1 //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This set of linked tablegen backends is responsible for emitting the bits
10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11 // and provides a set of types and functions for (more or less) direct access
12 // to the MVE instruction set, including the scalar shifts as well as the
13 // vector instructions.
15 // MVE's standard intrinsic functions are unusual in that they have a system of
16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18 // arguments you give it.
20 // This constrains the implementation strategies. The usual approach to making
21 // the user-facing functions polymorphic would be to either use
22 // __attribute__((overloadable)) to make a set of vaddq() functions that are
23 // all inline wrappers on the underlying clang builtins, or to define a single
24 // vaddq() macro which expands to an instance of _Generic.
26 // The inline-wrappers approach would work fine for most intrinsics, except for
27 // the ones that take an argument required to be a compile-time constant,
28 // because if you wrap an inline function around a call to a builtin, the
29 // constant nature of the argument is not passed through.
31 // The _Generic approach can be made to work with enough effort, but it takes a
32 // lot of machinery, because of the design feature of _Generic that even the
33 // untaken branches are required to pass all front-end validity checks such as
34 // type-correctness. You can work around that by nesting further _Generics all
35 // over the place to coerce things to the right type in untaken branches, but
36 // what you get out is complicated, hard to guarantee its correctness, and
37 // worst of all, gives _completely unreadable_ error messages if the user gets
38 // the types wrong for an intrinsic call.
40 // Therefore, my strategy is to introduce a new __attribute__ that allows a
41 // function to be mapped to a clang builtin even though it doesn't have the
42 // same name, and then declare all the user-facing MVE function names with that
43 // attribute, mapping each one directly to the clang builtin. And the
44 // polymorphic ones have __attribute__((overloadable)) as well. So once the
45 // compiler has resolved the overload, it knows the internal builtin ID of the
46 // selected function, and can check the immediate arguments against that; and
47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they
48 // get a completely clear error message showing all the declarations of that
49 // function in the header file and explaining why each one doesn't fit their
52 // The downside of this is that if every clang builtin has to correspond
53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the
54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56 // description for an MVE intrinsic has to contain a full description of the
57 // sequence of IRBuilder calls that clang will need to make.
59 //===----------------------------------------------------------------------===//
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/StringRef.h"
63 #include "llvm/ADT/StringSwitch.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/TableGen/Error.h"
67 #include "llvm/TableGen/Record.h"
68 #include "llvm/TableGen/StringToOffsetTable.h"
86 // -----------------------------------------------------------------------------
87 // A system of classes to represent all the types we'll need to deal with in
88 // the prototypes of intrinsics.
90 // Query methods include finding out the C name of a type; the "LLVM name" in
91 // the sense of a C++ code snippet that can be used in the codegen function;
92 // the suffix that represents the type in the ACLE intrinsic naming scheme
93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
94 // type is floating-point related (hence should be under #ifdef in the MVE
95 // header so that it isn't included in integer-only MVE mode); and the type's
96 // size in bits. Not all subtypes support all these queries.
100 enum class TypeKind
{
101 // Void appears as a return type (for store intrinsics, which are pure
102 // side-effect). It's also used as the parameter type in the Tablegen
103 // when an intrinsic doesn't need to come in various suffixed forms like
104 // vfooq_s8,vfooq_u16,vfooq_f32.
107 // Scalar is used for ordinary int and float types of all sizes.
110 // Vector is used for anything that occupies exactly one MVE vector
111 // register, i.e. {uint,int,float}NxM_t.
114 // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
115 // interleaving load/store intrinsics v{ld,st}{2,4}q.
118 // Predicate is used by all the predicated intrinsics. Its C
119 // representation is mve_pred16_t (which is just an alias for uint16_t).
120 // But we give more detail here, by indicating that a given predicate
121 // instruction is logically regarded as a vector of i1 containing the
122 // same number of lanes as the input vector type. So our Predicate type
123 // comes with a lane count, which we use to decide which kind of <n x i1>
124 // we'll invoke the pred_i2v IR intrinsic to translate it into.
127 // Pointer is used for pointer types (obviously), and comes with a flag
128 // indicating whether it's a pointer to a const or mutable instance of
134 const TypeKind TKind
;
137 Type(TypeKind K
) : TKind(K
) {}
140 TypeKind
typeKind() const { return TKind
; }
141 virtual ~Type() = default;
142 virtual bool requiresFloat() const = 0;
143 virtual bool requiresMVE() const = 0;
144 virtual unsigned sizeInBits() const = 0;
145 virtual std::string
cName() const = 0;
146 virtual std::string
llvmName() const {
147 PrintFatalError("no LLVM type name available for type " + cName());
149 virtual std::string
acleSuffix(std::string
) const {
150 PrintFatalError("no ACLE suffix available for this type");
154 enum class ScalarTypeKind
{ SignedInt
, UnsignedInt
, Float
};
155 inline std::string
toLetter(ScalarTypeKind kind
) {
157 case ScalarTypeKind::SignedInt
:
159 case ScalarTypeKind::UnsignedInt
:
161 case ScalarTypeKind::Float
:
164 llvm_unreachable("Unhandled ScalarTypeKind enum");
166 inline std::string
toCPrefix(ScalarTypeKind kind
) {
168 case ScalarTypeKind::SignedInt
:
170 case ScalarTypeKind::UnsignedInt
:
172 case ScalarTypeKind::Float
:
175 llvm_unreachable("Unhandled ScalarTypeKind enum");
178 class VoidType
: public Type
{
180 VoidType() : Type(TypeKind::Void
) {}
181 unsigned sizeInBits() const override
{ return 0; }
182 bool requiresFloat() const override
{ return false; }
183 bool requiresMVE() const override
{ return false; }
184 std::string
cName() const override
{ return "void"; }
186 static bool classof(const Type
*T
) { return T
->typeKind() == TypeKind::Void
; }
187 std::string
acleSuffix(std::string
) const override
{ return ""; }
190 class PointerType
: public Type
{
195 PointerType(const Type
*Pointee
, bool Const
)
196 : Type(TypeKind::Pointer
), Pointee(Pointee
), Const(Const
) {}
197 unsigned sizeInBits() const override
{ return 32; }
198 bool requiresFloat() const override
{ return Pointee
->requiresFloat(); }
199 bool requiresMVE() const override
{ return Pointee
->requiresMVE(); }
200 std::string
cName() const override
{
201 std::string Name
= Pointee
->cName();
203 // The syntax for a pointer in C is different when the pointee is
204 // itself a pointer. The MVE intrinsics don't contain any double
205 // pointers, so we don't need to worry about that wrinkle.
206 assert(!isa
<PointerType
>(Pointee
) && "Pointer to pointer not supported");
209 Name
= "const " + Name
;
212 std::string
llvmName() const override
{
213 return "llvm::PointerType::getUnqual(" + Pointee
->llvmName() + ")";
215 const Type
*getPointeeType() const { return Pointee
; }
217 static bool classof(const Type
*T
) {
218 return T
->typeKind() == TypeKind::Pointer
;
222 // Base class for all the types that have a name of the form
223 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
225 // For this sub-hierarchy we invent a cNameBase() method which returns the
226 // whole name except for the trailing "_t", so that Vector and MultiVector can
227 // append an extra "x2" or whatever to their element type's cNameBase(). Then
228 // the main cName() query method puts "_t" on the end for the final type name.
230 class CRegularNamedType
: public Type
{
232 virtual std::string
cNameBase() const = 0;
235 std::string
cName() const override
{ return cNameBase() + "_t"; }
238 class ScalarType
: public CRegularNamedType
{
241 std::string NameOverride
;
244 ScalarType(const Record
*Record
) : CRegularNamedType(TypeKind::Scalar
) {
245 Kind
= StringSwitch
<ScalarTypeKind
>(Record
->getValueAsString("kind"))
246 .Case("s", ScalarTypeKind::SignedInt
)
247 .Case("u", ScalarTypeKind::UnsignedInt
)
248 .Case("f", ScalarTypeKind::Float
);
249 Bits
= Record
->getValueAsInt("size");
250 NameOverride
= std::string(Record
->getValueAsString("nameOverride"));
252 unsigned sizeInBits() const override
{ return Bits
; }
253 ScalarTypeKind
kind() const { return Kind
; }
254 std::string
suffix() const { return toLetter(Kind
) + utostr(Bits
); }
255 std::string
cNameBase() const override
{
256 return toCPrefix(Kind
) + utostr(Bits
);
258 std::string
cName() const override
{
259 if (NameOverride
.empty())
260 return CRegularNamedType::cName();
263 std::string
llvmName() const override
{
264 if (Kind
== ScalarTypeKind::Float
) {
271 PrintFatalError("bad size for floating type");
273 return "Int" + utostr(Bits
) + "Ty";
275 std::string
acleSuffix(std::string overrideLetter
) const override
{
276 return "_" + (overrideLetter
.size() ? overrideLetter
: toLetter(Kind
))
279 bool isInteger() const { return Kind
!= ScalarTypeKind::Float
; }
280 bool requiresFloat() const override
{ return !isInteger(); }
281 bool requiresMVE() const override
{ return false; }
282 bool hasNonstandardName() const { return !NameOverride
.empty(); }
284 static bool classof(const Type
*T
) {
285 return T
->typeKind() == TypeKind::Scalar
;
289 class VectorType
: public CRegularNamedType
{
290 const ScalarType
*Element
;
294 VectorType(const ScalarType
*Element
, unsigned Lanes
)
295 : CRegularNamedType(TypeKind::Vector
), Element(Element
), Lanes(Lanes
) {}
296 unsigned sizeInBits() const override
{ return Lanes
* Element
->sizeInBits(); }
297 unsigned lanes() const { return Lanes
; }
298 bool requiresFloat() const override
{ return Element
->requiresFloat(); }
299 bool requiresMVE() const override
{ return true; }
300 std::string
cNameBase() const override
{
301 return Element
->cNameBase() + "x" + utostr(Lanes
);
303 std::string
llvmName() const override
{
304 return "llvm::FixedVectorType::get(" + Element
->llvmName() + ", " +
308 static bool classof(const Type
*T
) {
309 return T
->typeKind() == TypeKind::Vector
;
313 class MultiVectorType
: public CRegularNamedType
{
314 const VectorType
*Element
;
318 MultiVectorType(unsigned Registers
, const VectorType
*Element
)
319 : CRegularNamedType(TypeKind::MultiVector
), Element(Element
),
320 Registers(Registers
) {}
321 unsigned sizeInBits() const override
{
322 return Registers
* Element
->sizeInBits();
324 unsigned registers() const { return Registers
; }
325 bool requiresFloat() const override
{ return Element
->requiresFloat(); }
326 bool requiresMVE() const override
{ return true; }
327 std::string
cNameBase() const override
{
328 return Element
->cNameBase() + "x" + utostr(Registers
);
331 // MultiVectorType doesn't override llvmName, because we don't expect to do
332 // automatic code generation for the MVE intrinsics that use it: the {vld2,
333 // vld4, vst2, vst4} family are the only ones that use these types, so it was
334 // easier to hand-write the codegen for dealing with these structs than to
335 // build in lots of extra automatic machinery that would only be used once.
