1 //===- ConvertArrayConstructor.cpp -- Array Constructor ---------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "flang/Lower/ConvertArrayConstructor.h"
10 #include "flang/Evaluate/expression.h"
11 #include "flang/Lower/AbstractConverter.h"
12 #include "flang/Lower/ConvertExprToHLFIR.h"
13 #include "flang/Lower/ConvertType.h"
14 #include "flang/Lower/StatementContext.h"
15 #include "flang/Lower/SymbolMap.h"
16 #include "flang/Optimizer/Builder/HLFIRTools.h"
17 #include "flang/Optimizer/Builder/Runtime/ArrayConstructor.h"
18 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
19 #include "flang/Optimizer/Builder/TemporaryStorage.h"
20 #include "flang/Optimizer/Builder/Todo.h"
21 #include "flang/Optimizer/HLFIR/HLFIROps.h"
23 // Array constructors are lowered with three different strategies.
24 // All strategies are not possible with all array constructors.
26 // - Strategy 1: runtime approach (RuntimeTempStrategy).
27 // This strategy works will all array constructors, but will create more
28 // complex code that is harder to optimize. An allocatable temp is created,
29 // it may be unallocated if the array constructor length parameters or extent
30 // could not be computed. Then, the runtime is called to push lowered
31 // ac-value (array constructor elements) into the allocatable. The runtime
32 // will allocate or reallocate as needed while values are being pushed.
33 // In the end, the allocatable contain a temporary with all the array
34 // constructor evaluated elements.
36 // - Strategy 2: inlined temporary approach (InlinedTempStrategyImpl)
37 // This strategy can only be used if the array constructor extent and length
38 // parameters can be pre-computed without evaluating any ac-value, and if all
39 // of the ac-value are scalars (at least for now).
40 // A temporary is allocated inline in one go, and an index pointing at the
41 // current ac-value position in the array constructor element sequence is
42 // maintained and used to store ac-value as they are being lowered.
44 // - Strategy 3: "function of the indices" approach (AsElementalStrategy)
45 // This strategy can only be used if the array constructor extent and length
46 // parameters can be pre-computed and, if the array constructor is of the
47 // form "[(scalar_expr, ac-implied-do-control)]". In this case, it is lowered
48 // into an hlfir.elemental without creating any temporary in lowering. This
49 // form should maximize the chance of array temporary elision when assigning
50 // the array constructor, potentially reshaped, to an array variable.
52 // The array constructor lowering looks like:
54 // strategy = selectArrayCtorLoweringStrategy(array-ctor-expr);
55 // for (ac-value : array-ctor-expr)
56 // if (ac-value is expression) {
57 // strategy.pushValue(ac-value);
58 // } else if (ac-value is implied-do) {
59 // strategy.startImpliedDo(lower, upper, stride);
60 // strategy.startImpliedDoScope();
61 // // lower nested values
63 // strategy.endImpliedDoScope();
65 // result = strategy.finishArrayCtorLowering();
68 //===----------------------------------------------------------------------===//
69 // Definition of the lowering strategies. Each lowering strategy is defined
70 // as a class that implements "pushValue", "startImpliedDo" and
71 // "finishArrayCtorLowering". A strategy may optionally override
72 // "startImpliedDoScope" and "endImpliedDoScope" virtual methods
73 // of its base class StrategyBase.
74 //===----------------------------------------------------------------------===//
77 /// Class provides common implementation of scope push/pop methods
78 /// that update StatementContext scopes and SymMap bindings.
79 /// They might be overridden by the lowering strategies, e.g.
80 /// see AsElementalStrategy.
83 StrategyBase(Fortran::lower::StatementContext
&stmtCtx
,
84 Fortran::lower::SymMap
&symMap
)
85 : stmtCtx
{stmtCtx
}, symMap
{symMap
} {};
86 virtual ~StrategyBase() = default;
88 virtual void startImpliedDoScope(llvm::StringRef doName
,
89 mlir::Value indexValue
) {
90 symMap
.pushImpliedDoBinding(doName
, indexValue
);
94 virtual void endImpliedDoScope() {
95 stmtCtx
.finalizeAndPop();
96 symMap
.popImpliedDoBinding();
100 Fortran::lower::StatementContext
&stmtCtx
;
101 Fortran::lower::SymMap
&symMap
;
104 /// Class that implements the "inlined temp strategy" to lower array
105 /// constructors. It must be provided a boolean to indicate if the array
106 /// constructor has any implied-do-loop.
107 template <bool hasLoops
>
108 class InlinedTempStrategyImpl
: public StrategyBase
,
109 public fir::factory::HomogeneousScalarStack
{
110 /// Name that will be given to the temporary allocation and hlfir.declare in
112 static constexpr char tempName
[] = ".tmp.arrayctor";
115 /// Start lowering an array constructor according to the inline strategy.
