LAA: improve code in getStrideFromPointer (NFC) (#124780)
[llvm-project.git] / flang / lib / Lower / PFTBuilder.cpp
blob41bdff4dca47196850b7d68a16f0e25099f31374
1 //===-- PFTBuilder.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "flang/Lower/PFTBuilder.h"
10 #include "flang/Lower/IntervalSet.h"
11 #include "flang/Lower/Support/Utils.h"
12 #include "flang/Parser/dump-parse-tree.h"
13 #include "flang/Parser/parse-tree-visitor.h"
14 #include "flang/Semantics/semantics.h"
15 #include "flang/Semantics/tools.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/IntervalMap.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
21 #define DEBUG_TYPE "flang-pft"
23 static llvm::cl::opt<bool> clDisableStructuredFir(
24 "no-structured-fir", llvm::cl::desc("disable generation of structured FIR"),
25 llvm::cl::init(false), llvm::cl::Hidden);
27 using namespace Fortran;
29 namespace {
30 /// Helpers to unveil parser node inside Fortran::parser::Statement<>,
31 /// Fortran::parser::UnlabeledStatement, and Fortran::common::Indirection<>
32 template <typename A>
33 struct RemoveIndirectionHelper {
34 using Type = A;
36 template <typename A>
37 struct RemoveIndirectionHelper<common::Indirection<A>> {
38 using Type = A;
41 template <typename A>
42 struct UnwrapStmt {
43 static constexpr bool isStmt{false};
45 template <typename A>
46 struct UnwrapStmt<parser::Statement<A>> {
47 static constexpr bool isStmt{true};
48 using Type = typename RemoveIndirectionHelper<A>::Type;
49 constexpr UnwrapStmt(const parser::Statement<A> &a)
50 : unwrapped{removeIndirection(a.statement)}, position{a.source},
51 label{a.label} {}
52 const Type &unwrapped;
53 parser::CharBlock position;
54 std::optional<parser::Label> label;
56 template <typename A>
57 struct UnwrapStmt<parser::UnlabeledStatement<A>> {
58 static constexpr bool isStmt{true};
59 using Type = typename RemoveIndirectionHelper<A>::Type;
60 constexpr UnwrapStmt(const parser::UnlabeledStatement<A> &a)
61 : unwrapped{removeIndirection(a.statement)}, position{a.source} {}
62 const Type &unwrapped;
63 parser::CharBlock position;
64 std::optional<parser::Label> label;
67 #ifndef NDEBUG
68 void dumpScope(const semantics::Scope *scope, int depth = -1);
69 #endif
71 /// The instantiation of a parse tree visitor (Pre and Post) is extremely
72 /// expensive in terms of compile and link time. So one goal here is to
73 /// limit the bridge to one such instantiation.
74 class PFTBuilder {
75 public:
76 PFTBuilder(const semantics::SemanticsContext &semanticsContext)
77 : pgm{std::make_unique<lower::pft::Program>(
78 semanticsContext.GetCommonBlocks())},
79 semanticsContext{semanticsContext} {
80 lower::pft::PftNode pftRoot{*pgm.get()};
81 pftParentStack.push_back(pftRoot);
84 /// Get the result
85 std::unique_ptr<lower::pft::Program> result() { return std::move(pgm); }
87 template <typename A>
88 constexpr bool Pre(const A &a) {
89 if constexpr (lower::pft::isFunctionLike<A>) {
90 return enterFunction(a, semanticsContext);
91 } else if constexpr (lower::pft::isConstruct<A> ||
92 lower::pft::isDirective<A>) {
93 return enterConstructOrDirective(a);
94 } else if constexpr (UnwrapStmt<A>::isStmt) {
95 using T = typename UnwrapStmt<A>::Type;
96 // Node "a" being visited has one of the following types:
97 // Statement<T>, Statement<Indirection<T>>, UnlabeledStatement<T>,
98 // or UnlabeledStatement<Indirection<T>>
99 auto stmt{UnwrapStmt<A>(a)};
100 if constexpr (lower::pft::isConstructStmt<T> ||
101 lower::pft::isOtherStmt<T>) {
102 addEvaluation(lower::pft::Evaluation{
103 stmt.unwrapped, pftParentStack.back(), stmt.position, stmt.label});
104 return false;
105 } else if constexpr (std::is_same_v<T, parser::ActionStmt>) {
106 return Fortran::common::visit(
107 common::visitors{
108 [&](const common::Indirection<parser::CallStmt> &x) {
109 addEvaluation(lower::pft::Evaluation{
110 removeIndirection(x), pftParentStack.back(),
111 stmt.position, stmt.label});
112 checkForFPEnvironmentCalls(x.value());
113 return true;
115 [&](const common::Indirection<parser::IfStmt> &x) {
116 convertIfStmt(x.value(), stmt.position, stmt.label);
117 return false;
119 [&](const auto &x) {
120 addEvaluation(lower::pft::Evaluation{
121 removeIndirection(x), pftParentStack.back(),
122 stmt.position, stmt.label});
123 return true;
126 stmt.unwrapped.u);
129 return true;
132 /// Check for calls that could modify the floating point environment.
133 /// See F18 Clauses
134 /// - 17.1p3 (Overview of IEEE arithmetic support)
135 /// - 17.3p3 (The exceptions)
136 /// - 17.4p5 (The rounding modes)
137 /// - 17.6p1 (Halting)
138 void checkForFPEnvironmentCalls(const parser::CallStmt &callStmt) {
139 const auto *callName = std::get_if<parser::Name>(
140 &std::get<parser::ProcedureDesignator>(callStmt.call.t).u);
141 if (!callName)
142 return;
143 const Fortran::semantics::Symbol &procSym = callName->symbol->GetUltimate();
144 if (!procSym.owner().IsModule())
145 return;
146 const Fortran::semantics::Symbol &modSym = *procSym.owner().symbol();
147 if (!modSym.attrs().test(Fortran::semantics::Attr::INTRINSIC))
148 return;
149 // Modules IEEE_FEATURES, IEEE_EXCEPTIONS, and IEEE_ARITHMETIC get common
150 // declarations from several __fortran_... support module files.
151 llvm::StringRef modName = toStringRef(modSym.name());
152 if (!modName.starts_with("ieee_") && !modName.starts_with("__fortran_"))
153 return;
154 llvm::StringRef procName = toStringRef(procSym.name());
155 if (!procName.starts_with("ieee_"))
156 return;
157 lower::pft::FunctionLikeUnit *proc =
158 evaluationListStack.back()->back().getOwningProcedure();
159 proc->hasIeeeAccess = true;
160 if (!procName.starts_with("ieee_set_"))
161 return;
162 if (procName.starts_with("ieee_set_modes_") ||
163 procName.starts_with("ieee_set_status_"))
164 proc->mayModifyHaltingMode = proc->mayModifyRoundingMode =
165 proc->mayModifyUnderflowMode = true;
166 else if (procName.starts_with("ieee_set_halting_mode_"))
167 proc->mayModifyHaltingMode = true;
168 else if (procName.starts_with("ieee_set_rounding_mode_"))
169 proc->mayModifyRoundingMode = true;
170 else if (procName.starts_with("ieee_set_underflow_mode_"))
171 proc->mayModifyUnderflowMode = true;
174 /// Convert an IfStmt into an IfConstruct, retaining the IfStmt as the
175 /// first statement of the construct.
176 void convertIfStmt(const parser::IfStmt &ifStmt, parser::CharBlock position,
177 std::optional<parser::Label> label) {
178 // Generate a skeleton IfConstruct parse node. Its components are never
179 // referenced. The actual components are available via the IfConstruct
180 // evaluation's nested evaluationList, with the ifStmt in the position of
181 // the otherwise normal IfThenStmt. Caution: All other PFT nodes reference
182 // front end generated parse nodes; this is an exceptional case.
183 static const auto ifConstruct = parser::IfConstruct{
184 parser::Statement<parser::IfThenStmt>{
185 std::nullopt,
186 parser::IfThenStmt{
187 std::optional<parser::Name>{},
188 parser::ScalarLogicalExpr{parser::LogicalExpr{parser::Expr{
189 parser::LiteralConstant{parser::LogicalLiteralConstant{
190 false, std::optional<parser::KindParam>{}}}}}}}},
191 parser::Block{}, std::list<parser::IfConstruct::ElseIfBlock>{},
192 std::optional<parser::IfConstruct::ElseBlock>{},
193 parser::Statement<parser::EndIfStmt>{std::nullopt,
194 parser::EndIfStmt{std::nullopt}}};
195 enterConstructOrDirective(ifConstruct);
196 addEvaluation(
197 lower::pft::Evaluation{ifStmt, pftParentStack.back(), position, label});
198 Pre(std::get<parser::UnlabeledStatement<parser::ActionStmt>>(ifStmt.t));
199 static const auto endIfStmt = parser::EndIfStmt{std::nullopt};
200 addEvaluation(
201 lower::pft::Evaluation{endIfStmt, pftParentStack.back(), {}, {}});
202 exitConstructOrDirective();
205 template <typename A>
206 constexpr void Post(const A &) {
207 if constexpr (lower::pft::isFunctionLike<A>) {
208 exitFunction();
209 } else if constexpr (lower::pft::isConstruct<A> ||
210 lower::pft::isDirective<A>) {
211 exitConstructOrDirective();
215 bool Pre(const parser::SpecificationPart &) {
216 ++specificationPartLevel;
217 return true;
219 void Post(const parser::SpecificationPart &) { --specificationPartLevel; }
221 bool Pre(const parser::ContainsStmt &) {
222 if (!specificationPartLevel) {
223 assert(containsStmtStack.size() && "empty contains stack");
224 containsStmtStack.back() = true;
226 return false;
229 // Module like
230 bool Pre(const parser::Module &node) { return enterModule(node); }
231 bool Pre(const parser::Submodule &node) { return enterModule(node); }
233 void Post(const parser::Module &) { exitModule(); }
234 void Post(const parser::Submodule &) { exitModule(); }
236 // Block data
237 bool Pre(const parser::BlockData &node) {
238 addUnit(lower::pft::BlockDataUnit{node, pftParentStack.back(),
239 semanticsContext});
240 return false;
243 // Get rid of production wrapper
244 bool Pre(const parser::Statement<parser::ForallAssignmentStmt> &statement) {
245 addEvaluation(Fortran::common::visit(
246 [&](const auto &x) {
247 return lower::pft::Evaluation{x, pftParentStack.back(),
248 statement.source, statement.label};
250 statement.statement.u));
251 return false;
253 bool Pre(const parser::WhereBodyConstruct &whereBody) {
254 return Fortran::common::visit(
255 common::visitors{
256 [&](const parser::Statement<parser::AssignmentStmt> &stmt) {
257 // Not caught as other AssignmentStmt because it is not
258 // wrapped in a parser::ActionStmt.
259 addEvaluation(lower::pft::Evaluation{stmt.statement,
260 pftParentStack.back(),
261 stmt.source, stmt.label});
262 return false;
264 [&](const auto &) { return true; },
266 whereBody.u);
269 // A CompilerDirective may appear outside any program unit, after a module
270 // or function contains statement, or inside a module or function.