337 static bool classof(const Type
*T
) {
338 return T
->typeKind() == TypeKind::MultiVector
;
342 class PredicateType
: public CRegularNamedType
{
346 PredicateType(unsigned Lanes
)
347 : CRegularNamedType(TypeKind::Predicate
), Lanes(Lanes
) {}
348 unsigned sizeInBits() const override
{ return 16; }
349 std::string
cNameBase() const override
{ return "mve_pred16"; }
350 bool requiresFloat() const override
{ return false; };
351 bool requiresMVE() const override
{ return true; }
352 std::string
llvmName() const override
{
353 return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes
) +
357 static bool classof(const Type
*T
) {
358 return T
->typeKind() == TypeKind::Predicate
;
362 // -----------------------------------------------------------------------------
363 // Class to facilitate merging together the code generation for many intrinsics
364 // by means of varying a few constant or type parameters.
366 // Most obviously, the intrinsics in a single parametrised family will have
367 // code generation sequences that only differ in a type or two, e.g. vaddq_s8
368 // and vaddq_u16 will look the same apart from putting a different vector type
369 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
370 // will often code-generate in the same way, with only a different choice of
371 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
372 // marshalling the arguments and return values of the IR intrinsic in exactly
373 // the same way. And others might differ only in some other kind of constant,
374 // such as a lane index.
376 // So, when we generate the IR-building code for all these intrinsics, we keep
377 // track of every value that could possibly be pulled out of the code and
378 // stored ahead of time in a local variable. Then we group together intrinsics
379 // by textual equivalence of the code that would result if _all_ those
380 // parameters were stored in local variables. That gives us maximal sets that
381 // can be implemented by a single piece of IR-building code by changing
382 // parameter values ahead of time.
384 // After we've done that, we do a second pass in which we only allocate _some_
385 // of the parameters into local variables, by tracking which ones have the same
386 // values as each other (so that a single variable can be reused) and which
387 // ones are the same across the whole set (so that no variable is needed at
390 // Hence the class below. Its allocParam method is invoked during code
391 // generation by every method of a Result subclass (see below) that wants to
392 // give it the opportunity to pull something out into a switchable parameter.
393 // It returns a variable name for the parameter, or (if it's being used in the
394 // second pass once we've decided that some parameters don't need to be stored
395 // in variables after all) it might just return the input expression unchanged.
397 struct CodeGenParamAllocator
{
398 // Accumulated during code generation
399 std::vector
<std::string
> *ParamTypes
= nullptr;
400 std::vector
<std::string
> *ParamValues
= nullptr;
402 // Provided ahead of time in pass 2, to indicate which parameters are being
403 // assigned to what. This vector contains an entry for each call to
404 // allocParam expected during code gen (which we counted up in pass 1), and
405 // indicates the number of the parameter variable that should be returned, or
406 // -1 if this call shouldn't allocate a parameter variable at all.
408 // We rely on the recursive code generation working identically in passes 1
409 // and 2, so that the same list of calls to allocParam happen in the same
410 // order. That guarantees that the parameter numbers recorded in pass 1 will
411 // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
412 // decided to do about each one in pass 2.
413 std::vector
<int> *ParamNumberMap
= nullptr;
415 // Internally track how many things we've allocated
416 unsigned nparams
= 0;
418 std::string
allocParam(StringRef Type
, StringRef Value
) {
419 unsigned ParamNumber
;
421 if (!ParamNumberMap
) {
422 // In pass 1, unconditionally assign a new parameter variable to every
423 // value we're asked to process.
424 ParamNumber
= nparams
++;
426 // In pass 2, consult the map provided by the caller to find out which
427 // variable we should be keeping things in.
428 int MapValue
= (*ParamNumberMap
)[nparams
++];
430 return std::string(Value
);
431 ParamNumber
= MapValue
;
434 // If we've allocated a new parameter variable for the first time, store
435 // its type and value to be retrieved after codegen.
436 if (ParamTypes
&& ParamTypes
->size() == ParamNumber
)
437 ParamTypes
->push_back(std::string(Type
));
438 if (ParamValues
&& ParamValues
->size() == ParamNumber
)
439 ParamValues
->push_back(std::string(Value
));
441 // Unimaginative naming scheme for parameter variables.
442 return "Param" + utostr(ParamNumber
);
446 // -----------------------------------------------------------------------------
447 // System of classes that represent all the intermediate values used during
448 // code-generation for an intrinsic.
450 // The base class 'Result' can represent a value of the LLVM type 'Value', or
451 // sometimes 'Address' (for loads/stores, including an alignment requirement).
453 // In the case where the Tablegen provides a value in the codegen dag as a
454 // plain integer literal, the Result object we construct here will be one that
455 // returns true from hasIntegerConstantValue(). This allows the generated C++
456 // code to use the constant directly in contexts which can take a literal
457 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
458 // effort of calling llvm::ConstantInt::get() and then pulling the constant
459 // back out of the resulting llvm:Value later.
463 // Convenient shorthand for the pointer type we'll be using everywhere.
464 using Ptr
= std::shared_ptr
<Result
>;
469 bool VarNameUsed
= false;
470 unsigned Visited
= 0;
473 virtual ~Result() = default;
474 using Scope
= std::map
<std::string
, Ptr
>;
475 virtual void genCode(raw_ostream
&OS
, CodeGenParamAllocator
&) const = 0;
476 virtual bool hasIntegerConstantValue() const { return false; }
477 virtual uint32_t integerConstantValue() const { return 0; }
478 virtual bool hasIntegerValue() const { return false; }
479 virtual std::string
getIntegerValue(const std::string
&) {
480 llvm_unreachable("non-working Result::getIntegerValue called");
482 virtual std::string
typeName() const { return "Value *"; }
484 // Mostly, when a code-generation operation has a dependency on prior
485 // operations, it's because it uses the output values of those operations as
486 // inputs. But there's one exception, which is the use of 'seq' in Tablegen
487 // to indicate that operations have to be performed in sequence regardless of
488 // whether they use each others' output values.
490 // So, the actual generation of code is done by depth-first search, using the
491 // prerequisites() method to get a list of all the other Results that have to
492 // be computed before this one. That method divides into the 'predecessor',
493 // set by setPredecessor() while processing a 'seq' dag node, and the list
494 // returned by 'morePrerequisites', which each subclass implements to return
495 // a list of the Results it uses as input to whatever its own computation is
498 virtual void morePrerequisites(std::vector
<Ptr
> &output
) const {}
499 std::vector
<Ptr
> prerequisites() const {
500 std::vector
<Ptr
> ToRet
;
502 ToRet
.push_back(Predecessor
);
503 morePrerequisites(ToRet
);
507 void setPredecessor(Ptr p
) {
508 // If the user has nested one 'seq' node inside another, and this
509 // method is called on the return value of the inner 'seq' (i.e.
510 // the final item inside it), then we can't link _this_ node to p,
511 // because it already has a predecessor. Instead, walk the chain
512 // until we find the first item in the inner seq, and link that to
513 // p, so that nesting seqs has the obvious effect of linking
514 // everything together into one long sequential chain.
516 while (r
->Predecessor
)
517 r
= r
->Predecessor
.get();
521 // Each Result will be assigned a variable name in the output code, but not
522 // all those variable names will actually be used (e.g. the return value of
523 // Builder.CreateStore has void type, so nobody will want to refer to it). To
524 // prevent annoying compiler warnings, we track whether each Result's
525 // variable name was ever actually mentioned in subsequent statements, so
526 // that it can be left out of the final generated code.
527 std::string
varname() {
531 void setVarname(const StringRef s
) { VarName
= std::string(s
); }
532 bool varnameUsed() const { return VarNameUsed
; }
534 // Emit code to generate this result as a Value *.
535 virtual std::string
asValue() {
539 // Code generation happens in multiple passes. This method tracks whether a
540 // Result has yet been visited in a given pass, without the need for a
541 // tedious loop in between passes that goes through and resets a 'visited'
542 // flag back to false: you just set Pass=1 the first time round, and Pass=2
544 bool needsVisiting(unsigned Pass
) {
545 bool ToRet
= Visited
< Pass
;
551 // Result subclass that retrieves one of the arguments to the clang builtin
552 // function. In cases where the argument has pointer type, we call
553 // EmitPointerWithAlignment and store the result in a variable of type Address,
554 // so that load and store IR nodes can know the right alignment. Otherwise, we
555 // call EmitScalarExpr.
557 // There are aggregate parameters in the MVE intrinsics API, but we don't deal
558 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
559 // vst2q/vst4q family, which is few enough that we just write the code by hand
560 // for those in CGBuiltin.cpp.
561 class BuiltinArgResult
: public Result
{
566 BuiltinArgResult(unsigned ArgNum
, bool AddressType
, bool Immediate
)
567 : ArgNum(ArgNum
), AddressType(AddressType
), Immediate(Immediate
) {}
568 void genCode(raw_ostream
&OS
, CodeGenParamAllocator
&) const override
{
569 OS
<< (AddressType
? "EmitPointerWithAlignment" : "EmitScalarExpr")
570 << "(E->getArg(" << ArgNum
<< "))";
572 std::string
typeName() const override
{
573 return AddressType
? "Address" : Result::typeName();
575 // Emit code to generate this result as a Value *.
576 std::string
asValue() override
{
578 return "(" + varname() + ".getPointer())";
579 return Result::asValue();
581 bool hasIntegerValue() const override
{ return Immediate
; }
582 std::string
getIntegerValue(const std::string
&IntType
) override
{
583 return "GetIntegerConstantValue<" + IntType
+ ">(E->getArg(" +
584 utostr(ArgNum
) + "), getContext())";
588 // Result subclass for an integer literal appearing in Tablegen. This may need
589 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
590 // it may be used directly as an integer, depending on which IRBuilder method
591 // it's being passed to.
592 class IntLiteralResult
: public Result
{
594 const ScalarType
*IntegerType
;
595 uint32_t IntegerValue
;
596 IntLiteralResult(const ScalarType
*IntegerType
, uint32_t IntegerValue
)
597 : IntegerType(IntegerType
), IntegerValue(IntegerValue
) {}
598 void genCode(raw_ostream
&OS
,
599 CodeGenParamAllocator
&ParamAlloc
) const override
{
600 OS
<< "llvm::ConstantInt::get("
601 << ParamAlloc
.allocParam("llvm::Type *", IntegerType
->llvmName())
603 OS
<< ParamAlloc
.allocParam(IntegerType
->cName(), utostr(IntegerValue
))
606 bool hasIntegerConstantValue() const override
{ return true; }
607 uint32_t integerConstantValue() const override
{ return IntegerValue
; }
610 // Result subclass representing a cast between different integer types. We use
611 // our own ScalarType abstraction as the representation of the target type,
612 // which gives both size and signedness.
613 class IntCastResult
: public Result
{
615 const ScalarType
*IntegerType
;
617 IntCastResult(const ScalarType
*IntegerType
, Ptr V
)
618 : IntegerType(IntegerType
), V(V
) {}
619 void genCode(raw_ostream
&OS
,
620 CodeGenParamAllocator
&ParamAlloc
) const override
{
621 OS
<< "Builder.CreateIntCast(" << V
->varname() << ", "
622 << ParamAlloc
.allocParam("llvm::Type *", IntegerType
->llvmName()) << ", "
623 << ParamAlloc
.allocParam("bool",
624 IntegerType
->kind() == ScalarTypeKind::SignedInt
629 void morePrerequisites(std::vector
<Ptr
> &output
) const override
{
634 // Result subclass representing a cast between different pointer types.
