitStyle());
5320 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl());
5321 NewVar->setObjCForDecl(OldVar->isObjCForDecl());
5322 NewVar->setConstexpr(OldVar->isConstexpr());
5323 NewVar->setInitCapture(OldVar->isInitCapture());
5324 NewVar->setPreviousDeclInSameBlockScope(
5325 OldVar->isPreviousDeclInSameBlockScope());
5326 NewVar->setAccess(OldVar->getAccess());
5328 if (!OldVar->isStaticDataMember()) {
5329 if (OldVar->isUsed(false))
5330 NewVar->setIsUsed();
5331 NewVar->setReferenced(OldVar->isReferenced());
5334 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope);
5336 LookupResult Previous(
5337 *this, NewVar->getDeclName(), NewVar->getLocation(),
5338 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
5339 : Sema::LookupOrdinaryName,
5340 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration
5341 : forRedeclarationInCurContext());
5343 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() &&
5344 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() ||
5345 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) {
5346 // We have a previous declaration. Use that one, so we merge with the
5347 // right type.
5348 if (NamedDecl *NewPrev = FindInstantiatedDecl(
5349 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs))
5350 Previous.addDecl(NewPrev);
5351 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) &&
5352 OldVar->hasLinkage()) {
5353 LookupQualifiedName(Previous, NewVar->getDeclContext(), false);
5354 } else if (PrevDeclForVarTemplateSpecialization) {
5355 Previous.addDecl(PrevDeclForVarTemplateSpecialization);
5357 CheckVariableDeclaration(NewVar, Previous);
5359 if (!InstantiatingVarTemplate) {
5360 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar);
5361 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl())
5362 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar);
5365 if (!OldVar->isOutOfLine()) {
5366 if (NewVar->getDeclContext()->isFunctionOrMethod())
5367 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar);
5370 // Link instantiations of static data members back to the template from
5371 // which they were instantiated.
5373 // Don't do this when instantiating a template (we link the template itself
5374 // back in that case) nor when instantiating a static data member template
5375 // (that's not a member specialization).
5376 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate &&
5377 !InstantiatingSpecFromTemplate)
5378 NewVar->setInstantiationOfStaticDataMember(OldVar,
5379 TSK_ImplicitInstantiation);
5381 // If the pattern is an (in-class) explicit specialization, then the result
5382 // is also an explicit specialization.
5383 if (VarTemplateSpecializationDecl *OldVTSD =
5384 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) {
5385 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization &&
5386 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD))
5387 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind(
5388 TSK_ExplicitSpecialization);
5391 // Forward the mangling number from the template to the instantiated decl.
5392 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar));
5393 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar));
5395 // Figure out whether to eagerly instantiate the initializer.
5396 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) {
5397 // We're producing a template. Don't instantiate the initializer yet.
5398 } else if (NewVar->getType()->isUndeducedType()) {
5399 // We need the type to complete the declaration of the variable.
5400 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5401 } else if (InstantiatingSpecFromTemplate ||
5402 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() &&
5403 !NewVar->isThisDeclarationADefinition())) {
5404 // Delay instantiation of the initializer for variable template
5405 // specializations or inline static data members until a definition of the
5406 // variable is needed.
5407 } else {
5408 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5411 // Diagnose unused local variables with dependent types, where the diagnostic
5412 // will have been deferred.
5413 if (!NewVar->isInvalidDecl() &&
5414 NewVar->getDeclContext()->isFunctionOrMethod() &&
5415 OldVar->getType()->isDependentType())
5416 DiagnoseUnusedDecl(NewVar);
5419 /// Instantiate the initializer of a variable.
5420 void Sema::InstantiateVariableInitializer(
5421 VarDecl *Var, VarDecl *OldVar,
5422 const MultiLevelTemplateArgumentList &TemplateArgs) {
5423 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
5424 L->VariableDefinitionInstantiated(Var);
5426 // We propagate the 'inline' flag with the initializer, because it
5427 // would otherwise imply that the variable is a definition for a
5428 // non-static data member.
5429 if (OldVar->isInlineSpecified())
5430 Var->setInlineSpecified();
5431 else if (OldVar->isInline())
5432 Var->setImplicitlyInline();
5434 if (OldVar->getInit()) {
5435 EnterExpressionEvaluationContext Evaluated(
5436 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var);
5438 // Instantiate the initializer.
5439 ExprResult Init;
5442 ContextRAII SwitchContext(*this, Var->getDeclContext());
5443 Init = SubstInitializer(OldVar->getInit(), TemplateArgs,
5444 OldVar->getInitStyle() == VarDecl::CallInit);
5447 if (!Init.isInvalid()) {
5448 Expr *InitExpr = Init.get();
5450 if (Var->hasAttr<DLLImportAttr>() &&
5451 (!InitExpr ||
5452 !InitExpr->isConstantInitializer(getASTContext(), false))) {
5453 // Do not dynamically initialize dllimport variables.
5454 } else if (InitExpr) {
5455 bool DirectInit = OldVar->isDirectInit();
5456 AddInitializerToDecl(Var, InitExpr, DirectInit);
5457 } else
5458 ActOnUninitializedDecl(Var);
5459 } else {
5460 // FIXME: Not too happy about invalidating the declaration
5461 // because of a bogus initializer.
