1 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
2 #include "LiveDebugValues/LiveDebugValues.h"
3 #include "llvm/ADT/BitVector.h"
4 #include "llvm/ADT/DenseMapInfo.h"
5 #include "llvm/ADT/IntervalMap.h"
6 #include "llvm/ADT/PostOrderIterator.h"
7 #include "llvm/ADT/STLExtras.h"
8 #include "llvm/ADT/SmallSet.h"
9 #include "llvm/ADT/Statistic.h"
10 #include "llvm/ADT/UniqueVector.h"
11 #include "llvm/Analysis/Interval.h"
12 #include "llvm/BinaryFormat/Dwarf.h"
13 #include "llvm/IR/BasicBlock.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/DebugInfo.h"
16 #include "llvm/IR/Function.h"
17 #include "llvm/IR/Instruction.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/PassManager.h"
20 #include "llvm/IR/PrintPasses.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include <unordered_map>
33 #define DEBUG_TYPE "debug-ata"
35 STATISTIC(NumDefsScanned
, "Number of dbg locs that get scanned for removal");
36 STATISTIC(NumDefsRemoved
, "Number of dbg locs removed");
37 STATISTIC(NumWedgesScanned
, "Number of dbg wedges scanned");
38 STATISTIC(NumWedgesChanged
, "Number of dbg wedges changed");
40 static cl::opt
<unsigned>
41 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
42 cl::desc("Maximum num basic blocks before debug info dropped"),
44 /// Option for debugging the pass, determines if the memory location fragment
45 /// filling happens after generating the variable locations.
46 static cl::opt
<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
48 /// Print the results of the analysis. Respects -filter-print-funcs.
49 static cl::opt
<bool> PrintResults("print-debug-ata", cl::init(false),
52 /// Coalesce adjacent dbg locs describing memory locations that have contiguous
53 /// fragments. This reduces the cost of LiveDebugValues which does SSA
54 /// construction for each explicitly stated variable fragment.
55 static cl::opt
<cl::boolOrDefault
>
56 CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden
);
58 // Implicit conversions are disabled for enum class types, so unfortunately we
59 // need to create a DenseMapInfo wrapper around the specified underlying type.
60 template <> struct llvm::DenseMapInfo
<VariableID
> {
61 using Wrapped
= DenseMapInfo
<unsigned>;
62 static inline VariableID
getEmptyKey() {
63 return static_cast<VariableID
>(Wrapped::getEmptyKey());
65 static inline VariableID
getTombstoneKey() {
66 return static_cast<VariableID
>(Wrapped::getTombstoneKey());
68 static unsigned getHashValue(const VariableID
&Val
) {
69 return Wrapped::getHashValue(static_cast<unsigned>(Val
));
71 static bool isEqual(const VariableID
&LHS
, const VariableID
&RHS
) {
76 /// Helper class to build FunctionVarLocs, since that class isn't easy to
77 /// modify. TODO: There's not a great deal of value in the split, it could be
78 /// worth merging the two classes.
79 class FunctionVarLocsBuilder
{
80 friend FunctionVarLocs
;
81 UniqueVector
<DebugVariable
> Variables
;
82 // Use an unordered_map so we don't invalidate iterators after
83 // insert/modifications.
84 std::unordered_map
<const Instruction
*, SmallVector
<VarLocInfo
>>
87 SmallVector
<VarLocInfo
> SingleLocVars
;
90 unsigned getNumVariables() const { return Variables
.size(); }
92 /// Find or insert \p V and return the ID.
93 VariableID
insertVariable(DebugVariable V
) {
94 return static_cast<VariableID
>(Variables
.insert(V
));
97 /// Get a variable from its \p ID.
98 const DebugVariable
&getVariable(VariableID ID
) const {
99 return Variables
[static_cast<unsigned>(ID
)];
102 /// Return ptr to wedge of defs or nullptr if no defs come just before /p
104 const SmallVectorImpl
<VarLocInfo
> *getWedge(const Instruction
*Before
) const {
105 auto R
= VarLocsBeforeInst
.find(Before
);
106 if (R
== VarLocsBeforeInst
.end())
111 /// Replace the defs that come just before /p Before with /p Wedge.
112 void setWedge(const Instruction
*Before
, SmallVector
<VarLocInfo
> &&Wedge
) {
113 VarLocsBeforeInst
[Before
] = std::move(Wedge
);
116 /// Add a def for a variable that is valid for its lifetime.
117 void addSingleLocVar(DebugVariable Var
, DIExpression
*Expr
, DebugLoc DL
,
118 RawLocationWrapper R
) {
120 VarLoc
.VariableID
= insertVariable(Var
);
124 SingleLocVars
.emplace_back(VarLoc
);
127 /// Add a def to the wedge of defs just before /p Before.
128 void addVarLoc(Instruction
*Before
, DebugVariable Var
, DIExpression
*Expr
,
129 DebugLoc DL
, RawLocationWrapper R
) {
131 VarLoc
.VariableID
= insertVariable(Var
);
135 VarLocsBeforeInst
[Before
].emplace_back(VarLoc
);
139 void FunctionVarLocs::print(raw_ostream
&OS
, const Function
&Fn
) const {
140 // Print the variable table first. TODO: Sorting by variable could make the
141 // output more stable?
142 unsigned Counter
= -1;
143 OS
<< "=== Variables ===\n";
144 for (const DebugVariable
&V
: Variables
) {
146 // Skip first entry because it is a dummy entry.
150 OS
<< "[" << Counter
<< "] " << V
.getVariable()->getName();
151 if (auto F
= V
.getFragment())
152 OS
<< " bits [" << F
->OffsetInBits
<< ", "
153 << F
->OffsetInBits
+ F
->SizeInBits
<< ")";
154 if (const auto *IA
= V
.getInlinedAt())
155 OS
<< " inlined-at " << *IA
;
159 auto PrintLoc
= [&OS
](const VarLocInfo
&Loc
) {
160 OS
<< "DEF Var=[" << (unsigned)Loc
.VariableID
<< "]"
161 << " Expr=" << *Loc
.Expr
<< " Values=(";
162 for (auto *Op
: Loc
.Values
.location_ops()) {
163 errs() << Op
->getName() << " ";
168 // Print the single location variables.
169 OS
<< "=== Single location vars ===\n";
170 for (auto It
= single_locs_begin(), End
= single_locs_end(); It
!= End
;
175 // Print the non-single-location defs in line with IR.
176 OS
<< "=== In-line variable defs ===";
177 for (const BasicBlock
&BB
: Fn
) {
178 OS
<< "\n" << BB
.getName() << ":\n";
179 for (const Instruction
&I
: BB
) {
180 for (auto It
= locs_begin(&I
), End
= locs_end(&I
); It
!= End
; ++It
) {
188 void FunctionVarLocs::init(FunctionVarLocsBuilder
&Builder
) {
189 // Add the single-location variables first.