635 class PointerCastResult
: public Result
{
637 const PointerType
*PtrType
;
639 PointerCastResult(const PointerType
*PtrType
, Ptr V
)
640 : PtrType(PtrType
), V(V
) {}
641 void genCode(raw_ostream
&OS
,
642 CodeGenParamAllocator
&ParamAlloc
) const override
{
643 OS
<< "Builder.CreatePointerCast(" << V
->asValue() << ", "
644 << ParamAlloc
.allocParam("llvm::Type *", PtrType
->llvmName()) << ")";
646 void morePrerequisites(std::vector
<Ptr
> &output
) const override
{
651 // Result subclass representing a call to an IRBuilder method. Each IRBuilder
652 // method we want to use will have a Tablegen record giving the method name and
653 // describing any important details of how to call it, such as whether a
654 // particular argument should be an integer constant instead of an llvm::Value.
655 class IRBuilderResult
: public Result
{
657 StringRef CallPrefix
;
658 std::vector
<Ptr
> Args
;
659 std::set
<unsigned> AddressArgs
;
660 std::map
<unsigned, std::string
> IntegerArgs
;
661 IRBuilderResult(StringRef CallPrefix
, std::vector
<Ptr
> Args
,
662 std::set
<unsigned> AddressArgs
,
663 std::map
<unsigned, std::string
> IntegerArgs
)
664 : CallPrefix(CallPrefix
), Args(Args
), AddressArgs(AddressArgs
),
665 IntegerArgs(IntegerArgs
) {}
666 void genCode(raw_ostream
&OS
,
667 CodeGenParamAllocator
&ParamAlloc
) const override
{
669 const char *Sep
= "";
670 for (unsigned i
= 0, e
= Args
.size(); i
< e
; ++i
) {
672 auto it
= IntegerArgs
.find(i
);
677 if (it
!= IntegerArgs
.end()) {
678 if (Arg
->hasIntegerConstantValue())
679 OS
<< "static_cast<" << it
->second
<< ">("
680 << ParamAlloc
.allocParam(it
->second
,
681 utostr(Arg
->integerConstantValue()))
683 else if (Arg
->hasIntegerValue())
684 OS
<< ParamAlloc
.allocParam(it
->second
,
685 Arg
->getIntegerValue(it
->second
));
687 OS
<< Arg
->varname();
692 void morePrerequisites(std::vector
<Ptr
> &output
) const override
{
693 for (unsigned i
= 0, e
= Args
.size(); i
< e
; ++i
) {
695 if (IntegerArgs
.find(i
) != IntegerArgs
.end())
697 output
.push_back(Arg
);
702 // Result subclass representing making an Address out of a Value.
703 class AddressResult
: public Result
{
708 AddressResult(Ptr Arg
, const Type
*Ty
, unsigned Align
)
709 : Arg(Arg
), Ty(Ty
), Align(Align
) {}
710 void genCode(raw_ostream
&OS
,
711 CodeGenParamAllocator
&ParamAlloc
) const override
{
712 OS
<< "Address(" << Arg
->varname() << ", " << Ty
->llvmName()
713 << ", CharUnits::fromQuantity(" << Align
<< "))";
715 std::string
typeName() const override
{
718 void morePrerequisites(std::vector
<Ptr
> &output
) const override
{
719 output
.push_back(Arg
);
723 // Result subclass representing a call to an IR intrinsic, which we first have
724 // to look up using an Intrinsic::ID constant and an array of types.
725 class IRIntrinsicResult
: public Result
{
727 std::string IntrinsicID
;
728 std::vector
<const Type
*> ParamTypes
;
729 std::vector
<Ptr
> Args
;
730 IRIntrinsicResult(StringRef IntrinsicID
, std::vector
<const Type
*> ParamTypes
,
731 std::vector
<Ptr
> Args
)
732 : IntrinsicID(std::string(IntrinsicID
)), ParamTypes(ParamTypes
),
734 void genCode(raw_ostream
&OS
,
735 CodeGenParamAllocator
&ParamAlloc
) const override
{
736 std::string IntNo
= ParamAlloc
.allocParam(
737 "Intrinsic::ID", "Intrinsic::" + IntrinsicID
);
738 OS
<< "Builder.CreateCall(CGM.getIntrinsic(" << IntNo
;
739 if (!ParamTypes
.empty()) {
741 const char *Sep
= "";
742 for (auto T
: ParamTypes
) {
743 OS
<< Sep
<< ParamAlloc
.allocParam("llvm::Type *", T
->llvmName());
749 const char *Sep
= "";
750 for (auto Arg
: Args
) {
751 OS
<< Sep
<< Arg
->asValue();
756 void morePrerequisites(std::vector
<Ptr
> &output
) const override
{
757 output
.insert(output
.end(), Args
.begin(), Args
.end());
761 // Result subclass that specifies a type, for use in IRBuilder operations such
762 // as CreateBitCast that take a type argument.
763 class TypeResult
: public Result
{
766 TypeResult(const Type
*T
) : T(T
) {}
767 void genCode(raw_ostream
&OS
, CodeGenParamAllocator
&) const override
{
770 std::string
typeName() const override
{
771 return "llvm::Type *";
775 // -----------------------------------------------------------------------------
776 // Class that describes a single ACLE intrinsic.
778 // A Tablegen record will typically describe more than one ACLE intrinsic, by
779 // means of setting the 'list<Type> Params' field to a list of multiple
780 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
781 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
782 // rather than a single one for all of them. Hence, the constructor takes both
783 // a Tablegen record and the current value of the parameter type.
785 class ACLEIntrinsic
{
786 // Structure documenting that one of the intrinsic's arguments is required to
787 // be a compile-time constant integer, and what constraints there are on its
788 // value. Used when generating Sema checking code.
789 struct ImmediateArg
{
790 enum class BoundsType
{ ExplicitRange
, UInt
};
791 BoundsType boundsType
;
793 StringRef ExtraCheckType
, ExtraCheckArgs
;
797 // For polymorphic intrinsics, FullName is the explicit name that uniquely
798 // identifies this variant of the intrinsic, and ShortName is the name it
799 // shares with at least one other intrinsic.
800 std::string ShortName
, FullName
;
802 // Name of the architecture extension, used in the Clang builtin name
803 StringRef BuiltinExtension
;
805 // A very small number of intrinsics _only_ have a polymorphic
806 // variant (vuninitializedq taking an unevaluated argument).
807 bool PolymorphicOnly
;
809 // Another rarely-used flag indicating that the builtin doesn't
810 // evaluate its argument(s) at all.
813 // True if the intrinsic needs only the C header part (no codegen, semantic
814 // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
817 const Type
*ReturnType
;
818 std::vector
<const Type
*> ArgTypes
;
819 std::map
<unsigned, ImmediateArg
> ImmediateArgs
;
822 std::map
<std::string
, std::string
> CustomCodeGenArgs
;
824 // Recursive function that does the internals of code generation.
825 void genCodeDfs(Result::Ptr V
, std::list
<Result::Ptr
> &Used
,
826 unsigned Pass
) const {
827 if (!V
->needsVisiting(Pass
))
830 for (Result::Ptr W
: V
->prerequisites())
831 genCodeDfs(W
, Used
, Pass
);
837 const std::string
&shortName() const { return ShortName
; }
838 const std::string
&fullName() const { return FullName
; }
839 StringRef
builtinExtension() const { return BuiltinExtension
; }
840 const Type
*returnType() const { return ReturnType
; }
841 const std::vector
<const Type
*> &argTypes() const { return ArgTypes
; }
842 bool requiresFloat() const {
843 if (ReturnType
->requiresFloat())
845 for (const Type
*T
: ArgTypes
)
846 if (T
->requiresFloat())
850 bool requiresMVE() const {
851 return ReturnType
->requiresMVE() ||
852 any_of(ArgTypes
, [](const Type
*T
) { return T
->requiresMVE(); });
854 bool polymorphic() const { return ShortName
!= FullName
; }
855 bool polymorphicOnly() const { return PolymorphicOnly
; }
856 bool nonEvaluating() const { return NonEvaluating
; }
857 bool headerOnly() const { return HeaderOnly
; }
859 // External entry point for code generation, called from EmitterBase.
860 void genCode(raw_ostream
&OS
, CodeGenParamAllocator
&ParamAlloc
,
861 unsigned Pass
) const {
862 assert(!headerOnly() && "Called genCode for header-only intrinsic");
864 for (auto kv
: CustomCodeGenArgs
)
865 OS
<< " " << kv
.first
<< " = " << kv
.second
<< ";\n";
866 OS
<< " break; // custom code gen\n";
869 std::list
<Result::Ptr
> Used
;
870 genCodeDfs(Code
, Used
, Pass
);
872 unsigned varindex
= 0;
873 for (Result::Ptr V
: Used
)
874 if (V
->varnameUsed())
875 V
->setVarname("Val" + utostr(varindex
++));
877 for (Result::Ptr V
: Used
) {
879 if (V
== Used
.back()) {
880 assert(!V
->varnameUsed());
881 OS
<< "return "; // FIXME: what if the top-level thing is void?
882 } else if (V
->varnameUsed()) {
883 std::string Type
= V
->typeName();
885 if (!StringRef(Type
).ends_with("*"))
887 OS
<< V
->varname() << " = ";
889 V
->genCode(OS
, ParamAlloc
);
893 bool hasCode() const { return Code
!= nullptr; }
895 static std::string
signedHexLiteral(const llvm::APInt
&iOrig
) {
896 llvm::APInt i
= iOrig
.trunc(64);
898 i
.toString(s
, 16, true, true);
899 return std::string(s
.str());
902 std::string
genSema() const {
903 assert(!headerOnly() && "Called genSema for header-only intrinsic");
904 std::vector
<std::string
> SemaChecks
;
906 for (const auto &kv
: ImmediateArgs
) {
907 const ImmediateArg
&IA
= kv
.second
;
909 llvm::APInt
lo(128, 0), hi(128, 0);
910 switch (IA
.boundsType
) {
911 case ImmediateArg::BoundsType::ExplicitRange
:
915 case ImmediateArg::BoundsType::UInt
:
917 hi
= llvm::APInt::getMaxValue(IA
.i1
).zext(128);
921 std::string Index
= utostr(kv
.first
);
923 // Emit a range check if the legal range of values for the
924 // immediate is smaller than the _possible_ range of values for
926 unsigned ArgTypeBits
= IA
.ArgType
->sizeInBits();
927 llvm::APInt ArgTypeRange
= llvm::APInt::getMaxValue(ArgTypeBits
).zext(128);
928 llvm::APInt ActualRange
= (hi
-lo
).trunc(64).sext(128);
929 if (ActualRange
.ult(ArgTypeRange
))
930 SemaChecks
.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index
+
931 ", " + signedHexLiteral(lo
) + ", " +
932 signedHexLiteral(hi
) + ")");
934 if (!IA
.ExtraCheckType
.empty()) {
936 if (!IA
.ExtraCheckArgs
.empty()) {
938 StringRef Arg
= IA
.ExtraCheckArgs
;
939 if (Arg
== "!lanesize") {
940 tmp
= utostr(IA
.ArgType
->sizeInBits());
943 Suffix
= (Twine(", ") + Arg
).str();
945 SemaChecks
.push_back((Twine("SemaBuiltinConstantArg") +
946 IA
.ExtraCheckType
+ "(TheCall, " + Index
+
951 assert(!SemaChecks
.empty());
953 if (SemaChecks
.empty())
955 return join(std::begin(SemaChecks
), std::end(SemaChecks
),
960 ACLEIntrinsic(EmitterBase
&ME
, Record
*R
, const Type
*Param
);
963 // -----------------------------------------------------------------------------
964 // The top-level class that holds all the state from analyzing the entire
969 // EmitterBase holds a collection of all the types we've instantiated.