271 bool Pre(const parser::CompilerDirective &directive) {
272 assert(pftParentStack.size() > 0 && "no program");
273 lower::pft::PftNode &node = pftParentStack.back();
274 if (node.isA<lower::pft::Program>()) {
275 addUnit(lower::pft::CompilerDirectiveUnit(directive, node));
276 return false;
277 } else if ((node.isA<lower::pft::ModuleLikeUnit>() ||
278 node.isA<lower::pft::FunctionLikeUnit>())) {
279 assert(containsStmtStack.size() && "empty contains stack");
280 if (containsStmtStack.back()) {
281 addContainedUnit(lower::pft::CompilerDirectiveUnit{directive, node});
282 return false;
285 return enterConstructOrDirective(directive);
288 bool Pre(const parser::OpenACCRoutineConstruct &directive) {
289 assert(pftParentStack.size() > 0 &&
290 "At least the Program must be a parent");
291 if (pftParentStack.back().isA<lower::pft::Program>()) {
292 addUnit(
293 lower::pft::OpenACCDirectiveUnit(directive, pftParentStack.back()));
294 return false;
296 return enterConstructOrDirective(directive);
299 private:
300 /// Initialize a new module-like unit and make it the builder's focus.
301 template <typename A>
302 bool enterModule(const A &mod) {
303 lower::pft::ModuleLikeUnit &unit =
304 addUnit(lower::pft::ModuleLikeUnit{mod, pftParentStack.back()});
305 containsStmtStack.push_back(false);
306 containedUnitList = &unit.containedUnitList;
307 pushEvaluationList(&unit.evaluationList);
308 pftParentStack.emplace_back(unit);
309 LLVM_DEBUG(dumpScope(&unit.getScope()));
310 return true;
313 void exitModule() {
314 containsStmtStack.pop_back();
315 if (!evaluationListStack.empty())
316 popEvaluationList();
317 pftParentStack.pop_back();
318 resetFunctionState();
321 /// Add the end statement Evaluation of a sub/program to the PFT.
322 /// There may be intervening internal subprogram definitions between
323 /// prior statements and this end statement.
324 void endFunctionBody() {
325 if (evaluationListStack.empty())
326 return;
327 auto evaluationList = evaluationListStack.back();
328 if (evaluationList->empty() || !evaluationList->back().isEndStmt()) {
329 const auto &endStmt =
330 pftParentStack.back().get<lower::pft::FunctionLikeUnit>().endStmt;
331 endStmt.visit(common::visitors{
332 [&](const parser::Statement<parser::EndProgramStmt> &s) {
333 addEvaluation(lower::pft::Evaluation{
334 s.statement, pftParentStack.back(), s.source, s.label});
336 [&](const parser::Statement<parser::EndFunctionStmt> &s) {
337 addEvaluation(lower::pft::Evaluation{
338 s.statement, pftParentStack.back(), s.source, s.label});
340 [&](const parser::Statement<parser::EndSubroutineStmt> &s) {
341 addEvaluation(lower::pft::Evaluation{
342 s.statement, pftParentStack.back(), s.source, s.label});
344 [&](const parser::Statement<parser::EndMpSubprogramStmt> &s) {
345 addEvaluation(lower::pft::Evaluation{
346 s.statement, pftParentStack.back(), s.source, s.label});
348 [&](const auto &s) {
349 llvm::report_fatal_error("missing end statement or unexpected "
350 "begin statement reference");
354 lastLexicalEvaluation = nullptr;
357 /// Pop the ModuleLikeUnit evaluationList when entering the first module
358 /// procedure.
359 void cleanModuleEvaluationList() {
360 if (evaluationListStack.empty())
361 return;
362 if (pftParentStack.back().isA<lower::pft::ModuleLikeUnit>())
363 popEvaluationList();
366 /// Initialize a new function-like unit and make it the builder's focus.
367 template <typename A>
368 bool enterFunction(const A &func,
369 const semantics::SemanticsContext &semanticsContext) {
370 cleanModuleEvaluationList();
371 endFunctionBody(); // enclosing host subprogram body, if any
372 lower::pft::FunctionLikeUnit &unit =
373 addContainedUnit(lower::pft::FunctionLikeUnit{
374 func, pftParentStack.back(), semanticsContext});
375 labelEvaluationMap = &unit.labelEvaluationMap;
376 assignSymbolLabelMap = &unit.assignSymbolLabelMap;
377 containsStmtStack.push_back(false);
378 containedUnitList = &unit.containedUnitList;
379 pushEvaluationList(&unit.evaluationList);
380 pftParentStack.emplace_back(unit);
381 LLVM_DEBUG(dumpScope(&unit.getScope()));
382 return true;
385 void exitFunction() {
386 rewriteIfGotos();
387 endFunctionBody();
388 analyzeBranches(nullptr, *evaluationListStack.back()); // add branch links
389 processEntryPoints();
390 containsStmtStack.pop_back();
391 popEvaluationList();
392 labelEvaluationMap = nullptr;
393 assignSymbolLabelMap = nullptr;
394 pftParentStack.pop_back();
395 resetFunctionState();
398 /// Initialize a new construct or directive and make it the builder's focus.
399 template <typename A>
400 bool enterConstructOrDirective(const A &constructOrDirective) {
401 lower::pft::Evaluation &eval = addEvaluation(
402 lower::pft::Evaluation{constructOrDirective, pftParentStack.back()});
403 eval.evaluationList.reset(new lower::pft::EvaluationList);
404 pushEvaluationList(eval.evaluationList.get());
405 pftParentStack.emplace_back(eval);
406 constructAndDirectiveStack.emplace_back(&eval);
407 return true;
410 void exitConstructOrDirective() {
411 auto isOpenMPLoopConstruct = [](lower::pft::Evaluation *eval) {
412 if (const auto *ompConstruct = eval->getIf<parser::OpenMPConstruct>())
413 if (std::holds_alternative<parser::OpenMPLoopConstruct>(
414 ompConstruct->u))
415 return true;
416 return false;
419 rewriteIfGotos();
420 auto *eval = constructAndDirectiveStack.back();
421 if (eval->isExecutableDirective() && !isOpenMPLoopConstruct(eval)) {
422 // A construct at the end of an (unstructured) OpenACC or OpenMP
423 // construct region must have an exit target inside the region.
424 // This is not applicable to the OpenMP loop construct since the
425 // end of the loop is an available target inside the region.
426 lower::pft::EvaluationList &evaluationList = *eval->evaluationList;
427 if (!evaluationList.empty() && evaluationList.back().isConstruct()) {
428 static const parser::ContinueStmt exitTarget{};
429 addEvaluation(
430 lower::pft::Evaluation{exitTarget, pftParentStack.back(), {}, {}});
433 popEvaluationList();
434 pftParentStack.pop_back();
435 constructAndDirectiveStack.pop_back();
438 /// Reset function state to that of an enclosing host function.
439 void resetFunctionState() {
440 if (!pftParentStack.empty()) {
441 pftParentStack.back().visit(common::visitors{
442 [&](lower::pft::ModuleLikeUnit &p) {
443 containedUnitList = &p.containedUnitList;
445 [&](lower::pft::FunctionLikeUnit &p) {
446 containedUnitList = &p.containedUnitList;
447 labelEvaluationMap = &p.labelEvaluationMap;
448 assignSymbolLabelMap = &p.assignSymbolLabelMap;
450 [&](auto &) { containedUnitList = nullptr; },
455 template <typename A>
456 A &addUnit(A &&unit) {
457 pgm->getUnits().emplace_back(std::move(unit));
458 return std::get<A>(pgm->getUnits().back());
461 template <typename A>
462 A &addContainedUnit(A &&unit) {
463 if (!containedUnitList)
464 return addUnit(std::move(unit));
465 containedUnitList->emplace_back(std::move(unit));
466 return std::get<A>(containedUnitList->back());
469 // ActionStmt has a couple of non-conforming cases, explicitly handled here.
470 // The other cases use an Indirection, which are discarded in the PFT.
471 lower::pft::Evaluation
472 makeEvaluationAction(const parser::ActionStmt &statement,
473 parser::CharBlock position,
474 std::optional<parser::Label> label) {
475 return Fortran::common::visit(
476 common::visitors{
477 [&](const auto &x) {
478 return lower::pft::Evaluation{
479 removeIndirection(x), pftParentStack.back(), position, label};
482 statement.u);
485 /// Append an Evaluation to the end of the current list.
486 lower::pft::Evaluation &addEvaluation(lower::pft::Evaluation &&eval) {
487 assert(!evaluationListStack.empty() && "empty evaluation list stack");
488 if (!constructAndDirectiveStack.empty())
489 eval.parentConstruct = constructAndDirectiveStack.back();
490 lower::pft::FunctionLikeUnit *owningProcedure = eval.getOwningProcedure();
491 evaluationListStack.back()->emplace_back(std::move(eval));
492 lower::pft::Evaluation *p = &evaluationListStack.back()->back();
493 if (p->isActionStmt() || p->isConstructStmt() || p->isEndStmt() ||
494 p->isExecutableDirective()) {
495 if (lastLexicalEvaluation) {
496 lastLexicalEvaluation->lexicalSuccessor = p;
497 p->printIndex = lastLexicalEvaluation->printIndex + 1;
498 } else {
499 p->printIndex = 1;
501 lastLexicalEvaluation = p;
502 if (owningProcedure) {
503 auto &entryPointList = owningProcedure->entryPointList;
504 for (std::size_t entryIndex = entryPointList.size() - 1;
505 entryIndex && !entryPointList[entryIndex].second->lexicalSuccessor;
506 --entryIndex)
507 // Link to the entry's first executable statement.
508 entryPointList[entryIndex].second->lexicalSuccessor = p;
510 } else if (const auto *entryStmt = p->getIf<parser::EntryStmt>()) {
511 const semantics::Symbol *sym =
512 std::get<parser::Name>(entryStmt->t).symbol;
513 if (auto *details = sym->detailsIf<semantics::GenericDetails>())
514 sym = details->specific();
515 assert(sym->has<semantics::SubprogramDetails>() &&
516 "entry must be a subprogram");
517 owningProcedure->entryPointList.push_back(std::pair{sym, p});
519 if (p->label.has_value())
520 labelEvaluationMap->try_emplace(*p->label, p);
521 return evaluationListStack.back()->back();
524 /// push a new list on the stack of Evaluation lists
525 void pushEvaluationList(lower::pft::EvaluationList *evaluationList) {
526 assert(evaluationList && evaluationList->empty() &&
527 "invalid evaluation list");
528 evaluationListStack.emplace_back(evaluationList);
531 /// pop the current list and return to the last Evaluation list
532 void popEvaluationList() {
533 assert(!evaluationListStack.empty() &&
534 "trying to pop an empty evaluationListStack");
535 evaluationListStack.pop_back();
538 /// Rewrite IfConstructs containing a GotoStmt or CycleStmt to eliminate an
539 /// unstructured branch and a trivial basic block. The pre-branch-analysis
540 /// code:
542 /// <<IfConstruct>>
543 /// 1 If[Then]Stmt: if(cond) goto L
544 /// 2 GotoStmt: goto L
545 /// 3 EndIfStmt
546 /// <<End IfConstruct>>
547 /// 4 Statement: ...
548 /// 5 Statement: ...
549 /// 6 Statement: L ...
551 /// becomes:
553 /// <<IfConstruct>>
554 /// 1 If[Then]Stmt [negate]: if(cond) goto L
555 /// 4 Statement: ...
556 /// 5 Statement: ...
557 /// 3 EndIfStmt
558 /// <<End IfConstruct>>
559 /// 6 Statement: L ...
