2 ; RUN: opt < %s -passes=loop-vectorize -force-vector-width=2 -force-vector-interleave=1 -force-widen-divrem-via-safe-divisor=0 -disable-output -debug-only=loop-vectorize 2>&1 | FileCheck %s
4 target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
6 ; Test cases for PR50009, which require sinking a replicate-region due to a
7 ; first-order recurrence.
9 define void @sink_replicate_region_1(i32 %x, ptr %ptr, ptr noalias %dst) optsize {
10 ; CHECK-LABEL: sink_replicate_region_1
11 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
12 ; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
13 ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
14 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
15 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
16 ; CHECK-NEXT: Live-in ir<20001> = original trip-count
18 ; CHECK-NEXT: ir-bb<entry>:
19 ; CHECK-NEXT: Successor(s): vector.ph
21 ; CHECK-NEXT: vector.ph:
22 ; CHECK-NEXT: Successor(s): vector loop
24 ; CHECK-NEXT: <x1> vector loop: {
25 ; CHECK-NEXT: vector.body:
26 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
27 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv>
28 ; CHECK-NEXT: ir<%iv> = WIDEN-INDUCTION ir<0>, ir<1>, vp<[[VF]]>
29 ; CHECK-NEXT: vp<[[STEPS:%.]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
30 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
31 ; CHECK-NEXT: Successor(s): pred.load
33 ; CHECK-NEXT: <xVFxUF> pred.load: {
34 ; CHECK-NEXT: pred.load.entry:
35 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
36 ; CHECK-NEXT: Successor(s): pred.load.if, pred.load.continue
38 ; CHECK-NEXT: pred.load.if:
39 ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
40 ; CHECK-NEXT: REPLICATE ir<%lv> = load ir<%gep> (S->V)
41 ; CHECK-NEXT: Successor(s): pred.load.continue
43 ; CHECK-NEXT: pred.load.continue:
44 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED1:%.+]]> = ir<%lv>
45 ; CHECK-NEXT: No successors
47 ; CHECK-NEXT: Successor(s): loop.0
50 ; CHECK-NEXT: WIDEN-CAST ir<%conv> = sext vp<[[PRED1]]> to i32
51 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0>, ir<%conv>
52 ; CHECK-NEXT: Successor(s): pred.store
54 ; CHECK-NEXT: <xVFxUF> pred.store: {
55 ; CHECK-NEXT: pred.store.entry:
56 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
57 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
59 ; CHECK-NEXT: pred.store.if:
60 ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
61 ; CHECK-NEXT: REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[STEPS]]>
62 ; CHECK-NEXT: REPLICATE ir<%add> = add ir<%conv>, ir<%rem>
63 ; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep.dst>
64 ; CHECK-NEXT: Successor(s): pred.store.continue
66 ; CHECK-NEXT: pred.store.continue:
67 ; CHECK-NEXT: No successors
69 ; CHECK-NEXT: Successor(s): loop.1
72 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
73 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
74 ; CHECK-NEXT: No successors
76 ; CHECK-NEXT: Successor(s): middle.block
78 ; CHECK-NEXT: middle.block:
79 ; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%conv>, ir<1>
80 ; CHECK-NEXT: EMIT branch-on-cond ir<true>
81 ; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
83 ; CHECK-NEXT: scalar.ph
84 ; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
85 ; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
86 ; CHECK-NEXT: Successor(s): ir-bb<loop>
88 ; CHECK-NEXT: ir-bb<loop>:
89 ; CHECK-NEXT: IR %0 = phi i32 [ 0, %entry ], [ %conv, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
90 ; CHECK-NEXT: IR %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