190 for (const auto &VarLoc
: Builder
.SingleLocVars
)
191 VarLocRecords
.emplace_back(VarLoc
);
192 // Mark the end of the section.
193 SingleVarLocEnd
= VarLocRecords
.size();
195 // Insert a contiguous block of VarLocInfos for each instruction, mapping it
196 // to the start and end position in the vector with VarLocsBeforeInst.
197 for (auto &P
: Builder
.VarLocsBeforeInst
) {
198 unsigned BlockStart
= VarLocRecords
.size();
199 for (const VarLocInfo
&VarLoc
: P
.second
)
200 VarLocRecords
.emplace_back(VarLoc
);
201 unsigned BlockEnd
= VarLocRecords
.size();
202 // Record the start and end indices.
203 if (BlockEnd
!= BlockStart
)
204 VarLocsBeforeInst
[P
.first
] = {BlockStart
, BlockEnd
};
207 // Copy the Variables vector from the builder's UniqueVector.
208 assert(Variables
.empty() && "Expect clear before init");
209 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
210 // are one-based) so reserve an extra and insert a dummy.
211 Variables
.reserve(Builder
.Variables
.size() + 1);
212 Variables
.push_back(DebugVariable(nullptr, std::nullopt
, nullptr));
213 Variables
.append(Builder
.Variables
.begin(), Builder
.Variables
.end());
216 void FunctionVarLocs::clear() {
218 VarLocRecords
.clear();
219 VarLocsBeforeInst
.clear();
223 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p
224 /// Start as far as possible. Prepend \Expression with the offset and append it
225 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
226 /// value and modified expression.
227 static std::pair
<Value
*, DIExpression
*>
228 walkToAllocaAndPrependOffsetDeref(const DataLayout
&DL
, Value
*Start
,
229 DIExpression
*Expression
) {
230 APInt
OffsetInBytes(DL
.getTypeSizeInBits(Start
->getType()), false);
232 Start
->stripAndAccumulateInBoundsConstantOffsets(DL
, OffsetInBytes
);
233 SmallVector
<uint64_t, 3> Ops
;
234 if (OffsetInBytes
.getBoolValue()) {
235 Ops
= {dwarf::DW_OP_plus_uconst
, OffsetInBytes
.getZExtValue()};
236 Expression
= DIExpression::prependOpcodes(
237 Expression
, Ops
, /*StackValue=*/false, /*EntryValue=*/false);
239 Expression
= DIExpression::append(Expression
, {dwarf::DW_OP_deref
});
240 return {End
, Expression
};
243 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
244 /// doesn't explicitly describe a memory location with DW_OP_deref or if the
245 /// expression is too complex to interpret.
246 static std::optional
<int64_t>
247 getDerefOffsetInBytes(const DIExpression
*DIExpr
) {
249 const unsigned NumElements
= DIExpr
->getNumElements();
250 const auto Elements
= DIExpr
->getElements();
251 unsigned ExpectedDerefIdx
= 0;
252 // Extract the offset.
253 if (NumElements
> 2 && Elements
[0] == dwarf::DW_OP_plus_uconst
) {
254 Offset
= Elements
[1];
255 ExpectedDerefIdx
= 2;
256 } else if (NumElements
> 3 && Elements
[0] == dwarf::DW_OP_constu
) {
257 ExpectedDerefIdx
= 3;
258 if (Elements
[2] == dwarf::DW_OP_plus
)
259 Offset
= Elements
[1];
260 else if (Elements
[2] == dwarf::DW_OP_minus
)
261 Offset
= -Elements
[1];
266 // If that's all there is it means there's no deref.
267 if (ExpectedDerefIdx
>= NumElements
)
270 // Check the next element is DW_OP_deref - otherwise this is too complex or
271 // isn't a deref expression.
272 if (Elements
[ExpectedDerefIdx
] != dwarf::DW_OP_deref
)
275 // Check the final operation is either the DW_OP_deref or is a fragment.
276 if (NumElements
== ExpectedDerefIdx
+ 1)
277 return Offset
; // Ends with deref.
278 unsigned ExpectedFragFirstIdx
= ExpectedDerefIdx
+ 1;
279 unsigned ExpectedFragFinalIdx
= ExpectedFragFirstIdx
+ 2;
280 if (NumElements
== ExpectedFragFinalIdx
+ 1 &&
281 Elements
[ExpectedFragFirstIdx
] == dwarf::DW_OP_LLVM_fragment
)
282 return Offset
; // Ends with deref + fragment.
284 // Don't bother trying to interpret anything more complex.
288 /// A whole (unfragmented) source variable.
289 using DebugAggregate
= std::pair
<const DILocalVariable
*, const DILocation
*>;
290 static DebugAggregate
getAggregate(const DbgVariableIntrinsic
*DII
) {
291 return DebugAggregate(DII
->getVariable(), DII
->getDebugLoc().getInlinedAt());
293 static DebugAggregate
getAggregate(const DebugVariable
&Var
) {
294 return DebugAggregate(Var
.getVariable(), Var
.getInlinedAt());
297 static bool shouldCoalesceFragments(Function
&F
) {
298 // Enabling fragment coalescing reduces compiler run time when instruction
299 // referencing is enabled. However, it may cause LiveDebugVariables to create
300 // incorrect locations. Since instruction-referencing mode effectively
301 // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
302 // has not been explicitly set and instruction-referencing is turned on.
303 switch (CoalesceAdjacentFragmentsOpt
) {
304 case cl::boolOrDefault::BOU_UNSET
:
305 return debuginfoShouldUseDebugInstrRef(
306 Triple(F
.getParent()->getTargetTriple()));
307 case cl::boolOrDefault::BOU_TRUE
:
309 case cl::boolOrDefault::BOU_FALSE
:
312 llvm_unreachable("Unknown boolOrDefault value");
316 /// In dwarf emission, the following sequence
317 /// 1. dbg.value ... Fragment(0, 64)
318 /// 2. dbg.value ... Fragment(0, 32)
319 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
320 /// the intersection of the fragments to having "no location"). This makes
321 /// sense for implicit location values because splitting the computed values
322 /// could be troublesome, and is probably quite uncommon. When we convert
323 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
324 /// a location (memory) rather than a value means we don't need to worry about
325 /// splitting any values, so we try to recover the rest of the fragment
327 /// This class performs a(nother) dataflow analysis over the function, adding
328 /// variable locations so that any bits of a variable with a memory location
329 /// have that location explicitly reinstated at each subsequent variable
330 /// location definition that that doesn't overwrite those bits. i.e. after a
331 /// variable location def, insert new defs for the memory location with
332 /// fragments for the difference of "all bits currently in memory" and "the
333 /// fragment of the second def".
