[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / utils / TableGen / NeonEmitter.cpp
blob53334016c180a12dfb00c7c7265ee974a20595e0
1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface. See ARM document DUI0348B.
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors. Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
22 // See also the documentation in include/clang/Basic/arm_neon.td.
24 //===----------------------------------------------------------------------===//
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/TableGen/Error.h"
37 #include "llvm/TableGen/Record.h"
38 #include "llvm/TableGen/SetTheory.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cctype>
42 #include <cstddef>
43 #include <cstdint>
44 #include <deque>
45 #include <map>
46 #include <optional>
47 #include <set>
48 #include <sstream>
49 #include <string>
50 #include <utility>
51 #include <vector>
53 using namespace llvm;
55 namespace {
57 // While globals are generally bad, this one allows us to perform assertions
58 // liberally and somehow still trace them back to the def they indirectly
59 // came from.
60 static Record *CurrentRecord = nullptr;
61 static void assert_with_loc(bool Assertion, const std::string &Str) {
62 if (!Assertion) {
63 if (CurrentRecord)
64 PrintFatalError(CurrentRecord->getLoc(), Str);
65 else
66 PrintFatalError(Str);
70 enum ClassKind {
71 ClassNone,
72 ClassI, // generic integer instruction, e.g., "i8" suffix
73 ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
74 ClassW, // width-specific instruction, e.g., "8" suffix
75 ClassB, // bitcast arguments with enum argument to specify type
76 ClassL, // Logical instructions which are op instructions
77 // but we need to not emit any suffix for in our
78 // tests.
79 ClassNoTest // Instructions which we do not test since they are
80 // not TRUE instructions.
83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
84 /// builtins. These must be kept in sync with the flags in
85 /// include/clang/Basic/TargetBuiltins.h.
86 namespace NeonTypeFlags {
88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
90 enum EltType {
91 Int8,
92 Int16,
93 Int32,
94 Int64,
95 Poly8,
96 Poly16,
97 Poly64,
98 Poly128,
99 Float16,
100 Float32,
101 Float64,
102 BFloat16
105 } // end namespace NeonTypeFlags
107 class NeonEmitter;
109 //===----------------------------------------------------------------------===//
110 // TypeSpec
111 //===----------------------------------------------------------------------===//
113 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
114 /// for strong typing purposes.
116 /// A TypeSpec can be used to create a type.
117 class TypeSpec : public std::string {
118 public:
119 static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
120 std::vector<TypeSpec> Ret;
121 TypeSpec Acc;
122 for (char I : Str.str()) {
123 if (islower(I)) {
124 Acc.push_back(I);
125 Ret.push_back(TypeSpec(Acc));
126 Acc.clear();
127 } else {
128 Acc.push_back(I);
131 return Ret;
135 //===----------------------------------------------------------------------===//
136 // Type
137 //===----------------------------------------------------------------------===//
139 /// A Type. Not much more to say here.
140 class Type {
141 private:
142 TypeSpec TS;
144 enum TypeKind {
145 Void,
146 Float,
147 SInt,
148 UInt,
149 Poly,
150 BFloat16,
152 TypeKind Kind;
153 bool Immediate, Constant, Pointer;
154 // ScalarForMangling and NoManglingQ are really not suited to live here as
155 // they are not related to the type. But they live in the TypeSpec (not the
156 // prototype), so this is really the only place to store them.
157 bool ScalarForMangling, NoManglingQ;
158 unsigned Bitwidth, ElementBitwidth, NumVectors;
160 public:
161 Type()
162 : Kind(Void), Immediate(false), Constant(false),
163 Pointer(false), ScalarForMangling(false), NoManglingQ(false),
164 Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
166 Type(TypeSpec TS, StringRef CharMods)
167 : TS(std::move(TS)), Kind(Void), Immediate(false),
168 Constant(false), Pointer(false), ScalarForMangling(false),
169 NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
170 applyModifiers(CharMods);
173 /// Returns a type representing "void".
174 static Type getVoid() { return Type(); }
176 bool operator==(const Type &Other) const { return str() == Other.str(); }
177 bool operator!=(const Type &Other) const { return !operator==(Other); }
180 // Query functions
182 bool isScalarForMangling() const { return ScalarForMangling; }
183 bool noManglingQ() const { return NoManglingQ; }
185 bool isPointer() const { return Pointer; }
186 bool isValue() const { return !isVoid() && !isPointer(); }
187 bool isScalar() const { return isValue() && NumVectors == 0; }
188 bool isVector() const { return isValue() && NumVectors > 0; }
189 bool isConstPointer() const { return Constant; }
190 bool isFloating() const { return Kind == Float; }
191 bool isInteger() const { return Kind == SInt || Kind == UInt; }
192 bool isPoly() const { return Kind == Poly; }
193 bool isSigned() const { return Kind == SInt; }
194 bool isImmediate() const { return Immediate; }
195 bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
196 bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
197 bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
198 bool isChar() const { return ElementBitwidth == 8; }
199 bool isShort() const { return isInteger() && ElementBitwidth == 16; }
200 bool isInt() const { return isInteger() && ElementBitwidth == 32; }
201 bool isLong() const { return isInteger() && ElementBitwidth == 64; }
202 bool isVoid() const { return Kind == Void; }
203 bool isBFloat16() const { return Kind == BFloat16; }
204 unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
205 unsigned getSizeInBits() const { return Bitwidth; }
206 unsigned getElementSizeInBits() const { return ElementBitwidth; }
207 unsigned getNumVectors() const { return NumVectors; }
210 // Mutator functions
212 void makeUnsigned() {
213 assert(!isVoid() && "not a potentially signed type");
214 Kind = UInt;
216 void makeSigned() {
217 assert(!isVoid() && "not a potentially signed type");
218 Kind = SInt;
221 void makeInteger(unsigned ElemWidth, bool Sign) {
222 assert(!isVoid() && "converting void to int probably not useful");
223 Kind = Sign ? SInt : UInt;
224 Immediate = false;
225 ElementBitwidth = ElemWidth;
228 void makeImmediate(unsigned ElemWidth) {
229 Kind = SInt;
230 Immediate = true;
231 ElementBitwidth = ElemWidth;
234 void makeScalar() {
235 Bitwidth = ElementBitwidth;
236 NumVectors = 0;
239 void makeOneVector() {
240 assert(isVector());
241 NumVectors = 1;
244 void make32BitElement() {
245 assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
246 ElementBitwidth = 32;
249 void doubleLanes() {
250 assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
251 Bitwidth = 128;
254 void halveLanes() {
255 assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
256 Bitwidth = 64;
259 /// Return the C string representation of a type, which is the typename
260 /// defined in stdint.h or arm_neon.h.
261 std::string str() const;
263 /// Return the string representation of a type, which is an encoded
264 /// string for passing to the BUILTIN() macro in Builtins.def.
265 std::string builtin_str() const;
267 /// Return the value in NeonTypeFlags for this type.
268 unsigned getNeonEnum() const;
270 /// Parse a type from a stdint.h or arm_neon.h typedef name,
271 /// for example uint32x2_t or int64_t.
272 static Type fromTypedefName(StringRef Name);
274 private:
275 /// Creates the type based on the typespec string in TS.
276 /// Sets "Quad" to true if the "Q" or "H" modifiers were
277 /// seen. This is needed by applyModifier as some modifiers
278 /// only take effect if the type size was changed by "Q" or "H".
279 void applyTypespec(bool &Quad);
280 /// Applies prototype modifiers to the type.
281 void applyModifiers(StringRef Mods);
284 //===----------------------------------------------------------------------===//
285 // Variable
286 //===----------------------------------------------------------------------===//
288 /// A variable is a simple class that just has a type and a name.
289 class Variable {
290 Type T;
291 std::string N;
293 public:
294 Variable() : T(Type::getVoid()) {}
295 Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
297 Type getType() const { return T; }
298 std::string getName() const { return "__" + N; }
301 //===----------------------------------------------------------------------===//
302 // Intrinsic
303 //===----------------------------------------------------------------------===//
305 /// The main grunt class. This represents an instantiation of an intrinsic with
306 /// a particular typespec and prototype.
307 class Intrinsic {
308 /// The Record this intrinsic was created from.
309 Record *R;
310 /// The unmangled name.
311 std::string Name;
312 /// The input and output typespecs. InTS == OutTS except when
313 /// CartesianProductWith is non-empty - this is the case for vreinterpret.
314 TypeSpec OutTS, InTS;
315 /// The base class kind. Most intrinsics use ClassS, which has full type
316 /// info for integers (s32/u32). Some use ClassI, which doesn't care about
317 /// signedness (i32), while some (ClassB) have no type at all, only a width
318 /// (32).
319 ClassKind CK;
320 /// The list of DAGs for the body. May be empty, in which case we should
321 /// emit a builtin call.
322 ListInit *Body;
323 /// The architectural ifdef guard.
324 std::string ArchGuard;
325 /// The architectural target() guard.
326 std::string TargetGuard;
327 /// Set if the Unavailable bit is 1. This means we don't generate a body,
328 /// just an "unavailable" attribute on a declaration.
329 bool IsUnavailable;
330 /// Is this intrinsic safe for big-endian? or does it need its arguments
331 /// reversing?
332 bool BigEndianSafe;
334 /// The types of return value [0] and parameters [1..].
335 std::vector<Type> Types;
336 /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
337 int PolymorphicKeyType;
338 /// The local variables defined.
339 std::map<std::string, Variable> Variables;
340 /// NeededEarly - set if any other intrinsic depends on this intrinsic.
341 bool NeededEarly;
342 /// UseMacro - set if we should implement using a macro or unset for a
343 /// function.
344 bool UseMacro;
345 /// The set of intrinsics that this intrinsic uses/requires.
346 std::set<Intrinsic *> Dependencies;
347 /// The "base type", which is Type('d', OutTS). InBaseType is only
348 /// different if CartesianProductWith is non-empty (for vreinterpret).
349 Type BaseType, InBaseType;
350 /// The return variable.
