[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / lib / StaticAnalyzer / Core / BugReporter.cpp
blobf3e0a5f9f314aded8b40e30a8a919d1ab6d400dd
1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines BugReporter, a utility class for generating
10 // PathDiagnostics.
12 //===----------------------------------------------------------------------===//
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15 #include "clang/AST/ASTTypeTraits.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/ParentMapContext.h"
24 #include "clang/AST/Stmt.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/Analysis/AnalysisDeclContext.h"
28 #include "clang/Analysis/CFG.h"
29 #include "clang/Analysis/CFGStmtMap.h"
30 #include "clang/Analysis/PathDiagnostic.h"
31 #include "clang/Analysis/ProgramPoint.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
36 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
38 #include "clang/StaticAnalyzer/Core/Checker.h"
39 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
40 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/DenseSet.h"
51 #include "llvm/ADT/FoldingSet.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/SmallPtrSet.h"
54 #include "llvm/ADT/SmallString.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringRef.h"
59 #include "llvm/ADT/iterator_range.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MemoryBuffer.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <iterator>
69 #include <memory>
70 #include <optional>
71 #include <queue>
72 #include <string>
73 #include <tuple>
74 #include <utility>
75 #include <vector>
77 using namespace clang;
78 using namespace ento;
79 using namespace llvm;
81 #define DEBUG_TYPE "BugReporter"
83 STATISTIC(MaxBugClassSize,
84 "The maximum number of bug reports in the same equivalence class");
85 STATISTIC(MaxValidBugClassSize,
86 "The maximum number of bug reports in the same equivalence class "
87 "where at least one report is valid (not suppressed)");
89 BugReporterVisitor::~BugReporterVisitor() = default;
91 void BugReporterContext::anchor() {}
93 //===----------------------------------------------------------------------===//
94 // PathDiagnosticBuilder and its associated routines and helper objects.
95 //===----------------------------------------------------------------------===//
97 namespace {
99 /// A (CallPiece, node assiciated with its CallEnter) pair.
100 using CallWithEntry =
101 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
102 using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
104 /// Map from each node to the diagnostic pieces visitors emit for them.
105 using VisitorsDiagnosticsTy =
106 llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
108 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
109 /// function call it represents.
110 using LocationContextMap =
111 llvm::DenseMap<const PathPieces *, const LocationContext *>;
113 /// A helper class that contains everything needed to construct a
114 /// PathDiagnostic object. It does no much more then providing convenient
115 /// getters and some well placed asserts for extra security.
116 class PathDiagnosticConstruct {
117 /// The consumer we're constructing the bug report for.
118 const PathDiagnosticConsumer *Consumer;
119 /// Our current position in the bug path, which is owned by
120 /// PathDiagnosticBuilder.
121 const ExplodedNode *CurrentNode;
122 /// A mapping from parts of the bug path (for example, a function call, which
123 /// would span backwards from a CallExit to a CallEnter with the nodes in
124 /// between them) with the location contexts it is associated with.
125 LocationContextMap LCM;
126 const SourceManager &SM;
128 public:
129 /// We keep stack of calls to functions as we're ascending the bug path.
130 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
131 /// that instead?
132 CallWithEntryStack CallStack;
133 /// The bug report we're constructing. For ease of use, this field is kept
134 /// public, though some "shortcut" getters are provided for commonly used
135 /// methods of PathDiagnostic.
136 std::unique_ptr<PathDiagnostic> PD;
138 public:
139 PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
140 const ExplodedNode *ErrorNode,
141 const PathSensitiveBugReport *R);
143 /// \returns the location context associated with the current position in the
144 /// bug path.
145 const LocationContext *getCurrLocationContext() const {
146 assert(CurrentNode && "Already reached the root!");
147 return CurrentNode->getLocationContext();
150 /// Same as getCurrLocationContext (they should always return the same
151 /// location context), but works after reaching the root of the bug path as
152 /// well.
153 const LocationContext *getLocationContextForActivePath() const {
154 return LCM.find(&PD->getActivePath())->getSecond();
157 const ExplodedNode *getCurrentNode() const { return CurrentNode; }
159 /// Steps the current node to its predecessor.
160 /// \returns whether we reached the root of the bug path.
161 bool ascendToPrevNode() {
162 CurrentNode = CurrentNode->getFirstPred();
163 return static_cast<bool>(CurrentNode);
166 const ParentMap &getParentMap() const {
167 return getCurrLocationContext()->getParentMap();
170 const SourceManager &getSourceManager() const { return SM; }
172 const Stmt *getParent(const Stmt *S) const {
173 return getParentMap().getParent(S);
176 void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
177 assert(Path && LC);
178 LCM[Path] = LC;
181 const LocationContext *getLocationContextFor(const PathPieces *Path) const {
182 assert(LCM.count(Path) &&
183 "Failed to find the context associated with these pieces!");
184 return LCM.find(Path)->getSecond();
187 bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
189 PathPieces &getActivePath() { return PD->getActivePath(); }
190 PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
192 bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
193 bool shouldAddControlNotes() const {
194 return Consumer->shouldAddControlNotes();
196 bool shouldGenerateDiagnostics() const {
197 return Consumer->shouldGenerateDiagnostics();
199 bool supportsLogicalOpControlFlow() const {
200 return Consumer->supportsLogicalOpControlFlow();
204 /// Contains every contextual information needed for constructing a
205 /// PathDiagnostic object for a given bug report. This class and its fields are
206 /// immutable, and passes a BugReportConstruct object around during the
207 /// construction.
208 class PathDiagnosticBuilder : public BugReporterContext {
209 /// A linear path from the error node to the root.
210 std::unique_ptr<const ExplodedGraph> BugPath;
211 /// The bug report we're describing. Visitors create their diagnostics with
212 /// them being the last entities being able to modify it (for example,
213 /// changing interestingness here would cause inconsistencies as to how this
214 /// file and visitors construct diagnostics), hence its const.
215 const PathSensitiveBugReport *R;
216 /// The leaf of the bug path. This isn't the same as the bug reports error
217 /// node, which refers to the *original* graph, not the bug path.
218 const ExplodedNode *const ErrorNode;
219 /// The diagnostic pieces visitors emitted, which is expected to be collected
220 /// by the time this builder is constructed.
221 std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
223 public:
224 /// Find a non-invalidated report for a given equivalence class, and returns
225 /// a PathDiagnosticBuilder able to construct bug reports for different
226 /// consumers. Returns std::nullopt if no valid report is found.
227 static std::optional<PathDiagnosticBuilder>
228 findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
229 PathSensitiveBugReporter &Reporter);
231 PathDiagnosticBuilder(
232 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
233 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
234 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
236 /// This function is responsible for generating diagnostic pieces that are
237 /// *not* provided by bug report visitors.
238 /// These diagnostics may differ depending on the consumer's settings,
239 /// and are therefore constructed separately for each consumer.
241 /// There are two path diagnostics generation modes: with adding edges (used
242 /// for plists) and without (used for HTML and text). When edges are added,
243 /// the path is modified to insert artificially generated edges.
244 /// Otherwise, more detailed diagnostics is emitted for block edges,
245 /// explaining the transitions in words.
246 std::unique_ptr<PathDiagnostic>
247 generate(const PathDiagnosticConsumer *PDC) const;
249 private:
250 void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
251 const CallWithEntryStack &CallStack) const;
252 void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
253 PathDiagnosticLocation &PrevLoc) const;
255 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
256 BlockEdge BE) const;
258 PathDiagnosticPieceRef
259 generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
260 PathDiagnosticLocation &Start) const;
262 PathDiagnosticPieceRef
263 generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
264 PathDiagnosticLocation &Start) const;
266 PathDiagnosticPieceRef
267 generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
268 const CFGBlock *Src, const CFGBlock *DstC) const;
270 PathDiagnosticLocation
271 ExecutionContinues(const PathDiagnosticConstruct &C) const;
273 PathDiagnosticLocation
274 ExecutionContinues(llvm::raw_string_ostream &os,
275 const PathDiagnosticConstruct &C) const;
277 const PathSensitiveBugReport *getBugReport() const { return R; }
280 } // namespace
282 //===----------------------------------------------------------------------===//
283 // Base implementation of stack hint generators.
284 //===----------------------------------------------------------------------===//
286 StackHintGenerator::~StackHintGenerator() = default;
288 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
289 if (!N)
290 return getMessageForSymbolNotFound();
292 ProgramPoint P = N->getLocation();
293 CallExitEnd CExit = P.castAs<CallExitEnd>();
295 // FIXME: Use CallEvent to abstract this over all calls.
296 const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
297 const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
298 if (!CE)
299 return {};
301 // Check if one of the parameters are set to the interesting symbol.
302 for (auto [Idx, ArgExpr] : llvm::enumerate(CE->arguments())) {
303 SVal SV = N->getSVal(ArgExpr);
305 // Check if the variable corresponding to the symbol is passed by value.
306 SymbolRef AS = SV.getAsLocSymbol();
307 if (AS == Sym) {
308 return getMessageForArg(ArgExpr, Idx);
311 // Check if the parameter is a pointer to the symbol.
312 if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
313 // Do not attempt to dereference void*.
314 if (ArgExpr->getType()->isVoidPointerType())
315 continue;
316 SVal PSV = N->getState()->getSVal(Reg->getRegion());
317 SymbolRef AS = PSV.getAsLocSymbol();
318 if (AS == Sym) {
319 return getMessageForArg(ArgExpr, Idx);
324 // Check if we are returning the interesting symbol.
325 SVal SV = N->getSVal(CE);
326 SymbolRef RetSym = SV.getAsLocSymbol();
327 if (RetSym == Sym) {
328 return getMessageForReturn(CE);
331 return getMessageForSymbolNotFound();
334 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
335 unsigned ArgIndex) {
336 // Printed parameters start at 1, not 0.
337 ++ArgIndex;
339 return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
340 llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
343 //===----------------------------------------------------------------------===//
344 // Diagnostic cleanup.
345 //===----------------------------------------------------------------------===//
347 static PathDiagnosticEventPiece *
348 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
349 PathDiagnosticEventPiece *Y) {
350 // Prefer diagnostics that come from ConditionBRVisitor over
351 // those that came from TrackConstraintBRVisitor,
352 // unless the one from ConditionBRVisitor is
353 // its generic fallback diagnostic.
354 const void *tagPreferred = ConditionBRVisitor::getTag();
355 const void *tagLesser = TrackConstraintBRVisitor::getTag();
357 if (X->getLocation() != Y->getLocation())
358 return nullptr;
360 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
361 return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
363 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
364 return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
366 return nullptr;
369 /// An optimization pass over PathPieces that removes redundant diagnostics
370 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both
371 /// BugReporterVisitors use different methods to generate diagnostics, with
372 /// one capable of emitting diagnostics in some cases but not in others. This
373 /// can lead to redundant diagnostic pieces at the same point in a path.
374 static void removeRedundantMsgs(PathPieces &path) {
375 unsigned N = path.size();
376 if (N < 2)
377 return;
378 // NOTE: this loop intentionally is not using an iterator. Instead, we
379 // are streaming the path and modifying it in place. This is done by
380 // grabbing the front, processing it, and if we decide to keep it append
381 // it to the end of the path. The entire path is processed in this way.
382 for (unsigned i = 0; i < N; ++i) {
383 auto piece = std::move(path.front());
384 path.pop_front();
386 switch (piece->getKind()) {
387 case PathDiagnosticPiece::Call:
388 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
389 break;
390 case PathDiagnosticPiece::Macro:
391 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
392 break;
393 case PathDiagnosticPiece::Event: {
394 if (i == N-1)
395 break;
397 if (auto *nextEvent =
398 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
399 auto *event = cast<PathDiagnosticEventPiece>(piece.get());
400 // Check to see if we should keep one of the two pieces. If we
401 // come up with a preference, record which piece to keep, and consume
402 // another piece from the path.
