[LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)
[llvm-project.git] / clang / lib / CodeGen / CGObjC.cpp
blob80a64d8e4cdd927db0e5211cffcc863ca49a7f6d
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/CodeGenABITypes.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Analysis/ObjCARCUtil.h"
28 #include "llvm/BinaryFormat/MachO.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include <optional>
33 using namespace clang;
34 using namespace CodeGen;
36 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37 static TryEmitResult
38 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
39 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
40 QualType ET,
41 RValue Result);
43 /// Given the address of a variable of pointer type, find the correct
44 /// null to store into it.
45 static llvm::Constant *getNullForVariable(Address addr) {
46 llvm::Type *type = addr.getElementType();
47 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
50 /// Emits an instance of NSConstantString representing the object.
51 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
53 llvm::Constant *C =
54 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
55 return C;
58 /// EmitObjCBoxedExpr - This routine generates code to call
59 /// the appropriate expression boxing method. This will either be
60 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
61 /// or [NSValue valueWithBytes:objCType:].
62 ///
63 llvm::Value *
64 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
65 // Generate the correct selector for this literal's concrete type.
66 // Get the method.
67 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
68 const Expr *SubExpr = E->getSubExpr();
70 if (E->isExpressibleAsConstantInitializer()) {
71 ConstantEmitter ConstEmitter(CGM);
72 return ConstEmitter.tryEmitAbstract(E, E->getType());
75 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
76 Selector Sel = BoxingMethod->getSelector();
78 // Generate a reference to the class pointer, which will be the receiver.
79 // Assumes that the method was introduced in the class that should be
80 // messaged (avoids pulling it out of the result type).
81 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
82 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
83 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
85 CallArgList Args;
86 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
87 QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
89 // ObjCBoxedExpr supports boxing of structs and unions
90 // via [NSValue valueWithBytes:objCType:]
91 const QualType ValueType(SubExpr->getType().getCanonicalType());
92 if (ValueType->isObjCBoxableRecordType()) {
93 // Emit CodeGen for first parameter
94 // and cast value to correct type
95 Address Temporary = CreateMemTemp(SubExpr->getType());
96 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
97 llvm::Value *BitCast = Builder.CreateBitCast(
98 Temporary.emitRawPointer(*this), ConvertType(ArgQT));
99 Args.add(RValue::get(BitCast), ArgQT);
101 // Create char array to store type encoding
102 std::string Str;
103 getContext().getObjCEncodingForType(ValueType, Str);
104 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
106 // Cast type encoding to correct type
107 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
108 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
109 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
111 Args.add(RValue::get(Cast), EncodingQT);
112 } else {
113 Args.add(EmitAnyExpr(SubExpr), ArgQT);
116 RValue result = Runtime.GenerateMessageSend(
117 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
118 Args, ClassDecl, BoxingMethod);
119 return Builder.CreateBitCast(result.getScalarVal(),
120 ConvertType(E->getType()));
123 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
124 const ObjCMethodDecl *MethodWithObjects) {
125 ASTContext &Context = CGM.getContext();
126 const ObjCDictionaryLiteral *DLE = nullptr;
127 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
128 if (!ALE)
129 DLE = cast<ObjCDictionaryLiteral>(E);
131 // Optimize empty collections by referencing constants, when available.
132 uint64_t NumElements =
133 ALE ? ALE->getNumElements() : DLE->getNumElements();
134 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
135 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
136 QualType IdTy(CGM.getContext().getObjCIdType());
137 llvm::Constant *Constant =
138 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
139 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
140 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
141 cast<llvm::LoadInst>(Ptr)->setMetadata(
142 llvm::LLVMContext::MD_invariant_load,
143 llvm::MDNode::get(getLLVMContext(), std::nullopt));
144 return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
147 // Compute the type of the array we're initializing.
148 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
149 NumElements);
150 QualType ElementType = Context.getObjCIdType().withConst();
151 QualType ElementArrayType = Context.getConstantArrayType(
152 ElementType, APNumElements, nullptr, ArraySizeModifier::Normal,
153 /*IndexTypeQuals=*/0);
155 // Allocate the temporary array(s).
156 Address Objects = CreateMemTemp(ElementArrayType, "objects");
157 Address Keys = Address::invalid();
158 if (DLE)
159 Keys = CreateMemTemp(ElementArrayType, "keys");
161 // In ARC, we may need to do extra work to keep all the keys and
162 // values alive until after the call.
163 SmallVector<llvm::Value *, 16> NeededObjects;
164 bool TrackNeededObjects =
165 (getLangOpts().ObjCAutoRefCount &&
166 CGM.getCodeGenOpts().OptimizationLevel != 0);
168 // Perform the actual initialialization of the array(s).
169 for (uint64_t i = 0; i < NumElements; i++) {
170 if (ALE) {
171 // Emit the element and store it to the appropriate array slot.
172 const Expr *Rhs = ALE->getElement(i);
173 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
174 ElementType, AlignmentSource::Decl);
176 llvm::Value *value = EmitScalarExpr(Rhs);
177 EmitStoreThroughLValue(RValue::get(value), LV, true);
178 if (TrackNeededObjects) {
179 NeededObjects.push_back(value);
181 } else {
182 // Emit the key and store it to the appropriate array slot.
183 const Expr *Key = DLE->getKeyValueElement(i).Key;
184 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
185 ElementType, AlignmentSource::Decl);
186 llvm::Value *keyValue = EmitScalarExpr(Key);
187 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
189 // Emit the value and store it to the appropriate array slot.
190 const Expr *Value = DLE->getKeyValueElement(i).Value;
191 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
192 ElementType, AlignmentSource::Decl);
193 llvm::Value *valueValue = EmitScalarExpr(Value);
194 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
195 if (TrackNeededObjects) {
196 NeededObjects.push_back(keyValue);
197 NeededObjects.push_back(valueValue);
202 // Generate the argument list.
203 CallArgList Args;
204 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
205 const ParmVarDecl *argDecl = *PI++;
206 QualType ArgQT = argDecl->getType().getUnqualifiedType();
207 Args.add(RValue::get(Objects, *this), ArgQT);
208 if (DLE) {
209 argDecl = *PI++;
210 ArgQT = argDecl->getType().getUnqualifiedType();
211 Args.add(RValue::get(Keys, *this), ArgQT);
213 argDecl = *PI;
214 ArgQT = argDecl->getType().getUnqualifiedType();
215 llvm::Value *Count =
216 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
217 Args.add(RValue::get(Count), ArgQT);
219 // Generate a reference to the class pointer, which will be the receiver.
220 Selector Sel = MethodWithObjects->getSelector();
221 QualType ResultType = E->getType();
222 const ObjCObjectPointerType *InterfacePointerType
223 = ResultType->getAsObjCInterfacePointerType();
224 assert(InterfacePointerType && "Unexpected InterfacePointerType - null");
225 ObjCInterfaceDecl *Class
226 = InterfacePointerType->getObjectType()->getInterface();
227 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228 llvm::Value *Receiver = Runtime.GetClass(*this, Class);
230 // Generate the message send.
231 RValue result = Runtime.GenerateMessageSend(
232 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
233 Receiver, Args, Class, MethodWithObjects);
235 // The above message send needs these objects, but in ARC they are
236 // passed in a buffer that is essentially __unsafe_unretained.
237 // Therefore we must prevent the optimizer from releasing them until
238 // after the call.
239 if (TrackNeededObjects) {
240 EmitARCIntrinsicUse(NeededObjects);
243 return Builder.CreateBitCast(result.getScalarVal(),
244 ConvertType(E->getType()));
247 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
248 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
251 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
252 const ObjCDictionaryLiteral *E) {
253 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
256 /// Emit a selector.
257 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
258 // Untyped selector.
259 // Note that this implementation allows for non-constant strings to be passed
260 // as arguments to @selector(). Currently, the only thing preventing this
261 // behaviour is the type checking in the front end.
262 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
265 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
266 // FIXME: This should pass the Decl not the name.
267 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
270 /// Adjust the type of an Objective-C object that doesn't match up due
271 /// to type erasure at various points, e.g., related result types or the use
272 /// of parameterized classes.
273 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
274 RValue Result) {
275 if (!ExpT->isObjCRetainableType())
276 return Result;
278 // If the converted types are the same, we're done.
279 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
280 if (ExpLLVMTy == Result.getScalarVal()->getType())
281 return Result;
283 // We have applied a substitution. Cast the rvalue appropriately.
284 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
285 ExpLLVMTy));
288 /// Decide whether to extend the lifetime of the receiver of a
289 /// returns-inner-pointer message.
290 static bool
291 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
292 switch (message->getReceiverKind()) {
294 // For a normal instance message, we should extend unless the
295 // receiver is loaded from a variable with precise lifetime.
296 case ObjCMessageExpr::Instance: {
297 const Expr *receiver = message->getInstanceReceiver();
299 // Look through OVEs.
300 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
301 if (opaque->getSourceExpr())
302 receiver = opaque->getSourceExpr()->IgnoreParens();
305 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
306 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307 receiver = ice->getSubExpr()->IgnoreParens();
309 // Look through OVEs.
310 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
311 if (opaque->getSourceExpr())
312 receiver = opaque->getSourceExpr()->IgnoreParens();
315 // Only __strong variables.
316 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317 return true;
319 // All ivars and fields have precise lifetime.
320 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
321 return false;
323 // Otherwise, check for variables.
324 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325 if (!declRef) return true;
326 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
327 if (!var) return true;
329 // All variables have precise lifetime except local variables with
330 // automatic storage duration that aren't specially marked.
331 return (var->hasLocalStorage() &&
332 !var->hasAttr<ObjCPreciseLifetimeAttr>());
335 case ObjCMessageExpr::Class:
336 case ObjCMessageExpr::SuperClass:
337 // It's never necessary for class objects.
338 return false;
340 case ObjCMessageExpr::SuperInstance:
341 // We generally assume that 'self' lives throughout a method call.
342 return false;
345 llvm_unreachable("invalid receiver kind");
348 /// Given an expression of ObjC pointer type, check whether it was
349 /// immediately loaded from an ARC __weak l-value.
350 static const Expr *findWeakLValue(const Expr *E) {
351 assert(E->getType()->isObjCRetainableType());
352 E = E->IgnoreParens();
353 if (auto CE = dyn_cast<CastExpr>(E)) {
354 if (CE->getCastKind() == CK_LValueToRValue) {
355 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356 return CE->getSubExpr();
360 return nullptr;
363 /// The ObjC runtime may provide entrypoints that are likely to be faster
364 /// than an ordinary message send of the appropriate selector.
366 /// The entrypoints are guaranteed to be equivalent to just sending the
367 /// corresponding message. If the entrypoint is implemented naively as just a
368 /// message send, using it is a trade-off: it sacrifices a few cycles of
369 /// overhead to save a small amount of code. However, it's possible for
370 /// runtimes to detect and special-case classes that use "standard"
371 /// behavior; if that's dynamically a large proportion of all objects, using
372 /// the entrypoint will also be faster than using a message send.
374 /// If the runtime does support a required entrypoint, then this method will
375 /// generate a call and return the resulting value. Otherwise it will return
376 /// std::nullopt and the caller can generate a msgSend instead.
377 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378 CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379 const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380 bool isClassMessage) {
381 auto &CGM = CGF.CGM;
382 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383 return std::nullopt;
385 auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386 switch (Sel.getMethodFamily()) {
387 case OMF_alloc:
388 if (isClassMessage &&
389 Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390 ResultType->isObjCObjectPointerType()) {
391 // [Foo alloc] -> objc_alloc(Foo) or
392 // [self alloc] -> objc_alloc(self)
393 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
394 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
395 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396 // [self allocWithZone:nil] -> objc_allocWithZone(self)
397 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398 Args.size() == 1 && Args.front().getType()->isPointerType() &&
399 Sel.getNameForSlot(0) == "allocWithZone") {
400 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401 if (isa<llvm::ConstantPointerNull>(arg))
402 return CGF.EmitObjCAllocWithZone(Receiver,
403 CGF.ConvertType(ResultType));
404 return std::nullopt;
407 break;
409 case OMF_autorelease:
410 if (ResultType->isObjCObjectPointerType() &&
411 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412 Runtime.shouldUseARCFunctionsForRetainRelease())
413 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
414 break;
416 case OMF_retain:
417 if (ResultType->isObjCObjectPointerType() &&
418 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419 Runtime.shouldUseARCFunctionsForRetainRelease())
420 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
421 break;
423 case OMF_release:
424 if (ResultType->isVoidType() &&
425 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426 Runtime.shouldUseARCFunctionsForRetainRelease()) {
427 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
428 return nullptr;
430 break;
432 default:
433 break;
435 return std::nullopt;
438 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440 Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442 bool isClassMessage) {
443 if (std::optional<llvm::Value *> SpecializedResult =
444 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445 Sel, Method, isClassMessage)) {
446 return RValue::get(*SpecializedResult);
448 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
449 Method);
452 static void AppendFirstImpliedRuntimeProtocols(
453 const ObjCProtocolDecl *PD,
454 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455 if (!PD->isNonRuntimeProtocol()) {
456 const auto *Can = PD->getCanonicalDecl();
457 PDs.insert(Can);
458 return;
461 for (const auto *ParentPD : PD->protocols())
462 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
465 std::vector<const ObjCProtocolDecl *>
466 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
467 ObjCProtocolDecl::protocol_iterator end) {
468 std::vector<const ObjCProtocolDecl *> RuntimePds;
469 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
471 for (; begin != end; ++begin) {
472 const auto *It = *begin;
473 const auto *Can = It->getCanonicalDecl();
474 if (Can->isNonRuntimeProtocol())
475 NonRuntimePDs.insert(Can);
476 else
477 RuntimePds.push_back(Can);
480 // If there are no non-runtime protocols then we can just stop now.
481 if (NonRuntimePDs.empty())
482 return RuntimePds;
484 // Else we have to search through the non-runtime protocol's inheritancy
485 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486 // a non-runtime protocol without any parents. These are the "first-implied"
487 // protocols from a non-runtime protocol.
488 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489 for (const auto *PD : NonRuntimePDs)
490 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
492 // Walk the Runtime list to get all protocols implied via the inclusion of
493 // this protocol, e.g. all protocols it inherits from including itself.
494 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495 for (const auto *PD : RuntimePds) {
496 const auto *Can = PD->getCanonicalDecl();
497 AllImpliedProtocols.insert(Can);
498 Can->getImpliedProtocols(AllImpliedProtocols);
501 // Similar to above, walk the list of first-implied protocols to find the set
502 // all the protocols implied excluding the listed protocols themselves since
503 // they are not yet a part of the `RuntimePds` list.
