1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
13 //===----------------------------------------------------------------------===//
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/ImmutableList.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
66 #define DEBUG_TYPE "static-analyzer-call-event"
68 using namespace clang
;
71 QualType
CallEvent::getResultType() const {
72 ASTContext
&Ctx
= getState()->getStateManager().getContext();
73 const Expr
*E
= getOriginExpr();
76 return Ctx
.getReferenceQualifiedType(E
);
79 static bool isCallback(QualType T
) {
80 // If a parameter is a block or a callback, assume it can modify pointer.
81 if (T
->isBlockPointerType() ||
82 T
->isFunctionPointerType() ||
86 // Check if a callback is passed inside a struct (for both, struct passed by
87 // reference and by value). Dig just one level into the struct for now.
89 if (T
->isAnyPointerType() || T
->isReferenceType())
90 T
= T
->getPointeeType();
92 if (const RecordType
*RT
= T
->getAsStructureType()) {
93 const RecordDecl
*RD
= RT
->getDecl();
94 for (const auto *I
: RD
->fields()) {
95 QualType FieldT
= I
->getType();
96 if (FieldT
->isBlockPointerType() || FieldT
->isFunctionPointerType())
103 static bool isVoidPointerToNonConst(QualType T
) {
104 if (const auto *PT
= T
->getAs
<PointerType
>()) {
105 QualType PointeeTy
= PT
->getPointeeType();
106 if (PointeeTy
.isConstQualified())
108 return PointeeTy
->isVoidType();
113 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition
)(QualType
)) const {
114 unsigned NumOfArgs
= getNumArgs();
116 // If calling using a function pointer, assume the function does not
117 // satisfy the callback.
118 // TODO: We could check the types of the arguments here.
123 for (CallEvent::param_type_iterator I
= param_type_begin(),
124 E
= param_type_end();
125 I
!= E
&& Idx
< NumOfArgs
; ++I
, ++Idx
) {
126 // If the parameter is 0, it's harmless.
127 if (getArgSVal(Idx
).isZeroConstant())
136 bool CallEvent::hasNonZeroCallbackArg() const {
137 return hasNonNullArgumentsWithType(isCallback
);
140 bool CallEvent::hasVoidPointerToNonConstArg() const {
141 return hasNonNullArgumentsWithType(isVoidPointerToNonConst
);
144 bool CallEvent::isGlobalCFunction(StringRef FunctionName
) const {
145 const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(getDecl());
149 return CheckerContext::isCLibraryFunction(FD
, FunctionName
);
152 AnalysisDeclContext
*CallEvent::getCalleeAnalysisDeclContext() const {
153 const Decl
*D
= getDecl();
157 AnalysisDeclContext
*ADC
=
158 LCtx
->getAnalysisDeclContext()->getManager()->getContext(D
);
163 const StackFrameContext
*
164 CallEvent::getCalleeStackFrame(unsigned BlockCount
) const {
165 AnalysisDeclContext
*ADC
= getCalleeAnalysisDeclContext();
169 const Expr
*E
= getOriginExpr();
173 // Recover CFG block via reverse lookup.
174 // TODO: If we were to keep CFG element information as part of the CallEvent
175 // instead of doing this reverse lookup, we would be able to build the stack
176 // frame for non-expression-based calls, and also we wouldn't need the reverse
178 CFGStmtMap
*Map
= LCtx
->getAnalysisDeclContext()->getCFGStmtMap();
179 const CFGBlock
*B
= Map
->getBlock(E
);
182 // Also recover CFG index by scanning the CFG block.
183 unsigned Idx
= 0, Sz
= B
->size();
184 for (; Idx
< Sz
; ++Idx
)
185 if (auto StmtElem
= (*B
)[Idx
].getAs
<CFGStmt
>())
186 if (StmtElem
->getStmt() == E
)
190 return ADC
->getManager()->getStackFrame(ADC
, LCtx
, E
, B
, BlockCount
, Idx
);
194 *CallEvent::getParameterLocation(unsigned Index
, unsigned BlockCount
) const {
195 const StackFrameContext
*SFC
= getCalleeStackFrame(BlockCount
);
196 // We cannot construct a VarRegion without a stack frame.
200 const ParamVarRegion
*PVR
=
201 State
->getStateManager().getRegionManager().getParamVarRegion(
202 getOriginExpr(), Index
, SFC
);
206 /// Returns true if a type is a pointer-to-const or reference-to-const
207 /// with no further indirection.
208 static bool isPointerToConst(QualType Ty
) {
209 QualType PointeeTy
= Ty
->getPointeeType();
210 if (PointeeTy
== QualType())
212 if (!PointeeTy
.isConstQualified())
214 if (PointeeTy
->isAnyPointerType())
219 // Try to retrieve the function declaration and find the function parameter
220 // types which are pointers/references to a non-pointer const.
221 // We will not invalidate the corresponding argument regions.
222 static void findPtrToConstParams(llvm::SmallSet
<unsigned, 4> &PreserveArgs
,
223 const CallEvent
&Call
) {
225 for (CallEvent::param_type_iterator I
= Call
.param_type_begin(),
226 E
= Call
.param_type_end();
227 I
!= E
; ++I
, ++Idx
) {
228 if (isPointerToConst(*I
))
229 PreserveArgs
.insert(Idx
);
233 ProgramStateRef
CallEvent::invalidateRegions(unsigned BlockCount
,
234 ProgramStateRef Orig
) const {
235 ProgramStateRef Result
= (Orig
? Orig
: getState());
237 // Don't invalidate anything if the callee is marked pure/const.
238 if (const Decl
*callee
= getDecl())
239 if (callee
->hasAttr
<PureAttr
>() || callee
->hasAttr
<ConstAttr
>())
242 SmallVector
<SVal
, 8> ValuesToInvalidate
;
243 RegionAndSymbolInvalidationTraits ETraits
;
245 getExtraInvalidatedValues(ValuesToInvalidate
, &ETraits
);
247 // Indexes of arguments whose values will be preserved by the call.
248 llvm::SmallSet
<unsigned, 4> PreserveArgs
;
249 if (!argumentsMayEscape())
250 findPtrToConstParams(PreserveArgs
, *this);
252 for (unsigned Idx
= 0, Count
= getNumArgs(); Idx
!= Count
; ++Idx
) {
253 // Mark this region for invalidation. We batch invalidate regions
254 // below for efficiency.
255 if (PreserveArgs
.count(Idx
))
256 if (const MemRegion
*MR
= getArgSVal(Idx
).getAsRegion())
257 ETraits
.setTrait(MR
->getBaseRegion(),
258 RegionAndSymbolInvalidationTraits::TK_PreserveContents
);
259 // TODO: Factor this out + handle the lower level const pointers.
261 ValuesToInvalidate
.push_back(getArgSVal(Idx
));
263 // If a function accepts an object by argument (which would of course be a
264 // temporary that isn't lifetime-extended), invalidate the object itself,
265 // not only other objects reachable from it. This is necessary because the
266 // destructor has access to the temporary object after the call.