403 if (auto *pieceToKeep =
404 eventsDescribeSameCondition(event, nextEvent)) {
405 piece = std::move(pieceToKeep == event ? piece : path.front());
406 path.pop_front();
407 ++i;
410 break;
412 case PathDiagnosticPiece::ControlFlow:
413 case PathDiagnosticPiece::Note:
414 case PathDiagnosticPiece::PopUp:
415 break;
417 path.push_back(std::move(piece));
421 /// Recursively scan through a path and prune out calls and macros pieces
422 /// that aren't needed. Return true if afterwards the path contains
423 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
424 static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
425 PathPieces &pieces,
426 const PathSensitiveBugReport *R,
427 bool IsInteresting = false) {
428 bool containsSomethingInteresting = IsInteresting;
429 const unsigned N = pieces.size();
431 for (unsigned i = 0 ; i < N ; ++i) {
432 // Remove the front piece from the path. If it is still something we
433 // want to keep once we are done, we will push it back on the end.
434 auto piece = std::move(pieces.front());
435 pieces.pop_front();
437 switch (piece->getKind()) {
438 case PathDiagnosticPiece::Call: {
439 auto &call = cast<PathDiagnosticCallPiece>(*piece);
440 // Check if the location context is interesting.
441 if (!removeUnneededCalls(
442 C, call.path, R,
443 R->isInteresting(C.getLocationContextFor(&call.path))))
444 continue;
446 containsSomethingInteresting = true;
447 break;
449 case PathDiagnosticPiece::Macro: {
450 auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
451 if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
452 continue;
453 containsSomethingInteresting = true;
454 break;
456 case PathDiagnosticPiece::Event: {
457 auto &event = cast<PathDiagnosticEventPiece>(*piece);
459 // We never throw away an event, but we do throw it away wholesale
460 // as part of a path if we throw the entire path away.
461 containsSomethingInteresting |= !event.isPrunable();
462 break;
464 case PathDiagnosticPiece::ControlFlow:
465 case PathDiagnosticPiece::Note:
466 case PathDiagnosticPiece::PopUp:
467 break;
470 pieces.push_back(std::move(piece));
473 return containsSomethingInteresting;
476 /// Same logic as above to remove extra pieces.
477 static void removePopUpNotes(PathPieces &Path) {
478 for (unsigned int i = 0; i < Path.size(); ++i) {
479 auto Piece = std::move(Path.front());
480 Path.pop_front();
481 if (!isa<PathDiagnosticPopUpPiece>(*Piece))
482 Path.push_back(std::move(Piece));
486 /// Returns true if the given decl has been implicitly given a body, either by
487 /// the analyzer or by the compiler proper.
488 static bool hasImplicitBody(const Decl *D) {
489 assert(D);
490 return D->isImplicit() || !D->hasBody();
493 /// Recursively scan through a path and make sure that all call pieces have
494 /// valid locations.
495 static void
496 adjustCallLocations(PathPieces &Pieces,
497 PathDiagnosticLocation *LastCallLocation = nullptr) {
498 for (const auto &I : Pieces) {
499 auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
501 if (!Call)
502 continue;
504 if (LastCallLocation) {
505 bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
506 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
507 Call->callEnter = *LastCallLocation;
508 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
509 Call->callReturn = *LastCallLocation;
512 // Recursively clean out the subclass. Keep this call around if
513 // it contains any informative diagnostics.
514 PathDiagnosticLocation *ThisCallLocation;
515 if (Call->callEnterWithin.asLocation().isValid() &&
516 !hasImplicitBody(Call->getCallee()))
517 ThisCallLocation = &Call->callEnterWithin;
518 else
519 ThisCallLocation = &Call->callEnter;
521 assert(ThisCallLocation && "Outermost call has an invalid location");
522 adjustCallLocations(Call->path, ThisCallLocation);
526 /// Remove edges in and out of C++ default initializer expressions. These are
527 /// for fields that have in-class initializers, as opposed to being initialized
528 /// explicitly in a constructor or braced list.
529 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
530 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
531 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
532 removeEdgesToDefaultInitializers(C->path);
534 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
535 removeEdgesToDefaultInitializers(M->subPieces);
537 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
538 const Stmt *Start = CF->getStartLocation().asStmt();
539 const Stmt *End = CF->getEndLocation().asStmt();
540 if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) {
541 I = Pieces.erase(I);
542 continue;
543 } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) {
544 PathPieces::iterator Next = std::next(I);
545 if (Next != E) {
546 if (auto *NextCF =
547 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
548 NextCF->setStartLocation(CF->getStartLocation());
551 I = Pieces.erase(I);
552 continue;
556 I++;
560 /// Remove all pieces with invalid locations as these cannot be serialized.
561 /// We might have pieces with invalid locations as a result of inlining Body
562 /// Farm generated functions.
563 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
564 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
565 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
566 removePiecesWithInvalidLocations(C->path);
568 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
569 removePiecesWithInvalidLocations(M->subPieces);
571 if (!(*I)->getLocation().isValid() ||
572 !(*I)->getLocation().asLocation().isValid()) {
573 I = Pieces.erase(I);
574 continue;
576 I++;
580 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
581 const PathDiagnosticConstruct &C) const {
582 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
583 return PathDiagnosticLocation(S, getSourceManager(),
584 C.getCurrLocationContext());
586 return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
587 getSourceManager());
590 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
591 llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
592 // Slow, but probably doesn't matter.
593 if (os.str().empty())
594 os << ' ';
596 const PathDiagnosticLocation &Loc = ExecutionContinues(C);
598 if (Loc.asStmt())
599 os << "Execution continues on line "
600 << getSourceManager().getExpansionLineNumber(Loc.asLocation())
601 << '.';
602 else {
603 os << "Execution jumps to the end of the ";
604 const Decl *D = C.getCurrLocationContext()->getDecl();
605 if (isa<ObjCMethodDecl>(D))
606 os << "method";
607 else if (isa<FunctionDecl>(D))
608 os << "function";
609 else {
610 assert(isa<BlockDecl>(D));
611 os << "anonymous block";
613 os << '.';
616 return Loc;
619 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
620 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
621 return PM.getParentIgnoreParens(S);
623 const Stmt *Parent = PM.getParentIgnoreParens(S);
624 if (!Parent)
625 return nullptr;
627 switch (Parent->getStmtClass()) {
628 case Stmt::ForStmtClass:
629 case Stmt::DoStmtClass:
630 case Stmt::WhileStmtClass:
631 case Stmt::ObjCForCollectionStmtClass:
632 case Stmt::CXXForRangeStmtClass:
633 return Parent;
634 default:
635 break;
638 return nullptr;
641 static PathDiagnosticLocation
642 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
643 bool allowNestedContexts = false) {
644 if (!S)
645 return {};
647 const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
649 while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
650 switch (Parent->getStmtClass()) {
651 case Stmt::BinaryOperatorClass: {
652 const auto *B = cast<BinaryOperator>(Parent);
653 if (B->isLogicalOp())
654 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
655 break;
657 case Stmt::CompoundStmtClass:
658 case Stmt::StmtExprClass:
659 return PathDiagnosticLocation(S, SMgr, LC);
660 case Stmt::ChooseExprClass:
661 // Similar to '?' if we are referring to condition, just have the edge
662 // point to the entire choose expression.
663 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
664 return PathDiagnosticLocation(Parent, SMgr, LC);
665 else
666 return PathDiagnosticLocation(S, SMgr, LC);
667 case Stmt::BinaryConditionalOperatorClass:
668 case Stmt::ConditionalOperatorClass:
669 // For '?', if we are referring to condition, just have the edge point
670 // to the entire '?' expression.
671 if (allowNestedContexts ||
672 cast<AbstractConditionalOperator>(Parent)->getCond() == S)
673 return PathDiagnosticLocation(Parent, SMgr, LC);
674 else
675 return PathDiagnosticLocation(S, SMgr, LC);
676 case Stmt::CXXForRangeStmtClass:
677 if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
678 return PathDiagnosticLocation(S, SMgr, LC);
679 break;
680 case Stmt::DoStmtClass:
681 return PathDiagnosticLocation(S, SMgr, LC);
682 case Stmt::ForStmtClass:
683 if (cast<ForStmt>(Parent)->getBody() == S)
684 return PathDiagnosticLocation(S, SMgr, LC);
685 break;
686 case Stmt::IfStmtClass:
687 if (cast<IfStmt>(Parent)->getCond() != S)
688 return PathDiagnosticLocation(S, SMgr, LC);
689 break;
690 case Stmt::ObjCForCollectionStmtClass:
691 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
692 return PathDiagnosticLocation(S, SMgr, LC);
693 break;
694 case Stmt::WhileStmtClass:
695 if (cast<WhileStmt>(Parent)->getCond() != S)
696 return PathDiagnosticLocation(S, SMgr, LC);
697 break;
698 default:
699 break;
702 S = Parent;
705 assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
707 return PathDiagnosticLocation(S, SMgr, LC);
710 //===----------------------------------------------------------------------===//
711 // "Minimal" path diagnostic generation algorithm.
712 //===----------------------------------------------------------------------===//
714 /// If the piece contains a special message, add it to all the call pieces on
715 /// the active stack. For example, my_malloc allocated memory, so MallocChecker
716 /// will construct an event at the call to malloc(), and add a stack hint that
717 /// an allocated memory was returned. We'll use this hint to construct a message
718 /// when returning from the call to my_malloc
720 /// void *my_malloc() { return malloc(sizeof(int)); }
721 /// void fishy() {
722 /// void *ptr = my_malloc(); // returned allocated memory
723 /// } // leak
724 void PathDiagnosticBuilder::updateStackPiecesWithMessage(
725 PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
726 if (R->hasCallStackHint(P))
727 for (const auto &I : CallStack) {
728 PathDiagnosticCallPiece *CP = I.first;
729 const ExplodedNode *N = I.second;
730 std::string stackMsg = R->getCallStackMessage(P, N);
732 // The last message on the path to final bug is the most important
733 // one. Since we traverse the path backwards, do not add the message
734 // if one has been previously added.
735 if (!CP->hasCallStackMessage())
736 CP->setCallStackMessage(stackMsg);
740 static void CompactMacroExpandedPieces(PathPieces &path,
741 const SourceManager& SM);
743 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
744 const PathDiagnosticConstruct &C, const CFGBlock *Dst,
745 PathDiagnosticLocation &Start) const {
747 const SourceManager &SM = getSourceManager();
748 // Figure out what case arm we took.
749 std::string sbuf;
750 llvm::raw_string_ostream os(sbuf);
751 PathDiagnosticLocation End;
753 if (const Stmt *S = Dst->getLabel()) {
754 End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
756 switch (S->getStmtClass()) {
757 default:
758 os << "No cases match in the switch statement. "
759 "Control jumps to line "
760 << End.asLocation().getExpansionLineNumber();
761 break;
762 case Stmt::DefaultStmtClass:
763 os << "Control jumps to the 'default' case at line "
764 << End.asLocation().getExpansionLineNumber();
765 break;
767 case Stmt::CaseStmtClass: {
768 os << "Control jumps to 'case ";
769 const auto *Case = cast<CaseStmt>(S);
770 const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts();
772 // Determine if it is an enum.
773 bool GetRawInt = true;
775 if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
776 // FIXME: Maybe this should be an assertion. Are there cases
777 // were it is not an EnumConstantDecl?