504 for (const auto *PD : FirstImpliedProtos) {
505 PD->getImpliedProtocols(AllImpliedProtocols);
508 // From the first-implied list we have to finish building the final protocol
509 // list. If a protocol in the first-implied list was already implied via some
510 // inheritance path through some other protocols then it would be redundant to
511 // add it here and so we skip over it.
512 for (const auto *PD : FirstImpliedProtos) {
513 if (!AllImpliedProtocols.contains(PD)) {
514 RuntimePds.push_back(PD);
518 return RuntimePds;
521 /// Instead of '[[MyClass alloc] init]', try to generate
522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523 /// caller side, as well as the optimized objc_alloc.
524 static std::optional<llvm::Value *>
525 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
526 auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528 return std::nullopt;
530 // Match the exact pattern '[[MyClass alloc] init]'.
531 Selector Sel = OME->getSelector();
532 if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
533 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534 Sel.getNameForSlot(0) != "init")
535 return std::nullopt;
537 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538 // with 'cls' a Class.
539 auto *SubOME =
540 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
541 if (!SubOME)
542 return std::nullopt;
543 Selector SubSel = SubOME->getSelector();
545 if (!SubOME->getType()->isObjCObjectPointerType() ||
546 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
547 return std::nullopt;
549 llvm::Value *Receiver = nullptr;
550 switch (SubOME->getReceiverKind()) {
551 case ObjCMessageExpr::Instance:
552 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553 return std::nullopt;
554 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
555 break;
557 case ObjCMessageExpr::Class: {
558 QualType ReceiverType = SubOME->getClassReceiver();
559 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560 const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561 assert(ID && "null interface should be impossible here");
562 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
563 break;
565 case ObjCMessageExpr::SuperInstance:
566 case ObjCMessageExpr::SuperClass:
567 return std::nullopt;
570 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
573 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
574 ReturnValueSlot Return) {
575 // Only the lookup mechanism and first two arguments of the method
576 // implementation vary between runtimes. We can get the receiver and
577 // arguments in generic code.
579 bool isDelegateInit = E->isDelegateInitCall();
581 const ObjCMethodDecl *method = E->getMethodDecl();
583 // If the method is -retain, and the receiver's being loaded from
584 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586 method->getMethodFamily() == OMF_retain) {
587 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
588 LValue lvalue = EmitLValue(lvalueExpr);
589 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
590 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
594 if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
595 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
597 // We don't retain the receiver in delegate init calls, and this is
598 // safe because the receiver value is always loaded from 'self',
599 // which we zero out. We don't want to Block_copy block receivers,
600 // though.
601 bool retainSelf =
602 (!isDelegateInit &&
603 CGM.getLangOpts().ObjCAutoRefCount &&
604 method &&
605 method->hasAttr<NSConsumesSelfAttr>());
607 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608 bool isSuperMessage = false;
609 bool isClassMessage = false;
610 ObjCInterfaceDecl *OID = nullptr;
611 // Find the receiver
612 QualType ReceiverType;
613 llvm::Value *Receiver = nullptr;
614 switch (E->getReceiverKind()) {
615 case ObjCMessageExpr::Instance:
616 ReceiverType = E->getInstanceReceiver()->getType();
617 isClassMessage = ReceiverType->isObjCClassType();
618 if (retainSelf) {
619 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
620 E->getInstanceReceiver());
621 Receiver = ter.getPointer();
622 if (ter.getInt()) retainSelf = false;
623 } else
624 Receiver = EmitScalarExpr(E->getInstanceReceiver());
625 break;
627 case ObjCMessageExpr::Class: {
628 ReceiverType = E->getClassReceiver();
629 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630 assert(OID && "Invalid Objective-C class message send");
631 Receiver = Runtime.GetClass(*this, OID);
632 isClassMessage = true;
633 break;
636 case ObjCMessageExpr::SuperInstance:
637 ReceiverType = E->getSuperType();
638 Receiver = LoadObjCSelf();
639 isSuperMessage = true;
640 break;
642 case ObjCMessageExpr::SuperClass:
643 ReceiverType = E->getSuperType();
644 Receiver = LoadObjCSelf();
645 isSuperMessage = true;
646 isClassMessage = true;
647 break;
650 if (retainSelf)
651 Receiver = EmitARCRetainNonBlock(Receiver);
653 // In ARC, we sometimes want to "extend the lifetime"
654 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655 // messages.
656 if (getLangOpts().ObjCAutoRefCount && method &&
657 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
658 shouldExtendReceiverForInnerPointerMessage(E))
659 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
661 QualType ResultType = method ? method->getReturnType() : E->getType();
663 CallArgList Args;
664 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
666 // For delegate init calls in ARC, do an unsafe store of null into
667 // self. This represents the call taking direct ownership of that
668 // value. We have to do this after emitting the other call
669 // arguments because they might also reference self, but we don't
670 // have to worry about any of them modifying self because that would
671 // be an undefined read and write of an object in unordered
672 // expressions.
673 if (isDelegateInit) {
674 assert(getLangOpts().ObjCAutoRefCount &&
675 "delegate init calls should only be marked in ARC");
677 // Do an unsafe store of null into self.
678 Address selfAddr =
679 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
680 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
683 RValue result;
684 if (isSuperMessage) {
685 // super is only valid in an Objective-C method
686 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
687 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
689 E->getSelector(),
690 OMD->getClassInterface(),
691 isCategoryImpl,
692 Receiver,
693 isClassMessage,
694 Args,
695 method);
696 } else {
697 // Call runtime methods directly if we can.
698 result = Runtime.GeneratePossiblySpecializedMessageSend(
699 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
700 method, isClassMessage);
703 // For delegate init calls in ARC, implicitly store the result of
704 // the call back into self. This takes ownership of the value.
705 if (isDelegateInit) {
706 Address selfAddr =
707 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
708 llvm::Value *newSelf = result.getScalarVal();
710 // The delegate return type isn't necessarily a matching type; in
711 // fact, it's quite likely to be 'id'.
712 llvm::Type *selfTy = selfAddr.getElementType();
713 newSelf = Builder.CreateBitCast(newSelf, selfTy);
715 Builder.CreateStore(newSelf, selfAddr);
718 return AdjustObjCObjectType(*this, E->getType(), result);
721 namespace {
722 struct FinishARCDealloc final : EHScopeStack::Cleanup {
723 void Emit(CodeGenFunction &CGF, Flags flags) override {
724 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
726 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727 const ObjCInterfaceDecl *iface = impl->getClassInterface();
728 if (!iface->getSuperClass()) return;
730 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
732 // Call [super dealloc] if we have a superclass.
733 llvm::Value *self = CGF.LoadObjCSelf();
735 CallArgList args;
736 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
737 CGF.getContext().VoidTy,
738 method->getSelector(),
739 iface,
740 isCategory,
741 self,
742 /*is class msg*/ false,
743 args,
744 method);
749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750 /// the LLVM function and sets the other context used by
751 /// CodeGenFunction.
752 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
753 const ObjCContainerDecl *CD) {
754 SourceLocation StartLoc = OMD->getBeginLoc();
755 FunctionArgList args;
756 // Check if we should generate debug info for this method.
757 if (OMD->hasAttr<NoDebugAttr>())
758 DebugInfo = nullptr; // disable debug info indefinitely for this function
760 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
762 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
763 if (OMD->isDirectMethod()) {
764 Fn->setVisibility(llvm::Function::HiddenVisibility);
765 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
766 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
767 } else {
768 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
771 args.push_back(OMD->getSelfDecl());
772 if (!OMD->isDirectMethod())
773 args.push_back(OMD->getCmdDecl());
775 args.append(OMD->param_begin(), OMD->param_end());
777 CurGD = OMD;
778 CurEHLocation = OMD->getEndLoc();
780 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
781 OMD->getLocation(), StartLoc);
783 if (OMD->isDirectMethod()) {
784 // This function is a direct call, it has to implement a nil check
785 // on entry.
787 // TODO: possibly have several entry points to elide the check
788 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
791 // In ARC, certain methods get an extra cleanup.
792 if (CGM.getLangOpts().ObjCAutoRefCount &&
793 OMD->isInstanceMethod() &&
794 OMD->getSelector().isUnarySelector()) {
795 const IdentifierInfo *ident =
796 OMD->getSelector().getIdentifierInfoForSlot(0);
797 if (ident->isStr("dealloc"))
798 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
802 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803 LValue lvalue, QualType type);
805 /// Generate an Objective-C method. An Objective-C method is a C function with
806 /// its pointer, name, and types registered in the class structure.
807 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
808 StartObjCMethod(OMD, OMD->getClassInterface());
809 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
810 assert(isa<CompoundStmt>(OMD->getBody()));
811 incrementProfileCounter(OMD->getBody());
812 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
813 FinishFunction(OMD->getBodyRBrace());
816 /// emitStructGetterCall - Call the runtime function to load a property
817 /// into the return value slot.
818 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
819 bool isAtomic, bool hasStrong) {
820 ASTContext &Context = CGF.getContext();
822 llvm::Value *src =
823 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
824 .getPointer(CGF);
826 // objc_copyStruct (ReturnValue, &structIvar,
827 // sizeof (Type of Ivar), isAtomic, false);
828 CallArgList args;
830 llvm::Value *dest = CGF.ReturnValue.emitRawPointer(CGF);
831 args.add(RValue::get(dest), Context.VoidPtrTy);
832 args.add(RValue::get(src), Context.VoidPtrTy);
834 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
835 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
836 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
837 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
839 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
840 CGCallee callee = CGCallee::forDirect(fn);
841 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
842 callee, ReturnValueSlot(), args);
845 /// Determine whether the given architecture supports unaligned atomic
846 /// accesses. They don't have to be fast, just faster than a function
847 /// call and a mutex.
848 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
849 // FIXME: Allow unaligned atomic load/store on x86. (It is not
850 // currently supported by the backend.)
851 return false;
854 /// Return the maximum size that permits atomic accesses for the given
855 /// architecture.
856 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
857 llvm::Triple::ArchType arch) {
858 // ARM has 8-byte atomic accesses, but it's not clear whether we
859 // want to rely on them here.
861 // In the default case, just assume that any size up to a pointer is
862 // fine given adequate alignment.
863 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
866 namespace {
867 class PropertyImplStrategy {
868 public:
869 enum StrategyKind {
870 /// The 'native' strategy is to use the architecture's provided
871 /// reads and writes.
872 Native,
874 /// Use objc_setProperty and objc_getProperty.
875 GetSetProperty,
877 /// Use objc_setProperty for the setter, but use expression
878 /// evaluation for the getter.
879 SetPropertyAndExpressionGet,
881 /// Use objc_copyStruct.
882 CopyStruct,
884 /// The 'expression' strategy is to emit normal assignment or
885 /// lvalue-to-rvalue expressions.
886 Expression
889 StrategyKind getKind() const { return StrategyKind(Kind); }
891 bool hasStrongMember() const { return HasStrong; }
892 bool isAtomic() const { return IsAtomic; }
893 bool isCopy() const { return IsCopy; }
895 CharUnits getIvarSize() const { return IvarSize; }
896 CharUnits getIvarAlignment() const { return IvarAlignment; }
898 PropertyImplStrategy(CodeGenModule &CGM,
899 const ObjCPropertyImplDecl *propImpl);
901 private:
902 LLVM_PREFERRED_TYPE(StrategyKind)
903 unsigned Kind : 8;
904 LLVM_PREFERRED_TYPE(bool)
905 unsigned IsAtomic : 1;
906 LLVM_PREFERRED_TYPE(bool)
907 unsigned IsCopy : 1;
908 LLVM_PREFERRED_TYPE(bool)
909 unsigned HasStrong : 1;
911 CharUnits IvarSize;
912 CharUnits IvarAlignment;
916 /// Pick an implementation strategy for the given property synthesis.
917 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
918 const ObjCPropertyImplDecl *propImpl) {
919 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
920 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
922 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
923 IsAtomic = prop->isAtomic();
924 HasStrong = false; // doesn't matter here.
926 // Evaluate the ivar's size and alignment.
927 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
928 QualType ivarType = ivar->getType();
929 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
930 IvarSize = TInfo.Width;
931 IvarAlignment = TInfo.Align;
933 // If we have a copy property, we always have to use setProperty.
934 // If the property is atomic we need to use getProperty, but in
935 // the nonatomic case we can just use expression.
936 if (IsCopy) {
937 Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
938 return;
941 // Handle retain.
942 if (setterKind == ObjCPropertyDecl::Retain) {
943 // In GC-only, there's nothing special that needs to be done.
944 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
945 // fallthrough
947 // In ARC, if the property is non-atomic, use expression emission,
948 // which translates to objc_storeStrong. This isn't required, but
949 // it's slightly nicer.
950 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
951 // Using standard expression emission for the setter is only
952 // acceptable if the ivar is __strong, which won't be true if
953 // the property is annotated with __attribute__((NSObject)).
954 // TODO: falling all the way back to objc_setProperty here is
955 // just laziness, though; we could still use objc_storeStrong
956 // if we hacked it right.
957 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
958 Kind = Expression;
959 else
960 Kind = SetPropertyAndExpressionGet;
961 return;
963 // Otherwise, we need to at least use setProperty. However, if
964 // the property isn't atomic, we can use normal expression
965 // emission for the getter.
966 } else if (!IsAtomic) {
967 Kind = SetPropertyAndExpressionGet;
968 return;
970 // Otherwise, we have to use both setProperty and getProperty.
971 } else {
972 Kind = GetSetProperty;
973 return;
977 // If we're not atomic, just use expression accesses.
978 if (!IsAtomic) {
979 Kind = Expression;
980 return;
983 // Properties on bitfield ivars need to be emitted using expression
984 // accesses even if they're nominally atomic.
985 if (ivar->isBitField()) {
986 Kind = Expression;
987 return;
990 // GC-qualified or ARC-qualified ivars need to be emitted as
991 // expressions. This actually works out to being atomic anyway,
992 // except for ARC __strong, but that should trigger the above code.
993 if (ivarType.hasNonTrivialObjCLifetime() ||
994 (CGM.getLangOpts().getGC() &&
995 CGM.getContext().getObjCGCAttrKind(ivarType))) {
996 Kind = Expression;
997 return;
1000 // Compute whether the ivar has strong members.
1001 if (CGM.getLangOpts().getGC())
1002 if (const RecordType *recordType = ivarType->getAs<RecordType>())
1003 HasStrong = recordType->getDecl()->hasObjectMember();
1005 // We can never access structs with object members with a native
1006 // access, because we need to use write barriers. This is what
1007 // objc_copyStruct is for.
1008 if (HasStrong) {
1009 Kind = CopyStruct;
1010 return;
1013 // Otherwise, this is target-dependent and based on the size and
1014 // alignment of the ivar.
1016 // If the size of the ivar is not a power of two, give up. We don't
1017 // want to get into the business of doing compare-and-swaps.