5462 Var->setInvalidDecl();
5464 } else {
5465 // `inline` variables are a definition and declaration all in one; we won't
5466 // pick up an initializer from anywhere else.
5467 if (Var->isStaticDataMember() && !Var->isInline()) {
5468 if (!Var->isOutOfLine())
5469 return;
5471 // If the declaration inside the class had an initializer, don't add
5472 // another one to the out-of-line definition.
5473 if (OldVar->getFirstDecl()->hasInit())
5474 return;
5477 // We'll add an initializer to a for-range declaration later.
5478 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl())
5479 return;
5481 ActOnUninitializedDecl(Var);
5484 if (getLangOpts().CUDA)
5485 checkAllowedCUDAInitializer(Var);
5488 /// Instantiate the definition of the given variable from its
5489 /// template.
5491 /// \param PointOfInstantiation the point at which the instantiation was
5492 /// required. Note that this is not precisely a "point of instantiation"
5493 /// for the variable, but it's close.
5495 /// \param Var the already-instantiated declaration of a templated variable.
5497 /// \param Recursive if true, recursively instantiates any functions that
5498 /// are required by this instantiation.
5500 /// \param DefinitionRequired if true, then we are performing an explicit
5501 /// instantiation where a definition of the variable is required. Complain
5502 /// if there is no such definition.
5503 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
5504 VarDecl *Var, bool Recursive,
5505 bool DefinitionRequired, bool AtEndOfTU) {
5506 if (Var->isInvalidDecl())
5507 return;
5509 // Never instantiate an explicitly-specialized entity.
5510 TemplateSpecializationKind TSK =
5511 Var->getTemplateSpecializationKindForInstantiation();
5512 if (TSK == TSK_ExplicitSpecialization)
5513 return;
5515 // Find the pattern and the arguments to substitute into it.
5516 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern();
5517 assert(PatternDecl && "no pattern for templated variable");
5518 MultiLevelTemplateArgumentList TemplateArgs =
5519 getTemplateInstantiationArgs(Var);
5521 VarTemplateSpecializationDecl *VarSpec =
5522 dyn_cast<VarTemplateSpecializationDecl>(Var);
5523 if (VarSpec) {
5524 // If this is a static data member template, there might be an
5525 // uninstantiated initializer on the declaration. If so, instantiate
5526 // it now.
5528 // FIXME: This largely duplicates what we would do below. The difference
5529 // is that along this path we may instantiate an initializer from an
5530 // in-class declaration of the template and instantiate the definition
5531 // from a separate out-of-class definition.
5532 if (PatternDecl->isStaticDataMember() &&
5533 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() &&
5534 !Var->hasInit()) {
5535 // FIXME: Factor out the duplicated instantiation context setup/tear down
5536 // code here.
5537 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5538 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5539 return;
5540 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5541 "instantiating variable initializer");
5543 // The instantiation is visible here, even if it was first declared in an
5544 // unimported module.
5545 Var->setVisibleDespiteOwningModule();
5547 // If we're performing recursive template instantiation, create our own
5548 // queue of pending implicit instantiations that we will instantiate
5549 // later, while we're still within our own instantiation context.
5550 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5551 /*Enabled=*/Recursive);
5552 LocalInstantiationScope Local(*this);
5553 LocalEagerInstantiationScope LocalInstantiations(*this);
5555 // Enter the scope of this instantiation. We don't use
5556 // PushDeclContext because we don't have a scope.
5557 ContextRAII PreviousContext(*this, Var->getDeclContext());
5558 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs);
5559 PreviousContext.pop();
5561 // This variable may have local implicit instantiations that need to be
5562 // instantiated within this scope.
5563 LocalInstantiations.perform();
5564 Local.Exit();
5565 GlobalInstantiations.perform();
5567 } else {
5568 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() &&
5569 "not a static data member?");
5572 VarDecl *Def = PatternDecl->getDefinition(getASTContext());
5574 // If we don't have a definition of the variable template, we won't perform
5575 // any instantiation. Rather, we rely on the user to instantiate this
5576 // definition (or provide a specialization for it) in another translation
5577 // unit.
5578 if (!Def && !DefinitionRequired) {
5579 if (TSK == TSK_ExplicitInstantiationDefinition) {
5580 PendingInstantiations.push_back(
5581 std::make_pair(Var, PointOfInstantiation));
5582 } else if (TSK == TSK_ImplicitInstantiation) {
5583 // Warn about missing definition at the end of translation unit.
5584 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
5585 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
5586 Diag(PointOfInstantiation, diag::warn_var_template_missing)
5587 << Var;
5588 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
5589 if (getLangOpts().CPlusPlus11)
5590 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var;
5592 return;
5596 // FIXME: We need to track the instantiation stack in order to know which
5597 // definitions should be visible within this instantiation.
5598 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember().