351 Variable RetVar;
352 /// A postfix to apply to every variable. Defaults to "".
353 std::string VariablePostfix;
355 NeonEmitter &Emitter;
356 std::stringstream OS;
358 bool isBigEndianSafe() const {
359 if (BigEndianSafe)
360 return true;
362 for (const auto &T : Types){
363 if (T.isVector() && T.getNumElements() > 1)
364 return false;
366 return true;
369 public:
370 Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
371 TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
372 StringRef ArchGuard, StringRef TargetGuard, bool IsUnavailable, bool BigEndianSafe)
373 : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
374 ArchGuard(ArchGuard.str()), TargetGuard(TargetGuard.str()), IsUnavailable(IsUnavailable),
375 BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
376 UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
377 Emitter(Emitter) {
378 // Modify the TypeSpec per-argument to get a concrete Type, and create
379 // known variables for each.
380 // Types[0] is the return value.
381 unsigned Pos = 0;
382 Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
383 StringRef Mods = getNextModifiers(Proto, Pos);
384 while (!Mods.empty()) {
385 Types.emplace_back(InTS, Mods);
386 if (Mods.contains('!'))
387 PolymorphicKeyType = Types.size() - 1;
389 Mods = getNextModifiers(Proto, Pos);
392 for (const auto &Type : Types) {
393 // If this builtin takes an immediate argument, we need to #define it rather
394 // than use a standard declaration, so that SemaChecking can range check
395 // the immediate passed by the user.
397 // Pointer arguments need to use macros to avoid hiding aligned attributes
398 // from the pointer type.
400 // It is not permitted to pass or return an __fp16 by value, so intrinsics
401 // taking a scalar float16_t must be implemented as macros.
402 if (Type.isImmediate() || Type.isPointer() ||
403 (Type.isScalar() && Type.isHalf()))
404 UseMacro = true;
408 /// Get the Record that this intrinsic is based off.
409 Record *getRecord() const { return R; }
410 /// Get the set of Intrinsics that this intrinsic calls.
411 /// this is the set of immediate dependencies, NOT the
412 /// transitive closure.
413 const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
414 /// Get the architectural guard string (#ifdef).
415 std::string getArchGuard() const { return ArchGuard; }
416 std::string getTargetGuard() const { return TargetGuard; }
417 /// Get the non-mangled name.
418 std::string getName() const { return Name; }
420 /// Return true if the intrinsic takes an immediate operand.
421 bool hasImmediate() const {
422 return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); });
425 /// Return the parameter index of the immediate operand.
426 unsigned getImmediateIdx() const {
427 for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
428 if (Types[Idx].isImmediate())
429 return Idx - 1;
430 llvm_unreachable("Intrinsic has no immediate");
434 unsigned getNumParams() const { return Types.size() - 1; }
435 Type getReturnType() const { return Types[0]; }
436 Type getParamType(unsigned I) const { return Types[I + 1]; }
437 Type getBaseType() const { return BaseType; }
438 Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
440 /// Return true if the prototype has a scalar argument.
441 bool protoHasScalar() const;
443 /// Return the index that parameter PIndex will sit at
444 /// in a generated function call. This is often just PIndex,
445 /// but may not be as things such as multiple-vector operands
446 /// and sret parameters need to be taken into account.
447 unsigned getGeneratedParamIdx(unsigned PIndex) {
448 unsigned Idx = 0;
449 if (getReturnType().getNumVectors() > 1)
450 // Multiple vectors are passed as sret.
451 ++Idx;
453 for (unsigned I = 0; I < PIndex; ++I)
454 Idx += std::max(1U, getParamType(I).getNumVectors());
456 return Idx;
459 bool hasBody() const { return Body && !Body->getValues().empty(); }
461 void setNeededEarly() { NeededEarly = true; }
463 bool operator<(const Intrinsic &Other) const {
464 // Sort lexicographically on a three-tuple (ArchGuard, TargetGuard, Name)
465 if (ArchGuard != Other.ArchGuard)
466 return ArchGuard < Other.ArchGuard;
467 if (TargetGuard != Other.TargetGuard)
468 return TargetGuard < Other.TargetGuard;
469 return Name < Other.Name;
472 ClassKind getClassKind(bool UseClassBIfScalar = false) {
473 if (UseClassBIfScalar && !protoHasScalar())
474 return ClassB;
475 return CK;
478 /// Return the name, mangled with type information.
479 /// If ForceClassS is true, use ClassS (u32/s32) instead
480 /// of the intrinsic's own type class.
481 std::string getMangledName(bool ForceClassS = false) const;
482 /// Return the type code for a builtin function call.
483 std::string getInstTypeCode(Type T, ClassKind CK) const;
484 /// Return the type string for a BUILTIN() macro in Builtins.def.
485 std::string getBuiltinTypeStr();
487 /// Generate the intrinsic, returning code.
488 std::string generate();
489 /// Perform type checking and populate the dependency graph, but
490 /// don't generate code yet.
491 void indexBody();
493 private:
494 StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
496 std::string mangleName(std::string Name, ClassKind CK) const;
498 void initVariables();
499 std::string replaceParamsIn(std::string S);
501 void emitBodyAsBuiltinCall();
503 void generateImpl(bool ReverseArguments,
504 StringRef NamePrefix, StringRef CallPrefix);
505 void emitReturn();
506 void emitBody(StringRef CallPrefix);
507 void emitShadowedArgs();
508 void emitArgumentReversal();
509 void emitReturnVarDecl();
510 void emitReturnReversal();
511 void emitReverseVariable(Variable &Dest, Variable &Src);
512 void emitNewLine();
513 void emitClosingBrace();
514 void emitOpeningBrace();
515 void emitPrototype(StringRef NamePrefix);
517 class DagEmitter {
518 Intrinsic &Intr;
519 StringRef CallPrefix;
521 public:
522 DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
523 Intr(Intr), CallPrefix(CallPrefix) {
525 std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
526 std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
527 std::pair<Type, std::string> emitDagSplat(DagInit *DI);
528 std::pair<Type, std::string> emitDagDup(DagInit *DI);
529 std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
530 std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
531 std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
532 std::pair<Type, std::string> emitDagCall(DagInit *DI,
533 bool MatchMangledName);
534 std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
535 std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
536 std::pair<Type, std::string> emitDagOp(DagInit *DI);
537 std::pair<Type, std::string> emitDag(DagInit *DI);
541 //===----------------------------------------------------------------------===//
542 // NeonEmitter
543 //===----------------------------------------------------------------------===//
545 class NeonEmitter {
546 RecordKeeper &Records;
547 DenseMap<Record *, ClassKind> ClassMap;
548 std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
549 unsigned UniqueNumber;
551 void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
552 void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
553 void genStreamingSVECompatibleList(raw_ostream &OS,
554 SmallVectorImpl<Intrinsic *> &Defs);
555 void genOverloadTypeCheckCode(raw_ostream &OS,
556 SmallVectorImpl<Intrinsic *> &Defs);
557 void genIntrinsicRangeCheckCode(raw_ostream &OS,
558 SmallVectorImpl<Intrinsic *> &Defs);
560 public:
561 /// Called by Intrinsic - this attempts to get an intrinsic that takes
562 /// the given types as arguments.
563 Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
564 std::optional<std::string> MangledName);
566 /// Called by Intrinsic - returns a globally-unique number.
567 unsigned getUniqueNumber() { return UniqueNumber++; }
569 NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
570 Record *SI = R.getClass("SInst");
571 Record *II = R.getClass("IInst");
572 Record *WI = R.getClass("WInst");
573 Record *SOpI = R.getClass("SOpInst");
574 Record *IOpI = R.getClass("IOpInst");
575 Record *WOpI = R.getClass("WOpInst");
576 Record *LOpI = R.getClass("LOpInst");
577 Record *NoTestOpI = R.getClass("NoTestOpInst");
579 ClassMap[SI] = ClassS;
580 ClassMap[II] = ClassI;
581 ClassMap[WI] = ClassW;
582 ClassMap[SOpI] = ClassS;
583 ClassMap[IOpI] = ClassI;
584 ClassMap[WOpI] = ClassW;
585 ClassMap[LOpI] = ClassL;
586 ClassMap[NoTestOpI] = ClassNoTest;
589 // Emit arm_neon.h.inc
590 void run(raw_ostream &o);
592 // Emit arm_fp16.h.inc
593 void runFP16(raw_ostream &o);
595 // Emit arm_bf16.h.inc
596 void runBF16(raw_ostream &o);
598 void runVectorTypes(raw_ostream &o);
600 // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
601 // arm_bf16.h
602 void runHeader(raw_ostream &o);
605 } // end anonymous namespace
607 //===----------------------------------------------------------------------===//
608 // Type implementation
609 //===----------------------------------------------------------------------===//
611 std::string Type::str() const {
612 if (isVoid())
613 return "void";
614 std::string S;
616 if (isInteger() && !isSigned())
617 S += "u";
619 if (isPoly())
620 S += "poly";
621 else if (isFloating())
622 S += "float";
623 else if (isBFloat16())
624 S += "bfloat";
625 else
626 S += "int";
628 S += utostr(ElementBitwidth);
629 if (isVector())
630 S += "x" + utostr(getNumElements());
631 if (NumVectors > 1)
632 S += "x" + utostr(NumVectors);
633 S += "_t";
635 if (Constant)
636 S += " const";
637 if (Pointer)
638 S += " *";
640 return S;
643 std::string Type::builtin_str() const {
644 std::string S;
645 if (isVoid())
646 return "v";
648 if (isPointer()) {
649 // All pointers are void pointers.
650 S = "v";
651 if (isConstPointer())
652 S += "C";
653 S += "*";
654 return S;
655 } else if (isInteger())
656 switch (ElementBitwidth) {
657 case 8: S += "c"; break;
658 case 16: S += "s"; break;
659 case 32: S += "i"; break;
660 case 64: S += "Wi"; break;
661 case 128: S += "LLLi"; break;
662 default: llvm_unreachable("Unhandled case!");
664 else if (isBFloat16()) {
665 assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
666 S += "y";
667 } else
668 switch (ElementBitwidth) {
669 case 16: S += "h"; break;
670 case 32: S += "f"; break;
671 case 64: S += "d"; break;
672 default: llvm_unreachable("Unhandled case!");
675 // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
676 if (isChar() && !isPointer() && isSigned())
677 // Make chars explicitly signed.