778 const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
780 if (D) {
781 GetRawInt = false;
782 os << *D;
786 if (GetRawInt)
787 os << LHS->EvaluateKnownConstInt(getASTContext());
789 os << ":' at line " << End.asLocation().getExpansionLineNumber();
790 break;
793 } else {
794 os << "'Default' branch taken. ";
795 End = ExecutionContinues(os, C);
797 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
798 os.str());
801 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
802 const PathDiagnosticConstruct &C, const Stmt *S,
803 PathDiagnosticLocation &Start) const {
804 std::string sbuf;
805 llvm::raw_string_ostream os(sbuf);
806 const PathDiagnosticLocation &End =
807 getEnclosingStmtLocation(S, C.getCurrLocationContext());
808 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
809 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
812 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
813 const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
814 const CFGBlock *Dst) const {
816 const SourceManager &SM = getSourceManager();
818 const auto *B = cast<BinaryOperator>(T);
819 std::string sbuf;
820 llvm::raw_string_ostream os(sbuf);
821 os << "Left side of '";
822 PathDiagnosticLocation Start, End;
824 if (B->getOpcode() == BO_LAnd) {
825 os << "&&"
826 << "' is ";
828 if (*(Src->succ_begin() + 1) == Dst) {
829 os << "false";
830 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
831 Start =
832 PathDiagnosticLocation::createOperatorLoc(B, SM);
833 } else {
834 os << "true";
835 Start =
836 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
837 End = ExecutionContinues(C);
839 } else {
840 assert(B->getOpcode() == BO_LOr);
841 os << "||"
842 << "' is ";
844 if (*(Src->succ_begin() + 1) == Dst) {
845 os << "false";
846 Start =
847 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
848 End = ExecutionContinues(C);
849 } else {
850 os << "true";
851 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
852 Start =
853 PathDiagnosticLocation::createOperatorLoc(B, SM);
856 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
857 os.str());
860 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
861 PathDiagnosticConstruct &C, BlockEdge BE) const {
862 const SourceManager &SM = getSourceManager();
863 const LocationContext *LC = C.getCurrLocationContext();
864 const CFGBlock *Src = BE.getSrc();
865 const CFGBlock *Dst = BE.getDst();
866 const Stmt *T = Src->getTerminatorStmt();
867 if (!T)
868 return;
870 auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
871 switch (T->getStmtClass()) {
872 default:
873 break;
875 case Stmt::GotoStmtClass:
876 case Stmt::IndirectGotoStmtClass: {
877 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
878 C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
879 break;
882 case Stmt::SwitchStmtClass: {
883 C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
884 break;
887 case Stmt::BreakStmtClass:
888 case Stmt::ContinueStmtClass: {
889 std::string sbuf;
890 llvm::raw_string_ostream os(sbuf);
891 PathDiagnosticLocation End = ExecutionContinues(os, C);
892 C.getActivePath().push_front(
893 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
894 break;
897 // Determine control-flow for ternary '?'.
898 case Stmt::BinaryConditionalOperatorClass:
899 case Stmt::ConditionalOperatorClass: {
900 std::string sbuf;
901 llvm::raw_string_ostream os(sbuf);
902 os << "'?' condition is ";
904 if (*(Src->succ_begin() + 1) == Dst)
905 os << "false";
906 else
907 os << "true";
909 PathDiagnosticLocation End = ExecutionContinues(C);
911 if (const Stmt *S = End.asStmt())
912 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
914 C.getActivePath().push_front(
915 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
916 break;
919 // Determine control-flow for short-circuited '&&' and '||'.
920 case Stmt::BinaryOperatorClass: {
921 if (!C.supportsLogicalOpControlFlow())
922 break;
924 C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
925 break;
928 case Stmt::DoStmtClass:
929 if (*(Src->succ_begin()) == Dst) {
930 std::string sbuf;
931 llvm::raw_string_ostream os(sbuf);
933 os << "Loop condition is true. ";
934 PathDiagnosticLocation End = ExecutionContinues(os, C);
936 if (const Stmt *S = End.asStmt())
937 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
939 C.getActivePath().push_front(
940 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
941 os.str()));
942 } else {
943 PathDiagnosticLocation End = ExecutionContinues(C);
945 if (const Stmt *S = End.asStmt())
946 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
948 C.getActivePath().push_front(
949 std::make_shared<PathDiagnosticControlFlowPiece>(
950 Start, End, "Loop condition is false. Exiting loop"));
952 break;
954 case Stmt::WhileStmtClass:
955 case Stmt::ForStmtClass:
956 if (*(Src->succ_begin() + 1) == Dst) {
957 std::string sbuf;
958 llvm::raw_string_ostream os(sbuf);
960 os << "Loop condition is false. ";
961 PathDiagnosticLocation End = ExecutionContinues(os, C);
962 if (const Stmt *S = End.asStmt())
963 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
965 C.getActivePath().push_front(
966 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
967 os.str()));
968 } else {
969 PathDiagnosticLocation End = ExecutionContinues(C);
970 if (const Stmt *S = End.asStmt())
971 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
973 C.getActivePath().push_front(
974 std::make_shared<PathDiagnosticControlFlowPiece>(
975 Start, End, "Loop condition is true. Entering loop body"));
978 break;
980 case Stmt::IfStmtClass: {
981 PathDiagnosticLocation End = ExecutionContinues(C);
983 if (const Stmt *S = End.asStmt())
984 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
986 if (*(Src->succ_begin() + 1) == Dst)
987 C.getActivePath().push_front(
988 std::make_shared<PathDiagnosticControlFlowPiece>(
989 Start, End, "Taking false branch"));
990 else
991 C.getActivePath().push_front(
992 std::make_shared<PathDiagnosticControlFlowPiece>(
993 Start, End, "Taking true branch"));
995 break;
1000 //===----------------------------------------------------------------------===//
1001 // Functions for determining if a loop was executed 0 times.
1002 //===----------------------------------------------------------------------===//
1004 static bool isLoop(const Stmt *Term) {
1005 switch (Term->getStmtClass()) {
1006 case Stmt::ForStmtClass:
1007 case Stmt::WhileStmtClass:
1008 case Stmt::ObjCForCollectionStmtClass:
1009 case Stmt::CXXForRangeStmtClass:
1010 return true;
1011 default:
1012 // Note that we intentionally do not include do..while here.
1013 return false;
1017 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1018 const CFGBlock *Src = BE->getSrc();
1019 assert(Src->succ_size() == 2);
1020 return (*(Src->succ_begin()+1) == BE->getDst());
1023 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1024 const Stmt *SubS) {
1025 while (SubS) {
1026 if (SubS == S)
1027 return true;
1028 SubS = PM.getParent(SubS);
1030 return false;
1033 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1034 const ExplodedNode *N) {
1035 while (N) {
1036 std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1037 if (SP) {
1038 const Stmt *S = SP->getStmt();
1039 if (!isContainedByStmt(PM, Term, S))
1040 return S;
1042 N = N->getFirstPred();
1044 return nullptr;
1047 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1048 const Stmt *LoopBody = nullptr;
1049 switch (Term->getStmtClass()) {
1050 case Stmt::CXXForRangeStmtClass: {
1051 const auto *FR = cast<CXXForRangeStmt>(Term);
1052 if (isContainedByStmt(PM, FR->getInc(), S))
1053 return true;
1054 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1055 return true;
1056 LoopBody = FR->getBody();
1057 break;
1059 case Stmt::ForStmtClass: {
1060 const auto *FS = cast<ForStmt>(Term);
1061 if (isContainedByStmt(PM, FS->getInc(), S))
1062 return true;
1063 LoopBody = FS->getBody();
1064 break;
1066 case Stmt::ObjCForCollectionStmtClass: {
1067 const auto *FC = cast<ObjCForCollectionStmt>(Term);
1068 LoopBody = FC->getBody();
1069 break;
1071 case Stmt::WhileStmtClass:
1072 LoopBody = cast<WhileStmt>(Term)->getBody();
1073 break;
1074 default:
1075 return false;
1077 return isContainedByStmt(PM, LoopBody, S);
1080 /// Adds a sanitized control-flow diagnostic edge to a path.
1081 static void addEdgeToPath(PathPieces &path,
1082 PathDiagnosticLocation &PrevLoc,
1083 PathDiagnosticLocation NewLoc) {
1084 if (!NewLoc.isValid())
1085 return;
1087 SourceLocation NewLocL = NewLoc.asLocation();
1088 if (NewLocL.isInvalid())
1089 return;
1091 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1092 PrevLoc = NewLoc;
1093 return;
1096 // Ignore self-edges, which occur when there are multiple nodes at the same
1097 // statement.
1098 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1099 return;
1101 path.push_front(
1102 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1103 PrevLoc = NewLoc;
1106 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1107 /// which returns the element for ObjCForCollectionStmts.
1108 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1109 const Stmt *S = B->getTerminatorCondition();
1110 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
1111 return FS->getElement();
1112 return S;
1115 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1116 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1117 constexpr llvm::StringLiteral StrLoopRangeEmpty =
1118 "Loop body skipped when range is empty";
1119 constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1120 "Loop body skipped when collection is empty";
1122 static std::unique_ptr<FilesToLineNumsMap>
1123 findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1125 void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1126 PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1127 ProgramPoint P = C.getCurrentNode()->getLocation();
1128 const SourceManager &SM = getSourceManager();
1130 // Have we encountered an entrance to a call? It may be
1131 // the case that we have not encountered a matching
1132 // call exit before this point. This means that the path
1133 // terminated within the call itself.
1134 if (auto CE = P.getAs<CallEnter>()) {
1136 if (C.shouldAddPathEdges()) {
1137 // Add an edge to the start of the function.
1138 const StackFrameContext *CalleeLC = CE->getCalleeContext();
1139 const Decl *D = CalleeLC->getDecl();
1140 // Add the edge only when the callee has body. We jump to the beginning
1141 // of the *declaration*, however we expect it to be followed by the
1142 // body. This isn't the case for autosynthesized property accessors in
1143 // Objective-C. No need for a similar extra check for CallExit points
1144 // because the exit edge comes from a statement (i.e. return),
1145 // not from declaration.
1146 if (D->hasBody())
1147 addEdgeToPath(C.getActivePath(), PrevLoc,
1148 PathDiagnosticLocation::createBegin(D, SM));
1151 // Did we visit an entire call?
1152 bool VisitedEntireCall = C.PD->isWithinCall();
1153 C.PD->popActivePath();
1155 PathDiagnosticCallPiece *Call;
1156 if (VisitedEntireCall) {
1157 Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
1158 } else {
1159 // The path terminated within a nested location context, create a new
1160 // call piece to encapsulate the rest of the path pieces.
1161 const Decl *Caller = CE->getLocationContext()->getDecl();
1162 Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
1163 assert(C.getActivePath().size() == 1 &&
1164 C.getActivePath().front().get() == Call);
1166 // Since we just transferred the path over to the call piece, reset the
1167 // mapping of the active path to the current location context.
1168 assert(C.isInLocCtxMap(&C.getActivePath()) &&
1169 "When we ascend to a previously unvisited call, the active path's "
1170 "address shouldn't change, but rather should be compacted into "
1171 "a single CallEvent!");
1172 C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
1174 // Record the location context mapping for the path within the call.
1175 assert(!C.isInLocCtxMap(&Call->path) &&
1176 "When we ascend to a previously unvisited call, this must be the "
1177 "first time we encounter the caller context!");
1178 C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1180 Call->setCallee(*CE, SM);
1182 // Update the previous location in the active path.
1183 PrevLoc = Call->getLocation();
1185 if (!C.CallStack.empty()) {
1186 assert(C.CallStack.back().first == Call);
1187 C.CallStack.pop_back();
1189 return;
1192 assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1193 "The current position in the bug path is out of sync with the "
1194 "location context associated with the active path!");
1196 // Have we encountered an exit from a function call?
1197 if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1199 // We are descending into a call (backwards). Construct
1200 // a new call piece to contain the path pieces for that call.
1201 auto Call = PathDiagnosticCallPiece::construct(*CE, SM);
1202 // Record the mapping from call piece to LocationContext.
1203 assert(!C.isInLocCtxMap(&Call->path) &&
1204 "We just entered a call, this must've been the first time we "
1205 "encounter its context!");
1206 C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1208 if (C.shouldAddPathEdges()) {
1209 // Add the edge to the return site.
1210 addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
1211 PrevLoc.invalidate();
1214 auto *P = Call.get();
1215 C.getActivePath().push_front(std::move(Call));
1217 // Make the contents of the call the active path for now.
1218 C.PD->pushActivePath(&P->path);
1219 C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
1220 return;
1223 if (auto PS = P.getAs<PostStmt>()) {
1224 if (!C.shouldAddPathEdges())
1225 return;
1227 // Add an edge. If this is an ObjCForCollectionStmt do
1228 // not add an edge here as it appears in the CFG both
1229 // as a terminator and as a terminator condition.
1230 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1231 PathDiagnosticLocation L =
1232 PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1233 addEdgeToPath(C.getActivePath(), PrevLoc, L);
1236 } else if (auto BE = P.getAs<BlockEdge>()) {
1238 if (C.shouldAddControlNotes()) {
1239 generateMinimalDiagForBlockEdge(C, *BE);
1242 if (!C.shouldAddPathEdges()) {
1243 return;
1246 // Are we jumping to the head of a loop? Add a special diagnostic.