5599 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var,
5600 /*InstantiatedFromMember*/false,
5601 PatternDecl, Def, TSK,
5602 /*Complain*/DefinitionRequired))
5603 return;
5605 // C++11 [temp.explicit]p10:
5606 // Except for inline functions, const variables of literal types, variables
5607 // of reference types, [...] explicit instantiation declarations
5608 // have the effect of suppressing the implicit instantiation of the entity
5609 // to which they refer.
5611 // FIXME: That's not exactly the same as "might be usable in constant
5612 // expressions", which only allows constexpr variables and const integral
5613 // types, not arbitrary const literal types.
5614 if (TSK == TSK_ExplicitInstantiationDeclaration &&
5615 !Var->mightBeUsableInConstantExpressions(getASTContext()))
5616 return;
5618 // Make sure to pass the instantiated variable to the consumer at the end.
5619 struct PassToConsumerRAII {
5620 ASTConsumer &Consumer;
5621 VarDecl *Var;
5623 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var)
5624 : Consumer(Consumer), Var(Var) { }
5626 ~PassToConsumerRAII() {
5627 Consumer.HandleCXXStaticMemberVarInstantiation(Var);
5629 } PassToConsumerRAII(Consumer, Var);
5631 // If we already have a definition, we're done.
5632 if (VarDecl *Def = Var->getDefinition()) {
5633 // We may be explicitly instantiating something we've already implicitly
5634 // instantiated.
5635 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(),
5636 PointOfInstantiation);
5637 return;
5640 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5641 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5642 return;
5643 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5644 "instantiating variable definition");
5646 // If we're performing recursive template instantiation, create our own
5647 // queue of pending implicit instantiations that we will instantiate later,
5648 // while we're still within our own instantiation context.
5649 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5650 /*Enabled=*/Recursive);
5652 // Enter the scope of this instantiation. We don't use
5653 // PushDeclContext because we don't have a scope.
5654 ContextRAII PreviousContext(*this, Var->getDeclContext());
5655 LocalInstantiationScope Local(*this);
5657 LocalEagerInstantiationScope LocalInstantiations(*this);
5659 VarDecl *OldVar = Var;
5660 if (Def->isStaticDataMember() && !Def->isOutOfLine()) {
5661 // We're instantiating an inline static data member whose definition was
5662 // provided inside the class.
5663 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5664 } else if (!VarSpec) {
5665 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(),
5666 TemplateArgs));
5667 } else if (Var->isStaticDataMember() &&
5668 Var->getLexicalDeclContext()->isRecord()) {
5669 // We need to instantiate the definition of a static data member template,
5670 // and all we have is the in-class declaration of it. Instantiate a separate
5671 // declaration of the definition.
5672 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(),
5673 TemplateArgs);
5675 TemplateArgumentListInfo TemplateArgInfo;
5676 if (const ASTTemplateArgumentListInfo *ArgInfo =
5677 VarSpec->getTemplateArgsInfo()) {
5678 TemplateArgInfo.setLAngleLoc(ArgInfo->getLAngleLoc());
5679 TemplateArgInfo.setRAngleLoc(ArgInfo->getRAngleLoc());
5680 for (const TemplateArgumentLoc &Arg : ArgInfo->arguments())
5681 TemplateArgInfo.addArgument(Arg);
5684 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl(
5685 VarSpec->getSpecializedTemplate(), Def, TemplateArgInfo,
5686 VarSpec->getTemplateArgs().asArray(), VarSpec));
5687 if (Var) {
5688 llvm::PointerUnion<VarTemplateDecl *,
5689 VarTemplatePartialSpecializationDecl *> PatternPtr =
5690 VarSpec->getSpecializedTemplateOrPartial();
5691 if (VarTemplatePartialSpecializationDecl *Partial =
5692 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>())
5693 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf(
5694 Partial, &VarSpec->getTemplateInstantiationArgs());
5696 // Attach the initializer.
5697 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5699 } else
5700 // Complete the existing variable's definition with an appropriately
5701 // substituted type and initializer.
5702 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs);
5704 PreviousContext.pop();
5706 if (Var) {
5707 PassToConsumerRAII.Var = Var;
5708 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(),
5709 OldVar->getPointOfInstantiation());
5712 // This variable may have local implicit instantiations that need to be
5713 // instantiated within this scope.
5714 LocalInstantiations.perform();
5715 Local.Exit();
5716 GlobalInstantiations.perform();
5719 void
5720 Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
5721 const CXXConstructorDecl *Tmpl,
5722 const MultiLevelTemplateArgumentList &TemplateArgs) {
5724 SmallVector<CXXCtorInitializer*, 4> NewInits;
5725 bool AnyErrors = Tmpl->isInvalidDecl();
5727 // Instantiate all the initializers.
5728 for (const auto *Init : Tmpl->inits()) {
5729 // Only instantiate written initializers, let Sema re-construct implicit
5730 // ones.
5731 if (!Init->isWritten())
5732 continue;
5734 SourceLocation EllipsisLoc;
5736 if (Init->isPackExpansion()) {
5737 // This is a pack expansion. We should expand it now.