91 ; CHECK: IR %ec = icmp eq i32 %iv.next, 20001
92 ; CHECK-NEXT: No successors
94 ; CHECK-NEXT: ir-bb<exit>
95 ; CHECK-NEXT: No successors
102 %0 = phi i32 [ 0, %entry ], [ %conv, %loop ]
103 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
104 %rem = srem i32 %0, %x
105 %gep = getelementptr i8, ptr %ptr, i32 %iv
106 %lv = load i8, ptr %gep
107 %conv = sext i8 %lv to i32
108 %add = add i32 %conv, %rem
109 %gep.dst = getelementptr i32, ptr %dst, i32 %iv
110 store i32 %add, ptr %gep.dst
111 %iv.next = add nsw i32 %iv, 1
112 %ec = icmp eq i32 %iv.next, 20001
113 br i1 %ec, label %exit, label %loop
119 define void @sink_replicate_region_2(i32 %x, i8 %y, ptr %ptr) optsize {
120 ; CHECK-LABEL: sink_replicate_region_2
121 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
122 ; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
123 ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
124 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
125 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
126 ; CHECK-NEXT: Live-in ir<20001> = original trip-count
128 ; CHECK-NEXT: ir-bb<entry>:
129 ; CHECK-NEXT: Successor(s): vector.ph
131 ; CHECK-NEXT: vector.ph:
132 ; CHECK-NEXT: WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
133 ; CHECK-NEXT: Successor(s): vector loop
135 ; CHECK-NEXT: <x1> vector loop: {
136 ; CHECK-NEXT: vector.body:
137 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
138 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
139 ; CHECK-NEXT: ir<%iv> = WIDEN-INDUCTION ir<0>, ir<1>, vp<[[VF]]>
140 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
141 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
142 ; CHECK-NEXT: Successor(s): pred.store
144 ; CHECK-NEXT: <xVFxUF> pred.store: {
145 ; CHECK-NEXT: pred.store.entry:
146 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
147 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
149 ; CHECK-NEXT: pred.store.if:
150 ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
151 ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
152 ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
153 ; CHECK-NEXT: REPLICATE ir<%add> = add ir<%rem>, ir<%recur.next>
154 ; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep>
155 ; CHECK-NEXT: Successor(s): pred.store.continue
157 ; CHECK-NEXT: pred.store.continue:
158 ; CHECK-NEXT: No successors
160 ; CHECK-NEXT: Successor(s): loop.0
162 ; CHECK-NEXT: loop.0:
163 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
164 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
165 ; CHECK-NEXT: No successors
167 ; CHECK-NEXT: Successor(s): middle.block
169 ; CHECK-NEXT: middle.block:
170 ; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%recur.next>, ir<1>
171 ; CHECK-NEXT: EMIT branch-on-cond ir<true>
172 ; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
174 ; CHECK-NEXT: scalar.ph
175 ; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
176 ; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
177 ; CHECK-NEXT: Successor(s): ir-bb<loop>
179 ; CHECK-NEXT: ir-bb<loop>:
180 ; CHECK-NEXT: IR %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
181 ; CHECK-NEXT: IR %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
182 ; CHECK: IR %ec = icmp eq i32 %iv.next, 20001
183 ; CHECK-NEXT: No successors
185 ; CHECK-NEXT: ir-bb<exit>
186 ; CHECK-NEXT: No successors
193 %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
194 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
195 %rem = srem i32 %recur, %x
196 %recur.next = sext i8 %y to i32
197 %add = add i32 %rem, %recur.next
198 %gep = getelementptr i32, ptr %ptr, i32 %iv
199 store i32 %add, ptr %gep