116 /// The temporary is created right away.
117 InlinedTempStrategyImpl(mlir::Location loc
, fir::FirOpBuilder
&builder
,
118 Fortran::lower::StatementContext
&stmtCtx
,
119 Fortran::lower::SymMap
&symMap
,
120 fir::SequenceType declaredType
, mlir::Value extent
,
121 llvm::ArrayRef
<mlir::Value
> lengths
)
122 : StrategyBase
{stmtCtx
, symMap
},
123 fir::factory::HomogeneousScalarStack
{
124 loc
, builder
, declaredType
,
125 extent
, lengths
, /*allocateOnHeap=*/true,
126 hasLoops
, tempName
} {}
128 /// Push a lowered ac-value into the current insertion point and
129 /// increment the insertion point.
130 using fir::factory::HomogeneousScalarStack::pushValue
;
132 /// Start a fir.do_loop with the control from an implied-do and return
133 /// the loop induction variable that is the ac-do-variable value.
134 /// Only usable if the counter is able to track the position through loops.
135 mlir::Value
startImpliedDo(mlir::Location loc
, fir::FirOpBuilder
&builder
,
136 mlir::Value lower
, mlir::Value upper
,
137 mlir::Value stride
) {
138 if constexpr (!hasLoops
)
139 fir::emitFatalError(loc
, "array constructor lowering is inconsistent");
140 auto loop
= builder
.create
<fir::DoLoopOp
>(loc
, lower
, upper
, stride
,
142 /*finalCount=*/false);
143 builder
.setInsertionPointToStart(loop
.getBody());
144 return loop
.getInductionVar();
147 /// Move the temporary to an hlfir.expr value (array constructors are not
148 /// variables and cannot be further modified).
149 hlfir::Entity
finishArrayCtorLowering(mlir::Location loc
,
150 fir::FirOpBuilder
&builder
) {
151 return moveStackAsArrayExpr(loc
, builder
);
155 /// Semantic analysis expression rewrites unroll implied do loop with
156 /// compile time constant bounds (even if huge). So using a minimalistic
157 /// counter greatly reduces the generated IR for simple but big array
158 /// constructors [(i,i=1,constant-expr)] that are expected to be quite
160 using LooplessInlinedTempStrategy
= InlinedTempStrategyImpl
</*hasLoops=*/false>;
161 /// A generic memory based counter that can deal with all cases of
162 /// "inlined temp strategy". The counter value is stored in a temp
163 /// from which it is loaded, incremented, and stored every time an
164 /// ac-value is pushed.
165 using InlinedTempStrategy
= InlinedTempStrategyImpl
</*hasLoops=*/true>;
167 /// Class that implements the "as function of the indices" lowering strategy.
168 /// It will lower [(scalar_expr(i), i=l,u,s)] to:
170 /// %extent = max((%u-%l+1)/%s, 0)
171 /// %shape = fir.shape %extent
172 /// %elem = hlfir.elemental %shape {
173 /// ^bb0(%pos:index):
174 /// %i = %l+(%i-1)*%s
175 /// %value = scalar_expr(%i)
176 /// hlfir.yield_element %value
179 /// That way, no temporary is created in lowering, and if the array constructor
180 /// is part of a more complex elemental expression, or an assignment, it will be
181 /// trivial to "inline" it in the expression or assignment loops if allowed by
183 /// This lowering is however only possible for the form of array constructors as
184 /// in the illustration above. It could be extended to deeper independent
185 /// implied-do nest and wrapped in an hlfir.reshape to a rank 1 array. But this
186 /// op does not exist yet, so this is left for the future if it appears
188 class AsElementalStrategy
: public StrategyBase
{
190 /// The constructor only gathers the operands to create the hlfir.elemental.
191 AsElementalStrategy(mlir::Location loc
, fir::FirOpBuilder
&builder
,
192 Fortran::lower::StatementContext
&stmtCtx
,
193 Fortran::lower::SymMap
&symMap
,
194 fir::SequenceType declaredType
, mlir::Value extent
,
195 llvm::ArrayRef
<mlir::Value
> lengths
)
196 : StrategyBase
{stmtCtx
, symMap
}, shape
{builder
.genShape(loc
, {extent
})},
197 lengthParams
{lengths
}, exprType
{getExprType(declaredType
)} {}
199 static hlfir::ExprType
getExprType(fir::SequenceType declaredType
) {
200 // Note: 7.8 point 4: the dynamic type of an array constructor is its static
201 // type, it is not polymorphic.
202 return hlfir::ExprType::get(declaredType
.getContext(),
203 declaredType
.getShape(),
204 declaredType
.getEleTy(),
205 /*isPolymorphic=*/false);
208 /// Create the hlfir.elemental and compute the ac-implied-do-index value
209 /// given the lower bound and stride (compute "%i" in the illustration above).