5738 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc();
5739 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5740 collectUnexpandedParameterPacks(BaseTL, Unexpanded);
5741 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded);
5742 bool ShouldExpand = false;
5743 bool RetainExpansion = false;
5744 std::optional<unsigned> NumExpansions;
5745 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(),
5746 BaseTL.getSourceRange(),
5747 Unexpanded,
5748 TemplateArgs, ShouldExpand,
5749 RetainExpansion,
5750 NumExpansions)) {
5751 AnyErrors = true;
5752 New->setInvalidDecl();
5753 continue;
5755 assert(ShouldExpand && "Partial instantiation of base initializer?");
5757 // Loop over all of the arguments in the argument pack(s),
5758 for (unsigned I = 0; I != *NumExpansions; ++I) {
5759 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
5761 // Instantiate the initializer.
5762 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5763 /*CXXDirectInit=*/true);
5764 if (TempInit.isInvalid()) {
5765 AnyErrors = true;
5766 break;
5769 // Instantiate the base type.
5770 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(),
5771 TemplateArgs,
5772 Init->getSourceLocation(),
5773 New->getDeclName());
5774 if (!BaseTInfo) {
5775 AnyErrors = true;
5776 break;
5779 // Build the initializer.
5780 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(),
5781 BaseTInfo, TempInit.get(),
5782 New->getParent(),
5783 SourceLocation());
5784 if (NewInit.isInvalid()) {
5785 AnyErrors = true;
5786 break;
5789 NewInits.push_back(NewInit.get());
5792 continue;
5795 // Instantiate the initializer.
5796 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5797 /*CXXDirectInit=*/true);
5798 if (TempInit.isInvalid()) {
5799 AnyErrors = true;
5800 continue;
5803 MemInitResult NewInit;
5804 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) {
5805 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(),
5806 TemplateArgs,
5807 Init->getSourceLocation(),
5808 New->getDeclName());
5809 if (!TInfo) {
5810 AnyErrors = true;
5811 New->setInvalidDecl();
5812 continue;
5815 if (Init->isBaseInitializer())
5816 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(),
5817 New->getParent(), EllipsisLoc);
5818 else
5819 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(),
5820 cast<CXXRecordDecl>(CurContext->getParent()));
5821 } else if (Init->isMemberInitializer()) {
5822 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl(
5823 Init->getMemberLocation(),
5824 Init->getMember(),
5825 TemplateArgs));
5826 if (!Member) {
5827 AnyErrors = true;
5828 New->setInvalidDecl();
5829 continue;
5832 NewInit = BuildMemberInitializer(Member, TempInit.get(),
5833 Init->getSourceLocation());
5834 } else if (Init->isIndirectMemberInitializer()) {
5835 IndirectFieldDecl *IndirectMember =
5836 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl(
5837 Init->getMemberLocation(),
5838 Init->getIndirectMember(), TemplateArgs));
5840 if (!IndirectMember) {
5841 AnyErrors = true;
5842 New->setInvalidDecl();
5843 continue;
5846 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(),
5847 Init->getSourceLocation());
5850 if (NewInit.isInvalid()) {
5851 AnyErrors = true;
5852 New->setInvalidDecl();
5853 } else {
5854 NewInits.push_back(NewInit.get());
5858 // Assign all the initializers to the new constructor.
5859 ActOnMemInitializers(New,
5860 /*FIXME: ColonLoc */
5861 SourceLocation(),
5862 NewInits,
5863 AnyErrors);
5866 // TODO: this could be templated if the various decl types used the
5867 // same method name.
5868 static bool isInstantiationOf(ClassTemplateDecl *Pattern,
5869 ClassTemplateDecl *Instance) {
5870 Pattern = Pattern->getCanonicalDecl();
5872 do {
5873 Instance = Instance->getCanonicalDecl();
5874 if (Pattern == Instance) return true;
5875 Instance = Instance->getInstantiatedFromMemberTemplate();
5876 } while (Instance);
5878 return false;
5881 static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
5882 FunctionTemplateDecl *Instance) {
5883 Pattern = Pattern->getCanonicalDecl();
5885 do {
5886 Instance = Instance->getCanonicalDecl();
5887 if (Pattern == Instance) return true;
5888 Instance = Instance->getInstantiatedFromMemberTemplate();
5889 } while (Instance);
5891 return false;
5894 static bool
5895 isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
5896 ClassTemplatePartialSpecializationDecl *Instance) {
5897 Pattern
5898 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
5899 do {
5900 Instance = cast<ClassTemplatePartialSpecializationDecl>(
5901 Instance->getCanonicalDecl());
5902 if (Pattern == Instance)
5903 return true;
5904 Instance = Instance->getInstantiatedFromMember();
5905 } while (Instance);
5907 return false;
5910 static bool isInstantiationOf(CXXRecordDecl *Pattern,
5911 CXXRecordDecl *Instance) {
5912 Pattern = Pattern->getCanonicalDecl();
5914 do {
5915 Instance = Instance->getCanonicalDecl();
5916 if (Pattern == Instance) return true;
5917 Instance = Instance->getInstantiatedFromMemberClass();
5918 } while (Instance);
5920 return false;
5923 static bool isInstantiationOf(FunctionDecl *Pattern,
5924 FunctionDecl *Instance) {
5925 Pattern = Pattern->getCanonicalDecl();
5927 do {
5928 Instance = Instance->getCanonicalDecl();
5929 if (Pattern == Instance) return true;
5930 Instance = Instance->getInstantiatedFromMemberFunction();
5931 } while (Instance);
5933 return false;
5936 static bool isInstantiationOf(EnumDecl *Pattern,
5937 EnumDecl *Instance) {
5938 Pattern = Pattern->getCanonicalDecl();
5940 do {
5941 Instance = Instance->getCanonicalDecl();
5942 if (Pattern == Instance) return true;
5943 Instance = Instance->getInstantiatedFromMemberEnum();
5944 } while (Instance);
5946 return false;
5949 static bool isInstantiationOf(UsingShadowDecl *Pattern,
5950 UsingShadowDecl *Instance,
5951 ASTContext &C) {
5952 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance),
5953 Pattern);
5956 static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance,
5957 ASTContext &C) {
5958 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
5961 template<typename T>
5962 static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other,
5963 ASTContext &Ctx) {
5964 // An unresolved using declaration can instantiate to an unresolved using
5965 // declaration, or to a using declaration or a using declaration pack.