334 class MemLocFragmentFill
{
336 FunctionVarLocsBuilder
*FnVarLocs
;
337 const DenseSet
<DebugAggregate
> *VarsWithStackSlot
;
338 bool CoalesceAdjacentFragments
;
340 // 0 = no memory location.
341 using BaseAddress
= unsigned;
342 using OffsetInBitsTy
= unsigned;
343 using FragTraits
= IntervalMapHalfOpenInfo
<OffsetInBitsTy
>;
344 using FragsInMemMap
= IntervalMap
<
345 OffsetInBitsTy
, BaseAddress
,
346 IntervalMapImpl::NodeSizer
<OffsetInBitsTy
, BaseAddress
>::LeafSize
,
348 FragsInMemMap::Allocator IntervalMapAlloc
;
349 using VarFragMap
= DenseMap
<unsigned, FragsInMemMap
>;
351 /// IDs for memory location base addresses in maps. Use 0 to indicate that
352 /// there's no memory location.
353 UniqueVector
<RawLocationWrapper
> Bases
;
354 UniqueVector
<DebugAggregate
> Aggregates
;
355 DenseMap
<const BasicBlock
*, VarFragMap
> LiveIn
;
356 DenseMap
<const BasicBlock
*, VarFragMap
> LiveOut
;
361 unsigned OffsetInBits
;
365 using InsertMap
= MapVector
<Instruction
*, SmallVector
<FragMemLoc
>>;
367 /// BBInsertBeforeMap holds a description for the set of location defs to be
368 /// inserted after the analysis is complete. It is updated during the dataflow
369 /// and the entry for a block is CLEARED each time it is (re-)visited. After
370 /// the dataflow is complete, each block entry will contain the set of defs
371 /// calculated during the final (fixed-point) iteration.
372 DenseMap
<const BasicBlock
*, InsertMap
> BBInsertBeforeMap
;
374 static bool intervalMapsAreEqual(const FragsInMemMap
&A
,
375 const FragsInMemMap
&B
) {
376 auto AIt
= A
.begin(), AEnd
= A
.end();
377 auto BIt
= B
.begin(), BEnd
= B
.end();
378 for (; AIt
!= AEnd
; ++AIt
, ++BIt
) {
380 return false; // B has fewer elements than A.
381 if (AIt
.start() != BIt
.start() || AIt
.stop() != BIt
.stop())
382 return false; // Interval is different.
384 return false; // Value at interval is different.
386 // AIt == AEnd. Check BIt is also now at end.
390 static bool varFragMapsAreEqual(const VarFragMap
&A
, const VarFragMap
&B
) {
391 if (A
.size() != B
.size())
393 for (const auto &APair
: A
) {
394 auto BIt
= B
.find(APair
.first
);
397 if (!intervalMapsAreEqual(APair
.second
, BIt
->second
))
403 /// Return a string for the value that \p BaseID represents.
404 std::string
toString(unsigned BaseID
) {
406 return Bases
[BaseID
].getVariableLocationOp(0)->getName().str();
411 /// Format string describing an FragsInMemMap (IntervalMap) interval.
412 std::string
toString(FragsInMemMap::const_iterator It
, bool Newline
= true) {
414 std::stringstream
S(String
);
416 S
<< "[" << It
.start() << ", " << It
.stop()
417 << "): " << toString(It
.value());
419 S
<< "invalid iterator (end)";
426 FragsInMemMap
meetFragments(const FragsInMemMap
&A
, const FragsInMemMap
&B
) {
427 FragsInMemMap
Result(IntervalMapAlloc
);
428 for (auto AIt
= A
.begin(), AEnd
= A
.end(); AIt
!= AEnd
; ++AIt
) {
429 LLVM_DEBUG(dbgs() << "a " << toString(AIt
));
430 // This is basically copied from process() and inverted (process is
431 // performing something like a union whereas this is more of an
434 // There's no work to do if interval `a` overlaps no fragments in map `B`.
435 if (!B
.overlaps(AIt
.start(), AIt
.stop()))
438 // Does StartBit intersect an existing fragment?
439 auto FirstOverlap
= B
.find(AIt
.start());
440 assert(FirstOverlap
!= B
.end());
441 bool IntersectStart
= FirstOverlap
.start() < AIt
.start();
442 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap
, false)
443 << ", IntersectStart: " << IntersectStart
<< "\n");
445 // Does EndBit intersect an existing fragment?
446 auto LastOverlap
= B
.find(AIt
.stop());
448 LastOverlap
!= B
.end() && LastOverlap
.start() < AIt
.stop();
449 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap
, false)
450 << ", IntersectEnd: " << IntersectEnd
<< "\n");
452 // Check if both ends of `a` intersect the same interval `b`.
453 if (IntersectStart
&& IntersectEnd
&& FirstOverlap
== LastOverlap
) {
454 // Insert `a` (`a` is contained in `b`) if the values match.
459 LLVM_DEBUG(dbgs() << "- a is contained within "
460 << toString(FirstOverlap
));
461 if (*AIt
&& *AIt
== *FirstOverlap
)
462 Result
.insert(AIt
.start(), AIt
.stop(), *AIt
);
464 // There's an overlap but `a` is not fully contained within
465 // `b`. Shorten any end-point intersections.
470 auto Next
= FirstOverlap
;
471 if (IntersectStart
) {
472 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
473 << toString(FirstOverlap
));
474 if (*AIt
&& *AIt
== *FirstOverlap
)
475 Result
.insert(AIt
.start(), FirstOverlap
.stop(), *AIt
);
483 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
484 << toString(LastOverlap
));
485 if (*AIt
&& *AIt
== *LastOverlap
)
486 Result
.insert(LastOverlap
.start(), AIt
.stop(), *AIt
);
489 // Insert all intervals in map `B` that are contained within interval
490 // `a` where the values match.
495 while (Next
!= B
.end() && Next
.start() < AIt
.stop() &&
496 Next
.stop() <= AIt
.stop()) {
498 << "- insert intersection of a and " << toString(Next
));
499 if (*AIt
&& *AIt
== *Next
)
500 Result
.insert(Next
.start(), Next
.stop(), *Next
);
508 /// Meet \p A and \p B, storing the result in \p A.
509 void meetVars(VarFragMap
&A
, const VarFragMap
&B
) {
512 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
513 for (auto It
= A
.begin(), End
= A
.end(); It
!= End
; ++It
) {
514 unsigned AVar
= It
->first
;
515 FragsInMemMap
&AFrags
= It
->second
;
516 auto BIt
= B
.find(AVar
);
517 if (BIt
== B
.end()) {
519 continue; // Var has no bits defined in B.