971 std::map
<std::string
, std::unique_ptr
<ScalarType
>> ScalarTypes
;
972 std::map
<std::tuple
<ScalarTypeKind
, unsigned, unsigned>,
973 std::unique_ptr
<VectorType
>>
975 std::map
<std::pair
<std::string
, unsigned>, std::unique_ptr
<MultiVectorType
>>
977 std::map
<unsigned, std::unique_ptr
<PredicateType
>> PredicateTypes
;
978 std::map
<std::string
, std::unique_ptr
<PointerType
>> PointerTypes
;
980 // And all the ACLEIntrinsic instances we've created.
981 std::map
<std::string
, std::unique_ptr
<ACLEIntrinsic
>> ACLEIntrinsics
;
984 // Methods to create a Type object, or return the right existing one from the
985 // maps stored in this object.
986 const VoidType
*getVoidType() { return &Void
; }
987 const ScalarType
*getScalarType(StringRef Name
) {
988 return ScalarTypes
[std::string(Name
)].get();
990 const ScalarType
*getScalarType(Record
*R
) {
991 return getScalarType(R
->getName());
993 const VectorType
*getVectorType(const ScalarType
*ST
, unsigned Lanes
) {
994 std::tuple
<ScalarTypeKind
, unsigned, unsigned> key(ST
->kind(),
995 ST
->sizeInBits(), Lanes
);
996 if (VectorTypes
.find(key
) == VectorTypes
.end())
997 VectorTypes
[key
] = std::make_unique
<VectorType
>(ST
, Lanes
);
998 return VectorTypes
[key
].get();
1000 const VectorType
*getVectorType(const ScalarType
*ST
) {
1001 return getVectorType(ST
, 128 / ST
->sizeInBits());
1003 const MultiVectorType
*getMultiVectorType(unsigned Registers
,
1004 const VectorType
*VT
) {
1005 std::pair
<std::string
, unsigned> key(VT
->cNameBase(), Registers
);
1006 if (MultiVectorTypes
.find(key
) == MultiVectorTypes
.end())
1007 MultiVectorTypes
[key
] = std::make_unique
<MultiVectorType
>(Registers
, VT
);
1008 return MultiVectorTypes
[key
].get();
1010 const PredicateType
*getPredicateType(unsigned Lanes
) {
1011 unsigned key
= Lanes
;
1012 if (PredicateTypes
.find(key
) == PredicateTypes
.end())
1013 PredicateTypes
[key
] = std::make_unique
<PredicateType
>(Lanes
);
1014 return PredicateTypes
[key
].get();
1016 const PointerType
*getPointerType(const Type
*T
, bool Const
) {
1017 PointerType
PT(T
, Const
);
1018 std::string key
= PT
.cName();
1019 if (PointerTypes
.find(key
) == PointerTypes
.end())
1020 PointerTypes
[key
] = std::make_unique
<PointerType
>(PT
);
1021 return PointerTypes
[key
].get();
1024 // Methods to construct a type from various pieces of Tablegen. These are
1025 // always called in the context of setting up a particular ACLEIntrinsic, so
1026 // there's always an ambient parameter type (because we're iterating through
1027 // the Params list in the Tablegen record for the intrinsic), which is used
1028 // to expand Tablegen classes like 'Vector' which mean something different in
1029 // each member of a parametric family.
1030 const Type
*getType(Record
*R
, const Type
*Param
);
1031 const Type
*getType(DagInit
*D
, const Type
*Param
);
1032 const Type
*getType(Init
*I
, const Type
*Param
);
1034 // Functions that translate the Tablegen representation of an intrinsic's
1035 // code generation into a collection of Value objects (which will then be
1036 // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1037 Result::Ptr
getCodeForDag(DagInit
*D
, const Result::Scope
&Scope
,
1039 Result::Ptr
getCodeForDagArg(DagInit
*D
, unsigned ArgNum
,
1040 const Result::Scope
&Scope
, const Type
*Param
);
1041 Result::Ptr
getCodeForArg(unsigned ArgNum
, const Type
*ArgType
, bool Promote
,
1044 void GroupSemaChecks(std::map
<std::string
, std::set
<std::string
>> &Checks
);
1046 // Constructor and top-level functions.
1048 EmitterBase(RecordKeeper
&Records
);
1049 virtual ~EmitterBase() = default;
1051 virtual void EmitHeader(raw_ostream
&OS
) = 0;
1052 virtual void EmitBuiltinDef(raw_ostream
&OS
) = 0;
1053 virtual void EmitBuiltinSema(raw_ostream
&OS
) = 0;
1054 void EmitBuiltinCG(raw_ostream
&OS
);
1055 void EmitBuiltinAliases(raw_ostream
&OS
);
1058 const Type
*EmitterBase::getType(Init
*I
, const Type
*Param
) {
1059 if (auto Dag
= dyn_cast
<DagInit
>(I
))
1060 return getType(Dag
, Param
);
1061 if (auto Def
= dyn_cast
<DefInit
>(I
))
1062 return getType(Def
->getDef(), Param
);
1064 PrintFatalError("Could not convert this value into a type");
1067 const Type
*EmitterBase::getType(Record
*R
, const Type
*Param
) {
1068 // Pass to a subfield of any wrapper records. We don't expect more than one
1069 // of these: immediate operands are used as plain numbers rather than as
1070 // llvm::Value, so it's meaningless to promote their type anyway.
1071 if (R
->isSubClassOf("Immediate"))
1072 R
= R
->getValueAsDef("type");
1073 else if (R
->isSubClassOf("unpromoted"))
1074 R
= R
->getValueAsDef("underlying_type");
1076 if (R
->getName() == "Void")
1077 return getVoidType();
1078 if (R
->isSubClassOf("PrimitiveType"))
1079 return getScalarType(R
);
1080 if (R
->isSubClassOf("ComplexType"))
1081 return getType(R
->getValueAsDag("spec"), Param
);
1083 PrintFatalError(R
->getLoc(), "Could not convert this record into a type");
1086 const Type
*EmitterBase::getType(DagInit
*D
, const Type
*Param
) {
1087 // The meat of the getType system: types in the Tablegen are represented by a
1088 // dag whose operators select sub-cases of this function.
1090 Record
*Op
= cast
<DefInit
>(D
->getOperator())->getDef();
1091 if (!Op
->isSubClassOf("ComplexTypeOp"))
1093 "Expected ComplexTypeOp as dag operator in type expression");
1095 if (Op
->getName() == "CTO_Parameter") {
1096 if (isa
<VoidType
>(Param
))
1097 PrintFatalError("Parametric type in unparametrised context");
1101 if (Op
->getName() == "CTO_Vec") {
1102 const Type
*Element
= getType(D
->getArg(0), Param
);
1103 if (D
->getNumArgs() == 1) {
1104 return getVectorType(cast
<ScalarType
>(Element
));
1106 const Type
*ExistingVector
= getType(D
->getArg(1), Param
);
1107 return getVectorType(cast
<ScalarType
>(Element
),
1108 cast
<VectorType
>(ExistingVector
)->lanes());
1112 if (Op
->getName() == "CTO_Pred") {
1113 const Type
*Element
= getType(D
->getArg(0), Param
);
1114 return getPredicateType(128 / Element
->sizeInBits());
1117 if (Op
->isSubClassOf("CTO_Tuple")) {
1118 unsigned Registers
= Op
->getValueAsInt("n");
1119 const Type
*Element
= getType(D
->getArg(0), Param
);
1120 return getMultiVectorType(Registers
, cast
<VectorType
>(Element
));
1123 if (Op
->isSubClassOf("CTO_Pointer")) {
1124 const Type
*Pointee
= getType(D
->getArg(0), Param
);
1125 return getPointerType(Pointee
, Op
->getValueAsBit("const"));
1128 if (Op
->getName() == "CTO_CopyKind") {
1129 const ScalarType
*STSize
= cast
<ScalarType
>(getType(D
->getArg(0), Param
));
1130 const ScalarType
*STKind
= cast
<ScalarType
>(getType(D
->getArg(1), Param
));
1131 for (const auto &kv
: ScalarTypes
) {
1132 const ScalarType
*RT
= kv
.second
.get();
1133 if (RT
->kind() == STKind
->kind() && RT
->sizeInBits() == STSize
->sizeInBits())
1136 PrintFatalError("Cannot find a type to satisfy CopyKind");
1139 if (Op
->isSubClassOf("CTO_ScaleSize")) {
1140 const ScalarType
*STKind
= cast
<ScalarType
>(getType(D
->getArg(0), Param
));
1141 int Num
= Op
->getValueAsInt("num"), Denom
= Op
->getValueAsInt("denom");
1142 unsigned DesiredSize
= STKind
->sizeInBits() * Num
/ Denom
;
1143 for (const auto &kv
: ScalarTypes
) {
1144 const ScalarType
*RT
= kv
.second
.get();
1145 if (RT
->kind() == STKind
->kind() && RT
->sizeInBits() == DesiredSize
)
1148 PrintFatalError("Cannot find a type to satisfy ScaleSize");
1151 PrintFatalError("Bad operator in type dag expression");
1154 Result::Ptr
EmitterBase::getCodeForDag(DagInit
*D
, const Result::Scope
&Scope
,
1155 const Type
*Param
) {
1156 Record
*Op
= cast
<DefInit
>(D
->getOperator())->getDef();
1158 if (Op
->getName() == "seq") {
1159 Result::Scope SubScope
= Scope
;
1160 Result::Ptr PrevV
= nullptr;
1161 for (unsigned i
= 0, e
= D
->getNumArgs(); i
< e
; ++i
) {
1162 // We don't use getCodeForDagArg here, because the argument name
1163 // has different semantics in a seq
1165 getCodeForDag(cast
<DagInit
>(D
->getArg(i
)), SubScope
, Param
);
1166 StringRef ArgName
= D
->getArgNameStr(i
);
1167 if (!ArgName
.empty())
1168 SubScope
[std::string(ArgName
)] = V
;
1170 V
->setPredecessor(PrevV
);
1174 } else if (Op
->isSubClassOf("Type")) {
1175 if (D
->getNumArgs() != 1)
1176 PrintFatalError("Type casts should have exactly one argument");
1177 const Type
*CastType
= getType(Op
, Param
);
1178 Result::Ptr Arg
= getCodeForDagArg(D
, 0, Scope
, Param
);
1179 if (const auto *ST
