1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This is the code that handles AST -> LLVM type lowering.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenTypes.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
29 using namespace clang
;
30 using namespace CodeGen
;
32 CodeGenTypes::CodeGenTypes(CodeGenModule
&cgm
)
33 : CGM(cgm
), Context(cgm
.getContext()), TheModule(cgm
.getModule()),
34 Target(cgm
.getTarget()), TheCXXABI(cgm
.getCXXABI()),
35 TheABIInfo(cgm
.getTargetCodeGenInfo().getABIInfo()) {
36 SkippedLayout
= false;
37 LongDoubleReferenced
= false;
40 CodeGenTypes::~CodeGenTypes() {
41 for (llvm::FoldingSet
<CGFunctionInfo
>::iterator
42 I
= FunctionInfos
.begin(), E
= FunctionInfos
.end(); I
!= E
; )
46 const CodeGenOptions
&CodeGenTypes::getCodeGenOpts() const {
47 return CGM
.getCodeGenOpts();
50 void CodeGenTypes::addRecordTypeName(const RecordDecl
*RD
,
53 SmallString
<256> TypeName
;
54 llvm::raw_svector_ostream
OS(TypeName
);
55 OS
<< RD
->getKindName() << '.';
57 // FIXME: We probably want to make more tweaks to the printing policy. For
58 // example, we should probably enable PrintCanonicalTypes and
59 // FullyQualifiedNames.
60 PrintingPolicy Policy
= RD
->getASTContext().getPrintingPolicy();
61 Policy
.SuppressInlineNamespace
= false;
63 // Name the codegen type after the typedef name
64 // if there is no tag type name available
65 if (RD
->getIdentifier()) {
66 // FIXME: We should not have to check for a null decl context here.
67 // Right now we do it because the implicit Obj-C decls don't have one.
68 if (RD
->getDeclContext())
69 RD
->printQualifiedName(OS
, Policy
);
71 RD
->printName(OS
, Policy
);
72 } else if (const TypedefNameDecl
*TDD
= RD
->getTypedefNameForAnonDecl()) {
73 // FIXME: We should not have to check for a null decl context here.
74 // Right now we do it because the implicit Obj-C decls don't have one.
75 if (TDD
->getDeclContext())
76 TDD
->printQualifiedName(OS
, Policy
);
85 Ty
->setName(OS
.str());
88 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
89 /// ConvertType in that it is used to convert to the memory representation for
90 /// a type. For example, the scalar representation for _Bool is i1, but the
91 /// memory representation is usually i8 or i32, depending on the target.
93 /// We generally assume that the alloc size of this type under the LLVM
94 /// data layout is the same as the size of the AST type. The alignment
95 /// does not have to match: Clang should always use explicit alignments
96 /// and packed structs as necessary to produce the layout it needs.
97 /// But the size does need to be exactly right or else things like struct
98 /// layout will break.
99 llvm::Type
*CodeGenTypes::ConvertTypeForMem(QualType T
) {
100 if (T
->isConstantMatrixType()) {
101 const Type
*Ty
= Context
.getCanonicalType(T
).getTypePtr();
102 const ConstantMatrixType
*MT
= cast
<ConstantMatrixType
>(Ty
);
103 return llvm::ArrayType::get(ConvertType(MT
->getElementType()),
104 MT
->getNumRows() * MT
->getNumColumns());
107 llvm::Type
*R
= ConvertType(T
);
109 // Check for the boolean vector case.
110 if (T
->isExtVectorBoolType()) {
111 auto *FixedVT
= cast
<llvm::FixedVectorType
>(R
);
112 // Pad to at least one byte.
113 uint64_t BytePadded
= std::max
<uint64_t>(FixedVT
->getNumElements(), 8);
114 return llvm::IntegerType::get(FixedVT
->getContext(), BytePadded
);
117 // If T is _Bool or a _BitInt type, ConvertType will produce an IR type
118 // with the exact semantic bit-width of the AST type; for example,
119 // _BitInt(17) will turn into i17. In memory, however, we need to store
120 // such values extended to their full storage size as decided by AST
121 // layout; this is an ABI requirement. Ideally, we would always use an
122 // integer type that's just the bit-size of the AST type; for example, if
123 // sizeof(_BitInt(17)) == 4, _BitInt(17) would turn into i32. That is what's
124 // returned by convertTypeForLoadStore. However, that type does not
125 // always satisfy the size requirement on memory representation types
126 // describe above. For example, a 32-bit platform might reasonably set
127 // sizeof(_BitInt(65)) == 12, but i96 is likely to have to have an alloc size
128 // of 16 bytes in the LLVM data layout. In these cases, we simply return
129 // a byte array of the appropriate size.