267 // TODO: Support placement arguments once we start
268 // constructing them directly.
269 // TODO: This is unnecessary when there's no destructor, but that's
270 // currently hard to figure out.
271 if (getKind() != CE_CXXAllocator
)
272 if (isArgumentConstructedDirectly(Idx
))
273 if (auto AdjIdx
= getAdjustedParameterIndex(Idx
))
274 if (const TypedValueRegion
*TVR
=
275 getParameterLocation(*AdjIdx
, BlockCount
))
276 ValuesToInvalidate
.push_back(loc::MemRegionVal(TVR
));
279 // Invalidate designated regions using the batch invalidation API.
280 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
282 return Result
->invalidateRegions(ValuesToInvalidate
, getOriginExpr(),
283 BlockCount
, getLocationContext(),
284 /*CausedByPointerEscape*/ true,
285 /*Symbols=*/nullptr, this, &ETraits
);
288 ProgramPoint
CallEvent::getProgramPoint(bool IsPreVisit
,
289 const ProgramPointTag
*Tag
) const {
291 if (const Expr
*E
= getOriginExpr()) {
293 return PreStmt(E
, getLocationContext(), Tag
);
294 return PostStmt(E
, getLocationContext(), Tag
);
297 const Decl
*D
= getDecl();
298 assert(D
&& "Cannot get a program point without a statement or decl");
299 assert(ElemRef
.getParent() &&
300 "Cannot get a program point without a CFGElementRef");
302 SourceLocation Loc
= getSourceRange().getBegin();
304 return PreImplicitCall(D
, Loc
, getLocationContext(), ElemRef
, Tag
);
305 return PostImplicitCall(D
, Loc
, getLocationContext(), ElemRef
, Tag
);
308 SVal
CallEvent::getArgSVal(unsigned Index
) const {
309 const Expr
*ArgE
= getArgExpr(Index
);
312 return getSVal(ArgE
);
315 SourceRange
CallEvent::getArgSourceRange(unsigned Index
) const {
316 const Expr
*ArgE
= getArgExpr(Index
);
319 return ArgE
->getSourceRange();
322 SVal
CallEvent::getReturnValue() const {
323 const Expr
*E
= getOriginExpr();
325 return UndefinedVal();
329 LLVM_DUMP_METHOD
void CallEvent::dump() const { dump(llvm::errs()); }
331 void CallEvent::dump(raw_ostream
&Out
) const {
332 ASTContext
&Ctx
= getState()->getStateManager().getContext();
333 if (const Expr
*E
= getOriginExpr()) {
334 E
->printPretty(Out
, nullptr, Ctx
.getPrintingPolicy());
338 if (const Decl
*D
= getDecl()) {
340 D
->print(Out
, Ctx
.getPrintingPolicy());
344 Out
<< "Unknown call (type " << getKindAsString() << ")";
347 bool CallEvent::isCallStmt(const Stmt
*S
) {
348 return isa
<CallExpr
, ObjCMessageExpr
, CXXConstructExpr
, CXXNewExpr
>(S
);
351 QualType
CallEvent::getDeclaredResultType(const Decl
*D
) {
353 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
))
354 return FD
->getReturnType();
355 if (const auto *MD
= dyn_cast
<ObjCMethodDecl
>(D
))
356 return MD
->getReturnType();
357 if (const auto *BD
= dyn_cast
<BlockDecl
>(D
)) {
358 // Blocks are difficult because the return type may not be stored in the
359 // BlockDecl itself. The AST should probably be enhanced, but for now we
360 // just do what we can.
361 // If the block is declared without an explicit argument list, the
362 // signature-as-written just includes the return type, not the entire
364 // FIXME: All blocks should have signatures-as-written, even if the return
365 // type is inferred. (That's signified with a dependent result type.)
366 if (const TypeSourceInfo
*TSI
= BD
->getSignatureAsWritten()) {
367 QualType Ty
= TSI
->getType();
368 if (const FunctionType
*FT
= Ty
->getAs
<FunctionType
>())
369 Ty
= FT
->getReturnType();
370 if (!Ty
->isDependentType())
377 llvm_unreachable("unknown callable kind");
380 bool CallEvent::isVariadic(const Decl
*D
) {
383 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
))
384 return FD
->isVariadic();
385 if (const auto *MD
= dyn_cast
<ObjCMethodDecl
>(D
))
386 return MD
->isVariadic();
387 if (const auto *BD
= dyn_cast
<BlockDecl
>(D
))
388 return BD
->isVariadic();
390 llvm_unreachable("unknown callable kind");
393 static bool isTransparentUnion(QualType T
) {
394 const RecordType
*UT
= T
->getAsUnionType();
395 return UT
&& UT
->getDecl()->hasAttr
<TransparentUnionAttr
>();
398 // In some cases, symbolic cases should be transformed before we associate
399 // them with parameters. This function incapsulates such cases.
400 static SVal
processArgument(SVal Value
, const Expr
*ArgumentExpr
,
401 const ParmVarDecl
*Parameter
, SValBuilder
&SVB
) {
402 QualType ParamType
= Parameter
->getType();
403 QualType ArgumentType
= ArgumentExpr
->getType();
405 // Transparent unions allow users to easily convert values of union field
406 // types into union-typed objects.
408 // Also, more importantly, they allow users to define functions with different
409 // different parameter types, substituting types matching transparent union
410 // field types with the union type itself.
412 // Here, we check specifically for latter cases and prevent binding
413 // field-typed values to union-typed regions.
414 if (isTransparentUnion(ParamType
) &&
415 // Let's check that we indeed trying to bind different types.
416 !isTransparentUnion(ArgumentType
)) {
417 BasicValueFactory
&BVF
= SVB
.getBasicValueFactory();
419 llvm::ImmutableList
<SVal
> CompoundSVals
= BVF
.getEmptySValList();
420 CompoundSVals
= BVF
.prependSVal(Value
, CompoundSVals
);
422 // Wrap it with compound value.
423 return SVB
.makeCompoundVal(ParamType
, CompoundSVals
);
429 /// Cast the argument value to the type of the parameter at the function
431 /// Returns the argument value if it didn't need a cast.
432 /// Or returns the cast argument if it needed a cast.
433 /// Or returns 'Unknown' if it would need a cast but the callsite and the
434 /// runtime definition don't match in terms of argument and parameter count.
435 static SVal
castArgToParamTypeIfNeeded(const CallEvent
&Call
, unsigned ArgIdx
,
436 SVal ArgVal
, SValBuilder
&SVB
) {
437 const FunctionDecl
*RTDecl
=
438 Call
.getRuntimeDefinition().getDecl()->getAsFunction();
439 const auto *CallExprDecl
= dyn_cast_or_null
<FunctionDecl
>(Call
.getDecl());
441 if (!RTDecl
|| !CallExprDecl
)
444 // The function decl of the Call (in the AST) will not have any parameter
445 // declarations, if it was 'only' declared without a prototype. However, the
446 // engine will find the appropriate runtime definition - basically a
447 // redeclaration, which has a function body (and a function prototype).