1018 if (!IvarSize.isPowerOfTwo()) {
1019 Kind = CopyStruct;
1020 return;
1023 llvm::Triple::ArchType arch =
1024 CGM.getTarget().getTriple().getArch();
1026 // Most architectures require memory to fit within a single cache
1027 // line, so the alignment has to be at least the size of the access.
1028 // Otherwise we have to grab a lock.
1029 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1030 Kind = CopyStruct;
1031 return;
1034 // If the ivar's size exceeds the architecture's maximum atomic
1035 // access size, we have to use CopyStruct.
1036 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1037 Kind = CopyStruct;
1038 return;
1041 // Otherwise, we can use native loads and stores.
1042 Kind = Native;
1045 /// Generate an Objective-C property getter function.
1047 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1048 /// is illegal within a category.
1049 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1050 const ObjCPropertyImplDecl *PID) {
1051 llvm::Constant *AtomicHelperFn =
1052 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1053 ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1054 assert(OMD && "Invalid call to generate getter (empty method)");
1055 StartObjCMethod(OMD, IMP->getClassInterface());
1057 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1059 FinishFunction(OMD->getEndLoc());
1062 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1063 const Expr *getter = propImpl->getGetterCXXConstructor();
1064 if (!getter) return true;
1066 // Sema only makes only of these when the ivar has a C++ class type,
1067 // so the form is pretty constrained.
1069 // If the property has a reference type, we might just be binding a
1070 // reference, in which case the result will be a gl-value. We should
1071 // treat this as a non-trivial operation.
1072 if (getter->isGLValue())
1073 return false;
1075 // If we selected a trivial copy-constructor, we're okay.
1076 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1077 return (construct->getConstructor()->isTrivial());
1079 // The constructor might require cleanups (in which case it's never
1080 // trivial).
1081 assert(isa<ExprWithCleanups>(getter));
1082 return false;
1085 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1086 /// copy the ivar into the resturn slot.
1087 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1088 llvm::Value *returnAddr,
1089 ObjCIvarDecl *ivar,
1090 llvm::Constant *AtomicHelperFn) {
1091 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1092 // AtomicHelperFn);
1093 CallArgList args;
1095 // The 1st argument is the return Slot.
1096 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1098 // The 2nd argument is the address of the ivar.
1099 llvm::Value *ivarAddr =
1100 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1101 .getPointer(CGF);
1102 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1104 // Third argument is the helper function.
1105 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1107 llvm::FunctionCallee copyCppAtomicObjectFn =
1108 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1109 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1110 CGF.EmitCall(
1111 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1112 callee, ReturnValueSlot(), args);
1115 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1116 // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1117 // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1118 // being removed from the direct method ABI as the getter/setter caller would
1119 // never load one. For non-direct methods, this emits a load of the implicit
1120 // `_cmd` storage.
1121 static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1122 ObjCMethodDecl *MD) {
1123 if (MD->isDirectMethod()) {
1124 // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1125 // value. This will be passed to objc_getProperty/objc_setProperty, which
1126 // has not appeared bothered by the `_cmd` argument being undefined before.
1127 llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1128 return llvm::PoisonValue::get(selType);
1131 return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1134 void
1135 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1136 const ObjCPropertyImplDecl *propImpl,
1137 const ObjCMethodDecl *GetterMethodDecl,
1138 llvm::Constant *AtomicHelperFn) {
1140 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1142 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1143 if (!AtomicHelperFn) {
1144 LValue Src =
1145 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1146 LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1147 callCStructCopyConstructor(Dst, Src);
1148 } else {
1149 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1150 emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1151 ivar, AtomicHelperFn);
1153 return;
1156 // If there's a non-trivial 'get' expression, we just have to emit that.
1157 if (!hasTrivialGetExpr(propImpl)) {
1158 if (!AtomicHelperFn) {
1159 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1160 propImpl->getGetterCXXConstructor(),
1161 /* NRVOCandidate=*/nullptr);
1162 EmitReturnStmt(*ret);
1164 else {
1165 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1166 emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1167 ivar, AtomicHelperFn);
1169 return;
1172 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1173 QualType propType = prop->getType();
1174 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1176 // Pick an implementation strategy.
1177 PropertyImplStrategy strategy(CGM, propImpl);
1178 switch (strategy.getKind()) {
1179 case PropertyImplStrategy::Native: {
1180 // We don't need to do anything for a zero-size struct.
1181 if (strategy.getIvarSize().isZero())
1182 return;
1184 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1186 // Currently, all atomic accesses have to be through integer
1187 // types, so there's no point in trying to pick a prettier type.
1188 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1189 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1191 // Perform an atomic load. This does not impose ordering constraints.
1192 Address ivarAddr = LV.getAddress();
1193 ivarAddr = ivarAddr.withElementType(bitcastType);
1194 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1195 load->setAtomic(llvm::AtomicOrdering::Unordered);
1197 // Store that value into the return address. Doing this with a
1198 // bitcast is likely to produce some pretty ugly IR, but it's not
1199 // the *most* terrible thing in the world.
1200 llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1201 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1202 llvm::Value *ivarVal = load;
1203 if (ivarSize > retTySize) {
1204 bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1205 ivarVal = Builder.CreateTrunc(load, bitcastType);
1207 Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType));
1209 // Make sure we don't do an autorelease.
1210 AutoreleaseResult = false;
1211 return;
1214 case PropertyImplStrategy::GetSetProperty: {
1215 llvm::FunctionCallee getPropertyFn =
1216 CGM.getObjCRuntime().GetPropertyGetFunction();
1217 if (!getPropertyFn) {
1218 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1219 return;
1221 CGCallee callee = CGCallee::forDirect(getPropertyFn);
1223 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1224 // FIXME: Can't this be simpler? This might even be worse than the
1225 // corresponding gcc code.
1226 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1227 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1228 llvm::Value *ivarOffset =
1229 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1231 CallArgList args;
1232 args.add(RValue::get(self), getContext().getObjCIdType());
1233 args.add(RValue::get(cmd), getContext().getObjCSelType());
1234 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1235 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1236 getContext().BoolTy);
1238 // FIXME: We shouldn't need to get the function info here, the
1239 // runtime already should have computed it to build the function.
1240 llvm::CallBase *CallInstruction;
1241 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1242 getContext().getObjCIdType(), args),
1243 callee, ReturnValueSlot(), args, &CallInstruction);
1244 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1245 call->setTailCall();
1247 // We need to fix the type here. Ivars with copy & retain are
1248 // always objects so we don't need to worry about complex or
1249 // aggregates.
1250 RV = RValue::get(Builder.CreateBitCast(
1251 RV.getScalarVal(),
1252 getTypes().ConvertType(getterMethod->getReturnType())));
1254 EmitReturnOfRValue(RV, propType);
1256 // objc_getProperty does an autorelease, so we should suppress ours.
1257 AutoreleaseResult = false;
1259 return;
1262 case PropertyImplStrategy::CopyStruct:
1263 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1264 strategy.hasStrongMember());
1265 return;
1267 case PropertyImplStrategy::Expression:
1268 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1269 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1271 QualType ivarType = ivar->getType();
1272 switch (getEvaluationKind(ivarType)) {
1273 case TEK_Complex: {
1274 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1275 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1276 /*init*/ true);
1277 return;
1279 case TEK_Aggregate: {
1280 // The return value slot is guaranteed to not be aliased, but
1281 // that's not necessarily the same as "on the stack", so
1282 // we still potentially need objc_memmove_collectable.
1283 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1284 /* Src= */ LV, ivarType, getOverlapForReturnValue());
1285 return;
1287 case TEK_Scalar: {
1288 llvm::Value *value;
1289 if (propType->isReferenceType()) {
1290 value = LV.getAddress().emitRawPointer(*this);
1291 } else {
1292 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1293 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1294 if (getLangOpts().ObjCAutoRefCount) {
1295 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1296 } else {
1297 value = EmitARCLoadWeak(LV.getAddress());
1300 // Otherwise we want to do a simple load, suppressing the
1301 // final autorelease.
1302 } else {
1303 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1304 AutoreleaseResult = false;
1307 value = Builder.CreateBitCast(
1308 value, ConvertType(GetterMethodDecl->getReturnType()));
1311 EmitReturnOfRValue(RValue::get(value), propType);
1312 return;
1315 llvm_unreachable("bad evaluation kind");
1319 llvm_unreachable("bad @property implementation strategy!");
1322 /// emitStructSetterCall - Call the runtime function to store the value
1323 /// from the first formal parameter into the given ivar.
1324 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1325 ObjCIvarDecl *ivar) {
1326 // objc_copyStruct (&structIvar, &Arg,
1327 // sizeof (struct something), true, false);
1328 CallArgList args;
1330 // The first argument is the address of the ivar.
1331 llvm::Value *ivarAddr =
1332 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1333 .getPointer(CGF);
1334 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1335 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1337 // The second argument is the address of the parameter variable.
1338 ParmVarDecl *argVar = *OMD->param_begin();
1339 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1340 argVar->getType().getNonReferenceType(), VK_LValue,
1341 SourceLocation());
1342 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1343 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1345 // The third argument is the sizeof the type.
1346 llvm::Value *size =
1347 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1348 args.add(RValue::get(size), CGF.getContext().getSizeType());
1350 // The fourth argument is the 'isAtomic' flag.
1351 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1353 // The fifth argument is the 'hasStrong' flag.
1354 // FIXME: should this really always be false?
1355 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1357 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1358 CGCallee callee = CGCallee::forDirect(fn);
1359 CGF.EmitCall(
1360 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1361 callee, ReturnValueSlot(), args);
1364 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1365 /// the value from the first formal parameter into the given ivar, using
1366 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1367 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1368 ObjCMethodDecl *OMD,
1369 ObjCIvarDecl *ivar,
1370 llvm::Constant *AtomicHelperFn) {
1371 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1372 // AtomicHelperFn);
1373 CallArgList args;
1375 // The first argument is the address of the ivar.
1376 llvm::Value *ivarAddr =
1377 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1378 .getPointer(CGF);
1379 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1381 // The second argument is the address of the parameter variable.
1382 ParmVarDecl *argVar = *OMD->param_begin();
1383 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1384 argVar->getType().getNonReferenceType(), VK_LValue,
1385 SourceLocation());
1386 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1387 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1389 // Third argument is the helper function.
1390 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1392 llvm::FunctionCallee fn =
1393 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1394 CGCallee callee = CGCallee::forDirect(fn);
1395 CGF.EmitCall(
1396 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1397 callee, ReturnValueSlot(), args);
1401 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1402 Expr *setter = PID->getSetterCXXAssignment();
1403 if (!setter) return true;
1405 // Sema only makes only of these when the ivar has a C++ class type,
1406 // so the form is pretty constrained.
1408 // An operator call is trivial if the function it calls is trivial.
1409 // This also implies that there's nothing non-trivial going on with
1410 // the arguments, because operator= can only be trivial if it's a
1411 // synthesized assignment operator and therefore both parameters are
1412 // references.
1413 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1414 if (const FunctionDecl *callee
1415 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1416 if (callee->isTrivial())
1417 return true;
1418 return false;
1421 assert(isa<ExprWithCleanups>(setter));
1422 return false;
1425 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1426 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1427 return false;
1428 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1431 void
1432 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1433 const ObjCPropertyImplDecl *propImpl,
1434 llvm::Constant *AtomicHelperFn) {
1435 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1436 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1438 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1439 ParmVarDecl *PVD = *setterMethod->param_begin();
1440 if (!AtomicHelperFn) {
1441 // Call the move assignment operator instead of calling the copy
1442 // assignment operator and destructor.
1443 LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar,
1444 /*quals*/ 0);
1445 LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1446 callCStructMoveAssignmentOperator(Dst, Src);
1447 } else {
1448 // If atomic, assignment is called via a locking api.
1449 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1451 // Decativate the destructor for the setter parameter.
1452 DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1453 return;
1456 // Just use the setter expression if Sema gave us one and it's
1457 // non-trivial.
1458 if (!hasTrivialSetExpr(propImpl)) {
1459 if (!AtomicHelperFn)
1460 // If non-atomic, assignment is called directly.
1461 EmitStmt(propImpl->getSetterCXXAssignment());
1462 else
1463 // If atomic, assignment is called via a locking api.
1464 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1465 AtomicHelperFn);
1466 return;
1469 PropertyImplStrategy strategy(CGM, propImpl);
1470 switch (strategy.getKind()) {
1471 case PropertyImplStrategy::Native: {
1472 // We don't need to do anything for a zero-size struct.
1473 if (strategy.getIvarSize().isZero())
1474 return;
1476 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1478 LValue ivarLValue =
1479 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1480 Address ivarAddr = ivarLValue.getAddress();
1482 // Currently, all atomic accesses have to be through integer
1483 // types, so there's no point in trying to pick a prettier type.
1484 llvm::Type *castType = llvm::Type::getIntNTy(
1485 getLLVMContext(), getContext().toBits(strategy.getIvarSize()));
1487 // Cast both arguments to the chosen operation type.
1488 argAddr = argAddr.withElementType(castType);
1489 ivarAddr = ivarAddr.withElementType(castType);
1491 llvm::Value *load = Builder.CreateLoad(argAddr);
1493 // Perform an atomic store. There are no memory ordering requirements.
1494 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1495 store->setAtomic(llvm::AtomicOrdering::Unordered);
1496 return;
1499 case PropertyImplStrategy::GetSetProperty:
1500 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1502 llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1503 llvm::FunctionCallee setPropertyFn = nullptr;
1504 if (UseOptimizedSetter(CGM)) {
1505 // 10.8 and iOS 6.0 code and GC is off
1506 setOptimizedPropertyFn =
1507 CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1508 strategy.isAtomic(), strategy.isCopy());
1509 if (!setOptimizedPropertyFn) {
1510 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1511 return;
1514 else {
1515 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1516 if (!setPropertyFn) {
1517 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1518 return;
1522 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1523 // <is-atomic>, <is-copy>).
1524 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1525 llvm::Value *self =
1526 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1527 llvm::Value *ivarOffset =
1528 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1529 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1530 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1531 arg = Builder.CreateBitCast(arg, VoidPtrTy);
1533 CallArgList args;
1534 args.add(RValue::get(self), getContext().getObjCIdType());
1535 args.add(RValue::get(cmd), getContext().getObjCSelType());
1536 if (setOptimizedPropertyFn) {
1537 args.add(RValue::get(arg), getContext().getObjCIdType());
1538 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1539 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1540 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1541 callee, ReturnValueSlot(), args);
1542 } else {
1543 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1544 args.add(RValue::get(arg), getContext().getObjCIdType());
1545 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1546 getContext().BoolTy);
1547 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1548 getContext().BoolTy);
1549 // FIXME: We shouldn't need to get the function info here, the runtime
1550 // already should have computed it to build the function.