678 S = "S" + S;
679 else if (isInteger() && !isSigned())
680 S = "U" + S;
682 // Constant indices are "int", but have the "constant expression" modifier.
683 if (isImmediate()) {
684 assert(isInteger() && isSigned());
685 S = "I" + S;
688 if (isScalar())
689 return S;
691 std::string Ret;
692 for (unsigned I = 0; I < NumVectors; ++I)
693 Ret += "V" + utostr(getNumElements()) + S;
695 return Ret;
698 unsigned Type::getNeonEnum() const {
699 unsigned Addend;
700 switch (ElementBitwidth) {
701 case 8: Addend = 0; break;
702 case 16: Addend = 1; break;
703 case 32: Addend = 2; break;
704 case 64: Addend = 3; break;
705 case 128: Addend = 4; break;
706 default: llvm_unreachable("Unhandled element bitwidth!");
709 unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
710 if (isPoly()) {
711 // Adjustment needed because Poly32 doesn't exist.
712 if (Addend >= 2)
713 --Addend;
714 Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
716 if (isFloating()) {
717 assert(Addend != 0 && "Float8 doesn't exist!");
718 Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
721 if (isBFloat16()) {
722 assert(Addend == 1 && "BFloat16 is only 16 bit");
723 Base = (unsigned)NeonTypeFlags::BFloat16;
726 if (Bitwidth == 128)
727 Base |= (unsigned)NeonTypeFlags::QuadFlag;
728 if (isInteger() && !isSigned())
729 Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
731 return Base;
734 Type Type::fromTypedefName(StringRef Name) {
735 Type T;
736 T.Kind = SInt;
738 if (Name.front() == 'u') {
739 T.Kind = UInt;
740 Name = Name.drop_front();
743 if (Name.starts_with("float")) {
744 T.Kind = Float;
745 Name = Name.drop_front(5);
746 } else if (Name.starts_with("poly")) {
747 T.Kind = Poly;
748 Name = Name.drop_front(4);
749 } else if (Name.starts_with("bfloat")) {
750 T.Kind = BFloat16;
751 Name = Name.drop_front(6);
752 } else {
753 assert(Name.starts_with("int"));
754 Name = Name.drop_front(3);
757 unsigned I = 0;
758 for (I = 0; I < Name.size(); ++I) {
759 if (!isdigit(Name[I]))
760 break;
762 Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
763 Name = Name.drop_front(I);
765 T.Bitwidth = T.ElementBitwidth;
766 T.NumVectors = 1;
768 if (Name.front() == 'x') {
769 Name = Name.drop_front();
770 unsigned I = 0;
771 for (I = 0; I < Name.size(); ++I) {
772 if (!isdigit(Name[I]))
773 break;
775 unsigned NumLanes;
776 Name.substr(0, I).getAsInteger(10, NumLanes);
777 Name = Name.drop_front(I);
778 T.Bitwidth = T.ElementBitwidth * NumLanes;
779 } else {
780 // Was scalar.
781 T.NumVectors = 0;
783 if (Name.front() == 'x') {
784 Name = Name.drop_front();
785 unsigned I = 0;
786 for (I = 0; I < Name.size(); ++I) {
787 if (!isdigit(Name[I]))
788 break;
790 Name.substr(0, I).getAsInteger(10, T.NumVectors);
791 Name = Name.drop_front(I);
794 assert(Name.starts_with("_t") && "Malformed typedef!");
795 return T;
798 void Type::applyTypespec(bool &Quad) {
799 std::string S = TS;
800 ScalarForMangling = false;
801 Kind = SInt;
802 ElementBitwidth = ~0U;
803 NumVectors = 1;
805 for (char I : S) {
806 switch (I) {
807 case 'S':
808 ScalarForMangling = true;
809 break;
810 case 'H':
811 NoManglingQ = true;
812 Quad = true;
813 break;
814 case 'Q':
815 Quad = true;
816 break;
817 case 'P':
818 Kind = Poly;
819 break;
820 case 'U':
821 Kind = UInt;
822 break;
823 case 'c':
824 ElementBitwidth = 8;
825 break;
826 case 'h':
827 Kind = Float;
828 [[fallthrough]];
829 case 's':
830 ElementBitwidth = 16;
831 break;
832 case 'f':
833 Kind = Float;
834 [[fallthrough]];
835 case 'i':
836 ElementBitwidth = 32;
837 break;
838 case 'd':
839 Kind = Float;
840 [[fallthrough]];
841 case 'l':
842 ElementBitwidth = 64;
843 break;
844 case 'k':
845 ElementBitwidth = 128;
846 // Poly doesn't have a 128x1 type.
847 if (isPoly())
848 NumVectors = 0;
849 break;
850 case 'b':
851 Kind = BFloat16;
852 ElementBitwidth = 16;
853 break;
854 default:
855 llvm_unreachable("Unhandled type code!");
858 assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
860 Bitwidth = Quad ? 128 : 64;
863 void Type::applyModifiers(StringRef Mods) {
864 bool AppliedQuad = false;
865 applyTypespec(AppliedQuad);
867 for (char Mod : Mods) {
868 switch (Mod) {
869 case '.':
870 break;
871 case 'v':
872 Kind = Void;
873 break;
874 case 'S':
875 Kind = SInt;
876 break;
877 case 'U':
878 Kind = UInt;
879 break;
880 case 'B':
881 Kind = BFloat16;
882 ElementBitwidth = 16;
883 break;
884 case 'F':
885 Kind = Float;
886 break;
887 case 'P':
888 Kind = Poly;
889 break;
890 case '>':
891 assert(ElementBitwidth < 128);
892 ElementBitwidth *= 2;
893 break;
894 case '<':
895 assert(ElementBitwidth > 8);
896 ElementBitwidth /= 2;
897 break;
898 case '1':
899 NumVectors = 0;
900 break;
901 case '2':
902 NumVectors = 2;
903 break;
904 case '3':
905 NumVectors = 3;
906 break;
907 case '4':
908 NumVectors = 4;
909 break;
910 case '*':
911 Pointer = true;
912 break;
913 case 'c':
914 Constant = true;
915 break;
916 case 'Q':
917 Bitwidth = 128;
918 break;
919 case 'q':
920 Bitwidth = 64;
921 break;
922 case 'I':
923 Kind = SInt;
924 ElementBitwidth = Bitwidth = 32;
925 NumVectors = 0;
926 Immediate = true;
927 break;
928 case 'p':
929 if (isPoly())
930 Kind = UInt;
931 break;
932 case '!':
933 // Key type, handled elsewhere.
934 break;
935 default:
936 llvm_unreachable("Unhandled character!");
941 //===----------------------------------------------------------------------===//
942 // Intrinsic implementation
943 //===----------------------------------------------------------------------===//
945 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
946 if (Proto.size() == Pos)
947 return StringRef();
948 else if (Proto[Pos] != '(')
949 return Proto.substr(Pos++, 1);
951 size_t Start = Pos + 1;
952 size_t End = Proto.find(')', Start);
953 assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
954 Pos = End + 1;
955 return Proto.slice(Start, End);
958 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
959 char typeCode = '\0';
960 bool printNumber = true;
962 if (CK == ClassB && TargetGuard == "")
963 return "";
965 if (T.isBFloat16())
966 return "bf16";
968 if (T.isPoly())
969 typeCode = 'p';
970 else if (T.isInteger())
971 typeCode = T.isSigned() ? 's' : 'u';
972 else
973 typeCode = 'f';
975 if (CK == ClassI) {
976 switch (typeCode) {
977 default:
978 break;
979 case 's':
980 case 'u':
981 case 'p':
982 typeCode = 'i';
983 break;
986 if (CK == ClassB && TargetGuard == "") {
987 typeCode = '\0';
990 std::string S;
991 if (typeCode != '\0')
992 S.push_back(typeCode);
993 if (printNumber)
994 S += utostr(T.getElementSizeInBits());
996 return S;
999 std::string Intrinsic::getBuiltinTypeStr() {
1000 ClassKind LocalCK = getClassKind(true);
1001 std::string S;
1003 Type RetT = getReturnType();
1004 if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1005 !RetT.isFloating() && !RetT.isBFloat16())
1006 RetT.makeInteger(RetT.getElementSizeInBits(), false);
1008 // Since the return value must be one type, return a vector type of the
1009 // appropriate width which we will bitcast. An exception is made for
1010 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1011 // fashion, storing them to a pointer arg.
1012 if (RetT.getNumVectors() > 1) {
1013 S += "vv*"; // void result with void* first argument
1014 } else {
1015 if (RetT.isPoly())
1016 RetT.makeInteger(RetT.getElementSizeInBits(), false);
1017 if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1018 RetT.makeSigned();
1020 if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1021 // Cast to vector of 8-bit elements.
1022 RetT.makeInteger(8, true);
1024 S += RetT.builtin_str();
1027 for (unsigned I = 0; I < getNumParams(); ++I) {
1028 Type T = getParamType(I);
1029 if (T.isPoly())
1030 T.makeInteger(T.getElementSizeInBits(), false);
1032 if (LocalCK == ClassB && !T.isScalar())
1033 T.makeInteger(8, true);
1034 // Halves always get converted to 8-bit elements.
1035 if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1036 T.makeInteger(8, true);
1038 if (LocalCK == ClassI && T.isInteger())
1039 T.makeSigned();
1041 if (hasImmediate() && getImmediateIdx() == I)
1042 T.makeImmediate(32);
1044 S += T.builtin_str();
1047 // Extra constant integer to hold type class enum for this function, e.g. s8
1048 if (LocalCK == ClassB)
1049 S += "i";
1051 return S;
1054 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1055 // Check if the prototype has a scalar operand with the type of the vector
1056 // elements. If not, bitcasting the args will take care of arg checking.