561 /// The If[Then]Stmt condition is implicitly negated. It is not modified
562 /// in the PFT. It must be negated when generating FIR. The GotoStmt or
563 /// CycleStmt is deleted.
565 /// The transformation is only valid for forward branch targets at the same
566 /// construct nesting level as the IfConstruct. The result must not violate
567 /// construct nesting requirements or contain an EntryStmt. The result
568 /// is subject to normal un/structured code classification analysis. Except
569 /// for a branch to the EndIfStmt, the result is allowed to violate the F18
570 /// Clause 11.1.2.1 prohibition on transfer of control into the interior of
571 /// a construct block, as that does not compromise correct code generation.
572 /// When two transformation candidates overlap, at least one must be
573 /// disallowed. In such cases, the current heuristic favors simple code
574 /// generation, which happens to favor later candidates over earlier
575 /// candidates. That choice is probably not significant, but could be
576 /// changed.
577 void rewriteIfGotos() {
578 auto &evaluationList = *evaluationListStack.back();
579 if (!evaluationList.size())
580 return;
581 struct T {
582 lower::pft::EvaluationList::iterator ifConstructIt;
583 parser::Label ifTargetLabel;
584 bool isCycleStmt = false;
586 llvm::SmallVector<T> ifCandidateStack;
587 const auto *doStmt =
588 evaluationList.begin()->getIf<parser::NonLabelDoStmt>();
589 std::string doName = doStmt ? getConstructName(*doStmt) : std::string{};
590 for (auto it = evaluationList.begin(), end = evaluationList.end();
591 it != end; ++it) {
592 auto &eval = *it;
593 if (eval.isA<parser::EntryStmt>() || eval.isIntermediateConstructStmt()) {
594 ifCandidateStack.clear();
595 continue;
597 auto firstStmt = [](lower::pft::Evaluation *e) {
598 return e->isConstruct() ? &*e->evaluationList->begin() : e;
600 const Fortran::lower::pft::Evaluation &targetEval = *firstStmt(&eval);
601 bool targetEvalIsEndDoStmt = targetEval.isA<parser::EndDoStmt>();
602 auto branchTargetMatch = [&]() {
603 if (const parser::Label targetLabel =
604 ifCandidateStack.back().ifTargetLabel)
605 if (targetEval.label && targetLabel == *targetEval.label)
606 return true; // goto target match
607 if (targetEvalIsEndDoStmt && ifCandidateStack.back().isCycleStmt)
608 return true; // cycle target match
609 return false;
611 if (targetEval.label || targetEvalIsEndDoStmt) {
612 while (!ifCandidateStack.empty() && branchTargetMatch()) {
613 lower::pft::EvaluationList::iterator ifConstructIt =
614 ifCandidateStack.back().ifConstructIt;
615 lower::pft::EvaluationList::iterator successorIt =
616 std::next(ifConstructIt);
617 if (successorIt != it) {
618 Fortran::lower::pft::EvaluationList &ifBodyList =
619 *ifConstructIt->evaluationList;
620 lower::pft::EvaluationList::iterator branchStmtIt =
621 std::next(ifBodyList.begin());
622 assert((branchStmtIt->isA<parser::GotoStmt>() ||
623 branchStmtIt->isA<parser::CycleStmt>()) &&
624 "expected goto or cycle statement");
625 ifBodyList.erase(branchStmtIt);
626 lower::pft::Evaluation &ifStmt = *ifBodyList.begin();
627 ifStmt.negateCondition = true;
628 ifStmt.lexicalSuccessor = firstStmt(&*successorIt);
629 lower::pft::EvaluationList::iterator endIfStmtIt =
630 std::prev(ifBodyList.end());
631 std::prev(it)->lexicalSuccessor = &*endIfStmtIt;
632 endIfStmtIt->lexicalSuccessor = firstStmt(&*it);
633 ifBodyList.splice(endIfStmtIt, evaluationList, successorIt, it);
634 for (; successorIt != endIfStmtIt; ++successorIt)
635 successorIt->parentConstruct = &*ifConstructIt;
637 ifCandidateStack.pop_back();
640 if (eval.isA<parser::IfConstruct>() && eval.evaluationList->size() == 3) {
641 const auto bodyEval = std::next(eval.evaluationList->begin());
642 if (const auto *gotoStmt = bodyEval->getIf<parser::GotoStmt>()) {
643 if (!bodyEval->lexicalSuccessor->label)
644 ifCandidateStack.push_back({it, gotoStmt->v});
645 } else if (doStmt) {
646 if (const auto *cycleStmt = bodyEval->getIf<parser::CycleStmt>()) {
647 std::string cycleName = getConstructName(*cycleStmt);
648 if (cycleName.empty() || cycleName == doName)
649 // This candidate will match doStmt's EndDoStmt.
650 ifCandidateStack.push_back({it, {}, true});
657 /// Mark IO statement ERR, EOR, and END specifier branch targets.
658 /// Mark an IO statement with an assigned format as unstructured.
659 template <typename A>
660 void analyzeIoBranches(lower::pft::Evaluation &eval, const A &stmt) {
661 auto analyzeFormatSpec = [&](const parser::Format &format) {
662 if (const auto *expr = std::get_if<parser::Expr>(&format.u)) {
663 if (semantics::ExprHasTypeCategory(*semantics::GetExpr(*expr),
664 common::TypeCategory::Integer))
665 eval.isUnstructured = true;
668 auto analyzeSpecs{[&](const auto &specList) {
669 for (const auto &spec : specList) {
670 Fortran::common::visit(
671 Fortran::common::visitors{
672 [&](const Fortran::parser::Format &format) {
673 analyzeFormatSpec(format);
675 [&](const auto &label) {
676 using LabelNodes =
677 std::tuple<parser::ErrLabel, parser::EorLabel,
678 parser::EndLabel>;
679 if constexpr (common::HasMember<decltype(label), LabelNodes>)
680 markBranchTarget(eval, label.v);
682 spec.u);
686 using OtherIOStmts =
687 std::tuple<parser::BackspaceStmt, parser::CloseStmt,
688 parser::EndfileStmt, parser::FlushStmt, parser::OpenStmt,
689 parser::RewindStmt, parser::WaitStmt>;
691 if constexpr (std::is_same_v<A, parser::ReadStmt> ||
692 std::is_same_v<A, parser::WriteStmt>) {
693 if (stmt.format)
694 analyzeFormatSpec(*stmt.format);
695 analyzeSpecs(stmt.controls);
696 } else if constexpr (std::is_same_v<A, parser::PrintStmt>) {
697 analyzeFormatSpec(std::get<parser::Format>(stmt.t));
698 } else if constexpr (std::is_same_v<A, parser::InquireStmt>) {
699 if (const auto *specList =
700 std::get_if<std::list<parser::InquireSpec>>(&stmt.u))
701 analyzeSpecs(*specList);
702 } else if constexpr (common::HasMember<A, OtherIOStmts>) {
703 analyzeSpecs(stmt.v);
704 } else {
705 // Always crash if this is instantiated
706 static_assert(!std::is_same_v<A, parser::ReadStmt>,
707 "Unexpected IO statement");
711 /// Set the exit of a construct, possibly from multiple enclosing constructs.
712 void setConstructExit(lower::pft::Evaluation &eval) {
713 eval.constructExit = &eval.evaluationList->back().nonNopSuccessor();
716 /// Mark the target of a branch as a new block.
717 void markBranchTarget(lower::pft::Evaluation &sourceEvaluation,
718 lower::pft::Evaluation &targetEvaluation) {
719 sourceEvaluation.isUnstructured = true;
720 if (!sourceEvaluation.controlSuccessor)
721 sourceEvaluation.controlSuccessor = &targetEvaluation;
722 targetEvaluation.isNewBlock = true;
723 // If this is a branch into the body of a construct (usually illegal,
724 // but allowed in some legacy cases), then the targetEvaluation and its
725 // ancestors must be marked as unstructured.
726 lower::pft::Evaluation *sourceConstruct = sourceEvaluation.parentConstruct;
727 lower::pft::Evaluation *targetConstruct = targetEvaluation.parentConstruct;
728 if (targetConstruct &&
729 &targetConstruct->getFirstNestedEvaluation() == &targetEvaluation)
730 // A branch to an initial constructStmt is a branch to the construct.
731 targetConstruct = targetConstruct->parentConstruct;
732 if (targetConstruct) {
733 while (sourceConstruct && sourceConstruct != targetConstruct)
734 sourceConstruct = sourceConstruct->parentConstruct;
735 if (sourceConstruct != targetConstruct) // branch into a construct body
736 for (lower::pft::Evaluation *eval = &targetEvaluation; eval;
737 eval = eval->parentConstruct) {
738 eval->isUnstructured = true;
739 // If the branch is a backward branch into an already analyzed
740 // DO or IF construct, mark the construct exit as a new block.
741 // For a forward branch, the isUnstructured flag will cause this
742 // to be done when the construct is analyzed.
743 if (eval->constructExit && (eval->isA<parser::DoConstruct>() ||
744 eval->isA<parser::IfConstruct>()))
745 eval->constructExit->isNewBlock = true;
749 void markBranchTarget(lower::pft::Evaluation &sourceEvaluation,
750 parser::Label label) {
751 assert(label && "missing branch target label");
752 lower::pft::Evaluation *targetEvaluation{
753 labelEvaluationMap->find(label)->second};
754 assert(targetEvaluation && "missing branch target evaluation");
755 markBranchTarget(sourceEvaluation, *targetEvaluation);
758 /// Mark the successor of an Evaluation as a new block.
759 void markSuccessorAsNewBlock(lower::pft::Evaluation &eval) {
760 eval.nonNopSuccessor().isNewBlock = true;
763 template <typename A>
764 inline std::string getConstructName(const A &stmt) {
765 using MaybeConstructNameWrapper =
766 std::tuple<parser::BlockStmt, parser::CycleStmt, parser::ElseStmt,
767 parser::ElsewhereStmt, parser::EndAssociateStmt,
768 parser::EndBlockStmt, parser::EndCriticalStmt,
769 parser::EndDoStmt, parser::EndForallStmt, parser::EndIfStmt,
770 parser::EndSelectStmt, parser::EndWhereStmt,
771 parser::ExitStmt>;
772 if constexpr (common::HasMember<A, MaybeConstructNameWrapper>) {
773 if (stmt.v)
774 return stmt.v->ToString();
777 using MaybeConstructNameInTuple = std::tuple<
778 parser::AssociateStmt, parser::CaseStmt, parser::ChangeTeamStmt,
779 parser::CriticalStmt, parser::ElseIfStmt, parser::EndChangeTeamStmt,
780 parser::ForallConstructStmt, parser::IfThenStmt, parser::LabelDoStmt,
781 parser::MaskedElsewhereStmt, parser::NonLabelDoStmt,
782 parser::SelectCaseStmt, parser::SelectRankCaseStmt,
783 parser::TypeGuardStmt, parser::WhereConstructStmt>;
784 if constexpr (common::HasMember<A, MaybeConstructNameInTuple>) {
785 if (auto name = std::get<std::optional<parser::Name>>(stmt.t))
786 return name->ToString();
789 // These statements have multiple std::optional<parser::Name> elements.
790 if constexpr (std::is_same_v<A, parser::SelectRankStmt> ||
791 std::is_same_v<A, parser::SelectTypeStmt>) {
792 if (auto name = std::get<0>(stmt.t))
793 return name->ToString();
796 return {};
799 /// \p parentConstruct can be null if this statement is at the highest
800 /// level of a program.