= dyn_cast
<ScalarType
>(CastType
)) {
1180 if (!ST
->requiresFloat()) {
1181 if (Arg
->hasIntegerConstantValue())
1182 return std::make_shared
<IntLiteralResult
>(
1183 ST
, Arg
->integerConstantValue());
1185 return std::make_shared
<IntCastResult
>(ST
, Arg
);
1187 } else if (const auto *PT
= dyn_cast
<PointerType
>(CastType
)) {
1188 return std::make_shared
<PointerCastResult
>(PT
, Arg
);
1190 PrintFatalError("Unsupported type cast");
1191 } else if (Op
->getName() == "address") {
1192 if (D
->getNumArgs() != 2)
1193 PrintFatalError("'address' should have two arguments");
1194 Result::Ptr Arg
= getCodeForDagArg(D
, 0, Scope
, Param
);
1196 const Type
*Ty
= nullptr;
1197 if (auto *DI
= dyn_cast
<DagInit
>(D
->getArg(0)))
1198 if (auto *PTy
= dyn_cast
<PointerType
>(getType(DI
->getOperator(), Param
)))
1199 Ty
= PTy
->getPointeeType();
1201 PrintFatalError("'address' pointer argument should be a pointer");
1204 if (auto *II
= dyn_cast
<IntInit
>(D
->getArg(1))) {
1205 Alignment
= II
->getValue();
1207 PrintFatalError("'address' alignment argument should be an integer");
1209 return std::make_shared
<AddressResult
>(Arg
, Ty
, Alignment
);
1210 } else if (Op
->getName() == "unsignedflag") {
1211 if (D
->getNumArgs() != 1)
1212 PrintFatalError("unsignedflag should have exactly one argument");
1213 Record
*TypeRec
= cast
<DefInit
>(D
->getArg(0))->getDef();
1214 if (!TypeRec
->isSubClassOf("Type"))
1215 PrintFatalError("unsignedflag's argument should be a type");
1216 if (const auto *ST
= dyn_cast
<ScalarType
>(getType(TypeRec
, Param
))) {
1217 return std::make_shared
<IntLiteralResult
>(
1218 getScalarType("u32"), ST
->kind() == ScalarTypeKind::UnsignedInt
);
1220 PrintFatalError("unsignedflag's argument should be a scalar type");
1222 } else if (Op
->getName() == "bitsize") {
1223 if (D
->getNumArgs() != 1)
1224 PrintFatalError("bitsize should have exactly one argument");
1225 Record
*TypeRec
= cast
<DefInit
>(D
->getArg(0))->getDef();
1226 if (!TypeRec
->isSubClassOf("Type"))
1227 PrintFatalError("bitsize's argument should be a type");
1228 if (const auto *ST
= dyn_cast
<ScalarType
>(getType(TypeRec
, Param
))) {
1229 return std::make_shared
<IntLiteralResult
>(getScalarType("u32"),
1232 PrintFatalError("bitsize's argument should be a scalar type");
1235 std::vector
<Result::Ptr
> Args
;
1236 for (unsigned i
= 0, e
= D
->getNumArgs(); i
< e
; ++i
)
1237 Args
.push_back(getCodeForDagArg(D
, i
, Scope
, Param
));
1238 if (Op
->isSubClassOf("IRBuilderBase")) {
1239 std::set
<unsigned> AddressArgs
;
1240 std::map
<unsigned, std::string
> IntegerArgs
;
1241 for (Record
*sp
: Op
->getValueAsListOfDefs("special_params")) {
1242 unsigned Index
= sp
->getValueAsInt("index");
1243 if (sp
->isSubClassOf("IRBuilderAddrParam")) {
1244 AddressArgs
.insert(Index
);
1245 } else if (sp
->isSubClassOf("IRBuilderIntParam")) {
1246 IntegerArgs
[Index
] = std::string(sp
->getValueAsString("type"));
1249 return std::make_shared
<IRBuilderResult
>(Op
->getValueAsString("prefix"),
1250 Args
, AddressArgs
, IntegerArgs
);
1251 } else if (Op
->isSubClassOf("IRIntBase")) {
1252 std::vector
<const Type
*> ParamTypes
;
1253 for (Record
*RParam
: Op
->getValueAsListOfDefs("params"))
1254 ParamTypes
.push_back(getType(RParam
, Param
));
1255 std::string IntName
= std::string(Op
->getValueAsString("intname"));
1256 if (Op
->getValueAsBit("appendKind"))
1257 IntName
+= "_" + toLetter(cast
<ScalarType
>(Param
)->kind());
1258 return std::make_shared
<IRIntrinsicResult
>(IntName
, ParamTypes
, Args
);
1260 PrintFatalError("Unsupported dag node " + Op
->getName());
1265 Result::Ptr
EmitterBase::getCodeForDagArg(DagInit
*D
, unsigned ArgNum
,
1266 const Result::Scope
&Scope
,
1267 const Type
*Param
) {
1268 Init
*Arg
= D
->getArg(ArgNum
);
1269 StringRef Name
= D
->getArgNameStr(ArgNum
);
1271 if (!Name
.empty()) {
1272 if (!isa
<UnsetInit
>(Arg
))
1274 "dag operator argument should not have both a value and a name");
1275 auto it
= Scope
.find(std::string(Name
));
1276 if (it
== Scope
.end())
1277 PrintFatalError("unrecognized variable name '" + Name
+ "'");
1281 // Sometimes the Arg is a bit. Prior to multiclass template argument
1282 // checking, integers would sneak through the bit declaration,
1283 // but now they really are bits.
1284 if (auto *BI
= dyn_cast
<BitInit
>(Arg
))
1285 return std::make_shared
<IntLiteralResult
>(getScalarType("u32"),
1288 if (auto *II
= dyn_cast
<IntInit
>(Arg
))
1289 return std::make_shared
<IntLiteralResult
>(getScalarType("u32"),
1292 if (auto *DI
= dyn_cast
<DagInit
>(Arg
))
1293 return getCodeForDag(DI
, Scope
, Param
);
1295 if (auto *DI
= dyn_cast
<DefInit
>(Arg
)) {
1296 Record
*Rec
= DI
->getDef();
1297 if (Rec
->isSubClassOf("Type")) {
1298 const Type
*T
= getType(Rec
, Param
);
1299 return std::make_shared
<TypeResult
>(T
);
1303 PrintError("bad DAG argument type for code generation");
1304 PrintNote("DAG: " + D
->getAsString());
1305 if (TypedInit
*Typed
= dyn_cast
<TypedInit
>(Arg
))
1306 PrintNote("argument type: " + Typed
->getType()->getAsString());
1307 PrintFatalNote("argument number " + Twine(ArgNum
) + ": " + Arg
->getAsString());
1310 Result::Ptr
EmitterBase::getCodeForArg(unsigned ArgNum
, const Type
*ArgType
,
1311 bool Promote
, bool Immediate
) {
1312 Result::Ptr V
= std::make_shared
<BuiltinArgResult
>(
1313 ArgNum
, isa
<PointerType
>(ArgType
), Immediate
);
1316 if (const auto *ST
= dyn_cast
<ScalarType
>(ArgType
)) {
1317 if (ST
->isInteger() && ST
->sizeInBits() < 32)
1318 V
= std::make_shared
<IntCastResult
>(getScalarType("u32"), V
);
1319 } else if (const auto *PT
= dyn_cast
<PredicateType
>(ArgType
)) {
1320 V
= std::make_shared
<IntCastResult
>(getScalarType("u32"), V
);
1321 V
= std::make_shared
<IRIntrinsicResult
>("arm_mve_pred_i2v",
1322 std::vector
<const Type
*>{PT
},
1323 std::vector
<Result::Ptr
>{V
});
1330 ACLEIntrinsic::ACLEIntrinsic(EmitterBase
&ME
, Record
*R
, const Type
*Param
)
1331 : ReturnType(ME
.getType(R
->getValueAsDef("ret"), Param
)) {
1332 // Derive the intrinsic's full name, by taking the name of the
1333 // Tablegen record (or override) and appending the suffix from its
1334 // parameter type. (If the intrinsic is unparametrised, its
1335 // parameter type will be given as Void, which returns the empty
1336 // string for acleSuffix.)
1337 StringRef BaseName
=
1338 (R
->isSubClassOf("NameOverride") ? R
->getValueAsString("basename")
1340 StringRef overrideLetter
= R
->getValueAsString("overrideKindLetter");
1342 (Twine(BaseName
) + Param
->acleSuffix(std::string(overrideLetter
))).str();
1344 // Derive the intrinsic's polymorphic name, by removing components from the
1345 // full name as specified by its 'pnt' member ('polymorphic name type'),
1346 // which indicates how many type suffixes to remove, and any other piece of
1347 // the name that should be removed.
1348 Record
*PolymorphicNameType
= R
->getValueAsDef("pnt");
1349 SmallVector
<StringRef
, 8> NameParts
;
1350 StringRef(FullName
).split(NameParts
, '_');
1351 for (unsigned i
= 0, e
= PolymorphicNameType
->getValueAsInt(
1352 "NumTypeSuffixesToDiscard");
1354 NameParts
.pop_back();
1355 if (!PolymorphicNameType
->isValueUnset("ExtraSuffixToDiscard")) {
1356 StringRef ExtraSuffix
=
1357 PolymorphicNameType
->getValueAsString("ExtraSuffixToDiscard");
1358 auto it
= NameParts
.end();
1359 while (it
!= NameParts
.begin()) {
1361 if (*it
== ExtraSuffix
) {
1362 NameParts
.erase(it
);
1367 ShortName
= join(std::begin(NameParts
), std::end(NameParts
), "_");
1369 BuiltinExtension
= R
->getValueAsString("builtinExtension");
1371 PolymorphicOnly
= R
->getValueAsBit("polymorphicOnly");
1372 NonEvaluating
= R
->getValueAsBit("nonEvaluating");
1373 HeaderOnly
= R
->getValueAsBit("headerOnly");
1375 // Process the intrinsic's argument list.
1376 DagInit
*ArgsDag
= R
->getValueAsDag("args");
1377 Result::Scope Scope
;
1378 for (unsigned i
= 0, e
= ArgsDag
->getNumArgs(); i
< e
; ++i
) {
1379 Init
*TypeInit
= ArgsDag
->getArg(i
);
1381 bool Promote
= true;
1382 if (auto TypeDI
= dyn_cast
<DefInit
>(TypeInit
))
1383 if (TypeDI
->getDef()->isSubClassOf("unpromoted"))
1386 // Work out the type of the argument, for use in the function prototype in
1388 const Type
*ArgType
= ME
.getType(TypeInit
, Param
);
1389 ArgTypes
.push_back(ArgType
);
1391 // If the argument is a subclass of Immediate, record the details about
1392 // what values it can take, for Sema checking.