5967 // Multiple declarations can claim to be instantiated from an unresolved
5968 // using declaration if it's a pack expansion. We want the UsingPackDecl
5969 // in that case, not the individual UsingDecls within the pack.
5970 bool OtherIsPackExpansion;
5971 NamedDecl *OtherFrom;
5972 if (auto *OtherUUD = dyn_cast<T>(Other)) {
5973 OtherIsPackExpansion = OtherUUD->isPackExpansion();
5974 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD);
5975 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) {
5976 OtherIsPackExpansion = true;
5977 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl();
5978 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) {
5979 OtherIsPackExpansion = false;
5980 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD);
5981 } else {
5982 return false;
5984 return Pattern->isPackExpansion() == OtherIsPackExpansion &&
5985 declaresSameEntity(OtherFrom, Pattern);
5988 static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
5989 VarDecl *Instance) {
5990 assert(Instance->isStaticDataMember());
5992 Pattern = Pattern->getCanonicalDecl();
5994 do {
5995 Instance = Instance->getCanonicalDecl();
5996 if (Pattern == Instance) return true;
5997 Instance = Instance->getInstantiatedFromStaticDataMember();
5998 } while (Instance);
6000 return false;
6003 // Other is the prospective instantiation
6004 // D is the prospective pattern
6005 static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
6006 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D))
6007 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
6009 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D))
6010 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
6012 if (D->getKind() != Other->getKind())
6013 return false;
6015 if (auto *Record = dyn_cast<CXXRecordDecl>(Other))
6016 return isInstantiationOf(cast<CXXRecordDecl>(D), Record);
6018 if (auto *Function = dyn_cast<FunctionDecl>(Other))
6019 return isInstantiationOf(cast<FunctionDecl>(D), Function);
6021 if (auto *Enum = dyn_cast<EnumDecl>(Other))
6022 return isInstantiationOf(cast<EnumDecl>(D), Enum);
6024 if (auto *Var = dyn_cast<VarDecl>(Other))
6025 if (Var->isStaticDataMember())
6026 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var);
6028 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other))
6029 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp);
6031 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other))
6032 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp);
6034 if (auto *PartialSpec =
6035 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other))
6036 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D),
6037 PartialSpec);
6039 if (auto *Field = dyn_cast<FieldDecl>(Other)) {
6040 if (!Field->getDeclName()) {
6041 // This is an unnamed field.
6042 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field),
6043 cast<FieldDecl>(D));
6047 if (auto *Using = dyn_cast<UsingDecl>(Other))
6048 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx);
6050 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other))
6051 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx);
6053 return D->getDeclName() &&
6054 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName();
6057 template<typename ForwardIterator>
6058 static NamedDecl *findInstantiationOf(ASTContext &Ctx,
6059 NamedDecl *D,
6060 ForwardIterator first,
6061 ForwardIterator last) {
6062 for (; first != last; ++first)
6063 if (isInstantiationOf(Ctx, D, *first))
6064 return cast<NamedDecl>(*first);
6066 return nullptr;
6069 /// Finds the instantiation of the given declaration context
6070 /// within the current instantiation.
6072 /// \returns NULL if there was an error
6073 DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
6074 const MultiLevelTemplateArgumentList &TemplateArgs) {
6075 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) {
6076 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true);
6077 return cast_or_null<DeclContext>(ID);
6078 } else return DC;
6081 /// Determine whether the given context is dependent on template parameters at
6082 /// level \p Level or below.
6084 /// Sometimes we only substitute an inner set of template arguments and leave
6085 /// the outer templates alone. In such cases, contexts dependent only on the
6086 /// outer levels are not effectively dependent.
6087 static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) {
6088 if (!DC->isDependentContext())
6089 return false;
6090 if (!Level)
6091 return true;
6092 return cast<Decl>(DC)->getTemplateDepth() > Level;
6095 /// Find the instantiation of the given declaration within the
6096 /// current instantiation.