1057 // The actual signedness etc. will be taken care of with special enums.
1058 ClassKind LocalCK = CK;
1059 if (!protoHasScalar())
1060 LocalCK = ClassB;
1062 return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1065 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1066 std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1067 std::string S = Name;
1069 if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1070 Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1071 Name == "vcvt_f32_bf16")
1072 return Name;
1074 if (!typeCode.empty()) {
1075 // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1076 if (Name.size() >= 3 && isdigit(Name.back()) &&
1077 Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1078 S.insert(S.length() - 3, "_" + typeCode);
1079 else
1080 S += "_" + typeCode;
1083 if (BaseType != InBaseType) {
1084 // A reinterpret - out the input base type at the end.
1085 S += "_" + getInstTypeCode(InBaseType, LocalCK);
1088 if (LocalCK == ClassB && TargetGuard == "")
1089 S += "_v";
1091 // Insert a 'q' before the first '_' character so that it ends up before
1092 // _lane or _n on vector-scalar operations.
1093 if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1094 size_t Pos = S.find('_');
1095 S.insert(Pos, "q");
1098 char Suffix = '\0';
1099 if (BaseType.isScalarForMangling()) {
1100 switch (BaseType.getElementSizeInBits()) {
1101 case 8: Suffix = 'b'; break;
1102 case 16: Suffix = 'h'; break;
1103 case 32: Suffix = 's'; break;
1104 case 64: Suffix = 'd'; break;
1105 default: llvm_unreachable("Bad suffix!");
1108 if (Suffix != '\0') {
1109 size_t Pos = S.find('_');
1110 S.insert(Pos, &Suffix, 1);
1113 return S;
1116 std::string Intrinsic::replaceParamsIn(std::string S) {
1117 while (S.find('$') != std::string::npos) {
1118 size_t Pos = S.find('$');
1119 size_t End = Pos + 1;
1120 while (isalpha(S[End]))
1121 ++End;
1123 std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1124 assert_with_loc(Variables.find(VarName) != Variables.end(),
1125 "Variable not defined!");
1126 S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1129 return S;
1132 void Intrinsic::initVariables() {
1133 Variables.clear();
1135 // Modify the TypeSpec per-argument to get a concrete Type, and create
1136 // known variables for each.
1137 for (unsigned I = 1; I < Types.size(); ++I) {
1138 char NameC = '0' + (I - 1);
1139 std::string Name = "p";
1140 Name.push_back(NameC);
1142 Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1144 RetVar = Variable(Types[0], "ret" + VariablePostfix);
1147 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1148 if (UseMacro) {
1149 OS << "#define ";
1150 } else {
1151 OS << "__ai ";
1152 if (TargetGuard != "")
1153 OS << "__attribute__((target(\"" << TargetGuard << "\"))) ";
1154 OS << Types[0].str() << " ";
1157 OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1159 for (unsigned I = 0; I < getNumParams(); ++I) {
1160 if (I != 0)
1161 OS << ", ";
1163 char NameC = '0' + I;
1164 std::string Name = "p";
1165 Name.push_back(NameC);
1166 assert(Variables.find(Name) != Variables.end());
1167 Variable &V = Variables[Name];
1169 if (!UseMacro)
1170 OS << V.getType().str() << " ";
1171 OS << V.getName();
1174 OS << ")";
1177 void Intrinsic::emitOpeningBrace() {
1178 if (UseMacro)
1179 OS << " __extension__ ({";
1180 else
1181 OS << " {";
1182 emitNewLine();
1185 void Intrinsic::emitClosingBrace() {
1186 if (UseMacro)
1187 OS << "})";
1188 else
1189 OS << "}";
1192 void Intrinsic::emitNewLine() {
1193 if (UseMacro)
1194 OS << " \\\n";
1195 else
1196 OS << "\n";
1199 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1200 if (Dest.getType().getNumVectors() > 1) {
1201 emitNewLine();
1203 for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1204 OS << " " << Dest.getName() << ".val[" << K << "] = "
1205 << "__builtin_shufflevector("
1206 << Src.getName() << ".val[" << K << "], "
1207 << Src.getName() << ".val[" << K << "]";
1208 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1209 OS << ", " << J;
1210 OS << ");";
1211 emitNewLine();
1213 } else {
1214 OS << " " << Dest.getName()
1215 << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1216 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1217 OS << ", " << J;
1218 OS << ");";
1219 emitNewLine();
1223 void Intrinsic::emitArgumentReversal() {
1224 if (isBigEndianSafe())
1225 return;
1227 // Reverse all vector arguments.
1228 for (unsigned I = 0; I < getNumParams(); ++I) {
1229 std::string Name = "p" + utostr(I);
1230 std::string NewName = "rev" + utostr(I);
1232 Variable &V = Variables[Name];
1233 Variable NewV(V.getType(), NewName + VariablePostfix);
1235 if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1236 continue;
1238 OS << " " << NewV.getType().str() << " " << NewV.getName() << ";";
1239 emitReverseVariable(NewV, V);
1240 V = NewV;
1244 void Intrinsic::emitReturnVarDecl() {
1245 assert(RetVar.getType() == Types[0]);
1246 // Create a return variable, if we're not void.
1247 if (!RetVar.getType().isVoid()) {
1248 OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1249 emitNewLine();
1253 void Intrinsic::emitReturnReversal() {
1254 if (isBigEndianSafe())
1255 return;
1256 if (!getReturnType().isVector() || getReturnType().isVoid() ||
1257 getReturnType().getNumElements() == 1)
1258 return;
1259 emitReverseVariable(RetVar, RetVar);
1262 void Intrinsic::emitShadowedArgs() {
1263 // Macro arguments are not type-checked like inline function arguments,
1264 // so assign them to local temporaries to get the right type checking.
1265 if (!UseMacro)
1266 return;
1268 for (unsigned I = 0; I < getNumParams(); ++I) {
1269 // Do not create a temporary for an immediate argument.
1270 // That would defeat the whole point of using a macro!
1271 if (getParamType(I).isImmediate())
1272 continue;
1273 // Do not create a temporary for pointer arguments. The input
1274 // pointer may have an alignment hint.
1275 if (getParamType(I).isPointer())
1276 continue;
1278 std::string Name = "p" + utostr(I);
1280 assert(Variables.find(Name) != Variables.end());
1281 Variable &V = Variables[Name];
1283 std::string NewName = "s" + utostr(I);
1284 Variable V2(V.getType(), NewName + VariablePostfix);
1286 OS << " " << V2.getType().str() << " " << V2.getName() << " = "
1287 << V.getName() << ";";
1288 emitNewLine();
1290 V = V2;
1294 bool Intrinsic::protoHasScalar() const {
1295 return llvm::any_of(
1296 Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); });
1299 void Intrinsic::emitBodyAsBuiltinCall() {
1300 std::string S;
1302 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1303 // sret-like argument.
1304 bool SRet = getReturnType().getNumVectors() >= 2;
1306 StringRef N = Name;
1307 ClassKind LocalCK = CK;
1308 if (!protoHasScalar())
1309 LocalCK = ClassB;
1311 if (!getReturnType().isVoid() && !SRet)
1312 S += "(" + RetVar.getType().str() + ") ";
1314 S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1316 if (SRet)
1317 S += "&" + RetVar.getName() + ", ";
1319 for (unsigned I = 0; I < getNumParams(); ++I) {
1320 Variable &V = Variables["p" + utostr(I)];
1321 Type T = V.getType();
1323 // Handle multiple-vector values specially, emitting each subvector as an
1324 // argument to the builtin.
1325 if (T.getNumVectors() > 1) {
1326 // Check if an explicit cast is needed.
1327 std::string Cast;
1328 if (LocalCK == ClassB) {
1329 Type T2 = T;
1330 T2.makeOneVector();
1331 T2.makeInteger(8, /*Sign=*/true);
1332 Cast = "(" + T2.str() + ")";
1335 for (unsigned J = 0; J < T.getNumVectors(); ++J)
1336 S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1337 continue;
1340 std::string Arg = V.getName();
1341 Type CastToType = T;
1343 // Check if an explicit cast is needed.
1344 if (CastToType.isVector() &&
1345 (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1346 CastToType.makeInteger(8, true);
1347 Arg = "(" + CastToType.str() + ")" + Arg;
1348 } else if (CastToType.isVector() && LocalCK == ClassI) {
1349 if (CastToType.isInteger())
1350 CastToType.makeSigned();
1351 Arg = "(" + CastToType.str() + ")" + Arg;
1354 S += Arg + ", ";
1357 // Extra constant integer to hold type class enum for this function, e.g. s8
1358 if (getClassKind(true) == ClassB) {
1359 S += utostr(getPolymorphicKeyType().getNeonEnum());
1360 } else {
1361 // Remove extraneous ", ".
1362 S.pop_back();
1363 S.pop_back();
1365 S += ");";
1367 std::string RetExpr;
1368 if (!SRet && !RetVar.getType().isVoid())
1369 RetExpr = RetVar.getName() + " = ";
1371 OS << " " << RetExpr << S;
1372 emitNewLine();
1375 void Intrinsic::emitBody(StringRef CallPrefix) {
1376 std::vector<std::string> Lines;
1378 if (!Body || Body->getValues().empty()) {
1379 // Nothing specific to output - must output a builtin.
1380 emitBodyAsBuiltinCall();
1381 return;
1384 // We have a list of "things to output". The last should be returned.
1385 for (auto *I : Body->getValues()) {
1386 if (StringInit *SI = dyn_cast<StringInit>(I)) {
1387 Lines.push_back(replaceParamsIn(SI->getAsString()));
1388 } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1389 DagEmitter DE(*this, CallPrefix);
1390 Lines.push_back(DE.emitDag(DI).second + ";");
1394 assert(!Lines.empty() && "Empty def?");
1395 if (!RetVar.getType().isVoid())
1396 Lines.back().insert(0, RetVar.getName() + " = ");
1398 for (auto &L : Lines) {
1399 OS << " " << L;
1400 emitNewLine();
1404 void Intrinsic::emitReturn() {
1405 if (RetVar.getType().isVoid())
1406 return;
1407 if (UseMacro)
1408 OS << " " << RetVar.getName() << ";";
1409 else
1410 OS << " return " << RetVar.getName() << ";";
1411 emitNewLine();
1414 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1415 // At this point we should only be seeing a def.