130 if (T
->isBitIntType()) {
131 if (typeRequiresSplitIntoByteArray(T
, R
))
132 return llvm::ArrayType::get(CGM
.Int8Ty
,
133 Context
.getTypeSizeInChars(T
).getQuantity());
134 return llvm::IntegerType::get(getLLVMContext(),
135 (unsigned)Context
.getTypeSize(T
));
138 if (R
->isIntegerTy(1))
139 return llvm::IntegerType::get(getLLVMContext(),
140 (unsigned)Context
.getTypeSize(T
));
142 // Else, don't map it.
146 bool CodeGenTypes::typeRequiresSplitIntoByteArray(QualType ASTTy
,
147 llvm::Type
*LLVMTy
) {
149 LLVMTy
= ConvertType(ASTTy
);
151 CharUnits ASTSize
= Context
.getTypeSizeInChars(ASTTy
);
153 CharUnits::fromQuantity(getDataLayout().getTypeAllocSize(LLVMTy
));
154 return ASTSize
!= LLVMSize
;
157 llvm::Type
*CodeGenTypes::convertTypeForLoadStore(QualType T
,
158 llvm::Type
*LLVMTy
) {
160 LLVMTy
= ConvertType(T
);
162 if (T
->isBitIntType())
163 return llvm::Type::getIntNTy(
164 getLLVMContext(), Context
.getTypeSizeInChars(T
).getQuantity() * 8);
166 if (LLVMTy
->isIntegerTy(1))
167 return llvm::IntegerType::get(getLLVMContext(),
168 (unsigned)Context
.getTypeSize(T
));
170 if (T
->isExtVectorBoolType())
171 return ConvertTypeForMem(T
);
176 /// isRecordLayoutComplete - Return true if the specified type is already
177 /// completely laid out.
178 bool CodeGenTypes::isRecordLayoutComplete(const Type
*Ty
) const {
179 llvm::DenseMap
<const Type
*, llvm::StructType
*>::const_iterator I
=
180 RecordDeclTypes
.find(Ty
);
181 return I
!= RecordDeclTypes
.end() && !I
->second
->isOpaque();
184 /// isFuncParamTypeConvertible - Return true if the specified type in a
185 /// function parameter or result position can be converted to an IR type at this
186 /// point. This boils down to being whether it is complete.
187 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty
) {
188 // Some ABIs cannot have their member pointers represented in IR unless
189 // certain circumstances have been reached.
190 if (const auto *MPT
= Ty
->getAs
<MemberPointerType
>())
191 return getCXXABI().isMemberPointerConvertible(MPT
);
193 // If this isn't a tagged type, we can convert it!
194 const TagType
*TT
= Ty
->getAs
<TagType
>();
195 if (!TT
) return true;
197 // Incomplete types cannot be converted.
198 return !TT
->isIncompleteType();
202 /// Code to verify a given function type is complete, i.e. the return type
203 /// and all of the parameter types are complete. Also check to see if we are in
204 /// a RS_StructPointer context, and if so whether any struct types have been
205 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
206 /// that cannot be converted to an IR type.
207 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType
*FT
) {
208 if (!isFuncParamTypeConvertible(FT
->getReturnType()))
211 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
))
212 for (unsigned i
= 0, e
= FPT
->getNumParams(); i
!= e
; i
++)
213 if (!isFuncParamTypeConvertible(FPT
->getParamType(i
)))
219 /// UpdateCompletedType - When we find the full definition for a TagDecl,
220 /// replace the 'opaque' type we previously made for it if applicable.
221 void CodeGenTypes::UpdateCompletedType(const TagDecl
*TD
) {
222 // If this is an enum being completed, then we flush all non-struct types from
223 // the cache. This allows function types and other things that may be derived
224 // from the enum to be recomputed.
225 if (const EnumDecl
*ED
= dyn_cast
<EnumDecl
>(TD
)) {
226 // Only flush the cache if we've actually already converted this type.
227 if (TypeCache
.count(ED
->getTypeForDecl())) {
228 // Okay, we formed some types based on this. We speculated that the enum
229 // would be lowered to i32, so we only need to flush the cache if this
231 if (!ConvertType(ED
->getIntegerType())->isIntegerTy(32))
234 // If necessary, provide the full definition of a type only used with a
235 // declaration so far.
236 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo())
237 DI
->completeType(ED
);
241 // If we completed a RecordDecl that we previously used and converted to an
242 // anonymous type, then go ahead and complete it now.