1393 bool Immediate
= false;
1394 if (auto TypeDI
= dyn_cast
<DefInit
>(TypeInit
)) {
1395 Record
*TypeRec
= TypeDI
->getDef();
1396 if (TypeRec
->isSubClassOf("Immediate")) {
1399 Record
*Bounds
= TypeRec
->getValueAsDef("bounds");
1400 ImmediateArg
&IA
= ImmediateArgs
[i
];
1401 if (Bounds
->isSubClassOf("IB_ConstRange")) {
1402 IA
.boundsType
= ImmediateArg::BoundsType::ExplicitRange
;
1403 IA
.i1
= Bounds
->getValueAsInt("lo");
1404 IA
.i2
= Bounds
->getValueAsInt("hi");
1405 } else if (Bounds
->getName() == "IB_UEltValue") {
1406 IA
.boundsType
= ImmediateArg::BoundsType::UInt
;
1407 IA
.i1
= Param
->sizeInBits();
1408 } else if (Bounds
->getName() == "IB_LaneIndex") {
1409 IA
.boundsType
= ImmediateArg::BoundsType::ExplicitRange
;
1411 IA
.i2
= 128 / Param
->sizeInBits() - 1;
1412 } else if (Bounds
->isSubClassOf("IB_EltBit")) {
1413 IA
.boundsType
= ImmediateArg::BoundsType::ExplicitRange
;
1414 IA
.i1
= Bounds
->getValueAsInt("base");
1415 const Type
*T
= ME
.getType(Bounds
->getValueAsDef("type"), Param
);
1416 IA
.i2
= IA
.i1
+ T
->sizeInBits() - 1;
1418 PrintFatalError("unrecognised ImmediateBounds subclass");
1421 IA
.ArgType
= ArgType
;
1423 if (!TypeRec
->isValueUnset("extra")) {
1424 IA
.ExtraCheckType
= TypeRec
->getValueAsString("extra");
1425 if (!TypeRec
->isValueUnset("extraarg"))
1426 IA
.ExtraCheckArgs
= TypeRec
->getValueAsString("extraarg");
1431 // The argument will usually have a name in the arguments dag, which goes
1432 // into the variable-name scope that the code gen will refer to.
1433 StringRef ArgName
= ArgsDag
->getArgNameStr(i
);
1434 if (!ArgName
.empty())
1435 Scope
[std::string(ArgName
)] =
1436 ME
.getCodeForArg(i
, ArgType
, Promote
, Immediate
);
1439 // Finally, go through the codegen dag and translate it into a Result object
1440 // (with an arbitrary DAG of depended-on Results hanging off it).
1441 DagInit
*CodeDag
= R
->getValueAsDag("codegen");
1442 Record
*MainOp
= cast
<DefInit
>(CodeDag
->getOperator())->getDef();
1443 if (MainOp
->isSubClassOf("CustomCodegen")) {
1444 // Or, if it's the special case of CustomCodegen, just accumulate
1445 // a list of parameters we're going to assign to variables before
1446 // breaking from the loop.
1447 CustomCodeGenArgs
["CustomCodeGenType"] =
1448 (Twine("CustomCodeGen::") + MainOp
->getValueAsString("type")).str();
1449 for (unsigned i
= 0, e
= CodeDag
->getNumArgs(); i
< e
; ++i
) {
1450 StringRef Name
= CodeDag
->getArgNameStr(i
);
1452 PrintFatalError("Operands to CustomCodegen should have names");
1453 } else if (auto *II
= dyn_cast
<IntInit
>(CodeDag
->getArg(i
))) {
1454 CustomCodeGenArgs
[std::string(Name
)] = itostr(II
->getValue());
1455 } else if (auto *SI
= dyn_cast
<StringInit
>(CodeDag
->getArg(i
))) {
1456 CustomCodeGenArgs
[std::string(Name
)] = std::string(SI
->getValue());
1458 PrintFatalError("Operands to CustomCodegen should be integers");
1462 Code
= ME
.getCodeForDag(CodeDag
, Scope
, Param
);
1466 EmitterBase::EmitterBase(RecordKeeper
&Records
) {
1467 // Construct the whole EmitterBase.
1469 // First, look up all the instances of PrimitiveType. This gives us the list
1470 // of vector typedefs we have to put in arm_mve.h, and also allows us to
1471 // collect all the useful ScalarType instances into a big list so that we can
1472 // use it for operations such as 'find the unsigned version of this signed
1474 for (Record
*R
: Records
.getAllDerivedDefinitions("PrimitiveType"))
1475 ScalarTypes
[std::string(R
->getName())] = std::make_unique
<ScalarType
>(R
);
1477 // Now go through the instances of Intrinsic, and for each one, iterate
1478 // through its list of type parameters making an ACLEIntrinsic for each one.
1479 for (Record
*R
: Records
.getAllDerivedDefinitions("Intrinsic")) {
1480 for (Record
*RParam
: R
->getValueAsListOfDefs("params")) {
1481 const Type
*Param
= getType(RParam
, getVoidType());
1482 auto Intrinsic
= std::make_unique
<ACLEIntrinsic
>(*this, R
, Param
);
1483 ACLEIntrinsics
[Intrinsic
->fullName()] = std::move(Intrinsic
);
1488 /// A wrapper on raw_string_ostream that contains its own buffer rather than
1489 /// having to point it at one elsewhere. (In other words, it works just like
1490 /// std::ostringstream; also, this makes it convenient to declare a whole array
1491 /// of them at once.)
1493 /// We have to set this up using multiple inheritance, to ensure that the
1494 /// string member has been constructed before raw_string_ostream's constructor
1495 /// is given a pointer to it.
1496 class string_holder
{
1500 class raw_self_contained_string_ostream
: private string_holder
,
1501 public raw_string_ostream
{
1503 raw_self_contained_string_ostream() : raw_string_ostream(S
) {}
1506 const char LLVMLicenseHeader
[] =
1509 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
1511 " * See https://llvm.org/LICENSE.txt for license information.\n"
1512 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1514 " *===-----------------------------------------------------------------"
1519 // Machinery for the grouping of intrinsics by similar codegen.
1521 // The general setup is that 'MergeableGroup' stores the things that a set of
1522 // similarly shaped intrinsics have in common: the text of their code
1523 // generation, and the number and type of their parameter variables.
1524 // MergeableGroup is the key in a std::map whose value is a set of
1525 // OutputIntrinsic, which stores the ways in which a particular intrinsic
1526 // specializes the MergeableGroup's generic description: the function name and
1527 // the _values_ of the parameter variables.
1529 struct ComparableStringVector
: std::vector
<std::string
> {
1530 // Infrastructure: a derived class of vector<string> which comes with an
1531 // ordering, so that it can be used as a key in maps and an element in sets.
1532 // There's no requirement on the ordering beyond being deterministic.
1533 bool operator<(const ComparableStringVector
&rhs
) const {
1534 if (size() != rhs
.size())
1535 return size() < rhs
.size();
1536 for (size_t i
= 0, e
= size(); i
< e
; ++i
)
1537 if ((*this)[i
] != rhs
[i
])
1538 return (*this)[i
] < rhs
[i
];
1543 struct OutputIntrinsic
{
1544 const ACLEIntrinsic
*Int
;
1546 ComparableStringVector ParamValues
;
1547 bool operator<(const OutputIntrinsic
&rhs
) const {
1548 if (Name
!= rhs
.Name
)
1549 return Name
< rhs
.Name
;
1550 return ParamValues
< rhs
.ParamValues
;
1553 struct MergeableGroup
{
1555 ComparableStringVector ParamTypes
;
1556 bool operator<(const MergeableGroup
&rhs
) const {
1557 if (Code
!= rhs
.Code
)
1558 return Code
< rhs
.Code
;
1559 return ParamTypes
< rhs
.ParamTypes
;
1563 void EmitterBase::EmitBuiltinCG(raw_ostream
&OS
) {
1564 // Pass 1: generate code for all the intrinsics as if every type or constant
1565 // that can possibly be abstracted out into a parameter variable will be.
1566 // This identifies the sets of intrinsics we'll group together into a single
1567 // piece of code generation.
1569 std::map
<MergeableGroup
, std::set
<OutputIntrinsic
>> MergeableGroupsPrelim
;
1571 for (const auto &kv
: ACLEIntrinsics
) {
1572 const ACLEIntrinsic
&Int
= *kv
.second
;
1573 if (Int
.headerOnly())
1580 OI
.Name
= Int
.fullName();
1581 CodeGenParamAllocator ParamAllocPrelim
{&MG
.ParamTypes
, &OI
.ParamValues
};
1582 raw_string_ostream
OS(MG
.Code
);
1583 Int
.genCode(OS
, ParamAllocPrelim
, 1);
1586 MergeableGroupsPrelim
[MG
].insert(OI
);
1589 // Pass 2: for each of those groups, optimize the parameter variable set by
1590 // eliminating 'parameters' that are the same for all intrinsics in the
1591 // group, and merging together pairs of parameter variables that take the
1592 // same values as each other for all intrinsics in the group.
1594 std::map
<MergeableGroup
, std::set
<OutputIntrinsic
>> MergeableGroups
;
1596 for (const auto &kv
: MergeableGroupsPrelim
) {
1597 const MergeableGroup
&MG
= kv
.first
;
1598 std::vector
<int> ParamNumbers
;
1599 std::map
<ComparableStringVector
, int> ParamNumberMap
;
1601 // Loop over the parameters for this group.
1602 for (size_t i
= 0, e
= MG
.ParamTypes
.size(); i
< e
; ++i
) {
1603 // Is this parameter the same for all intrinsics in the group?
1604 const OutputIntrinsic
&OI_first
= *kv
.second
.begin();
1605 bool Constant
= all_of(kv
.second
, [&](const OutputIntrinsic
&OI
) {
1606 return OI
.ParamValues
[i
] == OI_first
.ParamValues
[i
];
1609 // If so, record it as -1, meaning 'no parameter variable needed'. Then
1610 // the corresponding call to allocParam in pass 2 will not generate a
1611 // variable at all, and just use the value inline.
1613 ParamNumbers
.push_back(-1);
1617 // Otherwise, make a list of the values this parameter takes for each
1618 // intrinsic, and see if that value vector matches anything we already
1619 // have. We also record the parameter type, so that we don't accidentally
1620 // match up two parameter variables with different types. (Not that
1621 // there's much chance of them having textually equivalent values, but in
1622 // _principle_ it could happen.)
1623 ComparableStringVector key
;
1624 key
.push_back(MG
.ParamTypes
[i
]);
1625 for (const auto &OI
: kv
.second
)
1626 key
.push_back(OI
.ParamValues
[i
]);
1628 auto Found
= ParamNumberMap
.find(key
);
1629 if (Found
!= ParamNumberMap
.end()) {
1630 // Yes, an existing parameter variable can be reused for this.
1631 ParamNumbers
.push_back(Found
->second
);
1635 // No, we need a new parameter variable.
1636 int ExistingIndex
= ParamNumberMap
.size();
1637 ParamNumberMap
[key
] = ExistingIndex
;
1638 ParamNumbers
.push_back(ExistingIndex
);
1641 // Now we're ready to do the pass 2 code generation, which will emit the
1642 // reduced set of parameter variables we've just worked out.