210 mlir::Value
startImpliedDo(mlir::Location loc
, fir::FirOpBuilder
&builder
,
211 mlir::Value lower
, mlir::Value upper
,
212 mlir::Value stride
) {
213 assert(!elementalOp
&& "expected only one implied-do");
215 builder
.createIntegerConstant(loc
, builder
.getIndexType(), 1);
216 elementalOp
= builder
.create
<hlfir::ElementalOp
>(
217 loc
, exprType
, shape
,
218 /*mold=*/nullptr, lengthParams
, /*isUnordered=*/true);
219 builder
.setInsertionPointToStart(elementalOp
.getBody());
220 // implied-do-index = lower+((i-1)*stride)
221 mlir::Value diff
= builder
.create
<mlir::arith::SubIOp
>(
222 loc
, elementalOp
.getIndices()[0], one
);
223 mlir::Value mul
= builder
.create
<mlir::arith::MulIOp
>(loc
, diff
, stride
);
224 mlir::Value add
= builder
.create
<mlir::arith::AddIOp
>(loc
, lower
, mul
);
228 /// Create the elemental hlfir.yield_element with the scalar ac-value.
229 void pushValue(mlir::Location loc
, fir::FirOpBuilder
&builder
,
230 hlfir::Entity value
) {
231 assert(value
.isScalar() && "cannot use hlfir.elemental with array values");
232 assert(elementalOp
&& "array constructor must contain an outer implied-do");
233 mlir::Value elementResult
= value
;
234 if (fir::isa_trivial(elementResult
.getType()))
236 builder
.createConvert(loc
, exprType
.getElementType(), elementResult
);
238 // The clean-ups associated with the implied-do body operations
239 // must be initiated before the YieldElementOp, so we have to pop the scope
241 stmtCtx
.finalizeAndPop();
243 // This is a hacky way to get rid of the DestroyOp clean-up
244 // associated with the final ac-value result if it is hlfir.expr.
246 // ... = (/(REPEAT(REPEAT(CHAR(i),2),2),i=1,n)/)
247 // Each intrinsic call lowering will produce hlfir.expr result
248 // with the associated clean-up, but only the last of them
249 // is wrong. It is wrong because the value is used in hlfir.yield_element,
250 // so it cannot be destroyed.
251 mlir::Operation
*destroyOp
= nullptr;
252 for (mlir::Operation
*useOp
: elementResult
.getUsers())
253 if (mlir::isa
<hlfir::DestroyOp
>(useOp
)) {
255 fir::emitFatalError(loc
,
256 "multiple DestroyOp's for ac-value expression");
263 builder
.create
<hlfir::YieldElementOp
>(loc
, elementResult
);
266 // Override the default, because the context scope must be popped in
268 virtual void endImpliedDoScope() override
{ symMap
.popImpliedDoBinding(); }
270 /// Return the created hlfir.elemental.
271 hlfir::Entity
finishArrayCtorLowering(mlir::Location loc
,
272 fir::FirOpBuilder
&builder
) {
273 return hlfir::Entity
{elementalOp
};
278 llvm::SmallVector
<mlir::Value
> lengthParams
;
279 hlfir::ExprType exprType
;
280 hlfir::ElementalOp elementalOp
{};
283 /// Class that implements the "runtime temp strategy" to lower array
285 class RuntimeTempStrategy
: public StrategyBase
{
286 /// Name that will be given to the temporary allocation and hlfir.declare in
288 static constexpr char tempName
[] = ".tmp.arrayctor";
291 /// Start lowering an array constructor according to the runtime strategy.
292 /// The temporary is only created if the extents and length parameters are
293 /// already known. Otherwise, the handling of the allocation (and
294 /// reallocation) is left up to the runtime.
295 /// \p extent is the pre-computed extent of the array constructor, if it could
296 /// be pre-computed. It is std::nullopt otherwise.
297 /// \p lengths are the pre-computed length parameters of the array
298 /// constructor, if they could be precomputed. \p missingLengthParameters is
299 /// set to true if the length parameters could not be precomputed.