243 const RecordDecl
*RD
= cast
<RecordDecl
>(TD
);
244 if (RD
->isDependentType()) return;
246 // Only complete it if we converted it already. If we haven't converted it
247 // yet, we'll just do it lazily.
248 if (RecordDeclTypes
.count(Context
.getTagDeclType(RD
).getTypePtr()))
249 ConvertRecordDeclType(RD
);
251 // If necessary, provide the full definition of a type only used with a
252 // declaration so far.
253 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo())
254 DI
->completeType(RD
);
257 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl
*RD
) {
258 QualType T
= Context
.getRecordType(RD
);
259 T
= Context
.getCanonicalType(T
);
261 const Type
*Ty
= T
.getTypePtr();
262 if (RecordsWithOpaqueMemberPointers
.count(Ty
)) {
264 RecordsWithOpaqueMemberPointers
.clear();
268 static llvm::Type
*getTypeForFormat(llvm::LLVMContext
&VMContext
,
269 const llvm::fltSemantics
&format
,
270 bool UseNativeHalf
= false) {
271 if (&format
== &llvm::APFloat::IEEEhalf()) {
273 return llvm::Type::getHalfTy(VMContext
);
275 return llvm::Type::getInt16Ty(VMContext
);
277 if (&format
== &llvm::APFloat::BFloat())
278 return llvm::Type::getBFloatTy(VMContext
);
279 if (&format
== &llvm::APFloat::IEEEsingle())
280 return llvm::Type::getFloatTy(VMContext
);
281 if (&format
== &llvm::APFloat::IEEEdouble())
282 return llvm::Type::getDoubleTy(VMContext
);
283 if (&format
== &llvm::APFloat::IEEEquad())
284 return llvm::Type::getFP128Ty(VMContext
);
285 if (&format
== &llvm::APFloat::PPCDoubleDouble())
286 return llvm::Type::getPPC_FP128Ty(VMContext
);
287 if (&format
== &llvm::APFloat::x87DoubleExtended())
288 return llvm::Type::getX86_FP80Ty(VMContext
);
289 llvm_unreachable("Unknown float format!");
292 llvm::Type
*CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT
) {
293 assert(QFT
.isCanonical());
294 const FunctionType
*FT
= cast
<FunctionType
>(QFT
.getTypePtr());
295 // First, check whether we can build the full function type. If the
296 // function type depends on an incomplete type (e.g. a struct or enum), we
297 // cannot lower the function type.
298 if (!isFuncTypeConvertible(FT
)) {
299 // This function's type depends on an incomplete tag type.
301 // Force conversion of all the relevant record types, to make sure
302 // we re-convert the FunctionType when appropriate.
303 if (const RecordType
*RT
= FT
->getReturnType()->getAs
<RecordType
>())
304 ConvertRecordDeclType(RT
->getDecl());
305 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
))
306 for (unsigned i
= 0, e
= FPT
->getNumParams(); i
!= e
; i
++)
307 if (const RecordType
*RT
= FPT
->getParamType(i
)->getAs
<RecordType
>())
308 ConvertRecordDeclType(RT
->getDecl());
310 SkippedLayout
= true;
312 // Return a placeholder type.
313 return llvm::StructType::get(getLLVMContext());
316 // The function type can be built; call the appropriate routines to
318 const CGFunctionInfo
*FI
;
319 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
)) {
320 FI
= &arrangeFreeFunctionType(
321 CanQual
<FunctionProtoType
>::CreateUnsafe(QualType(FPT
, 0)));
323 const FunctionNoProtoType
*FNPT
= cast
<FunctionNoProtoType
>(FT
);
324 FI
= &arrangeFreeFunctionType(
325 CanQual
<FunctionNoProtoType
>::CreateUnsafe(QualType(FNPT
, 0)));
328 llvm::Type
*ResultType
= nullptr;
329 // If there is something higher level prodding our CGFunctionInfo, then
330 // don't recurse into it again.
331 if (FunctionsBeingProcessed
.count(FI
)) {
333 ResultType
= llvm::StructType::get(getLLVMContext());
334 SkippedLayout
= true;
337 // Otherwise, we're good to go, go ahead and convert it.
338 ResultType
= GetFunctionType(*FI
);
344 /// ConvertType - Convert the specified type to its LLVM form.
345 llvm::Type
*CodeGenTypes::ConvertType(QualType T
) {
346 T
= Context
.getCanonicalType(T
);
348 const Type
*Ty
= T
.getTypePtr();
350 // For the device-side compilation, CUDA device builtin surface/texture types
351 // may be represented in different types.