1551 CGCallee callee = CGCallee::forDirect(setPropertyFn);
1552 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1553 callee, ReturnValueSlot(), args);
1556 return;
1559 case PropertyImplStrategy::CopyStruct:
1560 emitStructSetterCall(*this, setterMethod, ivar);
1561 return;
1563 case PropertyImplStrategy::Expression:
1564 break;
1567 // Otherwise, fake up some ASTs and emit a normal assignment.
1568 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1569 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1570 VK_LValue, SourceLocation());
1571 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1572 CK_LValueToRValue, &self, VK_PRValue,
1573 FPOptionsOverride());
1574 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1575 SourceLocation(), SourceLocation(),
1576 &selfLoad, true, true);
1578 ParmVarDecl *argDecl = *setterMethod->param_begin();
1579 QualType argType = argDecl->getType().getNonReferenceType();
1580 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1581 SourceLocation());
1582 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1583 argType.getUnqualifiedType(), CK_LValueToRValue,
1584 &arg, VK_PRValue, FPOptionsOverride());
1586 // The property type can differ from the ivar type in some situations with
1587 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1588 // The following absurdity is just to ensure well-formed IR.
1589 CastKind argCK = CK_NoOp;
1590 if (ivarRef.getType()->isObjCObjectPointerType()) {
1591 if (argLoad.getType()->isObjCObjectPointerType())
1592 argCK = CK_BitCast;
1593 else if (argLoad.getType()->isBlockPointerType())
1594 argCK = CK_BlockPointerToObjCPointerCast;
1595 else
1596 argCK = CK_CPointerToObjCPointerCast;
1597 } else if (ivarRef.getType()->isBlockPointerType()) {
1598 if (argLoad.getType()->isBlockPointerType())
1599 argCK = CK_BitCast;
1600 else
1601 argCK = CK_AnyPointerToBlockPointerCast;
1602 } else if (ivarRef.getType()->isPointerType()) {
1603 argCK = CK_BitCast;
1604 } else if (argLoad.getType()->isAtomicType() &&
1605 !ivarRef.getType()->isAtomicType()) {
1606 argCK = CK_AtomicToNonAtomic;
1607 } else if (!argLoad.getType()->isAtomicType() &&
1608 ivarRef.getType()->isAtomicType()) {
1609 argCK = CK_NonAtomicToAtomic;
1611 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1612 &argLoad, VK_PRValue, FPOptionsOverride());
1613 Expr *finalArg = &argLoad;
1614 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1615 argLoad.getType()))
1616 finalArg = &argCast;
1618 BinaryOperator *assign = BinaryOperator::Create(
1619 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1620 VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1621 EmitStmt(assign);
1624 /// Generate an Objective-C property setter function.
1626 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1627 /// is illegal within a category.
1628 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1629 const ObjCPropertyImplDecl *PID) {
1630 llvm::Constant *AtomicHelperFn =
1631 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1632 ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1633 assert(OMD && "Invalid call to generate setter (empty method)");
1634 StartObjCMethod(OMD, IMP->getClassInterface());
1636 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1638 FinishFunction(OMD->getEndLoc());
1641 namespace {
1642 struct DestroyIvar final : EHScopeStack::Cleanup {
1643 private:
1644 llvm::Value *addr;
1645 const ObjCIvarDecl *ivar;
1646 CodeGenFunction::Destroyer *destroyer;
1647 bool useEHCleanupForArray;
1648 public:
1649 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1650 CodeGenFunction::Destroyer *destroyer,
1651 bool useEHCleanupForArray)
1652 : addr(addr), ivar(ivar), destroyer(destroyer),
1653 useEHCleanupForArray(useEHCleanupForArray) {}
1655 void Emit(CodeGenFunction &CGF, Flags flags) override {
1656 LValue lvalue
1657 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1658 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1659 flags.isForNormalCleanup() && useEHCleanupForArray);
1664 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1665 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1666 Address addr,
1667 QualType type) {
1668 llvm::Value *null = getNullForVariable(addr);
1669 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1672 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1673 ObjCImplementationDecl *impl) {
1674 CodeGenFunction::RunCleanupsScope scope(CGF);
1676 llvm::Value *self = CGF.LoadObjCSelf();
1678 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1679 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1680 ivar; ivar = ivar->getNextIvar()) {
1681 QualType type = ivar->getType();
1683 // Check whether the ivar is a destructible type.
1684 QualType::DestructionKind dtorKind = type.isDestructedType();
1685 if (!dtorKind) continue;
1687 CodeGenFunction::Destroyer *destroyer = nullptr;
1689 // Use a call to objc_storeStrong to destroy strong ivars, for the
1690 // general benefit of the tools.
1691 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1692 destroyer = destroyARCStrongWithStore;
1694 // Otherwise use the default for the destruction kind.
1695 } else {
1696 destroyer = CGF.getDestroyer(dtorKind);
1699 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1701 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1702 cleanupKind & EHCleanup);
1705 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1708 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1709 ObjCMethodDecl *MD,
1710 bool ctor) {
1711 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1712 StartObjCMethod(MD, IMP->getClassInterface());
1714 // Emit .cxx_construct.
1715 if (ctor) {
1716 // Suppress the final autorelease in ARC.
1717 AutoreleaseResult = false;
1719 for (const auto *IvarInit : IMP->inits()) {
1720 FieldDecl *Field = IvarInit->getAnyMember();
1721 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1722 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1723 LoadObjCSelf(), Ivar, 0);
1724 EmitAggExpr(IvarInit->getInit(),
1725 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1726 AggValueSlot::DoesNotNeedGCBarriers,
1727 AggValueSlot::IsNotAliased,
1728 AggValueSlot::DoesNotOverlap));
1730 // constructor returns 'self'.
1731 CodeGenTypes &Types = CGM.getTypes();
1732 QualType IdTy(CGM.getContext().getObjCIdType());
1733 llvm::Value *SelfAsId =
1734 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1735 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1737 // Emit .cxx_destruct.
1738 } else {
1739 emitCXXDestructMethod(*this, IMP);
1741 FinishFunction();
1744 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1745 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1746 DeclRefExpr DRE(getContext(), Self,
1747 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1748 Self->getType(), VK_LValue, SourceLocation());
1749 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1752 QualType CodeGenFunction::TypeOfSelfObject() {
1753 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1754 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1755 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1756 getContext().getCanonicalType(selfDecl->getType()));
1757 return PTy->getPointeeType();
1760 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1761 llvm::FunctionCallee EnumerationMutationFnPtr =
1762 CGM.getObjCRuntime().EnumerationMutationFunction();
1763 if (!EnumerationMutationFnPtr) {
1764 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1765 return;
1767 CGCallee EnumerationMutationFn =
1768 CGCallee::forDirect(EnumerationMutationFnPtr);
1770 CGDebugInfo *DI = getDebugInfo();
1771 if (DI)
1772 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1774 RunCleanupsScope ForScope(*this);
1776 // The local variable comes into scope immediately.
1777 AutoVarEmission variable = AutoVarEmission::invalid();
1778 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1779 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1781 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1783 // Fast enumeration state.
1784 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1785 Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1786 EmitNullInitialization(StatePtr, StateTy);
1788 // Number of elements in the items array.
1789 static const unsigned NumItems = 16;
1791 // Fetch the countByEnumeratingWithState:objects:count: selector.
1792 const IdentifierInfo *II[] = {
1793 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1794 &CGM.getContext().Idents.get("objects"),
1795 &CGM.getContext().Idents.get("count")};
1796 Selector FastEnumSel =
1797 CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1799 QualType ItemsTy = getContext().getConstantArrayType(
1800 getContext().getObjCIdType(), llvm::APInt(32, NumItems), nullptr,
1801 ArraySizeModifier::Normal, 0);
1802 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1804 // Emit the collection pointer. In ARC, we do a retain.
1805 llvm::Value *Collection;
1806 if (getLangOpts().ObjCAutoRefCount) {
1807 Collection = EmitARCRetainScalarExpr(S.getCollection());
1809 // Enter a cleanup to do the release.
1810 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1811 } else {
1812 Collection = EmitScalarExpr(S.getCollection());
1815 // The 'continue' label needs to appear within the cleanup for the
1816 // collection object.
1817 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1819 // Send it our message:
1820 CallArgList Args;
1822 // The first argument is a temporary of the enumeration-state type.
1823 Args.add(RValue::get(StatePtr, *this), getContext().getPointerType(StateTy));
1825 // The second argument is a temporary array with space for NumItems
1826 // pointers. We'll actually be loading elements from the array
1827 // pointer written into the control state; this buffer is so that
1828 // collections that *aren't* backed by arrays can still queue up
1829 // batches of elements.
1830 Args.add(RValue::get(ItemsPtr, *this), getContext().getPointerType(ItemsTy));
1832 // The third argument is the capacity of that temporary array.
1833 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1834 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1835 Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1837 // Start the enumeration.
1838 RValue CountRV =
1839 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1840 getContext().getNSUIntegerType(),
1841 FastEnumSel, Collection, Args);
1843 // The initial number of objects that were returned in the buffer.
1844 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1846 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1847 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1849 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1851 // If the limit pointer was zero to begin with, the collection is
1852 // empty; skip all this. Set the branch weight assuming this has the same
1853 // probability of exiting the loop as any other loop exit.
1854 uint64_t EntryCount = getCurrentProfileCount();
1855 Builder.CreateCondBr(
1856 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1857 LoopInitBB,
1858 createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1860 // Otherwise, initialize the loop.
1861 EmitBlock(LoopInitBB);
1863 // Save the initial mutations value. This is the value at an
1864 // address that was written into the state object by
1865 // countByEnumeratingWithState:objects:count:.
1866 Address StateMutationsPtrPtr =
1867 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1868 llvm::Value *StateMutationsPtr
1869 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1871 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1872 llvm::Value *initialMutations =
1873 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1874 getPointerAlign(), "forcoll.initial-mutations");
1876 // Start looping. This is the point we return to whenever we have a
1877 // fresh, non-empty batch of objects.
1878 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1879 EmitBlock(LoopBodyBB);
1881 // The current index into the buffer.
1882 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1883 index->addIncoming(zero, LoopInitBB);
1885 // The current buffer size.
1886 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1887 count->addIncoming(initialBufferLimit, LoopInitBB);
1889 incrementProfileCounter(&S);
1891 // Check whether the mutations value has changed from where it was
1892 // at start. StateMutationsPtr should actually be invariant between
1893 // refreshes.
1894 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1895 llvm::Value *currentMutations
1896 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1897 getPointerAlign(), "statemutations");
1899 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1900 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1902 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1903 WasNotMutatedBB, WasMutatedBB);
1905 // If so, call the enumeration-mutation function.
1906 EmitBlock(WasMutatedBB);
1907 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1908 llvm::Value *V =
1909 Builder.CreateBitCast(Collection, ObjCIdType);
1910 CallArgList Args2;
1911 Args2.add(RValue::get(V), getContext().getObjCIdType());
1912 // FIXME: We shouldn't need to get the function info here, the runtime already
1913 // should have computed it to build the function.
1914 EmitCall(
1915 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1916 EnumerationMutationFn, ReturnValueSlot(), Args2);
1918 // Otherwise, or if the mutation function returns, just continue.
1919 EmitBlock(WasNotMutatedBB);
1921 // Initialize the element variable.
1922 RunCleanupsScope elementVariableScope(*this);
1923 bool elementIsVariable;
1924 LValue elementLValue;
1925 QualType elementType;
1926 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1927 // Initialize the variable, in case it's a __block variable or something.
1928 EmitAutoVarInit(variable);
1930 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1931 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1932 D->getType(), VK_LValue, SourceLocation());
1933 elementLValue = EmitLValue(&tempDRE);
1934 elementType = D->getType();
1935 elementIsVariable = true;
1937 if (D->isARCPseudoStrong())
1938 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1939 } else {
1940 elementLValue = LValue(); // suppress warning
1941 elementType = cast<Expr>(S.getElement())->getType();
1942 elementIsVariable = false;
1944 llvm::Type *convertedElementType = ConvertType(elementType);
1946 // Fetch the buffer out of the enumeration state.
1947 // TODO: this pointer should actually be invariant between
1948 // refreshes, which would help us do certain loop optimizations.
1949 Address StateItemsPtr =
1950 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1951 llvm::Value *EnumStateItems =
1952 Builder.CreateLoad(StateItemsPtr, "stateitems");
1954 // Fetch the value at the current index from the buffer.
1955 llvm::Value *CurrentItemPtr = Builder.CreateInBoundsGEP(
1956 ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1957 llvm::Value *CurrentItem =
1958 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1960 if (SanOpts.has(SanitizerKind::ObjCCast)) {
1961 // Before using an item from the collection, check that the implicit cast
1962 // from id to the element type is valid. This is done with instrumentation
1963 // roughly corresponding to:
1965 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1966 const ObjCObjectPointerType *ObjPtrTy =
1967 elementType->getAsObjCInterfacePointerType();
1968 const ObjCInterfaceType *InterfaceTy =
1969 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1970 if (InterfaceTy) {
1971 SanitizerScope SanScope(this);
1972 auto &C = CGM.getContext();
1973 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1974 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1975 CallArgList IsKindOfClassArgs;
1976 llvm::Value *Cls =
1977 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1978 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1979 llvm::Value *IsClass =
1980 CGM.getObjCRuntime()
1981 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1982 IsKindOfClassSel, CurrentItem,
1983 IsKindOfClassArgs)
1984 .getScalarVal();
1985 llvm::Constant *StaticData[] = {
1986 EmitCheckSourceLocation(S.getBeginLoc()),
1987 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1988 EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1989 SanitizerHandler::InvalidObjCCast,
1990 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1994 // Cast that value to the right type.
1995 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1996 "currentitem");
1998 // Make sure we have an l-value. Yes, this gets evaluated every
1999 // time through the loop.
2000 if (!elementIsVariable) {
2001 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2002 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2003 } else {
2004 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2005 /*isInit*/ true);
2008 // If we do have an element variable, this assignment is the end of
2009 // its initialization.
2010 if (elementIsVariable)
2011 EmitAutoVarCleanups(variable);
2013 // Perform the loop body, setting up break and continue labels.
2014 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2016 RunCleanupsScope Scope(*this);
2017 EmitStmt(S.getBody());
2019 BreakContinueStack.pop_back();
2021 // Destroy the element variable now.
2022 elementVariableScope.ForceCleanup();
2024 // Check whether there are more elements.
2025 EmitBlock(AfterBody.getBlock());
2027 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2029 // First we check in the local buffer.
2030 llvm::Value *indexPlusOne =
2031 Builder.CreateNUWAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2033 // If we haven't overrun the buffer yet, we can continue.
