[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / AssignmentTrackingAnalysis.cpp
blob5ef850d09d925f058869fb88320bd0a4940f9761
1 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
2 #include "LiveDebugValues/LiveDebugValues.h"
3 #include "llvm/ADT/BitVector.h"
4 #include "llvm/ADT/DenseMapInfo.h"
5 #include "llvm/ADT/IntervalMap.h"
6 #include "llvm/ADT/PostOrderIterator.h"
7 #include "llvm/ADT/STLExtras.h"
8 #include "llvm/ADT/SmallSet.h"
9 #include "llvm/ADT/Statistic.h"
10 #include "llvm/ADT/UniqueVector.h"
11 #include "llvm/Analysis/Interval.h"
12 #include "llvm/BinaryFormat/Dwarf.h"
13 #include "llvm/IR/BasicBlock.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/DebugInfo.h"
16 #include "llvm/IR/Function.h"
17 #include "llvm/IR/Instruction.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/PassManager.h"
20 #include "llvm/IR/PrintPasses.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include <assert.h>
27 #include <cstdint>
28 #include <optional>
29 #include <sstream>
30 #include <unordered_map>
32 using namespace llvm;
33 #define DEBUG_TYPE "debug-ata"
35 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
36 STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
37 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
38 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
40 static cl::opt<unsigned>
41 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
42 cl::desc("Maximum num basic blocks before debug info dropped"),
43 cl::Hidden);
44 /// Option for debugging the pass, determines if the memory location fragment
45 /// filling happens after generating the variable locations.
46 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
47 cl::Hidden);
48 /// Print the results of the analysis. Respects -filter-print-funcs.
49 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
50 cl::Hidden);
52 /// Coalesce adjacent dbg locs describing memory locations that have contiguous
53 /// fragments. This reduces the cost of LiveDebugValues which does SSA
54 /// construction for each explicitly stated variable fragment.
55 static cl::opt<cl::boolOrDefault>
56 CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden);
58 // Implicit conversions are disabled for enum class types, so unfortunately we
59 // need to create a DenseMapInfo wrapper around the specified underlying type.
60 template <> struct llvm::DenseMapInfo<VariableID> {
61 using Wrapped = DenseMapInfo<unsigned>;
62 static inline VariableID getEmptyKey() {
63 return static_cast<VariableID>(Wrapped::getEmptyKey());
65 static inline VariableID getTombstoneKey() {
66 return static_cast<VariableID>(Wrapped::getTombstoneKey());
68 static unsigned getHashValue(const VariableID &Val) {
69 return Wrapped::getHashValue(static_cast<unsigned>(Val));
71 static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
72 return LHS == RHS;
76 /// Helper class to build FunctionVarLocs, since that class isn't easy to
77 /// modify. TODO: There's not a great deal of value in the split, it could be
78 /// worth merging the two classes.
79 class FunctionVarLocsBuilder {
80 friend FunctionVarLocs;
81 UniqueVector<DebugVariable> Variables;
82 // Use an unordered_map so we don't invalidate iterators after
83 // insert/modifications.
84 std::unordered_map<const Instruction *, SmallVector<VarLocInfo>>
85 VarLocsBeforeInst;
87 SmallVector<VarLocInfo> SingleLocVars;
89 public:
90 unsigned getNumVariables() const { return Variables.size(); }
92 /// Find or insert \p V and return the ID.
93 VariableID insertVariable(DebugVariable V) {
94 return static_cast<VariableID>(Variables.insert(V));
97 /// Get a variable from its \p ID.
98 const DebugVariable &getVariable(VariableID ID) const {
99 return Variables[static_cast<unsigned>(ID)];
102 /// Return ptr to wedge of defs or nullptr if no defs come just before /p
103 /// Before.
104 const SmallVectorImpl<VarLocInfo> *getWedge(const Instruction *Before) const {
105 auto R = VarLocsBeforeInst.find(Before);
106 if (R == VarLocsBeforeInst.end())
107 return nullptr;
108 return &R->second;
111 /// Replace the defs that come just before /p Before with /p Wedge.
112 void setWedge(const Instruction *Before, SmallVector<VarLocInfo> &&Wedge) {
113 VarLocsBeforeInst[Before] = std::move(Wedge);
116 /// Add a def for a variable that is valid for its lifetime.
117 void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
118 RawLocationWrapper R) {
119 VarLocInfo VarLoc;
120 VarLoc.VariableID = insertVariable(Var);
121 VarLoc.Expr = Expr;
122 VarLoc.DL = DL;
123 VarLoc.Values = R;
124 SingleLocVars.emplace_back(VarLoc);
127 /// Add a def to the wedge of defs just before /p Before.
128 void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr,
129 DebugLoc DL, RawLocationWrapper R) {
130 VarLocInfo VarLoc;
131 VarLoc.VariableID = insertVariable(Var);
132 VarLoc.Expr = Expr;
133 VarLoc.DL = DL;
134 VarLoc.Values = R;
135 VarLocsBeforeInst[Before].emplace_back(VarLoc);
139 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
140 // Print the variable table first. TODO: Sorting by variable could make the
141 // output more stable?
142 unsigned Counter = -1;
143 OS << "=== Variables ===\n";
144 for (const DebugVariable &V : Variables) {
145 ++Counter;
146 // Skip first entry because it is a dummy entry.
147 if (Counter == 0) {
148 continue;
150 OS << "[" << Counter << "] " << V.getVariable()->getName();
151 if (auto F = V.getFragment())
152 OS << " bits [" << F->OffsetInBits << ", "
153 << F->OffsetInBits + F->SizeInBits << ")";
154 if (const auto *IA = V.getInlinedAt())
155 OS << " inlined-at " << *IA;
156 OS << "\n";
159 auto PrintLoc = [&OS](const VarLocInfo &Loc) {
160 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
161 << " Expr=" << *Loc.Expr << " Values=(";
162 for (auto *Op : Loc.Values.location_ops()) {
163 errs() << Op->getName() << " ";
165 errs() << ")\n";
168 // Print the single location variables.
169 OS << "=== Single location vars ===\n";
170 for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
171 ++It) {
172 PrintLoc(*It);
175 // Print the non-single-location defs in line with IR.
176 OS << "=== In-line variable defs ===";
177 for (const BasicBlock &BB : Fn) {
178 OS << "\n" << BB.getName() << ":\n";
179 for (const Instruction &I : BB) {
180 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
181 PrintLoc(*It);
183 OS << I << "\n";
188 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
189 // Add the single-location variables first.
190 for (const auto &VarLoc : Builder.SingleLocVars)
191 VarLocRecords.emplace_back(VarLoc);
192 // Mark the end of the section.
193 SingleVarLocEnd = VarLocRecords.size();
195 // Insert a contiguous block of VarLocInfos for each instruction, mapping it
196 // to the start and end position in the vector with VarLocsBeforeInst.
197 for (auto &P : Builder.VarLocsBeforeInst) {
198 unsigned BlockStart = VarLocRecords.size();
199 for (const VarLocInfo &VarLoc : P.second)
200 VarLocRecords.emplace_back(VarLoc);
201 unsigned BlockEnd = VarLocRecords.size();
202 // Record the start and end indices.
203 if (BlockEnd != BlockStart)
204 VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd};
207 // Copy the Variables vector from the builder's UniqueVector.
208 assert(Variables.empty() && "Expect clear before init");
209 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
210 // are one-based) so reserve an extra and insert a dummy.
211 Variables.reserve(Builder.Variables.size() + 1);
212 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
213 Variables.append(Builder.Variables.begin(), Builder.Variables.end());
216 void FunctionVarLocs::clear() {
217 Variables.clear();
218 VarLocRecords.clear();
219 VarLocsBeforeInst.clear();
220 SingleVarLocEnd = 0;
223 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p
224 /// Start as far as possible. Prepend \Expression with the offset and append it
225 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
226 /// value and modified expression.
227 static std::pair<Value *, DIExpression *>
228 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
229 DIExpression *Expression) {
230 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
231 Value *End =
232 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
233 SmallVector<uint64_t, 3> Ops;
234 if (OffsetInBytes.getBoolValue()) {
235 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
236 Expression = DIExpression::prependOpcodes(
237 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
239 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
240 return {End, Expression};
243 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
244 /// doesn't explicitly describe a memory location with DW_OP_deref or if the
245 /// expression is too complex to interpret.
246 static std::optional<int64_t>
247 getDerefOffsetInBytes(const DIExpression *DIExpr) {
248 int64_t Offset = 0;
249 const unsigned NumElements = DIExpr->getNumElements();
250 const auto Elements = DIExpr->getElements();
251 unsigned ExpectedDerefIdx = 0;
252 // Extract the offset.
253 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
254 Offset = Elements[1];
255 ExpectedDerefIdx = 2;
256 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
257 ExpectedDerefIdx = 3;
258 if (Elements[2] == dwarf::DW_OP_plus)
259 Offset = Elements[1];
260 else if (Elements[2] == dwarf::DW_OP_minus)
261 Offset = -Elements[1];
262 else
263 return std::nullopt;
266 // If that's all there is it means there's no deref.
267 if (ExpectedDerefIdx >= NumElements)
268 return std::nullopt;
270 // Check the next element is DW_OP_deref - otherwise this is too complex or
271 // isn't a deref expression.
272 if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref)
273 return std::nullopt;
275 // Check the final operation is either the DW_OP_deref or is a fragment.
276 if (NumElements == ExpectedDerefIdx + 1)
277 return Offset; // Ends with deref.
278 unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1;
279 unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2;
280 if (NumElements == ExpectedFragFinalIdx + 1 &&
281 Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment)
282 return Offset; // Ends with deref + fragment.
284 // Don't bother trying to interpret anything more complex.
285 return std::nullopt;
288 /// A whole (unfragmented) source variable.
289 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
290 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
291 return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
293 static DebugAggregate getAggregate(const DebugVariable &Var) {
294 return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
297 static bool shouldCoalesceFragments(Function &F) {
298 // Enabling fragment coalescing reduces compiler run time when instruction
299 // referencing is enabled. However, it may cause LiveDebugVariables to create
300 // incorrect locations. Since instruction-referencing mode effectively
301 // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
302 // has not been explicitly set and instruction-referencing is turned on.
303 switch (CoalesceAdjacentFragmentsOpt) {
304 case cl::boolOrDefault::BOU_UNSET:
305 return debuginfoShouldUseDebugInstrRef(
306 Triple(F.getParent()->getTargetTriple()));
307 case cl::boolOrDefault::BOU_TRUE:
308 return true;
309 case cl::boolOrDefault::BOU_FALSE:
310 return false;
312 llvm_unreachable("Unknown boolOrDefault value");
315 namespace {
316 /// In dwarf emission, the following sequence
317 /// 1. dbg.value ... Fragment(0, 64)
318 /// 2. dbg.value ... Fragment(0, 32)
319 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
320 /// the intersection of the fragments to having "no location"). This makes
321 /// sense for implicit location values because splitting the computed values
322 /// could be troublesome, and is probably quite uncommon. When we convert
323 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
324 /// a location (memory) rather than a value means we don't need to worry about
325 /// splitting any values, so we try to recover the rest of the fragment
326 /// location here.