521 LLVM_DEBUG(dbgs() << "meet fragment maps for "
522 << Aggregates
[AVar
].first
->getName() << "\n");
523 AFrags
= meetFragments(AFrags
, BIt
->second
);
527 bool meet(const BasicBlock
&BB
,
528 const SmallPtrSet
<BasicBlock
*, 16> &Visited
) {
529 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB
.getName()
533 bool FirstMeet
= true;
534 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
536 for (auto I
= pred_begin(&BB
), E
= pred_end(&BB
); I
!= E
; I
++) {
537 // Ignore preds that haven't been processed yet. This is essentially the
538 // same as initialising all variables to implicit top value (⊤) which is
539 // the identity value for the meet operation.
540 const BasicBlock
*Pred
= *I
;
541 if (!Visited
.count(Pred
))
544 auto PredLiveOut
= LiveOut
.find(Pred
);
545 assert(PredLiveOut
!= LiveOut
.end());
548 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred
->getName() << "\n");
549 BBLiveIn
= PredLiveOut
->second
;
552 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred
->getName()
554 meetVars(BBLiveIn
, PredLiveOut
->second
);
557 // An empty set is ⊥ for the intersect-like meet operation. If we've
558 // already got ⊥ there's no need to run the code - we know the result is
559 // ⊥ since `meet(a, ⊥) = ⊥`.
560 if (BBLiveIn
.size() == 0)
564 auto CurrentLiveInEntry
= LiveIn
.find(&BB
);
565 // If there's no LiveIn entry for the block yet, add it.
566 if (CurrentLiveInEntry
== LiveIn
.end()) {
567 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB
.getName()
569 LiveIn
[&BB
] = std::move(BBLiveIn
);
570 return /*Changed=*/true;
573 // If the LiveIn set has changed (expensive check) update it and return
575 if (!varFragMapsAreEqual(BBLiveIn
, CurrentLiveInEntry
->second
)) {
576 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB
.getName() << "\n");
577 CurrentLiveInEntry
->second
= std::move(BBLiveIn
);
578 return /*Changed=*/true;
581 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB
.getName() << "\n");
582 return /*Changed=*/false;
585 void insertMemLoc(BasicBlock
&BB
, Instruction
&Before
, unsigned Var
,
586 unsigned StartBit
, unsigned EndBit
, unsigned Base
,
588 assert(StartBit
< EndBit
&& "Cannot create fragment of size <= 0");
593 Loc
.OffsetInBits
= StartBit
;
594 Loc
.SizeInBits
= EndBit
- StartBit
;
595 assert(Base
&& "Expected a non-zero ID for Base address");
598 BBInsertBeforeMap
[&BB
][&Before
].push_back(Loc
);
599 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates
[Var
].first
->getName()
600 << " bits [" << StartBit
<< ", " << EndBit
<< ")\n");
603 /// Inserts a new dbg def if the interval found when looking up \p StartBit
604 /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
605 /// indicates - assuming StartBit->EndBit has just been inserted - that the
606 /// slice has been coalesced in the map).
607 void coalesceFragments(BasicBlock
&BB
, Instruction
&Before
, unsigned Var
,
608 unsigned StartBit
, unsigned EndBit
, unsigned Base
,
609 DebugLoc DL
, const FragsInMemMap
&FragMap
) {
610 if (!CoalesceAdjacentFragments
)
612 // We've inserted the location into the map. The map will have coalesced
613 // adjacent intervals (variable fragments) that describe the same memory
614 // location. Use this knowledge to insert a debug location that describes
615 // that coalesced fragment. This may eclipse other locs we've just
616 // inserted. This is okay as redundant locs will be cleaned up later.
617 auto CoalescedFrag
= FragMap
.find(StartBit
);
618 // Bail if no coalescing has taken place.
619 if (CoalescedFrag
.start() == StartBit
&& CoalescedFrag
.stop() == EndBit
)
622 LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag
.start()
623 << " to " << CoalescedFrag
.stop() << "\n");
624 insertMemLoc(BB
, Before
, Var
, CoalescedFrag
.start(), CoalescedFrag
.stop(),
628 void addDef(const VarLocInfo
&VarLoc
, Instruction
&Before
, BasicBlock
&BB
,
629 VarFragMap
&LiveSet
) {
630 DebugVariable DbgVar
= FnVarLocs
->getVariable(VarLoc
.VariableID
);
631 if (skipVariable(DbgVar
.getVariable()))
633 // Don't bother doing anything for this variables if we know it's fully
634 // promoted. We're only interested in variables that (sometimes) live on
636 if (!VarsWithStackSlot
->count(getAggregate(DbgVar
)))
638 unsigned Var
= Aggregates
.insert(
639 DebugAggregate(DbgVar
.getVariable(), VarLoc
.DL
.getInlinedAt()));
641 // [StartBit: EndBit) are the bits affected by this def.
642 const DIExpression
*DIExpr
= VarLoc
.Expr
;
645 if (auto Frag
= DIExpr
->getFragmentInfo()) {
646 StartBit
= Frag
->OffsetInBits
;
647 EndBit
= StartBit
+ Frag
->SizeInBits
;
649 assert(static_cast<bool>(DbgVar
.getVariable()->getSizeInBits()));
651 EndBit
= *DbgVar
.getVariable()->getSizeInBits();
654 // We will only fill fragments for simple memory-describing dbg.value
655 // intrinsics. If the fragment offset is the same as the offset from the
656 // base pointer, do The Thing, otherwise fall back to normal dbg.value
657 // behaviour. AssignmentTrackingLowering has generated DIExpressions
658 // written in terms of the base pointer.
659 // TODO: Remove this condition since the fragment offset doesn't always
660 // equal the offset from base pointer (e.g. for a SROA-split variable).
661 const auto DerefOffsetInBytes
= getDerefOffsetInBytes(DIExpr
);
662 const unsigned Base
=
663 DerefOffsetInBytes
&& *DerefOffsetInBytes
* 8 == StartBit
664 ? Bases
.insert(VarLoc
.Values
)
666 LLVM_DEBUG(dbgs() << "DEF " << DbgVar
.getVariable()->getName() << " ["
667 << StartBit
<< ", " << EndBit
<< "): " << toString(Base
)
670 // First of all, any locs that use mem that are disrupted need reinstating.
671 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
672 // with existing intervals so this code involves a lot of fiddling around
673 // with intervals to do that manually.
674 auto FragIt
= LiveSet
.find(Var
);
676 // Check if the variable does not exist in the map.
677 if (FragIt
== LiveSet
.end()) {
678 // Add this variable to the BB map.
679 auto P
= LiveSet
.try_emplace(Var
, FragsInMemMap(IntervalMapAlloc
));
680 assert(P
.second
&& "Var already in map?");
681 // Add the interval to the fragment map.
682 P
.first
->second
.insert(StartBit
, EndBit
, Base
);
685 // The variable has an entry in the map.