200 %iv.next = add nsw i32 %iv, 1
201 %ec = icmp eq i32 %iv.next, 20001
202 br i1 %ec, label %exit, label %loop
208 define i32 @sink_replicate_region_3_reduction(i32 %x, i8 %y, ptr %ptr) optsize {
209 ; CHECK-LABEL: sink_replicate_region_3_reduction
210 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
211 ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
212 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
213 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
214 ; CHECK-NEXT: Live-in ir<20001> = original trip-count
216 ; CHECK-NEXT: ir-bb<entry>:
217 ; CHECK-NEXT: Successor(s): vector.ph
219 ; CHECK-NEXT: vector.ph:
220 ; CHECK-NEXT: WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
221 ; CHECK-NEXT: Successor(s): vector loop
223 ; CHECK-NEXT: <x1> vector loop: {
224 ; CHECK-NEXT: vector.body:
225 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
226 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
227 ; CHECK-NEXT: WIDEN-REDUCTION-PHI ir<%and.red> = phi ir<1234>, ir<%and.red.next>
228 ; CHECK-NEXT: EMIT vp<[[WIDEN_CAN:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]>
229 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule vp<[[WIDEN_CAN]]>, vp<[[BTC]]>
230 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
231 ; CHECK-NEXT: WIDEN ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
232 ; CHECK-NEXT: WIDEN ir<%add> = add ir<%rem>, ir<%recur.next>
233 ; CHECK-NEXT: WIDEN ir<%and.red.next> = and ir<%and.red>, ir<%add>
234 ; CHECK-NEXT: EMIT vp<[[SEL:%.+]]> = select vp<[[MASK]]>, ir<%and.red.next>, ir<%and.red>
235 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
236 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
237 ; CHECK-NEXT: No successors
239 ; CHECK-NEXT: Successor(s): middle.block
241 ; CHECK-NEXT: middle.block:
242 ; CHECK-NEXT: EMIT vp<[[RED_RES:%.+]]> = compute-reduction-result ir<%and.red>, vp<[[SEL]]>
243 ; CHECK-NEXT: EMIT vp<[[RED_EX:%.+]]> = extract-from-end vp<[[RED_RES]]>, ir<1>
244 ; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%recur.next>, ir<1>
245 ; CHECK-NEXT: EMIT branch-on-cond ir<true>
246 ; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
248 ; CHECK-NEXT: scalar.ph
249 ; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
250 ; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
251 ; CHECK-NEXT: EMIT vp<[[RESUME_RED:%.+]]> = resume-phi vp<[[RED_RES]]>, ir<1234>
252 ; CHECK-NEXT: Successor(s): ir-bb<loop>
254 ; CHECK-NEXT: ir-bb<loop>:
255 ; CHECK-NEXT: IR %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
256 ; CHECK-NEXT: IR %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
257 ; CHECK-NEXT: IR %and.red = phi i32 [ 1234, %entry ], [ %and.red.next, %loop ]
258 ; CHECK: IR %ec = icmp eq i32 %iv.next, 20001
259 ; CHECK-NEXT: No successors
261 ; CHECK-NEXT: ir-bb<exit>
262 ; CHECK-NEXT: IR %res = phi i32 [ %and.red.next, %loop ] (extra operand: vp<[[RED_EX]]> from middle.block)
263 ; CHECK-NEXT: No successors
270 %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
271 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
272 %and.red = phi i32 [ 1234, %entry ], [ %and.red.next, %loop ]
273 %rem = srem i32 %recur, %x
274 %recur.next = sext i8 %y to i32
275 %add = add i32 %rem, %recur.next
276 %and.red.next = and i32 %and.red, %add
277 %iv.next = add nsw i32 %iv, 1
278 %ec = icmp eq i32 %iv.next, 20001
279 br i1 %ec, label %exit, label %loop
282 %res = phi i32 [ %and.red.next, %loop ]
286 ; To sink the replicate region containing %rem, we need to split the block
287 ; containing %conv at the end, because %conv is the last recipe in the block.