1247 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1248 PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1249 const Stmt *Body = nullptr;
1251 if (const auto *FS = dyn_cast<ForStmt>(Loop))
1252 Body = FS->getBody();
1253 else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1254 Body = WS->getBody();
1255 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1256 Body = OFS->getBody();
1257 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1258 Body = FRS->getBody();
1260 // do-while statements are explicitly excluded here
1262 auto p = std::make_shared<PathDiagnosticEventPiece>(
1263 L, "Looping back to the head of the loop");
1264 p->setPrunable(true);
1266 addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
1267 // We might've added a very similar control node already
1268 if (!C.shouldAddControlNotes()) {
1269 C.getActivePath().push_front(std::move(p));
1272 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1273 addEdgeToPath(C.getActivePath(), PrevLoc,
1274 PathDiagnosticLocation::createEndBrace(CS, SM));
1278 const CFGBlock *BSrc = BE->getSrc();
1279 const ParentMap &PM = C.getParentMap();
1281 if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1282 // Are we jumping past the loop body without ever executing the
1283 // loop (because the condition was false)?
1284 if (isLoop(Term)) {
1285 const Stmt *TermCond = getTerminatorCondition(BSrc);
1286 bool IsInLoopBody = isInLoopBody(
1287 PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
1289 StringRef str;
1291 if (isJumpToFalseBranch(&*BE)) {
1292 if (!IsInLoopBody) {
1293 if (isa<ObjCForCollectionStmt>(Term)) {
1294 str = StrLoopCollectionEmpty;
1295 } else if (isa<CXXForRangeStmt>(Term)) {
1296 str = StrLoopRangeEmpty;
1297 } else {
1298 str = StrLoopBodyZero;
1301 } else {
1302 str = StrEnteringLoop;
1305 if (!str.empty()) {
1306 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1307 C.getCurrLocationContext());
1308 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1309 PE->setPrunable(true);
1310 addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
1312 // We might've added a very similar control node already
1313 if (!C.shouldAddControlNotes()) {
1314 C.getActivePath().push_front(std::move(PE));
1317 } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) {
1318 PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1319 addEdgeToPath(C.getActivePath(), PrevLoc, L);
1325 static std::unique_ptr<PathDiagnostic>
1326 generateDiagnosticForBasicReport(const BasicBugReport *R) {
1327 const BugType &BT = R->getBugType();
1328 return std::make_unique<PathDiagnostic>(
1329 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1330 R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1331 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1332 std::make_unique<FilesToLineNumsMap>());
1335 static std::unique_ptr<PathDiagnostic>
1336 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1337 const SourceManager &SM) {
1338 const BugType &BT = R->getBugType();
1339 return std::make_unique<PathDiagnostic>(
1340 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1341 R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1342 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1343 findExecutedLines(SM, R->getErrorNode()));
1346 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1347 if (!S)
1348 return nullptr;
1350 while (true) {
1351 S = PM.getParentIgnoreParens(S);
1353 if (!S)
1354 break;
1356 if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S))
1357 continue;
1359 break;
1362 return S;
1365 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1366 switch (S->getStmtClass()) {
1367 case Stmt::BinaryOperatorClass: {
1368 const auto *BO = cast<BinaryOperator>(S);
1369 if (!BO->isLogicalOp())
1370 return false;
1371 return BO->getLHS() == Cond || BO->getRHS() == Cond;
1373 case Stmt::IfStmtClass:
1374 return cast<IfStmt>(S)->getCond() == Cond;
1375 case Stmt::ForStmtClass:
1376 return cast<ForStmt>(S)->getCond() == Cond;
1377 case Stmt::WhileStmtClass:
1378 return cast<WhileStmt>(S)->getCond() == Cond;
1379 case Stmt::DoStmtClass:
1380 return cast<DoStmt>(S)->getCond() == Cond;
1381 case Stmt::ChooseExprClass:
1382 return cast<ChooseExpr>(S)->getCond() == Cond;
1383 case Stmt::IndirectGotoStmtClass:
1384 return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1385 case Stmt::SwitchStmtClass:
1386 return cast<SwitchStmt>(S)->getCond() == Cond;
1387 case Stmt::BinaryConditionalOperatorClass:
1388 return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1389 case Stmt::ConditionalOperatorClass: {
1390 const auto *CO = cast<ConditionalOperator>(S);
1391 return CO->getCond() == Cond ||
1392 CO->getLHS() == Cond ||
1393 CO->getRHS() == Cond;
1395 case Stmt::ObjCForCollectionStmtClass:
1396 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1397 case Stmt::CXXForRangeStmtClass: {
1398 const auto *FRS = cast<CXXForRangeStmt>(S);
1399 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1401 default:
1402 return false;
1406 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1407 if (const auto *FS = dyn_cast<ForStmt>(FL))
1408 return FS->getInc() == S || FS->getInit() == S;
1409 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1410 return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1411 FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1412 return false;
1415 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1417 /// Adds synthetic edges from top-level statements to their subexpressions.
1419 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1420 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1421 /// we'd like to see an edge from A to B, then another one from B to B.1.
1422 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1423 const ParentMap &PM = LC->getParentMap();
1424 PathPieces::iterator Prev = pieces.end();
1425 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1426 Prev = I, ++I) {
1427 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1429 if (!Piece)
1430 continue;
1432 PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1433 SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1435 PathDiagnosticLocation NextSrcContext = SrcLoc;
1436 const Stmt *InnerStmt = nullptr;
1437 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1438 SrcContexts.push_back(NextSrcContext);
1439 InnerStmt = NextSrcContext.asStmt();
1440 NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
1441 /*allowNested=*/true);
1444 // Repeatedly split the edge as necessary.
1445 // This is important for nested logical expressions (||, &&, ?:) where we
1446 // want to show all the levels of context.
1447 while (true) {
1448 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1450 // We are looking at an edge. Is the destination within a larger
1451 // expression?
1452 PathDiagnosticLocation DstContext =
1453 getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
1454 if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1455 break;
1457 // If the source is in the same context, we're already good.
1458 if (llvm::is_contained(SrcContexts, DstContext))
1459 break;
1461 // Update the subexpression node to point to the context edge.
1462 Piece->setStartLocation(DstContext);
1464 // Try to extend the previous edge if it's at the same level as the source
1465 // context.
1466 if (Prev != E) {
1467 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1469 if (PrevPiece) {
1470 if (const Stmt *PrevSrc =
1471 PrevPiece->getStartLocation().getStmtOrNull()) {
1472 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1473 if (PrevSrcParent ==
1474 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1475 PrevPiece->setEndLocation(DstContext);
1476 break;
1482 // Otherwise, split the current edge into a context edge and a
1483 // subexpression edge. Note that the context statement may itself have
1484 // context.
1485 auto P =
1486 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1487 Piece = P.get();
1488 I = pieces.insert(I, std::move(P));
1493 /// Move edges from a branch condition to a branch target
1494 /// when the condition is simple.
1496 /// This restructures some of the work of addContextEdges. That function
1497 /// creates edges this may destroy, but they work together to create a more
1498 /// aesthetically set of edges around branches. After the call to
1499 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1500 /// the branch to the branch condition, and (3) an edge from the branch
1501 /// condition to the branch target. We keep (1), but may wish to remove (2)
1502 /// and move the source of (3) to the branch if the branch condition is simple.
1503 static void simplifySimpleBranches(PathPieces &pieces) {
1504 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1505 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1507 if (!PieceI)
1508 continue;
1510 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1511 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1513 if (!s1Start || !s1End)
1514 continue;
1516 PathPieces::iterator NextI = I; ++NextI;
1517 if (NextI == E)
1518 break;
1520 PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1522 while (true) {
1523 if (NextI == E)
1524 break;
1526 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1527 if (EV) {
1528 StringRef S = EV->getString();
1529 if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1530 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1531 ++NextI;
1532 continue;
1534 break;
1537 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1538 break;
1541 if (!PieceNextI)
1542 continue;
1544 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1545 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1547 if (!s2Start || !s2End || s1End != s2Start)
1548 continue;
1550 // We only perform this transformation for specific branch kinds.
1551 // We don't want to do this for do..while, for example.
1552 if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt,
1553 CXXForRangeStmt>(s1Start))
1554 continue;
1556 // Is s1End the branch condition?
1557 if (!isConditionForTerminator(s1Start, s1End))
1558 continue;
1560 // Perform the hoisting by eliminating (2) and changing the start
1561 // location of (3).
1562 PieceNextI->setStartLocation(PieceI->getStartLocation());
1563 I = pieces.erase(I);
1567 /// Returns the number of bytes in the given (character-based) SourceRange.
1569 /// If the locations in the range are not on the same line, returns
1570 /// std::nullopt.
1572 /// Note that this does not do a precise user-visible character or column count.
1573 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1574 SourceRange Range) {
1575 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1576 SM.getExpansionRange(Range.getEnd()).getEnd());
1578 FileID FID = SM.getFileID(ExpansionRange.getBegin());
1579 if (FID != SM.getFileID(ExpansionRange.getEnd()))
1580 return std::nullopt;
1582 std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID);
1583 if (!Buffer)
1584 return std::nullopt;
1586 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1587 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1588 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1590 // We're searching the raw bytes of the buffer here, which might include
1591 // escaped newlines and such. That's okay; we're trying to decide whether the
1592 // SourceRange is covering a large or small amount of space in the user's
1593 // editor.
1594 if (Snippet.find_first_of("\r\n") != StringRef::npos)
1595 return std::nullopt;
1597 // This isn't Unicode-aware, but it doesn't need to be.
1598 return Snippet.size();
1601 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1602 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1603 const Stmt *S) {
1604 return getLengthOnSingleLine(SM, S->getSourceRange());
1607 /// Eliminate two-edge cycles created by addContextEdges().
1609 /// Once all the context edges are in place, there are plenty of cases where
1610 /// there's a single edge from a top-level statement to a subexpression,
1611 /// followed by a single path note, and then a reverse edge to get back out to
1612 /// the top level. If the statement is simple enough, the subexpression edges
1613 /// just add noise and make it harder to understand what's going on.
1615 /// This function only removes edges in pairs, because removing only one edge
1616 /// might leave other edges dangling.
1618 /// This will not remove edges in more complicated situations:
1619 /// - if there is more than one "hop" leading to or from a subexpression.
1620 /// - if there is an inlined call between the edges instead of a single event.
1621 /// - if the whole statement is large enough that having subexpression arrows
1622 /// might be helpful.
1623 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1624 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1625 // Pattern match the current piece and its successor.
1626 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1628 if (!PieceI) {
1629 ++I;
1630 continue;
1633 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1634 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1636 PathPieces::iterator NextI = I; ++NextI;
1637 if (NextI == E)
1638 break;
1640 const auto *PieceNextI =
1641 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1643 if (!PieceNextI) {
1644 if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1645 ++NextI;
1646 if (NextI == E)
1647 break;
1648 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1651 if (!PieceNextI) {
1652 ++I;
1653 continue;
1657 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1658 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1660 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1661 const size_t MAX_SHORT_LINE_LENGTH = 80;
1662 std::optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1663 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1664 std::optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1665 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1666 Path.erase(I);
1667 I = Path.erase(NextI);
1668 continue;
1673 ++I;
1677 /// Return true if X is contained by Y.
1678 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1679 while (X) {
1680 if (X == Y)
1681 return true;
1682 X = PM.getParent(X);
1684 return false;
1687 // Remove short edges on the same line less than 3 columns in difference.
1688 static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1689 const ParentMap &PM) {
1690 bool erased = false;
1692 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1693 erased ? I : ++I) {
1694 erased = false;
1696 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1698 if (!PieceI)
1699 continue;
1701 const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1702 const Stmt *end = PieceI->getEndLocation().getStmtOrNull();
1704 if (!start || !end)
1705 continue;
1707 const Stmt *endParent = PM.getParent(end);
1708 if (!endParent)
1709 continue;
1711 if (isConditionForTerminator(end, endParent))
1712 continue;
1714 SourceLocation FirstLoc = start->getBeginLoc();
1715 SourceLocation SecondLoc = end->getBeginLoc();
1717 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1718 continue;
1719 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1720 std::swap(SecondLoc, FirstLoc);
1722 SourceRange EdgeRange(FirstLoc, SecondLoc);
1723 std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1725 // If the statements are on different lines, continue.
1726 if (!ByteWidth)
1727 continue;
1729 const size_t MAX_PUNY_EDGE_LENGTH = 2;
1730 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1731 // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1732 // there might not be enough /columns/. A proper user-visible column count
1733 // is probably too expensive, though.