327 /// This class performs a(nother) dataflow analysis over the function, adding
328 /// variable locations so that any bits of a variable with a memory location
329 /// have that location explicitly reinstated at each subsequent variable
330 /// location definition that that doesn't overwrite those bits. i.e. after a
331 /// variable location def, insert new defs for the memory location with
332 /// fragments for the difference of "all bits currently in memory" and "the
333 /// fragment of the second def".
334 class MemLocFragmentFill {
335 Function &Fn;
336 FunctionVarLocsBuilder *FnVarLocs;
337 const DenseSet<DebugAggregate> *VarsWithStackSlot;
338 bool CoalesceAdjacentFragments;
340 // 0 = no memory location.
341 using BaseAddress = unsigned;
342 using OffsetInBitsTy = unsigned;
343 using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
344 using FragsInMemMap = IntervalMap<
345 OffsetInBitsTy, BaseAddress,
346 IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
347 FragTraits>;
348 FragsInMemMap::Allocator IntervalMapAlloc;
349 using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
351 /// IDs for memory location base addresses in maps. Use 0 to indicate that
352 /// there's no memory location.
353 UniqueVector<RawLocationWrapper> Bases;
354 UniqueVector<DebugAggregate> Aggregates;
355 DenseMap<const BasicBlock *, VarFragMap> LiveIn;
356 DenseMap<const BasicBlock *, VarFragMap> LiveOut;
358 struct FragMemLoc {
359 unsigned Var;
360 unsigned Base;
361 unsigned OffsetInBits;
362 unsigned SizeInBits;
363 DebugLoc DL;
365 using InsertMap = MapVector<Instruction *, SmallVector<FragMemLoc>>;
367 /// BBInsertBeforeMap holds a description for the set of location defs to be
368 /// inserted after the analysis is complete. It is updated during the dataflow
369 /// and the entry for a block is CLEARED each time it is (re-)visited. After
370 /// the dataflow is complete, each block entry will contain the set of defs
371 /// calculated during the final (fixed-point) iteration.
372 DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
374 static bool intervalMapsAreEqual(const FragsInMemMap &A,
375 const FragsInMemMap &B) {
376 auto AIt = A.begin(), AEnd = A.end();
377 auto BIt = B.begin(), BEnd = B.end();
378 for (; AIt != AEnd; ++AIt, ++BIt) {
379 if (BIt == BEnd)
380 return false; // B has fewer elements than A.
381 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
382 return false; // Interval is different.
383 if (*AIt != *BIt)
384 return false; // Value at interval is different.
386 // AIt == AEnd. Check BIt is also now at end.
387 return BIt == BEnd;
390 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
391 if (A.size() != B.size())
392 return false;
393 for (const auto &APair : A) {
394 auto BIt = B.find(APair.first);
395 if (BIt == B.end())
396 return false;
397 if (!intervalMapsAreEqual(APair.second, BIt->second))
398 return false;
400 return true;
403 /// Return a string for the value that \p BaseID represents.
404 std::string toString(unsigned BaseID) {
405 if (BaseID)
406 return Bases[BaseID].getVariableLocationOp(0)->getName().str();
407 else
408 return "None";
411 /// Format string describing an FragsInMemMap (IntervalMap) interval.
412 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
413 std::string String;
414 std::stringstream S(String);
415 if (It.valid()) {
416 S << "[" << It.start() << ", " << It.stop()
417 << "): " << toString(It.value());
418 } else {
419 S << "invalid iterator (end)";
421 if (Newline)
422 S << "\n";
423 return S.str();
426 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
427 FragsInMemMap Result(IntervalMapAlloc);
428 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
429 LLVM_DEBUG(dbgs() << "a " << toString(AIt));
430 // This is basically copied from process() and inverted (process is
431 // performing something like a union whereas this is more of an
432 // intersect).
434 // There's no work to do if interval `a` overlaps no fragments in map `B`.
435 if (!B.overlaps(AIt.start(), AIt.stop()))
436 continue;
438 // Does StartBit intersect an existing fragment?
439 auto FirstOverlap = B.find(AIt.start());
440 assert(FirstOverlap != B.end());
441 bool IntersectStart = FirstOverlap.start() < AIt.start();
442 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
443 << ", IntersectStart: " << IntersectStart << "\n");
445 // Does EndBit intersect an existing fragment?
446 auto LastOverlap = B.find(AIt.stop());
447 bool IntersectEnd =
448 LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
449 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
450 << ", IntersectEnd: " << IntersectEnd << "\n");
452 // Check if both ends of `a` intersect the same interval `b`.
453 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
454 // Insert `a` (`a` is contained in `b`) if the values match.
455 // [ a ]
456 // [ - b - ]
457 // -
458 // [ r ]
459 LLVM_DEBUG(dbgs() << "- a is contained within "
460 << toString(FirstOverlap));
461 if (*AIt && *AIt == *FirstOverlap)
462 Result.insert(AIt.start(), AIt.stop(), *AIt);
463 } else {
464 // There's an overlap but `a` is not fully contained within
465 // `b`. Shorten any end-point intersections.
466 // [ - a - ]
467 // [ - b - ]
468 // -
469 // [ r ]
470 auto Next = FirstOverlap;
471 if (IntersectStart) {
472 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
473 << toString(FirstOverlap));
474 if (*AIt && *AIt == *FirstOverlap)
475 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
476 ++Next;
478 // [ - a - ]
479 // [ - b - ]
480 // -
481 // [ r ]
482 if (IntersectEnd) {
483 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
484 << toString(LastOverlap));
485 if (*AIt && *AIt == *LastOverlap)
486 Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
489 // Insert all intervals in map `B` that are contained within interval
490 // `a` where the values match.
491 // [ - - a - - ]
492 // [ b1 ] [ b2 ]
493 // -
494 // [ r1 ] [ r2 ]
495 while (Next != B.end() && Next.start() < AIt.stop() &&
496 Next.stop() <= AIt.stop()) {
497 LLVM_DEBUG(dbgs()
498 << "- insert intersection of a and " << toString(Next));
499 if (*AIt && *AIt == *Next)
500 Result.insert(Next.start(), Next.stop(), *Next);
501 ++Next;
505 return Result;
508 /// Meet \p A and \p B, storing the result in \p A.
509 void meetVars(VarFragMap &A, const VarFragMap &B) {
510 // Meet A and B.
512 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
513 for (auto It = A.begin(), End = A.end(); It != End; ++It) {
514 unsigned AVar = It->first;
515 FragsInMemMap &AFrags = It->second;
516 auto BIt = B.find(AVar);
517 if (BIt == B.end()) {
518 A.erase(It);
519 continue; // Var has no bits defined in B.
521 LLVM_DEBUG(dbgs() << "meet fragment maps for "
522 << Aggregates[AVar].first->getName() << "\n");
523 AFrags = meetFragments(AFrags, BIt->second);
527 bool meet(const BasicBlock &BB,
528 const SmallPtrSet<BasicBlock *, 16> &Visited) {
529 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
530 << "\n");
532 VarFragMap BBLiveIn;
533 bool FirstMeet = true;
534 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
535 // locs.
536 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
537 // Ignore preds that haven't been processed yet. This is essentially the
538 // same as initialising all variables to implicit top value (⊤) which is
539 // the identity value for the meet operation.
540 const BasicBlock *Pred = *I;
541 if (!Visited.count(Pred))
542 continue;
544 auto PredLiveOut = LiveOut.find(Pred);
545 assert(PredLiveOut != LiveOut.end());
547 if (FirstMeet) {
548 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
549 BBLiveIn = PredLiveOut->second;
550 FirstMeet = false;
551 } else {
552 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
553 << "\n");
554 meetVars(BBLiveIn, PredLiveOut->second);
557 // An empty set is ⊥ for the intersect-like meet operation. If we've
558 // already got ⊥ there's no need to run the code - we know the result is
559 // ⊥ since `meet(a, ⊥) = ⊥`.
560 if (BBLiveIn.size() == 0)
561 break;
564 auto CurrentLiveInEntry = LiveIn.find(&BB);
565 // If there's no LiveIn entry for the block yet, add it.
566 if (CurrentLiveInEntry == LiveIn.end()) {
567 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
568 << "\n");
569 LiveIn[&BB] = std::move(BBLiveIn);
570 return /*Changed=*/true;
573 // If the LiveIn set has changed (expensive check) update it and return
574 // true.
575 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
576 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
577 CurrentLiveInEntry->second = std::move(BBLiveIn);
578 return /*Changed=*/true;
581 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
582 return /*Changed=*/false;
585 void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var,
586 unsigned StartBit, unsigned EndBit, unsigned Base,
587 DebugLoc DL) {
588 assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
589 if (!Base)
590 return;
591 FragMemLoc Loc;
592 Loc.Var = Var;
593 Loc.OffsetInBits = StartBit;
594 Loc.SizeInBits = EndBit - StartBit;
595 assert(Base && "Expected a non-zero ID for Base address");
596 Loc.Base = Base;
597 Loc.DL = DL;
598 BBInsertBeforeMap[&BB][&Before].push_back(Loc);
599 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
600 << " bits [" << StartBit << ", " << EndBit << ")\n");
603 /// Inserts a new dbg def if the interval found when looking up \p StartBit
604 /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
605 /// indicates - assuming StartBit->EndBit has just been inserted - that the
606 /// slice has been coalesced in the map).
607 void coalesceFragments(BasicBlock &BB, Instruction &Before, unsigned Var,
608 unsigned StartBit, unsigned EndBit, unsigned Base,
609 DebugLoc DL, const FragsInMemMap &FragMap) {
610 if (!CoalesceAdjacentFragments)
611 return;
612 // We've inserted the location into the map. The map will have coalesced
613 // adjacent intervals (variable fragments) that describe the same memory
614 // location. Use this knowledge to insert a debug location that describes
615 // that coalesced fragment. This may eclipse other locs we've just
616 // inserted. This is okay as redundant locs will be cleaned up later.
617 auto CoalescedFrag = FragMap.find(StartBit);
618 // Bail if no coalescing has taken place.
619 if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit)
620 return;
622 LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start()
623 << " to " << CoalescedFrag.stop() << "\n");
624 insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(),
625 Base, DL);
628 void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB,
629 VarFragMap &LiveSet) {
630 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
631 if (skipVariable(DbgVar.getVariable()))
632 return;
633 // Don't bother doing anything for this variables if we know it's fully
634 // promoted. We're only interested in variables that (sometimes) live on
635 // the stack here.
636 if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
637 return;
638 unsigned Var = Aggregates.insert(
639 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
641 // [StartBit: EndBit) are the bits affected by this def.
642 const DIExpression *DIExpr = VarLoc.Expr;
643 unsigned StartBit;
644 unsigned EndBit;
645 if (auto Frag = DIExpr->getFragmentInfo()) {
646 StartBit = Frag->OffsetInBits;
647 EndBit = StartBit + Frag->SizeInBits;
648 } else {
649 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
650 StartBit = 0;
651 EndBit = *DbgVar.getVariable()->getSizeInBits();
654 // We will only fill fragments for simple memory-describing dbg.value
655 // intrinsics. If the fragment offset is the same as the offset from the
656 // base pointer, do The Thing, otherwise fall back to normal dbg.value
657 // behaviour. AssignmentTrackingLowering has generated DIExpressions
658 // written in terms of the base pointer.
659 // TODO: Remove this condition since the fragment offset doesn't always
660 // equal the offset from base pointer (e.g. for a SROA-split variable).