801 template <typename A>
802 void insertConstructName(const A &stmt,
803 lower::pft::Evaluation *parentConstruct) {
804 std::string name = getConstructName(stmt);
805 if (!name.empty())
806 constructNameMap[name] = parentConstruct;
809 /// Insert branch links for a list of Evaluations.
810 /// \p parentConstruct can be null if the evaluationList contains the
811 /// top-level statements of a program.
812 void analyzeBranches(lower::pft::Evaluation *parentConstruct,
813 std::list<lower::pft::Evaluation> &evaluationList) {
814 lower::pft::Evaluation *lastConstructStmtEvaluation{};
815 for (auto &eval : evaluationList) {
816 eval.visit(common::visitors{
817 // Action statements (except IO statements)
818 [&](const parser::CallStmt &s) {
819 // Look for alternate return specifiers.
820 const auto &args =
821 std::get<std::list<parser::ActualArgSpec>>(s.call.t);
822 for (const auto &arg : args) {
823 const auto &actual = std::get<parser::ActualArg>(arg.t);
824 if (const auto *altReturn =
825 std::get_if<parser::AltReturnSpec>(&actual.u))
826 markBranchTarget(eval, altReturn->v);
829 [&](const parser::CycleStmt &s) {
830 std::string name = getConstructName(s);
831 lower::pft::Evaluation *construct{name.empty()
832 ? doConstructStack.back()
833 : constructNameMap[name]};
834 assert(construct && "missing CYCLE construct");
835 markBranchTarget(eval, construct->evaluationList->back());
837 [&](const parser::ExitStmt &s) {
838 std::string name = getConstructName(s);
839 lower::pft::Evaluation *construct{name.empty()
840 ? doConstructStack.back()
841 : constructNameMap[name]};
842 assert(construct && "missing EXIT construct");
843 markBranchTarget(eval, *construct->constructExit);
845 [&](const parser::FailImageStmt &) {
846 eval.isUnstructured = true;
847 if (eval.lexicalSuccessor->lexicalSuccessor)
848 markSuccessorAsNewBlock(eval);
850 [&](const parser::GotoStmt &s) { markBranchTarget(eval, s.v); },
851 [&](const parser::IfStmt &) {
852 eval.lexicalSuccessor->isNewBlock = true;
853 lastConstructStmtEvaluation = &eval;
855 [&](const parser::ReturnStmt &) {
856 eval.isUnstructured = true;
857 if (eval.lexicalSuccessor->lexicalSuccessor)
858 markSuccessorAsNewBlock(eval);
860 [&](const parser::StopStmt &) {
861 eval.isUnstructured = true;
862 if (eval.lexicalSuccessor->lexicalSuccessor)
863 markSuccessorAsNewBlock(eval);
865 [&](const parser::ComputedGotoStmt &s) {
866 for (auto &label : std::get<std::list<parser::Label>>(s.t))
867 markBranchTarget(eval, label);
869 [&](const parser::ArithmeticIfStmt &s) {
870 markBranchTarget(eval, std::get<1>(s.t));
871 markBranchTarget(eval, std::get<2>(s.t));
872 markBranchTarget(eval, std::get<3>(s.t));
874 [&](const parser::AssignStmt &s) { // legacy label assignment
875 auto &label = std::get<parser::Label>(s.t);
876 const auto *sym = std::get<parser::Name>(s.t).symbol;
877 assert(sym && "missing AssignStmt symbol");
878 lower::pft::Evaluation *target{
879 labelEvaluationMap->find(label)->second};
880 assert(target && "missing branch target evaluation");
881 if (!target->isA<parser::FormatStmt>())
882 target->isNewBlock = true;
883 auto iter = assignSymbolLabelMap->find(*sym);
884 if (iter == assignSymbolLabelMap->end()) {
885 lower::pft::LabelSet labelSet{};
886 labelSet.insert(label);
887 assignSymbolLabelMap->try_emplace(*sym, labelSet);
888 } else {
889 iter->second.insert(label);
892 [&](const parser::AssignedGotoStmt &) {
893 // Although this statement is a branch, it doesn't have any
894 // explicit control successors. So the code at the end of the
895 // loop won't mark the successor. Do that here.
896 eval.isUnstructured = true;
897 markSuccessorAsNewBlock(eval);
900 // The first executable statement after an EntryStmt is a new block.
901 [&](const parser::EntryStmt &) {
902 eval.lexicalSuccessor->isNewBlock = true;
905 // Construct statements
906 [&](const parser::AssociateStmt &s) {
907 insertConstructName(s, parentConstruct);
909 [&](const parser::BlockStmt &s) {
910 insertConstructName(s, parentConstruct);
912 [&](const parser::SelectCaseStmt &s) {
913 insertConstructName(s, parentConstruct);
914 lastConstructStmtEvaluation = &eval;
916 [&](const parser::CaseStmt &) {
917 eval.isNewBlock = true;
918 lastConstructStmtEvaluation->controlSuccessor = &eval;
919 lastConstructStmtEvaluation = &eval;
921 [&](const parser::EndSelectStmt &) {
922 eval.isNewBlock = true;
923 lastConstructStmtEvaluation = nullptr;
925 [&](const parser::ChangeTeamStmt &s) {
926 insertConstructName(s, parentConstruct);
928 [&](const parser::CriticalStmt &s) {
929 insertConstructName(s, parentConstruct);
931 [&](const parser::NonLabelDoStmt &s) {
932 insertConstructName(s, parentConstruct);
933 doConstructStack.push_back(parentConstruct);
934 const auto &loopControl =
935 std::get<std::optional<parser::LoopControl>>(s.t);
936 if (!loopControl.has_value()) {
937 eval.isUnstructured = true; // infinite loop
938 return;
940 eval.nonNopSuccessor().isNewBlock = true;
941 eval.controlSuccessor = &evaluationList.back();
942 if (const auto *bounds =
943 std::get_if<parser::LoopControl::Bounds>(&loopControl->u)) {
944 if (bounds->name.thing.symbol->GetType()->IsNumeric(
945 common::TypeCategory::Real))
946 eval.isUnstructured = true; // real-valued loop control
947 } else if (std::get_if<parser::ScalarLogicalExpr>(
948 &loopControl->u)) {
949 eval.isUnstructured = true; // while loop
952 [&](const parser::EndDoStmt &) {
953 lower::pft::Evaluation &doEval = evaluationList.front();
954 eval.controlSuccessor = &doEval;
955 doConstructStack.pop_back();
956 if (parentConstruct->lowerAsStructured())
957 return;
958 // The loop is unstructured, which wasn't known for all cases when
959 // visiting the NonLabelDoStmt.
960 parentConstruct->constructExit->isNewBlock = true;
961 const auto &doStmt = *doEval.getIf<parser::NonLabelDoStmt>();
962 const auto &loopControl =
963 std::get<std::optional<parser::LoopControl>>(doStmt.t);
964 if (!loopControl.has_value())
965 return; // infinite loop
966 if (const auto *concurrent =
967 std::get_if<parser::LoopControl::Concurrent>(
968 &loopControl->u)) {
969 // If there is a mask, the EndDoStmt starts a new block.
970 const auto &header =
971 std::get<parser::ConcurrentHeader>(concurrent->t);
972 eval.isNewBlock |=
973 std::get<std::optional<parser::ScalarLogicalExpr>>(header.t)
974 .has_value();
977 [&](const parser::IfThenStmt &s) {
978 insertConstructName(s, parentConstruct);
979 eval.lexicalSuccessor->isNewBlock = true;
980 lastConstructStmtEvaluation = &eval;
982 [&](const parser::ElseIfStmt &) {
983 eval.isNewBlock = true;
984 eval.lexicalSuccessor->isNewBlock = true;
985 lastConstructStmtEvaluation->controlSuccessor = &eval;
986 lastConstructStmtEvaluation = &eval;
988 [&](const parser::ElseStmt &) {
989 eval.isNewBlock = true;
990 lastConstructStmtEvaluation->controlSuccessor = &eval;
991 lastConstructStmtEvaluation = nullptr;
993 [&](const parser::EndIfStmt &) {
994 if (parentConstruct->lowerAsUnstructured())
995 parentConstruct->constructExit->isNewBlock = true;
996 if (lastConstructStmtEvaluation) {
997 lastConstructStmtEvaluation->controlSuccessor =
998 parentConstruct->constructExit;
999 lastConstructStmtEvaluation = nullptr;
1002 [&](const parser::SelectRankStmt &s) {
1003 insertConstructName(s, parentConstruct);
1004 lastConstructStmtEvaluation = &eval;
1006 [&](const parser::SelectRankCaseStmt &) {
1007 eval.isNewBlock = true;
1008 lastConstructStmtEvaluation->controlSuccessor = &eval;
1009 lastConstructStmtEvaluation = &eval;
1011 [&](const parser::SelectTypeStmt &s) {
1012 insertConstructName(s, parentConstruct);
1013 lastConstructStmtEvaluation = &eval;
1015 [&](const parser::TypeGuardStmt &) {
1016 eval.isNewBlock = true;
1017 lastConstructStmtEvaluation->controlSuccessor = &eval;
1018 lastConstructStmtEvaluation = &eval;
1021 // Constructs - set (unstructured) construct exit targets
1022 [&](const parser::AssociateConstruct &) {
1023 eval.constructExit = &eval.evaluationList->back();
1025 [&](const parser::BlockConstruct &) {
1026 eval.constructExit = &eval.evaluationList->back();
1028 [&](const parser::CaseConstruct &) {
1029 eval.constructExit = &eval.evaluationList->back();
1030 eval.isUnstructured = true;
1032 [&](const parser::ChangeTeamConstruct &) {
1033 eval.constructExit = &eval.evaluationList->back();
1035 [&](const parser::CriticalConstruct &) {
1036 eval.constructExit = &eval.evaluationList->back();
1038 [&](const parser::DoConstruct &) { setConstructExit(eval); },
1039 [&](const parser::ForallConstruct &) { setConstructExit(eval); },
1040 [&](const parser::IfConstruct &) { setConstructExit(eval); },
1041 [&](const parser::SelectRankConstruct &) {
1042 eval.constructExit = &eval.evaluationList->back();
1043 eval.isUnstructured = true;
1045 [&](const parser::SelectTypeConstruct &) {
1046 eval.constructExit = &eval.evaluationList->back();
1047 eval.isUnstructured = true;
1049 [&](const parser::WhereConstruct &) { setConstructExit(eval); },
1051 // Default - Common analysis for IO statements; otherwise nop.
1052 [&](const auto &stmt) {
1053 using A = std::decay_t<decltype(stmt)>;
1054 using IoStmts = std::tuple<
1055 parser::BackspaceStmt, parser::CloseStmt, parser::EndfileStmt,
1056 parser::FlushStmt, parser::InquireStmt, parser::OpenStmt,
1057 parser::PrintStmt, parser::ReadStmt, parser::RewindStmt,
1058 parser::WaitStmt, parser::WriteStmt>;
1059 if constexpr (common::HasMember<A, IoStmts>)
1060 analyzeIoBranches(eval, stmt);
1064 // Analyze construct evaluations.
1065 if (eval.evaluationList)
1066 analyzeBranches(&eval, *eval.evaluationList);
1068 // Propagate isUnstructured flag to enclosing construct.
1069 if (parentConstruct && eval.isUnstructured)
1070 parentConstruct->isUnstructured = true;
1072 // The successor of a branch starts a new block.