352 if (Context
.getLangOpts().CUDAIsDevice
) {
353 if (T
->isCUDADeviceBuiltinSurfaceType()) {
354 if (auto *Ty
= CGM
.getTargetCodeGenInfo()
355 .getCUDADeviceBuiltinSurfaceDeviceType())
357 } else if (T
->isCUDADeviceBuiltinTextureType()) {
358 if (auto *Ty
= CGM
.getTargetCodeGenInfo()
359 .getCUDADeviceBuiltinTextureDeviceType())
364 // RecordTypes are cached and processed specially.
365 if (const RecordType
*RT
= dyn_cast
<RecordType
>(Ty
))
366 return ConvertRecordDeclType(RT
->getDecl());
368 llvm::Type
*CachedType
= nullptr;
369 auto TCI
= TypeCache
.find(Ty
);
370 if (TCI
!= TypeCache
.end())
371 CachedType
= TCI
->second
;
372 // With expensive checks, check that the type we compute matches the
374 #ifndef EXPENSIVE_CHECKS
379 // If we don't have it in the cache, convert it now.
380 llvm::Type
*ResultType
= nullptr;
381 switch (Ty
->getTypeClass()) {
382 case Type::Record
: // Handled above.
383 #define TYPE(Class, Base)
384 #define ABSTRACT_TYPE(Class, Base)
385 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
386 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
387 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
388 #include "clang/AST/TypeNodes.inc"
389 llvm_unreachable("Non-canonical or dependent types aren't possible.");
391 case Type::Builtin
: {
392 switch (cast
<BuiltinType
>(Ty
)->getKind()) {
393 case BuiltinType::Void
:
394 case BuiltinType::ObjCId
:
395 case BuiltinType::ObjCClass
:
396 case BuiltinType::ObjCSel
:
397 // LLVM void type can only be used as the result of a function call. Just
398 // map to the same as char.
399 ResultType
= llvm::Type::getInt8Ty(getLLVMContext());
402 case BuiltinType::Bool
:
403 // Note that we always return bool as i1 for use as a scalar type.
404 ResultType
= llvm::Type::getInt1Ty(getLLVMContext());
407 case BuiltinType::Char_S
:
408 case BuiltinType::Char_U
:
409 case BuiltinType::SChar
:
410 case BuiltinType::UChar
:
411 case BuiltinType::Short
:
412 case BuiltinType::UShort
:
413 case BuiltinType::Int
:
414 case BuiltinType::UInt
:
415 case BuiltinType::Long
:
416 case BuiltinType::ULong
:
417 case BuiltinType::LongLong
:
418 case BuiltinType::ULongLong
:
419 case BuiltinType::WChar_S
:
420 case BuiltinType::WChar_U
:
421 case BuiltinType::Char8
:
422 case BuiltinType::Char16
:
423 case BuiltinType::Char32
:
424 case BuiltinType::ShortAccum
:
425 case BuiltinType::Accum
:
426 case BuiltinType::LongAccum
:
427 case BuiltinType::UShortAccum
:
428 case BuiltinType::UAccum
:
429 case BuiltinType::ULongAccum
:
430 case BuiltinType::ShortFract
:
431 case BuiltinType::Fract
:
432 case BuiltinType::LongFract
:
433 case BuiltinType::UShortFract
:
434 case BuiltinType::UFract
:
435 case BuiltinType::ULongFract
:
436 case BuiltinType::SatShortAccum
:
437 case BuiltinType::SatAccum
:
438 case BuiltinType::SatLongAccum
:
439 case BuiltinType::SatUShortAccum
:
440 case BuiltinType::SatUAccum
:
441 case BuiltinType::SatULongAccum
:
442 case BuiltinType::SatShortFract
:
443 case BuiltinType::SatFract
:
444 case BuiltinType::SatLongFract
:
445 case BuiltinType::SatUShortFract
:
446 case BuiltinType::SatUFract
:
447 case BuiltinType::SatULongFract
:
448 ResultType
= llvm::IntegerType::get(getLLVMContext(),
449 static_cast<unsigned>(Context
.getTypeSize(T
)));
452 case BuiltinType::Float16
:
454 getTypeForFormat(getLLVMContext(), Context
.getFloatTypeSemantics(T
),
455 /* UseNativeHalf = */ true);
458 case BuiltinType::Half
:
459 // Half FP can either be storage-only (lowered to i16) or native.