2034 // Set the branch weights based on the simplifying assumption that this is
2035 // like a while-loop, i.e., ignoring that the false branch fetches more
2036 // elements and then returns to the loop.
2037 Builder.CreateCondBr(
2038 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2039 createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2041 index->addIncoming(indexPlusOne, AfterBody.getBlock());
2042 count->addIncoming(count, AfterBody.getBlock());
2044 // Otherwise, we have to fetch more elements.
2045 EmitBlock(FetchMoreBB);
2047 CountRV =
2048 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2049 getContext().getNSUIntegerType(),
2050 FastEnumSel, Collection, Args);
2052 // If we got a zero count, we're done.
2053 llvm::Value *refetchCount = CountRV.getScalarVal();
2055 // (note that the message send might split FetchMoreBB)
2056 index->addIncoming(zero, Builder.GetInsertBlock());
2057 count->addIncoming(refetchCount, Builder.GetInsertBlock());
2059 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2060 EmptyBB, LoopBodyBB);
2062 // No more elements.
2063 EmitBlock(EmptyBB);
2065 if (!elementIsVariable) {
2066 // If the element was not a declaration, set it to be null.
2068 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2069 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2070 EmitStoreThroughLValue(RValue::get(null), elementLValue);
2073 if (DI)
2074 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2076 ForScope.ForceCleanup();
2077 EmitBlock(LoopEnd.getBlock());
2080 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2081 CGM.getObjCRuntime().EmitTryStmt(*this, S);
2084 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2085 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2088 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2089 const ObjCAtSynchronizedStmt &S) {
2090 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2093 namespace {
2094 struct CallObjCRelease final : EHScopeStack::Cleanup {
2095 CallObjCRelease(llvm::Value *object) : object(object) {}
2096 llvm::Value *object;
2098 void Emit(CodeGenFunction &CGF, Flags flags) override {
2099 // Releases at the end of the full-expression are imprecise.
2100 CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2105 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
2106 /// release at the end of the full-expression.
2107 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2108 llvm::Value *object) {
2109 // If we're in a conditional branch, we need to make the cleanup
2110 // conditional.
2111 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2112 return object;
2115 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2116 llvm::Value *value) {
2117 return EmitARCRetainAutorelease(type, value);
2120 /// Given a number of pointers, inform the optimizer that they're
2121 /// being intrinsically used up until this point in the program.
2122 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2123 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2124 if (!fn)
2125 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2127 // This isn't really a "runtime" function, but as an intrinsic it
2128 // doesn't really matter as long as we align things up.
2129 EmitNounwindRuntimeCall(fn, values);
2132 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2133 /// that has operand bundle "clang.arc.attachedcall".
2134 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2135 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2136 if (!fn)
2137 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2138 EmitNounwindRuntimeCall(fn, values);
2141 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2142 if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2143 // If the target runtime doesn't naturally support ARC, emit weak
2144 // references to the runtime support library. We don't really
2145 // permit this to fail, but we need a particular relocation style.
2146 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2147 !CGM.getTriple().isOSBinFormatCOFF()) {
2148 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2153 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2154 llvm::FunctionCallee RTF) {
2155 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2158 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2159 CodeGenModule &CGM) {
2160 llvm::Function *fn = CGM.getIntrinsic(IntID);
2161 setARCRuntimeFunctionLinkage(CGM, fn);
2162 return fn;
2165 /// Perform an operation having the signature
2166 /// i8* (i8*)
2167 /// where a null input causes a no-op and returns null.
2168 static llvm::Value *emitARCValueOperation(
2169 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2170 llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2171 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2172 if (isa<llvm::ConstantPointerNull>(value))
2173 return value;
2175 if (!fn)
2176 fn = getARCIntrinsic(IntID, CGF.CGM);
2178 // Cast the argument to 'id'.
2179 llvm::Type *origType = returnType ? returnType : value->getType();
2180 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2182 // Call the function.
2183 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2184 call->setTailCallKind(tailKind);
2186 // Cast the result back to the original type.
2187 return CGF.Builder.CreateBitCast(call, origType);
2190 /// Perform an operation having the following signature:
2191 /// i8* (i8**)
2192 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2193 llvm::Function *&fn,
2194 llvm::Intrinsic::ID IntID) {
2195 if (!fn)
2196 fn = getARCIntrinsic(IntID, CGF.CGM);
2198 return CGF.EmitNounwindRuntimeCall(fn, addr.emitRawPointer(CGF));
2201 /// Perform an operation having the following signature:
2202 /// i8* (i8**, i8*)
2203 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2204 llvm::Value *value,
2205 llvm::Function *&fn,
2206 llvm::Intrinsic::ID IntID,
2207 bool ignored) {
2208 assert(addr.getElementType() == value->getType());
2210 if (!fn)
2211 fn = getARCIntrinsic(IntID, CGF.CGM);
2213 llvm::Type *origType = value->getType();
2215 llvm::Value *args[] = {
2216 CGF.Builder.CreateBitCast(addr.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2217 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)};
2218 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2220 if (ignored) return nullptr;
2222 return CGF.Builder.CreateBitCast(result, origType);
2225 /// Perform an operation having the following signature:
2226 /// void (i8**, i8**)
2227 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2228 llvm::Function *&fn,
2229 llvm::Intrinsic::ID IntID) {
2230 assert(dst.getType() == src.getType());
2232 if (!fn)
2233 fn = getARCIntrinsic(IntID, CGF.CGM);
2235 llvm::Value *args[] = {
2236 CGF.Builder.CreateBitCast(dst.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2237 CGF.Builder.CreateBitCast(src.emitRawPointer(CGF), CGF.Int8PtrPtrTy)};
2238 CGF.EmitNounwindRuntimeCall(fn, args);
2241 /// Perform an operation having the signature
2242 /// i8* (i8*)
2243 /// where a null input causes a no-op and returns null.
2244 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2245 llvm::Value *value,
2246 llvm::Type *returnType,
2247 llvm::FunctionCallee &fn,
2248 StringRef fnName) {
2249 if (isa<llvm::ConstantPointerNull>(value))
2250 return value;
2252 if (!fn) {
2253 llvm::FunctionType *fnType =
2254 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2255 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2257 // We have Native ARC, so set nonlazybind attribute for performance
2258 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2259 if (fnName == "objc_retain")
2260 f->addFnAttr(llvm::Attribute::NonLazyBind);
2263 // Cast the argument to 'id'.
2264 llvm::Type *origType = returnType ? returnType : value->getType();
2265 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2267 // Call the function.
2268 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2270 // Mark calls to objc_autorelease as tail on the assumption that methods
2271 // overriding autorelease do not touch anything on the stack.
2272 if (fnName == "objc_autorelease")
2273 if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2274 Call->setTailCall();
2276 // Cast the result back to the original type.
2277 return CGF.Builder.CreateBitCast(Inst, origType);
2280 /// Produce the code to do a retain. Based on the type, calls one of:
2281 /// call i8* \@objc_retain(i8* %value)
2282 /// call i8* \@objc_retainBlock(i8* %value)
2283 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2284 if (type->isBlockPointerType())
2285 return EmitARCRetainBlock(value, /*mandatory*/ false);
2286 else
2287 return EmitARCRetainNonBlock(value);
2290 /// Retain the given object, with normal retain semantics.
2291 /// call i8* \@objc_retain(i8* %value)
2292 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2293 return emitARCValueOperation(*this, value, nullptr,
2294 CGM.getObjCEntrypoints().objc_retain,
2295 llvm::Intrinsic::objc_retain);
2298 /// Retain the given block, with _Block_copy semantics.
2299 /// call i8* \@objc_retainBlock(i8* %value)
2301 /// \param mandatory - If false, emit the call with metadata
2302 /// indicating that it's okay for the optimizer to eliminate this call
2303 /// if it can prove that the block never escapes except down the stack.
2304 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2305 bool mandatory) {
2306 llvm::Value *result
2307 = emitARCValueOperation(*this, value, nullptr,
2308 CGM.getObjCEntrypoints().objc_retainBlock,
2309 llvm::Intrinsic::objc_retainBlock);
2311 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2312 // tell the optimizer that it doesn't need to do this copy if the
2313 // block doesn't escape, where being passed as an argument doesn't
2314 // count as escaping.
2315 if (!mandatory && isa<llvm::Instruction>(result)) {
2316 llvm::CallInst *call
2317 = cast<llvm::CallInst>(result->stripPointerCasts());
2318 assert(call->getCalledOperand() ==
2319 CGM.getObjCEntrypoints().objc_retainBlock);
2321 call->setMetadata("clang.arc.copy_on_escape",
2322 llvm::MDNode::get(Builder.getContext(), std::nullopt));
2325 return result;
2328 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2329 // Fetch the void(void) inline asm which marks that we're going to
2330 // do something with the autoreleased return value.
2331 llvm::InlineAsm *&marker
2332 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2333 if (!marker) {
2334 StringRef assembly
2335 = CGF.CGM.getTargetCodeGenInfo()
2336 .getARCRetainAutoreleasedReturnValueMarker();
2338 // If we have an empty assembly string, there's nothing to do.
2339 if (assembly.empty()) {
2341 // Otherwise, at -O0, build an inline asm that we're going to call
2342 // in a moment.
2343 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2344 llvm::FunctionType *type =
2345 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2347 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2349 // If we're at -O1 and above, we don't want to litter the code
2350 // with this marker yet, so leave a breadcrumb for the ARC
2351 // optimizer to pick up.
2352 } else {
2353 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2354 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2355 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2356 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2357 retainRVMarkerKey, str);
2362 // Call the marker asm if we made one, which we do only at -O0.
2363 if (marker)
2364 CGF.Builder.CreateCall(marker, std::nullopt,
2365 CGF.getBundlesForFunclet(marker));
2368 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2369 bool IsRetainRV,
2370 CodeGenFunction &CGF) {
2371 emitAutoreleasedReturnValueMarker(CGF);
2373 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2374 // retainRV or claimRV calls in the IR. We currently do this only when the
2375 // optimization level isn't -O0 since global-isel, which is currently run at
2376 // -O0, doesn't know about the operand bundle.
2377 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2378 llvm::Function *&EP = IsRetainRV
2379 ? EPs.objc_retainAutoreleasedReturnValue
2380 : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2381 llvm::Intrinsic::ID IID =
2382 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2383 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2384 EP = getARCIntrinsic(IID, CGF.CGM);
2386 llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2388 // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2389 // the target backend knows how to handle the operand bundle.
2390 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2391 (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2392 llvm::Value *bundleArgs[] = {EP};
2393 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2394 auto *oldCall = cast<llvm::CallBase>(value);
2395 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2396 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2397 newCall->copyMetadata(*oldCall);
2398 oldCall->replaceAllUsesWith(newCall);
2399 oldCall->eraseFromParent();
2400 CGF.EmitARCNoopIntrinsicUse(newCall);
2401 return newCall;
2404 bool isNoTail =
2405 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2406 llvm::CallInst::TailCallKind tailKind =
2407 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2408 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2411 /// Retain the given object which is the result of a function call.
2412 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2414 /// Yes, this function name is one character away from a different
2415 /// call with completely different semantics.
2416 llvm::Value *
2417 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2418 return emitOptimizedARCReturnCall(value, true, *this);
2421 /// Claim a possibly-autoreleased return value at +0. This is only
2422 /// valid to do in contexts which do not rely on the retain to keep
2423 /// the object valid for all of its uses; for example, when
2424 /// the value is ignored, or when it is being assigned to an
2425 /// __unsafe_unretained variable.
2427 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2428 llvm::Value *
2429 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2430 return emitOptimizedARCReturnCall(value, false, *this);
2433 /// Release the given object.
2434 /// call void \@objc_release(i8* %value)
2435 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2436 ARCPreciseLifetime_t precise) {
2437 if (isa<llvm::ConstantPointerNull>(value)) return;
2439 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2440 if (!fn)
2441 fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2443 // Cast the argument to 'id'.
2444 value = Builder.CreateBitCast(value, Int8PtrTy);
2446 // Call objc_release.
2447 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2449 if (precise == ARCImpreciseLifetime) {
2450 call->setMetadata("clang.imprecise_release",
2451 llvm::MDNode::get(Builder.getContext(), std::nullopt));
2455 /// Destroy a __strong variable.
2457 /// At -O0, emit a call to store 'null' into the address;
2458 /// instrumenting tools prefer this because the address is exposed,
2459 /// but it's relatively cumbersome to optimize.
2461 /// At -O1 and above, just load and call objc_release.
2463 /// call void \@objc_storeStrong(i8** %addr, i8* null)
2464 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2465 ARCPreciseLifetime_t precise) {
2466 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2467 llvm::Value *null = getNullForVariable(addr);
2468 EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2469 return;
2472 llvm::Value *value = Builder.CreateLoad(addr);
2473 EmitARCRelease(value, precise);
2476 /// Store into a strong object. Always calls this:
2477 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2478 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2479 llvm::Value *value,
2480 bool ignored) {
2481 assert(addr.getElementType() == value->getType());
2483 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2484 if (!fn)
2485 fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2487 llvm::Value *args[] = {
2488 Builder.CreateBitCast(addr.emitRawPointer(*this), Int8PtrPtrTy),
2489 Builder.CreateBitCast(value, Int8PtrTy)};
2490 EmitNounwindRuntimeCall(fn, args);
2492 if (ignored) return nullptr;
2493 return value;
2496 /// Store into a strong object. Sometimes calls this:
2497 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2498 /// Other times, breaks it down into components.
2499 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2500 llvm::Value *newValue,
2501 bool ignored) {
2502 QualType type = dst.getType();
2503 bool isBlock = type->isBlockPointerType();
2505 // Use a store barrier at -O0 unless this is a block type or the
2506 // lvalue is inadequately aligned.
2507 if (shouldUseFusedARCCalls() &&
2508 !isBlock &&
2509 (dst.getAlignment().isZero() ||
2510 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2511 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2514 // Otherwise, split it out.
2516 // Retain the new value.
2517 newValue = EmitARCRetain(type, newValue);
2519 // Read the old value.
2520 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2522 // Store. We do this before the release so that any deallocs won't
2523 // see the old value.
2524 EmitStoreOfScalar(newValue, dst);
2526 // Finally, release the old value.
2527 EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2529 return newValue;
2532 /// Autorelease the given object.
2533 /// call i8* \@objc_autorelease(i8* %value)
2534 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2535 return emitARCValueOperation(*this, value, nullptr,
2536 CGM.getObjCEntrypoints().objc_autorelease,
2537 llvm::Intrinsic::objc_autorelease);
2540 /// Autorelease the given object.
2541 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2542 llvm::Value *
2543 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2544 return emitARCValueOperation(*this, value, nullptr,
2545 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2546 llvm::Intrinsic::objc_autoreleaseReturnValue,
2547 llvm::CallInst::TCK_Tail);
2550 /// Do a fused retain/autorelease of the given object.