6098 /// This routine is intended to be used when \p D is a declaration
6099 /// referenced from within a template, that needs to mapped into the
6100 /// corresponding declaration within an instantiation. For example,
6101 /// given:
6103 /// \code
6104 /// template<typename T>
6105 /// struct X {
6106 /// enum Kind {
6107 /// KnownValue = sizeof(T)
6108 /// };
6110 /// bool getKind() const { return KnownValue; }
6111 /// };
6113 /// template struct X<int>;
6114 /// \endcode
6116 /// In the instantiation of X<int>::getKind(), we need to map the \p
6117 /// EnumConstantDecl for \p KnownValue (which refers to
6118 /// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue).
6119 /// \p FindInstantiatedDecl performs this mapping from within the instantiation
6120 /// of X<int>.
6121 NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
6122 const MultiLevelTemplateArgumentList &TemplateArgs,
6123 bool FindingInstantiatedContext) {
6124 DeclContext *ParentDC = D->getDeclContext();
6125 // Determine whether our parent context depends on any of the template
6126 // arguments we're currently substituting.
6127 bool ParentDependsOnArgs = isDependentContextAtLevel(
6128 ParentDC, TemplateArgs.getNumRetainedOuterLevels());
6129 // FIXME: Parameters of pointer to functions (y below) that are themselves
6130 // parameters (p below) can have their ParentDC set to the translation-unit
6131 // - thus we can not consistently check if the ParentDC of such a parameter
6132 // is Dependent or/and a FunctionOrMethod.
6133 // For e.g. this code, during Template argument deduction tries to
6134 // find an instantiated decl for (T y) when the ParentDC for y is
6135 // the translation unit.
6136 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
6137 // float baz(float(*)()) { return 0.0; }
6138 // Foo(baz);
6139 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time
6140 // it gets here, always has a FunctionOrMethod as its ParentDC??
6141 // For now:
6142 // - as long as we have a ParmVarDecl whose parent is non-dependent and
6143 // whose type is not instantiation dependent, do nothing to the decl
6144 // - otherwise find its instantiated decl.
6145 if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs &&
6146 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType())
6147 return D;
6148 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) ||
6149 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) ||
6150 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() ||
6151 isa<OMPDeclareReductionDecl>(ParentDC) ||
6152 isa<OMPDeclareMapperDecl>(ParentDC))) ||
6153 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda() &&
6154 cast<CXXRecordDecl>(D)->getTemplateDepth() >
6155 TemplateArgs.getNumRetainedOuterLevels())) {
6156 // D is a local of some kind. Look into the map of local
6157 // declarations to their instantiations.
6158 if (CurrentInstantiationScope) {
6159 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) {
6160 if (Decl *FD = Found->dyn_cast<Decl *>())
6161 return cast<NamedDecl>(FD);
6163 int PackIdx = ArgumentPackSubstitutionIndex;
6164 assert(PackIdx != -1 &&
6165 "found declaration pack but not pack expanding");
6166 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
6167 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]);
6171 // If we're performing a partial substitution during template argument
6172 // deduction, we may not have values for template parameters yet. They
6173 // just map to themselves.
6174 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
6175 isa<TemplateTemplateParmDecl>(D))
6176 return D;
6178 if (D->isInvalidDecl())
6179 return nullptr;
6181 // Normally this function only searches for already instantiated declaration
6182 // however we have to make an exclusion for local types used before
6183 // definition as in the code:
6185 // template<typename T> void f1() {
6186 // void g1(struct x1);
6187 // struct x1 {};
6188 // }
6190 // In this case instantiation of the type of 'g1' requires definition of
6191 // 'x1', which is defined later. Error recovery may produce an enum used
6192 // before definition. In these cases we need to instantiate relevant
6193 // declarations here.
6194 bool NeedInstantiate = false;
6195 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
6196 NeedInstantiate = RD->isLocalClass();
6197 else if (isa<TypedefNameDecl>(D) &&
6198 isa<CXXDeductionGuideDecl>(D->getDeclContext()))
6199 NeedInstantiate = true;
6200 else
6201 NeedInstantiate = isa<EnumDecl>(D);
6202 if (NeedInstantiate) {
6203 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6204 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6205 return cast<TypeDecl>(Inst);
6208 // If we didn't find the decl, then we must have a label decl that hasn't
6209 // been found yet. Lazily instantiate it and return it now.
6210 assert(isa<LabelDecl>(D));
6212 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6213 assert(Inst && "Failed to instantiate label??");
6215 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6216 return cast<LabelDecl>(Inst);
6219 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
6220 if (!Record->isDependentContext())
6221 return D;
6223 // Determine whether this record is the "templated" declaration describing
6224 // a class template or class template specialization.
6225 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
6226 if (ClassTemplate)
6227 ClassTemplate = ClassTemplate->getCanonicalDecl();
6228 else if (ClassTemplateSpecializationDecl *Spec =
6229 dyn_cast<ClassTemplateSpecializationDecl>(Record))
6230 ClassTemplate = Spec->getSpecializedTemplate()->getCanonicalDecl();
6232 // Walk the current context to find either the record or an instantiation of
6233 // it.
6234 DeclContext *DC = CurContext;
6235 while (!DC->isFileContext()) {
6236 // If we're performing substitution while we're inside the template
6237 // definition, we'll find our own context. We're done.