1734 I = path.erase(I);
1735 erased = true;
1736 continue;
1741 static void removeIdenticalEvents(PathPieces &path) {
1742 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1743 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1745 if (!PieceI)
1746 continue;
1748 PathPieces::iterator NextI = I; ++NextI;
1749 if (NextI == E)
1750 return;
1752 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1754 if (!PieceNextI)
1755 continue;
1757 // Erase the second piece if it has the same exact message text.
1758 if (PieceI->getString() == PieceNextI->getString()) {
1759 path.erase(NextI);
1764 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1765 OptimizedCallsSet &OCS) {
1766 bool hasChanges = false;
1767 const LocationContext *LC = C.getLocationContextFor(&path);
1768 assert(LC);
1769 const ParentMap &PM = LC->getParentMap();
1770 const SourceManager &SM = C.getSourceManager();
1772 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1773 // Optimize subpaths.
1774 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1775 // Record the fact that a call has been optimized so we only do the
1776 // effort once.
1777 if (!OCS.count(CallI)) {
1778 while (optimizeEdges(C, CallI->path, OCS)) {
1780 OCS.insert(CallI);
1782 ++I;
1783 continue;
1786 // Pattern match the current piece and its successor.
1787 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1789 if (!PieceI) {
1790 ++I;
1791 continue;
1794 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1795 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1796 const Stmt *level1 = getStmtParent(s1Start, PM);
1797 const Stmt *level2 = getStmtParent(s1End, PM);
1799 PathPieces::iterator NextI = I; ++NextI;
1800 if (NextI == E)
1801 break;
1803 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1805 if (!PieceNextI) {
1806 ++I;
1807 continue;
1810 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1811 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1812 const Stmt *level3 = getStmtParent(s2Start, PM);
1813 const Stmt *level4 = getStmtParent(s2End, PM);
1815 // Rule I.
1817 // If we have two consecutive control edges whose end/begin locations
1818 // are at the same level (e.g. statements or top-level expressions within
1819 // a compound statement, or siblings share a single ancestor expression),
1820 // then merge them if they have no interesting intermediate event.
1822 // For example:
1824 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1825 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements.
1827 // NOTE: this will be limited later in cases where we add barriers
1828 // to prevent this optimization.
1829 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1830 PieceI->setEndLocation(PieceNextI->getEndLocation());
1831 path.erase(NextI);
1832 hasChanges = true;
1833 continue;
1836 // Rule II.
1838 // Eliminate edges between subexpressions and parent expressions
1839 // when the subexpression is consumed.
1841 // NOTE: this will be limited later in cases where we add barriers
1842 // to prevent this optimization.
1843 if (s1End && s1End == s2Start && level2) {
1844 bool removeEdge = false;
1845 // Remove edges into the increment or initialization of a
1846 // loop that have no interleaving event. This means that
1847 // they aren't interesting.
1848 if (isIncrementOrInitInForLoop(s1End, level2))
1849 removeEdge = true;
1850 // Next only consider edges that are not anchored on
1851 // the condition of a terminator. This are intermediate edges
1852 // that we might want to trim.
1853 else if (!isConditionForTerminator(level2, s1End)) {
1854 // Trim edges on expressions that are consumed by
1855 // the parent expression.
1856 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1857 removeEdge = true;
1859 // Trim edges where a lexical containment doesn't exist.
1860 // For example:
1862 // X -> Y -> Z
1864 // If 'Z' lexically contains Y (it is an ancestor) and
1865 // 'X' does not lexically contain Y (it is a descendant OR
1866 // it has no lexical relationship at all) then trim.
1868 // This can eliminate edges where we dive into a subexpression
1869 // and then pop back out, etc.
1870 else if (s1Start && s2End &&
1871 lexicalContains(PM, s2Start, s2End) &&
1872 !lexicalContains(PM, s1End, s1Start)) {
1873 removeEdge = true;
1875 // Trim edges from a subexpression back to the top level if the
1876 // subexpression is on a different line.
1878 // A.1 -> A -> B
1879 // becomes
1880 // A.1 -> B
1882 // These edges just look ugly and don't usually add anything.
1883 else if (s1Start && s2End &&
1884 lexicalContains(PM, s1Start, s1End)) {
1885 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1886 PieceI->getStartLocation().asLocation());
1887 if (!getLengthOnSingleLine(SM, EdgeRange))
1888 removeEdge = true;
1892 if (removeEdge) {
1893 PieceI->setEndLocation(PieceNextI->getEndLocation());
1894 path.erase(NextI);
1895 hasChanges = true;
1896 continue;
1900 // Optimize edges for ObjC fast-enumeration loops.
1902 // (X -> collection) -> (collection -> element)
1904 // becomes:
1906 // (X -> element)
1907 if (s1End == s2Start) {
1908 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1909 if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1910 s2End == FS->getElement()) {
1911 PieceI->setEndLocation(PieceNextI->getEndLocation());
1912 path.erase(NextI);
1913 hasChanges = true;
1914 continue;
1918 // No changes at this index? Move to the next one.
1919 ++I;
1922 if (!hasChanges) {
1923 // Adjust edges into subexpressions to make them more uniform
1924 // and aesthetically pleasing.
1925 addContextEdges(path, LC);
1926 // Remove "cyclical" edges that include one or more context edges.
1927 removeContextCycles(path, SM);
1928 // Hoist edges originating from branch conditions to branches
1929 // for simple branches.
1930 simplifySimpleBranches(path);
1931 // Remove any puny edges left over after primary optimization pass.
1932 removePunyEdges(path, SM, PM);
1933 // Remove identical events.
1934 removeIdenticalEvents(path);
1937 return hasChanges;
1940 /// Drop the very first edge in a path, which should be a function entry edge.
1942 /// If the first edge is not a function entry edge (say, because the first
1943 /// statement had an invalid source location), this function does nothing.
1944 // FIXME: We should just generate invalid edges anyway and have the optimizer
1945 // deal with them.
1946 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1947 PathPieces &Path) {
1948 const auto *FirstEdge =
1949 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1950 if (!FirstEdge)
1951 return;
1953 const Decl *D = C.getLocationContextFor(&Path)->getDecl();
1954 PathDiagnosticLocation EntryLoc =
1955 PathDiagnosticLocation::createBegin(D, C.getSourceManager());
1956 if (FirstEdge->getStartLocation() != EntryLoc)
1957 return;
1959 Path.pop_front();
1962 /// Populate executes lines with lines containing at least one diagnostics.
1963 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1965 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1966 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1968 for (const auto &P : path) {
1969 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1970 FileID FID = Loc.getFileID();
1971 unsigned LineNo = Loc.getLineNumber();
1972 assert(FID.isValid());
1973 ExecutedLines[FID].insert(LineNo);
1977 PathDiagnosticConstruct::PathDiagnosticConstruct(
1978 const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1979 const PathSensitiveBugReport *R)
1980 : Consumer(PDC), CurrentNode(ErrorNode),
1981 SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1982 PD(generateEmptyDiagnosticForReport(R, getSourceManager())) {
1983 LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1986 PathDiagnosticBuilder::PathDiagnosticBuilder(
1987 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1988 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1989 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1990 : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
1991 ErrorNode(ErrorNode),
1992 VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
1994 std::unique_ptr<PathDiagnostic>
1995 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
1996 PathDiagnosticConstruct Construct(PDC, ErrorNode, R);
1998 const SourceManager &SM = getSourceManager();
1999 const AnalyzerOptions &Opts = getAnalyzerOptions();
2001 if (!PDC->shouldGenerateDiagnostics())
2002 return generateEmptyDiagnosticForReport(R, getSourceManager());
2004 // Construct the final (warning) event for the bug report.
2005 auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
2006 PathDiagnosticPieceRef LastPiece;
2007 if (EndNotes != VisitorsDiagnostics->end()) {
2008 assert(!EndNotes->second.empty());
2009 LastPiece = EndNotes->second[0];
2010 } else {
2011 LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
2012 *getBugReport());
2014 Construct.PD->setEndOfPath(LastPiece);
2016 PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2017 // From the error node to the root, ascend the bug path and construct the bug
2018 // report.
2019 while (Construct.ascendToPrevNode()) {
2020 generatePathDiagnosticsForNode(Construct, PrevLoc);
2022 auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
2023 if (VisitorNotes == VisitorsDiagnostics->end())
2024 continue;
2026 // This is a workaround due to inability to put shared PathDiagnosticPiece
2027 // into a FoldingSet.
2028 std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2030 // Add pieces from custom visitors.
2031 for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2032 llvm::FoldingSetNodeID ID;
2033 Note->Profile(ID);
2034 if (!DeduplicationSet.insert(ID).second)
2035 continue;
2037 if (PDC->shouldAddPathEdges())
2038 addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
2039 updateStackPiecesWithMessage(Note, Construct.CallStack);
2040 Construct.getActivePath().push_front(Note);
2044 if (PDC->shouldAddPathEdges()) {
2045 // Add an edge to the start of the function.
2046 // We'll prune it out later, but it helps make diagnostics more uniform.
2047 const StackFrameContext *CalleeLC =
2048 Construct.getLocationContextForActivePath()->getStackFrame();
2049 const Decl *D = CalleeLC->getDecl();
2050 addEdgeToPath(Construct.getActivePath(), PrevLoc,
2051 PathDiagnosticLocation::createBegin(D, SM));
2055 // Finally, prune the diagnostic path of uninteresting stuff.
2056 if (!Construct.PD->path.empty()) {
2057 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2058 bool stillHasNotes =
2059 removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
2060 assert(stillHasNotes);
2061 (void)stillHasNotes;
2064 // Remove pop-up notes if needed.
2065 if (!Opts.ShouldAddPopUpNotes)
2066 removePopUpNotes(Construct.getMutablePieces());
2068 // Redirect all call pieces to have valid locations.
2069 adjustCallLocations(Construct.getMutablePieces());
2070 removePiecesWithInvalidLocations(Construct.getMutablePieces());
2072 if (PDC->shouldAddPathEdges()) {
2074 // Reduce the number of edges from a very conservative set
2075 // to an aesthetically pleasing subset that conveys the
2076 // necessary information.
2077 OptimizedCallsSet OCS;
2078 while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
2081 // Drop the very first function-entry edge. It's not really necessary
2082 // for top-level functions.
2083 dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
2086 // Remove messages that are basically the same, and edges that may not
2087 // make sense.
2088 // We have to do this after edge optimization in the Extensive mode.
2089 removeRedundantMsgs(Construct.getMutablePieces());
2090 removeEdgesToDefaultInitializers(Construct.getMutablePieces());
2093 if (Opts.ShouldDisplayMacroExpansions)
2094 CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
2096 return std::move(Construct.PD);
2099 //===----------------------------------------------------------------------===//
2100 // Methods for BugType and subclasses.
2101 //===----------------------------------------------------------------------===//
2103 void BugType::anchor() {}
2105 //===----------------------------------------------------------------------===//
2106 // Methods for BugReport and subclasses.