288 define void @sink_replicate_region_4_requires_split_at_end_of_block(i32 %x, ptr %ptr, ptr noalias %dst) optsize {
289 ; CHECK-LABEL: sink_replicate_region_4_requires_split_at_end_of_block
290 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
291 ; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
292 ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
293 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
294 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
295 ; CHECK-NEXT: Live-in ir<20001> = original trip-count
297 ; CHECK-NEXT: ir-bb<entry>:
298 ; CHECK-NEXT: Successor(s): vector.ph
300 ; CHECK-NEXT: vector.ph:
301 ; CHECK-NEXT: Successor(s): vector loop
303 ; CHECK-NEXT: <x1> vector loop: {
304 ; CHECK-NEXT: vector.body:
305 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
306 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv>
307 ; CHECK-NEXT: ir<%iv> = WIDEN-INDUCTION ir<0>, ir<1>, vp<[[VF]]>
308 ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
309 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
310 ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
311 ; CHECK-NEXT: Successor(s): pred.load
313 ; CHECK-NEXT: <xVFxUF> pred.load: {
314 ; CHECK-NEXT: pred.load.entry:
315 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
316 ; CHECK-NEXT: Successor(s): pred.load.if, pred.load.continue
318 ; CHECK-NEXT: pred.load.if:
319 ; CHECK-NEXT: REPLICATE ir<%lv> = load ir<%gep> (S->V)
320 ; CHECK-NEXT: Successor(s): pred.load.continue
322 ; CHECK-NEXT: pred.load.continue:
323 ; CHECK-NEXT: PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%lv>
324 ; CHECK-NEXT: No successors
326 ; CHECK-NEXT: Successor(s): loop.0
328 ; CHECK-NEXT: loop.0:
329 ; CHECK-NEXT: WIDEN-CAST ir<%conv> = sext vp<[[PRED]]> to i32
330 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0>, ir<%conv>
331 ; CHECK-NEXT: Successor(s): pred.store
333 ; CHECK: <xVFxUF> pred.store: {
334 ; CHECK-NEXT: pred.store.entry:
335 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
336 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
338 ; CHECK: pred.store.if:
339 ; CHECK-NEXT: REPLICATE ir<%lv.2> = load ir<%gep>
340 ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
341 ; CHECK-NEXT: REPLICATE ir<%conv.lv.2> = sext ir<%lv.2>
342 ; CHECK-NEXT: REPLICATE ir<%add.1> = add ir<%conv>, ir<%rem>
343 ; CHECK-NEXT: REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[STEPS]]>
344 ; CHECK-NEXT: REPLICATE ir<%add> = add ir<%add.1>, ir<%conv.lv.2>
345 ; CHECK-NEXT: REPLICATE store ir<%add>, ir<%gep.dst>
346 ; CHECK-NEXT: Successor(s): pred.store.continue
348 ; CHECK: pred.store.continue:
349 ; CHECK-NEXT: No successors
351 ; CHECK-NEXT: Successor(s): loop.2
354 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
355 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
356 ; CHECK-NEXT: No successors
358 ; CHECK-NEXT: Successor(s): middle.block
360 ; CHECK-NEXT: middle.block:
361 ; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%conv>, ir<1>
362 ; CHECK-NEXT: EMIT branch-on-cond ir<true>
363 ; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
365 ; CHECK-NEXT: scalar.ph
366 ; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
367 ; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
368 ; CHECK-NEXT: Successor(s): ir-bb<loop>
370 ; CHECK-NEXT: ir-bb<loop>:
371 ; CHECK-NEXT: IR %0 = phi i32 [ 0, %entry ], [ %conv, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
372 ; CHECK-NEXT: IR %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
373 ; CHECK: IR %ec = icmp eq i32 %iv.next, 20001
374 ; CHECK-NEXT: No successors
376 ; CHECK-NEXT: ir-bb<exit>
377 ; CHECK-NEXT: No successors
384 %0 = phi i32 [ 0, %entry ], [ %conv, %loop ]
385 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
386 %gep = getelementptr i8, ptr %ptr, i32 %iv
387 %rem = srem i32 %0, %x
388 %lv = load i8, ptr %gep
389 %conv = sext i8 %lv to i32
390 %lv.2 = load i8, ptr %gep
391 %add.1 = add i32 %conv, %rem
392 %conv.lv.2 = sext i8 %lv.2 to i32
393 %add = add i32 %add.1, %conv.lv.2
394 %gep.dst = getelementptr i32, ptr %dst, i32 %iv
395 store i32 %add, ptr %gep.dst
396 %iv.next = add nsw i32 %iv, 1
397 %ec = icmp eq i32 %iv.next, 20001
398 br i1 %ec, label %exit, label %loop
404 ; Test case that requires sinking a recipe in a replicate region after another replicate region.