448 if (CallExprDecl
->hasPrototype() || !RTDecl
->hasPrototype())
451 // Only do this cast if the number arguments at the callsite matches with
452 // the parameters at the runtime definition.
453 if (Call
.getNumArgs() != RTDecl
->getNumParams())
456 const Expr
*ArgExpr
= Call
.getArgExpr(ArgIdx
);
457 const ParmVarDecl
*Param
= RTDecl
->getParamDecl(ArgIdx
);
458 return SVB
.evalCast(ArgVal
, Param
->getType(), ArgExpr
->getType());
461 static void addParameterValuesToBindings(const StackFrameContext
*CalleeCtx
,
462 CallEvent::BindingsTy
&Bindings
,
464 const CallEvent
&Call
,
465 ArrayRef
<ParmVarDecl
*> parameters
) {
466 MemRegionManager
&MRMgr
= SVB
.getRegionManager();
468 // If the function has fewer parameters than the call has arguments, we simply
469 // do not bind any values to them.
470 unsigned NumArgs
= Call
.getNumArgs();
472 ArrayRef
<ParmVarDecl
*>::iterator I
= parameters
.begin(), E
= parameters
.end();
473 for (; I
!= E
&& Idx
< NumArgs
; ++I
, ++Idx
) {
474 assert(*I
&& "Formal parameter has no decl?");
476 // TODO: Support allocator calls.
477 if (Call
.getKind() != CE_CXXAllocator
)
478 if (Call
.isArgumentConstructedDirectly(Call
.getASTArgumentIndex(Idx
)))
481 // TODO: Allocators should receive the correct size and possibly alignment,
482 // determined in compile-time but not represented as arg-expressions,
483 // which makes getArgSVal() fail and return UnknownVal.
484 SVal ArgVal
= Call
.getArgSVal(Idx
);
485 const Expr
*ArgExpr
= Call
.getArgExpr(Idx
);
487 if (ArgVal
.isUnknown())
490 // Cast the argument value to match the type of the parameter in some
492 ArgVal
= castArgToParamTypeIfNeeded(Call
, Idx
, ArgVal
, SVB
);
494 Loc ParamLoc
= SVB
.makeLoc(
495 MRMgr
.getParamVarRegion(Call
.getOriginExpr(), Idx
, CalleeCtx
));
497 std::make_pair(ParamLoc
, processArgument(ArgVal
, ArgExpr
, *I
, SVB
)));
500 // FIXME: Variadic arguments are not handled at all right now.
503 const ConstructionContext
*CallEvent::getConstructionContext() const {
504 const StackFrameContext
*StackFrame
= getCalleeStackFrame(0);
508 const CFGElement Element
= StackFrame
->getCallSiteCFGElement();
509 if (const auto Ctor
= Element
.getAs
<CFGConstructor
>()) {
510 return Ctor
->getConstructionContext();
513 if (const auto RecCall
= Element
.getAs
<CFGCXXRecordTypedCall
>()) {
514 return RecCall
->getConstructionContext();
520 const CallEventRef
<> CallEvent::getCaller() const {
521 const auto *CallLocationContext
= this->getLocationContext();
522 if (!CallLocationContext
|| CallLocationContext
->inTopFrame())
525 const auto *CallStackFrameContext
= CallLocationContext
->getStackFrame();
526 if (!CallStackFrameContext
)
529 CallEventManager
&CEMgr
= State
->getStateManager().getCallEventManager();
530 return CEMgr
.getCaller(CallStackFrameContext
, State
);
533 bool CallEvent::isCalledFromSystemHeader() const {
534 if (const CallEventRef
<> Caller
= getCaller())
535 return Caller
->isInSystemHeader();
540 std::optional
<SVal
> CallEvent::getReturnValueUnderConstruction() const {
541 const auto *CC
= getConstructionContext();
545 EvalCallOptions CallOpts
;
546 ExprEngine
&Engine
= getState()->getStateManager().getOwningEngine();
547 SVal RetVal
= Engine
.computeObjectUnderConstruction(
548 getOriginExpr(), getState(), &Engine
.getBuilderContext(),
549 getLocationContext(), CC
, CallOpts
);
553 ArrayRef
<ParmVarDecl
*> AnyFunctionCall::parameters() const {
554 const FunctionDecl
*D
= getDecl();
557 return D
->parameters();
560 RuntimeDefinition
AnyFunctionCall::getRuntimeDefinition() const {
561 const FunctionDecl
*FD
= getDecl();
565 // Note that the AnalysisDeclContext will have the FunctionDecl with
566 // the definition (if one exists).
567 AnalysisDeclContext
*AD
=
568 getLocationContext()->getAnalysisDeclContext()->
569 getManager()->getContext(FD
);
570 bool IsAutosynthesized
;
571 Stmt
* Body
= AD
->getBody(IsAutosynthesized
);
573 if (IsAutosynthesized
)
574 llvm::dbgs() << "Using autosynthesized body for " << FD
->getName()
578 ExprEngine
&Engine
= getState()->getStateManager().getOwningEngine();
579 cross_tu::CrossTranslationUnitContext
&CTUCtx
=
580 *Engine
.getCrossTranslationUnitContext();
582 AnalyzerOptions
&Opts
= Engine
.getAnalysisManager().options
;
585 const Decl
* Decl
= AD
->getDecl();
586 if (Opts
.IsNaiveCTUEnabled
&& CTUCtx
.isImportedAsNew(Decl
)) {
587 // A newly created definition, but we had error(s) during the import.
588 if (CTUCtx
.hasError(Decl
))
590 return RuntimeDefinition(Decl
, /*Foreign=*/true);
592 return RuntimeDefinition(Decl
, /*Foreign=*/false);
595 // Try to get CTU definition only if CTUDir is provided.
596 if (!Opts
.IsNaiveCTUEnabled
)
599 llvm::Expected
<const FunctionDecl
*> CTUDeclOrError
=
600 CTUCtx
.getCrossTUDefinition(FD
, Opts
.CTUDir
, Opts
.CTUIndexName
,
601 Opts
.DisplayCTUProgress
);
603 if (!CTUDeclOrError
) {
604 handleAllErrors(CTUDeclOrError
.takeError(),
605 [&](const cross_tu::IndexError
&IE
) {
606 CTUCtx
.emitCrossTUDiagnostics(IE
);
611 return RuntimeDefinition(*CTUDeclOrError
, /*Foreign=*/true);
614 void AnyFunctionCall::getInitialStackFrameContents(
615 const StackFrameContext
*CalleeCtx
,
616 BindingsTy
&Bindings
) const {
617 const auto *D
= cast
<FunctionDecl
>(CalleeCtx
->getDecl());
618 SValBuilder
&SVB
= getState()->getStateManager().getSValBuilder();
619 addParameterValuesToBindings(CalleeCtx
, Bindings
, SVB
, *this,
623 bool AnyFunctionCall::argumentsMayEscape() const {
624 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
627 const FunctionDecl
*D
= getDecl();
631 const IdentifierInfo
*II
= D
->getIdentifier();
635 // This set of "escaping" APIs is
637 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
638 // value into thread local storage. The value can later be retrieved with
639 // 'void *ptheread_getspecific(pthread_key)'. So even thought the
640 // parameter is 'const void *', the region escapes through the call.