687 FragsInMemMap
&FragMap
= FragIt
->second
;
688 // First check the easy case: the new fragment `f` doesn't overlap with any
690 if (!FragMap
.overlaps(StartBit
, EndBit
)) {
691 LLVM_DEBUG(dbgs() << "- No overlaps\n");
692 FragMap
.insert(StartBit
, EndBit
, Base
);
693 coalesceFragments(BB
, Before
, Var
, StartBit
, EndBit
, Base
, VarLoc
.DL
,
697 // There is at least one overlap.
699 // Does StartBit intersect an existing fragment?
700 auto FirstOverlap
= FragMap
.find(StartBit
);
701 assert(FirstOverlap
!= FragMap
.end());
702 bool IntersectStart
= FirstOverlap
.start() < StartBit
;
704 // Does EndBit intersect an existing fragment?
705 auto LastOverlap
= FragMap
.find(EndBit
);
706 bool IntersectEnd
= LastOverlap
.valid() && LastOverlap
.start() < EndBit
;
708 // Check if both ends of `f` intersect the same interval `i`.
709 if (IntersectStart
&& IntersectEnd
&& FirstOverlap
== LastOverlap
) {
710 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
711 // Shorten `i` so that there's space to insert `f`.
717 // Save values for use after inserting a new interval.
718 auto EndBitOfOverlap
= FirstOverlap
.stop();
719 unsigned OverlapValue
= FirstOverlap
.value();
721 // Shorten the overlapping interval.
722 FirstOverlap
.setStop(StartBit
);
723 insertMemLoc(BB
, Before
, Var
, FirstOverlap
.start(), StartBit
,
724 OverlapValue
, VarLoc
.DL
);
726 // Insert a new interval to represent the end part.
727 FragMap
.insert(EndBit
, EndBitOfOverlap
, OverlapValue
);
728 insertMemLoc(BB
, Before
, Var
, EndBit
, EndBitOfOverlap
, OverlapValue
,
731 // Insert the new (middle) fragment now there is space.
732 FragMap
.insert(StartBit
, EndBit
, Base
);
734 // There's an overlap but `f` may not be fully contained within
735 // `i`. Shorten any end-point intersections so that we can then
741 // Shorten any end-point intersections.
742 if (IntersectStart
) {
743 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
744 // Split off at the intersection.
745 FirstOverlap
.setStop(StartBit
);
746 insertMemLoc(BB
, Before
, Var
, FirstOverlap
.start(), StartBit
,
747 *FirstOverlap
, VarLoc
.DL
);
754 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
755 // Split off at the intersection.
756 LastOverlap
.setStart(EndBit
);
757 insertMemLoc(BB
, Before
, Var
, EndBit
, LastOverlap
.stop(), *LastOverlap
,
761 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
762 // FirstOverlap and LastOverlap have been shortened such that they're
763 // no longer overlapping with [StartBit, EndBit). Delete any overlaps
764 // that remain (these will be fully contained within `f`).
766 // [ - i - ] } Intersection shortening that has happened above.
770 // [i2 ] } Intervals fully contained within `f` get erased.
772 // [ - f - ][ i ] } Completed insertion.
773 auto It
= FirstOverlap
;
775 ++It
; // IntersectStart: first overlap has been shortened.
776 while (It
.valid() && It
.start() >= StartBit
&& It
.stop() <= EndBit
) {
777 LLVM_DEBUG(dbgs() << "- Erase " << toString(It
));
778 It
.erase(); // This increments It after removing the interval.
780 // We've dealt with all the overlaps now!
781 assert(!FragMap
.overlaps(StartBit
, EndBit
));
782 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
783 FragMap
.insert(StartBit
, EndBit
, Base
);
786 coalesceFragments(BB
, Before
, Var
, StartBit
, EndBit
, Base
, VarLoc
.DL
,
790 bool skipVariable(const DILocalVariable
*V
) { return !V
->getSizeInBits(); }
792 void process(BasicBlock
&BB
, VarFragMap
&LiveSet
) {
793 BBInsertBeforeMap
[&BB
].clear();
795 if (const auto *Locs
= FnVarLocs
->getWedge(&I
)) {
796 for (const VarLocInfo
&Loc
: *Locs
) {
797 addDef(Loc
, I
, *I
.getParent(), LiveSet
);
804 MemLocFragmentFill(Function
&Fn
,
805 const DenseSet
<DebugAggregate
> *VarsWithStackSlot
,
806 bool CoalesceAdjacentFragments
)
807 : Fn(Fn
), VarsWithStackSlot(VarsWithStackSlot
),
808 CoalesceAdjacentFragments(CoalesceAdjacentFragments
) {}
810 /// Add variable locations to \p FnVarLocs so that any bits of a variable
811 /// with a memory location have that location explicitly reinstated at each
812 /// subsequent variable location definition that that doesn't overwrite those
813 /// bits. i.e. after a variable location def, insert new defs for the memory
814 /// location with fragments for the difference of "all bits currently in
815 /// memory" and "the fragment of the second def". e.g.
819 /// var x bits 0 to 63: value in memory
820 /// more instructions
821 /// var x bits 0 to 31: value is %0
825 /// var x bits 0 to 63: value in memory
826 /// more instructions
827 /// var x bits 0 to 31: value is %0
828 /// var x bits 32 to 61: value in memory ; <-- new loc def
830 void run(FunctionVarLocsBuilder
*FnVarLocs
) {
831 if (!EnableMemLocFragFill
)
834 this->FnVarLocs
= FnVarLocs
;
836 // Prepare for traversal.
838 ReversePostOrderTraversal
<Function
*> RPOT(&Fn
);
839 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
840 std::greater
<unsigned int>>
842 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
843 std::greater
<unsigned int>>
845 DenseMap
<unsigned int, BasicBlock
*> OrderToBB
;
846 DenseMap
<BasicBlock
*, unsigned int> BBToOrder
;
847 { // Init OrderToBB and BBToOrder.
848 unsigned int RPONumber
= 0;
849 for (auto RI
= RPOT
.begin(), RE
= RPOT
.end(); RI
!= RE
; ++RI
) {
850 OrderToBB
[RPONumber
] = *RI
;
851 BBToOrder
[*RI
] = RPONumber
;
852 Worklist
.push(RPONumber
);
855 LiveIn
.init(RPONumber
);
856 LiveOut
.init(RPONumber
);
859 // Perform the traversal.
861 // This is a standard "intersect of predecessor outs" dataflow problem. To
862 // solve it, we perform meet() and process() using the two worklist method
863 // until the LiveIn data for each block becomes unchanging.
865 // This dataflow is essentially working on maps of sets and at each meet we
866 // intersect the maps and the mapped sets. So, initialized live-in maps
867 // monotonically decrease in value throughout the dataflow.