6238 if (DC->Equals(Record))
6239 return Record;
6241 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) {
6242 // Check whether we're in the process of instantiating a class template
6243 // specialization of the template we're mapping.
6244 if (ClassTemplateSpecializationDecl *InstSpec
6245 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){
6246 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate();
6247 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate))
6248 return InstRecord;
6251 // Check whether we're in the process of instantiating a member class.
6252 if (isInstantiationOf(Record, InstRecord))
6253 return InstRecord;
6256 // Move to the outer template scope.
6257 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) {
6258 if (FD->getFriendObjectKind() &&
6259 FD->getNonTransparentDeclContext()->isFileContext()) {
6260 DC = FD->getLexicalDeclContext();
6261 continue;
6263 // An implicit deduction guide acts as if it's within the class template
6264 // specialization described by its name and first N template params.
6265 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD);
6266 if (Guide && Guide->isImplicit()) {
6267 TemplateDecl *TD = Guide->getDeducedTemplate();
6268 // Convert the arguments to an "as-written" list.
6269 TemplateArgumentListInfo Args(Loc, Loc);
6270 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front(
6271 TD->getTemplateParameters()->size())) {
6272 ArrayRef<TemplateArgument> Unpacked(Arg);
6273 if (Arg.getKind() == TemplateArgument::Pack)
6274 Unpacked = Arg.pack_elements();
6275 for (TemplateArgument UnpackedArg : Unpacked)
6276 Args.addArgument(
6277 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc));
6279 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args);
6280 if (T.isNull())
6281 return nullptr;
6282 auto *SubstRecord = T->getAsCXXRecordDecl();
6283 assert(SubstRecord && "class template id not a class type?");
6284 // Check that this template-id names the primary template and not a
6285 // partial or explicit specialization. (In the latter cases, it's
6286 // meaningless to attempt to find an instantiation of D within the
6287 // specialization.)
6288 // FIXME: The standard doesn't say what should happen here.
6289 if (FindingInstantiatedContext &&
6290 usesPartialOrExplicitSpecialization(
6291 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) {
6292 Diag(Loc, diag::err_specialization_not_primary_template)
6293 << T << (SubstRecord->getTemplateSpecializationKind() ==
6294 TSK_ExplicitSpecialization);
6295 return nullptr;
6297 DC = SubstRecord;
6298 continue;
6302 DC = DC->getParent();
6305 // Fall through to deal with other dependent record types (e.g.,
6306 // anonymous unions in class templates).
6309 if (!ParentDependsOnArgs)
6310 return D;
6312 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs);
6313 if (!ParentDC)
6314 return nullptr;
6316 if (ParentDC != D->getDeclContext()) {
6317 // We performed some kind of instantiation in the parent context,
6318 // so now we need to look into the instantiated parent context to
6319 // find the instantiation of the declaration D.
6321 // If our context used to be dependent, we may need to instantiate
6322 // it before performing lookup into that context.
6323 bool IsBeingInstantiated = false;
6324 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) {
6325 if (!Spec->isDependentContext()) {
6326 QualType T = Context.getTypeDeclType(Spec);
6327 const RecordType *Tag = T->getAs<RecordType>();
6328 assert(Tag && "type of non-dependent record is not a RecordType");
6329 if (Tag->isBeingDefined())
6330 IsBeingInstantiated = true;
6331 if (!Tag->isBeingDefined() &&
6332 RequireCompleteType(Loc, T, diag::err_incomplete_type))
6333 return nullptr;
6335 ParentDC = Tag->getDecl();
6339 NamedDecl *Result = nullptr;
6340 // FIXME: If the name is a dependent name, this lookup won't necessarily
6341 // find it. Does that ever matter?
6342 if (auto Name = D->getDeclName()) {
6343 DeclarationNameInfo NameInfo(Name, D->getLocation());
6344 DeclarationNameInfo NewNameInfo =
6345 SubstDeclarationNameInfo(NameInfo, TemplateArgs);
6346 Name = NewNameInfo.getName();
6347 if (!Name)
6348 return nullptr;
6349 DeclContext::lookup_result Found = ParentDC->lookup(Name);
6351 Result = findInstantiationOf(Context, D, Found.begin(), Found.end());
6352 } else {
6353 // Since we don't have a name for the entity we're looking for,
6354 // our only option is to walk through all of the declarations to
6355 // find that name. This will occur in a few cases:
6357 // - anonymous struct/union within a template
6358 // - unnamed class/struct/union/enum within a template
6360 // FIXME: Find a better way to find these instantiations!
6361 Result = findInstantiationOf(Context, D,
6362 ParentDC->decls_begin(),
6363 ParentDC->decls_end());
6366 if (!Result) {
6367 if (isa<UsingShadowDecl>(D)) {
6368 // UsingShadowDecls can instantiate to nothing because of using hiding.
6369 } else if (hasUncompilableErrorOccurred()) {
6370 // We've already complained about some ill-formed code, so most likely
6371 // this declaration failed to instantiate. There's no point in
6372 // complaining further, since this is normal in invalid code.