641 if (II
->isStr("pthread_setspecific"))
644 // - xpc_connection_set_context stores a value which can be retrieved later
645 // with xpc_connection_get_context.
646 if (II
->isStr("xpc_connection_set_context"))
649 // - funopen - sets a buffer for future IO calls.
650 if (II
->isStr("funopen"))
653 // - __cxa_demangle - can reallocate memory and can return the pointer to
655 if (II
->isStr("__cxa_demangle"))
658 StringRef FName
= II
->getName();
660 // - CoreFoundation functions that end with "NoCopy" can free a passed-in
661 // buffer even if it is const.
662 if (FName
.ends_with("NoCopy"))
665 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
666 // be deallocated by NSMapRemove.
667 if (FName
.starts_with("NS") && FName
.contains("Insert"))
670 // - Many CF containers allow objects to escape through custom
671 // allocators/deallocators upon container construction. (PR12101)
672 if (FName
.starts_with("CF") || FName
.starts_with("CG")) {
673 return StrInStrNoCase(FName
, "InsertValue") != StringRef::npos
||
674 StrInStrNoCase(FName
, "AddValue") != StringRef::npos
||
675 StrInStrNoCase(FName
, "SetValue") != StringRef::npos
||
676 StrInStrNoCase(FName
, "WithData") != StringRef::npos
||
677 StrInStrNoCase(FName
, "AppendValue") != StringRef::npos
||
678 StrInStrNoCase(FName
, "SetAttribute") != StringRef::npos
;
684 const FunctionDecl
*SimpleFunctionCall::getDecl() const {
685 const FunctionDecl
*D
= getOriginExpr()->getDirectCallee();
689 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
692 const FunctionDecl
*CXXInstanceCall::getDecl() const {
693 const auto *CE
= cast_or_null
<CallExpr
>(getOriginExpr());
695 return AnyFunctionCall::getDecl();
697 const FunctionDecl
*D
= CE
->getDirectCallee();
701 return getSVal(CE
->getCallee()).getAsFunctionDecl();
704 void CXXInstanceCall::getExtraInvalidatedValues(
705 ValueList
&Values
, RegionAndSymbolInvalidationTraits
*ETraits
) const {
706 SVal ThisVal
= getCXXThisVal();
707 Values
.push_back(ThisVal
);
709 // Don't invalidate if the method is const and there are no mutable fields.
710 if (const auto *D
= cast_or_null
<CXXMethodDecl
>(getDecl())) {
713 // Get the record decl for the class of 'This'. D->getParent() may return a
714 // base class decl, rather than the class of the instance which needs to be
715 // checked for mutable fields.
716 // TODO: We might as well look at the dynamic type of the object.
717 const Expr
*Ex
= getCXXThisExpr()->IgnoreParenBaseCasts();
718 QualType T
= Ex
->getType();
719 if (T
->isPointerType()) // Arrow or implicit-this syntax?
720 T
= T
->getPointeeType();
721 const CXXRecordDecl
*ParentRecord
= T
->getAsCXXRecordDecl();
722 assert(ParentRecord
);
723 if (ParentRecord
->hasMutableFields())
726 const MemRegion
*ThisRegion
= ThisVal
.getAsRegion();
730 ETraits
->setTrait(ThisRegion
->getBaseRegion(),
731 RegionAndSymbolInvalidationTraits::TK_PreserveContents
);
735 SVal
CXXInstanceCall::getCXXThisVal() const {
736 const Expr
*Base
= getCXXThisExpr();
737 // FIXME: This doesn't handle an overloaded ->* operator.
738 SVal ThisVal
= Base
? getSVal(Base
) : UnknownVal();
740 if (isa
<NonLoc
>(ThisVal
)) {
741 SValBuilder
&SVB
= getState()->getStateManager().getSValBuilder();
742 QualType OriginalTy
= ThisVal
.getType(SVB
.getContext());
743 return SVB
.evalCast(ThisVal
, Base
->getType(), OriginalTy
);
746 assert(ThisVal
.isUnknownOrUndef() || isa
<Loc
>(ThisVal
));
750 RuntimeDefinition
CXXInstanceCall::getRuntimeDefinition() const {
751 // Do we have a decl at all?
752 const Decl
*D
= getDecl();
756 // If the method is non-virtual, we know we can inline it.
757 const auto *MD
= cast
<CXXMethodDecl
>(D
);
758 if (!MD
->isVirtual())
759 return AnyFunctionCall::getRuntimeDefinition();
761 // Do we know the implicit 'this' object being called?
762 const MemRegion
*R
= getCXXThisVal().getAsRegion();
766 // Do we know anything about the type of 'this'?
767 DynamicTypeInfo DynType
= getDynamicTypeInfo(getState(), R
);
768 if (!DynType
.isValid())
771 // Is the type a C++ class? (This is mostly a defensive check.)
772 QualType RegionType
= DynType
.getType()->getPointeeType();
773 assert(!RegionType
.isNull() && "DynamicTypeInfo should always be a pointer.");
775 const CXXRecordDecl
*RD
= RegionType
->getAsCXXRecordDecl();
776 if (!RD
|| !RD
->hasDefinition())
779 // Find the decl for this method in that class.
780 const CXXMethodDecl
*Result
= MD
->getCorrespondingMethodInClass(RD
, true);
782 // We might not even get the original statically-resolved method due to
783 // some particularly nasty casting (e.g. casts to sister classes).
784 // However, we should at least be able to search up and down our own class
785 // hierarchy, and some real bugs have been caught by checking this.
786 assert(!RD
->isDerivedFrom(MD
->getParent()) && "Couldn't find known method");
788 // FIXME: This is checking that our DynamicTypeInfo is at least as good as
789 // the static type. However, because we currently don't update
790 // DynamicTypeInfo when an object is cast, we can't actually be sure the
791 // DynamicTypeInfo is up to date. This assert should be re-enabled once
794 // assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
799 // Does the decl that we found have an implementation?
800 const FunctionDecl
*Definition
;
801 if (!Result
->hasBody(Definition
)) {
802 if (!DynType
.canBeASubClass())
803 return AnyFunctionCall::getRuntimeDefinition();
807 // We found a definition. If we're not sure that this devirtualization is
808 // actually what will happen at runtime, make sure to provide the region so
809 // that ExprEngine can decide what to do with it.
810 if (DynType
.canBeASubClass())
811 return RuntimeDefinition(Definition
, R
->StripCasts());
812 return RuntimeDefinition(Definition
, /*DispatchRegion=*/nullptr);
815 void CXXInstanceCall::getInitialStackFrameContents(
816 const StackFrameContext
*CalleeCtx
,
817 BindingsTy
&Bindings
) const {
818 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx
, Bindings
);
820 // Handle the binding of 'this' in the new stack frame.