868 SmallPtrSet
<BasicBlock
*, 16> Visited
;
869 while (!Worklist
.empty() || !Pending
.empty()) {
870 // We track what is on the pending worklist to avoid inserting the same
871 // thing twice. We could avoid this with a custom priority queue, but
872 // this is probably not worth it.
873 SmallPtrSet
<BasicBlock
*, 16> OnPending
;
874 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
875 while (!Worklist
.empty()) {
876 BasicBlock
*BB
= OrderToBB
[Worklist
.top()];
877 LLVM_DEBUG(dbgs() << "\nPop BB " << BB
->getName() << "\n");
879 bool InChanged
= meet(*BB
, Visited
);
880 // Always consider LiveIn changed on the first visit.
881 InChanged
|= Visited
.insert(BB
).second
;
884 << BB
->getName() << " has new InLocs, process it\n");
885 // Mutate a copy of LiveIn while processing BB. Once we've processed
886 // the terminator LiveSet is the LiveOut set for BB.
887 // This is an expensive copy!
888 VarFragMap LiveSet
= LiveIn
[BB
];
890 // Process the instructions in the block.
891 process(*BB
, LiveSet
);
893 // Relatively expensive check: has anything changed in LiveOut for BB?
894 if (!varFragMapsAreEqual(LiveOut
[BB
], LiveSet
)) {
895 LLVM_DEBUG(dbgs() << BB
->getName()
896 << " has new OutLocs, add succs to worklist: [ ");
897 LiveOut
[BB
] = std::move(LiveSet
);
898 for (auto I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; I
++) {
899 if (OnPending
.insert(*I
).second
) {
900 LLVM_DEBUG(dbgs() << I
->getName() << " ");
901 Pending
.push(BBToOrder
[*I
]);
904 LLVM_DEBUG(dbgs() << "]\n");
908 Worklist
.swap(Pending
);
909 // At this point, pending must be empty, since it was just the empty
911 assert(Pending
.empty() && "Pending should be empty");
914 // Insert new location defs.
915 for (auto &Pair
: BBInsertBeforeMap
) {
916 InsertMap
&Map
= Pair
.second
;
917 for (auto &Pair
: Map
) {
918 Instruction
*InsertBefore
= Pair
.first
;
919 assert(InsertBefore
&& "should never be null");
920 auto FragMemLocs
= Pair
.second
;
921 auto &Ctx
= Fn
.getContext();
923 for (auto &FragMemLoc
: FragMemLocs
) {
924 DIExpression
*Expr
= DIExpression::get(Ctx
, std::nullopt
);
925 if (FragMemLoc
.SizeInBits
!=
926 *Aggregates
[FragMemLoc
.Var
].first
->getSizeInBits())
927 Expr
= *DIExpression::createFragmentExpression(
928 Expr
, FragMemLoc
.OffsetInBits
, FragMemLoc
.SizeInBits
);
929 Expr
= DIExpression::prepend(Expr
, DIExpression::DerefAfter
,
930 FragMemLoc
.OffsetInBits
/ 8);
931 DebugVariable
Var(Aggregates
[FragMemLoc
.Var
].first
, Expr
,
932 FragMemLoc
.DL
.getInlinedAt());
933 FnVarLocs
->addVarLoc(InsertBefore
, Var
, Expr
, FragMemLoc
.DL
,
934 Bases
[FragMemLoc
.Base
]);
941 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
942 /// that interprets assignment tracking debug info metadata and stores in IR to
943 /// create a map of variable locations.
944 class AssignmentTrackingLowering
{
946 /// The kind of location in use for a variable, where Mem is the stack home,
947 /// Val is an SSA value or const, and None means that there is not one single
948 /// kind (either because there are multiple or because there is none; it may
949 /// prove useful to split this into two values in the future).
951 /// LocKind is a join-semilattice with the partial order:
955 /// join(Mem, Mem) = Mem
956 /// join(Val, Val) = Val
957 /// join(Mem, Val) = None
958 /// join(None, Mem) = None
959 /// join(None, Val) = None
960 /// join(None, None) = None
962 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
963 /// to name assignments and are not tracking the actual stored values.
964 /// Therefore currently there's no way to ensure that Mem values and Val
965 /// values are the same. This could be a future extension, though it's not
966 /// clear that many additional locations would be recovered that way in
967 /// practice as the likelihood of this sitation arising naturally seems
969 enum class LocKind
{ Mem
, Val
, None
};
971 /// An abstraction of the assignment of a value to a variable or memory
974 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
975 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
976 /// can't) know the ID of the last assignment that took place.
978 /// The Status of the Assignment (Known or NoneOrPhi) is another
979 /// join-semilattice. The partial order is:
980 /// NoneOrPhi > Known {id_0, id_1, ...id_N}
982 /// i.e. for all values x and y where x != y:
984 /// join(x, y) = NoneOrPhi
986 enum S
{ Known
, NoneOrPhi
} Status
;
987 /// ID of the assignment. nullptr if Status is not Known.
989 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
991 DbgAssignIntrinsic
*Source
;
993 bool isSameSourceAssignment(const Assignment
&Other
) const {
994 // Don't include Source in the equality check. Assignments are
995 // defined by their ID, not debug intrinsic(s).
996 return std::tie(Status
, ID
) == std::tie(Other
.Status
, Other
.ID
);
998 void dump(raw_ostream
&OS
) {
999 static const char *LUT
[] = {"Known", "NoneOrPhi"};
1000 OS
<< LUT
[Status
] << "(id=";
1013 static Assignment
make(DIAssignID
*ID
, DbgAssignIntrinsic
*Source
) {
1014 return Assignment(Known
, ID
, Source
);
1016 static Assignment
makeFromMemDef(DIAssignID
*ID
) {
1017 return Assignment(Known
, ID
, nullptr);
1019 static Assignment
makeNoneOrPhi() {
1020 return Assignment(NoneOrPhi
, nullptr, nullptr);
1022 // Again, need a Top value?
1024 : Status(NoneOrPhi
), ID(nullptr), Source(nullptr) {
1025 } // Can we delete this?
1026 Assignment(S Status
, DIAssignID
*ID
, DbgAssignIntrinsic
*Source
)
1027 : Status(Status
), ID(ID
), Source(Source
) {
1028 // If the Status is Known then we expect there to be an assignment ID.
1029 assert(Status
== NoneOrPhi
|| ID
);
1033 using AssignmentMap
= SmallVector
<Assignment
>;
1034 using LocMap
= SmallVector
<LocKind
>;
1035 using OverlapMap
= DenseMap
<VariableID
, SmallVector
<VariableID
>>;
1036 using UntaggedStoreAssignmentMap
=
1037 DenseMap
<const Instruction
*,
1038 SmallVector
<std::pair
<VariableID
, at::AssignmentInfo
>>>;
1041 /// The highest numbered VariableID for partially promoted variables plus 1,
1042 /// the values for which start at 1.