460 ResultType
= getTypeForFormat(
461 getLLVMContext(), Context
.getFloatTypeSemantics(T
),
462 Context
.getLangOpts().NativeHalfType
||
463 !Context
.getTargetInfo().useFP16ConversionIntrinsics());
465 case BuiltinType::LongDouble
:
466 LongDoubleReferenced
= true;
468 case BuiltinType::BFloat16
:
469 case BuiltinType::Float
:
470 case BuiltinType::Double
:
471 case BuiltinType::Float128
:
472 case BuiltinType::Ibm128
:
473 ResultType
= getTypeForFormat(getLLVMContext(),
474 Context
.getFloatTypeSemantics(T
),
475 /* UseNativeHalf = */ false);
478 case BuiltinType::NullPtr
:
479 // Model std::nullptr_t as i8*
480 ResultType
= llvm::PointerType::getUnqual(getLLVMContext());
483 case BuiltinType::UInt128
:
484 case BuiltinType::Int128
:
485 ResultType
= llvm::IntegerType::get(getLLVMContext(), 128);
488 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
489 case BuiltinType::Id:
490 #include "clang/Basic/OpenCLImageTypes.def"
491 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
492 case BuiltinType::Id:
493 #include "clang/Basic/OpenCLExtensionTypes.def"
494 case BuiltinType::OCLSampler
:
495 case BuiltinType::OCLEvent
:
496 case BuiltinType::OCLClkEvent
:
497 case BuiltinType::OCLQueue
:
498 case BuiltinType::OCLReserveID
:
499 ResultType
= CGM
.getOpenCLRuntime().convertOpenCLSpecificType(Ty
);
501 case BuiltinType::SveInt8
:
502 case BuiltinType::SveUint8
:
503 case BuiltinType::SveInt8x2
:
504 case BuiltinType::SveUint8x2
:
505 case BuiltinType::SveInt8x3
:
506 case BuiltinType::SveUint8x3
:
507 case BuiltinType::SveInt8x4
:
508 case BuiltinType::SveUint8x4
:
509 case BuiltinType::SveInt16
:
510 case BuiltinType::SveUint16
:
511 case BuiltinType::SveInt16x2
:
512 case BuiltinType::SveUint16x2
:
513 case BuiltinType::SveInt16x3
:
514 case BuiltinType::SveUint16x3
:
515 case BuiltinType::SveInt16x4
:
516 case BuiltinType::SveUint16x4
:
517 case BuiltinType::SveInt32
:
518 case BuiltinType::SveUint32
:
519 case BuiltinType::SveInt32x2
:
520 case BuiltinType::SveUint32x2
:
521 case BuiltinType::SveInt32x3
:
522 case BuiltinType::SveUint32x3
:
523 case BuiltinType::SveInt32x4
:
524 case BuiltinType::SveUint32x4
:
525 case BuiltinType::SveInt64
:
526 case BuiltinType::SveUint64
:
527 case BuiltinType::SveInt64x2
:
528 case BuiltinType::SveUint64x2
:
529 case BuiltinType::SveInt64x3
:
530 case BuiltinType::SveUint64x3
:
531 case BuiltinType::SveInt64x4
:
532 case BuiltinType::SveUint64x4
:
533 case BuiltinType::SveBool
:
534 case BuiltinType::SveBoolx2
:
535 case BuiltinType::SveBoolx4
:
536 case BuiltinType::SveFloat16
:
537 case BuiltinType::SveFloat16x2
:
538 case BuiltinType::SveFloat16x3
:
539 case BuiltinType::SveFloat16x4
:
540 case BuiltinType::SveFloat32
:
541 case BuiltinType::SveFloat32x2
:
542 case BuiltinType::SveFloat32x3
:
543 case BuiltinType::SveFloat32x4
:
544 case BuiltinType::SveFloat64
:
545 case BuiltinType::SveFloat64x2
:
546 case BuiltinType::SveFloat64x3
:
547 case BuiltinType::SveFloat64x4
:
548 case BuiltinType::SveBFloat16
:
549 case BuiltinType::SveBFloat16x2
:
550 case BuiltinType::SveBFloat16x3
:
551 case BuiltinType::SveBFloat16x4
: {
552 ASTContext::BuiltinVectorTypeInfo Info
=
553 Context
.getBuiltinVectorTypeInfo(cast
<BuiltinType
>(Ty
));
554 return llvm::ScalableVectorType::get(ConvertType(Info
.ElementType
),
555 Info
.EC
.getKnownMinValue() *
558 case BuiltinType::SveCount
:
559 return llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
560 #define PPC_VECTOR_TYPE(Name, Id, Size) \
561 case BuiltinType::Id: \
563 llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
565 #include "clang/Basic/PPCTypes.def"
566 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
567 #include "clang/Basic/RISCVVTypes.def"
569 ASTContext::BuiltinVectorTypeInfo Info
=
570 Context
.getBuiltinVectorTypeInfo(cast
<BuiltinType
>(Ty
));
571 // Tuple types are expressed as aggregregate types of the same scalable
572 // vector type (e.g. vint32m1x2_t is two vint32m1_t, which is {<vscale x
573 // 2 x i32>, <vscale x 2 x i32>}).