821 SVal ThisVal
= getCXXThisVal();
822 if (!ThisVal
.isUnknown()) {
823 ProgramStateManager
&StateMgr
= getState()->getStateManager();
824 SValBuilder
&SVB
= StateMgr
.getSValBuilder();
826 const auto *MD
= cast
<CXXMethodDecl
>(CalleeCtx
->getDecl());
827 Loc ThisLoc
= SVB
.getCXXThis(MD
, CalleeCtx
);
829 // If we devirtualized to a different member function, we need to make sure
830 // we have the proper layering of CXXBaseObjectRegions.
831 if (MD
->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
832 ASTContext
&Ctx
= SVB
.getContext();
833 const CXXRecordDecl
*Class
= MD
->getParent();
834 QualType Ty
= Ctx
.getPointerType(Ctx
.getRecordType(Class
));
836 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
837 std::optional
<SVal
> V
=
838 StateMgr
.getStoreManager().evalBaseToDerived(ThisVal
, Ty
);
840 // We might have suffered some sort of placement new earlier, so
841 // we're constructing in a completely unexpected storage.
842 // Fall back to a generic pointer cast for this-value.
843 const CXXMethodDecl
*StaticMD
= cast
<CXXMethodDecl
>(getDecl());
844 const CXXRecordDecl
*StaticClass
= StaticMD
->getParent();
845 QualType StaticTy
= Ctx
.getPointerType(Ctx
.getRecordType(StaticClass
));
846 ThisVal
= SVB
.evalCast(ThisVal
, Ty
, StaticTy
);
851 if (!ThisVal
.isUnknown())
852 Bindings
.push_back(std::make_pair(ThisLoc
, ThisVal
));
856 const Expr
*CXXMemberCall::getCXXThisExpr() const {
857 return getOriginExpr()->getImplicitObjectArgument();
860 RuntimeDefinition
CXXMemberCall::getRuntimeDefinition() const {
861 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
862 // id-expression in the class member access expression is a qualified-id,
863 // that function is called. Otherwise, its final overrider in the dynamic type
864 // of the object expression is called.
865 if (const auto *ME
= dyn_cast
<MemberExpr
>(getOriginExpr()->getCallee()))
866 if (ME
->hasQualifier())
867 return AnyFunctionCall::getRuntimeDefinition();
869 return CXXInstanceCall::getRuntimeDefinition();
872 const Expr
*CXXMemberOperatorCall::getCXXThisExpr() const {
873 return getOriginExpr()->getArg(0);
876 const BlockDataRegion
*BlockCall::getBlockRegion() const {
877 const Expr
*Callee
= getOriginExpr()->getCallee();
878 const MemRegion
*DataReg
= getSVal(Callee
).getAsRegion();
880 return dyn_cast_or_null
<BlockDataRegion
>(DataReg
);
883 ArrayRef
<ParmVarDecl
*> BlockCall::parameters() const {
884 const BlockDecl
*D
= getDecl();
887 return D
->parameters();
890 void BlockCall::getExtraInvalidatedValues(ValueList
&Values
,
891 RegionAndSymbolInvalidationTraits
*ETraits
) const {
892 // FIXME: This also needs to invalidate captured globals.
893 if (const MemRegion
*R
= getBlockRegion())
894 Values
.push_back(loc::MemRegionVal(R
));
897 void BlockCall::getInitialStackFrameContents(const StackFrameContext
*CalleeCtx
,
898 BindingsTy
&Bindings
) const {
899 SValBuilder
&SVB
= getState()->getStateManager().getSValBuilder();
900 ArrayRef
<ParmVarDecl
*> Params
;
901 if (isConversionFromLambda()) {
902 auto *LambdaOperatorDecl
= cast
<CXXMethodDecl
>(CalleeCtx
->getDecl());
903 Params
= LambdaOperatorDecl
->parameters();
905 // For blocks converted from a C++ lambda, the callee declaration is the
906 // operator() method on the lambda so we bind "this" to
907 // the lambda captured by the block.
908 const VarRegion
*CapturedLambdaRegion
= getRegionStoringCapturedLambda();
909 SVal ThisVal
= loc::MemRegionVal(CapturedLambdaRegion
);
910 Loc ThisLoc
= SVB
.getCXXThis(LambdaOperatorDecl
, CalleeCtx
);
911 Bindings
.push_back(std::make_pair(ThisLoc
, ThisVal
));
913 Params
= cast
<BlockDecl
>(CalleeCtx
->getDecl())->parameters();
916 addParameterValuesToBindings(CalleeCtx
, Bindings
, SVB
, *this,
920 SVal
AnyCXXConstructorCall::getCXXThisVal() const {
922 return loc::MemRegionVal(static_cast<const MemRegion
*>(Data
));
926 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList
&Values
,
927 RegionAndSymbolInvalidationTraits
*ETraits
) const {
928 SVal V
= getCXXThisVal();
929 if (SymbolRef Sym
= V
.getAsSymbol(true))
930 ETraits
->setTrait(Sym
,
931 RegionAndSymbolInvalidationTraits::TK_SuppressEscape
);
935 void AnyCXXConstructorCall::getInitialStackFrameContents(
936 const StackFrameContext
*CalleeCtx
,
937 BindingsTy
&Bindings
) const {
938 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx
, Bindings
);
940 SVal ThisVal
= getCXXThisVal();
941 if (!ThisVal
.isUnknown()) {
942 SValBuilder
&SVB
= getState()->getStateManager().getSValBuilder();
943 const auto *MD
= cast
<CXXMethodDecl
>(CalleeCtx
->getDecl());
944 Loc ThisLoc
= SVB
.getCXXThis(MD
, CalleeCtx
);
945 Bindings
.push_back(std::make_pair(ThisLoc
, ThisVal
));
949 const StackFrameContext
*
950 CXXInheritedConstructorCall::getInheritingStackFrame() const {
951 const StackFrameContext
*SFC
= getLocationContext()->getStackFrame();
952 while (isa
<CXXInheritedCtorInitExpr
>(SFC
->getCallSite()))
953 SFC
= SFC
->getParent()->getStackFrame();
957 SVal
CXXDestructorCall::getCXXThisVal() const {
959 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data
).getPointer());
963 RuntimeDefinition
CXXDestructorCall::getRuntimeDefinition() const {
964 // Base destructors are always called non-virtually.
965 // Skip CXXInstanceCall's devirtualization logic in this case.
966 if (isBaseDestructor())
967 return AnyFunctionCall::getRuntimeDefinition();
969 return CXXInstanceCall::getRuntimeDefinition();
972 ArrayRef
<ParmVarDecl
*> ObjCMethodCall::parameters() const {
973 const ObjCMethodDecl
*D
= getDecl();
976 return D
->parameters();
979 void ObjCMethodCall::getExtraInvalidatedValues(
980 ValueList
&Values
, RegionAndSymbolInvalidationTraits
*ETraits
) const {
982 // If the method call is a setter for property known to be backed by
983 // an instance variable, don't invalidate the entire receiver, just
984 // the storage for that instance variable.