300 RuntimeTempStrategy(mlir::Location loc
, fir::FirOpBuilder
&builder
,
301 Fortran::lower::StatementContext
&stmtCtx
,
302 Fortran::lower::SymMap
&symMap
,
303 fir::SequenceType declaredType
,
304 std::optional
<mlir::Value
> extent
,
305 llvm::ArrayRef
<mlir::Value
> lengths
,
306 bool missingLengthParameters
)
307 : StrategyBase
{stmtCtx
, symMap
},
308 arrayConstructorElementType
{declaredType
.getEleTy()} {
309 mlir::Type heapType
= fir::HeapType::get(declaredType
);
310 mlir::Type boxType
= fir::BoxType::get(heapType
);
311 allocatableTemp
= builder
.createTemporary(loc
, boxType
, tempName
);
312 mlir::Value initialBoxValue
;
313 if (extent
&& !missingLengthParameters
) {
314 llvm::SmallVector
<mlir::Value
, 1> extents
{*extent
};
315 mlir::Value tempStorage
= builder
.createHeapTemporary(
316 loc
, declaredType
, tempName
, extents
, lengths
);
317 mlir::Value shape
= builder
.genShape(loc
, extents
);
318 declare
= builder
.create
<hlfir::DeclareOp
>(
319 loc
, tempStorage
, tempName
, shape
, lengths
,
320 /*dummy_scope=*/nullptr, fir::FortranVariableFlagsAttr
{});
322 builder
.createBox(loc
, boxType
, declare
->getOriginalBase(), shape
,
323 /*slice=*/mlir::Value
{}, lengths
, /*tdesc=*/{});
325 // The runtime will have to do the initial allocation.
326 // The declare operation cannot be emitted in this case since the final
327 // array constructor has not yet been allocated. Instead, the resulting
328 // temporary variable will be extracted from the allocatable descriptor
329 // after all the API calls.
330 // Prepare the initial state of the allocatable descriptor with a
331 // deallocated status and all the available knowledge about the extent
332 // and length parameters.
333 llvm::SmallVector
<mlir::Value
> emboxLengths(lengths
);
335 extent
= builder
.createIntegerConstant(loc
, builder
.getIndexType(), 0);
336 if (missingLengthParameters
) {
337 if (mlir::isa
<fir::CharacterType
>(declaredType
.getEleTy()))
338 emboxLengths
.push_back(builder
.createIntegerConstant(
339 loc
, builder
.getCharacterLengthType(), 0));
342 "parametrized derived type array constructor without type-spec");
344 mlir::Value nullAddr
= builder
.createNullConstant(loc
, heapType
);
345 mlir::Value shape
= builder
.genShape(loc
, {*extent
});
346 initialBoxValue
= builder
.createBox(loc
, boxType
, nullAddr
, shape
,
347 /*slice=*/mlir::Value
{}, emboxLengths
,
350 builder
.create
<fir::StoreOp
>(loc
, initialBoxValue
, allocatableTemp
);
351 arrayConstructorVector
= fir::runtime::genInitArrayConstructorVector(
352 loc
, builder
, allocatableTemp
,
353 builder
.createBool(loc
, missingLengthParameters
));
356 bool useSimplePushRuntime(hlfir::Entity value
) {
357 return value
.isScalar() &&
358 !mlir::isa
<fir::CharacterType
>(arrayConstructorElementType
) &&
359 !fir::isRecordWithAllocatableMember(arrayConstructorElementType
) &&
360 !fir::isRecordWithTypeParameters(arrayConstructorElementType
);
363 /// Push a lowered ac-value into the array constructor vector using
365 void pushValue(mlir::Location loc
, fir::FirOpBuilder
&builder
,
366 hlfir::Entity value
) {
367 if (useSimplePushRuntime(value
)) {
368 auto [addrExv
, cleanUp
] = hlfir::convertToAddress(
369 loc
, builder
, value
, arrayConstructorElementType
);
370 mlir::Value addr
= fir::getBase(addrExv
);
371 if (mlir::isa
<fir::BaseBoxType
>(addr
.getType()))
372 addr
= builder
.create
<fir::BoxAddrOp
>(loc
, addr
);
373 fir::runtime::genPushArrayConstructorSimpleScalar(
374 loc
, builder
, arrayConstructorVector
, addr
);
379 auto [boxExv
, cleanUp
] =
380 hlfir::convertToBox(loc
, builder
, value
, arrayConstructorElementType
);
381 fir::runtime::genPushArrayConstructorValue(
382 loc
, builder
, arrayConstructorVector
, fir::getBase(boxExv
));
387 /// Start a fir.do_loop with the control from an implied-do and return
388 /// the loop induction variable that is the ac-do-variable value.
389 mlir::Value
startImpliedDo(mlir::Location loc
, fir::FirOpBuilder
&builder
,
390 mlir::Value lower
, mlir::Value upper
,
391 mlir::Value stride
) {
392 auto loop
= builder
.create
<fir::DoLoopOp
>(loc
, lower
, upper
, stride
,
394 /*finalCount=*/false);
395 builder
.setInsertionPointToStart(loop
.getBody());
396 return loop
.getInductionVar();
399 /// Move the temporary to an hlfir.expr value (array constructors are not
400 /// variables and cannot be further modified).