1073 if (eval.controlSuccessor && eval.isActionStmt() &&
1074 eval.lowerAsUnstructured())
1075 markSuccessorAsNewBlock(eval);
1079 /// Do processing specific to subprograms with multiple entry points.
1080 void processEntryPoints() {
1081 lower::pft::Evaluation *initialEval = &evaluationListStack.back()->front();
1082 lower::pft::FunctionLikeUnit *unit = initialEval->getOwningProcedure();
1083 int entryCount = unit->entryPointList.size();
1084 if (entryCount == 1)
1085 return;
1087 // The first executable statement in the subprogram is preceded by a
1088 // branch to the entry point, so it starts a new block.
1089 if (initialEval->hasNestedEvaluations())
1090 initialEval = &initialEval->getFirstNestedEvaluation();
1091 else if (initialEval->isA<Fortran::parser::EntryStmt>())
1092 initialEval = initialEval->lexicalSuccessor;
1093 initialEval->isNewBlock = true;
1095 // All function entry points share a single result container.
1096 // Find one of the largest results.
1097 for (int entryIndex = 0; entryIndex < entryCount; ++entryIndex) {
1098 unit->setActiveEntry(entryIndex);
1099 const auto &details =
1100 unit->getSubprogramSymbol().get<semantics::SubprogramDetails>();
1101 if (details.isFunction()) {
1102 const semantics::Symbol *resultSym = &details.result();
1103 assert(resultSym && "missing result symbol");
1104 if (!unit->primaryResult ||
1105 unit->primaryResult->size() < resultSym->size())
1106 unit->primaryResult = resultSym;
1109 unit->setActiveEntry(0);
1112 std::unique_ptr<lower::pft::Program> pgm;
1113 std::vector<lower::pft::PftNode> pftParentStack;
1114 const semantics::SemanticsContext &semanticsContext;
1116 llvm::SmallVector<bool> containsStmtStack{};
1117 lower::pft::ContainedUnitList *containedUnitList{};
1118 std::vector<lower::pft::Evaluation *> constructAndDirectiveStack{};
1119 std::vector<lower::pft::Evaluation *> doConstructStack{};
1120 /// evaluationListStack is the current nested construct evaluationList state.
1121 std::vector<lower::pft::EvaluationList *> evaluationListStack{};
1122 llvm::DenseMap<parser::Label, lower::pft::Evaluation *> *labelEvaluationMap{};
1123 lower::pft::SymbolLabelMap *assignSymbolLabelMap{};
1124 std::map<std::string, lower::pft::Evaluation *> constructNameMap{};
1125 int specificationPartLevel{};
1126 lower::pft::Evaluation *lastLexicalEvaluation{};
1129 #ifndef NDEBUG
1130 /// Dump all program scopes and symbols with addresses to disambiguate names.
1131 /// This is static, unchanging front end information, so dump it only once.
1132 void dumpScope(const semantics::Scope *scope, int depth) {
1133 static int initialVisitCounter = 0;
1134 if (depth < 0) {
1135 if (++initialVisitCounter != 1)
1136 return;
1137 while (!scope->IsGlobal())
1138 scope = &scope->parent();
1139 LLVM_DEBUG(llvm::dbgs() << "Full program scope information.\n"
1140 "Addresses in angle brackets are scopes. "
1141 "Unbracketed addresses are symbols.\n");
1143 static const std::string white{" ++"};
1144 std::string w = white.substr(0, depth * 2);
1145 if (depth >= 0) {
1146 LLVM_DEBUG(llvm::dbgs() << w << "<" << scope << "> ");
1147 if (auto *sym{scope->symbol()}) {
1148 LLVM_DEBUG(llvm::dbgs() << sym << " " << *sym << "\n");
1149 } else {
1150 if (scope->IsIntrinsicModules()) {
1151 LLVM_DEBUG(llvm::dbgs() << "IntrinsicModules (no detail)\n");
1152 return;
1154 if (scope->kind() == Fortran::semantics::Scope::Kind::BlockConstruct)
1155 LLVM_DEBUG(llvm::dbgs() << "[block]\n");
1156 else
1157 LLVM_DEBUG(llvm::dbgs() << "[anonymous]\n");
1160 for (const auto &scp : scope->children())
1161 if (!scp.symbol())
1162 dumpScope(&scp, depth + 1);
1163 for (auto iter = scope->begin(); iter != scope->end(); ++iter) {
1164 common::Reference<semantics::Symbol> sym = iter->second;
1165 if (auto scp = sym->scope())
1166 dumpScope(scp, depth + 1);
1167 else
1168 LLVM_DEBUG(llvm::dbgs() << w + " " << &*sym << " " << *sym << "\n");
1171 #endif // NDEBUG
1173 class PFTDumper {
1174 public:
1175 void dumpPFT(llvm::raw_ostream &outputStream,
1176 const lower::pft::Program &pft) {
1177 for (auto &unit : pft.getUnits()) {
1178 Fortran::common::visit(
1179 common::visitors{
1180 [&](const lower::pft::BlockDataUnit &unit) {
1181 outputStream << getNodeIndex(unit) << " ";
1182 outputStream << "BlockData: ";
1183 outputStream << "\nEnd BlockData\n\n";
1185 [&](const lower::pft::FunctionLikeUnit &func) {
1186 dumpFunctionLikeUnit(outputStream, func);
1188 [&](const lower::pft::ModuleLikeUnit &unit) {
1189 dumpModuleLikeUnit(outputStream, unit);
1191 [&](const lower::pft::CompilerDirectiveUnit &unit) {
1192 dumpCompilerDirectiveUnit(outputStream, unit);
1194 [&](const lower::pft::OpenACCDirectiveUnit &unit) {
1195 dumpOpenACCDirectiveUnit(outputStream, unit);
1198 unit);
1202 llvm::StringRef evaluationName(const lower::pft::Evaluation &eval) {
1203 return eval.visit([](const auto &parseTreeNode) {
1204 return parser::ParseTreeDumper::GetNodeName(parseTreeNode);
1208 void dumpEvaluation(llvm::raw_ostream &outputStream,
1209 const lower::pft::Evaluation &eval,
1210 const std::string &indentString, int indent = 1) {
1211 llvm::StringRef name = evaluationName(eval);
1212 llvm::StringRef newBlock = eval.isNewBlock ? "^" : "";
1213 llvm::StringRef bang = eval.isUnstructured ? "!" : "";
1214 outputStream << indentString;
1215 if (eval.printIndex)
1216 outputStream << eval.printIndex << ' ';
1217 if (eval.hasNestedEvaluations())
1218 outputStream << "<<" << newBlock << name << bang << ">>";
1219 else
1220 outputStream << newBlock << name << bang;
1221 if (eval.negateCondition)
1222 outputStream << " [negate]";
1223 if (eval.constructExit)
1224 outputStream << " -> " << eval.constructExit->printIndex;
1225 else if (eval.controlSuccessor)
1226 outputStream << " -> " << eval.controlSuccessor->printIndex;
1227 else if (eval.isA<parser::EntryStmt>() && eval.lexicalSuccessor)
1228 outputStream << " -> " << eval.lexicalSuccessor->printIndex;
1229 bool extraNewline = false;
1230 if (!eval.position.empty())
1231 outputStream << ": " << eval.position.ToString();
1232 else if (auto *dir = eval.getIf<parser::CompilerDirective>()) {
1233 extraNewline = dir->source.ToString().back() == '\n';
1234 outputStream << ": !" << dir->source.ToString();
1236 if (!extraNewline)
1237 outputStream << '\n';
1238 if (eval.hasNestedEvaluations()) {
1239 dumpEvaluationList(outputStream, *eval.evaluationList, indent + 1);
1240 outputStream << indentString << "<<End " << name << bang << ">>\n";
1244 void dumpEvaluation(llvm::raw_ostream &ostream,
1245 const lower::pft::Evaluation &eval) {
1246 dumpEvaluation(ostream, eval, "");
1249 void dumpEvaluationList(llvm::raw_ostream &outputStream,
1250 const lower::pft::EvaluationList &evaluationList,
1251 int indent = 1) {
1252 static const auto white = " ++"s;
1253 auto indentString = white.substr(0, indent * 2);
1254 for (const lower::pft::Evaluation &eval : evaluationList)
1255 dumpEvaluation(outputStream, eval, indentString, indent);
1258 void
1259 dumpFunctionLikeUnit(llvm::raw_ostream &outputStream,
1260 const lower::pft::FunctionLikeUnit &functionLikeUnit) {
1261 outputStream << getNodeIndex(functionLikeUnit) << " ";
1262 llvm::StringRef unitKind;
1263 llvm::StringRef name;
1264 llvm::StringRef header;
1265 if (functionLikeUnit.beginStmt) {
1266 functionLikeUnit.beginStmt->visit(common::visitors{
1267 [&](const parser::Statement<parser::ProgramStmt> &stmt) {
1268 unitKind = "Program";
1269 name = toStringRef(stmt.statement.v.source);
1271 [&](const parser::Statement<parser::FunctionStmt> &stmt) {
1272 unitKind = "Function";
1273 name = toStringRef(std::get<parser::Name>(stmt.statement.t).source);
1274 header = toStringRef(stmt.source);
1276 [&](const parser::Statement<parser::SubroutineStmt> &stmt) {
1277 unitKind = "Subroutine";
1278 name = toStringRef(std::get<parser::Name>(stmt.statement.t).source);
1279 header = toStringRef(stmt.source);
1281 [&](const parser::Statement<parser::MpSubprogramStmt> &stmt) {
1282 unitKind = "MpSubprogram";
1283 name = toStringRef(stmt.statement.v.source);
1284 header = toStringRef(stmt.source);
1286 [&](const auto &) { llvm_unreachable("not a valid begin stmt"); },
1288 } else {
1289 unitKind = "Program";
1290 name = "<anonymous>";
1292 outputStream << unitKind << ' ' << name;
1293 if (!header.empty())
1294 outputStream << ": " << header;
1295 outputStream << '\n';
1296 dumpEvaluationList(outputStream, functionLikeUnit.evaluationList);
1297 dumpContainedUnitList(outputStream, functionLikeUnit.containedUnitList);
1298 outputStream << "End " << unitKind << ' ' << name << "\n\n";
1301 void dumpModuleLikeUnit(llvm::raw_ostream &outputStream,
1302 const lower::pft::ModuleLikeUnit &moduleLikeUnit) {
1303 outputStream << getNodeIndex(moduleLikeUnit) << " ";
1304 llvm::StringRef unitKind;
1305 llvm::StringRef name;
1306 llvm::StringRef header;
1307 moduleLikeUnit.beginStmt.visit(common::visitors{
1308 [&](const parser::Statement<parser::ModuleStmt> &stmt) {
1309 unitKind = "Module";
1310 name = toStringRef(stmt.statement.v.source);
1311 header = toStringRef(stmt.source);
1313 [&](const parser::Statement<parser::SubmoduleStmt> &stmt) {
1314 unitKind = "Submodule";
1315 name = toStringRef(std::get<parser::Name>(stmt.statement.t).source);
1316 header = toStringRef(stmt.source);
1318 [&](const auto &) {
1319 llvm_unreachable("not a valid module begin stmt");
1322 outputStream << unitKind << ' ' << name << ": " << header << '\n';
1323 dumpEvaluationList(outputStream, moduleLikeUnit.evaluationList);
1324 dumpContainedUnitList(outputStream, moduleLikeUnit.containedUnitList);
1325 outputStream << "End " << unitKind << ' ' << name << "\n\n";
1328 // Top level directives
1329 void dumpCompilerDirectiveUnit(
1330 llvm::raw_ostream &outputStream,
1331 const lower::pft::CompilerDirectiveUnit &directive) {
1332 outputStream << getNodeIndex(directive) << " ";
1333 outputStream << "CompilerDirective: !";