574 if (Info
.NumVectors
!= 1) {
575 llvm::Type
*EltTy
= llvm::ScalableVectorType::get(
576 ConvertType(Info
.ElementType
), Info
.EC
.getKnownMinValue());
577 llvm::SmallVector
<llvm::Type
*, 4> EltTys(Info
.NumVectors
, EltTy
);
578 return llvm::StructType::get(getLLVMContext(), EltTys
);
580 return llvm::ScalableVectorType::get(ConvertType(Info
.ElementType
),
581 Info
.EC
.getKnownMinValue());
583 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \
584 case BuiltinType::Id: { \
585 if (BuiltinType::Id == BuiltinType::WasmExternRef) \
586 ResultType = CGM.getTargetCodeGenInfo().getWasmExternrefReferenceType(); \
588 llvm_unreachable("Unexpected wasm reference builtin type!"); \
590 #include "clang/Basic/WebAssemblyReferenceTypes.def"
591 #define AMDGPU_OPAQUE_PTR_TYPE(Name, MangledName, AS, Width, Align, Id, \
593 case BuiltinType::Id: \
594 return llvm::PointerType::get(getLLVMContext(), AS);
595 #include "clang/Basic/AMDGPUTypes.def"
596 case BuiltinType::Dependent
:
597 #define BUILTIN_TYPE(Id, SingletonId)
598 #define PLACEHOLDER_TYPE(Id, SingletonId) \
599 case BuiltinType::Id:
600 #include "clang/AST/BuiltinTypes.def"
601 llvm_unreachable("Unexpected placeholder builtin type!");
606 case Type::DeducedTemplateSpecialization
:
607 llvm_unreachable("Unexpected undeduced type!");
608 case Type::Complex
: {
609 llvm::Type
*EltTy
= ConvertType(cast
<ComplexType
>(Ty
)->getElementType());
610 ResultType
= llvm::StructType::get(EltTy
, EltTy
);
613 case Type::LValueReference
:
614 case Type::RValueReference
: {
615 const ReferenceType
*RTy
= cast
<ReferenceType
>(Ty
);
616 QualType ETy
= RTy
->getPointeeType();
617 unsigned AS
= getTargetAddressSpace(ETy
);
618 ResultType
= llvm::PointerType::get(getLLVMContext(), AS
);
621 case Type::Pointer
: {
622 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
623 QualType ETy
= PTy
->getPointeeType();
624 unsigned AS
= getTargetAddressSpace(ETy
);
625 ResultType
= llvm::PointerType::get(getLLVMContext(), AS
);
629 case Type::VariableArray
: {
630 const VariableArrayType
*A
= cast
<VariableArrayType
>(Ty
);
631 assert(A
->getIndexTypeCVRQualifiers() == 0 &&
632 "FIXME: We only handle trivial array types so far!");
633 // VLAs resolve to the innermost element type; this matches
634 // the return of alloca, and there isn't any obviously better choice.
635 ResultType
= ConvertTypeForMem(A
->getElementType());
638 case Type::IncompleteArray
: {
639 const IncompleteArrayType
*A
= cast
<IncompleteArrayType
>(Ty
);
640 assert(A
->getIndexTypeCVRQualifiers() == 0 &&
641 "FIXME: We only handle trivial array types so far!");
642 // int X[] -> [0 x int], unless the element type is not sized. If it is
643 // unsized (e.g. an incomplete struct) just use [0 x i8].
644 ResultType
= ConvertTypeForMem(A
->getElementType());
645 if (!ResultType
->isSized()) {
646 SkippedLayout
= true;
647 ResultType
= llvm::Type::getInt8Ty(getLLVMContext());
649 ResultType
= llvm::ArrayType::get(ResultType
, 0);
652 case Type::ArrayParameter
:
653 case Type::ConstantArray
: {
654 const ConstantArrayType
*A
= cast
<ConstantArrayType
>(Ty
);
655 llvm::Type
*EltTy
= ConvertTypeForMem(A
->getElementType());
657 // Lower arrays of undefined struct type to arrays of i8 just to have a
659 if (!EltTy
->isSized()) {
660 SkippedLayout
= true;
661 EltTy
= llvm::Type::getInt8Ty(getLLVMContext());
664 ResultType
= llvm::ArrayType::get(EltTy
, A
->getZExtSize());
667 case Type::ExtVector
:
669 const auto *VT
= cast
<VectorType
>(Ty
);
670 // An ext_vector_type of Bool is really a vector of bits.