1416 DefInit *DefI = cast<DefInit>(DI->getOperator());
1417 std::string Op = DefI->getAsString();
1419 if (Op == "cast" || Op == "bitcast")
1420 return emitDagCast(DI, Op == "bitcast");
1421 if (Op == "shuffle")
1422 return emitDagShuffle(DI);
1423 if (Op == "dup")
1424 return emitDagDup(DI);
1425 if (Op == "dup_typed")
1426 return emitDagDupTyped(DI);
1427 if (Op == "splat")
1428 return emitDagSplat(DI);
1429 if (Op == "save_temp")
1430 return emitDagSaveTemp(DI);
1431 if (Op == "op")
1432 return emitDagOp(DI);
1433 if (Op == "call" || Op == "call_mangled")
1434 return emitDagCall(DI, Op == "call_mangled");
1435 if (Op == "name_replace")
1436 return emitDagNameReplace(DI);
1437 if (Op == "literal")
1438 return emitDagLiteral(DI);
1439 assert_with_loc(false, "Unknown operation!");
1440 return std::make_pair(Type::getVoid(), "");
1443 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1444 std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1445 if (DI->getNumArgs() == 2) {
1446 // Unary op.
1447 std::pair<Type, std::string> R =
1448 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1449 return std::make_pair(R.first, Op + R.second);
1450 } else {
1451 assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1452 std::pair<Type, std::string> R1 =
1453 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1454 std::pair<Type, std::string> R2 =
1455 emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1456 assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1457 return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1461 std::pair<Type, std::string>
1462 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1463 std::vector<Type> Types;
1464 std::vector<std::string> Values;
1465 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1466 std::pair<Type, std::string> R =
1467 emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1468 Types.push_back(R.first);
1469 Values.push_back(R.second);
1472 // Look up the called intrinsic.
1473 std::string N;
1474 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1475 N = SI->getAsUnquotedString();
1476 else
1477 N = emitDagArg(DI->getArg(0), "").second;
1478 std::optional<std::string> MangledName;
1479 if (MatchMangledName) {
1480 if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1481 N += "q";
1482 MangledName = Intr.mangleName(N, ClassS);
1484 Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1486 // Make sure the callee is known as an early def.
1487 Callee.setNeededEarly();
1488 Intr.Dependencies.insert(&Callee);
1490 // Now create the call itself.
1491 std::string S;
1492 if (!Callee.isBigEndianSafe())
1493 S += CallPrefix.str();
1494 S += Callee.getMangledName(true) + "(";
1495 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1496 if (I != 0)
1497 S += ", ";
1498 S += Values[I];
1500 S += ")";
1502 return std::make_pair(Callee.getReturnType(), S);
1505 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1506 bool IsBitCast){
1507 // (cast MOD* VAL) -> cast VAL to type given by MOD.
1508 std::pair<Type, std::string> R =
1509 emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1510 std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1511 Type castToType = R.first;
1512 for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1514 // MOD can take several forms:
1515 // 1. $X - take the type of parameter / variable X.
1516 // 2. The value "R" - take the type of the return type.
1517 // 3. a type string
1518 // 4. The value "U" or "S" to switch the signedness.
1519 // 5. The value "H" or "D" to half or double the bitwidth.
1520 // 6. The value "8" to convert to 8-bit (signed) integer lanes.
1521 if (!DI->getArgNameStr(ArgIdx).empty()) {
1522 assert_with_loc(Intr.Variables.find(std::string(
1523 DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1524 "Variable not found");
1525 castToType =
1526 Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1527 } else {
1528 StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1529 assert_with_loc(SI, "Expected string type or $Name for cast type");
1531 if (SI->getAsUnquotedString() == "R") {
1532 castToType = Intr.getReturnType();
1533 } else if (SI->getAsUnquotedString() == "U") {
1534 castToType.makeUnsigned();
1535 } else if (SI->getAsUnquotedString() == "S") {
1536 castToType.makeSigned();
1537 } else if (SI->getAsUnquotedString() == "H") {
1538 castToType.halveLanes();
1539 } else if (SI->getAsUnquotedString() == "D") {
1540 castToType.doubleLanes();
1541 } else if (SI->getAsUnquotedString() == "8") {
1542 castToType.makeInteger(8, true);
1543 } else if (SI->getAsUnquotedString() == "32") {
1544 castToType.make32BitElement();
1545 } else {
1546 castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1547 assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1552 std::string S;
1553 if (IsBitCast) {
1554 // Emit a reinterpret cast. The second operand must be an lvalue, so create
1555 // a temporary.
1556 std::string N = "reint";
1557 unsigned I = 0;
1558 while (Intr.Variables.find(N) != Intr.Variables.end())
1559 N = "reint" + utostr(++I);
1560 Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1562 Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1563 << R.second << ";";
1564 Intr.emitNewLine();
1566 S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1567 } else {
1568 // Emit a normal (static) cast.
1569 S = "(" + castToType.str() + ")(" + R.second + ")";
1572 return std::make_pair(castToType, S);
1575 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1576 // See the documentation in arm_neon.td for a description of these operators.
1577 class LowHalf : public SetTheory::Operator {
1578 public:
1579 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1580 ArrayRef<SMLoc> Loc) override {
1581 SetTheory::RecSet Elts2;
1582 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1583 Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1587 class HighHalf : public SetTheory::Operator {
1588 public:
1589 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1590 ArrayRef<SMLoc> Loc) override {
1591 SetTheory::RecSet Elts2;
1592 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1593 Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1597 class Rev : public SetTheory::Operator {
1598 unsigned ElementSize;
1600 public:
1601 Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1603 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1604 ArrayRef<SMLoc> Loc) override {
1605 SetTheory::RecSet Elts2;
1606 ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1608 int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1609 VectorSize /= ElementSize;
1611 std::vector<Record *> Revved;
1612 for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1613 for (int LI = VectorSize - 1; LI >= 0; --LI) {
1614 Revved.push_back(Elts2[VI + LI]);
1618 Elts.insert(Revved.begin(), Revved.end());
1622 class MaskExpander : public SetTheory::Expander {
1623 unsigned N;
1625 public:
1626 MaskExpander(unsigned N) : N(N) {}
1628 void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1629 unsigned Addend = 0;
1630 if (R->getName() == "mask0")
1631 Addend = 0;
1632 else if (R->getName() == "mask1")
1633 Addend = N;
1634 else
1635 return;
1636 for (unsigned I = 0; I < N; ++I)
1637 Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1641 // (shuffle arg1, arg2, sequence)
1642 std::pair<Type, std::string> Arg1 =
1643 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1644 std::pair<Type, std::string> Arg2 =
1645 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1646 assert_with_loc(Arg1.first == Arg2.first,
1647 "Different types in arguments to shuffle!");
1649 SetTheory ST;
1650 SetTheory::RecSet Elts;
1651 ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1652 ST.addOperator("highhalf", std::make_unique<HighHalf>());
1653 ST.addOperator("rev",
1654 std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1655 ST.addExpander("MaskExpand",
1656 std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1657 ST.evaluate(DI->getArg(2), Elts, std::nullopt);
1659 std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1660 for (auto &E : Elts) {
1661 StringRef Name = E->getName();
1662 assert_with_loc(Name.starts_with("sv"),
1663 "Incorrect element kind in shuffle mask!");
1664 S += ", " + Name.drop_front(2).str();
1666 S += ")";
1668 // Recalculate the return type - the shuffle may have halved or doubled it.
1669 Type T(Arg1.first);
1670 if (Elts.size() > T.getNumElements()) {
1671 assert_with_loc(
1672 Elts.size() == T.getNumElements() * 2,
1673 "Can only double or half the number of elements in a shuffle!");
1674 T.doubleLanes();
1675 } else if (Elts.size() < T.getNumElements()) {
1676 assert_with_loc(
1677 Elts.size() == T.getNumElements() / 2,
1678 "Can only double or half the number of elements in a shuffle!");
1679 T.halveLanes();
1682 return std::make_pair(T, S);
1685 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1686 assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1687 std::pair<Type, std::string> A =
1688 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1689 assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1691 Type T = Intr.getBaseType();
1692 assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1693 std::string S = "(" + T.str() + ") {";
1694 for (unsigned I = 0; I < T.getNumElements(); ++I) {
1695 if (I != 0)
1696 S += ", ";
1697 S += A.second;
1699 S += "}";
1701 return std::make_pair(T, S);
1704 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1705 assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1706 std::pair<Type, std::string> B =
1707 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1708 assert_with_loc(B.first.isScalar(),
1709 "dup_typed() requires a scalar as the second argument");
1710 Type T;
1711 // If the type argument is a constant string, construct the type directly.