405 define void @sink_replicate_region_after_replicate_region(ptr %ptr, ptr noalias %dst.2, i32 %x, i8 %y) optsize {
406 ; CHECK-LABEL: sink_replicate_region_after_replicate_region
407 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
408 ; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
409 ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
410 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
411 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
412 ; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
414 ; CHECK-NEXT: ir-bb<entry>:
415 ; CHECK-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (1 smax (1 + (sext i8 %y to i32))<nsw>)
416 ; CHECK-NEXT: Successor(s): vector.ph
418 ; CHECK-NEXT: vector.ph:
419 ; CHECK-NEXT: WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
420 ; CHECK-NEXT: Successor(s): vector loop
422 ; CHECK-NEXT: <x1> vector loop: {
423 ; CHECK-NEXT: vector.body:
424 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
425 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
426 ; CHECK-NEXT: ir<%iv> = WIDEN-INDUCTION ir<0>, ir<1>, vp<[[VF]]>
427 ; CHECK-NEXT: EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
428 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
429 ; CHECK-NEXT: Successor(s): pred.store
431 ; CHECK-NEXT: <xVFxUF> pred.store: {
432 ; CHECK-NEXT: pred.store.entry:
433 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[MASK]]>
434 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
436 ; CHECK-NEXT: pred.store.if:
437 ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
438 ; CHECK-NEXT: REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
439 ; CHECK-NEXT: REPLICATE ir<%rem.div> = sdiv ir<20>, ir<%rem>
440 ; CHECK-NEXT: REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
441 ; CHECK-NEXT: REPLICATE store ir<%rem.div>, ir<%gep>
442 ; CHECK-NEXT: REPLICATE ir<%gep.2> = getelementptr ir<%dst.2>, vp<[[STEPS]]>
443 ; CHECK-NEXT: REPLICATE store ir<%rem.div>, ir<%gep.2>
444 ; CHECK-NEXT: Successor(s): pred.store.continue
446 ; CHECK-NEXT: pred.store.continue:
447 ; CHECK-NEXT: No successors
449 ; CHECK-NEXT: Successor(s): loop.2
451 ; CHECK-NEXT: loop.2:
452 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
453 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
454 ; CHECK-NEXT: No successors
456 ; CHECK-NEXT: Successor(s): middle.block
458 ; CHECK-NEXT: middle.block:
459 ; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%recur.next>, ir<1>
460 ; CHECK-NEXT: EMIT branch-on-cond ir<true>
461 ; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
463 ; CHECK-NEXT: scalar.ph
464 ; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
465 ; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
466 ; CHECK-NEXT: Successor(s): ir-bb<loop>
468 ; CHECK-NEXT: ir-bb<loop>:
469 ; CHECK-NEXT: IR %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
470 ; CHECK-NEXT: IR %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
471 ; CHECK: IR %C = icmp sgt i32 %iv.next, %recur.next
472 ; CHECK-NEXT: No successors
474 ; CHECK-NEXT: ir-bb<exit>
475 ; CHECK-NEXT: No successors
481 loop: ; preds = %loop, %entry
482 %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
483 %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
484 %rem = srem i32 %recur, %x
485 %rem.div = sdiv i32 20, %rem
486 %recur.next = sext i8 %y to i32
487 %gep = getelementptr i32, ptr %ptr, i32 %iv
488 store i32 %rem.div, ptr %gep
489 %gep.2 = getelementptr i32, ptr %dst.2, i32 %iv
490 store i32 %rem.div, ptr %gep.2