671 llvm::Type
*IRElemTy
= VT
->isExtVectorBoolType()
672 ? llvm::Type::getInt1Ty(getLLVMContext())
673 : ConvertType(VT
->getElementType());
674 ResultType
= llvm::FixedVectorType::get(IRElemTy
, VT
->getNumElements());
677 case Type::ConstantMatrix
: {
678 const ConstantMatrixType
*MT
= cast
<ConstantMatrixType
>(Ty
);
680 llvm::FixedVectorType::get(ConvertType(MT
->getElementType()),
681 MT
->getNumRows() * MT
->getNumColumns());
684 case Type::FunctionNoProto
:
685 case Type::FunctionProto
:
686 ResultType
= ConvertFunctionTypeInternal(T
);
688 case Type::ObjCObject
:
689 ResultType
= ConvertType(cast
<ObjCObjectType
>(Ty
)->getBaseType());
692 case Type::ObjCInterface
: {
693 // Objective-C interfaces are always opaque (outside of the
694 // runtime, which can do whatever it likes); we never refine
696 llvm::Type
*&T
= InterfaceTypes
[cast
<ObjCInterfaceType
>(Ty
)];
698 T
= llvm::StructType::create(getLLVMContext());
703 case Type::ObjCObjectPointer
:
704 ResultType
= llvm::PointerType::getUnqual(getLLVMContext());
708 const EnumDecl
*ED
= cast
<EnumType
>(Ty
)->getDecl();
709 if (ED
->isCompleteDefinition() || ED
->isFixed())
710 return ConvertType(ED
->getIntegerType());
711 // Return a placeholder 'i32' type. This can be changed later when the
712 // type is defined (see UpdateCompletedType), but is likely to be the
714 ResultType
= llvm::Type::getInt32Ty(getLLVMContext());
718 case Type::BlockPointer
: {
719 // Block pointers lower to function type. For function type,
720 // getTargetAddressSpace() returns default address space for
721 // function pointer i.e. program address space. Therefore, for block
722 // pointers, it is important to pass the pointee AST address space when
723 // calling getTargetAddressSpace(), to ensure that we get the LLVM IR
724 // address space for data pointers and not function pointers.
725 const QualType FTy
= cast
<BlockPointerType
>(Ty
)->getPointeeType();
726 unsigned AS
= Context
.getTargetAddressSpace(FTy
.getAddressSpace());
727 ResultType
= llvm::PointerType::get(getLLVMContext(), AS
);
731 case Type::MemberPointer
: {
732 auto *MPTy
= cast
<MemberPointerType
>(Ty
);
733 if (!getCXXABI().isMemberPointerConvertible(MPTy
)) {
734 auto *C
= MPTy
->getClass();
735 auto Insertion
= RecordsWithOpaqueMemberPointers
.insert({C
, nullptr});
736 if (Insertion
.second
)
737 Insertion
.first
->second
= llvm::StructType::create(getLLVMContext());
738 ResultType
= Insertion
.first
->second
;
740 ResultType
= getCXXABI().ConvertMemberPointerType(MPTy
);
746 QualType valueType
= cast
<AtomicType
>(Ty
)->getValueType();
747 ResultType
= ConvertTypeForMem(valueType
);
749 // Pad out to the inflated size if necessary.
750 uint64_t valueSize
= Context
.getTypeSize(valueType
);
751 uint64_t atomicSize
= Context
.getTypeSize(Ty
);
752 if (valueSize
!= atomicSize
) {
753 assert(valueSize
< atomicSize
);
754 llvm::Type
*elts
[] = {
756 llvm::ArrayType::get(CGM
.Int8Ty
, (atomicSize
- valueSize
) / 8)
759 llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts
));
764 ResultType
= CGM
.getOpenCLRuntime().getPipeType(cast
<PipeType
>(Ty
));
768 const auto &EIT
= cast
<BitIntType
>(Ty
);
769 ResultType
= llvm::Type::getIntNTy(getLLVMContext(), EIT
->getNumBits());
774 assert(ResultType
&& "Didn't convert a type?");
775 assert((!CachedType
|| CachedType
== ResultType
) &&
776 "Cached type doesn't match computed type");
778 TypeCache
[Ty
] = ResultType
;
782 bool CodeGenModule::isPaddedAtomicType(QualType type
) {
783 return isPaddedAtomicType(type
->castAs
<AtomicType
>());
786 bool CodeGenModule::isPaddedAtomicType(const AtomicType
*type
) {
787 return Context
.getTypeSize(type
) != Context
.getTypeSize(type
->getValueType());
790 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
791 llvm::StructType
*CodeGenTypes::ConvertRecordDeclType(const RecordDecl
*RD
) {
792 // TagDecl's are not necessarily unique, instead use the (clang)
793 // type connected to the decl.