1334 bool extraNewline =
1335 directive.get<parser::CompilerDirective>().source.ToString().back() ==
1336 '\n';
1337 outputStream
1338 << directive.get<parser::CompilerDirective>().source.ToString();
1339 if (!extraNewline)
1340 outputStream << "\n";
1341 outputStream << "\n";
1344 void dumpContainedUnitList(
1345 llvm::raw_ostream &outputStream,
1346 const lower::pft::ContainedUnitList &containedUnitList) {
1347 if (containedUnitList.empty())
1348 return;
1349 outputStream << "\nContains\n";
1350 for (const lower::pft::ContainedUnit &unit : containedUnitList)
1351 if (const auto *func = std::get_if<lower::pft::FunctionLikeUnit>(&unit)) {
1352 dumpFunctionLikeUnit(outputStream, *func);
1353 } else if (const auto *dir =
1354 std::get_if<lower::pft::CompilerDirectiveUnit>(&unit)) {
1355 outputStream << getNodeIndex(*dir) << " ";
1356 dumpEvaluation(outputStream,
1357 lower::pft::Evaluation{
1358 dir->get<parser::CompilerDirective>(), dir->parent});
1359 outputStream << "\n";
1361 outputStream << "End Contains\n";
1364 void
1365 dumpOpenACCDirectiveUnit(llvm::raw_ostream &outputStream,
1366 const lower::pft::OpenACCDirectiveUnit &directive) {
1367 outputStream << getNodeIndex(directive) << " ";
1368 outputStream << "OpenACCDirective: !$acc ";
1369 outputStream
1370 << directive.get<parser::OpenACCRoutineConstruct>().source.ToString();
1371 outputStream << "\nEnd OpenACCDirective\n\n";
1374 template <typename T>
1375 std::size_t getNodeIndex(const T &node) {
1376 auto addr = static_cast<const void *>(&node);
1377 auto it = nodeIndexes.find(addr);
1378 if (it != nodeIndexes.end())
1379 return it->second;
1380 nodeIndexes.try_emplace(addr, nextIndex);
1381 return nextIndex++;
1383 std::size_t getNodeIndex(const lower::pft::Program &) { return 0; }
1385 private:
1386 llvm::DenseMap<const void *, std::size_t> nodeIndexes;
1387 std::size_t nextIndex{1}; // 0 is the root
1390 } // namespace
1392 template <typename A, typename T>
1393 static lower::pft::FunctionLikeUnit::FunctionStatement
1394 getFunctionStmt(const T &func) {
1395 lower::pft::FunctionLikeUnit::FunctionStatement result{
1396 std::get<parser::Statement<A>>(func.t)};
1397 return result;
1400 template <typename A, typename T>
1401 static lower::pft::ModuleLikeUnit::ModuleStatement getModuleStmt(const T &mod) {
1402 lower::pft::ModuleLikeUnit::ModuleStatement result{
1403 std::get<parser::Statement<A>>(mod.t)};
1404 return result;
1407 template <typename A>
1408 static const semantics::Symbol *getSymbol(A &beginStmt) {
1409 const auto *symbol = beginStmt.visit(common::visitors{
1410 [](const parser::Statement<parser::ProgramStmt> &stmt)
1411 -> const semantics::Symbol * { return stmt.statement.v.symbol; },
1412 [](const parser::Statement<parser::FunctionStmt> &stmt)
1413 -> const semantics::Symbol * {
1414 return std::get<parser::Name>(stmt.statement.t).symbol;
1416 [](const parser::Statement<parser::SubroutineStmt> &stmt)
1417 -> const semantics::Symbol * {
1418 return std::get<parser::Name>(stmt.statement.t).symbol;
1420 [](const parser::Statement<parser::MpSubprogramStmt> &stmt)
1421 -> const semantics::Symbol * { return stmt.statement.v.symbol; },
1422 [](const parser::Statement<parser::ModuleStmt> &stmt)
1423 -> const semantics::Symbol * { return stmt.statement.v.symbol; },
1424 [](const parser::Statement<parser::SubmoduleStmt> &stmt)
1425 -> const semantics::Symbol * {
1426 return std::get<parser::Name>(stmt.statement.t).symbol;
1428 [](const auto &) -> const semantics::Symbol * {
1429 llvm_unreachable("unknown FunctionLike or ModuleLike beginStmt");
1430 return nullptr;
1431 }});
1432 assert(symbol && "parser::Name must have resolved symbol");
1433 return symbol;
1436 bool Fortran::lower::pft::Evaluation::lowerAsStructured() const {
1437 return !lowerAsUnstructured();
1440 bool Fortran::lower::pft::Evaluation::lowerAsUnstructured() const {
1441 return isUnstructured || clDisableStructuredFir;
1444 bool Fortran::lower::pft::Evaluation::forceAsUnstructured() const {
1445 return clDisableStructuredFir;
1448 lower::pft::FunctionLikeUnit *
1449 Fortran::lower::pft::Evaluation::getOwningProcedure() const {
1450 return parent.visit(common::visitors{
1451 [](lower::pft::FunctionLikeUnit &c) { return &c; },
1452 [&](lower::pft::Evaluation &c) { return c.getOwningProcedure(); },
1453 [](auto &) -> lower::pft::FunctionLikeUnit * { return nullptr; },
1457 bool Fortran::lower::definedInCommonBlock(const semantics::Symbol &sym) {
1458 return semantics::FindCommonBlockContaining(sym);
1461 /// Is the symbol `sym` a global?
1462 bool Fortran::lower::symbolIsGlobal(const semantics::Symbol &sym) {
1463 return semantics::IsSaved(sym) || lower::definedInCommonBlock(sym) ||
1464 semantics::IsNamedConstant(sym);
1467 namespace {
1468 /// This helper class sorts the symbols in a scope such that a symbol will
1469 /// be placed after those it depends upon. Otherwise the sort is stable and
1470 /// preserves the order of the symbol table, which is sorted by name. This
1471 /// analysis may also be done for an individual symbol.
1472 struct SymbolDependenceAnalysis {
1473 explicit SymbolDependenceAnalysis(const semantics::Scope &scope) {
1474 analyzeEquivalenceSets(scope);
1475 for (const auto &iter : scope)
1476 analyze(iter.second.get());
1477 finalize();
1479 explicit SymbolDependenceAnalysis(const semantics::Symbol &symbol) {
1480 analyzeEquivalenceSets(symbol.owner());
1481 analyze(symbol);
1482 finalize();
1484 Fortran::lower::pft::VariableList getVariableList() {
1485 return std::move(layeredVarList[0]);
1488 private:
1489 /// Analyze the equivalence sets defined in \p scope, plus the equivalence
1490 /// sets in host module, submodule, and procedure scopes that may define
1491 /// symbols referenced in \p scope. This analysis excludes equivalence sets
1492 /// involving common blocks, which are handled elsewhere.
1493 void analyzeEquivalenceSets(const semantics::Scope &scope) {
1494 // FIXME: When this function is called on the scope of an internal
1495 // procedure whose parent contains an EQUIVALENCE set and the internal
1496 // procedure uses variables from that EQUIVALENCE set, we end up creating
1497 // an AggregateStore for those variables unnecessarily.
1499 // A function defined in a [sub]module has no explicit USE of its ancestor
1500 // [sub]modules. Analyze those scopes here to accommodate references to
1501 // symbols in them.
1502 for (auto *scp = &scope.parent(); !scp->IsGlobal(); scp = &scp->parent())
1503 if (scp->kind() == Fortran::semantics::Scope::Kind::Module)
1504 analyzeLocalEquivalenceSets(*scp);
1505 // Analyze local, USEd, and host procedure scope equivalences.
1506 for (const auto &iter : scope) {
1507 const semantics::Symbol &ultimate = iter.second.get().GetUltimate();
1508 if (!skipSymbol(ultimate))
1509 analyzeLocalEquivalenceSets(ultimate.owner());
1511 // Add all aggregate stores to the front of the variable list.
1512 adjustSize(1);
1513 // The copy in the loop matters, 'stores' will still be used.
1514 for (auto st : stores)
1515 layeredVarList[0].emplace_back(std::move(st));
1518 /// Analyze the equivalence sets defined locally in \p scope that don't
1519 /// involve common blocks.
1520 void analyzeLocalEquivalenceSets(const semantics::Scope &scope) {
1521 if (scope.equivalenceSets().empty())
1522 return; // no equivalence sets to analyze
1523 if (analyzedScopes.contains(&scope))
1524 return; // equivalence sets already analyzed
1526 analyzedScopes.insert(&scope);
1527 std::list<std::list<semantics::SymbolRef>> aggregates =
1528 Fortran::semantics::GetStorageAssociations(scope);
1529 for (std::list<semantics::SymbolRef> aggregate : aggregates) {
1530 const Fortran::semantics::Symbol *aggregateSym = nullptr;
1531 bool isGlobal = false;
1532 const semantics::Symbol &first = *aggregate.front();
1533 // Exclude equivalence sets involving common blocks.
1534 // Those are handled in instantiateCommon.
1535 if (lower::definedInCommonBlock(first))
1536 continue;
1537 std::size_t start = first.offset();
1538 std::size_t end = first.offset() + first.size();
1539 const Fortran::semantics::Symbol *namingSym = nullptr;
1540 for (semantics::SymbolRef symRef : aggregate) {
1541 const semantics::Symbol &sym = *symRef;
1542 aliasSyms.insert(&sym);
1543 if (sym.test(Fortran::semantics::Symbol::Flag::CompilerCreated)) {
1544 aggregateSym = &sym;
1545 } else {
1546 isGlobal |= lower::symbolIsGlobal(sym);
1547 start = std::min(sym.offset(), start);
1548 end = std::max(sym.offset() + sym.size(), end);
1549 if (!namingSym || (sym.name() < namingSym->name()))
1550 namingSym = &sym;
1553 assert(namingSym && "must contain at least one user symbol");
1554 if (!aggregateSym) {
1555 stores.emplace_back(
1556 Fortran::lower::pft::Variable::Interval{start, end - start},
1557 *namingSym, isGlobal);
1558 } else {
1559 stores.emplace_back(*aggregateSym, *namingSym, isGlobal);
1564 // Recursively visit each symbol to determine the height of its dependence on
1565 // other symbols.
1566 int analyze(const semantics::Symbol &sym) {
1567 auto done = seen.insert(&sym);
1568 if (!done.second)
1569 return 0;
1570 LLVM_DEBUG(llvm::dbgs() << "analyze symbol " << &sym << " in <"
1571 << &sym.owner() << ">: " << sym << '\n');
1572 const semantics::Symbol &ultimate = sym.GetUltimate();
1573 if (const auto *details = ultimate.detailsIf<semantics::GenericDetails>()) {
1574 // Procedure pointers may be "hidden" behind to the generic symbol if they
1575 // have the same name.
1576 if (const semantics::Symbol *specific = details->specific())
1577 analyze(*specific);
1578 return 0;
1580 const bool isProcedurePointerOrDummy =
1581 semantics::IsProcedurePointer(sym) ||
1582 (semantics::IsProcedure(sym) && IsDummy(sym));
1583 // A procedure argument in a subprogram with multiple entry points might
1584 // need a layeredVarList entry to trigger creation of a symbol map entry
1585 // in some cases. Non-dummy procedures don't.