2551 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2552 llvm::Value *
2553 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2554 return emitARCValueOperation(*this, value, nullptr,
2555 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2556 llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2557 llvm::CallInst::TCK_Tail);
2560 /// Do a fused retain/autorelease of the given object.
2561 /// call i8* \@objc_retainAutorelease(i8* %value)
2562 /// or
2563 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2564 /// call i8* \@objc_autorelease(i8* %retain)
2565 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2566 llvm::Value *value) {
2567 if (!type->isBlockPointerType())
2568 return EmitARCRetainAutoreleaseNonBlock(value);
2570 if (isa<llvm::ConstantPointerNull>(value)) return value;
2572 llvm::Type *origType = value->getType();
2573 value = Builder.CreateBitCast(value, Int8PtrTy);
2574 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2575 value = EmitARCAutorelease(value);
2576 return Builder.CreateBitCast(value, origType);
2579 /// Do a fused retain/autorelease of the given object.
2580 /// call i8* \@objc_retainAutorelease(i8* %value)
2581 llvm::Value *
2582 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2583 return emitARCValueOperation(*this, value, nullptr,
2584 CGM.getObjCEntrypoints().objc_retainAutorelease,
2585 llvm::Intrinsic::objc_retainAutorelease);
2588 /// i8* \@objc_loadWeak(i8** %addr)
2589 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2590 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2591 return emitARCLoadOperation(*this, addr,
2592 CGM.getObjCEntrypoints().objc_loadWeak,
2593 llvm::Intrinsic::objc_loadWeak);
2596 /// i8* \@objc_loadWeakRetained(i8** %addr)
2597 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2598 return emitARCLoadOperation(*this, addr,
2599 CGM.getObjCEntrypoints().objc_loadWeakRetained,
2600 llvm::Intrinsic::objc_loadWeakRetained);
2603 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2604 /// Returns %value.
2605 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2606 llvm::Value *value,
2607 bool ignored) {
2608 return emitARCStoreOperation(*this, addr, value,
2609 CGM.getObjCEntrypoints().objc_storeWeak,
2610 llvm::Intrinsic::objc_storeWeak, ignored);
2613 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2614 /// Returns %value. %addr is known to not have a current weak entry.
2615 /// Essentially equivalent to:
2616 /// *addr = nil; objc_storeWeak(addr, value);
2617 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2618 // If we're initializing to null, just write null to memory; no need
2619 // to get the runtime involved. But don't do this if optimization
2620 // is enabled, because accounting for this would make the optimizer
2621 // much more complicated.
2622 if (isa<llvm::ConstantPointerNull>(value) &&
2623 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2624 Builder.CreateStore(value, addr);
2625 return;
2628 emitARCStoreOperation(*this, addr, value,
2629 CGM.getObjCEntrypoints().objc_initWeak,
2630 llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2633 /// void \@objc_destroyWeak(i8** %addr)
2634 /// Essentially objc_storeWeak(addr, nil).
2635 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2636 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2637 if (!fn)
2638 fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2640 EmitNounwindRuntimeCall(fn, addr.emitRawPointer(*this));
2643 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2644 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2645 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2646 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2647 emitARCCopyOperation(*this, dst, src,
2648 CGM.getObjCEntrypoints().objc_moveWeak,
2649 llvm::Intrinsic::objc_moveWeak);
2652 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2653 /// Disregards the current value in %dest. Essentially
2654 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2655 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2656 emitARCCopyOperation(*this, dst, src,
2657 CGM.getObjCEntrypoints().objc_copyWeak,
2658 llvm::Intrinsic::objc_copyWeak);
2661 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2662 Address SrcAddr) {
2663 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2664 Object = EmitObjCConsumeObject(Ty, Object);
2665 EmitARCStoreWeak(DstAddr, Object, false);
2668 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2669 Address SrcAddr) {
2670 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2671 Object = EmitObjCConsumeObject(Ty, Object);
2672 EmitARCStoreWeak(DstAddr, Object, false);
2673 EmitARCDestroyWeak(SrcAddr);
2676 /// Produce the code to do a objc_autoreleasepool_push.
2677 /// call i8* \@objc_autoreleasePoolPush(void)
2678 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2679 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2680 if (!fn)
2681 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2683 return EmitNounwindRuntimeCall(fn);
2686 /// Produce the code to do a primitive release.
2687 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
2688 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2689 assert(value->getType() == Int8PtrTy);
2691 if (getInvokeDest()) {
2692 // Call the runtime method not the intrinsic if we are handling exceptions
2693 llvm::FunctionCallee &fn =
2694 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2695 if (!fn) {
2696 llvm::FunctionType *fnType =
2697 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2698 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2699 setARCRuntimeFunctionLinkage(CGM, fn);
2702 // objc_autoreleasePoolPop can throw.
2703 EmitRuntimeCallOrInvoke(fn, value);
2704 } else {
2705 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2706 if (!fn)
2707 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2709 EmitRuntimeCall(fn, value);
2713 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2714 /// Which is: [[NSAutoreleasePool alloc] init];
2715 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2716 /// init is declared as: - (id) init; in its NSObject super class.
2718 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2719 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2720 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2721 // [NSAutoreleasePool alloc]
2722 const IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2723 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2724 CallArgList Args;
2725 RValue AllocRV =
2726 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2727 getContext().getObjCIdType(),
2728 AllocSel, Receiver, Args);
2730 // [Receiver init]
2731 Receiver = AllocRV.getScalarVal();
2732 II = &CGM.getContext().Idents.get("init");
2733 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2734 RValue InitRV =
2735 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2736 getContext().getObjCIdType(),
2737 InitSel, Receiver, Args);
2738 return InitRV.getScalarVal();
2741 /// Allocate the given objc object.
2742 /// call i8* \@objc_alloc(i8* %value)
2743 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2744 llvm::Type *resultType) {
2745 return emitObjCValueOperation(*this, value, resultType,
2746 CGM.getObjCEntrypoints().objc_alloc,
2747 "objc_alloc");
2750 /// Allocate the given objc object.
2751 /// call i8* \@objc_allocWithZone(i8* %value)
2752 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2753 llvm::Type *resultType) {
2754 return emitObjCValueOperation(*this, value, resultType,
2755 CGM.getObjCEntrypoints().objc_allocWithZone,
2756 "objc_allocWithZone");
2759 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2760 llvm::Type *resultType) {
2761 return emitObjCValueOperation(*this, value, resultType,
2762 CGM.getObjCEntrypoints().objc_alloc_init,
2763 "objc_alloc_init");
2766 /// Produce the code to do a primitive release.
2767 /// [tmp drain];
2768 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2769 const IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2770 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2771 CallArgList Args;
2772 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2773 getContext().VoidTy, DrainSel, Arg, Args);
2776 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2777 Address addr,
2778 QualType type) {
2779 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2782 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2783 Address addr,
2784 QualType type) {
2785 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2788 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2789 Address addr,
2790 QualType type) {
2791 CGF.EmitARCDestroyWeak(addr);
2794 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2795 QualType type) {
2796 llvm::Value *value = CGF.Builder.CreateLoad(addr);
2797 CGF.EmitARCIntrinsicUse(value);
2800 /// Autorelease the given object.
2801 /// call i8* \@objc_autorelease(i8* %value)
2802 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2803 llvm::Type *returnType) {
2804 return emitObjCValueOperation(
2805 *this, value, returnType,
2806 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2807 "objc_autorelease");
2810 /// Retain the given object, with normal retain semantics.
2811 /// call i8* \@objc_retain(i8* %value)
2812 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2813 llvm::Type *returnType) {
2814 return emitObjCValueOperation(
2815 *this, value, returnType,
2816 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2819 /// Release the given object.
2820 /// call void \@objc_release(i8* %value)
2821 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2822 ARCPreciseLifetime_t precise) {
2823 if (isa<llvm::ConstantPointerNull>(value)) return;
2825 llvm::FunctionCallee &fn =
2826 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2827 if (!fn) {
2828 llvm::FunctionType *fnType =
2829 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2830 fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2831 setARCRuntimeFunctionLinkage(CGM, fn);
2832 // We have Native ARC, so set nonlazybind attribute for performance
2833 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2834 f->addFnAttr(llvm::Attribute::NonLazyBind);
2837 // Cast the argument to 'id'.
2838 value = Builder.CreateBitCast(value, Int8PtrTy);
2840 // Call objc_release.
2841 llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2843 if (precise == ARCImpreciseLifetime) {
2844 call->setMetadata("clang.imprecise_release",
2845 llvm::MDNode::get(Builder.getContext(), std::nullopt));
2849 namespace {
2850 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2851 llvm::Value *Token;
2853 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2855 void Emit(CodeGenFunction &CGF, Flags flags) override {
2856 CGF.EmitObjCAutoreleasePoolPop(Token);
2859 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2860 llvm::Value *Token;
2862 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2864 void Emit(CodeGenFunction &CGF, Flags flags) override {
2865 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2870 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2871 if (CGM.getLangOpts().ObjCAutoRefCount)
2872 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2873 else
2874 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2877 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2878 switch (lifetime) {
2879 case Qualifiers::OCL_None:
2880 case Qualifiers::OCL_ExplicitNone:
2881 case Qualifiers::OCL_Strong:
2882 case Qualifiers::OCL_Autoreleasing:
2883 return true;
2885 case Qualifiers::OCL_Weak:
2886 return false;
2889 llvm_unreachable("impossible lifetime!");
2892 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2893 LValue lvalue,
2894 QualType type) {
2895 llvm::Value *result;
2896 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2897 if (shouldRetain) {
2898 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2899 } else {
2900 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2901 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2903 return TryEmitResult(result, !shouldRetain);
2906 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2907 const Expr *e) {
2908 e = e->IgnoreParens();
2909 QualType type = e->getType();
2911 // If we're loading retained from a __strong xvalue, we can avoid
2912 // an extra retain/release pair by zeroing out the source of this
2913 // "move" operation.
2914 if (e->isXValue() &&
2915 !type.isConstQualified() &&
2916 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2917 // Emit the lvalue.
2918 LValue lv = CGF.EmitLValue(e);
2920 // Load the object pointer.
2921 llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2922 SourceLocation()).getScalarVal();
2924 // Set the source pointer to NULL.
2925 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2927 return TryEmitResult(result, true);
2930 // As a very special optimization, in ARC++, if the l-value is the
2931 // result of a non-volatile assignment, do a simple retain of the
2932 // result of the call to objc_storeWeak instead of reloading.
2933 if (CGF.getLangOpts().CPlusPlus &&
2934 !type.isVolatileQualified() &&
2935 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2936 isa<BinaryOperator>(e) &&
2937 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2938 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2940 // Try to emit code for scalar constant instead of emitting LValue and
2941 // loading it because we are not guaranteed to have an l-value. One of such
2942 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2943 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2944 auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2945 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2946 return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2947 !shouldRetainObjCLifetime(type.getObjCLifetime()));
2950 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2953 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2954 llvm::Value *value)>
2955 ValueTransform;
2957 /// Insert code immediately after a call.
2959 // FIXME: We should find a way to emit the runtime call immediately
2960 // after the call is emitted to eliminate the need for this function.
2961 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2962 llvm::Value *value,
2963 ValueTransform doAfterCall,
2964 ValueTransform doFallback) {
2965 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2966 auto *callBase = dyn_cast<llvm::CallBase>(value);
2968 if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2969 // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2970 value = doFallback(CGF, value);
2971 } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2972 // Place the retain immediately following the call.
2973 CGF.Builder.SetInsertPoint(call->getParent(),
2974 ++llvm::BasicBlock::iterator(call));
2975 value = doAfterCall(CGF, value);
2976 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2977 // Place the retain at the beginning of the normal destination block.
2978 llvm::BasicBlock *BB = invoke->getNormalDest();
2979 CGF.Builder.SetInsertPoint(BB, BB->begin());
2980 value = doAfterCall(CGF, value);
2982 // Bitcasts can arise because of related-result returns. Rewrite
2983 // the operand.
2984 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2985 // Change the insert point to avoid emitting the fall-back call after the
2986 // bitcast.
2987 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2988 llvm::Value *operand = bitcast->getOperand(0);
2989 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2990 bitcast->setOperand(0, operand);
2991 value = bitcast;
2992 } else {
2993 auto *phi = dyn_cast<llvm::PHINode>(value);
2994 if (phi && phi->getNumIncomingValues() == 2 &&
2995 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2996 isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2997 // Handle phi instructions that are generated when it's necessary to check
2998 // whether the receiver of a message is null.
2999 llvm::Value *inVal = phi->getIncomingValue(0);
3000 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3001 phi->setIncomingValue(0, inVal);
3002 value = phi;
3003 } else {
3004 // Generic fall-back case.
3005 // Retain using the non-block variant: we never need to do a copy
3006 // of a block that's been returned to us.
3007 value = doFallback(CGF, value);
3011 CGF.Builder.restoreIP(ip);
3012 return value;
3015 /// Given that the given expression is some sort of call (which does
3016 /// not return retained), emit a retain following it.
3017 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3018 const Expr *e) {
3019 llvm::Value *value = CGF.EmitScalarExpr(e);
3020 return emitARCOperationAfterCall(CGF, value,
3021 [](CodeGenFunction &CGF, llvm::Value *value) {
3022 return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3024 [](CodeGenFunction &CGF, llvm::Value *value) {
3025 return CGF.EmitARCRetainNonBlock(value);
3029 /// Given that the given expression is some sort of call (which does
3030 /// not return retained), perform an unsafeClaim following it.
3031 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3032 const Expr *e) {
3033 llvm::Value *value = CGF.EmitScalarExpr(e);
3034 return emitARCOperationAfterCall(CGF, value,
3035 [](CodeGenFunction &CGF, llvm::Value *value) {
3036 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3038 [](CodeGenFunction &CGF, llvm::Value *value) {
3039 return value;
3043 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3044 bool allowUnsafeClaim) {
3045 if (allowUnsafeClaim &&
3046 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3047 return emitARCUnsafeClaimCallResult(*this, E);
3048 } else {
3049 llvm::Value *value = emitARCRetainCallResult(*this, E);
3050 return EmitObjCConsumeObject(E->getType(), value);
3054 /// Determine whether it might be important to emit a separate
3055 /// objc_retain_block on the result of the given expression, or
3056 /// whether it's okay to just emit it in a +1 context.
3057 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3058 assert(e->getType()->isBlockPointerType());
3059 e = e->IgnoreParens();
3061 // For future goodness, emit block expressions directly in +1
3062 // contexts if we can.
3063 if (isa<BlockExpr>(e))
3064 return false;
3066 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3067 switch (cast->getCastKind()) {
3068 // Emitting these operations in +1 contexts is goodness.