985 if (const ObjCPropertyDecl
*PropDecl
= getAccessedProperty()) {
986 if (const ObjCIvarDecl
*PropIvar
= PropDecl
->getPropertyIvarDecl()) {
987 SVal IvarLVal
= getState()->getLValue(PropIvar
, getReceiverSVal());
988 if (const MemRegion
*IvarRegion
= IvarLVal
.getAsRegion()) {
991 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion
);
994 RegionAndSymbolInvalidationTraits::TK_SuppressEscape
);
995 Values
.push_back(IvarLVal
);
1001 Values
.push_back(getReceiverSVal());
1004 SVal
ObjCMethodCall::getReceiverSVal() const {
1005 // FIXME: Is this the best way to handle class receivers?
1006 if (!isInstanceMessage())
1007 return UnknownVal();
1009 if (const Expr
*RecE
= getOriginExpr()->getInstanceReceiver())
1010 return getSVal(RecE
);
1012 // An instance message with no expression means we are sending to super.
1013 // In this case the object reference is the same as 'self'.
1014 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance
);
1015 SVal SelfVal
= getState()->getSelfSVal(getLocationContext());
1016 assert(SelfVal
.isValid() && "Calling super but not in ObjC method");
1020 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
1021 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance
||
1022 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass
)
1025 if (!isInstanceMessage())
1028 SVal RecVal
= getSVal(getOriginExpr()->getInstanceReceiver());
1029 SVal SelfVal
= getState()->getSelfSVal(getLocationContext());
1031 return (RecVal
== SelfVal
);
1034 SourceRange
ObjCMethodCall::getSourceRange() const {
1035 switch (getMessageKind()) {
1037 return getOriginExpr()->getSourceRange();
1038 case OCM_PropertyAccess
:
1040 return getContainingPseudoObjectExpr()->getSourceRange();
1042 llvm_unreachable("unknown message kind");
1045 using ObjCMessageDataTy
= llvm::PointerIntPair
<const PseudoObjectExpr
*, 2>;
1047 const PseudoObjectExpr
*ObjCMethodCall::getContainingPseudoObjectExpr() const {
1048 assert(Data
&& "Lazy lookup not yet performed.");
1049 assert(getMessageKind() != OCM_Message
&& "Explicit message send.");
1050 return ObjCMessageDataTy::getFromOpaqueValue(Data
).getPointer();
1054 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr
*POE
) {
1055 const Expr
*Syntactic
= POE
->getSyntacticForm()->IgnoreParens();
1057 // This handles the funny case of assigning to the result of a getter.
1058 // This can happen if the getter returns a non-const reference.
1059 if (const auto *BO
= dyn_cast
<BinaryOperator
>(Syntactic
))
1060 Syntactic
= BO
->getLHS()->IgnoreParens();
1065 ObjCMessageKind
ObjCMethodCall::getMessageKind() const {
1067 // Find the parent, ignoring implicit casts.
1068 const ParentMap
&PM
= getLocationContext()->getParentMap();
1069 const Stmt
*S
= PM
.getParentIgnoreParenCasts(getOriginExpr());
1071 // Check if parent is a PseudoObjectExpr.
1072 if (const auto *POE
= dyn_cast_or_null
<PseudoObjectExpr
>(S
)) {
1073 const Expr
*Syntactic
= getSyntacticFromForPseudoObjectExpr(POE
);
1076 switch (Syntactic
->getStmtClass()) {
1077 case Stmt::ObjCPropertyRefExprClass
:
1078 K
= OCM_PropertyAccess
;
1080 case Stmt::ObjCSubscriptRefExprClass
:
1084 // FIXME: Can this ever happen?
1089 if (K
!= OCM_Message
) {
1090 const_cast<ObjCMethodCall
*>(this)->Data
1091 = ObjCMessageDataTy(POE
, K
).getOpaqueValue();
1092 assert(getMessageKind() == K
);
1097 const_cast<ObjCMethodCall
*>(this)->Data
1098 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1099 assert(getMessageKind() == OCM_Message
);
1103 ObjCMessageDataTy Info
= ObjCMessageDataTy::getFromOpaqueValue(Data
);
1104 if (!Info
.getPointer())
1106 return static_cast<ObjCMessageKind
>(Info
.getInt());
1109 const ObjCPropertyDecl
*ObjCMethodCall::getAccessedProperty() const {
1110 // Look for properties accessed with property syntax (foo.bar = ...)
1111 if (getMessageKind() == OCM_PropertyAccess
) {
1112 const PseudoObjectExpr
*POE
= getContainingPseudoObjectExpr();
1113 assert(POE
&& "Property access without PseudoObjectExpr?");
1115 const Expr
*Syntactic
= getSyntacticFromForPseudoObjectExpr(POE
);
1116 auto *RefExpr
= cast
<ObjCPropertyRefExpr
>(Syntactic
);
1118 if (RefExpr
->isExplicitProperty())
1119 return RefExpr
->getExplicitProperty();
1122 // Look for properties accessed with method syntax ([foo setBar:...]).
1123 const ObjCMethodDecl
*MD
= getDecl();
1124 if (!MD
|| !MD
->isPropertyAccessor())
1127 // Note: This is potentially quite slow.
1128 return MD
->findPropertyDecl();
1131 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl
*IDecl
,
1132 Selector Sel
) const {
1134 AnalysisManager
&AMgr
=
1135 getState()->getStateManager().getOwningEngine().getAnalysisManager();
1136 // If the class interface is declared inside the main file, assume it is not
1138 // TODO: It could actually be subclassed if the subclass is private as well.
1139 // This is probably very rare.
1140 SourceLocation InterfLoc
= IDecl
->getEndOfDefinitionLoc();
1141 if (InterfLoc
.isValid() && AMgr
.isInCodeFile(InterfLoc
))
1144 // Assume that property accessors are not overridden.
1145 if (getMessageKind() == OCM_PropertyAccess
)
1148 // We assume that if the method is public (declared outside of main file) or
1149 // has a parent which publicly declares the method, the method could be
1150 // overridden in a subclass.
1152 // Find the first declaration in the class hierarchy that declares
1154 ObjCMethodDecl
*D
= nullptr;
1156 D
= IDecl
->lookupMethod(Sel
, true);
1158 // Cannot find a public definition.
1162 // If outside the main file,
1163 if (D
->getLocation().isValid() && !AMgr
.isInCodeFile(D
->getLocation()))
1166 if (D
->isOverriding()) {
1167 // Search in the superclass on the next iteration.
1168 IDecl
= D
->getClassInterface();
1172 IDecl
= IDecl
->getSuperClass();
1182 llvm_unreachable("The while loop should always terminate.");
1185 static const ObjCMethodDecl
*findDefiningRedecl(const ObjCMethodDecl
*MD
) {
1189 // Find the redeclaration that defines the method.