1644 for (const auto &OI_prelim
: kv
.second
) {
1645 const ACLEIntrinsic
*Int
= OI_prelim
.Int
;
1650 OI
.Int
= OI_prelim
.Int
;
1651 OI
.Name
= OI_prelim
.Name
;
1652 CodeGenParamAllocator ParamAlloc
{&MG
.ParamTypes
, &OI
.ParamValues
,
1654 raw_string_ostream
OS(MG
.Code
);
1655 Int
->genCode(OS
, ParamAlloc
, 2);
1658 MergeableGroups
[MG
].insert(OI
);
1662 // Output the actual C++ code.
1664 for (const auto &kv
: MergeableGroups
) {
1665 const MergeableGroup
&MG
= kv
.first
;
1667 // List of case statements in the main switch on BuiltinID, and an open
1669 const char *prefix
= "";
1670 for (const auto &OI
: kv
.second
) {
1671 OS
<< prefix
<< "case ARM::BI__builtin_arm_" << OI
.Int
->builtinExtension()
1672 << "_" << OI
.Name
<< ":";
1678 if (!MG
.ParamTypes
.empty()) {
1679 // If we've got some parameter variables, then emit their declarations...
1680 for (size_t i
= 0, e
= MG
.ParamTypes
.size(); i
< e
; ++i
) {
1681 StringRef Type
= MG
.ParamTypes
[i
];
1683 if (!Type
.ends_with("*"))
1685 OS
<< " Param" << utostr(i
) << ";\n";
1688 // ... and an inner switch on BuiltinID that will fill them in with each
1689 // individual intrinsic's values.
1690 OS
<< " switch (BuiltinID) {\n";
1691 for (const auto &OI
: kv
.second
) {
1692 OS
<< " case ARM::BI__builtin_arm_" << OI
.Int
->builtinExtension()
1693 << "_" << OI
.Name
<< ":\n";
1694 for (size_t i
= 0, e
= MG
.ParamTypes
.size(); i
< e
; ++i
)
1695 OS
<< " Param" << utostr(i
) << " = " << OI
.ParamValues
[i
] << ";\n";
1701 // And finally, output the code, and close the outer pair of braces. (The
1702 // code will always end with a 'return' statement, so we need not insert a
1704 OS
<< MG
.Code
<< "}\n";
1708 void EmitterBase::EmitBuiltinAliases(raw_ostream
&OS
) {
1709 // Build a sorted table of:
1710 // - intrinsic id number
1712 // - polymorphic name or -1
1713 StringToOffsetTable StringTable
;
1714 OS
<< "static const IntrinToName MapData[] = {\n";
1715 for (const auto &kv
: ACLEIntrinsics
) {
1716 const ACLEIntrinsic
&Int
= *kv
.second
;
1717 if (Int
.headerOnly())
1719 int32_t ShortNameOffset
=
1720 Int
.polymorphic() ? StringTable
.GetOrAddStringOffset(Int
.shortName())
1722 OS
<< " { ARM::BI__builtin_arm_" << Int
.builtinExtension() << "_"
1723 << Int
.fullName() << ", "
1724 << StringTable
.GetOrAddStringOffset(Int
.fullName()) << ", "
1725 << ShortNameOffset
<< "},\n";
1729 OS
<< "ArrayRef<IntrinToName> Map(MapData);\n\n";
1731 OS
<< "static const char IntrinNames[] = {\n";
1732 StringTable
.EmitString(OS
);
1736 void EmitterBase::GroupSemaChecks(
1737 std::map
<std::string
, std::set
<std::string
>> &Checks
) {
1738 for (const auto &kv
: ACLEIntrinsics
) {
1739 const ACLEIntrinsic
&Int
= *kv
.second
;
1740 if (Int
.headerOnly())
1742 std::string Check
= Int
.genSema();
1744 Checks
[Check
].insert(Int
.fullName());
1748 // -----------------------------------------------------------------------------
1749 // The class used for generating arm_mve.h and related Clang bits
1752 class MveEmitter
: public EmitterBase
{
1754 MveEmitter(RecordKeeper
&Records
) : EmitterBase(Records
){};
1755 void EmitHeader(raw_ostream
&OS
) override
;
1756 void EmitBuiltinDef(raw_ostream
&OS
) override
;
1757 void EmitBuiltinSema(raw_ostream
&OS
) override
;
1760 void MveEmitter::EmitHeader(raw_ostream
&OS
) {
1761 // Accumulate pieces of the header file that will be enabled under various
1762 // different combinations of #ifdef. The index into parts[] is made up of
1763 // the following bit flags.
1764 constexpr unsigned Float
= 1;
1765 constexpr unsigned UseUserNamespace
= 2;
1767 constexpr unsigned NumParts
= 4;
1768 raw_self_contained_string_ostream parts
[NumParts
];
1770 // Write typedefs for all the required vector types, and a few scalar
1771 // types that don't already have the name we want them to have.
1773 parts
[0] << "typedef uint16_t mve_pred16_t;\n";
1774 parts
[Float
] << "typedef __fp16 float16_t;\n"
1775 "typedef float float32_t;\n";
1776 for (const auto &kv
: ScalarTypes
) {
1777 const ScalarType
*ST
= kv
.second
.get();
1778 if (ST
->hasNonstandardName())
1780 raw_ostream
&OS
= parts
[ST
->requiresFloat() ? Float
: 0];
1781 const VectorType
*VT
= getVectorType(ST
);
1783 OS
<< "typedef __attribute__((__neon_vector_type__(" << VT
->lanes()
1784 << "), __clang_arm_mve_strict_polymorphism)) " << ST
->cName() << " "
1785 << VT
->cName() << ";\n";
1787 // Every vector type also comes with a pair of multi-vector types for
1788 // the VLD2 and VLD4 instructions.
1789 for (unsigned n
= 2; n
<= 4; n
+= 2) {
1790 const MultiVectorType
*MT
= getMultiVectorType(n
, VT
);
1791 OS
<< "typedef struct { " << VT
->cName() << " val[" << n
<< "]; } "
1792 << MT
->cName() << ";\n";
1796 parts
[Float
] << "\n";
1798 // Write declarations for all the intrinsics.
1800 for (const auto &kv
: ACLEIntrinsics
) {
1801 const ACLEIntrinsic
&Int
= *kv
.second
;
1803 // We generate each intrinsic twice, under its full unambiguous
1804 // name and its shorter polymorphic name (if the latter exists).
1805 for (bool Polymorphic
: {false, true}) {
1806 if (Polymorphic
&& !Int
.polymorphic())
1808 if (!Polymorphic
&& Int
.polymorphicOnly())
1811 // We also generate each intrinsic under a name like __arm_vfooq
1812 // (which is in C language implementation namespace, so it's
1813 // safe to define in any conforming user program) and a shorter
1814 // one like vfooq (which is in user namespace, so a user might
1815 // reasonably have used it for something already). If so, they
1816 // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1817 // including the header, which will suppress the shorter names
1818 // and leave only the implementation-namespace ones. Then they
1819 // have to write __arm_vfooq everywhere, of course.
1821 for (bool UserNamespace
: {false, true}) {
1822 raw_ostream
&OS
= parts
[(Int
.requiresFloat() ? Float
: 0) |
1823 (UserNamespace
? UseUserNamespace
: 0)];
1825 // Make the name of the function in this declaration.
1827 std::string FunctionName
=
1828 Polymorphic
? Int
.shortName() : Int
.fullName();
1830 FunctionName
= "__arm_" + FunctionName
;
1832 // Make strings for the types involved in the function's
1835 std::string RetTypeName
= Int
.returnType()->cName();
1836 if (!StringRef(RetTypeName
).ends_with("*"))
1839 std::vector
<std::string
> ArgTypeNames
;
1840 for (const Type
*ArgTypePtr
: Int
.argTypes())
1841 ArgTypeNames
.push_back(ArgTypePtr
->cName());
1842 std::string ArgTypesString
=
1843 join(std::begin(ArgTypeNames
), std::end(ArgTypeNames
), ", ");
1845 // Emit the actual declaration. All these functions are
1846 // declared 'static inline' without a body, which is fine
1847 // provided clang recognizes them as builtins, and has the
1848 // effect that this type signature is used in place of the one
1849 // that Builtins.def didn't provide. That's how we can get
1850 // structure types that weren't defined until this header was
1851 // included to be part of the type signature of a builtin that
1852 // was known to clang already.
1854 // The declarations use __attribute__(__clang_arm_builtin_alias),
1855 // so that each function declared will be recognized as the
1856 // appropriate MVE builtin in spite of its user-facing name.
1858 // (That's better than making them all wrapper functions,
1859 // partly because it avoids any compiler error message citing
1860 // the wrapper function definition instead of the user's code,
1861 // and mostly because some MVE intrinsics have arguments
1862 // required to be compile-time constants, and that property
1863 // can't be propagated through a wrapper function. It can be
1864 // propagated through a macro, but macros can't be overloaded
1865 // on argument types very easily - you have to use _Generic,
1866 // which makes error messages very confusing when the user
1869 // Finally, the polymorphic versions of the intrinsics are
1870 // also defined with __attribute__(overloadable), so that when
1871 // the same name is defined with several type signatures, the
1872 // right thing happens. Each one of the overloaded
1873 // declarations is given a different builtin id, which
1874 // has exactly the effect we want: first clang resolves the
1875 // overload to the right function, then it knows which builtin
1876 // it's referring to, and then the Sema checking for that
1877 // builtin can check further things like the constant
1880 // One more subtlety is the newline just before the return
1881 // type name. That's a cosmetic tweak to make the error
1882 // messages legible if the user gets the types wrong in a call
1883 // to a polymorphic function: this way, clang will print just
1884 // the _final_ line of each declaration in the header, to show
1885 // the type signatures that would have been legal. So all the
1886 // confusing machinery with __attribute__ is left out of the
1887 // error message, and the user sees something that's more or
1888 // less self-documenting: "here's a list of actually readable
1889 // type signatures for vfooq(), and here's why each one didn't
1890 // match your call".
1892 OS
<< "static __inline__ __attribute__(("
1893 << (Polymorphic
? "__overloadable__, " : "")
1894 << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int
.fullName()
1896 << RetTypeName
<< FunctionName
<< "(" << ArgTypesString
<< ");\n";
1900 for (auto &part
: parts
)
1903 // Now we've finished accumulating bits and pieces into the parts[] array.
1904 // Put it all together to write the final output file.