661 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
662 const unsigned Base =
663 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
664 ? Bases.insert(VarLoc.Values)
665 : 0;
666 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
667 << StartBit << ", " << EndBit << "): " << toString(Base)
668 << "\n");
670 // First of all, any locs that use mem that are disrupted need reinstating.
671 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
672 // with existing intervals so this code involves a lot of fiddling around
673 // with intervals to do that manually.
674 auto FragIt = LiveSet.find(Var);
676 // Check if the variable does not exist in the map.
677 if (FragIt == LiveSet.end()) {
678 // Add this variable to the BB map.
679 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
680 assert(P.second && "Var already in map?");
681 // Add the interval to the fragment map.
682 P.first->second.insert(StartBit, EndBit, Base);
683 return;
685 // The variable has an entry in the map.
687 FragsInMemMap &FragMap = FragIt->second;
688 // First check the easy case: the new fragment `f` doesn't overlap with any
689 // intervals.
690 if (!FragMap.overlaps(StartBit, EndBit)) {
691 LLVM_DEBUG(dbgs() << "- No overlaps\n");
692 FragMap.insert(StartBit, EndBit, Base);
693 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
694 FragMap);
695 return;
697 // There is at least one overlap.
699 // Does StartBit intersect an existing fragment?
700 auto FirstOverlap = FragMap.find(StartBit);
701 assert(FirstOverlap != FragMap.end());
702 bool IntersectStart = FirstOverlap.start() < StartBit;
704 // Does EndBit intersect an existing fragment?
705 auto LastOverlap = FragMap.find(EndBit);
706 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
708 // Check if both ends of `f` intersect the same interval `i`.
709 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
710 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
711 // Shorten `i` so that there's space to insert `f`.
712 // [ f ]
713 // [ - i - ]
714 // +
715 // [ i ][ f ][ i ]
717 // Save values for use after inserting a new interval.
718 auto EndBitOfOverlap = FirstOverlap.stop();
719 unsigned OverlapValue = FirstOverlap.value();
721 // Shorten the overlapping interval.
722 FirstOverlap.setStop(StartBit);
723 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
724 OverlapValue, VarLoc.DL);
726 // Insert a new interval to represent the end part.
727 FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
728 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
729 VarLoc.DL);
731 // Insert the new (middle) fragment now there is space.
732 FragMap.insert(StartBit, EndBit, Base);
733 } else {
734 // There's an overlap but `f` may not be fully contained within
735 // `i`. Shorten any end-point intersections so that we can then
736 // insert `f`.
737 // [ - f - ]
738 // [ - i - ]
739 // | |
740 // [ i ]
741 // Shorten any end-point intersections.
742 if (IntersectStart) {
743 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
744 // Split off at the intersection.
745 FirstOverlap.setStop(StartBit);
746 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
747 *FirstOverlap, VarLoc.DL);
749 // [ - f - ]
750 // [ - i - ]
751 // | |
752 // [ i ]
753 if (IntersectEnd) {
754 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
755 // Split off at the intersection.
756 LastOverlap.setStart(EndBit);
757 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
758 VarLoc.DL);
761 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
762 // FirstOverlap and LastOverlap have been shortened such that they're
763 // no longer overlapping with [StartBit, EndBit). Delete any overlaps
764 // that remain (these will be fully contained within `f`).
765 // [ - f - ] }
766 // [ - i - ] } Intersection shortening that has happened above.
767 // | | }
768 // [ i ] }
769 // -----------------
770 // [i2 ] } Intervals fully contained within `f` get erased.
771 // -----------------
772 // [ - f - ][ i ] } Completed insertion.
773 auto It = FirstOverlap;
774 if (IntersectStart)
775 ++It; // IntersectStart: first overlap has been shortened.
776 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
777 LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
778 It.erase(); // This increments It after removing the interval.
780 // We've dealt with all the overlaps now!
781 assert(!FragMap.overlaps(StartBit, EndBit));
782 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
783 FragMap.insert(StartBit, EndBit, Base);
786 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
787 FragMap);
790 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
792 void process(BasicBlock &BB, VarFragMap &LiveSet) {
793 BBInsertBeforeMap[&BB].clear();
794 for (auto &I : BB) {
795 if (const auto *Locs = FnVarLocs->getWedge(&I)) {
796 for (const VarLocInfo &Loc : *Locs) {
797 addDef(Loc, I, *I.getParent(), LiveSet);
803 public:
804 MemLocFragmentFill(Function &Fn,
805 const DenseSet<DebugAggregate> *VarsWithStackSlot,
806 bool CoalesceAdjacentFragments)
807 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot),
808 CoalesceAdjacentFragments(CoalesceAdjacentFragments) {}
810 /// Add variable locations to \p FnVarLocs so that any bits of a variable
811 /// with a memory location have that location explicitly reinstated at each
812 /// subsequent variable location definition that that doesn't overwrite those
813 /// bits. i.e. after a variable location def, insert new defs for the memory
814 /// location with fragments for the difference of "all bits currently in
815 /// memory" and "the fragment of the second def". e.g.
817 /// Before:
819 /// var x bits 0 to 63: value in memory
820 /// more instructions
821 /// var x bits 0 to 31: value is %0
823 /// After:
825 /// var x bits 0 to 63: value in memory
826 /// more instructions
827 /// var x bits 0 to 31: value is %0
828 /// var x bits 32 to 61: value in memory ; <-- new loc def
830 void run(FunctionVarLocsBuilder *FnVarLocs) {
831 if (!EnableMemLocFragFill)
832 return;
834 this->FnVarLocs = FnVarLocs;
836 // Prepare for traversal.
838 ReversePostOrderTraversal<Function *> RPOT(&Fn);
839 std::priority_queue<unsigned int, std::vector<unsigned int>,
840 std::greater<unsigned int>>
841 Worklist;
842 std::priority_queue<unsigned int, std::vector<unsigned int>,
843 std::greater<unsigned int>>
844 Pending;
845 DenseMap<unsigned int, BasicBlock *> OrderToBB;
846 DenseMap<BasicBlock *, unsigned int> BBToOrder;
847 { // Init OrderToBB and BBToOrder.
848 unsigned int RPONumber = 0;
849 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
850 OrderToBB[RPONumber] = *RI;
851 BBToOrder[*RI] = RPONumber;
852 Worklist.push(RPONumber);
853 ++RPONumber;
855 LiveIn.init(RPONumber);
856 LiveOut.init(RPONumber);
859 // Perform the traversal.
861 // This is a standard "intersect of predecessor outs" dataflow problem. To
862 // solve it, we perform meet() and process() using the two worklist method
863 // until the LiveIn data for each block becomes unchanging.
865 // This dataflow is essentially working on maps of sets and at each meet we
866 // intersect the maps and the mapped sets. So, initialized live-in maps
867 // monotonically decrease in value throughout the dataflow.
868 SmallPtrSet<BasicBlock *, 16> Visited;
869 while (!Worklist.empty() || !Pending.empty()) {
870 // We track what is on the pending worklist to avoid inserting the same
871 // thing twice. We could avoid this with a custom priority queue, but
872 // this is probably not worth it.
873 SmallPtrSet<BasicBlock *, 16> OnPending;
874 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
875 while (!Worklist.empty()) {
876 BasicBlock *BB = OrderToBB[Worklist.top()];
877 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
878 Worklist.pop();
879 bool InChanged = meet(*BB, Visited);
880 // Always consider LiveIn changed on the first visit.
881 InChanged |= Visited.insert(BB).second;
882 if (InChanged) {
883 LLVM_DEBUG(dbgs()
884 << BB->getName() << " has new InLocs, process it\n");
885 // Mutate a copy of LiveIn while processing BB. Once we've processed
886 // the terminator LiveSet is the LiveOut set for BB.
887 // This is an expensive copy!
888 VarFragMap LiveSet = LiveIn[BB];
890 // Process the instructions in the block.
891 process(*BB, LiveSet);
893 // Relatively expensive check: has anything changed in LiveOut for BB?
894 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
895 LLVM_DEBUG(dbgs() << BB->getName()
896 << " has new OutLocs, add succs to worklist: [ ");
897 LiveOut[BB] = std::move(LiveSet);
898 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
899 if (OnPending.insert(*I).second) {
900 LLVM_DEBUG(dbgs() << I->getName() << " ");
901 Pending.push(BBToOrder[*I]);
904 LLVM_DEBUG(dbgs() << "]\n");
908 Worklist.swap(Pending);
909 // At this point, pending must be empty, since it was just the empty
910 // worklist
911 assert(Pending.empty() && "Pending should be empty");
914 // Insert new location defs.
915 for (auto &Pair : BBInsertBeforeMap) {
916 InsertMap &Map = Pair.second;
917 for (auto &Pair : Map) {
918 Instruction *InsertBefore = Pair.first;
919 assert(InsertBefore && "should never be null");
920 auto FragMemLocs = Pair.second;
921 auto &Ctx = Fn.getContext();
923 for (auto &FragMemLoc : FragMemLocs) {
924 DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
925 if (FragMemLoc.SizeInBits !=
926 *Aggregates[FragMemLoc.Var].first->getSizeInBits())
927 Expr = *DIExpression::createFragmentExpression(
928 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
929 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
930 FragMemLoc.OffsetInBits / 8);
931 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
932 FragMemLoc.DL.getInlinedAt());
933 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
934 Bases[FragMemLoc.Base]);
941 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
942 /// that interprets assignment tracking debug info metadata and stores in IR to
943 /// create a map of variable locations.
944 class AssignmentTrackingLowering {
945 public:
946 /// The kind of location in use for a variable, where Mem is the stack home,
947 /// Val is an SSA value or const, and None means that there is not one single
948 /// kind (either because there are multiple or because there is none; it may
949 /// prove useful to split this into two values in the future).
951 /// LocKind is a join-semilattice with the partial order:
952 /// None > Mem, Val
954 /// i.e.
955 /// join(Mem, Mem) = Mem
956 /// join(Val, Val) = Val
957 /// join(Mem, Val) = None
958 /// join(None, Mem) = None
959 /// join(None, Val) = None
960 /// join(None, None) = None
962 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
963 /// to name assignments and are not tracking the actual stored values.
964 /// Therefore currently there's no way to ensure that Mem values and Val
965 /// values are the same. This could be a future extension, though it's not
966 /// clear that many additional locations would be recovered that way in
967 /// practice as the likelihood of this sitation arising naturally seems
968 /// incredibly low.
969 enum class LocKind { Mem, Val, None };
971 /// An abstraction of the assignment of a value to a variable or memory
972 /// location.
974 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
975 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
976 /// can't) know the ID of the last assignment that took place.
978 /// The Status of the Assignment (Known or NoneOrPhi) is another
979 /// join-semilattice. The partial order is:
980 /// NoneOrPhi > Known {id_0, id_1, ...id_N}
982 /// i.e. for all values x and y where x != y:
983 /// join(x, x) = x
984 /// join(x, y) = NoneOrPhi
985 struct Assignment {
986 enum S { Known, NoneOrPhi } Status;
987 /// ID of the assignment. nullptr if Status is not Known.
988 DIAssignID *ID;
989 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
990 /// May be nullptr.