6373 // FIXME: Use more fine-grained 'invalid' tracking for this.
6374 } else if (IsBeingInstantiated) {
6375 // The class in which this member exists is currently being
6376 // instantiated, and we haven't gotten around to instantiating this
6377 // member yet. This can happen when the code uses forward declarations
6378 // of member classes, and introduces ordering dependencies via
6379 // template instantiation.
6380 Diag(Loc, diag::err_member_not_yet_instantiated)
6381 << D->getDeclName()
6382 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC));
6383 Diag(D->getLocation(), diag::note_non_instantiated_member_here);
6384 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
6385 // This enumeration constant was found when the template was defined,
6386 // but can't be found in the instantiation. This can happen if an
6387 // unscoped enumeration member is explicitly specialized.
6388 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext());
6389 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum,
6390 TemplateArgs));
6391 assert(Spec->getTemplateSpecializationKind() ==
6392 TSK_ExplicitSpecialization);
6393 Diag(Loc, diag::err_enumerator_does_not_exist)
6394 << D->getDeclName()
6395 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext()));
6396 Diag(Spec->getLocation(), diag::note_enum_specialized_here)
6397 << Context.getTypeDeclType(Spec);
6398 } else {
6399 // We should have found something, but didn't.
6400 llvm_unreachable("Unable to find instantiation of declaration!");
6404 D = Result;
6407 return D;
6410 /// Performs template instantiation for all implicit template
6411 /// instantiations we have seen until this point.
6412 void Sema::PerformPendingInstantiations(bool LocalOnly) {
6413 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations;
6414 while (!PendingLocalImplicitInstantiations.empty() ||
6415 (!LocalOnly && !PendingInstantiations.empty())) {
6416 PendingImplicitInstantiation Inst;
6418 if (PendingLocalImplicitInstantiations.empty()) {
6419 Inst = PendingInstantiations.front();
6420 PendingInstantiations.pop_front();
6421 } else {
6422 Inst = PendingLocalImplicitInstantiations.front();
6423 PendingLocalImplicitInstantiations.pop_front();
6426 // Instantiate function definitions
6427 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) {
6428 bool DefinitionRequired = Function->getTemplateSpecializationKind() ==
6429 TSK_ExplicitInstantiationDefinition;
6430 if (Function->isMultiVersion()) {
6431 getASTContext().forEachMultiversionedFunctionVersion(
6432 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) {
6433 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true,
6434 DefinitionRequired, true);
6435 if (CurFD->isDefined())
6436 CurFD->setInstantiationIsPending(false);
6438 } else {
6439 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true,
6440 DefinitionRequired, true);
6441 if (Function->isDefined())
6442 Function->setInstantiationIsPending(false);
6444 // Definition of a PCH-ed template declaration may be available only in the TU.
6445 if (!LocalOnly && LangOpts.PCHInstantiateTemplates &&
6446 TUKind == TU_Prefix && Function->instantiationIsPending())
6447 delayedPCHInstantiations.push_back(Inst);
6448 continue;
6451 // Instantiate variable definitions
6452 VarDecl *Var = cast<VarDecl>(Inst.first);
6454 assert((Var->isStaticDataMember() ||
6455 isa<VarTemplateSpecializationDecl>(Var)) &&
6456 "Not a static data member, nor a variable template"
6457 " specialization?");
6459 // Don't try to instantiate declarations if the most recent redeclaration
6460 // is invalid.
6461 if (Var->getMostRecentDecl()->isInvalidDecl())
6462 continue;
6464 // Check if the most recent declaration has changed the specialization kind
6465 // and removed the need for implicit instantiation.
6466 switch (Var->getMostRecentDecl()
6467 ->getTemplateSpecializationKindForInstantiation()) {
6468 case TSK_Undeclared:
6469 llvm_unreachable("Cannot instantitiate an undeclared specialization.");
6470 case TSK_ExplicitInstantiationDeclaration:
6471 case TSK_ExplicitSpecialization:
6472 continue; // No longer need to instantiate this type.
6473 case TSK_ExplicitInstantiationDefinition:
6474 // We only need an instantiation if the pending instantiation *is* the
6475 // explicit instantiation.
6476 if (Var != Var->getMostRecentDecl())
6477 continue;
6478 break;
6479 case TSK_ImplicitInstantiation:
6480 break;
6483 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
6484 "instantiating variable definition");
6485 bool DefinitionRequired = Var->getTemplateSpecializationKind() ==
6486 TSK_ExplicitInstantiationDefinition;
6488 // Instantiate static data member definitions or variable template
6489 // specializations.
6490 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true,
6491 DefinitionRequired, true);
6494 if (!LocalOnly && LangOpts.PCHInstantiateTemplates)
6495 PendingInstantiations.swap(delayedPCHInstantiations);
6498 void Sema::PerformDependentDiagnostics(const DeclContext *Pattern,
6499 const MultiLevelTemplateArgumentList &TemplateArgs) {
6500 for (auto *DD : Pattern->ddiags()) {
6501 switch (DD->getKind()) {
6502 case DependentDiagnostic::Access:
6503 HandleDependentAccessCheck(*DD, TemplateArgs);
6504 break;