1906 OS
<< "/*===---- arm_mve.h - ARM MVE intrinsics "
1907 "-----------------------------------===\n"
1908 << LLVMLicenseHeader
1909 << "#ifndef __ARM_MVE_H\n"
1910 "#define __ARM_MVE_H\n"
1912 "#if !__ARM_FEATURE_MVE\n"
1913 "#error \"MVE support not enabled\"\n"
1916 "#include <stdint.h>\n"
1918 "#ifdef __cplusplus\n"
1923 for (size_t i
= 0; i
< NumParts
; ++i
) {
1924 std::vector
<std::string
> conditions
;
1926 conditions
.push_back("(__ARM_FEATURE_MVE & 2)");
1927 if (i
& UseUserNamespace
)
1928 conditions
.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1930 std::string condition
=
1931 join(std::begin(conditions
), std::end(conditions
), " && ");
1932 if (!condition
.empty())
1933 OS
<< "#if " << condition
<< "\n\n";
1934 OS
<< parts
[i
].str();
1935 if (!condition
.empty())
1936 OS
<< "#endif /* " << condition
<< " */\n\n";
1939 OS
<< "#ifdef __cplusplus\n"
1940 "} /* extern \"C\" */\n"
1943 "#endif /* __ARM_MVE_H */\n";
1946 void MveEmitter::EmitBuiltinDef(raw_ostream
&OS
) {
1947 for (const auto &kv
: ACLEIntrinsics
) {
1948 const ACLEIntrinsic
&Int
= *kv
.second
;
1949 OS
<< "BUILTIN(__builtin_arm_mve_" << Int
.fullName()
1950 << ", \"\", \"n\")\n";
1953 std::set
<std::string
> ShortNamesSeen
;
1955 for (const auto &kv
: ACLEIntrinsics
) {
1956 const ACLEIntrinsic
&Int
= *kv
.second
;
1957 if (Int
.polymorphic()) {
1958 StringRef Name
= Int
.shortName();
1959 if (ShortNamesSeen
.find(std::string(Name
)) == ShortNamesSeen
.end()) {
1960 OS
<< "BUILTIN(__builtin_arm_mve_" << Name
<< ", \"vi.\", \"nt";
1961 if (Int
.nonEvaluating())
1962 OS
<< "u"; // indicate that this builtin doesn't evaluate its args
1964 ShortNamesSeen
.insert(std::string(Name
));
1970 void MveEmitter::EmitBuiltinSema(raw_ostream
&OS
) {
1971 std::map
<std::string
, std::set
<std::string
>> Checks
;
1972 GroupSemaChecks(Checks
);
1974 for (const auto &kv
: Checks
) {
1975 for (StringRef Name
: kv
.second
)
1976 OS
<< "case ARM::BI__builtin_arm_mve_" << Name
<< ":\n";
1977 OS
<< " return " << kv
.first
;
1981 // -----------------------------------------------------------------------------
1982 // Class that describes an ACLE intrinsic implemented as a macro.
1984 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
1985 // want to avoid a combinatorial explosion by reinterpreting the arguments to
1988 class FunctionMacro
{
1989 std::vector
<StringRef
> Params
;
1990 StringRef Definition
;
1993 FunctionMacro(const Record
&R
);
1995 const std::vector
<StringRef
> &getParams() const { return Params
; }
1996 StringRef
getDefinition() const { return Definition
; }
1999 FunctionMacro::FunctionMacro(const Record
&R
) {
2000 Params
= R
.getValueAsListOfStrings("params");
2001 Definition
= R
.getValueAsString("definition");
2004 // -----------------------------------------------------------------------------
2005 // The class used for generating arm_cde.h and related Clang bits
2008 class CdeEmitter
: public EmitterBase
{
2009 std::map
<StringRef
, FunctionMacro
> FunctionMacros
;
2012 CdeEmitter(RecordKeeper
&Records
);
2013 void EmitHeader(raw_ostream
&OS
) override
;
2014 void EmitBuiltinDef(raw_ostream
&OS
) override
;
2015 void EmitBuiltinSema(raw_ostream
&OS
) override
;
2018 CdeEmitter::CdeEmitter(RecordKeeper
&Records
) : EmitterBase(Records
) {
2019 for (Record
*R
: Records
.getAllDerivedDefinitions("FunctionMacro"))
2020 FunctionMacros
.emplace(R
->getName(), FunctionMacro(*R
));
2023 void CdeEmitter::EmitHeader(raw_ostream
&OS
) {
2024 // Accumulate pieces of the header file that will be enabled under various
2025 // different combinations of #ifdef. The index into parts[] is one of the
2027 constexpr unsigned None
= 0;
2028 constexpr unsigned MVE
= 1;
2029 constexpr unsigned MVEFloat
= 2;
2031 constexpr unsigned NumParts
= 3;
2032 raw_self_contained_string_ostream parts
[NumParts
];
2034 // Write typedefs for all the required vector types, and a few scalar
2035 // types that don't already have the name we want them to have.
2037 parts
[MVE
] << "typedef uint16_t mve_pred16_t;\n";
2038 parts
[MVEFloat
] << "typedef __fp16 float16_t;\n"
2039 "typedef float float32_t;\n";
2040 for (const auto &kv
: ScalarTypes
) {
2041 const ScalarType
*ST
= kv
.second
.get();
2042 if (ST
->hasNonstandardName())
2044 // We don't have float64x2_t
2045 if (ST
->kind() == ScalarTypeKind::Float
&& ST
->sizeInBits() == 64)
2047 raw_ostream
&OS
= parts
[ST
->requiresFloat() ? MVEFloat
: MVE
];
2048 const VectorType
*VT
= getVectorType(ST
);
2050 OS
<< "typedef __attribute__((__neon_vector_type__(" << VT
->lanes()
2051 << "), __clang_arm_mve_strict_polymorphism)) " << ST
->cName() << " "
2052 << VT
->cName() << ";\n";
2055 parts
[MVEFloat
] << "\n";
2057 // Write declarations for all the intrinsics.
2059 for (const auto &kv
: ACLEIntrinsics
) {
2060 const ACLEIntrinsic
&Int
= *kv
.second
;
2062 // We generate each intrinsic twice, under its full unambiguous
2063 // name and its shorter polymorphic name (if the latter exists).
2064 for (bool Polymorphic
: {false, true}) {
2065 if (Polymorphic
&& !Int
.polymorphic())
2067 if (!Polymorphic
&& Int
.polymorphicOnly())
2071 parts
[Int
.requiresFloat() ? MVEFloat
2072 : Int
.requiresMVE() ? MVE
: None
];
2074 // Make the name of the function in this declaration.
2075 std::string FunctionName
=
2076 "__arm_" + (Polymorphic
? Int
.shortName() : Int
.fullName());
2078 // Make strings for the types involved in the function's
2080 std::string RetTypeName
= Int
.returnType()->cName();
2081 if (!StringRef(RetTypeName
).ends_with("*"))
2084 std::vector
<std::string
> ArgTypeNames
;
2085 for (const Type
*ArgTypePtr
: Int
.argTypes())
2086 ArgTypeNames
.push_back(ArgTypePtr
->cName());
2087 std::string ArgTypesString
=
2088 join(std::begin(ArgTypeNames
), std::end(ArgTypeNames
), ", ");
2090 // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
2092 OS
<< "static __inline__ __attribute__(("
2093 << (Polymorphic
? "__overloadable__, " : "")
2094 << "__clang_arm_builtin_alias(__builtin_arm_" << Int
.builtinExtension()
2095 << "_" << Int
.fullName() << ")))\n"
2096 << RetTypeName
<< FunctionName
<< "(" << ArgTypesString
<< ");\n";
2100 for (const auto &kv
: FunctionMacros
) {
2101 StringRef Name
= kv
.first
;
2102 const FunctionMacro
&FM
= kv
.second
;
2104 raw_ostream
&OS
= parts
[MVE
];
2106 << "__arm_" << Name
<< "(" << join(FM
.getParams(), ", ") << ") "
2107 << FM
.getDefinition() << "\n";
2110 for (auto &part
: parts
)
2113 // Now we've finished accumulating bits and pieces into the parts[] array.
2114 // Put it all together to write the final output file.
2116 OS
<< "/*===---- arm_cde.h - ARM CDE intrinsics "
2117 "-----------------------------------===\n"
2118 << LLVMLicenseHeader
2119 << "#ifndef __ARM_CDE_H\n"
2120 "#define __ARM_CDE_H\n"
2122 "#if !__ARM_FEATURE_CDE\n"
2123 "#error \"CDE support not enabled\"\n"
2126 "#include <stdint.h>\n"
2128 "#ifdef __cplusplus\n"
2133 for (size_t i
= 0; i
< NumParts
; ++i
) {
2134 std::string condition
;
2136 condition
= "__ARM_FEATURE_MVE & 2";
2138 condition
= "__ARM_FEATURE_MVE";
2140 if (!condition
.empty())
2141 OS
<< "#if " << condition
<< "\n\n";
2142 OS
<< parts
[i
].str();
2143 if (!condition
.empty())
2144 OS
<< "#endif /* " << condition
<< " */\n\n";
2147 OS
<< "#ifdef __cplusplus\n"
2148 "} /* extern \"C\" */\n"
2151 "#endif /* __ARM_CDE_H */\n";
2154 void CdeEmitter::EmitBuiltinDef(raw_ostream
&OS
) {
2155 for (const auto &kv
: ACLEIntrinsics
) {
2156 if (kv
.second
->headerOnly())
2158 const ACLEIntrinsic
&Int
= *kv
.second
;
2159 OS
<< "BUILTIN(__builtin_arm_cde_" << Int
.fullName()
2160 << ", \"\", \"ncU\")\n";
2164 void CdeEmitter::EmitBuiltinSema(raw_ostream
&OS
) {
2165 std::map
<std::string
, std::set
<std::string
>> Checks
;
2166 GroupSemaChecks(Checks
);
2168 for (const auto &kv
: Checks
) {
2169 for (StringRef Name
: kv
.second
)
2170 OS
<< "case ARM::BI__builtin_arm_cde_" << Name
<< ":\n";
2171 OS
<< " Err = " << kv
.first
<< " break;\n";
2181 void EmitMveHeader(RecordKeeper
&Records
, raw_ostream
&OS
) {
2182 MveEmitter(Records
).EmitHeader(OS
);
2185 void EmitMveBuiltinDef(RecordKeeper
&Records
, raw_ostream
&OS
) {
2186 MveEmitter(Records
).EmitBuiltinDef(OS
);
2189 void EmitMveBuiltinSema(RecordKeeper
&Records
, raw_ostream
&OS
) {
2190 MveEmitter(Records
).EmitBuiltinSema(OS
);
2193 void EmitMveBuiltinCG(RecordKeeper
&Records
, raw_ostream
&OS
) {
2194 MveEmitter(Records
).EmitBuiltinCG(OS
);
2197 void EmitMveBuiltinAliases(RecordKeeper
&Records
, raw_ostream
&OS
) {
2198 MveEmitter(Records
).EmitBuiltinAliases(OS
);
2203 void EmitCdeHeader(RecordKeeper
&Records
, raw_ostream
&OS
) {
2204 CdeEmitter(Records
).EmitHeader(OS
);
2207 void EmitCdeBuiltinDef(RecordKeeper
&Records
, raw_ostream
&OS
) {
2208 CdeEmitter(Records
).EmitBuiltinDef(OS
);
2211 void EmitCdeBuiltinSema(RecordKeeper
&Records
, raw_ostream
&OS
) {
2212 CdeEmitter(Records
).EmitBuiltinSema(OS
);
2215 void EmitCdeBuiltinCG(RecordKeeper
&Records
, raw_ostream
&OS
) {
2216 CdeEmitter(Records
).EmitBuiltinCG(OS
);
2219 void EmitCdeBuiltinAliases(RecordKeeper
&Records
, raw_ostream
&OS
) {
2220 CdeEmitter(Records
).EmitBuiltinAliases(OS
);
2223 } // end namespace clang