1190 if (!MD
->hasBody()) {
1191 for (auto *I
: MD
->redecls())
1193 MD
= cast
<ObjCMethodDecl
>(I
);
1198 struct PrivateMethodKey
{
1199 const ObjCInterfaceDecl
*Interface
;
1200 Selector LookupSelector
;
1205 template <> struct DenseMapInfo
<PrivateMethodKey
> {
1206 using InterfaceInfo
= DenseMapInfo
<const ObjCInterfaceDecl
*>;
1207 using SelectorInfo
= DenseMapInfo
<Selector
>;
1209 static inline PrivateMethodKey
getEmptyKey() {
1210 return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1213 static inline PrivateMethodKey
getTombstoneKey() {
1214 return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1218 static unsigned getHashValue(const PrivateMethodKey
&Key
) {
1219 return llvm::hash_combine(
1220 llvm::hash_code(InterfaceInfo::getHashValue(Key
.Interface
)),
1221 llvm::hash_code(SelectorInfo::getHashValue(Key
.LookupSelector
)),
1225 static bool isEqual(const PrivateMethodKey
&LHS
,
1226 const PrivateMethodKey
&RHS
) {
1227 return InterfaceInfo::isEqual(LHS
.Interface
, RHS
.Interface
) &&
1228 SelectorInfo::isEqual(LHS
.LookupSelector
, RHS
.LookupSelector
) &&
1229 LHS
.IsClassMethod
== RHS
.IsClassMethod
;
1232 } // end namespace llvm
1234 static const ObjCMethodDecl
*
1235 lookupRuntimeDefinition(const ObjCInterfaceDecl
*Interface
,
1236 Selector LookupSelector
, bool InstanceMethod
) {
1237 // Repeatedly calling lookupPrivateMethod() is expensive, especially
1238 // when in many cases it returns null. We cache the results so
1239 // that repeated queries on the same ObjCIntefaceDecl and Selector
1240 // don't incur the same cost. On some test cases, we can see the
1241 // same query being issued thousands of times.
1243 // NOTE: This cache is essentially a "global" variable, but it
1244 // only gets lazily created when we get here. The value of the
1245 // cache probably comes from it being global across ExprEngines,
1246 // where the same queries may get issued. If we are worried about
1247 // concurrency, or possibly loading/unloading ASTs, etc., we may
1248 // need to revisit this someday. In terms of memory, this table
1249 // stays around until clang quits, which also may be bad if we
1250 // need to release memory.
1251 using PrivateMethodCache
=
1252 llvm::DenseMap
<PrivateMethodKey
, std::optional
<const ObjCMethodDecl
*>>;
1254 static PrivateMethodCache PMC
;
1255 std::optional
<const ObjCMethodDecl
*> &Val
=
1256 PMC
[{Interface
, LookupSelector
, InstanceMethod
}];
1258 // Query lookupPrivateMethod() if the cache does not hit.
1260 Val
= Interface
->lookupPrivateMethod(LookupSelector
, InstanceMethod
);
1263 // Query 'lookupMethod' as a backup.
1264 Val
= Interface
->lookupMethod(LookupSelector
, InstanceMethod
);
1271 RuntimeDefinition
ObjCMethodCall::getRuntimeDefinition() const {
1272 const ObjCMessageExpr
*E
= getOriginExpr();
1274 Selector Sel
= E
->getSelector();
1276 if (E
->isInstanceMessage()) {
1277 // Find the receiver type.
1278 const ObjCObjectType
*ReceiverT
= nullptr;
1279 bool CanBeSubClassed
= false;
1280 bool LookingForInstanceMethod
= true;
1281 QualType SupersType
= E
->getSuperType();
1282 const MemRegion
*Receiver
= nullptr;
1284 if (!SupersType
.isNull()) {
1285 // The receiver is guaranteed to be 'super' in this case.
1286 // Super always means the type of immediate predecessor to the method
1287 // where the call occurs.
1288 ReceiverT
= cast
<ObjCObjectPointerType
>(SupersType
)->getObjectType();
1290 Receiver
= getReceiverSVal().getAsRegion();
1294 DynamicTypeInfo DTI
= getDynamicTypeInfo(getState(), Receiver
);
1295 if (!DTI
.isValid()) {
1296 assert(isa
<AllocaRegion
>(Receiver
) &&
1297 "Unhandled untyped region class!");
1301 QualType DynType
= DTI
.getType();
1302 CanBeSubClassed
= DTI
.canBeASubClass();
1304 const auto *ReceiverDynT
=
1305 dyn_cast
<ObjCObjectPointerType
>(DynType
.getCanonicalType());
1308 ReceiverT
= ReceiverDynT
->getObjectType();
1310 // It can be actually class methods called with Class object as a
1311 // receiver. This type of messages is treated by the compiler as
1312 // instance (not class).
1313 if (ReceiverT
->isObjCClass()) {
1315 SVal SelfVal
= getState()->getSelfSVal(getLocationContext());
1316 // For [self classMethod], return compiler visible declaration.
1317 if (Receiver
== SelfVal
.getAsRegion()) {
1318 return RuntimeDefinition(findDefiningRedecl(E
->getMethodDecl()));
1321 // Otherwise, let's check if we know something about the type
1322 // inside of this class object.
1323 if (SymbolRef ReceiverSym
= getReceiverSVal().getAsSymbol()) {
1324 DynamicTypeInfo DTI
=
1325 getClassObjectDynamicTypeInfo(getState(), ReceiverSym
);
1326 if (DTI
.isValid()) {
1327 // Let's use this type for lookup.
1329 cast
<ObjCObjectType
>(DTI
.getType().getCanonicalType());
1331 CanBeSubClassed
= DTI
.canBeASubClass();
1332 // And it should be a class method instead.
1333 LookingForInstanceMethod
= false;
1338 if (CanBeSubClassed
)
1339 if (ObjCInterfaceDecl
*IDecl
= ReceiverT
->getInterface())
1340 // Even if `DynamicTypeInfo` told us that it can be
1341 // not necessarily this type, but its descendants, we still want
1342 // to check again if this selector can be actually overridden.
1343 CanBeSubClassed
= canBeOverridenInSubclass(IDecl
, Sel
);
1347 // Lookup the instance method implementation.
1349 if (ObjCInterfaceDecl
*IDecl
= ReceiverT
->getInterface()) {
1350 const ObjCMethodDecl
*MD
=
1351 lookupRuntimeDefinition(IDecl
, Sel
, LookingForInstanceMethod
);
1353 if (MD
&& !MD
->hasBody())
1354 MD
= MD
->getCanonicalDecl();
1356 if (CanBeSubClassed
)
1357 return RuntimeDefinition(MD
, Receiver
);
1359 return RuntimeDefinition(MD
, nullptr);
1362 // This is a class method.