991 DbgAssignIntrinsic *Source;
993 bool isSameSourceAssignment(const Assignment &Other) const {
994 // Don't include Source in the equality check. Assignments are
995 // defined by their ID, not debug intrinsic(s).
996 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
998 void dump(raw_ostream &OS) {
999 static const char *LUT[] = {"Known", "NoneOrPhi"};
1000 OS << LUT[Status] << "(id=";
1001 if (ID)
1002 OS << ID;
1003 else
1004 OS << "null";
1005 OS << ", s=";
1006 if (Source)
1007 OS << *Source;
1008 else
1009 OS << "null";
1010 OS << ")";
1013 static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
1014 return Assignment(Known, ID, Source);
1016 static Assignment makeFromMemDef(DIAssignID *ID) {
1017 return Assignment(Known, ID, nullptr);
1019 static Assignment makeNoneOrPhi() {
1020 return Assignment(NoneOrPhi, nullptr, nullptr);
1022 // Again, need a Top value?
1023 Assignment()
1024 : Status(NoneOrPhi), ID(nullptr), Source(nullptr) {
1025 } // Can we delete this?
1026 Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
1027 : Status(Status), ID(ID), Source(Source) {
1028 // If the Status is Known then we expect there to be an assignment ID.
1029 assert(Status == NoneOrPhi || ID);
1033 using AssignmentMap = SmallVector<Assignment>;
1034 using LocMap = SmallVector<LocKind>;
1035 using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>;
1036 using UntaggedStoreAssignmentMap =
1037 DenseMap<const Instruction *,
1038 SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
1040 private:
1041 /// The highest numbered VariableID for partially promoted variables plus 1,
1042 /// the values for which start at 1.
1043 unsigned TrackedVariablesVectorSize = 0;
1044 /// Map a variable to the set of variables that it fully contains.
1045 OverlapMap VarContains;
1046 /// Map untagged stores to the variable fragments they assign to. Used by
1047 /// processUntaggedInstruction.
1048 UntaggedStoreAssignmentMap UntaggedStoreVars;
1050 // Machinery to defer inserting dbg.values.
1051 using InsertMap = MapVector<Instruction *, SmallVector<VarLocInfo>>;
1052 InsertMap InsertBeforeMap;
1053 /// Clear the location definitions currently cached for insertion after /p
1054 /// After.
1055 void resetInsertionPoint(Instruction &After);
1056 void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source,
1057 Instruction *After);
1059 static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A,
1060 const AssignmentMap &B) {
1061 return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) {
1062 return A[VarID].isSameSourceAssignment(B[VarID]);
1066 /// Represents the stack and debug assignments in a block. Used to describe
1067 /// the live-in and live-out values for blocks, as well as the "current"
1068 /// value as we process each instruction in a block.
1069 struct BlockInfo {
1070 /// The set of variables (VariableID) being tracked in this block.
1071 BitVector VariableIDsInBlock;
1072 /// Dominating assignment to memory for each variable, indexed by
1073 /// VariableID.
1074 AssignmentMap StackHomeValue;
1075 /// Dominating assignemnt to each variable, indexed by VariableID.
1076 AssignmentMap DebugValue;
1077 /// Location kind for each variable. LiveLoc indicates whether the
1078 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1079 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1080 /// preference. This cannot be derived by inspecting DebugValue and
1081 /// StackHomeValue due to the fact that there's no distinction in
1082 /// Assignment (the class) between whether an assignment is unknown or a
1083 /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1084 /// words, the memory location may well be valid while both DebugValue and
1085 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1086 /// Indexed by VariableID.
1087 LocMap LiveLoc;
1089 public:
1090 enum AssignmentKind { Stack, Debug };
1091 const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const {
1092 switch (Kind) {
1093 case Stack:
1094 return StackHomeValue;
1095 case Debug:
1096 return DebugValue;
1098 llvm_unreachable("Unknown AssignmentKind");
1100 AssignmentMap &getAssignmentMap(AssignmentKind Kind) {
1101 return const_cast<AssignmentMap &>(
1102 const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind));
1105 bool isVariableTracked(VariableID Var) const {
1106 return VariableIDsInBlock[static_cast<unsigned>(Var)];
1109 const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const {
1110 assert(isVariableTracked(Var) && "Var not tracked in block");
1111 return getAssignmentMap(Kind)[static_cast<unsigned>(Var)];
1114 LocKind getLocKind(VariableID Var) const {
1115 assert(isVariableTracked(Var) && "Var not tracked in block");
1116 return LiveLoc[static_cast<unsigned>(Var)];
1119 /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1120 /// fragments contained win \p Var.
1121 void setLocKind(VariableID Var, LocKind K) {
1122 VariableIDsInBlock.set(static_cast<unsigned>(Var));
1123 LiveLoc[static_cast<unsigned>(Var)] = K;
1126 /// Set the assignment in the \p Kind assignment map for \p Var only: does
1127 /// not set the assignment for VariableIDs of fragments contained win \p
1128 /// Var.
1129 void setAssignment(AssignmentKind Kind, VariableID Var,
1130 const Assignment &AV) {
1131 VariableIDsInBlock.set(static_cast<unsigned>(Var));
1132 getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV;
1135 /// Return true if there is an assignment matching \p AV in the \p Kind
1136 /// assignment map. Does consider assignments for VariableIDs of fragments
1137 /// contained win \p Var.
1138 bool hasAssignment(AssignmentKind Kind, VariableID Var,
1139 const Assignment &AV) const {
1140 if (!isVariableTracked(Var))
1141 return false;
1142 return AV.isSameSourceAssignment(getAssignment(Kind, Var));
1145 /// Compare every element in each map to determine structural equality
1146 /// (slow).
1147 bool operator==(const BlockInfo &Other) const {
1148 return VariableIDsInBlock == Other.VariableIDsInBlock &&
1149 LiveLoc == Other.LiveLoc &&
1150 mapsAreEqual(VariableIDsInBlock, StackHomeValue,
1151 Other.StackHomeValue) &&
1152 mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue);
1154 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
1155 bool isValid() {
1156 return LiveLoc.size() == DebugValue.size() &&
1157 LiveLoc.size() == StackHomeValue.size();
1160 /// Clear everything and initialise with ⊤-values for all variables.
1161 void init(int NumVars) {
1162 StackHomeValue.clear();
1163 DebugValue.clear();
1164 LiveLoc.clear();
1165 VariableIDsInBlock = BitVector(NumVars);
1166 StackHomeValue.insert(StackHomeValue.begin(), NumVars,
1167 Assignment::makeNoneOrPhi());
1168 DebugValue.insert(DebugValue.begin(), NumVars,
1169 Assignment::makeNoneOrPhi());
1170 LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None);
1173 /// Helper for join.
1174 template <typename ElmtType, typename FnInputType>
1175 static void joinElmt(int Index, SmallVector<ElmtType> &Target,
1176 const SmallVector<ElmtType> &A,
1177 const SmallVector<ElmtType> &B,
1178 ElmtType (*Fn)(FnInputType, FnInputType)) {
1179 Target[Index] = Fn(A[Index], B[Index]);
1182 /// See comment for AssignmentTrackingLowering::joinBlockInfo.
1183 static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) {
1184 // Join A and B.
1186 // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1187 // Difference = join(x, ⊤) for x where Var(x) is in A xor B
1188 // Join = Intersect ∪ Difference
1190 // This is achieved by performing a join on elements from A and B with
1191 // variables common to both A and B (join elements indexed by var
1192 // intersect), then adding ⊤-value elements for vars in A xor B. The
1193 // latter part is equivalent to performing join on elements with variables
1194 // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
1195 // BlockInfo::init initializes all variable entries to the ⊤ value so we
1196 // don't need to explicitly perform that step as Join.VariableIDsInBlock
1197 // is set to the union of the variables in A and B at the end of this
1198 // function.
1199 BlockInfo Join;
1200 Join.init(NumVars);
1202 BitVector Intersect = A.VariableIDsInBlock;
1203 Intersect &= B.VariableIDsInBlock;
1205 for (auto VarID : Intersect.set_bits()) {
1206 joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind);
1207 joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue,
1208 joinAssignment);
1209 joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue,
1210 joinAssignment);
1213 Join.VariableIDsInBlock = A.VariableIDsInBlock;
1214 Join.VariableIDsInBlock |= B.VariableIDsInBlock;
1215 assert(Join.isValid());
1216 return Join;
1220 Function &Fn;
1221 const DataLayout &Layout;
1222 const DenseSet<DebugAggregate> *VarsWithStackSlot;
1223 FunctionVarLocsBuilder *FnVarLocs;
1224 DenseMap<const BasicBlock *, BlockInfo> LiveIn;
1225 DenseMap<const BasicBlock *, BlockInfo> LiveOut;
1227 /// Helper for process methods to track variables touched each frame.
1228 DenseSet<VariableID> VarsTouchedThisFrame;
1230 /// The set of variables that sometimes are not located in their stack home.
1231 DenseSet<DebugAggregate> NotAlwaysStackHomed;
1233 VariableID getVariableID(const DebugVariable &Var) {
1234 return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
1237 /// Join the LiveOut values of preds that are contained in \p Visited into
1238 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1239 /// values monotonically increase. See the @link joinMethods join methods
1240 /// @endlink documentation for more info.
1241 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
1242 ///@name joinMethods
1243 /// Functions that implement `join` (the least upper bound) for the
1244 /// join-semilattice types used in the dataflow. There is an explicit bottom
1245 /// value (⊥) for some types and and explicit top value (⊤) for all types.
1246 /// By definition:
1248 /// Join(A, B) >= A && Join(A, B) >= B
1249 /// Join(A, ⊥) = A
1250 /// Join(A, ⊤) = ⊤
1252 /// These invariants are important for monotonicity.
1254 /// For the map-type functions, all unmapped keys in an empty map are
1255 /// associated with a bottom value (⊥). This represents their values being
1256 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1257 /// only present in one) represents either a variable going out of scope or
1258 /// dropped debug info. It is assumed the key is associated with a top value
1259 /// (⊤) in this case (unknown location / assignment).
1260 ///@{
1261 static LocKind joinKind(LocKind A, LocKind B);
1262 static Assignment joinAssignment(const Assignment &A, const Assignment &B);
1263 BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
1264 ///@}
1266 /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1267 /// LiveSet must be initialized with the current live-in locations before
1268 /// calling this.
1269 void process(BasicBlock &BB, BlockInfo *LiveSet);
1270 ///@name processMethods
1271 /// Methods to process instructions in order to update the LiveSet (current
1272 /// location information).
1273 ///@{
1274 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1275 void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet);
1276 /// Update \p LiveSet after encountering an instruction with a DIAssignID
1277 /// attachment, \p I.
1278 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1279 /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1280 /// attachment, \p I.
1281 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1282 void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet);
1283 void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet);
1284 /// Add an assignment to memory for the variable /p Var.
1285 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1286 /// Add an assignment to the variable /p Var.
1287 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1288 ///@}
1290 /// Set the LocKind for \p Var.
1291 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
1292 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1293 /// have been called for \p Var first.
1294 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
1295 /// Return true if \p Var has an assignment in \p M matching \p AV.
1296 bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind,
1297 VariableID Var, const Assignment &AV);
1298 /// Return the set of VariableIDs corresponding the fragments contained fully
1299 /// within the variable/fragment \p Var.