1043 unsigned TrackedVariablesVectorSize
= 0;
1044 /// Map a variable to the set of variables that it fully contains.
1045 OverlapMap VarContains
;
1046 /// Map untagged stores to the variable fragments they assign to. Used by
1047 /// processUntaggedInstruction.
1048 UntaggedStoreAssignmentMap UntaggedStoreVars
;
1050 // Machinery to defer inserting dbg.values.
1051 using InsertMap
= MapVector
<Instruction
*, SmallVector
<VarLocInfo
>>;
1052 InsertMap InsertBeforeMap
;
1053 /// Clear the location definitions currently cached for insertion after /p
1055 void resetInsertionPoint(Instruction
&After
);
1056 void emitDbgValue(LocKind Kind
, const DbgVariableIntrinsic
*Source
,
1057 Instruction
*After
);
1059 static bool mapsAreEqual(const BitVector
&Mask
, const AssignmentMap
&A
,
1060 const AssignmentMap
&B
) {
1061 return llvm::all_of(Mask
.set_bits(), [&](unsigned VarID
) {
1062 return A
[VarID
].isSameSourceAssignment(B
[VarID
]);
1066 /// Represents the stack and debug assignments in a block. Used to describe
1067 /// the live-in and live-out values for blocks, as well as the "current"
1068 /// value as we process each instruction in a block.
1070 /// The set of variables (VariableID) being tracked in this block.
1071 BitVector VariableIDsInBlock
;
1072 /// Dominating assignment to memory for each variable, indexed by
1074 AssignmentMap StackHomeValue
;
1075 /// Dominating assignemnt to each variable, indexed by VariableID.
1076 AssignmentMap DebugValue
;
1077 /// Location kind for each variable. LiveLoc indicates whether the
1078 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1079 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1080 /// preference. This cannot be derived by inspecting DebugValue and
1081 /// StackHomeValue due to the fact that there's no distinction in
1082 /// Assignment (the class) between whether an assignment is unknown or a
1083 /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1084 /// words, the memory location may well be valid while both DebugValue and
1085 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1086 /// Indexed by VariableID.
1090 enum AssignmentKind
{ Stack
, Debug
};
1091 const AssignmentMap
&getAssignmentMap(AssignmentKind Kind
) const {
1094 return StackHomeValue
;
1098 llvm_unreachable("Unknown AssignmentKind");
1100 AssignmentMap
&getAssignmentMap(AssignmentKind Kind
) {
1101 return const_cast<AssignmentMap
&>(
1102 const_cast<const BlockInfo
*>(this)->getAssignmentMap(Kind
));
1105 bool isVariableTracked(VariableID Var
) const {
1106 return VariableIDsInBlock
[static_cast<unsigned>(Var
)];
1109 const Assignment
&getAssignment(AssignmentKind Kind
, VariableID Var
) const {
1110 assert(isVariableTracked(Var
) && "Var not tracked in block");
1111 return getAssignmentMap(Kind
)[static_cast<unsigned>(Var
)];
1114 LocKind
getLocKind(VariableID Var
) const {
1115 assert(isVariableTracked(Var
) && "Var not tracked in block");
1116 return LiveLoc
[static_cast<unsigned>(Var
)];
1119 /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1120 /// fragments contained win \p Var.
1121 void setLocKind(VariableID Var
, LocKind K
) {
1122 VariableIDsInBlock
.set(static_cast<unsigned>(Var
));
1123 LiveLoc
[static_cast<unsigned>(Var
)] = K
;
1126 /// Set the assignment in the \p Kind assignment map for \p Var only: does
1127 /// not set the assignment for VariableIDs of fragments contained win \p
1129 void setAssignment(AssignmentKind Kind
, VariableID Var
,
1130 const Assignment
&AV
) {
1131 VariableIDsInBlock
.set(static_cast<unsigned>(Var
));
1132 getAssignmentMap(Kind
)[static_cast<unsigned>(Var
)] = AV
;
1135 /// Return true if there is an assignment matching \p AV in the \p Kind
1136 /// assignment map. Does consider assignments for VariableIDs of fragments
1137 /// contained win \p Var.
1138 bool hasAssignment(AssignmentKind Kind
, VariableID Var
,
1139 const Assignment
&AV
) const {
1140 if (!isVariableTracked(Var
))
1142 return AV
.isSameSourceAssignment(getAssignment(Kind
, Var
));
1145 /// Compare every element in each map to determine structural equality
1147 bool operator==(const BlockInfo
&Other
) const {
1148 return VariableIDsInBlock
== Other
.VariableIDsInBlock
&&
1149 LiveLoc
== Other
.LiveLoc
&&
1150 mapsAreEqual(VariableIDsInBlock
, StackHomeValue
,
1151 Other
.StackHomeValue
) &&
1152 mapsAreEqual(VariableIDsInBlock
, DebugValue
, Other
.DebugValue
);
1154 bool operator!=(const BlockInfo
&Other
) const { return !(*this == Other
); }
1156 return LiveLoc
.size() == DebugValue
.size() &&
1157 LiveLoc
.size() == StackHomeValue
.size();
1160 /// Clear everything and initialise with ⊤-values for all variables.
1161 void init(int NumVars
) {
1162 StackHomeValue
.clear();
1165 VariableIDsInBlock
= BitVector(NumVars
);
1166 StackHomeValue
.insert(StackHomeValue
.begin(), NumVars
,
1167 Assignment::makeNoneOrPhi());
1168 DebugValue
.insert(DebugValue
.begin(), NumVars
,
1169 Assignment::makeNoneOrPhi());
1170 LiveLoc
.insert(LiveLoc
.begin(), NumVars
, LocKind::None
);
1173 /// Helper for join.
1174 template <typename ElmtType
, typename FnInputType
>
1175 static void joinElmt(int Index
, SmallVector
<ElmtType
> &Target
,
1176 const SmallVector
<ElmtType
> &A
,
1177 const SmallVector
<ElmtType
> &B
,
1178 ElmtType (*Fn
)(FnInputType
, FnInputType
)) {
1179 Target
[Index
] = Fn(A
[Index
], B
[Index
]);
1182 /// See comment for AssignmentTrackingLowering::joinBlockInfo.