2107 //===----------------------------------------------------------------------===//
2109 LLVM_ATTRIBUTE_USED static bool
2110 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2111 for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2112 if (Pair.second == CheckerName)
2113 return true;
2115 return false;
2118 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2119 StringRef CheckerName) {
2120 for (const CheckerInfo &Checker : Registry.Checkers) {
2121 if (Checker.FullName == CheckerName)
2122 return Checker.IsHidden;
2124 llvm_unreachable(
2125 "Checker name not found in CheckerRegistry -- did you retrieve it "
2126 "correctly from CheckerManager::getCurrentCheckerName?");
2129 PathSensitiveBugReport::PathSensitiveBugReport(
2130 const BugType &bt, StringRef shortDesc, StringRef desc,
2131 const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2132 const Decl *DeclToUnique)
2133 : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2134 ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2135 UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2136 assert(!isDependency(ErrorNode->getState()
2137 ->getAnalysisManager()
2138 .getCheckerManager()
2139 ->getCheckerRegistryData(),
2140 bt.getCheckerName()) &&
2141 "Some checkers depend on this one! We don't allow dependency "
2142 "checkers to emit warnings, because checkers should depend on "
2143 "*modeling*, not *diagnostics*.");
2145 assert((bt.getCheckerName().starts_with("debug") ||
2146 !isHidden(ErrorNode->getState()
2147 ->getAnalysisManager()
2148 .getCheckerManager()
2149 ->getCheckerRegistryData(),
2150 bt.getCheckerName())) &&
2151 "Hidden checkers musn't emit diagnostics as they are by definition "
2152 "non-user facing!");
2155 void PathSensitiveBugReport::addVisitor(
2156 std::unique_ptr<BugReporterVisitor> visitor) {
2157 if (!visitor)
2158 return;
2160 llvm::FoldingSetNodeID ID;
2161 visitor->Profile(ID);
2163 void *InsertPos = nullptr;
2164 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2165 return;
2168 Callbacks.push_back(std::move(visitor));
2171 void PathSensitiveBugReport::clearVisitors() {
2172 Callbacks.clear();
2175 const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2176 const ExplodedNode *N = getErrorNode();
2177 if (!N)
2178 return nullptr;
2180 const LocationContext *LC = N->getLocationContext();
2181 return LC->getStackFrame()->getDecl();
2184 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2185 hash.AddInteger(static_cast<int>(getKind()));
2186 hash.AddPointer(&BT);
2187 hash.AddString(Description);
2188 assert(Location.isValid());
2189 Location.Profile(hash);
2191 for (SourceRange range : Ranges) {
2192 if (!range.isValid())
2193 continue;
2194 hash.Add(range.getBegin());
2195 hash.Add(range.getEnd());
2199 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2200 hash.AddInteger(static_cast<int>(getKind()));
2201 hash.AddPointer(&BT);
2202 hash.AddString(Description);
2203 PathDiagnosticLocation UL = getUniqueingLocation();
2204 if (UL.isValid()) {
2205 UL.Profile(hash);
2206 } else {
2207 // TODO: The statement may be null if the report was emitted before any
2208 // statements were executed. In particular, some checkers by design
2209 // occasionally emit their reports in empty functions (that have no
2210 // statements in their body). Do we profile correctly in this case?
2211 hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2214 for (SourceRange range : Ranges) {
2215 if (!range.isValid())
2216 continue;
2217 hash.Add(range.getBegin());
2218 hash.Add(range.getEnd());
2222 template <class T>
2223 static void insertToInterestingnessMap(
2224 llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2225 bugreporter::TrackingKind TKind) {
2226 auto Result = InterestingnessMap.insert({Val, TKind});
2228 if (Result.second)
2229 return;
2231 // Even if this symbol/region was already marked as interesting as a
2232 // condition, if we later mark it as interesting again but with
2233 // thorough tracking, overwrite it. Entities marked with thorough
2234 // interestiness are the most important (or most interesting, if you will),
2235 // and we wouldn't like to downplay their importance.
2237 switch (TKind) {
2238 case bugreporter::TrackingKind::Thorough:
2239 Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2240 return;
2241 case bugreporter::TrackingKind::Condition:
2242 return;
2245 llvm_unreachable(
2246 "BugReport::markInteresting currently can only handle 2 different "
2247 "tracking kinds! Please define what tracking kind should this entitiy"
2248 "have, if it was already marked as interesting with a different kind!");
2251 void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2252 bugreporter::TrackingKind TKind) {
2253 if (!sym)
2254 return;
2256 insertToInterestingnessMap(InterestingSymbols, sym, TKind);
2258 // FIXME: No tests exist for this code and it is questionable:
2259 // How to handle multiple metadata for the same region?
2260 if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2261 markInteresting(meta->getRegion(), TKind);
2264 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) {
2265 if (!sym)
2266 return;
2267 InterestingSymbols.erase(sym);
2269 // The metadata part of markInteresting is not reversed here.
2270 // Just making the same region not interesting is incorrect
2271 // in specific cases.
2272 if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2273 markNotInteresting(meta->getRegion());
2276 void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2277 bugreporter::TrackingKind TKind) {
2278 if (!R)
2279 return;
2281 R = R->getBaseRegion();
2282 insertToInterestingnessMap(InterestingRegions, R, TKind);
2284 if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2285 markInteresting(SR->getSymbol(), TKind);
2288 void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) {
2289 if (!R)
2290 return;
2292 R = R->getBaseRegion();
2293 InterestingRegions.erase(R);
2295 if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2296 markNotInteresting(SR->getSymbol());
2299 void PathSensitiveBugReport::markInteresting(SVal V,
2300 bugreporter::TrackingKind TKind) {
2301 markInteresting(V.getAsRegion(), TKind);
2302 markInteresting(V.getAsSymbol(), TKind);
2305 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2306 if (!LC)
2307 return;
2308 InterestingLocationContexts.insert(LC);
2311 std::optional<bugreporter::TrackingKind>
2312 PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2313 auto RKind = getInterestingnessKind(V.getAsRegion());
2314 auto SKind = getInterestingnessKind(V.getAsSymbol());
2315 if (!RKind)
2316 return SKind;
2317 if (!SKind)
2318 return RKind;
2320 // If either is marked with throrough tracking, return that, we wouldn't like
2321 // to downplay a note's importance by 'only' mentioning it as a condition.
2322 switch(*RKind) {
2323 case bugreporter::TrackingKind::Thorough:
2324 return RKind;
2325 case bugreporter::TrackingKind::Condition:
2326 return SKind;
2329 llvm_unreachable(
2330 "BugReport::getInterestingnessKind currently can only handle 2 different "
2331 "tracking kinds! Please define what tracking kind should we return here "
2332 "when the kind of getAsRegion() and getAsSymbol() is different!");
2333 return std::nullopt;
2336 std::optional<bugreporter::TrackingKind>
2337 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2338 if (!sym)
2339 return std::nullopt;
2340 // We don't currently consider metadata symbols to be interesting
2341 // even if we know their region is interesting. Is that correct behavior?
2342 auto It = InterestingSymbols.find(sym);
2343 if (It == InterestingSymbols.end())
2344 return std::nullopt;
2345 return It->getSecond();
2348 std::optional<bugreporter::TrackingKind>
2349 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2350 if (!R)
2351 return std::nullopt;
2353 R = R->getBaseRegion();
2354 auto It = InterestingRegions.find(R);
2355 if (It != InterestingRegions.end())
2356 return It->getSecond();
2358 if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2359 return getInterestingnessKind(SR->getSymbol());
2360 return std::nullopt;
2363 bool PathSensitiveBugReport::isInteresting(SVal V) const {
2364 return getInterestingnessKind(V).has_value();
2367 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2368 return getInterestingnessKind(sym).has_value();
2371 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2372 return getInterestingnessKind(R).has_value();
2375 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const {
2376 if (!LC)
2377 return false;
2378 return InterestingLocationContexts.count(LC);
2381 const Stmt *PathSensitiveBugReport::getStmt() const {
2382 if (!ErrorNode)
2383 return nullptr;
2385 ProgramPoint ProgP = ErrorNode->getLocation();
2386 const Stmt *S = nullptr;
2388 if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2389 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2390 if (BE->getBlock() == &Exit)
2391 S = ErrorNode->getPreviousStmtForDiagnostics();
2393 if (!S)
2394 S = ErrorNode->getStmtForDiagnostics();
2396 return S;
2399 ArrayRef<SourceRange>
2400 PathSensitiveBugReport::getRanges() const {
2401 // If no custom ranges, add the range of the statement corresponding to
2402 // the error node.
2403 if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
2404 return ErrorNodeRange;
2406 return Ranges;
2409 PathDiagnosticLocation
2410 PathSensitiveBugReport::getLocation() const {
2411 assert(ErrorNode && "Cannot create a location with a null node.");
2412 const Stmt *S = ErrorNode->getStmtForDiagnostics();
2413 ProgramPoint P = ErrorNode->getLocation();
2414 const LocationContext *LC = P.getLocationContext();
2415 SourceManager &SM =
2416 ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2418 if (!S) {
2419 // If this is an implicit call, return the implicit call point location.
2420 if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2421 return PathDiagnosticLocation(PIE->getLocation(), SM);
2422 if (auto FE = P.getAs<FunctionExitPoint>()) {
2423 if (const ReturnStmt *RS = FE->getStmt())
2424 return PathDiagnosticLocation::createBegin(RS, SM, LC);
2426 S = ErrorNode->getNextStmtForDiagnostics();
2429 if (S) {
2430 // Attributed statements usually have corrupted begin locations,
2431 // it's OK to ignore attributes for our purposes and deal with
2432 // the actual annotated statement.
2433 if (const auto *AS = dyn_cast<AttributedStmt>(S))
2434 S = AS->getSubStmt();
2436 // For member expressions, return the location of the '.' or '->'.
2437 if (const auto *ME = dyn_cast<MemberExpr>(S))
2438 return PathDiagnosticLocation::createMemberLoc(ME, SM);
2440 // For binary operators, return the location of the operator.
2441 if (const auto *B = dyn_cast<BinaryOperator>(S))
2442 return PathDiagnosticLocation::createOperatorLoc(B, SM);
2444 if (P.getAs<PostStmtPurgeDeadSymbols>())
2445 return PathDiagnosticLocation::createEnd(S, SM, LC);
2447 if (S->getBeginLoc().isValid())
2448 return PathDiagnosticLocation(S, SM, LC);
2450 return PathDiagnosticLocation(
2451 PathDiagnosticLocation::getValidSourceLocation(S, LC), SM);
2454 return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(),
2455 SM);
2458 //===----------------------------------------------------------------------===//
2459 // Methods for BugReporter and subclasses.
2460 //===----------------------------------------------------------------------===//
2462 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2463 return Eng.getGraph();
2466 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2467 return Eng.getStateManager();
2470 BugReporter::BugReporter(BugReporterData &d) : D(d) {}
2471 BugReporter::~BugReporter() {
2472 // Make sure reports are flushed.
2473 assert(StrBugTypes.empty() &&
2474 "Destroying BugReporter before diagnostics are emitted!");
2476 // Free the bug reports we are tracking.
2477 for (const auto I : EQClassesVector)
2478 delete I;
2481 void BugReporter::FlushReports() {
2482 // We need to flush reports in deterministic order to ensure the order
2483 // of the reports is consistent between runs.
2484 for (const auto EQ : EQClassesVector)
2485 FlushReport(*EQ);
2487 // BugReporter owns and deletes only BugTypes created implicitly through
2488 // EmitBasicReport.
2489 // FIXME: There are leaks from checkers that assume that the BugTypes they
2490 // create will be destroyed by the BugReporter.
2491 StrBugTypes.clear();
2494 //===----------------------------------------------------------------------===//
2495 // PathDiagnostics generation.
2496 //===----------------------------------------------------------------------===//
2498 namespace {
2500 /// A wrapper around an ExplodedGraph that contains a single path from the root
2501 /// to the error node.
2502 class BugPathInfo {
2503 public:
2504 std::unique_ptr<ExplodedGraph> BugPath;
2505 PathSensitiveBugReport *Report;
2506 const ExplodedNode *ErrorNode;
2509 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2510 /// conveniently retrieve bug paths from a single error node to the root.
2511 class BugPathGetter {
2512 std::unique_ptr<ExplodedGraph> TrimmedGraph;
2514 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2516 /// Assign each node with its distance from the root.
2517 PriorityMapTy PriorityMap;
2519 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2520 /// we need to pair it to the error node of the constructed trimmed graph.
2521 using ReportNewNodePair =
2522 std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2523 SmallVector<ReportNewNodePair, 32> ReportNodes;
2525 BugPathInfo CurrentBugPath;
2527 /// A helper class for sorting ExplodedNodes by priority.
2528 template <bool Descending>
2529 class PriorityCompare {
2530 const PriorityMapTy &PriorityMap;
2532 public:
2533 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2535 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2536 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2537 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2538 PriorityMapTy::const_iterator E = PriorityMap.end();
2540 if (LI == E)
2541 return Descending;
2542 if (RI == E)
2543 return !Descending;
2545 return Descending ? LI->second > RI->second
2546 : LI->second < RI->second;
2549 bool operator()(const ReportNewNodePair &LHS,
2550 const ReportNewNodePair &RHS) const {
2551 return (*this)(LHS.second, RHS.second);
2555 public:
2556 BugPathGetter(const ExplodedGraph *OriginalGraph,
2557 ArrayRef<PathSensitiveBugReport *> &bugReports);
2559 BugPathInfo *getNextBugPath();
2562 } // namespace
2564 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2565 ArrayRef<PathSensitiveBugReport *> &bugReports) {
2566 SmallVector<const ExplodedNode *, 32> Nodes;
2567 for (const auto I : bugReports) {
2568 assert(I->isValid() &&
2569 "We only allow BugReporterVisitors and BugReporter itself to "
2570 "invalidate reports!");
2571 Nodes.emplace_back(I->getErrorNode());
2574 // The trimmed graph is created in the body of the constructor to ensure
2575 // that the DenseMaps have been initialized already.