1300 ArrayRef<VariableID> getContainedFragments(VariableID Var) const;
1302 /// Mark \p Var as having been touched this frame. Note, this applies only
1303 /// to the exact fragment \p Var and not to any fragments contained within.
1304 void touchFragment(VariableID Var);
1306 /// Emit info for variables that are fully promoted.
1307 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
1309 public:
1310 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
1311 const DenseSet<DebugAggregate> *VarsWithStackSlot)
1312 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
1313 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1314 /// true if any variable locations have been added to FnVarLocs.
1315 bool run(FunctionVarLocsBuilder *FnVarLocs);
1317 } // namespace
1319 ArrayRef<VariableID>
1320 AssignmentTrackingLowering::getContainedFragments(VariableID Var) const {
1321 auto R = VarContains.find(Var);
1322 if (R == VarContains.end())
1323 return std::nullopt;
1324 return R->second;
1327 void AssignmentTrackingLowering::touchFragment(VariableID Var) {
1328 VarsTouchedThisFrame.insert(Var);
1331 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
1332 LocKind K) {
1333 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
1334 LiveSet->setLocKind(Var, K);
1335 touchFragment(Var);
1337 SetKind(LiveSet, Var, K);
1339 // Update the LocKind for all fragments contained within Var.
1340 for (VariableID Frag : getContainedFragments(Var))
1341 SetKind(LiveSet, Frag, K);
1344 AssignmentTrackingLowering::LocKind
1345 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
1346 return LiveSet->getLocKind(Var);
1349 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
1350 const Assignment &AV) {
1351 LiveSet->setAssignment(BlockInfo::Stack, Var, AV);
1353 // Use this assigment for all fragments contained within Var, but do not
1354 // provide a Source because we cannot convert Var's value to a value for the
1355 // fragment.
1356 Assignment FragAV = AV;
1357 FragAV.Source = nullptr;
1358 for (VariableID Frag : getContainedFragments(Var))
1359 LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV);
1362 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
1363 const Assignment &AV) {
1364 LiveSet->setAssignment(BlockInfo::Debug, Var, AV);
1366 // Use this assigment for all fragments contained within Var, but do not
1367 // provide a Source because we cannot convert Var's value to a value for the
1368 // fragment.
1369 Assignment FragAV = AV;
1370 FragAV.Source = nullptr;
1371 for (VariableID Frag : getContainedFragments(Var))
1372 LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV);
1375 static DIAssignID *getIDFromInst(const Instruction &I) {
1376 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
1379 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
1380 return cast<DIAssignID>(DAI.getAssignID());
1383 /// Return true if \p Var has an assignment in \p M matching \p AV.
1384 bool AssignmentTrackingLowering::hasVarWithAssignment(
1385 BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var,
1386 const Assignment &AV) {
1387 if (!LiveSet->hasAssignment(Kind, Var, AV))
1388 return false;
1390 // Check all the frags contained within Var as these will have all been
1391 // mapped to AV at the last store to Var.
1392 for (VariableID Frag : getContainedFragments(Var))
1393 if (!LiveSet->hasAssignment(Kind, Frag, AV))
1394 return false;
1395 return true;
1398 #ifndef NDEBUG
1399 const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
1400 using LocKind = AssignmentTrackingLowering::LocKind;
1401 switch (Loc) {
1402 case LocKind::Val:
1403 return "Val";
1404 case LocKind::Mem:
1405 return "Mem";
1406 case LocKind::None:
1407 return "None";
1409 llvm_unreachable("unknown LocKind");
1411 #endif
1413 void AssignmentTrackingLowering::emitDbgValue(
1414 AssignmentTrackingLowering::LocKind Kind,
1415 const DbgVariableIntrinsic *Source, Instruction *After) {
1417 DILocation *DL = Source->getDebugLoc();
1418 auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) {
1419 assert(Expr);
1420 if (!Val)
1421 Val = ValueAsMetadata::get(
1422 PoisonValue::get(Type::getInt1Ty(Source->getContext())));
1424 // Find a suitable insert point.
1425 Instruction *InsertBefore = After->getNextNode();
1426 assert(InsertBefore && "Shouldn't be inserting after a terminator");
1428 VariableID Var = getVariableID(DebugVariable(Source));
1429 VarLocInfo VarLoc;
1430 VarLoc.VariableID = static_cast<VariableID>(Var);
1431 VarLoc.Expr = Expr;
1432 VarLoc.Values = RawLocationWrapper(Val);
1433 VarLoc.DL = DL;
1434 // Insert it into the map for later.
1435 InsertBeforeMap[InsertBefore].push_back(VarLoc);
1438 // NOTE: This block can mutate Kind.
1439 if (Kind == LocKind::Mem) {
1440 const auto *DAI = cast<DbgAssignIntrinsic>(Source);
1441 // Check the address hasn't been dropped (e.g. the debug uses may not have
1442 // been replaced before deleting a Value).
1443 if (DAI->isKillAddress()) {
1444 // The address isn't valid so treat this as a non-memory def.
1445 Kind = LocKind::Val;
1446 } else {
1447 Value *Val = DAI->getAddress();
1448 DIExpression *Expr = DAI->getAddressExpression();
1449 assert(!Expr->getFragmentInfo() &&
1450 "fragment info should be stored in value-expression only");
1451 // Copy the fragment info over from the value-expression to the new
1452 // DIExpression.
1453 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
1454 auto FragInfo = *OptFragInfo;
1455 Expr = *DIExpression::createFragmentExpression(
1456 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
1458 // The address-expression has an implicit deref, add it now.
1459 std::tie(Val, Expr) =
1460 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
1461 Emit(ValueAsMetadata::get(Val), Expr);
1462 return;
1466 if (Kind == LocKind::Val) {
1467 Emit(Source->getRawLocation(), Source->getExpression());
1468 return;
1471 if (Kind == LocKind::None) {
1472 Emit(nullptr, Source->getExpression());
1473 return;
1477 void AssignmentTrackingLowering::processNonDbgInstruction(
1478 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1479 if (I.hasMetadata(LLVMContext::MD_DIAssignID))
1480 processTaggedInstruction(I, LiveSet);
1481 else
1482 processUntaggedInstruction(I, LiveSet);
1485 void AssignmentTrackingLowering::processUntaggedInstruction(
1486 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1487 // Interpret stack stores that are not tagged as an assignment in memory for
1488 // the variables associated with that address. These stores may not be tagged
1489 // because a) the store cannot be represented using dbg.assigns (non-const
1490 // length or offset) or b) the tag was accidentally dropped during
1491 // optimisations. For these stores we fall back to assuming that the stack
1492 // home is a valid location for the variables. The benefit is that this
1493 // prevents us missing an assignment and therefore incorrectly maintaining
1494 // earlier location definitions, and in many cases it should be a reasonable
1495 // assumption. However, this will occasionally lead to slight
1496 // inaccuracies. The value of a hoisted untagged store will be visible
1497 // "early", for example.
1498 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
1499 auto It = UntaggedStoreVars.find(&I);
1500 if (It == UntaggedStoreVars.end())
1501 return; // No variables associated with the store destination.
1503 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1504 << "\n");
1505 // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1506 // and mem def, set lockind to Mem, and emit a location def for each.
1507 for (auto [Var, Info] : It->second) {
1508 // This instruction is treated as both a debug and memory assignment,
1509 // meaning the memory location should be used. We don't have an assignment
1510 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1511 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1512 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1513 setLocKind(LiveSet, Var, LocKind::Mem);
1514 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem)
1515 << "\n");
1516 // Build the dbg location def to insert.
1518 // DIExpression: Add fragment and offset.
1519 DebugVariable V = FnVarLocs->getVariable(Var);
1520 DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
1521 if (auto Frag = V.getFragment()) {
1522 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
1523 Frag->SizeInBits);
1524 assert(R && "unexpected createFragmentExpression failure");
1525 DIE = *R;
1527 SmallVector<uint64_t, 3> Ops;
1528 if (Info.OffsetInBits)
1529 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
1530 Ops.push_back(dwarf::DW_OP_deref);
1531 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
1532 /*EntryValue=*/false);
1533 // Find a suitable insert point.
1534 Instruction *InsertBefore = I.getNextNode();
1535 assert(InsertBefore && "Shouldn't be inserting after a terminator");
1537 // Get DILocation for this unrecorded assignment.
1538 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1539 const DILocation *DILoc = DILocation::get(
1540 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1542 VarLocInfo VarLoc;
1543 VarLoc.VariableID = static_cast<VariableID>(Var);
1544 VarLoc.Expr = DIE;
1545 VarLoc.Values = RawLocationWrapper(
1546 ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base)));
1547 VarLoc.DL = DILoc;
1548 // 3. Insert it into the map for later.
1549 InsertBeforeMap[InsertBefore].push_back(VarLoc);
1553 void AssignmentTrackingLowering::processTaggedInstruction(
1554 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1555 auto Linked = at::getAssignmentMarkers(&I);
1556 // No dbg.assign intrinsics linked.
1557 // FIXME: All vars that have a stack slot this store modifies that don't have
1558 // a dbg.assign linked to it should probably treat this like an untagged
1559 // store.
1560 if (Linked.empty())
1561 return;
1563 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
1564 for (DbgAssignIntrinsic *DAI : Linked) {
1565 VariableID Var = getVariableID(DebugVariable(DAI));
1566 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1567 // that is linked to a store.
1568 assert(VarsWithStackSlot->count(getAggregate(DAI)) &&
1569 "expected DAI's variable to have stack slot");
1571 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
1572 addMemDef(LiveSet, Var, AV);
1574 LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n");
1575 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1576 << " -> ");
1578 // The last assignment to the stack is now AV. Check if the last debug
1579 // assignment has a matching Assignment.
1580 if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) {
1581 // The StackHomeValue and DebugValue for this variable match so we can
1582 // emit a stack home location here.
1583 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1584 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
1585 LLVM_DEBUG(dbgs() << " Debug val: ";
1586 LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs());
1587 dbgs() << "\n");
1588 setLocKind(LiveSet, Var, LocKind::Mem);
1589 emitDbgValue(LocKind::Mem, DAI, &I);
1590 continue;
1593 // The StackHomeValue and DebugValue for this variable do not match. I.e.
1594 // The value currently stored in the stack is not what we'd expect to
1595 // see, so we cannot use emit a stack home location here. Now we will
1596 // look at the live LocKind for the variable and determine an appropriate
1597 // dbg.value to emit.
1598 LocKind PrevLoc = getLocKind(LiveSet, Var);
1599 switch (PrevLoc) {
1600 case LocKind::Val: {
1601 // The value in memory in memory has changed but we're not currently
1602 // using the memory location. Do nothing.
1603 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1604 setLocKind(LiveSet, Var, LocKind::Val);
1605 } break;
1606 case LocKind::Mem: {
1607 // There's been an assignment to memory that we were using as a
1608 // location for this variable, and the Assignment doesn't match what
1609 // we'd expect to see in memory.
1610 Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
1611 if (DbgAV.Status == Assignment::NoneOrPhi) {
1612 // We need to terminate any previously open location now.
1613 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1614 setLocKind(LiveSet, Var, LocKind::None);
1615 emitDbgValue(LocKind::None, DAI, &I);
1616 } else {
1617 // The previous DebugValue Value can be used here.