1712 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1713 T = Type::fromTypedefName(SI->getAsUnquotedString());
1714 assert_with_loc(!T.isVoid(), "Unknown typedef");
1715 } else
1716 T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1718 assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1719 std::string S = "(" + T.str() + ") {";
1720 for (unsigned I = 0; I < T.getNumElements(); ++I) {
1721 if (I != 0)
1722 S += ", ";
1723 S += B.second;
1725 S += "}";
1727 return std::make_pair(T, S);
1730 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1731 assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1732 std::pair<Type, std::string> A =
1733 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1734 std::pair<Type, std::string> B =
1735 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1737 assert_with_loc(B.first.isScalar(),
1738 "splat() requires a scalar int as the second argument");
1740 std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1741 for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1742 S += ", " + B.second;
1744 S += ")";
1746 return std::make_pair(Intr.getBaseType(), S);
1749 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1750 assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1751 std::pair<Type, std::string> A =
1752 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1754 assert_with_loc(!A.first.isVoid(),
1755 "Argument to save_temp() must have non-void type!");
1757 std::string N = std::string(DI->getArgNameStr(0));
1758 assert_with_loc(!N.empty(),
1759 "save_temp() expects a name as the first argument");
1761 assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1762 "Variable already defined!");
1763 Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1765 std::string S =
1766 A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1768 return std::make_pair(Type::getVoid(), S);
1771 std::pair<Type, std::string>
1772 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1773 std::string S = Intr.Name;
1775 assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1776 std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1777 std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1779 size_t Idx = S.find(ToReplace);
1781 assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1782 S.replace(Idx, ToReplace.size(), ReplaceWith);
1784 return std::make_pair(Type::getVoid(), S);
1787 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1788 std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1789 std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1790 return std::make_pair(Type::fromTypedefName(Ty), Value);
1793 std::pair<Type, std::string>
1794 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1795 if (!ArgName.empty()) {
1796 assert_with_loc(!Arg->isComplete(),
1797 "Arguments must either be DAGs or names, not both!");
1798 assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1799 "Variable not defined!");
1800 Variable &V = Intr.Variables[ArgName];
1801 return std::make_pair(V.getType(), V.getName());
1804 assert(Arg && "Neither ArgName nor Arg?!");
1805 DagInit *DI = dyn_cast<DagInit>(Arg);
1806 assert_with_loc(DI, "Arguments must either be DAGs or names!");
1808 return emitDag(DI);
1811 std::string Intrinsic::generate() {
1812 // Avoid duplicated code for big and little endian
1813 if (isBigEndianSafe()) {
1814 generateImpl(false, "", "");
1815 return OS.str();
1817 // Little endian intrinsics are simple and don't require any argument
1818 // swapping.
1819 OS << "#ifdef __LITTLE_ENDIAN__\n";
1821 generateImpl(false, "", "");
1823 OS << "#else\n";
1825 // Big endian intrinsics are more complex. The user intended these
1826 // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1827 // but we load as-if (V)LD1. So we should swap all arguments and
1828 // swap the return value too.
1830 // If we call sub-intrinsics, we should call a version that does
1831 // not re-swap the arguments!
1832 generateImpl(true, "", "__noswap_");
1834 // If we're needed early, create a non-swapping variant for
1835 // big-endian.
1836 if (NeededEarly) {
1837 generateImpl(false, "__noswap_", "__noswap_");
1839 OS << "#endif\n\n";
1841 return OS.str();
1844 void Intrinsic::generateImpl(bool ReverseArguments,
1845 StringRef NamePrefix, StringRef CallPrefix) {
1846 CurrentRecord = R;
1848 // If we call a macro, our local variables may be corrupted due to
1849 // lack of proper lexical scoping. So, add a globally unique postfix
1850 // to every variable.
1852 // indexBody() should have set up the Dependencies set by now.
1853 for (auto *I : Dependencies)
1854 if (I->UseMacro) {
1855 VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1856 break;
1859 initVariables();
1861 emitPrototype(NamePrefix);
1863 if (IsUnavailable) {
1864 OS << " __attribute__((unavailable));";
1865 } else {
1866 emitOpeningBrace();
1867 // Emit return variable declaration first as to not trigger
1868 // -Wdeclaration-after-statement.
1869 emitReturnVarDecl();
1870 emitShadowedArgs();
1871 if (ReverseArguments)
1872 emitArgumentReversal();
1873 emitBody(CallPrefix);
1874 if (ReverseArguments)
1875 emitReturnReversal();
1876 emitReturn();
1877 emitClosingBrace();
1879 OS << "\n";
1881 CurrentRecord = nullptr;
1884 void Intrinsic::indexBody() {
1885 CurrentRecord = R;
1887 initVariables();
1888 // Emit return variable declaration first as to not trigger
1889 // -Wdeclaration-after-statement.
1890 emitReturnVarDecl();
1891 emitBody("");
1892 OS.str("");
1894 CurrentRecord = nullptr;
1897 //===----------------------------------------------------------------------===//
1898 // NeonEmitter implementation
1899 //===----------------------------------------------------------------------===//
1901 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1902 std::optional<std::string> MangledName) {
1903 // First, look up the name in the intrinsic map.
1904 assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1905 ("Intrinsic '" + Name + "' not found!").str());
1906 auto &V = IntrinsicMap.find(Name.str())->second;
1907 std::vector<Intrinsic *> GoodVec;
1909 // Create a string to print if we end up failing.
1910 std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1911 for (unsigned I = 0; I < Types.size(); ++I) {
1912 if (I != 0)
1913 ErrMsg += ", ";
1914 ErrMsg += Types[I].str();
1916 ErrMsg += ")'\n";
1917 ErrMsg += "Available overloads:\n";
1919 // Now, look through each intrinsic implementation and see if the types are
1920 // compatible.
1921 for (auto &I : V) {
1922 ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName();
1923 ErrMsg += "(";
1924 for (unsigned A = 0; A < I.getNumParams(); ++A) {
1925 if (A != 0)
1926 ErrMsg += ", ";
1927 ErrMsg += I.getParamType(A).str();
1929 ErrMsg += ")\n";
1931 if (MangledName && MangledName != I.getMangledName(true))
1932 continue;
1934 if (I.getNumParams() != Types.size())
1935 continue;
1937 unsigned ArgNum = 0;
1938 bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) {
1939 return Type == I.getParamType(ArgNum++);
1942 if (MatchingArgumentTypes)
1943 GoodVec.push_back(&I);
1946 assert_with_loc(!GoodVec.empty(),
1947 "No compatible intrinsic found - " + ErrMsg);
1948 assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1950 return *GoodVec.front();
1953 void NeonEmitter::createIntrinsic(Record *R,
1954 SmallVectorImpl<Intrinsic *> &Out) {
1955 std::string Name = std::string(R->getValueAsString("Name"));
1956 std::string Proto = std::string(R->getValueAsString("Prototype"));
1957 std::string Types = std::string(R->getValueAsString("Types"));
1958 Record *OperationRec = R->getValueAsDef("Operation");
1959 bool BigEndianSafe = R->getValueAsBit("BigEndianSafe");
1960 std::string ArchGuard = std::string(R->getValueAsString("ArchGuard"));
1961 std::string TargetGuard = std::string(R->getValueAsString("TargetGuard"));
1962 bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1963 std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1965 // Set the global current record. This allows assert_with_loc to produce
1966 // decent location information even when highly nested.
1967 CurrentRecord = R;
1969 ListInit *Body = OperationRec->getValueAsListInit("Ops");
1971 std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1973 ClassKind CK = ClassNone;
1974 if (R->getSuperClasses().size() >= 2)
1975 CK = ClassMap[R->getSuperClasses()[1].first];
1977 std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1978 if (!CartesianProductWith.empty()) {
1979 std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1980 for (auto TS : TypeSpecs) {
1981 Type DefaultT(TS, ".");
1982 for (auto SrcTS : ProductTypeSpecs) {
1983 Type DefaultSrcT(SrcTS, ".");
1984 if (TS == SrcTS ||
1985 DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1986 continue;
1987 NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1990 } else {
1991 for (auto TS : TypeSpecs) {
1992 NewTypeSpecs.push_back(std::make_pair(TS, TS));
1996 llvm::sort(NewTypeSpecs);
1997 NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1998 NewTypeSpecs.end());
1999 auto &Entry = IntrinsicMap[Name];
2001 for (auto &I : NewTypeSpecs) {
2002 Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
2003 ArchGuard, TargetGuard, IsUnavailable, BigEndianSafe);
2004 Out.push_back(&Entry.back());
2007 CurrentRecord = nullptr;
2010 /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def
2011 /// declaration of builtins, checking for unique builtin declarations.
2012 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2013 SmallVectorImpl<Intrinsic *> &Defs) {
2014 OS << "#ifdef GET_NEON_BUILTINS\n";
2016 // We only want to emit a builtin once, and we want to emit them in
2017 // alphabetical order, so use a std::set.
2018 std::set<std::pair<std::string, std::string>> Builtins;
2020 for (auto *Def : Defs) {
2021 if (Def->hasBody())
2022 continue;
2024 std::string S = "__builtin_neon_" + Def->getMangledName() + ", \"";
2025 S += Def->getBuiltinTypeStr();
2026 S += "\", \"n\"";
2028 Builtins.emplace(S, Def->getTargetGuard());
2031 for (auto &S : Builtins) {
2032 if (S.second == "")
2033 OS << "BUILTIN(";
2034 else
2035 OS << "TARGET_BUILTIN(";
2036 OS << S.first;
2037 if (S.second == "")
2038 OS << ")\n";
2039 else
2040 OS << ", \"" << S.second << "\")\n";
2043 OS << "#endif\n\n";
2046 void NeonEmitter::genStreamingSVECompatibleList(
2047 raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs) {
2048 OS << "#ifdef GET_NEON_STREAMING_COMPAT_FLAG\n";
2050 std::set<std::string> Emitted;
2051 for (auto *Def : Defs) {
2052 // If the def has a body (that is, it has Operation DAGs), it won't call
2053 // __builtin_neon_* so we don't need to generate a definition for it.
2054 if (Def->hasBody())
2055 continue;
2057 std::string Name = Def->getMangledName();
2058 if (Emitted.find(Name) != Emitted.end())
2059 continue;
2061 // FIXME: We should make exceptions here for some NEON builtins that are
2062 // permitted in streaming mode.
2063 OS << "case NEON::BI__builtin_neon_" << Name
2064 << ": BuiltinType = ArmNonStreaming; break;\n";
2065 Emitted.insert(Name);
2067 OS << "#endif\n\n";
2070 /// Generate the ARM and AArch64 overloaded type checking code for
2071 /// SemaChecking.cpp, checking for unique builtin declarations.
2072 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2073 SmallVectorImpl<Intrinsic *> &Defs) {
2074 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2076 // We record each overload check line before emitting because subsequent Inst
2077 // definitions may extend the number of permitted types (i.e. augment the
2078 // Mask). Use std::map to avoid sorting the table by hash number.