1363 // If we have type info for the receiver class, we are calling via
1365 if (ObjCInterfaceDecl
*IDecl
= E
->getReceiverInterface()) {
1366 // Find/Return the method implementation.
1367 return RuntimeDefinition(IDecl
->lookupPrivateClassMethod(Sel
));
1374 bool ObjCMethodCall::argumentsMayEscape() const {
1375 if (isInSystemHeader() && !isInstanceMessage()) {
1376 Selector Sel
= getSelector();
1377 if (Sel
.getNumArgs() == 1 &&
1378 Sel
.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1382 return CallEvent::argumentsMayEscape();
1385 void ObjCMethodCall::getInitialStackFrameContents(
1386 const StackFrameContext
*CalleeCtx
,
1387 BindingsTy
&Bindings
) const {
1388 const auto *D
= cast
<ObjCMethodDecl
>(CalleeCtx
->getDecl());
1389 SValBuilder
&SVB
= getState()->getStateManager().getSValBuilder();
1390 addParameterValuesToBindings(CalleeCtx
, Bindings
, SVB
, *this,
1393 SVal SelfVal
= getReceiverSVal();
1394 if (!SelfVal
.isUnknown()) {
1395 const VarDecl
*SelfD
= CalleeCtx
->getAnalysisDeclContext()->getSelfDecl();
1396 MemRegionManager
&MRMgr
= SVB
.getRegionManager();
1397 Loc SelfLoc
= SVB
.makeLoc(MRMgr
.getVarRegion(SelfD
, CalleeCtx
));
1398 Bindings
.push_back(std::make_pair(SelfLoc
, SelfVal
));
1403 CallEventManager::getSimpleCall(const CallExpr
*CE
, ProgramStateRef State
,
1404 const LocationContext
*LCtx
,
1405 CFGBlock::ConstCFGElementRef ElemRef
) {
1406 if (const auto *MCE
= dyn_cast
<CXXMemberCallExpr
>(CE
))
1407 return create
<CXXMemberCall
>(MCE
, State
, LCtx
, ElemRef
);
1409 if (const auto *OpCE
= dyn_cast
<CXXOperatorCallExpr
>(CE
)) {
1410 const FunctionDecl
*DirectCallee
= OpCE
->getDirectCallee();
1411 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(DirectCallee
))
1412 if (MD
->isInstance())
1413 return create
<CXXMemberOperatorCall
>(OpCE
, State
, LCtx
, ElemRef
);
1415 } else if (CE
->getCallee()->getType()->isBlockPointerType()) {
1416 return create
<BlockCall
>(CE
, State
, LCtx
, ElemRef
);
1419 // Otherwise, it's a normal function call, static member function call, or
1420 // something we can't reason about.
1421 return create
<SimpleFunctionCall
>(CE
, State
, LCtx
, ElemRef
);
1425 CallEventManager::getCaller(const StackFrameContext
*CalleeCtx
,
1426 ProgramStateRef State
) {
1427 const LocationContext
*ParentCtx
= CalleeCtx
->getParent();
1428 const LocationContext
*CallerCtx
= ParentCtx
->getStackFrame();
1429 CFGBlock::ConstCFGElementRef ElemRef
= {CalleeCtx
->getCallSiteBlock(),
1430 CalleeCtx
->getIndex()};
1431 assert(CallerCtx
&& "This should not be used for top-level stack frames");
1433 const Stmt
*CallSite
= CalleeCtx
->getCallSite();
1436 if (CallEventRef
<> Out
= getCall(CallSite
, State
, CallerCtx
, ElemRef
))
1439 SValBuilder
&SVB
= State
->getStateManager().getSValBuilder();
1440 const auto *Ctor
= cast
<CXXMethodDecl
>(CalleeCtx
->getDecl());
1441 Loc ThisPtr
= SVB
.getCXXThis(Ctor
, CalleeCtx
);
1442 SVal ThisVal
= State
->getSVal(ThisPtr
);
1444 if (const auto *CE
= dyn_cast
<CXXConstructExpr
>(CallSite
))
1445 return getCXXConstructorCall(CE
, ThisVal
.getAsRegion(), State
, CallerCtx
,
1447 else if (const auto *CIE
= dyn_cast
<CXXInheritedCtorInitExpr
>(CallSite
))
1448 return getCXXInheritedConstructorCall(CIE
, ThisVal
.getAsRegion(), State
,
1449 CallerCtx
, ElemRef
);
1451 // All other cases are handled by getCall.
1452 llvm_unreachable("This is not an inlineable statement");
1456 // Fall back to the CFG. The only thing we haven't handled yet is
1457 // destructors, though this could change in the future.
1458 const CFGBlock
*B
= CalleeCtx
->getCallSiteBlock();
1459 CFGElement E
= (*B
)[CalleeCtx
->getIndex()];
1460 assert((E
.getAs
<CFGImplicitDtor
>() || E
.getAs
<CFGTemporaryDtor
>()) &&
1461 "All other CFG elements should have exprs");
1463 SValBuilder
&SVB
= State
->getStateManager().getSValBuilder();
1464 const auto *Dtor
= cast
<CXXDestructorDecl
>(CalleeCtx
->getDecl());
1465 Loc ThisPtr
= SVB
.getCXXThis(Dtor
, CalleeCtx
);
1466 SVal ThisVal
= State
->getSVal(ThisPtr
);
1468 const Stmt
*Trigger
;
1469 if (std::optional
<CFGAutomaticObjDtor
> AutoDtor
=
1470 E
.getAs
<CFGAutomaticObjDtor
>())
1471 Trigger
= AutoDtor
->getTriggerStmt();
1472 else if (std::optional
<CFGDeleteDtor
> DeleteDtor
= E
.getAs
<CFGDeleteDtor
>())
1473 Trigger
= DeleteDtor
->getDeleteExpr();
1475 Trigger
= Dtor
->getBody();
1477 return getCXXDestructorCall(Dtor
, Trigger
, ThisVal
.getAsRegion(),
1478 E
.getAs
<CFGBaseDtor
>().has_value(), State
,
1479 CallerCtx
, ElemRef
);
1482 CallEventRef
<> CallEventManager::getCall(const Stmt
*S
, ProgramStateRef State
,
1483 const LocationContext
*LC
,
1484 CFGBlock::ConstCFGElementRef ElemRef
) {
1485 if (const auto *CE
= dyn_cast
<CallExpr
>(S
)) {
1486 return getSimpleCall(CE
, State
, LC
, ElemRef
);
1487 } else if (const auto *NE
= dyn_cast
<CXXNewExpr
>(S
)) {
1488 return getCXXAllocatorCall(NE
, State
, LC
, ElemRef
);
1489 } else if (const auto *DE
= dyn_cast
<CXXDeleteExpr
>(S
)) {
1490 return getCXXDeallocatorCall(DE
, State
, LC
, ElemRef
);
1491 } else if (const auto *ME
= dyn_cast
<ObjCMessageExpr
>(S
)) {
1492 return getObjCMethodCall(ME
, State
, LC
, ElemRef
);