1618 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1619 setLocKind(LiveSet, Var, LocKind::Val);
1620 if (DbgAV.Source) {
1621 emitDbgValue(LocKind::Val, DbgAV.Source, &I);
1622 } else {
1623 // PrevAV.Source is nullptr so we must emit undef here.
1624 emitDbgValue(LocKind::None, DAI, &I);
1627 } break;
1628 case LocKind::None: {
1629 // There's been an assignment to memory and we currently are
1630 // not tracking a location for the variable. Do not emit anything.
1631 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1632 setLocKind(LiveSet, Var, LocKind::None);
1633 } break;
1638 void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI,
1639 BlockInfo *LiveSet) {
1640 // Only bother tracking variables that are at some point stack homed. Other
1641 // variables can be dealt with trivially later.
1642 if (!VarsWithStackSlot->count(getAggregate(&DAI)))
1643 return;
1645 VariableID Var = getVariableID(DebugVariable(&DAI));
1646 Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI);
1647 addDbgDef(LiveSet, Var, AV);
1649 LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";);
1650 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1651 << " -> ");
1653 // Check if the DebugValue and StackHomeValue both hold the same
1654 // Assignment.
1655 if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) {
1656 // They match. We can use the stack home because the debug intrinsics state
1657 // that an assignment happened here, and we know that specific assignment
1658 // was the last one to take place in memory for this variable.
1659 LocKind Kind;
1660 if (DAI.isKillAddress()) {
1661 LLVM_DEBUG(
1662 dbgs()
1663 << "Val, Stack matches Debug program but address is killed\n";);
1664 Kind = LocKind::Val;
1665 } else {
1666 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1667 Kind = LocKind::Mem;
1669 setLocKind(LiveSet, Var, Kind);
1670 emitDbgValue(Kind, &DAI, &DAI);
1671 } else {
1672 // The last assignment to the memory location isn't the one that we want to
1673 // show to the user so emit a dbg.value(Value). Value may be undef.
1674 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1675 setLocKind(LiveSet, Var, LocKind::Val);
1676 emitDbgValue(LocKind::Val, &DAI, &DAI);
1680 void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI,
1681 BlockInfo *LiveSet) {
1682 // Only other tracking variables that are at some point stack homed.
1683 // Other variables can be dealt with trivally later.
1684 if (!VarsWithStackSlot->count(getAggregate(&DVI)))
1685 return;
1687 VariableID Var = getVariableID(DebugVariable(&DVI));
1688 // We have no ID to create an Assignment with so we mark this assignment as
1689 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1690 // the assignment responsible for setting this value.
1691 // This is fine; dbg.values are essentially interchangable with unlinked
1692 // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1693 // PHIs for promoted variables.
1694 Assignment AV = Assignment::makeNoneOrPhi();
1695 addDbgDef(LiveSet, Var, AV);
1697 LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";);
1698 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1699 << " -> Val, dbg.value override");
1701 setLocKind(LiveSet, Var, LocKind::Val);
1702 emitDbgValue(LocKind::Val, &DVI, &DVI);
1705 static bool hasZeroSizedFragment(DbgVariableIntrinsic &DVI) {
1706 if (auto F = DVI.getExpression()->getFragmentInfo())
1707 return F->SizeInBits == 0;
1708 return false;
1711 void AssignmentTrackingLowering::processDbgInstruction(
1712 DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1713 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
1714 if (!DVI)
1715 return;
1717 // Ignore assignments to zero bits of the variable.
1718 if (hasZeroSizedFragment(*DVI))
1719 return;
1721 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1722 processDbgAssign(*DAI, LiveSet);
1723 else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
1724 processDbgValue(*DVI, LiveSet);
1727 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
1728 assert(!After.isTerminator() && "Can't insert after a terminator");
1729 auto R = InsertBeforeMap.find(After.getNextNode());
1730 if (R == InsertBeforeMap.end())
1731 return;
1732 R->second.clear();
1735 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
1736 for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
1737 assert(VarsTouchedThisFrame.empty());
1738 // Process the instructions in "frames". A "frame" includes a single
1739 // non-debug instruction followed any debug instructions before the
1740 // next non-debug instruction.
1741 if (!isa<DbgInfoIntrinsic>(&*II)) {
1742 if (II->isTerminator())
1743 break;
1744 resetInsertionPoint(*II);
1745 processNonDbgInstruction(*II, LiveSet);
1746 assert(LiveSet->isValid());
1747 ++II;
1749 while (II != EI) {
1750 auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II);
1751 if (!Dbg)
1752 break;
1753 resetInsertionPoint(*II);
1754 processDbgInstruction(*Dbg, LiveSet);
1755 assert(LiveSet->isValid());
1756 ++II;
1759 // We've processed everything in the "frame". Now determine which variables
1760 // cannot be represented by a dbg.declare.
1761 for (auto Var : VarsTouchedThisFrame) {
1762 LocKind Loc = getLocKind(LiveSet, Var);
1763 // If a variable's LocKind is anything other than LocKind::Mem then we
1764 // must note that it cannot be represented with a dbg.declare.
1765 // Note that this check is enough without having to check the result of
1766 // joins() because for join to produce anything other than Mem after
1767 // we've already seen a Mem we'd be joining None or Val with Mem. In that
1768 // case, we've already hit this codepath when we set the LocKind to Val
1769 // or None in that block.
1770 if (Loc != LocKind::Mem) {
1771 DebugVariable DbgVar = FnVarLocs->getVariable(Var);
1772 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
1773 NotAlwaysStackHomed.insert(Aggr);
1776 VarsTouchedThisFrame.clear();
1780 AssignmentTrackingLowering::LocKind
1781 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
1782 // Partial order:
1783 // None > Mem, Val
1784 return A == B ? A : LocKind::None;
1787 AssignmentTrackingLowering::Assignment
1788 AssignmentTrackingLowering::joinAssignment(const Assignment &A,
1789 const Assignment &B) {
1790 // Partial order:
1791 // NoneOrPhi(null, null) > Known(v, ?s)
1793 // If either are NoneOrPhi the join is NoneOrPhi.
1794 // If either value is different then the result is
1795 // NoneOrPhi (joining two values is a Phi).
1796 if (!A.isSameSourceAssignment(B))
1797 return Assignment::makeNoneOrPhi();
1798 if (A.Status == Assignment::NoneOrPhi)
1799 return Assignment::makeNoneOrPhi();
1801 // Source is used to lookup the value + expression in the debug program if
1802 // the stack slot gets assigned a value earlier than expected. Because
1803 // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1804 // It's unlikely that we're losing out on much coverage by avoiding that
1805 // extra work.
1806 // The Source may differ in this situation:
1807 // Pred.1:
1808 // dbg.assign i32 0, ..., !1, ...
1809 // Pred.2:
1810 // dbg.assign i32 1, ..., !1, ...
1811 // Here the same assignment (!1) was performed in both preds in the source,
1812 // but we can't use either one unless they are identical (e.g. .we don't
1813 // want to arbitrarily pick between constant values).
1814 auto JoinSource = [&]() -> DbgAssignIntrinsic * {
1815 if (A.Source == B.Source)
1816 return A.Source;
1817 if (A.Source == nullptr || B.Source == nullptr)
1818 return nullptr;
1819 if (A.Source->isIdenticalTo(B.Source))
1820 return A.Source;
1821 return nullptr;
1823 DbgAssignIntrinsic *Source = JoinSource();
1824 assert(A.Status == B.Status && A.Status == Assignment::Known);
1825 assert(A.ID == B.ID);
1826 return Assignment::make(A.ID, Source);
1829 AssignmentTrackingLowering::BlockInfo
1830 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
1831 const BlockInfo &B) {
1832 return BlockInfo::join(A, B, TrackedVariablesVectorSize);
1835 bool AssignmentTrackingLowering::join(
1836 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
1838 SmallVector<const BasicBlock *> VisitedPreds;
1839 // Ignore backedges if we have not visited the predecessor yet. As the
1840 // predecessor hasn't yet had locations propagated into it, most locations
1841 // will not yet be valid, so treat them as all being uninitialized and
1842 // potentially valid. If a location guessed to be correct here is
1843 // invalidated later, we will remove it when we revisit this block. This
1844 // is essentially the same as initialising all LocKinds and Assignments to
1845 // an implicit ⊥ value which is the identity value for the join operation.
1846 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
1847 const BasicBlock *Pred = *I;
1848 if (Visited.count(Pred))
1849 VisitedPreds.push_back(Pred);
1852 // No preds visited yet.
1853 if (VisitedPreds.empty()) {
1854 auto It = LiveIn.try_emplace(&BB, BlockInfo());
1855 bool DidInsert = It.second;
1856 if (DidInsert)
1857 It.first->second.init(TrackedVariablesVectorSize);
1858 return /*Changed*/ DidInsert;
1861 // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
1862 if (VisitedPreds.size() == 1) {
1863 const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second;
1864 auto CurrentLiveInEntry = LiveIn.find(&BB);
1866 // Check if there isn't an entry, or there is but the LiveIn set has
1867 // changed (expensive check).
1868 if (CurrentLiveInEntry == LiveIn.end())
1869 LiveIn.insert(std::make_pair(&BB, PredLiveOut));
1870 else if (PredLiveOut != CurrentLiveInEntry->second)
1871 CurrentLiveInEntry->second = PredLiveOut;
1872 else
1873 return /*Changed*/ false;
1874 return /*Changed*/ true;
1877 // More than one pred. Join LiveOuts of blocks 1 and 2.
1878 assert(VisitedPreds.size() > 1);
1879 const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second;
1880 const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second;
1881 BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1);
1883 // Join the LiveOuts of subsequent blocks.
1884 ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2);
1885 for (const BasicBlock *Pred : Tail) {
1886 const auto &PredLiveOut = LiveOut.find(Pred);
1887 assert(PredLiveOut != LiveOut.end() &&
1888 "block should have been processed already");
1889 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
1892 // Save the joined result for BB.
1893 auto CurrentLiveInEntry = LiveIn.find(&BB);
1894 // Check if there isn't an entry, or there is but the LiveIn set has changed
1895 // (expensive check).
1896 if (CurrentLiveInEntry == LiveIn.end())
1897 LiveIn.try_emplace(&BB, std::move(BBLiveIn));
1898 else if (BBLiveIn != CurrentLiveInEntry->second)
1899 CurrentLiveInEntry->second = std::move(BBLiveIn);
1900 else
1901 return /*Changed*/ false;
1902 return /*Changed*/ true;
1905 /// Return true if A fully contains B.
1906 static bool fullyContains(DIExpression::FragmentInfo A,
1907 DIExpression::FragmentInfo B) {
1908 auto ALeft = A.OffsetInBits;
1909 auto BLeft = B.OffsetInBits;
1910 if (BLeft < ALeft)
1911 return false;
1913 auto ARight = ALeft + A.SizeInBits;
1914 auto BRight = BLeft + B.SizeInBits;
1915 if (BRight > ARight)
1916 return false;
1917 return true;
1920 static std::optional<at::AssignmentInfo>
1921 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
1922 // Don't bother checking if this is an AllocaInst. We know this
1923 // instruction has no tag which means there are no variables associated
1924 // with it.
1925 if (const auto *SI = dyn_cast<StoreInst>(&I))
1926 return at::getAssignmentInfo(Layout, SI);
1927 if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
1928 return at::getAssignmentInfo(Layout, MI);
1929 // Alloca or non-store-like inst.