3069 case CK_LValueToRValue:
3070 case CK_ARCReclaimReturnedObject:
3071 case CK_ARCConsumeObject:
3072 case CK_ARCProduceObject:
3073 return false;
3075 // These operations preserve a block type.
3076 case CK_NoOp:
3077 case CK_BitCast:
3078 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3080 // These operations are known to be bad (or haven't been considered).
3081 case CK_AnyPointerToBlockPointerCast:
3082 default:
3083 return true;
3087 return true;
3090 namespace {
3091 /// A CRTP base class for emitting expressions of retainable object
3092 /// pointer type in ARC.
3093 template <typename Impl, typename Result> class ARCExprEmitter {
3094 protected:
3095 CodeGenFunction &CGF;
3096 Impl &asImpl() { return *static_cast<Impl*>(this); }
3098 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3100 public:
3101 Result visit(const Expr *e);
3102 Result visitCastExpr(const CastExpr *e);
3103 Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3104 Result visitBlockExpr(const BlockExpr *e);
3105 Result visitBinaryOperator(const BinaryOperator *e);
3106 Result visitBinAssign(const BinaryOperator *e);
3107 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3108 Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3109 Result visitBinAssignWeak(const BinaryOperator *e);
3110 Result visitBinAssignStrong(const BinaryOperator *e);
3112 // Minimal implementation:
3113 // Result visitLValueToRValue(const Expr *e)
3114 // Result visitConsumeObject(const Expr *e)
3115 // Result visitExtendBlockObject(const Expr *e)
3116 // Result visitReclaimReturnedObject(const Expr *e)
3117 // Result visitCall(const Expr *e)
3118 // Result visitExpr(const Expr *e)
3120 // Result emitBitCast(Result result, llvm::Type *resultType)
3121 // llvm::Value *getValueOfResult(Result result)
3125 /// Try to emit a PseudoObjectExpr under special ARC rules.
3127 /// This massively duplicates emitPseudoObjectRValue.
3128 template <typename Impl, typename Result>
3129 Result
3130 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3131 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3133 // Find the result expression.
3134 const Expr *resultExpr = E->getResultExpr();
3135 assert(resultExpr);
3136 Result result;
3138 for (PseudoObjectExpr::const_semantics_iterator
3139 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3140 const Expr *semantic = *i;
3142 // If this semantic expression is an opaque value, bind it
3143 // to the result of its source expression.
3144 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3145 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3146 OVMA opaqueData;
3148 // If this semantic is the result of the pseudo-object
3149 // expression, try to evaluate the source as +1.
3150 if (ov == resultExpr) {
3151 assert(!OVMA::shouldBindAsLValue(ov));
3152 result = asImpl().visit(ov->getSourceExpr());
3153 opaqueData = OVMA::bind(CGF, ov,
3154 RValue::get(asImpl().getValueOfResult(result)));
3156 // Otherwise, just bind it.
3157 } else {
3158 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3160 opaques.push_back(opaqueData);
3162 // Otherwise, if the expression is the result, evaluate it
3163 // and remember the result.
3164 } else if (semantic == resultExpr) {
3165 result = asImpl().visit(semantic);
3167 // Otherwise, evaluate the expression in an ignored context.
3168 } else {
3169 CGF.EmitIgnoredExpr(semantic);
3173 // Unbind all the opaques now.
3174 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3175 opaques[i].unbind(CGF);
3177 return result;
3180 template <typename Impl, typename Result>
3181 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3182 // The default implementation just forwards the expression to visitExpr.
3183 return asImpl().visitExpr(e);
3186 template <typename Impl, typename Result>
3187 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3188 switch (e->getCastKind()) {
3190 // No-op casts don't change the type, so we just ignore them.
3191 case CK_NoOp:
3192 return asImpl().visit(e->getSubExpr());
3194 // These casts can change the type.
3195 case CK_CPointerToObjCPointerCast:
3196 case CK_BlockPointerToObjCPointerCast:
3197 case CK_AnyPointerToBlockPointerCast:
3198 case CK_BitCast: {
3199 llvm::Type *resultType = CGF.ConvertType(e->getType());
3200 assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3201 Result result = asImpl().visit(e->getSubExpr());
3202 return asImpl().emitBitCast(result, resultType);
3205 // Handle some casts specially.
3206 case CK_LValueToRValue:
3207 return asImpl().visitLValueToRValue(e->getSubExpr());
3208 case CK_ARCConsumeObject:
3209 return asImpl().visitConsumeObject(e->getSubExpr());
3210 case CK_ARCExtendBlockObject:
3211 return asImpl().visitExtendBlockObject(e->getSubExpr());
3212 case CK_ARCReclaimReturnedObject:
3213 return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3215 // Otherwise, use the default logic.
3216 default:
3217 return asImpl().visitExpr(e);
3221 template <typename Impl, typename Result>
3222 Result
3223 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3224 switch (e->getOpcode()) {
3225 case BO_Comma:
3226 CGF.EmitIgnoredExpr(e->getLHS());
3227 CGF.EnsureInsertPoint();
3228 return asImpl().visit(e->getRHS());
3230 case BO_Assign:
3231 return asImpl().visitBinAssign(e);
3233 default:
3234 return asImpl().visitExpr(e);
3238 template <typename Impl, typename Result>
3239 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3240 switch (e->getLHS()->getType().getObjCLifetime()) {
3241 case Qualifiers::OCL_ExplicitNone:
3242 return asImpl().visitBinAssignUnsafeUnretained(e);
3244 case Qualifiers::OCL_Weak:
3245 return asImpl().visitBinAssignWeak(e);
3247 case Qualifiers::OCL_Autoreleasing:
3248 return asImpl().visitBinAssignAutoreleasing(e);
3250 case Qualifiers::OCL_Strong:
3251 return asImpl().visitBinAssignStrong(e);
3253 case Qualifiers::OCL_None:
3254 return asImpl().visitExpr(e);
3256 llvm_unreachable("bad ObjC ownership qualifier");
3259 /// The default rule for __unsafe_unretained emits the RHS recursively,
3260 /// stores into the unsafe variable, and propagates the result outward.
3261 template <typename Impl, typename Result>
3262 Result ARCExprEmitter<Impl,Result>::
3263 visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3264 // Recursively emit the RHS.
3265 // For __block safety, do this before emitting the LHS.
3266 Result result = asImpl().visit(e->getRHS());
3268 // Perform the store.
3269 LValue lvalue =
3270 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3271 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3272 lvalue);
3274 return result;
3277 template <typename Impl, typename Result>
3278 Result
3279 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3280 return asImpl().visitExpr(e);
3283 template <typename Impl, typename Result>
3284 Result
3285 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3286 return asImpl().visitExpr(e);
3289 template <typename Impl, typename Result>
3290 Result
3291 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3292 return asImpl().visitExpr(e);
3295 /// The general expression-emission logic.
3296 template <typename Impl, typename Result>
3297 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3298 // We should *never* see a nested full-expression here, because if
3299 // we fail to emit at +1, our caller must not retain after we close
3300 // out the full-expression. This isn't as important in the unsafe
3301 // emitter.
3302 assert(!isa<ExprWithCleanups>(e));
3304 // Look through parens, __extension__, generic selection, etc.
3305 e = e->IgnoreParens();
3307 // Handle certain kinds of casts.
3308 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3309 return asImpl().visitCastExpr(ce);
3311 // Handle the comma operator.
3312 } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3313 return asImpl().visitBinaryOperator(op);
3315 // TODO: handle conditional operators here
3317 // For calls and message sends, use the retained-call logic.
3318 // Delegate inits are a special case in that they're the only
3319 // returns-retained expression that *isn't* surrounded by
3320 // a consume.
3321 } else if (isa<CallExpr>(e) ||
3322 (isa<ObjCMessageExpr>(e) &&
3323 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3324 return asImpl().visitCall(e);
3326 // Look through pseudo-object expressions.
3327 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3328 return asImpl().visitPseudoObjectExpr(pseudo);
3329 } else if (auto *be = dyn_cast<BlockExpr>(e))
3330 return asImpl().visitBlockExpr(be);
3332 return asImpl().visitExpr(e);
3335 namespace {
3337 /// An emitter for +1 results.
3338 struct ARCRetainExprEmitter :
3339 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3341 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3343 llvm::Value *getValueOfResult(TryEmitResult result) {
3344 return result.getPointer();
3347 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3348 llvm::Value *value = result.getPointer();
3349 value = CGF.Builder.CreateBitCast(value, resultType);
3350 result.setPointer(value);
3351 return result;
3354 TryEmitResult visitLValueToRValue(const Expr *e) {
3355 return tryEmitARCRetainLoadOfScalar(CGF, e);
3358 /// For consumptions, just emit the subexpression and thus elide
3359 /// the retain/release pair.
3360 TryEmitResult visitConsumeObject(const Expr *e) {
3361 llvm::Value *result = CGF.EmitScalarExpr(e);
3362 return TryEmitResult(result, true);
3365 TryEmitResult visitBlockExpr(const BlockExpr *e) {
3366 TryEmitResult result = visitExpr(e);
3367 // Avoid the block-retain if this is a block literal that doesn't need to be
3368 // copied to the heap.
3369 if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3370 e->getBlockDecl()->canAvoidCopyToHeap())
3371 result.setInt(true);
3372 return result;
3375 /// Block extends are net +0. Naively, we could just recurse on
3376 /// the subexpression, but actually we need to ensure that the
3377 /// value is copied as a block, so there's a little filter here.
3378 TryEmitResult visitExtendBlockObject(const Expr *e) {
3379 llvm::Value *result; // will be a +0 value
3381 // If we can't safely assume the sub-expression will produce a
3382 // block-copied value, emit the sub-expression at +0.
3383 if (shouldEmitSeparateBlockRetain(e)) {
3384 result = CGF.EmitScalarExpr(e);
3386 // Otherwise, try to emit the sub-expression at +1 recursively.
3387 } else {
3388 TryEmitResult subresult = asImpl().visit(e);
3390 // If that produced a retained value, just use that.
3391 if (subresult.getInt()) {
3392 return subresult;
3395 // Otherwise it's +0.
3396 result = subresult.getPointer();
3399 // Retain the object as a block.
3400 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3401 return TryEmitResult(result, true);
3404 /// For reclaims, emit the subexpression as a retained call and
3405 /// skip the consumption.
3406 TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3407 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3408 return TryEmitResult(result, true);
3411 /// When we have an undecorated call, retroactively do a claim.
3412 TryEmitResult visitCall(const Expr *e) {
3413 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3414 return TryEmitResult(result, true);
3417 // TODO: maybe special-case visitBinAssignWeak?
3419 TryEmitResult visitExpr(const Expr *e) {
3420 // We didn't find an obvious production, so emit what we've got and
3421 // tell the caller that we didn't manage to retain.
3422 llvm::Value *result = CGF.EmitScalarExpr(e);
3423 return TryEmitResult(result, false);
3428 static TryEmitResult
3429 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3430 return ARCRetainExprEmitter(CGF).visit(e);
3433 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3434 LValue lvalue,
3435 QualType type) {
3436 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3437 llvm::Value *value = result.getPointer();
3438 if (!result.getInt())
3439 value = CGF.EmitARCRetain(type, value);
3440 return value;
3443 /// EmitARCRetainScalarExpr - Semantically equivalent to
3444 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3445 /// best-effort attempt to peephole expressions that naturally produce
3446 /// retained objects.
3447 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3448 // The retain needs to happen within the full-expression.
3449 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3450 RunCleanupsScope scope(*this);
3451 return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3454 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3455 llvm::Value *value = result.getPointer();
3456 if (!result.getInt())
3457 value = EmitARCRetain(e->getType(), value);
3458 return value;
3461 llvm::Value *
3462 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3463 // The retain needs to happen within the full-expression.
3464 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3465 RunCleanupsScope scope(*this);
3466 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3469 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3470 llvm::Value *value = result.getPointer();
3471 if (result.getInt())
3472 value = EmitARCAutorelease(value);
3473 else
3474 value = EmitARCRetainAutorelease(e->getType(), value);
3475 return value;
3478 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3479 llvm::Value *result;
3480 bool doRetain;
3482 if (shouldEmitSeparateBlockRetain(e)) {
3483 result = EmitScalarExpr(e);
3484 doRetain = true;
3485 } else {
3486 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3487 result = subresult.getPointer();
3488 doRetain = !subresult.getInt();
3491 if (doRetain)
3492 result = EmitARCRetainBlock(result, /*mandatory*/ true);
3493 return EmitObjCConsumeObject(e->getType(), result);
3496 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3497 // In ARC, retain and autorelease the expression.
3498 if (getLangOpts().ObjCAutoRefCount) {
3499 // Do so before running any cleanups for the full-expression.
3500 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3501 return EmitARCRetainAutoreleaseScalarExpr(expr);
3504 // Otherwise, use the normal scalar-expression emission. The
3505 // exception machinery doesn't do anything special with the
3506 // exception like retaining it, so there's no safety associated with
3507 // only running cleanups after the throw has started, and when it
3508 // matters it tends to be substantially inferior code.
3509 return EmitScalarExpr(expr);
3512 namespace {
3514 /// An emitter for assigning into an __unsafe_unretained context.
3515 struct ARCUnsafeUnretainedExprEmitter :
3516 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3518 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3520 llvm::Value *getValueOfResult(llvm::Value *value) {
3521 return value;
3524 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3525 return CGF.Builder.CreateBitCast(value, resultType);
3528 llvm::Value *visitLValueToRValue(const Expr *e) {
3529 return CGF.EmitScalarExpr(e);
3532 /// For consumptions, just emit the subexpression and perform the
3533 /// consumption like normal.
3534 llvm::Value *visitConsumeObject(const Expr *e) {
3535 llvm::Value *value = CGF.EmitScalarExpr(e);
3536 return CGF.EmitObjCConsumeObject(e->getType(), value);
3539 /// No special logic for block extensions. (This probably can't
3540 /// actually happen in this emitter, though.)
3541 llvm::Value *visitExtendBlockObject(const Expr *e) {
3542 return CGF.EmitARCExtendBlockObject(e);
3545 /// For reclaims, perform an unsafeClaim if that's enabled.
3546 llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3547 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3550 /// When we have an undecorated call, just emit it without adding
3551 /// the unsafeClaim.
3552 llvm::Value *visitCall(const Expr *e) {
3553 return CGF.EmitScalarExpr(e);
3556 /// Just do normal scalar emission in the default case.
3557 llvm::Value *visitExpr(const Expr *e) {
3558 return CGF.EmitScalarExpr(e);
3563 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3564 const Expr *e) {
3565 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3568 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3569 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3570 /// avoiding any spurious retains, including by performing reclaims
3571 /// with objc_unsafeClaimAutoreleasedReturnValue.