794 const Type
*Key
= Context
.getTagDeclType(RD
).getTypePtr();
796 llvm::StructType
*&Entry
= RecordDeclTypes
[Key
];
798 // If we don't have a StructType at all yet, create the forward declaration.
800 Entry
= llvm::StructType::create(getLLVMContext());
801 addRecordTypeName(RD
, Entry
, "");
803 llvm::StructType
*Ty
= Entry
;
805 // If this is still a forward declaration, or the LLVM type is already
806 // complete, there's nothing more to do.
807 RD
= RD
->getDefinition();
808 if (!RD
|| !RD
->isCompleteDefinition() || !Ty
->isOpaque())
811 // Force conversion of non-virtual base classes recursively.
812 if (const CXXRecordDecl
*CRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
813 for (const auto &I
: CRD
->bases()) {
814 if (I
.isVirtual()) continue;
815 ConvertRecordDeclType(I
.getType()->castAs
<RecordType
>()->getDecl());
820 std::unique_ptr
<CGRecordLayout
> Layout
= ComputeRecordLayout(RD
, Ty
);
821 CGRecordLayouts
[Key
] = std::move(Layout
);
823 // If this struct blocked a FunctionType conversion, then recompute whatever
824 // was derived from that.
825 // FIXME: This is hugely overconservative.
832 /// getCGRecordLayout - Return record layout info for the given record decl.
833 const CGRecordLayout
&
834 CodeGenTypes::getCGRecordLayout(const RecordDecl
*RD
) {
835 const Type
*Key
= Context
.getTagDeclType(RD
).getTypePtr();
837 auto I
= CGRecordLayouts
.find(Key
);
838 if (I
!= CGRecordLayouts
.end())
840 // Compute the type information.
841 ConvertRecordDeclType(RD
);
844 I
= CGRecordLayouts
.find(Key
);
846 assert(I
!= CGRecordLayouts
.end() &&
847 "Unable to find record layout information for type");
851 bool CodeGenTypes::isPointerZeroInitializable(QualType T
) {
852 assert((T
->isAnyPointerType() || T
->isBlockPointerType()) && "Invalid type");
853 return isZeroInitializable(T
);
856 bool CodeGenTypes::isZeroInitializable(QualType T
) {
857 if (T
->getAs
<PointerType
>())
858 return Context
.getTargetNullPointerValue(T
) == 0;
860 if (const auto *AT
= Context
.getAsArrayType(T
)) {
861 if (isa
<IncompleteArrayType
>(AT
))
863 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(AT
))
864 if (Context
.getConstantArrayElementCount(CAT
) == 0)
866 T
= Context
.getBaseElementType(T
);
869 // Records are non-zero-initializable if they contain any
870 // non-zero-initializable subobjects.
871 if (const RecordType
*RT
= T
->getAs
<RecordType
>()) {
872 const RecordDecl
*RD
= RT
->getDecl();
873 return isZeroInitializable(RD
);
876 // We have to ask the ABI about member pointers.
877 if (const MemberPointerType
*MPT
= T
->getAs
<MemberPointerType
>())
878 return getCXXABI().isZeroInitializable(MPT
);
880 // Everything else is okay.
884 bool CodeGenTypes::isZeroInitializable(const RecordDecl
*RD
) {
885 return getCGRecordLayout(RD
).isZeroInitializable();
888 unsigned CodeGenTypes::getTargetAddressSpace(QualType T
) const {
889 // Return the address space for the type. If the type is a
890 // function type without an address space qualifier, the
891 // program address space is used. Otherwise, the target picks
892 // the best address space based on the type information
893 return T
->isFunctionType() && !T
.hasAddressSpace()
894 ? getDataLayout().getProgramAddressSpace()
895 : getContext().getTargetAddressSpace(T
.getAddressSpace());