401 hlfir::Entity
finishArrayCtorLowering(mlir::Location loc
,
402 fir::FirOpBuilder
&builder
) {
403 // Temp is created using createHeapTemporary, or allocated on the heap
405 mlir::Value mustFree
= builder
.createBool(loc
, true);
408 temp
= declare
->getBase();
410 temp
= hlfir::derefPointersAndAllocatables(
411 loc
, builder
, hlfir::Entity
{allocatableTemp
});
412 auto hlfirExpr
= builder
.create
<hlfir::AsExprOp
>(loc
, temp
, mustFree
);
413 return hlfir::Entity
{hlfirExpr
};
417 /// Element type of the array constructor being built.
418 mlir::Type arrayConstructorElementType
;
419 /// Allocatable descriptor for the storage of the array constructor being
421 mlir::Value allocatableTemp
;
422 /// Structure that allows the runtime API to maintain the status of
423 /// of the array constructor being built between two API calls.
424 mlir::Value arrayConstructorVector
;
425 /// DeclareOp for the array constructor storage, if it was possible to
426 /// allocate it before any API calls.
427 std::optional
<hlfir::DeclareOp
> declare
;
430 /// Wrapper class that dispatch to the selected array constructor lowering
431 /// strategy and does nothing else.
432 class ArrayCtorLoweringStrategy
{
434 template <typename A
>
435 ArrayCtorLoweringStrategy(A
&&impl
) : implVariant
{std::forward
<A
>(impl
)} {}
437 void pushValue(mlir::Location loc
, fir::FirOpBuilder
&builder
,
438 hlfir::Entity value
) {
439 return Fortran::common::visit(
440 [&](auto &impl
) { return impl
.pushValue(loc
, builder
, value
); },
444 mlir::Value
startImpliedDo(mlir::Location loc
, fir::FirOpBuilder
&builder
,
445 mlir::Value lower
, mlir::Value upper
,
446 mlir::Value stride
) {
447 return Fortran::common::visit(
449 return impl
.startImpliedDo(loc
, builder
, lower
, upper
, stride
);
454 hlfir::Entity
finishArrayCtorLowering(mlir::Location loc
,
455 fir::FirOpBuilder
&builder
) {
456 return Fortran::common::visit(
457 [&](auto &impl
) { return impl
.finishArrayCtorLowering(loc
, builder
); },
461 void startImpliedDoScope(llvm::StringRef doName
, mlir::Value indexValue
) {
462 Fortran::common::visit(
464 return impl
.startImpliedDoScope(doName
, indexValue
);
469 void endImpliedDoScope() {
470 Fortran::common::visit([&](auto &impl
) { return impl
.endImpliedDoScope(); },
475 std::variant
<InlinedTempStrategy
, LooplessInlinedTempStrategy
,
476 AsElementalStrategy
, RuntimeTempStrategy
>
481 //===----------------------------------------------------------------------===//
482 // Definition of selectArrayCtorLoweringStrategy and its helpers.
483 // This is the code that analyses the evaluate::ArrayConstructor<T>,
484 // pre-lowers the array constructor extent and length parameters if it can,
485 // and chooses the lowering strategy.
486 //===----------------------------------------------------------------------===//
488 /// Helper to lower a scalar extent expression (like implied-do bounds).
489 static mlir::Value
lowerExtentExpr(mlir::Location loc
,
490 Fortran::lower::AbstractConverter
&converter
,
491 Fortran::lower::SymMap
&symMap
,
492 Fortran::lower::StatementContext
&stmtCtx
,
493 const Fortran::evaluate::ExtentExpr
&expr
) {
494 fir::FirOpBuilder
&builder
= converter
.getFirOpBuilder();
495 mlir::IndexType idxTy
= builder
.getIndexType();
496 hlfir::Entity value
= Fortran::lower::convertExprToHLFIR(
497 loc
, converter
, toEvExpr(expr
), symMap
, stmtCtx
);
498 value
= hlfir::loadTrivialScalar(loc
, builder
, value
);
499 return builder
.createConvert(loc
, idxTy
, value
);
503 /// Helper class to lower the array constructor type and its length parameters.
504 /// The length parameters, if any, are only lowered if this does not require
505 /// evaluating an ac-value.
506 template <typename T
>
507 struct LengthAndTypeCollector
{
508 static mlir::Type
collect(mlir::Location
,
509 Fortran::lower::AbstractConverter
&converter
,
510 const Fortran::evaluate::ArrayConstructor
<T
> &,
511 Fortran::lower::SymMap
&,
512 Fortran::lower::StatementContext
&,
513 mlir::SmallVectorImpl
<mlir::Value
> &) {
514 // Numerical and Logical types.
515 return Fortran::lower::getFIRType(&converter
.getMLIRContext(), T::category
,
516 T::kind
, /*lenParams*/ {});
521 struct LengthAndTypeCollector
<Fortran::evaluate::SomeDerived
> {
522 static mlir::Type
collect(
523 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
524 const Fortran::evaluate::ArrayConstructor
<Fortran::evaluate::SomeDerived
>
526 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
,
527 mlir::SmallVectorImpl
<mlir::Value
> &lengths
) {
528 // Array constructors cannot be unlimited polymorphic (C7113), so there must
529 // be a derived type spec available.