2576 InterExplodedGraphMap ForwardMap;
2577 TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
2579 // Find the (first) error node in the trimmed graph. We just need to consult
2580 // the node map which maps from nodes in the original graph to nodes
2581 // in the new graph.
2582 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2584 for (PathSensitiveBugReport *Report : bugReports) {
2585 const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
2586 assert(NewNode &&
2587 "Failed to construct a trimmed graph that contains this error "
2588 "node!");
2589 ReportNodes.emplace_back(Report, NewNode);
2590 RemainingNodes.insert(NewNode);
2593 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2595 // Perform a forward BFS to find all the shortest paths.
2596 std::queue<const ExplodedNode *> WS;
2598 assert(TrimmedGraph->num_roots() == 1);
2599 WS.push(*TrimmedGraph->roots_begin());
2600 unsigned Priority = 0;
2602 while (!WS.empty()) {
2603 const ExplodedNode *Node = WS.front();
2604 WS.pop();
2606 PriorityMapTy::iterator PriorityEntry;
2607 bool IsNew;
2608 std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
2609 ++Priority;
2611 if (!IsNew) {
2612 assert(PriorityEntry->second <= Priority);
2613 continue;
2616 if (RemainingNodes.erase(Node))
2617 if (RemainingNodes.empty())
2618 break;
2620 for (const ExplodedNode *Succ : Node->succs())
2621 WS.push(Succ);
2624 // Sort the error paths from longest to shortest.
2625 llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
2628 BugPathInfo *BugPathGetter::getNextBugPath() {
2629 if (ReportNodes.empty())
2630 return nullptr;
2632 const ExplodedNode *OrigN;
2633 std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
2634 assert(PriorityMap.contains(OrigN) && "error node not accessible from root");
2636 // Create a new graph with a single path. This is the graph that will be
2637 // returned to the caller.
2638 auto GNew = std::make_unique<ExplodedGraph>();
2640 // Now walk from the error node up the BFS path, always taking the
2641 // predeccessor with the lowest number.
2642 ExplodedNode *Succ = nullptr;
2643 while (true) {
2644 // Create the equivalent node in the new graph with the same state
2645 // and location.
2646 ExplodedNode *NewN = GNew->createUncachedNode(
2647 OrigN->getLocation(), OrigN->getState(),
2648 OrigN->getID(), OrigN->isSink());
2650 // Link up the new node with the previous node.
2651 if (Succ)
2652 Succ->addPredecessor(NewN, *GNew);
2653 else
2654 CurrentBugPath.ErrorNode = NewN;
2656 Succ = NewN;
2658 // Are we at the final node?
2659 if (OrigN->pred_empty()) {
2660 GNew->addRoot(NewN);
2661 break;
2664 // Find the next predeccessor node. We choose the node that is marked
2665 // with the lowest BFS number.
2666 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2667 PriorityCompare<false>(PriorityMap));
2670 CurrentBugPath.BugPath = std::move(GNew);
2672 return &CurrentBugPath;
2675 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2676 /// object and collapses PathDiagosticPieces that are expanded by macros.
2677 static void CompactMacroExpandedPieces(PathPieces &path,
2678 const SourceManager& SM) {
2679 using MacroStackTy = std::vector<
2680 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2682 using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2684 MacroStackTy MacroStack;
2685 PiecesTy Pieces;
2687 for (PathPieces::const_iterator I = path.begin(), E = path.end();
2688 I != E; ++I) {
2689 const auto &piece = *I;
2691 // Recursively compact calls.
2692 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2693 CompactMacroExpandedPieces(call->path, SM);
2696 // Get the location of the PathDiagnosticPiece.
2697 const FullSourceLoc Loc = piece->getLocation().asLocation();
2699 // Determine the instantiation location, which is the location we group
2700 // related PathDiagnosticPieces.
2701 SourceLocation InstantiationLoc = Loc.isMacroID() ?
2702 SM.getExpansionLoc(Loc) :
2703 SourceLocation();
2705 if (Loc.isFileID()) {
2706 MacroStack.clear();
2707 Pieces.push_back(piece);
2708 continue;
2711 assert(Loc.isMacroID());
2713 // Is the PathDiagnosticPiece within the same macro group?
2714 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2715 MacroStack.back().first->subPieces.push_back(piece);
2716 continue;
2719 // We aren't in the same group. Are we descending into a new macro
2720 // or are part of an old one?
2721 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2723 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2724 SM.getExpansionLoc(Loc) :
2725 SourceLocation();
2727 // Walk the entire macro stack.
2728 while (!MacroStack.empty()) {
2729 if (InstantiationLoc == MacroStack.back().second) {
2730 MacroGroup = MacroStack.back().first;
2731 break;
2734 if (ParentInstantiationLoc == MacroStack.back().second) {
2735 MacroGroup = MacroStack.back().first;
2736 break;
2739 MacroStack.pop_back();
2742 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2743 // Create a new macro group and add it to the stack.
2744 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2745 PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2747 if (MacroGroup)
2748 MacroGroup->subPieces.push_back(NewGroup);
2749 else {
2750 assert(InstantiationLoc.isFileID());
2751 Pieces.push_back(NewGroup);
2754 MacroGroup = NewGroup;
2755 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2758 // Finally, add the PathDiagnosticPiece to the group.
2759 MacroGroup->subPieces.push_back(piece);
2762 // Now take the pieces and construct a new PathDiagnostic.
2763 path.clear();
2765 path.insert(path.end(), Pieces.begin(), Pieces.end());
2768 /// Generate notes from all visitors.
2769 /// Notes associated with @c ErrorNode are generated using
2770 /// @c getEndPath, and the rest are generated with @c VisitNode.
2771 static std::unique_ptr<VisitorsDiagnosticsTy>
2772 generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2773 const ExplodedNode *ErrorNode,
2774 BugReporterContext &BRC) {
2775 std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2776 std::make_unique<VisitorsDiagnosticsTy>();
2777 PathSensitiveBugReport::VisitorList visitors;
2779 // Run visitors on all nodes starting from the node *before* the last one.
2780 // The last node is reserved for notes generated with @c getEndPath.
2781 const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2782 while (NextNode) {
2784 // At each iteration, move all visitors from report to visitor list. This is
2785 // important, because the Profile() functions of the visitors make sure that
2786 // a visitor isn't added multiple times for the same node, but it's fine
2787 // to add the a visitor with Profile() for different nodes (e.g. tracking
2788 // a region at different points of the symbolic execution).
2789 for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2790 visitors.push_back(std::move(Visitor));
2792 R->clearVisitors();
2794 const ExplodedNode *Pred = NextNode->getFirstPred();
2795 if (!Pred) {
2796 PathDiagnosticPieceRef LastPiece;
2797 for (auto &V : visitors) {
2798 V->finalizeVisitor(BRC, ErrorNode, *R);
2800 if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2801 assert(!LastPiece &&
2802 "There can only be one final piece in a diagnostic.");
2803 assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2804 "The final piece must contain a message!");
2805 LastPiece = std::move(Piece);
2806 (*Notes)[ErrorNode].push_back(LastPiece);
2809 break;
2812 for (auto &V : visitors) {
2813 auto P = V->VisitNode(NextNode, BRC, *R);
2814 if (P)
2815 (*Notes)[NextNode].push_back(std::move(P));
2818 if (!R->isValid())
2819 break;
2821 NextNode = Pred;
2824 return Notes;
2827 std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2828 ArrayRef<PathSensitiveBugReport *> &bugReports,
2829 PathSensitiveBugReporter &Reporter) {
2831 BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2833 while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2834 // Find the BugReport with the original location.
2835 PathSensitiveBugReport *R = BugPath->Report;
2836 assert(R && "No original report found for sliced graph.");
2837 assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2838 const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2840 // Register refutation visitors first, if they mark the bug invalid no
2841 // further analysis is required
2842 R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>();
2844 // Register additional node visitors.
2845 R->addVisitor<NilReceiverBRVisitor>();
2846 R->addVisitor<ConditionBRVisitor>();
2847 R->addVisitor<TagVisitor>();
2849 BugReporterContext BRC(Reporter);
2851 // Run all visitors on a given graph, once.
2852 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2853 generateVisitorsDiagnostics(R, ErrorNode, BRC);
2855 if (R->isValid()) {
2856 if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2857 // If crosscheck is enabled, remove all visitors, add the refutation
2858 // visitor and check again
2859 R->clearVisitors();
2860 R->addVisitor<FalsePositiveRefutationBRVisitor>();
2862 // We don't overwrite the notes inserted by other visitors because the
2863 // refutation manager does not add any new note to the path
2864 generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
2867 // Check if the bug is still valid
2868 if (R->isValid())
2869 return PathDiagnosticBuilder(
2870 std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
2871 BugPath->ErrorNode, std::move(visitorNotes));
2875 return {};
2878 std::unique_ptr<DiagnosticForConsumerMapTy>
2879 PathSensitiveBugReporter::generatePathDiagnostics(
2880 ArrayRef<PathDiagnosticConsumer *> consumers,
2881 ArrayRef<PathSensitiveBugReport *> &bugReports) {
2882 assert(!bugReports.empty());
2884 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2886 std::optional<PathDiagnosticBuilder> PDB =
2887 PathDiagnosticBuilder::findValidReport(bugReports, *this);
2889 if (PDB) {
2890 for (PathDiagnosticConsumer *PC : consumers) {
2891 if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
2892 (*Out)[PC] = std::move(PD);
2897 return Out;
2900 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2901 bool ValidSourceLoc = R->getLocation().isValid();
2902 assert(ValidSourceLoc);
2903 // If we mess up in a release build, we'd still prefer to just drop the bug
2904 // instead of trying to go on.
2905 if (!ValidSourceLoc)
2906 return;
2908 // If the user asked to suppress this report, we should skip it.
2909 if (UserSuppressions.isSuppressed(*R))
2910 return;
2912 // Compute the bug report's hash to determine its equivalence class.
2913 llvm::FoldingSetNodeID ID;
2914 R->Profile(ID);
2916 // Lookup the equivance class. If there isn't one, create it.
2917 void *InsertPos;
2918 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2920 if (!EQ) {
2921 EQ = new BugReportEquivClass(std::move(R));
2922 EQClasses.InsertNode(EQ, InsertPos);
2923 EQClassesVector.push_back(EQ);
2924 } else
2925 EQ->AddReport(std::move(R));
2928 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2929 if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
2930 if (const ExplodedNode *E = PR->getErrorNode()) {
2931 // An error node must either be a sink or have a tag, otherwise
2932 // it could get reclaimed before the path diagnostic is created.
2933 assert((E->isSink() || E->getLocation().getTag()) &&
2934 "Error node must either be a sink or have a tag");
2936 const AnalysisDeclContext *DeclCtx =
2937 E->getLocationContext()->getAnalysisDeclContext();
2938 // The source of autosynthesized body can be handcrafted AST or a model
2939 // file. The locations from handcrafted ASTs have no valid source
2940 // locations and have to be discarded. Locations from model files should
2941 // be preserved for processing and reporting.
2942 if (DeclCtx->isBodyAutosynthesized() &&
2943 !DeclCtx->isBodyAutosynthesizedFromModelFile())
2944 return;
2947 BugReporter::emitReport(std::move(R));
2950 //===----------------------------------------------------------------------===//
2951 // Emitting reports in equivalence classes.
2952 //===----------------------------------------------------------------------===//
2954 namespace {
2956 struct FRIEC_WLItem {
2957 const ExplodedNode *N;
2958 ExplodedNode::const_succ_iterator I, E;
2960 FRIEC_WLItem(const ExplodedNode *n)
2961 : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2964 } // namespace
2966 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2967 BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2968 // If we don't need to suppress any of the nodes because they are
2969 // post-dominated by a sink, simply add all the nodes in the equivalence class
2970 // to 'Nodes'. Any of the reports will serve as a "representative" report.