2079 struct OverloadInfo {
2080 uint64_t Mask = 0ULL;
2081 int PtrArgNum = 0;
2082 bool HasConstPtr = false;
2083 OverloadInfo() = default;
2085 std::map<std::string, OverloadInfo> OverloadMap;
2087 for (auto *Def : Defs) {
2088 // If the def has a body (that is, it has Operation DAGs), it won't call
2089 // __builtin_neon_* so we don't need to generate a definition for it.
2090 if (Def->hasBody())
2091 continue;
2092 // Functions which have a scalar argument cannot be overloaded, no need to
2093 // check them if we are emitting the type checking code.
2094 if (Def->protoHasScalar())
2095 continue;
2097 uint64_t Mask = 0ULL;
2098 Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2100 // Check if the function has a pointer or const pointer argument.
2101 int PtrArgNum = -1;
2102 bool HasConstPtr = false;
2103 for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2104 const auto &Type = Def->getParamType(I);
2105 if (Type.isPointer()) {
2106 PtrArgNum = I;
2107 HasConstPtr = Type.isConstPointer();
2111 // For sret builtins, adjust the pointer argument index.
2112 if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2113 PtrArgNum += 1;
2115 std::string Name = Def->getName();
2116 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2117 // vst1_lane, vldap1_lane, and vstl1_lane intrinsics. Using a pointer to
2118 // the vector element type with one of those operations causes codegen to
2119 // select an aligned load/store instruction. If you want an unaligned
2120 // operation, the pointer argument needs to have less alignment than element
2121 // type, so just accept any pointer type.
2122 if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane" ||
2123 Name == "vldap1_lane" || Name == "vstl1_lane") {
2124 PtrArgNum = -1;
2125 HasConstPtr = false;
2128 if (Mask) {
2129 std::string Name = Def->getMangledName();
2130 OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2131 OverloadInfo &OI = OverloadMap[Name];
2132 OI.Mask |= Mask;
2133 OI.PtrArgNum |= PtrArgNum;
2134 OI.HasConstPtr = HasConstPtr;
2138 for (auto &I : OverloadMap) {
2139 OverloadInfo &OI = I.second;
2141 OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2142 OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2143 if (OI.PtrArgNum >= 0)
2144 OS << "; PtrArgNum = " << OI.PtrArgNum;
2145 if (OI.HasConstPtr)
2146 OS << "; HasConstPtr = true";
2147 OS << "; break;\n";
2149 OS << "#endif\n\n";
2152 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2153 SmallVectorImpl<Intrinsic *> &Defs) {
2154 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2156 std::set<std::string> Emitted;
2158 for (auto *Def : Defs) {
2159 if (Def->hasBody())
2160 continue;
2161 // Functions which do not have an immediate do not need to have range
2162 // checking code emitted.
2163 if (!Def->hasImmediate())
2164 continue;
2165 if (Emitted.find(Def->getMangledName()) != Emitted.end())
2166 continue;
2168 std::string LowerBound, UpperBound;
2170 Record *R = Def->getRecord();
2171 if (R->getValueAsBit("isVXAR")) {
2172 //VXAR takes an immediate in the range [0, 63]
2173 LowerBound = "0";
2174 UpperBound = "63";
2175 } else if (R->getValueAsBit("isVCVT_N")) {
2176 // VCVT between floating- and fixed-point values takes an immediate
2177 // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2178 LowerBound = "1";
2179 if (Def->getBaseType().getElementSizeInBits() == 16 ||
2180 Def->getName().find('h') != std::string::npos)
2181 // VCVTh operating on FP16 intrinsics in range [1, 16)
2182 UpperBound = "15";
2183 else if (Def->getBaseType().getElementSizeInBits() == 32)
2184 UpperBound = "31";
2185 else
2186 UpperBound = "63";
2187 } else if (R->getValueAsBit("isScalarShift")) {
2188 // Right shifts have an 'r' in the name, left shifts do not. Convert
2189 // instructions have the same bounds and right shifts.
2190 if (Def->getName().find('r') != std::string::npos ||
2191 Def->getName().find("cvt") != std::string::npos)
2192 LowerBound = "1";
2194 UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2195 } else if (R->getValueAsBit("isShift")) {
2196 // Builtins which are overloaded by type will need to have their upper
2197 // bound computed at Sema time based on the type constant.
2199 // Right shifts have an 'r' in the name, left shifts do not.
2200 if (Def->getName().find('r') != std::string::npos)
2201 LowerBound = "1";
2202 UpperBound = "RFT(TV, true)";
2203 } else if (Def->getClassKind(true) == ClassB) {
2204 // ClassB intrinsics have a type (and hence lane number) that is only
2205 // known at runtime.
2206 if (R->getValueAsBit("isLaneQ"))
2207 UpperBound = "RFT(TV, false, true)";
2208 else
2209 UpperBound = "RFT(TV, false, false)";
2210 } else {
2211 // The immediate generally refers to a lane in the preceding argument.
2212 assert(Def->getImmediateIdx() > 0);
2213 Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2214 UpperBound = utostr(T.getNumElements() - 1);
2217 // Calculate the index of the immediate that should be range checked.
2218 unsigned Idx = Def->getNumParams();
2219 if (Def->hasImmediate())
2220 Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2222 OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2223 << "i = " << Idx << ";";
2224 if (!LowerBound.empty())
2225 OS << " l = " << LowerBound << ";";
2226 if (!UpperBound.empty())
2227 OS << " u = " << UpperBound << ";";
2228 OS << " break;\n";
2230 Emitted.insert(Def->getMangledName());
2233 OS << "#endif\n\n";
2236 /// runHeader - Emit a file with sections defining:
2237 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2238 /// 2. the SemaChecking code for the type overload checking.
2239 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2240 void NeonEmitter::runHeader(raw_ostream &OS) {
2241 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2243 SmallVector<Intrinsic *, 128> Defs;
2244 for (auto *R : RV)
2245 createIntrinsic(R, Defs);
2247 // Generate shared BuiltinsXXX.def
2248 genBuiltinsDef(OS, Defs);
2250 // Generate ARM overloaded type checking code for SemaChecking.cpp
2251 genOverloadTypeCheckCode(OS, Defs);
2253 genStreamingSVECompatibleList(OS, Defs);
2255 // Generate ARM range checking code for shift/lane immediates.
2256 genIntrinsicRangeCheckCode(OS, Defs);
2259 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2260 std::string TypedefTypes(types);
2261 std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2263 // Emit vector typedefs.
2264 bool InIfdef = false;
2265 for (auto &TS : TDTypeVec) {
2266 bool IsA64 = false;
2267 Type T(TS, ".");
2268 if (T.isDouble())
2269 IsA64 = true;
2271 if (InIfdef && !IsA64) {
2272 OS << "#endif\n";
2273 InIfdef = false;
2275 if (!InIfdef && IsA64) {
2276 OS << "#ifdef __aarch64__\n";
2277 InIfdef = true;
2280 if (T.isPoly())
2281 OS << "typedef __attribute__((neon_polyvector_type(";
2282 else
2283 OS << "typedef __attribute__((neon_vector_type(";
2285 Type T2 = T;
2286 T2.makeScalar();
2287 OS << T.getNumElements() << "))) ";
2288 OS << T2.str();
2289 OS << " " << T.str() << ";\n";
2291 if (InIfdef)
2292 OS << "#endif\n";
2293 OS << "\n";
2295 // Emit struct typedefs.
2296 InIfdef = false;
2297 for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2298 for (auto &TS : TDTypeVec) {
2299 bool IsA64 = false;
2300 Type T(TS, ".");
2301 if (T.isDouble())
2302 IsA64 = true;
2304 if (InIfdef && !IsA64) {
2305 OS << "#endif\n";
2306 InIfdef = false;
2308 if (!InIfdef && IsA64) {
2309 OS << "#ifdef __aarch64__\n";
2310 InIfdef = true;
2313 const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2314 Type VT(TS, Mods);
2315 OS << "typedef struct " << VT.str() << " {\n";
2316 OS << " " << T.str() << " val";
2317 OS << "[" << NumMembers << "]";
2318 OS << ";\n} ";
2319 OS << VT.str() << ";\n";
2320 OS << "\n";
2323 if (InIfdef)
2324 OS << "#endif\n";
2327 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
2328 /// is comprised of type definitions and function declarations.
2329 void NeonEmitter::run(raw_ostream &OS) {
2330 OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2331 "------------------------------"
2332 "---===\n"
2333 " *\n"
2334 " * Permission is hereby granted, free of charge, to any person "
2335 "obtaining "
2336 "a copy\n"
2337 " * of this software and associated documentation files (the "
2338 "\"Software\"),"
2339 " to deal\n"
2340 " * in the Software without restriction, including without limitation "
2341 "the "
2342 "rights\n"
2343 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2344 "and/or sell\n"
2345 " * copies of the Software, and to permit persons to whom the Software "
2346 "is\n"
2347 " * furnished to do so, subject to the following conditions:\n"
2348 " *\n"
2349 " * The above copyright notice and this permission notice shall be "
2350 "included in\n"
2351 " * all copies or substantial portions of the Software.\n"
2352 " *\n"
2353 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2354 "EXPRESS OR\n"
2355 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2356 "MERCHANTABILITY,\n"
2357 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2358 "SHALL THE\n"
2359 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2360 "OTHER\n"
2361 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2362 "ARISING FROM,\n"
2363 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2364 "DEALINGS IN\n"
2365 " * THE SOFTWARE.\n"
2366 " *\n"
2367 " *===-----------------------------------------------------------------"
2368 "---"
2369 "---===\n"
2370 " */\n\n";
2372 OS << "#ifndef __ARM_NEON_H\n";
2373 OS << "#define __ARM_NEON_H\n\n";
2375 OS << "#ifndef __ARM_FP\n";
2376 OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2377 "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2378 OS << "#else\n\n";
2380 OS << "#if !defined(__ARM_NEON)\n";
2381 OS << "#error \"NEON support not enabled\"\n";
2382 OS << "#else\n\n";
2384 OS << "#include <stdint.h>\n\n";
2386 OS << "#include <arm_bf16.h>\n";
2388 OS << "#include <arm_vector_types.h>\n";
2390 // For now, signedness of polynomial types depends on target
2391 OS << "#ifdef __aarch64__\n";
2392 OS << "typedef uint8_t poly8_t;\n";
2393 OS << "typedef uint16_t poly16_t;\n";
2394 OS << "typedef uint64_t poly64_t;\n";
2395 OS << "typedef __uint128_t poly128_t;\n";
2396 OS << "#else\n";
2397 OS << "typedef int8_t poly8_t;\n";
2398 OS << "typedef int16_t poly16_t;\n";
2399 OS << "typedef int64_t poly64_t;\n";
2400 OS << "#endif\n";
2401 emitNeonTypeDefs("PcQPcPsQPsPlQPl", OS);
2403 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2404 "__nodebug__))\n\n";
2406 SmallVector<Intrinsic *, 128> Defs;
2407 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2408 for (auto *R : RV)
2409 createIntrinsic(R, Defs);
2411 for (auto *I : Defs)
2412 I->indexBody();
2414 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2416 // Only emit a def when its requirements have been met.