530 return Fortran::lower::translateDerivedTypeToFIRType(
531 converter
, arrayCtorExpr
.result().derivedTypeSpec());
537 Fortran::evaluate::Type
<Fortran::common::TypeCategory::Character
, Kind
>;
539 struct LengthAndTypeCollector
<Character
<Kind
>> {
540 static mlir::Type
collect(
541 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
542 const Fortran::evaluate::ArrayConstructor
<Character
<Kind
>> &arrayCtorExpr
,
543 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
,
544 mlir::SmallVectorImpl
<mlir::Value
> &lengths
) {
545 llvm::SmallVector
<Fortran::lower::LenParameterTy
> typeLengths
;
546 if (const Fortran::evaluate::ExtentExpr
*lenExpr
= arrayCtorExpr
.LEN()) {
548 lowerExtentExpr(loc
, converter
, symMap
, stmtCtx
, *lenExpr
));
549 if (std::optional
<std::int64_t> cstLen
=
550 Fortran::evaluate::ToInt64(*lenExpr
))
551 typeLengths
.push_back(*cstLen
);
553 return Fortran::lower::getFIRType(&converter
.getMLIRContext(),
554 Fortran::common::TypeCategory::Character
,
560 /// Does the array constructor have length parameters that
561 /// LengthAndTypeCollector::collect could not lower because this requires
562 /// lowering an ac-value and must be delayed?
563 static bool missingLengthParameters(mlir::Type elementType
,
564 llvm::ArrayRef
<mlir::Value
> lengths
) {
565 return (mlir::isa
<fir::CharacterType
>(elementType
) ||
566 fir::isRecordWithTypeParameters(elementType
)) &&
571 /// Structure that analyses the ac-value and implied-do of
572 /// evaluate::ArrayConstructor before they are lowered. It does not generate any
573 /// IR. The result of this analysis pass is used to select the lowering
575 struct ArrayCtorAnalysis
{
576 template <typename T
>
578 Fortran::evaluate::FoldingContext
&,
579 const Fortran::evaluate::ArrayConstructor
<T
> &arrayCtorExpr
);
581 // Can the array constructor easily be rewritten into an hlfir.elemental ?
582 bool isSingleImpliedDoWithOneScalarPureExpr() const {
583 return !anyArrayExpr
&& isPerfectLoopNest
&&
584 innerNumberOfExprIfPrefectNest
== 1 && depthIfPerfectLoopNest
== 1 &&
585 innerExprIsPureIfPerfectNest
;
588 bool anyImpliedDo
= false;
589 bool anyArrayExpr
= false;
590 bool isPerfectLoopNest
= true;
591 bool innerExprIsPureIfPerfectNest
= false;
592 std::int64_t innerNumberOfExprIfPrefectNest
= 0;
593 std::int64_t depthIfPerfectLoopNest
= 0;
597 template <typename T
>
598 ArrayCtorAnalysis::ArrayCtorAnalysis(
599 Fortran::evaluate::FoldingContext
&foldingContext
,
600 const Fortran::evaluate::ArrayConstructor
<T
> &arrayCtorExpr
) {
601 llvm::SmallVector
<const Fortran::evaluate::ArrayConstructorValues
<T
> *>
602 arrayValueListStack
{&arrayCtorExpr
};
603 // Loop through the ac-value-list(s) of the array constructor.
604 while (!arrayValueListStack
.empty()) {
605 std::int64_t localNumberOfImpliedDo
= 0;
606 std::int64_t localNumberOfExpr
= 0;
607 // Loop though the ac-value of an ac-value list, and add any nested
608 // ac-value-list of ac-implied-do to the stack.
609 const Fortran::evaluate::ArrayConstructorValues
<T
> *currentArrayValueList
=
610 arrayValueListStack
.pop_back_val();
611 for (const Fortran::evaluate::ArrayConstructorValue
<T
> &acValue
:
612 *currentArrayValueList
)
613 Fortran::common::visit(
614 Fortran::common::visitors
{
615 [&](const Fortran::evaluate::ImpliedDo
<T
> &impledDo
) {
616 arrayValueListStack
.push_back(&impledDo
.values());
617 localNumberOfImpliedDo
++;
619 [&](const Fortran::evaluate::Expr
<T
> &expr
) {
621 anyArrayExpr
= anyArrayExpr
|| expr
.Rank() > 0;
624 anyImpliedDo
= anyImpliedDo
|| localNumberOfImpliedDo
> 0;
626 if (localNumberOfImpliedDo
== 0) {
627 // Leaf ac-value-list in the array constructor ac-value tree.