3572 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3573 // Look through full-expressions.
3574 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3575 RunCleanupsScope scope(*this);
3576 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3579 return emitARCUnsafeUnretainedScalarExpr(*this, e);
3582 std::pair<LValue,llvm::Value*>
3583 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3584 bool ignored) {
3585 // Evaluate the RHS first. If we're ignoring the result, assume
3586 // that we can emit at an unsafe +0.
3587 llvm::Value *value;
3588 if (ignored) {
3589 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3590 } else {
3591 value = EmitScalarExpr(e->getRHS());
3594 // Emit the LHS and perform the store.
3595 LValue lvalue = EmitLValue(e->getLHS());
3596 EmitStoreOfScalar(value, lvalue);
3598 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3601 std::pair<LValue,llvm::Value*>
3602 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3603 bool ignored) {
3604 // Evaluate the RHS first.
3605 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3606 llvm::Value *value = result.getPointer();
3608 bool hasImmediateRetain = result.getInt();
3610 // If we didn't emit a retained object, and the l-value is of block
3611 // type, then we need to emit the block-retain immediately in case
3612 // it invalidates the l-value.
3613 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3614 value = EmitARCRetainBlock(value, /*mandatory*/ false);
3615 hasImmediateRetain = true;
3618 LValue lvalue = EmitLValue(e->getLHS());
3620 // If the RHS was emitted retained, expand this.
3621 if (hasImmediateRetain) {
3622 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3623 EmitStoreOfScalar(value, lvalue);
3624 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3625 } else {
3626 value = EmitARCStoreStrong(lvalue, value, ignored);
3629 return std::pair<LValue,llvm::Value*>(lvalue, value);
3632 std::pair<LValue,llvm::Value*>
3633 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3634 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3635 LValue lvalue = EmitLValue(e->getLHS());
3637 EmitStoreOfScalar(value, lvalue);
3639 return std::pair<LValue,llvm::Value*>(lvalue, value);
3642 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3643 const ObjCAutoreleasePoolStmt &ARPS) {
3644 const Stmt *subStmt = ARPS.getSubStmt();
3645 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3647 CGDebugInfo *DI = getDebugInfo();
3648 if (DI)
3649 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3651 // Keep track of the current cleanup stack depth.
3652 RunCleanupsScope Scope(*this);
3653 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3654 llvm::Value *token = EmitObjCAutoreleasePoolPush();
3655 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3656 } else {
3657 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3658 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3661 for (const auto *I : S.body())
3662 EmitStmt(I);
3664 if (DI)
3665 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3668 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3669 /// make sure it survives garbage collection until this point.
3670 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3671 // We just use an inline assembly.
3672 llvm::FunctionType *extenderType
3673 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3674 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3675 /* assembly */ "",
3676 /* constraints */ "r",
3677 /* side effects */ true);
3679 EmitNounwindRuntimeCall(extender, object);
3682 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3683 /// non-trivial copy assignment function, produce following helper function.
3684 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3686 llvm::Constant *
3687 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3688 const ObjCPropertyImplDecl *PID) {
3689 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3690 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3691 return nullptr;
3693 QualType Ty = PID->getPropertyIvarDecl()->getType();
3694 ASTContext &C = getContext();
3696 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3697 // Call the move assignment operator instead of calling the copy assignment
3698 // operator and destructor.
3699 CharUnits Alignment = C.getTypeAlignInChars(Ty);
3700 llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3701 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3702 return Fn;
3705 if (!getLangOpts().CPlusPlus ||
3706 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3707 return nullptr;
3708 if (!Ty->isRecordType())
3709 return nullptr;
3710 llvm::Constant *HelperFn = nullptr;
3711 if (hasTrivialSetExpr(PID))
3712 return nullptr;
3713 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3714 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3715 return HelperFn;
3717 const IdentifierInfo *II =
3718 &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3720 QualType ReturnTy = C.VoidTy;
3721 QualType DestTy = C.getPointerType(Ty);
3722 QualType SrcTy = Ty;
3723 SrcTy.addConst();
3724 SrcTy = C.getPointerType(SrcTy);
3726 SmallVector<QualType, 2> ArgTys;
3727 ArgTys.push_back(DestTy);
3728 ArgTys.push_back(SrcTy);
3729 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3731 FunctionDecl *FD = FunctionDecl::Create(
3732 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3733 FunctionTy, nullptr, SC_Static, false, false, false);
3735 FunctionArgList args;
3736 ParmVarDecl *Params[2];
3737 ParmVarDecl *DstDecl = ParmVarDecl::Create(
3738 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3739 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3740 /*DefArg=*/nullptr);
3741 args.push_back(Params[0] = DstDecl);
3742 ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3743 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3744 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3745 /*DefArg=*/nullptr);
3746 args.push_back(Params[1] = SrcDecl);
3747 FD->setParams(Params);
3749 const CGFunctionInfo &FI =
3750 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3752 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3754 llvm::Function *Fn =
3755 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3756 "__assign_helper_atomic_property_",
3757 &CGM.getModule());
3759 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3761 StartFunction(FD, ReturnTy, Fn, FI, args);
3763 DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3764 UnaryOperator *DST = UnaryOperator::Create(
3765 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3766 SourceLocation(), false, FPOptionsOverride());
3768 DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3769 UnaryOperator *SRC = UnaryOperator::Create(
3770 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3771 SourceLocation(), false, FPOptionsOverride());
3773 Expr *Args[2] = {DST, SRC};
3774 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3775 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3776 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3777 VK_LValue, SourceLocation(), FPOptionsOverride());
3779 EmitStmt(TheCall);
3781 FinishFunction();
3782 HelperFn = Fn;
3783 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3784 return HelperFn;
3787 llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3788 const ObjCPropertyImplDecl *PID) {
3789 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3790 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3791 return nullptr;
3793 QualType Ty = PD->getType();
3794 ASTContext &C = getContext();
3796 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3797 CharUnits Alignment = C.getTypeAlignInChars(Ty);
3798 llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3799 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3800 return Fn;
3803 if (!getLangOpts().CPlusPlus ||
3804 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3805 return nullptr;
3806 if (!Ty->isRecordType())
3807 return nullptr;
3808 llvm::Constant *HelperFn = nullptr;
3809 if (hasTrivialGetExpr(PID))
3810 return nullptr;
3811 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3812 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3813 return HelperFn;
3815 const IdentifierInfo *II =
3816 &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3818 QualType ReturnTy = C.VoidTy;
3819 QualType DestTy = C.getPointerType(Ty);
3820 QualType SrcTy = Ty;
3821 SrcTy.addConst();
3822 SrcTy = C.getPointerType(SrcTy);
3824 SmallVector<QualType, 2> ArgTys;
3825 ArgTys.push_back(DestTy);
3826 ArgTys.push_back(SrcTy);
3827 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3829 FunctionDecl *FD = FunctionDecl::Create(
3830 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3831 FunctionTy, nullptr, SC_Static, false, false, false);
3833 FunctionArgList args;
3834 ParmVarDecl *Params[2];
3835 ParmVarDecl *DstDecl = ParmVarDecl::Create(
3836 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3837 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3838 /*DefArg=*/nullptr);
3839 args.push_back(Params[0] = DstDecl);
3840 ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3841 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3842 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3843 /*DefArg=*/nullptr);
3844 args.push_back(Params[1] = SrcDecl);
3845 FD->setParams(Params);
3847 const CGFunctionInfo &FI =
3848 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3850 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3852 llvm::Function *Fn = llvm::Function::Create(
3853 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3854 &CGM.getModule());
3856 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3858 StartFunction(FD, ReturnTy, Fn, FI, args);
3860 DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3861 SourceLocation());
3863 UnaryOperator *SRC = UnaryOperator::Create(
3864 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3865 SourceLocation(), false, FPOptionsOverride());
3867 CXXConstructExpr *CXXConstExpr =
3868 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3870 SmallVector<Expr*, 4> ConstructorArgs;
3871 ConstructorArgs.push_back(SRC);
3872 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3873 CXXConstExpr->arg_end());
3875 CXXConstructExpr *TheCXXConstructExpr =
3876 CXXConstructExpr::Create(C, Ty, SourceLocation(),
3877 CXXConstExpr->getConstructor(),
3878 CXXConstExpr->isElidable(),
3879 ConstructorArgs,
3880 CXXConstExpr->hadMultipleCandidates(),
3881 CXXConstExpr->isListInitialization(),
3882 CXXConstExpr->isStdInitListInitialization(),
3883 CXXConstExpr->requiresZeroInitialization(),
3884 CXXConstExpr->getConstructionKind(),
3885 SourceRange());
3887 DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3888 SourceLocation());
3890 RValue DV = EmitAnyExpr(&DstExpr);
3891 CharUnits Alignment =
3892 getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3893 EmitAggExpr(TheCXXConstructExpr,
3894 AggValueSlot::forAddr(
3895 Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3896 Qualifiers(), AggValueSlot::IsDestructed,
3897 AggValueSlot::DoesNotNeedGCBarriers,
3898 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3900 FinishFunction();
3901 HelperFn = Fn;
3902 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3903 return HelperFn;
3906 llvm::Value *
3907 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3908 // Get selectors for retain/autorelease.
3909 const IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3910 Selector CopySelector =
3911 getContext().Selectors.getNullarySelector(CopyID);
3912 const IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3913 Selector AutoreleaseSelector =
3914 getContext().Selectors.getNullarySelector(AutoreleaseID);
3916 // Emit calls to retain/autorelease.
3917 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3918 llvm::Value *Val = Block;
3919 RValue Result;
3920 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3921 Ty, CopySelector,
3922 Val, CallArgList(), nullptr, nullptr);
3923 Val = Result.getScalarVal();
3924 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3925 Ty, AutoreleaseSelector,
3926 Val, CallArgList(), nullptr, nullptr);
3927 Val = Result.getScalarVal();
3928 return Val;
3931 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3932 switch (TT.getOS()) {
3933 case llvm::Triple::Darwin:
3934 case llvm::Triple::MacOSX:
3935 return llvm::MachO::PLATFORM_MACOS;
3936 case llvm::Triple::IOS:
3937 return llvm::MachO::PLATFORM_IOS;
3938 case llvm::Triple::TvOS:
3939 return llvm::MachO::PLATFORM_TVOS;
3940 case llvm::Triple::WatchOS:
3941 return llvm::MachO::PLATFORM_WATCHOS;
3942 case llvm::Triple::XROS:
3943 return llvm::MachO::PLATFORM_XROS;
3944 case llvm::Triple::DriverKit:
3945 return llvm::MachO::PLATFORM_DRIVERKIT;
3946 default:
3947 return llvm::MachO::PLATFORM_UNKNOWN;
3951 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3952 const VersionTuple &Version) {
3953 CodeGenModule &CGM = CGF.CGM;
3954 // Note: we intend to support multi-platform version checks, so reserve
3955 // the room for a dual platform checking invocation that will be
3956 // implemented in the future.
3957 llvm::SmallVector<llvm::Value *, 8> Args;
3959 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3960 std::optional<unsigned> Min = Version.getMinor(),
3961 SMin = Version.getSubminor();
3962 Args.push_back(
3963 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3964 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3965 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3966 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3969 assert(!Version.empty() && "unexpected empty version");
3970 EmitArgs(Version, CGM.getTarget().getTriple());
3972 if (!CGM.IsPlatformVersionAtLeastFn) {
3973 llvm::FunctionType *FTy = llvm::FunctionType::get(
3974 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3975 false);
3976 CGM.IsPlatformVersionAtLeastFn =
3977 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3980 llvm::Value *Check =
3981 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3982 return CGF.Builder.CreateICmpNE(Check,
3983 llvm::Constant::getNullValue(CGM.Int32Ty));
3986 llvm::Value *
3987 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3988 // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3989 if (CGM.getTarget().getTriple().isOSDarwin())
3990 return emitIsPlatformVersionAtLeast(*this, Version);
3992 if (!CGM.IsOSVersionAtLeastFn) {
3993 llvm::FunctionType *FTy =
3994 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3995 CGM.IsOSVersionAtLeastFn =
3996 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3999 std::optional<unsigned> Min = Version.getMinor(),
4000 SMin = Version.getSubminor();
4001 llvm::Value *Args[] = {
4002 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4003 llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4004 llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4006 llvm::Value *CallRes =
4007 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
4009 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4012 static bool isFoundationNeededForDarwinAvailabilityCheck(
4013 const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4014 VersionTuple FoundationDroppedInVersion;
4015 switch (TT.getOS()) {
4016 case llvm::Triple::IOS:
4017 case llvm::Triple::TvOS:
4018 FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4019 break;
4020 case llvm::Triple::WatchOS:
4021 FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4022 break;
4023 case llvm::Triple::Darwin:
4024 case llvm::Triple::MacOSX:
4025 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4026 break;
4027 case llvm::Triple::XROS:
4028 // XROS doesn't need Foundation.
4029 return false;
4030 case llvm::Triple::DriverKit:
4031 // DriverKit doesn't need Foundation.
4032 return false;
4033 default:
4034 llvm_unreachable("Unexpected OS");
4036 return TargetVersion < FoundationDroppedInVersion;
4039 void CodeGenModule::emitAtAvailableLinkGuard() {
4040 if (!IsPlatformVersionAtLeastFn)
4041 return;
4042 // @available requires CoreFoundation only on Darwin.
4043 if (!Target.getTriple().isOSDarwin())
4044 return;
4045 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4046 // watchOS 6+.
4047 if (!isFoundationNeededForDarwinAvailabilityCheck(
4048 Target.getTriple(), Target.getPlatformMinVersion()))
4049 return;
4050 // Add -framework CoreFoundation to the linker commands. We still want to
4051 // emit the core foundation reference down below because otherwise if
4052 // CoreFoundation is not used in the code, the linker won't link the
4053 // framework.
4054 auto &Context = getLLVMContext();
4055 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4056 llvm::MDString::get(Context, "CoreFoundation")};
4057 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4058 // Emit a reference to a symbol from CoreFoundation to ensure that
4059 // CoreFoundation is linked into the final binary.
4060 llvm::FunctionType *FTy =
4061 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4062 llvm::FunctionCallee CFFunc =
4063 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4065 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4066 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4067 CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4068 llvm::AttributeList(), /*Local=*/true);
4069 llvm::Function *CFLinkCheckFunc =
4070 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4071 if (CFLinkCheckFunc->empty()) {
4072 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4073 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4074 CodeGenFunction CGF(*this);
4075 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4076 CGF.EmitNounwindRuntimeCall(CFFunc,
4077 llvm::Constant::getNullValue(VoidPtrTy));
4078 CGF.Builder.CreateUnreachable();
4079 addCompilerUsedGlobal(CFLinkCheckFunc);
4083 CGObjCRuntime::~CGObjCRuntime() {}