1586 if (semantics::IsProcedure(sym) && !isProcedurePointerOrDummy)
1587 return 0;
1588 // Derived type component symbols may be collected by "CollectSymbols"
1589 // below when processing something like "real :: x(derived%component)". The
1590 // symbol "component" has "ObjectEntityDetails", but it should not be
1591 // instantiated: it is part of "derived" that should be the only one to
1592 // be instantiated.
1593 if (sym.owner().IsDerivedType())
1594 return 0;
1596 if (const auto *details =
1597 ultimate.detailsIf<semantics::NamelistDetails>()) {
1598 // handle namelist group symbols
1599 for (const semantics::SymbolRef &s : details->objects())
1600 analyze(s);
1601 return 0;
1603 if (!ultimate.has<semantics::ObjectEntityDetails>() &&
1604 !isProcedurePointerOrDummy)
1605 return 0;
1607 if (sym.has<semantics::DerivedTypeDetails>())
1608 llvm_unreachable("not yet implemented - derived type analysis");
1610 // Symbol must be something lowering will have to allocate.
1611 int depth = 0;
1612 // Analyze symbols appearing in object entity specification expressions.
1613 // This ensures these symbols will be instantiated before the current one.
1614 // This is not done for object entities that are host associated because
1615 // they must be instantiated from the value of the host symbols.
1616 // (The specification expressions should not be re-evaluated.)
1617 if (const auto *details = sym.detailsIf<semantics::ObjectEntityDetails>()) {
1618 const semantics::DeclTypeSpec *symTy = sym.GetType();
1619 assert(symTy && "symbol must have a type");
1620 // check CHARACTER's length
1621 if (symTy->category() == semantics::DeclTypeSpec::Character)
1622 if (auto e = symTy->characterTypeSpec().length().GetExplicit())
1623 for (const auto &s : evaluate::CollectSymbols(*e))
1624 depth = std::max(analyze(s) + 1, depth);
1626 auto doExplicit = [&](const auto &bound) {
1627 if (bound.isExplicit()) {
1628 semantics::SomeExpr e{*bound.GetExplicit()};
1629 for (const auto &s : evaluate::CollectSymbols(e))
1630 depth = std::max(analyze(s) + 1, depth);
1633 // Handle any symbols in array bound declarations.
1634 for (const semantics::ShapeSpec &subs : details->shape()) {
1635 doExplicit(subs.lbound());
1636 doExplicit(subs.ubound());
1638 // Handle any symbols in coarray bound declarations.
1639 for (const semantics::ShapeSpec &subs : details->coshape()) {
1640 doExplicit(subs.lbound());
1641 doExplicit(subs.ubound());
1643 // Handle any symbols in initialization expressions.
1644 if (auto e = details->init())
1645 for (const auto &s : evaluate::CollectSymbols(*e))
1646 if (!s->has<semantics::DerivedTypeDetails>())
1647 depth = std::max(analyze(s) + 1, depth);
1650 // Make sure cray pointer is instantiated even if it is not visible.
1651 if (ultimate.test(Fortran::semantics::Symbol::Flag::CrayPointee))
1652 depth = std::max(
1653 analyze(Fortran::semantics::GetCrayPointer(ultimate)) + 1, depth);
1654 adjustSize(depth + 1);
1655 bool global = lower::symbolIsGlobal(sym);
1656 layeredVarList[depth].emplace_back(sym, global, depth);
1657 if (semantics::IsAllocatable(sym))
1658 layeredVarList[depth].back().setHeapAlloc();
1659 if (semantics::IsPointer(sym))
1660 layeredVarList[depth].back().setPointer();
1661 if (ultimate.attrs().test(semantics::Attr::TARGET))
1662 layeredVarList[depth].back().setTarget();
1664 // If there are alias sets, then link the participating variables to their
1665 // aggregate stores when constructing the new variable on the list.
1666 if (lower::pft::Variable::AggregateStore *store = findStoreIfAlias(sym))
1667 layeredVarList[depth].back().setAlias(store->getOffset());
1668 return depth;
1671 /// Skip symbol in alias analysis.
1672 bool skipSymbol(const semantics::Symbol &sym) {
1673 // Common block equivalences are largely managed by the front end.
1674 // Compiler generated symbols ('.' names) cannot be equivalenced.
1675 // FIXME: Equivalence code generation may need to be revisited.
1676 return !sym.has<semantics::ObjectEntityDetails>() ||
1677 lower::definedInCommonBlock(sym) || sym.name()[0] == '.';
1680 // Make sure the table is of appropriate size.
1681 void adjustSize(std::size_t size) {
1682 if (layeredVarList.size() < size)
1683 layeredVarList.resize(size);
1686 Fortran::lower::pft::Variable::AggregateStore *
1687 findStoreIfAlias(const Fortran::evaluate::Symbol &sym) {
1688 const semantics::Symbol &ultimate = sym.GetUltimate();
1689 const semantics::Scope &scope = ultimate.owner();
1690 // Expect the total number of EQUIVALENCE sets to be small for a typical
1691 // Fortran program.
1692 if (aliasSyms.contains(&ultimate)) {
1693 LLVM_DEBUG(llvm::dbgs() << "found aggregate containing " << &ultimate
1694 << " " << ultimate.name() << " in <" << &scope
1695 << "> " << scope.GetName() << '\n');
1696 std::size_t off = ultimate.offset();
1697 std::size_t symSize = ultimate.size();
1698 for (lower::pft::Variable::AggregateStore &v : stores) {
1699 if (&v.getOwningScope() == &scope) {
1700 auto intervalOff = std::get<0>(v.interval);
1701 auto intervalSize = std::get<1>(v.interval);
1702 if (off >= intervalOff && off < intervalOff + intervalSize)
1703 return &v;
1704 // Zero sized symbol in zero sized equivalence.
1705 if (off == intervalOff && symSize == 0)
1706 return &v;
1709 // clang-format off
1710 LLVM_DEBUG(
1711 llvm::dbgs() << "looking for " << off << "\n{\n";
1712 for (lower::pft::Variable::AggregateStore &v : stores) {
1713 llvm::dbgs() << " in scope: " << &v.getOwningScope() << "\n";
1714 llvm::dbgs() << " i = [" << std::get<0>(v.interval) << ".."
1715 << std::get<0>(v.interval) + std::get<1>(v.interval)
1716 << "]\n";
1718 llvm::dbgs() << "}\n");
1719 // clang-format on
1720 llvm_unreachable("the store must be present");
1722 return nullptr;
1725 /// Flatten the result VariableList.
1726 void finalize() {
1727 for (int i = 1, end = layeredVarList.size(); i < end; ++i)
1728 layeredVarList[0].insert(layeredVarList[0].end(),
1729 layeredVarList[i].begin(),
1730 layeredVarList[i].end());
1733 llvm::SmallSet<const semantics::Symbol *, 32> seen;
1734 std::vector<Fortran::lower::pft::VariableList> layeredVarList;
1735 llvm::SmallSet<const semantics::Symbol *, 32> aliasSyms;
1736 /// Set of scopes that have been analyzed for aliases.
1737 llvm::SmallSet<const semantics::Scope *, 4> analyzedScopes;
1738 std::vector<Fortran::lower::pft::Variable::AggregateStore> stores;
1740 } // namespace
1742 //===----------------------------------------------------------------------===//
1743 // FunctionLikeUnit implementation
1744 //===----------------------------------------------------------------------===//
1746 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit(
1747 const parser::MainProgram &func, const lower::pft::PftNode &parent,
1748 const semantics::SemanticsContext &semanticsContext)
1749 : ProgramUnit{func, parent},
1750 endStmt{getFunctionStmt<parser::EndProgramStmt>(func)} {
1751 const auto &programStmt =
1752 std::get<std::optional<parser::Statement<parser::ProgramStmt>>>(func.t);
1753 if (programStmt.has_value()) {
1754 beginStmt = FunctionStatement(programStmt.value());
1755 const semantics::Symbol *symbol = getSymbol(*beginStmt);
1756 entryPointList[0].first = symbol;
1757 scope = symbol->scope();
1758 } else {
1759 scope = &semanticsContext.FindScope(
1760 std::get<parser::Statement<parser::EndProgramStmt>>(func.t).source);
1764 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit(
1765 const parser::FunctionSubprogram &func, const lower::pft::PftNode &parent,
1766 const semantics::SemanticsContext &)
1767 : ProgramUnit{func, parent},
1768 beginStmt{getFunctionStmt<parser::FunctionStmt>(func)},
1769 endStmt{getFunctionStmt<parser::EndFunctionStmt>(func)} {
1770 const semantics::Symbol *symbol = getSymbol(*beginStmt);
1771 entryPointList[0].first = symbol;
1772 scope = symbol->scope();
1775 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit(
1776 const parser::SubroutineSubprogram &func, const lower::pft::PftNode &parent,
1777 const semantics::SemanticsContext &)
1778 : ProgramUnit{func, parent},
1779 beginStmt{getFunctionStmt<parser::SubroutineStmt>(func)},
1780 endStmt{getFunctionStmt<parser::EndSubroutineStmt>(func)} {
1781 const semantics::Symbol *symbol = getSymbol(*beginStmt);
1782 entryPointList[0].first = symbol;
1783 scope = symbol->scope();
1786 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit(
1787 const parser::SeparateModuleSubprogram &func,
1788 const lower::pft::PftNode &parent, const semantics::SemanticsContext &)
1789 : ProgramUnit{func, parent},
1790 beginStmt{getFunctionStmt<parser::MpSubprogramStmt>(func)},
1791 endStmt{getFunctionStmt<parser::EndMpSubprogramStmt>(func)} {
1792 const semantics::Symbol *symbol = getSymbol(*beginStmt);
1793 entryPointList[0].first = symbol;
1794 scope = symbol->scope();
1797 Fortran::lower::HostAssociations &
1798 Fortran::lower::pft::FunctionLikeUnit::parentHostAssoc() {
1799 if (auto *par = parent.getIf<FunctionLikeUnit>())
1800 return par->hostAssociations;
1801 llvm::report_fatal_error("parent is not a function");
1804 bool Fortran::lower::pft::FunctionLikeUnit::parentHasTupleHostAssoc() {
1805 if (auto *par = parent.getIf<FunctionLikeUnit>())
1806 return par->hostAssociations.hasTupleAssociations();
1807 return false;
1810 bool Fortran::lower::pft::FunctionLikeUnit::parentHasHostAssoc() {
1811 if (auto *par = parent.getIf<FunctionLikeUnit>())
1812 return !par->hostAssociations.empty();
1813 return false;
1816 parser::CharBlock
1817 Fortran::lower::pft::FunctionLikeUnit::getStartingSourceLoc() const {
1818 if (beginStmt)
1819 return stmtSourceLoc(*beginStmt);
1820 return scope->sourceRange();
1823 //===----------------------------------------------------------------------===//
1824 // ModuleLikeUnit implementation
1825 //===----------------------------------------------------------------------===//
1827 Fortran::lower::pft::ModuleLikeUnit::ModuleLikeUnit(
1828 const parser::Module &m, const lower::pft::PftNode &parent)
1829 : ProgramUnit{m, parent}, beginStmt{getModuleStmt<parser::ModuleStmt>(m)},
1830 endStmt{getModuleStmt<parser::EndModuleStmt>(m)} {}
1832 Fortran::lower::pft::ModuleLikeUnit::ModuleLikeUnit(
1833 const parser::Submodule &m, const lower::pft::PftNode &parent)
1834 : ProgramUnit{m, parent},
1835 beginStmt{getModuleStmt<parser::SubmoduleStmt>(m)},
1836 endStmt{getModuleStmt<parser::EndSubmoduleStmt>(m)} {}
1838 parser::CharBlock
1839 Fortran::lower::pft::ModuleLikeUnit::getStartingSourceLoc() const {
1840 return stmtSourceLoc(beginStmt);
1842 const Fortran::semantics::Scope &
1843 Fortran::lower::pft::ModuleLikeUnit::getScope() const {
1844 const Fortran::semantics::Symbol *symbol = getSymbol(beginStmt);
1845 assert(symbol && symbol->scope() &&
1846 "Module statement must have a symbol with a scope");
1847 return *symbol->scope();
1850 //===----------------------------------------------------------------------===//
1851 // BlockDataUnit implementation
1852 //===----------------------------------------------------------------------===//
1854 Fortran::lower::pft::BlockDataUnit::BlockDataUnit(
1855 const parser::BlockData &bd, const lower::pft::PftNode &parent,
1856 const semantics::SemanticsContext &semanticsContext)
1857 : ProgramUnit{bd, parent},
1858 symTab{semanticsContext.FindScope(
1859 std::get<parser::Statement<parser::EndBlockDataStmt>>(bd.t).source)} {
1862 //===----------------------------------------------------------------------===//
1863 // Variable implementation
1864 //===----------------------------------------------------------------------===//
1866 bool Fortran::lower::pft::Variable::isRuntimeTypeInfoData() const {
1867 // So far, use flags to detect if this symbol were generated during
1868 // semantics::BuildRuntimeDerivedTypeTables(). Scope cannot be used since the
1869 // symbols are injected in the user scopes defining the described derived
1870 // types. A robustness improvement for this test could be to get hands on the
1871 // semantics::RuntimeDerivedTypeTables and to check if the symbol names
1872 // belongs to this structure.