628 if (isPerfectLoopNest
) {
629 // This this the only leaf of the array-constructor (the array
630 // constructor is a nest of single implied-do with a list of expression
631 // in the last deeper implied do). e.g: "[((i+j, i=1,n)j=1,m)]".
632 innerNumberOfExprIfPrefectNest
= localNumberOfExpr
;
633 if (localNumberOfExpr
== 1)
634 innerExprIsPureIfPerfectNest
= !Fortran::evaluate::FindImpureCall(
635 foldingContext
, toEvExpr(std::get
<Fortran::evaluate::Expr
<T
>>(
636 currentArrayValueList
->begin()->u
)));
638 } else if (localNumberOfImpliedDo
== 1 && localNumberOfExpr
== 0) {
639 // Perfect implied-do nest new level.
640 ++depthIfPerfectLoopNest
;
642 // More than one implied-do, or at least one implied-do and an expr
643 // at that level. This will not form a perfect nest. Examples:
644 // "[a, (i, i=1,n)]" or "[(i, i=1,n), (j, j=1,m)]".
645 isPerfectLoopNest
= false;
650 /// Does \p expr contain no calls to user function?
651 static bool isCallFreeExpr(const Fortran::evaluate::ExtentExpr
&expr
) {
652 for (const Fortran::semantics::Symbol
&symbol
:
653 Fortran::evaluate::CollectSymbols(expr
))
654 if (Fortran::semantics::IsProcedure(symbol
))
659 /// Core function that pre-lowers the extent and length parameters of
660 /// array constructors if it can, runs the ac-value analysis and
661 /// select the lowering strategy accordingly.
662 template <typename T
>
663 static ArrayCtorLoweringStrategy
selectArrayCtorLoweringStrategy(
664 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
665 const Fortran::evaluate::ArrayConstructor
<T
> &arrayCtorExpr
,
666 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
) {
667 fir::FirOpBuilder
&builder
= converter
.getFirOpBuilder();
668 mlir::Type idxType
= builder
.getIndexType();
669 // Try to gather the array constructor extent.
671 fir::SequenceType::Extent typeExtent
= fir::SequenceType::getUnknownExtent();
672 auto shapeExpr
= Fortran::evaluate::GetContextFreeShape(
673 converter
.getFoldingContext(), arrayCtorExpr
);
674 if (shapeExpr
&& shapeExpr
->size() == 1 && (*shapeExpr
)[0]) {
675 const Fortran::evaluate::ExtentExpr
&extentExpr
= *(*shapeExpr
)[0];
676 if (auto constantExtent
= Fortran::evaluate::ToInt64(extentExpr
)) {
677 typeExtent
= *constantExtent
;
678 extent
= builder
.createIntegerConstant(loc
, idxType
, typeExtent
);
679 } else if (isCallFreeExpr(extentExpr
)) {
680 // The expression built by expression analysis for the array constructor
681 // extent does not contain procedure symbols. It is side effect free.
682 // This could be relaxed to allow pure procedure, but some care must
683 // be taken to not bring in "unmapped" symbols from callee scopes.
684 extent
= lowerExtentExpr(loc
, converter
, symMap
, stmtCtx
, extentExpr
);
686 // Otherwise, the temporary will have to be built step by step with
687 // reallocation and the extent will only be known at the end of the array
688 // constructor evaluation.
690 // Convert the array constructor type and try to gather its length parameter
692 mlir::SmallVector
<mlir::Value
> lengths
;
693 mlir::Type elementType
= LengthAndTypeCollector
<T
>::collect(
694 loc
, converter
, arrayCtorExpr
, symMap
, stmtCtx
, lengths
);
695 // Run an analysis of the array constructor ac-value.
696 ArrayCtorAnalysis
analysis(converter
.getFoldingContext(), arrayCtorExpr
);
697 bool needToEvaluateOneExprToGetLengthParameters
=
698 missingLengthParameters(elementType
, lengths
);
699 auto declaredType
= fir::SequenceType::get({typeExtent
}, elementType
);
701 // Based on what was gathered and the result of the analysis, select and
702 // instantiate the right lowering strategy for the array constructor.
703 if (!extent
|| needToEvaluateOneExprToGetLengthParameters
||
704 analysis
.anyArrayExpr
||
705 mlir::isa
<fir::RecordType
>(declaredType
.getEleTy()))
706 return RuntimeTempStrategy(
707 loc
, builder
, stmtCtx
, symMap
, declaredType
,
708 extent
? std::optional
<mlir::Value
>(extent
) : std::nullopt
, lengths
,
709 needToEvaluateOneExprToGetLengthParameters
);
710 // Note: the generated hlfir.elemental is always unordered, thus,
711 // AsElementalStrategy can only be used for array constructors without
712 // impure ac-value expressions. If/when this changes, make sure
713 // the 'unordered' attribute is set accordingly for the hlfir.elemental.