491 %iv.next = add nsw i32 %iv, 1
492 %C = icmp sgt i32 %iv.next, %recur.next
493 br i1 %C, label %exit, label %loop
495 exit: ; preds = %loop
499 define void @need_new_block_after_sinking_pr56146(i32 %x, ptr %src, ptr noalias %dst) {
500 ; CHECK-LABEL: need_new_block_after_sinking_pr56146
501 ; CHECK: VPlan 'Initial VPlan for VF={2},UF>=1' {
502 ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
503 ; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
504 ; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
505 ; CHECK-NEXT: Live-in ir<3> = original trip-count
507 ; CHECK-NEXT: ir-bb<entry>:
508 ; CHECK-NEXT: Successor(s): vector.ph
510 ; CHECK-NEXT: vector.ph:
511 ; CHECK-NEXT: vp<[[END:%.+]]> = DERIVED-IV ir<2> + vp<[[VEC_TC]]> * ir<1>
512 ; CHECK-NEXT: Successor(s): vector loop
514 ; CHECK-NEXT: <x1> vector loop: {
515 ; CHECK-NEXT: vector.body:
516 ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
517 ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%.pn> = phi ir<0>, ir<[[L:%.+]]>
518 ; CHECK-NEXT: vp<[[DERIVED_IV:%.+]]> = DERIVED-IV ir<2> + vp<[[CAN_IV]]> * ir<1>
519 ; CHECK-NEXT: EMIT vp<[[WIDE_IV:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]>
520 ; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp ule vp<[[WIDE_IV]]>, vp<[[BTC]]>
521 ; CHECK-NEXT: CLONE ir<[[L]]> = load ir<%src>
522 ; CHECK-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%.pn>, ir<[[L]]>
523 ; CHECK-NEXT: Successor(s): pred.store
525 ; CHECK-NEXT: <xVFxUF> pred.store: {
526 ; CHECK-NEXT: pred.store.entry:
527 ; CHECK-NEXT: BRANCH-ON-MASK vp<[[CMP]]>
528 ; CHECK-NEXT: Successor(s): pred.store.if, pred.store.continue
530 ; CHECK-NEXT: pred.store.if:
531 ; CHECK-NEXT: vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[DERIVED_IV]]>, ir<1>
532 ; CHECK-NEXT: REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[SCALAR_STEPS]]>
533 ; CHECK-NEXT: REPLICATE ir<%val> = sdiv vp<[[SPLICE]]>, ir<%x>
534 ; CHECK-NEXT: REPLICATE store ir<%val>, ir<%gep.dst>
535 ; CHECK-NEXT: Successor(s): pred.store.continue
537 ; CHECK-NEXT: pred.store.continue:
538 ; CHECK-NEXT: No successors
540 ; CHECK-NEXT: Successor(s): loop.0
542 ; CHECK-NEXT: loop.0:
543 ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
544 ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
545 ; CHECK-NEXT: No successors
547 ; CHECK-NEXT: Successor(s): middle.block
549 ; CHECK-NEXT: middle.block:
550 ; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%l>, ir<1>
551 ; CHECK-NEXT: EMIT branch-on-cond ir<true>
552 ; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
554 ; CHECK-NEXT: scalar.ph
555 ; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[END]]>, ir<2>
556 ; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
557 ; CHECK-NEXT: Successor(s): ir-bb<loop>
559 ; CHECK-NEXT: ir-bb<loop>:
560 ; CHECK-NEXT: IR %iv = phi i64 [ 2, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
561 ; CHECK-NEXT: IR %.pn = phi i32 [ 0, %entry ], [ %l, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
562 ; CHECK: IR %ec = icmp ugt i64 %iv, 3
563 ; CHECK-NEXT: No successors
565 ; CHECK-NEXT: ir-bb<exit>
566 ; CHECK-NEXT: No successors
573 %iv = phi i64 [ 2, %entry ], [ %iv.next, %loop ]
574 %.pn = phi i32 [ 0, %entry ], [ %l, %loop ]
575 %val = sdiv i32 %.pn, %x
576 %l = load i32, ptr %src, align 4
577 %gep.dst = getelementptr i32, ptr %dst, i64 %iv
578 store i32 %val, ptr %gep.dst
579 %iv.next = add nuw nsw i64 %iv, 1
580 %ec = icmp ugt i64 %iv, 3
581 br i1 %ec, label %exit, label %loop