1930 return std::nullopt;
1933 /// Build a map of {Variable x: Variables y} where all variable fragments
1934 /// contained within the variable fragment x are in set y. This means that
1935 /// y does not contain all overlaps because partial overlaps are excluded.
1937 /// While we're iterating over the function, add single location defs for
1938 /// dbg.declares to \p FnVarLocs.
1940 /// Variables that are interesting to this pass in are added to
1941 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
1942 /// the last interesting variable plus 1, meaning variables with ID 1
1943 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
1944 /// subsequent variables are either stack homed or fully promoted.
1946 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
1947 /// the stored-to variable fragments.
1949 /// These tasks are bundled together to reduce the number of times we need
1950 /// to iterate over the function as they can be achieved together in one pass.
1951 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
1952 Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
1953 const DenseSet<DebugAggregate> &VarsWithStackSlot,
1954 AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars,
1955 unsigned &TrackedVariablesVectorSize) {
1956 DenseSet<DebugVariable> Seen;
1957 // Map of Variable: [Fragments].
1958 DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
1959 // Iterate over all instructions:
1960 // - dbg.declare -> add single location variable record
1961 // - dbg.* -> Add fragments to FragmentMap
1962 // - untagged store -> Add fragments to FragmentMap and update
1963 // UntaggedStoreVars.
1964 // We need to add fragments for untagged stores too so that we can correctly
1965 // clobber overlapped fragment locations later.
1966 SmallVector<DbgDeclareInst *> Declares;
1967 for (auto &BB : Fn) {
1968 for (auto &I : BB) {
1969 if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) {
1970 Declares.push_back(DDI);
1971 } else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1972 DebugVariable DV = DebugVariable(DII);
1973 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
1974 if (!VarsWithStackSlot.contains(DA))
1975 continue;
1976 if (Seen.insert(DV).second)
1977 FragmentMap[DA].push_back(DV);
1978 } else if (auto Info = getUntaggedStoreAssignmentInfo(
1979 I, Fn.getParent()->getDataLayout())) {
1980 // Find markers linked to this alloca.
1981 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) {
1982 // Discard the fragment if it covers the entire variable.
1983 std::optional<DIExpression::FragmentInfo> FragInfo =
1984 [&Info, DAI]() -> std::optional<DIExpression::FragmentInfo> {
1985 DIExpression::FragmentInfo F;
1986 F.OffsetInBits = Info->OffsetInBits;
1987 F.SizeInBits = Info->SizeInBits;
1988 if (auto ExistingFrag = DAI->getExpression()->getFragmentInfo())
1989 F.OffsetInBits += ExistingFrag->OffsetInBits;
1990 if (auto Sz = DAI->getVariable()->getSizeInBits()) {
1991 if (F.OffsetInBits == 0 && F.SizeInBits == *Sz)
1992 return std::nullopt;
1994 return F;
1995 }();
1997 DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo,
1998 DAI->getDebugLoc().getInlinedAt());
1999 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2000 if (!VarsWithStackSlot.contains(DA))
2001 continue;
2003 // Cache this info for later.
2004 UntaggedStoreVars[&I].push_back(
2005 {FnVarLocs->insertVariable(DV), *Info});
2007 if (Seen.insert(DV).second)
2008 FragmentMap[DA].push_back(DV);
2014 // Sort the fragment map for each DebugAggregate in ascending
2015 // order of fragment size - there should be no duplicates.
2016 for (auto &Pair : FragmentMap) {
2017 SmallVector<DebugVariable, 8> &Frags = Pair.second;
2018 std::sort(Frags.begin(), Frags.end(),
2019 [](const DebugVariable &Next, const DebugVariable &Elmt) {
2020 return Elmt.getFragmentOrDefault().SizeInBits >
2021 Next.getFragmentOrDefault().SizeInBits;
2023 // Check for duplicates.
2024 assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end());
2027 // Build the map.
2028 AssignmentTrackingLowering::OverlapMap Map;
2029 for (auto &Pair : FragmentMap) {
2030 auto &Frags = Pair.second;
2031 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
2032 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
2033 // Find the frags that this is contained within.
2035 // Because Frags is sorted by size and none have the same offset and
2036 // size, we know that this frag can only be contained by subsequent
2037 // elements.
2038 SmallVector<DebugVariable, 8>::iterator OtherIt = It;
2039 ++OtherIt;
2040 VariableID ThisVar = FnVarLocs->insertVariable(*It);
2041 for (; OtherIt != IEnd; ++OtherIt) {
2042 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
2043 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
2044 if (fullyContains(OtherFrag, Frag))
2045 Map[OtherVar].push_back(ThisVar);
2050 // VariableIDs are 1-based so the variable-tracking bitvector needs
2051 // NumVariables plus 1 bits.
2052 TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1;
2054 // Finally, insert the declares afterwards, so the first IDs are all
2055 // partially stack homed vars.
2056 for (auto *DDI : Declares)
2057 FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
2058 DDI->getDebugLoc(), DDI->getWrappedLocation());
2059 return Map;
2062 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
2063 if (Fn.size() > MaxNumBlocks) {
2064 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
2065 << ": too many blocks (" << Fn.size() << ")\n");
2066 at::deleteAll(&Fn);
2067 return false;
2070 FnVarLocs = FnVarLocsBuilder;
2072 // The general structure here is inspired by VarLocBasedImpl.cpp
2073 // (LiveDebugValues).
2075 // Build the variable fragment overlap map.
2076 // Note that this pass doesn't handle partial overlaps correctly (FWIW
2077 // neither does LiveDebugVariables) because that is difficult to do and
2078 // appears to be rare occurance.
2079 VarContains = buildOverlapMapAndRecordDeclares(
2080 Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars,
2081 TrackedVariablesVectorSize);
2083 // Prepare for traversal.
2084 ReversePostOrderTraversal<Function *> RPOT(&Fn);
2085 std::priority_queue<unsigned int, std::vector<unsigned int>,
2086 std::greater<unsigned int>>
2087 Worklist;
2088 std::priority_queue<unsigned int, std::vector<unsigned int>,
2089 std::greater<unsigned int>>
2090 Pending;
2091 DenseMap<unsigned int, BasicBlock *> OrderToBB;
2092 DenseMap<BasicBlock *, unsigned int> BBToOrder;
2093 { // Init OrderToBB and BBToOrder.
2094 unsigned int RPONumber = 0;
2095 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
2096 OrderToBB[RPONumber] = *RI;
2097 BBToOrder[*RI] = RPONumber;
2098 Worklist.push(RPONumber);
2099 ++RPONumber;
2101 LiveIn.init(RPONumber);
2102 LiveOut.init(RPONumber);
2105 // Perform the traversal.
2107 // This is a standard "union of predecessor outs" dataflow problem. To solve
2108 // it, we perform join() and process() using the two worklist method until
2109 // the LiveIn data for each block becomes unchanging. The "proof" that this
2110 // terminates can be put together by looking at the comments around LocKind,
2111 // Assignment, and the various join methods, which show that all the elements
2112 // involved are made up of join-semilattices; LiveIn(n) can only
2113 // monotonically increase in value throughout the dataflow.
2115 SmallPtrSet<BasicBlock *, 16> Visited;
2116 while (!Worklist.empty()) {
2117 // We track what is on the pending worklist to avoid inserting the same
2118 // thing twice.
2119 SmallPtrSet<BasicBlock *, 16> OnPending;
2120 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2121 while (!Worklist.empty()) {
2122 BasicBlock *BB = OrderToBB[Worklist.top()];
2123 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
2124 Worklist.pop();
2125 bool InChanged = join(*BB, Visited);
2126 // Always consider LiveIn changed on the first visit.
2127 InChanged |= Visited.insert(BB).second;
2128 if (InChanged) {
2129 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
2130 // Mutate a copy of LiveIn while processing BB. After calling process
2131 // LiveSet is the LiveOut set for BB.
2132 BlockInfo LiveSet = LiveIn[BB];
2134 // Process the instructions in the block.
2135 process(*BB, &LiveSet);
2137 // Relatively expensive check: has anything changed in LiveOut for BB?
2138 if (LiveOut[BB] != LiveSet) {
2139 LLVM_DEBUG(dbgs() << BB->getName()
2140 << " has new OutLocs, add succs to worklist: [ ");
2141 LiveOut[BB] = std::move(LiveSet);
2142 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
2143 if (OnPending.insert(*I).second) {
2144 LLVM_DEBUG(dbgs() << I->getName() << " ");
2145 Pending.push(BBToOrder[*I]);
2148 LLVM_DEBUG(dbgs() << "]\n");
2152 Worklist.swap(Pending);
2153 // At this point, pending must be empty, since it was just the empty
2154 // worklist
2155 assert(Pending.empty() && "Pending should be empty");
2158 // That's the hard part over. Now we just have some admin to do.
2160 // Record whether we inserted any intrinsics.
2161 bool InsertedAnyIntrinsics = false;
2163 // Identify and add defs for single location variables.
2165 // Go through all of the defs that we plan to add. If the aggregate variable
2166 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2167 // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2168 // we can identify those uneeded defs later.
2169 DenseSet<DebugAggregate> AlwaysStackHomed;
2170 for (const auto &Pair : InsertBeforeMap) {
2171 const auto &Vec = Pair.second;
2172 for (VarLocInfo VarLoc : Vec) {
2173 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2174 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2176 // Skip this Var if it's not always stack homed.
2177 if (NotAlwaysStackHomed.contains(Aggr))
2178 continue;
2180 // Skip complex cases such as when different fragments of a variable have
2181 // been split into different allocas. Skipping in this case means falling
2182 // back to using a list of defs (which could reduce coverage, but is no
2183 // less correct).
2184 bool Simple =
2185 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
2186 if (!Simple) {
2187 NotAlwaysStackHomed.insert(Aggr);
2188 continue;
2191 // All source assignments to this variable remain and all stores to any
2192 // part of the variable store to the same address (with varying
2193 // offsets). We can just emit a single location for the whole variable.
2195 // Unless we've already done so, create the single location def now.
2196 if (AlwaysStackHomed.insert(Aggr).second) {
2197 assert(!VarLoc.Values.hasArgList());
2198 // TODO: When more complex cases are handled VarLoc.Expr should be
2199 // built appropriately rather than always using an empty DIExpression.
2200 // The assert below is a reminder.
2201 assert(Simple);
2202 VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
2203 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2204 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values);
2205 InsertedAnyIntrinsics = true;
2210 // Insert the other DEFs.
2211 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
2212 SmallVector<VarLocInfo> NewDefs;
2213 for (const VarLocInfo &VarLoc : Vec) {
2214 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2215 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2216 // If this variable is always stack homed then we have already inserted a
2217 // dbg.declare and deleted this dbg.value.
2218 if (AlwaysStackHomed.contains(Aggr))
2219 continue;
2220 NewDefs.push_back(VarLoc);
2221 InsertedAnyIntrinsics = true;
2224 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
2227 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
2229 return InsertedAnyIntrinsics;
2232 bool AssignmentTrackingLowering::emitPromotedVarLocs(
2233 FunctionVarLocsBuilder *FnVarLocs) {
2234 bool InsertedAnyIntrinsics = false;
2235 // Go through every block, translating debug intrinsics for fully promoted
2236 // variables into FnVarLocs location defs. No analysis required for these.