2971 assert(EQ.getReports().size() > 0);
2972 const BugType& BT = EQ.getReports()[0]->getBugType();
2973 if (!BT.isSuppressOnSink()) {
2974 BugReport *R = EQ.getReports()[0].get();
2975 for (auto &J : EQ.getReports()) {
2976 if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
2977 R = PR;
2978 bugReports.push_back(PR);
2981 return R;
2984 // For bug reports that should be suppressed when all paths are post-dominated
2985 // by a sink node, iterate through the reports in the equivalence class
2986 // until we find one that isn't post-dominated (if one exists). We use a
2987 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
2988 // this as a recursive function, but we don't want to risk blowing out the
2989 // stack for very long paths.
2990 BugReport *exampleReport = nullptr;
2992 for (const auto &I: EQ.getReports()) {
2993 auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
2994 if (!R)
2995 continue;
2997 const ExplodedNode *errorNode = R->getErrorNode();
2998 if (errorNode->isSink()) {
2999 llvm_unreachable(
3000 "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3002 // No successors? By definition this nodes isn't post-dominated by a sink.
3003 if (errorNode->succ_empty()) {
3004 bugReports.push_back(R);
3005 if (!exampleReport)
3006 exampleReport = R;
3007 continue;
3010 // See if we are in a no-return CFG block. If so, treat this similarly
3011 // to being post-dominated by a sink. This works better when the analysis
3012 // is incomplete and we have never reached the no-return function call(s)
3013 // that we'd inevitably bump into on this path.
3014 if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
3015 if (ErrorB->isInevitablySinking())
3016 continue;
3018 // At this point we know that 'N' is not a sink and it has at least one
3019 // successor. Use a DFS worklist to find a non-sink end-of-path node.
3020 using WLItem = FRIEC_WLItem;
3021 using DFSWorkList = SmallVector<WLItem, 10>;
3023 llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3025 DFSWorkList WL;
3026 WL.push_back(errorNode);
3027 Visited[errorNode] = 1;
3029 while (!WL.empty()) {
3030 WLItem &WI = WL.back();
3031 assert(!WI.N->succ_empty());
3033 for (; WI.I != WI.E; ++WI.I) {
3034 const ExplodedNode *Succ = *WI.I;
3035 // End-of-path node?
3036 if (Succ->succ_empty()) {
3037 // If we found an end-of-path node that is not a sink.
3038 if (!Succ->isSink()) {
3039 bugReports.push_back(R);
3040 if (!exampleReport)
3041 exampleReport = R;
3042 WL.clear();
3043 break;
3045 // Found a sink? Continue on to the next successor.
3046 continue;
3048 // Mark the successor as visited. If it hasn't been explored,
3049 // enqueue it to the DFS worklist.
3050 unsigned &mark = Visited[Succ];
3051 if (!mark) {
3052 mark = 1;
3053 WL.push_back(Succ);
3054 break;
3058 // The worklist may have been cleared at this point. First
3059 // check if it is empty before checking the last item.
3060 if (!WL.empty() && &WL.back() == &WI)
3061 WL.pop_back();
3065 // ExampleReport will be NULL if all the nodes in the equivalence class
3066 // were post-dominated by sinks.
3067 return exampleReport;
3070 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3071 SmallVector<BugReport*, 10> bugReports;
3072 BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
3073 if (!report)
3074 return;
3076 // See whether we need to silence the checker/package.
3077 for (const std::string &CheckerOrPackage :
3078 getAnalyzerOptions().SilencedCheckersAndPackages) {
3079 if (report->getBugType().getCheckerName().starts_with(CheckerOrPackage))
3080 return;
3083 ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
3084 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3085 generateDiagnosticForConsumerMap(report, Consumers, bugReports);
3087 for (auto &P : *Diagnostics) {
3088 PathDiagnosticConsumer *Consumer = P.first;
3089 std::unique_ptr<PathDiagnostic> &PD = P.second;
3091 // If the path is empty, generate a single step path with the location
3092 // of the issue.
3093 if (PD->path.empty()) {
3094 PathDiagnosticLocation L = report->getLocation();
3095 auto piece = std::make_unique<PathDiagnosticEventPiece>(
3096 L, report->getDescription());
3097 for (SourceRange Range : report->getRanges())
3098 piece->addRange(Range);
3099 PD->setEndOfPath(std::move(piece));
3102 PathPieces &Pieces = PD->getMutablePieces();
3103 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3104 // For path diagnostic consumers that don't support extra notes,
3105 // we may optionally convert those to path notes.
3106 for (const auto &I : llvm::reverse(report->getNotes())) {
3107 PathDiagnosticNotePiece *Piece = I.get();
3108 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3109 Piece->getLocation(), Piece->getString());
3110 for (const auto &R: Piece->getRanges())
3111 ConvertedPiece->addRange(R);
3113 Pieces.push_front(std::move(ConvertedPiece));
3115 } else {
3116 for (const auto &I : llvm::reverse(report->getNotes()))
3117 Pieces.push_front(I);
3120 for (const auto &I : report->getFixits())
3121 Pieces.back()->addFixit(I);
3123 updateExecutedLinesWithDiagnosticPieces(*PD);
3124 Consumer->HandlePathDiagnostic(std::move(PD));
3128 /// Insert all lines participating in the function signature \p Signature
3129 /// into \p ExecutedLines.
3130 static void populateExecutedLinesWithFunctionSignature(
3131 const Decl *Signature, const SourceManager &SM,
3132 FilesToLineNumsMap &ExecutedLines) {
3133 SourceRange SignatureSourceRange;
3134 const Stmt* Body = Signature->getBody();
3135 if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3136 SignatureSourceRange = FD->getSourceRange();
3137 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3138 SignatureSourceRange = OD->getSourceRange();
3139 } else {
3140 return;
3142 SourceLocation Start = SignatureSourceRange.getBegin();
3143 SourceLocation End = Body ? Body->getSourceRange().getBegin()
3144 : SignatureSourceRange.getEnd();
3145 if (!Start.isValid() || !End.isValid())
3146 return;
3147 unsigned StartLine = SM.getExpansionLineNumber(Start);
3148 unsigned EndLine = SM.getExpansionLineNumber(End);
3150 FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3151 for (unsigned Line = StartLine; Line <= EndLine; Line++)
3152 ExecutedLines[FID].insert(Line);
3155 static void populateExecutedLinesWithStmt(
3156 const Stmt *S, const SourceManager &SM,
3157 FilesToLineNumsMap &ExecutedLines) {
3158 SourceLocation Loc = S->getSourceRange().getBegin();
3159 if (!Loc.isValid())
3160 return;
3161 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3162 FileID FID = SM.getFileID(ExpansionLoc);
3163 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3164 ExecutedLines[FID].insert(LineNo);
3167 /// \return all executed lines including function signatures on the path
3168 /// starting from \p N.
3169 static std::unique_ptr<FilesToLineNumsMap>
3170 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3171 auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3173 while (N) {
3174 if (N->getFirstPred() == nullptr) {
3175 // First node: show signature of the entrance point.
3176 const Decl *D = N->getLocationContext()->getDecl();
3177 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3178 } else if (auto CE = N->getLocationAs<CallEnter>()) {
3179 // Inlined function: show signature.
3180 const Decl* D = CE->getCalleeContext()->getDecl();
3181 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3182 } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3183 populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3185 // Show extra context for some parent kinds.
3186 const Stmt *P = N->getParentMap().getParent(S);
3188 // The path exploration can die before the node with the associated
3189 // return statement is generated, but we do want to show the whole
3190 // return.
3191 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3192 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3193 P = N->getParentMap().getParent(RS);
3196 if (isa_and_nonnull<SwitchCase, LabelStmt>(P))
3197 populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3200 N = N->getFirstPred();
3202 return ExecutedLines;
3205 std::unique_ptr<DiagnosticForConsumerMapTy>
3206 BugReporter::generateDiagnosticForConsumerMap(
3207 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3208 ArrayRef<BugReport *> bugReports) {
3209 auto *basicReport = cast<BasicBugReport>(exampleReport);
3210 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3211 for (auto *Consumer : consumers)
3212 (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport);
3213 return Out;
3216 static PathDiagnosticCallPiece *
3217 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3218 const SourceManager &SMgr) {
3219 SourceLocation CallLoc = CP->callEnter.asLocation();
3221 // If the call is within a macro, don't do anything (for now).
3222 if (CallLoc.isMacroID())
3223 return nullptr;
3225 assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3226 "The call piece should not be in a header file.");
3228 // Check if CP represents a path through a function outside of the main file.
3229 if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
3230 return CP;
3232 const PathPieces &Path = CP->path;
3233 if (Path.empty())
3234 return nullptr;
3236 // Check if the last piece in the callee path is a call to a function outside
3237 // of the main file.
3238 if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
3239 return getFirstStackedCallToHeaderFile(CPInner, SMgr);
3241 // Otherwise, the last piece is in the main file.
3242 return nullptr;
3245 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3246 if (PD.path.empty())
3247 return;
3249 PathDiagnosticPiece *LastP = PD.path.back().get();
3250 assert(LastP);
3251 const SourceManager &SMgr = LastP->getLocation().getManager();
3253 // We only need to check if the report ends inside headers, if the last piece
3254 // is a call piece.
3255 if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
3256 CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3257 if (CP) {
3258 // Mark the piece.
3259 CP->setAsLastInMainSourceFile();
3261 // Update the path diagnostic message.
3262 const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
3263 if (ND) {
3264 SmallString<200> buf;
3265 llvm::raw_svector_ostream os(buf);
3266 os << " (within a call to '" << ND->getDeclName() << "')";
3267 PD.appendToDesc(os.str());
3270 // Reset the report containing declaration and location.
3271 PD.setDeclWithIssue(CP->getCaller());
3272 PD.setLocation(CP->getLocation());
3274 return;
3281 std::unique_ptr<DiagnosticForConsumerMapTy>
3282 PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3283 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3284 ArrayRef<BugReport *> bugReports) {
3285 std::vector<BasicBugReport *> BasicBugReports;
3286 std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3287 if (isa<BasicBugReport>(exampleReport))
3288 return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3289 consumers, bugReports);
3291 // Generate the full path sensitive diagnostic, using the generation scheme
3292 // specified by the PathDiagnosticConsumer. Note that we have to generate
3293 // path diagnostics even for consumers which do not support paths, because
3294 // the BugReporterVisitors may mark this bug as a false positive.
3295 assert(!bugReports.empty());
3296 MaxBugClassSize.updateMax(bugReports.size());
3298 // Avoid copying the whole array because there may be a lot of reports.
3299 ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3300 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3301 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3302 std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3303 consumers, convertedArrayOfReports);
3305 if (Out->empty())
3306 return Out;
3308 MaxValidBugClassSize.updateMax(bugReports.size());
3310 // Examine the report and see if the last piece is in a header. Reset the
3311 // report location to the last piece in the main source file.
3312 const AnalyzerOptions &Opts = getAnalyzerOptions();
3313 for (auto const &P : *Out)
3314 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3315 resetDiagnosticLocationToMainFile(*P.second);
3317 return Out;
3320 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3321 const CheckerBase *Checker, StringRef Name,
3322 StringRef Category, StringRef Str,
3323 PathDiagnosticLocation Loc,
3324 ArrayRef<SourceRange> Ranges,
3325 ArrayRef<FixItHint> Fixits) {
3326 EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
3327 Loc, Ranges, Fixits);
3330 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3331 CheckerNameRef CheckName,
3332 StringRef name, StringRef category,
3333 StringRef str, PathDiagnosticLocation Loc,
3334 ArrayRef<SourceRange> Ranges,
3335 ArrayRef<FixItHint> Fixits) {
3336 // 'BT' is owned by BugReporter.
3337 BugType *BT = getBugTypeForName(CheckName, name, category);
3338 auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
3339 R->setDeclWithIssue(DeclWithIssue);
3340 for (const auto &SR : Ranges)
3341 R->addRange(SR);
3342 for (const auto &FH : Fixits)
3343 R->addFixItHint(FH);
3344 emitReport(std::move(R));
3347 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3348 StringRef name, StringRef category) {
3349 SmallString<136> fullDesc;
3350 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3351 << ":" << category;
3352 std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3353 if (!BT)
3354 BT = std::make_unique<BugType>(CheckName, name, category);
3355 return BT.get();