1873 using Flags = Fortran::semantics::Symbol::Flag;
1874 const auto *nominal = std::get_if<Nominal>(&var);
1875 return nominal && nominal->symbol->test(Flags::CompilerCreated) &&
1876 nominal->symbol->test(Flags::ReadOnly);
1879 //===----------------------------------------------------------------------===//
1880 // API implementation
1881 //===----------------------------------------------------------------------===//
1883 std::unique_ptr<lower::pft::Program>
1884 Fortran::lower::createPFT(const parser::Program &root,
1885 const semantics::SemanticsContext &semanticsContext) {
1886 PFTBuilder walker(semanticsContext);
1887 Walk(root, walker);
1888 return walker.result();
1891 void Fortran::lower::dumpPFT(llvm::raw_ostream &outputStream,
1892 const lower::pft::Program &pft) {
1893 PFTDumper{}.dumpPFT(outputStream, pft);
1896 void Fortran::lower::pft::Program::dump() const {
1897 dumpPFT(llvm::errs(), *this);
1900 void Fortran::lower::pft::Evaluation::dump() const {
1901 PFTDumper{}.dumpEvaluation(llvm::errs(), *this);
1904 void Fortran::lower::pft::Variable::dump() const {
1905 if (auto *s = std::get_if<Nominal>(&var)) {
1906 llvm::errs() << s->symbol << " " << *s->symbol;
1907 llvm::errs() << " (depth: " << s->depth << ')';
1908 if (s->global)
1909 llvm::errs() << ", global";
1910 if (s->heapAlloc)
1911 llvm::errs() << ", allocatable";
1912 if (s->pointer)
1913 llvm::errs() << ", pointer";
1914 if (s->target)
1915 llvm::errs() << ", target";
1916 if (s->aliaser)
1917 llvm::errs() << ", equivalence(" << s->aliasOffset << ')';
1918 } else if (auto *s = std::get_if<AggregateStore>(&var)) {
1919 llvm::errs() << "interval[" << std::get<0>(s->interval) << ", "
1920 << std::get<1>(s->interval) << "]:";
1921 llvm::errs() << " name: " << toStringRef(s->getNamingSymbol().name());
1922 if (s->isGlobal())
1923 llvm::errs() << ", global";
1924 if (s->initialValueSymbol)
1925 llvm::errs() << ", initial value: {" << *s->initialValueSymbol << "}";
1926 } else {
1927 llvm_unreachable("not a Variable");
1929 llvm::errs() << '\n';
1932 void Fortran::lower::pft::dump(Fortran::lower::pft::VariableList &variableList,
1933 std::string s) {
1934 llvm::errs() << (s.empty() ? "VariableList" : s) << " " << &variableList
1935 << " size=" << variableList.size() << "\n";
1936 for (auto var : variableList) {
1937 llvm::errs() << " ";
1938 var.dump();
1942 void Fortran::lower::pft::FunctionLikeUnit::dump() const {
1943 PFTDumper{}.dumpFunctionLikeUnit(llvm::errs(), *this);
1946 void Fortran::lower::pft::ModuleLikeUnit::dump() const {
1947 PFTDumper{}.dumpModuleLikeUnit(llvm::errs(), *this);
1950 /// The BlockDataUnit dump is just the associated symbol table.
1951 void Fortran::lower::pft::BlockDataUnit::dump() const {
1952 llvm::errs() << "block data {\n" << symTab << "\n}\n";
1955 /// Find or create an ordered list of equivalences and variables in \p scope.
1956 /// The result is cached in \p map.
1957 const lower::pft::VariableList &
1958 lower::pft::getScopeVariableList(const semantics::Scope &scope,
1959 ScopeVariableListMap &map) {
1960 LLVM_DEBUG(llvm::dbgs() << "\ngetScopeVariableList of [sub]module scope <"
1961 << &scope << "> " << scope.GetName() << "\n");
1962 auto iter = map.find(&scope);
1963 if (iter == map.end()) {
1964 SymbolDependenceAnalysis sda(scope);
1965 map.emplace(&scope, sda.getVariableList());
1966 iter = map.find(&scope);
1968 return iter->second;
1971 /// Create an ordered list of equivalences and variables in \p scope.
1972 /// The result is not cached.
1973 lower::pft::VariableList
1974 lower::pft::getScopeVariableList(const semantics::Scope &scope) {
1975 LLVM_DEBUG(
1976 llvm::dbgs() << "\ngetScopeVariableList of [sub]program|block scope <"
1977 << &scope << "> " << scope.GetName() << "\n");
1978 SymbolDependenceAnalysis sda(scope);
1979 return sda.getVariableList();
1982 /// Create an ordered list of equivalences and variables that \p symbol
1983 /// depends on (no caching). Include \p symbol at the end of the list.
1984 lower::pft::VariableList
1985 lower::pft::getDependentVariableList(const semantics::Symbol &symbol) {
1986 LLVM_DEBUG(llvm::dbgs() << "\ngetDependentVariableList of " << &symbol
1987 << " - " << symbol << "\n");
1988 SymbolDependenceAnalysis sda(symbol);
1989 return sda.getVariableList();
1992 namespace {
1993 /// Helper class to find all the symbols referenced in a FunctionLikeUnit.
1994 /// It defines a parse tree visitor doing a deep visit in all nodes with
1995 /// symbols (including evaluate::Expr).
1996 struct SymbolVisitor {
1997 template <typename A>
1998 bool Pre(const A &x) {
1999 if constexpr (Fortran::parser::HasTypedExpr<A>::value)
2000 // Some parse tree Expr may legitimately be un-analyzed after semantics
2001 // (for instance PDT component initial value in the PDT definition body).
2002 if (const auto *expr = Fortran::semantics::GetExpr(nullptr, x))
2003 visitExpr(*expr);
2004 return true;
2007 bool Pre(const Fortran::parser::Name &name) {
2008 if (const semantics::Symbol *symbol = name.symbol)
2009 visitSymbol(*symbol);
2010 return false;
2013 template <typename T>
2014 void visitExpr(const Fortran::evaluate::Expr<T> &expr) {
2015 for (const semantics::Symbol &symbol :
2016 Fortran::evaluate::CollectSymbols(expr))
2017 visitSymbol(symbol);
2020 void visitSymbol(const Fortran::semantics::Symbol &symbol) {
2021 callBack(symbol);
2022 // - Visit statement function body since it will be inlined in lowering.
2023 // - Visit function results specification expressions because allocations
2024 // happens on the caller side.
2025 if (const auto *subprogramDetails =
2026 symbol.detailsIf<Fortran::semantics::SubprogramDetails>()) {
2027 if (const auto &maybeExpr = subprogramDetails->stmtFunction()) {
2028 visitExpr(*maybeExpr);
2029 } else {
2030 if (subprogramDetails->isFunction()) {
2031 // Visit result extents expressions that are explicit.
2032 const Fortran::semantics::Symbol &result =
2033 subprogramDetails->result();
2034 if (const auto *objectDetails =
2035 result.detailsIf<Fortran::semantics::ObjectEntityDetails>())
2036 if (objectDetails->shape().IsExplicitShape())
2037 for (const Fortran::semantics::ShapeSpec &shapeSpec :
2038 objectDetails->shape()) {
2039 visitExpr(shapeSpec.lbound().GetExplicit().value());
2040 visitExpr(shapeSpec.ubound().GetExplicit().value());
2045 if (Fortran::semantics::IsProcedure(symbol)) {
2046 if (auto dynamicType = Fortran::evaluate::DynamicType::From(symbol)) {
2047 // Visit result length specification expressions that are explicit.
2048 if (dynamicType->category() ==
2049 Fortran::common::TypeCategory::Character) {
2050 if (std::optional<Fortran::evaluate::ExtentExpr> length =
2051 dynamicType->GetCharLength())
2052 visitExpr(*length);
2053 } else if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec =
2054 Fortran::evaluate::GetDerivedTypeSpec(dynamicType)) {
2055 for (const auto &[_, param] : derivedTypeSpec->parameters())
2056 if (const Fortran::semantics::MaybeIntExpr &expr =
2057 param.GetExplicit())
2058 visitExpr(expr.value());
2062 // - CrayPointer needs to be available whenever a CrayPointee is used.
2063 if (symbol.GetUltimate().test(
2064 Fortran::semantics::Symbol::Flag::CrayPointee))
2065 visitSymbol(Fortran::semantics::GetCrayPointer(symbol));
2068 template <typename A>
2069 constexpr void Post(const A &) {}
2071 const std::function<void(const Fortran::semantics::Symbol &)> &callBack;
2073 } // namespace
2075 void Fortran::lower::pft::visitAllSymbols(
2076 const Fortran::lower::pft::FunctionLikeUnit &funit,
2077 const std::function<void(const Fortran::semantics::Symbol &)> callBack) {
2078 SymbolVisitor visitor{callBack};
2079 funit.visit([&](const auto &functionParserNode) {
2080 parser::Walk(functionParserNode, visitor);
2084 void Fortran::lower::pft::visitAllSymbols(
2085 const Fortran::lower::pft::Evaluation &eval,
2086 const std::function<void(const Fortran::semantics::Symbol &)> callBack) {
2087 SymbolVisitor visitor{callBack};
2088 eval.visit([&](const auto &functionParserNode) {
2089 parser::Walk(functionParserNode, visitor);