714 if (analysis
.isSingleImpliedDoWithOneScalarPureExpr())
715 return AsElementalStrategy(loc
, builder
, stmtCtx
, symMap
, declaredType
,
718 if (analysis
.anyImpliedDo
)
719 return InlinedTempStrategy(loc
, builder
, stmtCtx
, symMap
, declaredType
,
722 return LooplessInlinedTempStrategy(loc
, builder
, stmtCtx
, symMap
,
723 declaredType
, extent
, lengths
);
726 /// Lower an ac-value expression \p expr and forward it to the selected
727 /// lowering strategy \p arrayBuilder,
728 template <typename T
>
729 static void genAcValue(mlir::Location loc
,
730 Fortran::lower::AbstractConverter
&converter
,
731 const Fortran::evaluate::Expr
<T
> &expr
,
732 Fortran::lower::SymMap
&symMap
,
733 Fortran::lower::StatementContext
&stmtCtx
,
734 ArrayCtorLoweringStrategy
&arrayBuilder
) {
735 // TODO: get rid of the toEvExpr indirection.
736 fir::FirOpBuilder
&builder
= converter
.getFirOpBuilder();
737 hlfir::Entity value
= Fortran::lower::convertExprToHLFIR(
738 loc
, converter
, toEvExpr(expr
), symMap
, stmtCtx
);
739 value
= hlfir::loadTrivialScalar(loc
, builder
, value
);
740 arrayBuilder
.pushValue(loc
, builder
, value
);
743 /// Lowers an ac-value implied-do \p impledDo according to the selected
744 /// lowering strategy \p arrayBuilder.
745 template <typename T
>
746 static void genAcValue(mlir::Location loc
,
747 Fortran::lower::AbstractConverter
&converter
,
748 const Fortran::evaluate::ImpliedDo
<T
> &impledDo
,
749 Fortran::lower::SymMap
&symMap
,
750 Fortran::lower::StatementContext
&stmtCtx
,
751 ArrayCtorLoweringStrategy
&arrayBuilder
) {
753 [&](const Fortran::evaluate::ExtentExpr expr
) -> mlir::Value
{
754 return lowerExtentExpr(loc
, converter
, symMap
, stmtCtx
, expr
);
756 mlir::Value lower
= lowerIndex(impledDo
.lower());
757 mlir::Value upper
= lowerIndex(impledDo
.upper());
758 mlir::Value stride
= lowerIndex(impledDo
.stride());
759 fir::FirOpBuilder
&builder
= converter
.getFirOpBuilder();
760 mlir::OpBuilder::InsertPoint insertPt
= builder
.saveInsertionPoint();
761 mlir::Value impliedDoIndexValue
=
762 arrayBuilder
.startImpliedDo(loc
, builder
, lower
, upper
, stride
);
763 arrayBuilder
.startImpliedDoScope(toStringRef(impledDo
.name()),
764 impliedDoIndexValue
);
766 for (const auto &acValue
: impledDo
.values())
767 Fortran::common::visit(
769 genAcValue(loc
, converter
, x
, symMap
, stmtCtx
, arrayBuilder
);
773 arrayBuilder
.endImpliedDoScope();
774 builder
.restoreInsertionPoint(insertPt
);
777 /// Entry point for evaluate::ArrayConstructor lowering.
778 template <typename T
>
779 hlfir::EntityWithAttributes
Fortran::lower::ArrayConstructorBuilder
<T
>::gen(
780 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
781 const Fortran::evaluate::ArrayConstructor
<T
> &arrayCtorExpr
,
782 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
) {
783 fir::FirOpBuilder
&builder
= converter
.getFirOpBuilder();
784 // Select the lowering strategy given the array constructor.
785 auto arrayBuilder
= selectArrayCtorLoweringStrategy(
786 loc
, converter
, arrayCtorExpr
, symMap
, stmtCtx
);
787 // Run the array lowering strategy through the ac-values.
788 for (const auto &acValue
: arrayCtorExpr
)
789 Fortran::common::visit(
791 genAcValue(loc
, converter
, x
, symMap
, stmtCtx
, arrayBuilder
);
794 hlfir::Entity hlfirExpr
= arrayBuilder
.finishArrayCtorLowering(loc
, builder
);
795 // Insert the clean-up for the created hlfir.expr.
796 fir::FirOpBuilder
*bldr
= &builder
;
797 stmtCtx
.attachCleanup(
798 [=]() { bldr
->create
<hlfir::DestroyOp
>(loc
, hlfirExpr
); });
799 return hlfir::EntityWithAttributes
{hlfirExpr
};
802 using namespace Fortran::evaluate
;
803 using namespace Fortran::common
;
804 FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ArrayConstructorBuilder
, )