2237 for (auto &BB : Fn) {
2238 for (auto &I : BB) {
2239 // Skip instructions other than dbg.values and dbg.assigns.
2240 auto *DVI = dyn_cast<DbgValueInst>(&I);
2241 if (!DVI)
2242 continue;
2243 // Skip variables that haven't been promoted - we've dealt with those
2244 // already.
2245 if (VarsWithStackSlot->contains(getAggregate(DVI)))
2246 continue;
2247 Instruction *InsertBefore = I.getNextNode();
2248 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
2249 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI),
2250 DVI->getExpression(), DVI->getDebugLoc(),
2251 DVI->getWrappedLocation());
2252 InsertedAnyIntrinsics = true;
2255 return InsertedAnyIntrinsics;
2258 /// Remove redundant definitions within sequences of consecutive location defs.
2259 /// This is done using a backward scan to keep the last def describing a
2260 /// specific variable/fragment.
2262 /// This implements removeRedundantDbgInstrsUsingBackwardScan from
2263 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2264 /// FunctionVarLocsBuilder instead of with intrinsics.
2265 static bool
2266 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
2267 FunctionVarLocsBuilder &FnVarLocs) {
2268 bool Changed = false;
2269 SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBits;
2270 // Scan over the entire block, not just over the instructions mapped by
2271 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2272 // instructions.
2273 for (const Instruction &I : reverse(*BB)) {
2274 if (!isa<DbgVariableIntrinsic>(I)) {
2275 // Sequence of consecutive defs ended. Clear map for the next one.
2276 VariableDefinedBits.clear();
2279 // Get the location defs that start just before this instruction.
2280 const auto *Locs = FnVarLocs.getWedge(&I);
2281 if (!Locs)
2282 continue;
2284 NumWedgesScanned++;
2285 bool ChangedThisWedge = false;
2286 // The new pruned set of defs, reversed because we're scanning backwards.
2287 SmallVector<VarLocInfo> NewDefsReversed;
2289 // Iterate over the existing defs in reverse.
2290 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
2291 NumDefsScanned++;
2292 DebugAggregate Aggr =
2293 getAggregate(FnVarLocs.getVariable(RIt->VariableID));
2294 uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0);
2296 if (SizeInBits == 0) {
2297 // If the size is unknown (0) then keep this location def to be safe.
2298 NewDefsReversed.push_back(*RIt);
2299 continue;
2302 // Only keep this location definition if it is not fully eclipsed by
2303 // other definitions in this wedge that come after it
2305 // Inert the bits the location definition defines.
2306 auto InsertResult =
2307 VariableDefinedBits.try_emplace(Aggr, BitVector(SizeInBits));
2308 bool FirstDefinition = InsertResult.second;
2309 BitVector &DefinedBits = InsertResult.first->second;
2311 DIExpression::FragmentInfo Fragment =
2312 RIt->Expr->getFragmentInfo().value_or(
2313 DIExpression::FragmentInfo(SizeInBits, 0));
2314 bool InvalidFragment = Fragment.endInBits() > SizeInBits;
2316 // If this defines any previously undefined bits, keep it.
2317 if (FirstDefinition || InvalidFragment ||
2318 DefinedBits.find_first_unset_in(Fragment.startInBits(),
2319 Fragment.endInBits()) != -1) {
2320 if (!InvalidFragment)
2321 DefinedBits.set(Fragment.startInBits(), Fragment.endInBits());
2322 NewDefsReversed.push_back(*RIt);
2323 continue;
2326 // Redundant def found: throw it away. Since the wedge of defs is being
2327 // rebuilt, doing nothing is the same as deleting an entry.
2328 ChangedThisWedge = true;
2329 NumDefsRemoved++;
2332 // Un-reverse the defs and replace the wedge with the pruned version.
2333 if (ChangedThisWedge) {
2334 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
2335 FnVarLocs.setWedge(&I, std::move(NewDefsReversed));
2336 NumWedgesChanged++;
2337 Changed = true;
2341 return Changed;
2344 /// Remove redundant location defs using a forward scan. This can remove a
2345 /// location definition that is redundant due to indicating that a variable has
2346 /// the same value as is already being indicated by an earlier def.
2348 /// This implements removeRedundantDbgInstrsUsingForwardScan from
2349 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2350 /// FunctionVarLocsBuilder instead of with intrinsics
2351 static bool
2352 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
2353 FunctionVarLocsBuilder &FnVarLocs) {
2354 bool Changed = false;
2355 DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>>
2356 VariableMap;
2358 // Scan over the entire block, not just over the instructions mapped by
2359 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2360 // instructions.
2361 for (const Instruction &I : *BB) {
2362 // Get the defs that come just before this instruction.
2363 const auto *Locs = FnVarLocs.getWedge(&I);
2364 if (!Locs)
2365 continue;
2367 NumWedgesScanned++;
2368 bool ChangedThisWedge = false;
2369 // The new pruned set of defs.
2370 SmallVector<VarLocInfo> NewDefs;
2372 // Iterate over the existing defs.
2373 for (const VarLocInfo &Loc : *Locs) {
2374 NumDefsScanned++;
2375 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2376 std::nullopt, Loc.DL.getInlinedAt());
2377 auto VMI = VariableMap.find(Key);
2379 // Update the map if we found a new value/expression describing the
2380 // variable, or if the variable wasn't mapped already.
2381 if (VMI == VariableMap.end() || VMI->second.first != Loc.Values ||
2382 VMI->second.second != Loc.Expr) {
2383 VariableMap[Key] = {Loc.Values, Loc.Expr};
2384 NewDefs.push_back(Loc);
2385 continue;
2388 // Did not insert this Loc, which is the same as removing it.
2389 ChangedThisWedge = true;
2390 NumDefsRemoved++;
2393 // Replace the existing wedge with the pruned version.
2394 if (ChangedThisWedge) {
2395 FnVarLocs.setWedge(&I, std::move(NewDefs));
2396 NumWedgesChanged++;
2397 Changed = true;
2401 return Changed;
2404 static bool
2405 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
2406 FunctionVarLocsBuilder &FnVarLocs) {
2407 assert(BB->isEntryBlock());
2408 // Do extra work to ensure that we remove semantically unimportant undefs.
2410 // This is to work around the fact that SelectionDAG will hoist dbg.values
2411 // using argument values to the top of the entry block. That can move arg
2412 // dbg.values before undef and constant dbg.values which they previously
2413 // followed. The easiest thing to do is to just try to feed SelectionDAG
2414 // input it's happy with.
2416 // Map of {Variable x: Fragments y} where the fragments y of variable x have
2417 // have at least one non-undef location defined already. Don't use directly,
2418 // instead call DefineBits and HasDefinedBits.
2419 SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
2420 VarsWithDef;
2421 // Specify that V (a fragment of A) has a non-undef location.
2422 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2423 VarsWithDef[A].insert(V.getFragmentOrDefault());
2425 // Return true if a non-undef location has been defined for V (a fragment of
2426 // A). Doesn't imply that the location is currently non-undef, just that a
2427 // non-undef location has been seen previously.
2428 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2429 auto FragsIt = VarsWithDef.find(A);
2430 if (FragsIt == VarsWithDef.end())
2431 return false;
2432 return llvm::any_of(FragsIt->second, [V](auto Frag) {
2433 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
2437 bool Changed = false;
2438 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
2440 // Scan over the entire block, not just over the instructions mapped by
2441 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2442 // instructions.
2443 for (const Instruction &I : *BB) {
2444 // Get the defs that come just before this instruction.
2445 const auto *Locs = FnVarLocs.getWedge(&I);
2446 if (!Locs)
2447 continue;
2449 NumWedgesScanned++;
2450 bool ChangedThisWedge = false;
2451 // The new pruned set of defs.
2452 SmallVector<VarLocInfo> NewDefs;
2454 // Iterate over the existing defs.
2455 for (const VarLocInfo &Loc : *Locs) {
2456 NumDefsScanned++;
2457 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2458 Loc.DL.getInlinedAt()};
2459 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
2461 // Remove undef entries that are encountered before any non-undef
2462 // intrinsics from the entry block.
2463 if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) {
2464 // Did not insert this Loc, which is the same as removing it.
2465 NumDefsRemoved++;
2466 ChangedThisWedge = true;
2467 continue;
2470 DefineBits(Aggr, Var);
2471 NewDefs.push_back(Loc);
2474 // Replace the existing wedge with the pruned version.
2475 if (ChangedThisWedge) {
2476 FnVarLocs.setWedge(&I, std::move(NewDefs));
2477 NumWedgesChanged++;
2478 Changed = true;
2482 return Changed;
2485 static bool removeRedundantDbgLocs(const BasicBlock *BB,
2486 FunctionVarLocsBuilder &FnVarLocs) {
2487 bool MadeChanges = false;
2488 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
2489 if (BB->isEntryBlock())
2490 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
2491 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
2493 if (MadeChanges)
2494 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
2495 << "\n");
2496 return MadeChanges;
2499 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
2500 DenseSet<DebugAggregate> Result;
2501 for (auto &BB : Fn) {
2502 for (auto &I : BB) {
2503 // Any variable linked to an instruction is considered
2504 // interesting. Ideally we only need to check Allocas, however, a
2505 // DIAssignID might get dropped from an alloca but not stores. In that
2506 // case, we need to consider the variable interesting for NFC behaviour
2507 // with this change. TODO: Consider only looking at allocas.
2508 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
2509 Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
2513 return Result;
2516 static void analyzeFunction(Function &Fn, const DataLayout &Layout,
2517 FunctionVarLocsBuilder *FnVarLocs) {
2518 // The analysis will generate location definitions for all variables, but we
2519 // only need to perform a dataflow on the set of variables which have a stack
2520 // slot. Find those now.
2521 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
2523 bool Changed = false;
2525 // Use a scope block to clean up AssignmentTrackingLowering before running
2526 // MemLocFragmentFill to reduce peak memory consumption.
2528 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
2529 Changed = Pass.run(FnVarLocs);
2532 if (Changed) {
2533 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot,
2534 shouldCoalesceFragments(Fn));
2535 Pass.run(FnVarLocs);
2537 // Remove redundant entries. As well as reducing memory consumption and
2538 // avoiding waiting cycles later by burning some now, this has another
2539 // important job. That is to work around some SelectionDAG quirks. See
2540 // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2541 for (auto &BB : Fn)
2542 removeRedundantDbgLocs(&BB, *FnVarLocs);
2546 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
2547 if (!isAssignmentTrackingEnabled(*F.getParent()))
2548 return false;
2550 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
2551 << "\n");
2552 auto DL = std::make_unique<DataLayout>(F.getParent());
2554 // Clear previous results.
2555 Results->clear();
2557 FunctionVarLocsBuilder Builder;
2558 analyzeFunction(F, *DL.get(), &Builder);
2560 // Save these results.
2561 Results->init(Builder);
2563 if (PrintResults && isFunctionInPrintList(F.getName()))
2564 Results->print(errs(), F);
2566 // Return false because this pass does not modify the function.
2567 return false;
2570 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2571 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
2573 char AssignmentTrackingAnalysis::ID = 0;
2575 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
2576 "Assignment Tracking Analysis", false, true)