2417 // FIXME: This loop could be made faster, but it's fast enough for now.
2418 bool MadeProgress = true;
2419 std::string InGuard;
2420 while (!Defs.empty() && MadeProgress) {
2421 MadeProgress = false;
2423 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2424 I != Defs.end(); /*No step*/) {
2425 bool DependenciesSatisfied = true;
2426 for (auto *II : (*I)->getDependencies()) {
2427 if (llvm::is_contained(Defs, II))
2428 DependenciesSatisfied = false;
2430 if (!DependenciesSatisfied) {
2431 // Try the next one.
2432 ++I;
2433 continue;
2436 // Emit #endif/#if pair if needed.
2437 if ((*I)->getArchGuard() != InGuard) {
2438 if (!InGuard.empty())
2439 OS << "#endif\n";
2440 InGuard = (*I)->getArchGuard();
2441 if (!InGuard.empty())
2442 OS << "#if " << InGuard << "\n";
2445 // Actually generate the intrinsic code.
2446 OS << (*I)->generate();
2448 MadeProgress = true;
2449 I = Defs.erase(I);
2452 assert(Defs.empty() && "Some requirements were not satisfied!");
2453 if (!InGuard.empty())
2454 OS << "#endif\n";
2456 OS << "\n";
2457 OS << "#undef __ai\n\n";
2458 OS << "#endif /* if !defined(__ARM_NEON) */\n";
2459 OS << "#endif /* ifndef __ARM_FP */\n";
2460 OS << "#endif /* __ARM_NEON_H */\n";
2463 /// run - Read the records in arm_fp16.td and output arm_fp16.h. arm_fp16.h
2464 /// is comprised of type definitions and function declarations.
2465 void NeonEmitter::runFP16(raw_ostream &OS) {
2466 OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2467 "------------------------------"
2468 "---===\n"
2469 " *\n"
2470 " * Permission is hereby granted, free of charge, to any person "
2471 "obtaining a copy\n"
2472 " * of this software and associated documentation files (the "
2473 "\"Software\"), to deal\n"
2474 " * in the Software without restriction, including without limitation "
2475 "the rights\n"
2476 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2477 "and/or sell\n"
2478 " * copies of the Software, and to permit persons to whom the Software "
2479 "is\n"
2480 " * furnished to do so, subject to the following conditions:\n"
2481 " *\n"
2482 " * The above copyright notice and this permission notice shall be "
2483 "included in\n"
2484 " * all copies or substantial portions of the Software.\n"
2485 " *\n"
2486 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2487 "EXPRESS OR\n"
2488 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2489 "MERCHANTABILITY,\n"
2490 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2491 "SHALL THE\n"
2492 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2493 "OTHER\n"
2494 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2495 "ARISING FROM,\n"
2496 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2497 "DEALINGS IN\n"
2498 " * THE SOFTWARE.\n"
2499 " *\n"
2500 " *===-----------------------------------------------------------------"
2501 "---"
2502 "---===\n"
2503 " */\n\n";
2505 OS << "#ifndef __ARM_FP16_H\n";
2506 OS << "#define __ARM_FP16_H\n\n";
2508 OS << "#include <stdint.h>\n\n";
2510 OS << "typedef __fp16 float16_t;\n";
2512 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2513 "__nodebug__))\n\n";
2515 SmallVector<Intrinsic *, 128> Defs;
2516 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2517 for (auto *R : RV)
2518 createIntrinsic(R, Defs);
2520 for (auto *I : Defs)
2521 I->indexBody();
2523 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2525 // Only emit a def when its requirements have been met.
2526 // FIXME: This loop could be made faster, but it's fast enough for now.
2527 bool MadeProgress = true;
2528 std::string InGuard;
2529 while (!Defs.empty() && MadeProgress) {
2530 MadeProgress = false;
2532 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2533 I != Defs.end(); /*No step*/) {
2534 bool DependenciesSatisfied = true;
2535 for (auto *II : (*I)->getDependencies()) {
2536 if (llvm::is_contained(Defs, II))
2537 DependenciesSatisfied = false;
2539 if (!DependenciesSatisfied) {
2540 // Try the next one.
2541 ++I;
2542 continue;
2545 // Emit #endif/#if pair if needed.
2546 if ((*I)->getArchGuard() != InGuard) {
2547 if (!InGuard.empty())
2548 OS << "#endif\n";
2549 InGuard = (*I)->getArchGuard();
2550 if (!InGuard.empty())
2551 OS << "#if " << InGuard << "\n";
2554 // Actually generate the intrinsic code.
2555 OS << (*I)->generate();
2557 MadeProgress = true;
2558 I = Defs.erase(I);
2561 assert(Defs.empty() && "Some requirements were not satisfied!");
2562 if (!InGuard.empty())
2563 OS << "#endif\n";
2565 OS << "\n";
2566 OS << "#undef __ai\n\n";
2567 OS << "#endif /* __ARM_FP16_H */\n";
2570 void NeonEmitter::runVectorTypes(raw_ostream &OS) {
2571 OS << "/*===---- arm_vector_types - ARM vector type "
2572 "------===\n"
2573 " *\n"
2574 " *\n"
2575 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2576 "Exceptions.\n"
2577 " * See https://llvm.org/LICENSE.txt for license information.\n"
2578 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2579 " *\n"
2580 " *===-----------------------------------------------------------------"
2581 "------===\n"
2582 " */\n\n";
2583 OS << "#if !defined(__ARM_NEON_H) && !defined(__ARM_SVE_H)\n";
2584 OS << "#error \"This file should not be used standalone. Please include"
2585 " arm_neon.h or arm_sve.h instead\"\n\n";
2586 OS << "#endif\n";
2587 OS << "#ifndef __ARM_NEON_TYPES_H\n";
2588 OS << "#define __ARM_NEON_TYPES_H\n";
2589 OS << "typedef float float32_t;\n";
2590 OS << "typedef __fp16 float16_t;\n";
2592 OS << "#ifdef __aarch64__\n";
2593 OS << "typedef double float64_t;\n";
2594 OS << "#endif\n\n";
2596 emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQd", OS);
2598 emitNeonTypeDefs("bQb", OS);
2599 OS << "#endif // __ARM_NEON_TYPES_H\n";
2602 void NeonEmitter::runBF16(raw_ostream &OS) {
2603 OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2604 "-----------------------------------===\n"
2605 " *\n"
2606 " *\n"
2607 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2608 "Exceptions.\n"
2609 " * See https://llvm.org/LICENSE.txt for license information.\n"
2610 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2611 " *\n"
2612 " *===-----------------------------------------------------------------"
2613 "------===\n"
2614 " */\n\n";
2616 OS << "#ifndef __ARM_BF16_H\n";
2617 OS << "#define __ARM_BF16_H\n\n";
2619 OS << "typedef __bf16 bfloat16_t;\n";
2621 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2622 "__nodebug__))\n\n";
2624 SmallVector<Intrinsic *, 128> Defs;
2625 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2626 for (auto *R : RV)
2627 createIntrinsic(R, Defs);
2629 for (auto *I : Defs)
2630 I->indexBody();
2632 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2634 // Only emit a def when its requirements have been met.
2635 // FIXME: This loop could be made faster, but it's fast enough for now.
2636 bool MadeProgress = true;
2637 std::string InGuard;
2638 while (!Defs.empty() && MadeProgress) {
2639 MadeProgress = false;
2641 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2642 I != Defs.end(); /*No step*/) {
2643 bool DependenciesSatisfied = true;
2644 for (auto *II : (*I)->getDependencies()) {
2645 if (llvm::is_contained(Defs, II))
2646 DependenciesSatisfied = false;
2648 if (!DependenciesSatisfied) {
2649 // Try the next one.
2650 ++I;
2651 continue;
2654 // Emit #endif/#if pair if needed.
2655 if ((*I)->getArchGuard() != InGuard) {
2656 if (!InGuard.empty())
2657 OS << "#endif\n";
2658 InGuard = (*I)->getArchGuard();
2659 if (!InGuard.empty())
2660 OS << "#if " << InGuard << "\n";
2663 // Actually generate the intrinsic code.
2664 OS << (*I)->generate();
2666 MadeProgress = true;
2667 I = Defs.erase(I);
2670 assert(Defs.empty() && "Some requirements were not satisfied!");
2671 if (!InGuard.empty())
2672 OS << "#endif\n";
2674 OS << "\n";
2675 OS << "#undef __ai\n\n";
2677 OS << "#endif\n";
2680 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2681 NeonEmitter(Records).run(OS);
2684 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2685 NeonEmitter(Records).runFP16(OS);
2688 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2689 NeonEmitter(Records).runBF16(OS);
2692 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2693 NeonEmitter(Records).runHeader(OS);
2696 void clang::EmitVectorTypes(RecordKeeper &Records, raw_ostream &OS) {
2697 NeonEmitter(Records).runVectorTypes(OS);
2700 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2701 llvm_unreachable("Neon test generation no longer implemented!");