1183 static BlockInfo
join(const BlockInfo
&A
, const BlockInfo
&B
, int NumVars
) {
1186 // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1187 // Difference = join(x, ⊤) for x where Var(x) is in A xor B
1188 // Join = Intersect ∪ Difference
1190 // This is achieved by performing a join on elements from A and B with
1191 // variables common to both A and B (join elements indexed by var
1192 // intersect), then adding ⊤-value elements for vars in A xor B. The
1193 // latter part is equivalent to performing join on elements with variables
1194 // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
1195 // BlockInfo::init initializes all variable entries to the ⊤ value so we
1196 // don't need to explicitly perform that step as Join.VariableIDsInBlock
1197 // is set to the union of the variables in A and B at the end of this
1202 BitVector Intersect
= A
.VariableIDsInBlock
;
1203 Intersect
&= B
.VariableIDsInBlock
;
1205 for (auto VarID
: Intersect
.set_bits()) {
1206 joinElmt(VarID
, Join
.LiveLoc
, A
.LiveLoc
, B
.LiveLoc
, joinKind
);
1207 joinElmt(VarID
, Join
.DebugValue
, A
.DebugValue
, B
.DebugValue
,
1209 joinElmt(VarID
, Join
.StackHomeValue
, A
.StackHomeValue
, B
.StackHomeValue
,
1213 Join
.VariableIDsInBlock
= A
.VariableIDsInBlock
;
1214 Join
.VariableIDsInBlock
|= B
.VariableIDsInBlock
;
1215 assert(Join
.isValid());
1221 const DataLayout
&Layout
;
1222 const DenseSet
<DebugAggregate
> *VarsWithStackSlot
;
1223 FunctionVarLocsBuilder
*FnVarLocs
;
1224 DenseMap
<const BasicBlock
*, BlockInfo
> LiveIn
;
1225 DenseMap
<const BasicBlock
*, BlockInfo
> LiveOut
;
1227 /// Helper for process methods to track variables touched each frame.
1228 DenseSet
<VariableID
> VarsTouchedThisFrame
;
1230 /// The set of variables that sometimes are not located in their stack home.
1231 DenseSet
<DebugAggregate
> NotAlwaysStackHomed
;
1233 VariableID
getVariableID(const DebugVariable
&Var
) {
1234 return static_cast<VariableID
>(FnVarLocs
->insertVariable(Var
));
1237 /// Join the LiveOut values of preds that are contained in \p Visited into
1238 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1239 /// values monotonically increase. See the @link joinMethods join methods
1240 /// @endlink documentation for more info.
1241 bool join(const BasicBlock
&BB
, const SmallPtrSet
<BasicBlock
*, 16> &Visited
);
1242 ///@name joinMethods
1243 /// Functions that implement `join` (the least upper bound) for the
1244 /// join-semilattice types used in the dataflow. There is an explicit bottom
1245 /// value (⊥) for some types and and explicit top value (⊤) for all types.
1248 /// Join(A, B) >= A && Join(A, B) >= B
1249 /// Join(A, ⊥) = A
1250 /// Join(A, ⊤) = ⊤
1252 /// These invariants are important for monotonicity.
1254 /// For the map-type functions, all unmapped keys in an empty map are
1255 /// associated with a bottom value (⊥). This represents their values being
1256 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1257 /// only present in one) represents either a variable going out of scope or
1258 /// dropped debug info. It is assumed the key is associated with a top value
1259 /// (⊤) in this case (unknown location / assignment).
1261 static LocKind
joinKind(LocKind A
, LocKind B
);
1262 static Assignment
joinAssignment(const Assignment
&A
, const Assignment
&B
);
1263 BlockInfo
joinBlockInfo(const BlockInfo
&A
, const BlockInfo
&B
);
1266 /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1267 /// LiveSet must be initialized with the current live-in locations before
1269 void process(BasicBlock
&BB
, BlockInfo
*LiveSet
);
1270 ///@name processMethods
1271 /// Methods to process instructions in order to update the LiveSet (current
1272 /// location information).
1274 void processNonDbgInstruction(Instruction
&I
, BlockInfo
*LiveSet
);
1275 void processDbgInstruction(DbgInfoIntrinsic
&I
, BlockInfo
*LiveSet
);
1276 /// Update \p LiveSet after encountering an instruction with a DIAssignID
1277 /// attachment, \p I.
1278 void processTaggedInstruction(Instruction
&I
, BlockInfo
*LiveSet
);
1279 /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1280 /// attachment, \p I.
1281 void processUntaggedInstruction(Instruction
&I
, BlockInfo
*LiveSet
);
1282 void processDbgAssign(DbgAssignIntrinsic
&DAI
, BlockInfo
*LiveSet
);
1283 void processDbgValue(DbgValueInst
&DVI
, BlockInfo
*LiveSet
);
1284 /// Add an assignment to memory for the variable /p Var.
1285 void addMemDef(BlockInfo
*LiveSet
, VariableID Var
, const Assignment
&AV
);
1286 /// Add an assignment to the variable /p Var.
1287 void addDbgDef(BlockInfo
*LiveSet
, VariableID Var
, const Assignment
&AV
);
1290 /// Set the LocKind for \p Var.
1291 void setLocKind(BlockInfo
*LiveSet
, VariableID Var
, LocKind K
);
1292 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1293 /// have been called for \p Var first.
1294 LocKind
getLocKind(BlockInfo
*LiveSet
, VariableID Var
);
1295 /// Return true if \p Var has an assignment in \p M matching \p AV.
1296 bool hasVarWithAssignment(BlockInfo
*LiveSet
, BlockInfo::AssignmentKind Kind
,
1297 VariableID Var
, const Assignment
&AV
);
1298 /// Return the set of VariableIDs corresponding the fragments contained fully
1299 /// within the variable/fragment \p Var.
1300 ArrayRef
<VariableID
> getContainedFragments(VariableID Var
) const;
1302 /// Mark \p Var as having been touched this frame. Note, this applies only
1303 /// to the exact fragment \p Var and not to any fragments contained within.
1304 void touchFragment(VariableID Var
);
1306 /// Emit info for variables that are fully promoted.
1307 bool emitPromotedVarLocs(FunctionVarLocsBuilder
*FnVarLocs
);
1310 AssignmentTrackingLowering(Function
&Fn
, const DataLayout
&Layout
,
1311 const DenseSet
<DebugAggregate
> *VarsWithStackSlot
)
1312 : Fn(Fn
), Layout(Layout
), VarsWithStackSlot(VarsWithStackSlot
) {}
1313 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1314 /// true if any variable locations have been added to FnVarLocs.
1315 bool run(FunctionVarLocsBuilder
*FnVarLocs
);
1319 ArrayRef
<VariableID
>
1320 AssignmentTrackingLowering::getContainedFragments(VariableID Var
) const {
1321 auto R
= VarContains
.find(Var
);
1322 if (R
== VarContains
.end())
1323 return std::nullopt
;
1327 void AssignmentTrackingLowering::touchFragment(VariableID Var
) {
1328 VarsTouchedThisFrame
.insert(Var
);
1331 void AssignmentTrackingLowering::setLocKind(BlockInfo
*LiveSet
, VariableID Var
,
1333 auto SetKind
= [this](BlockInfo
*LiveSet
, VariableID Var
, LocKind K
) {
1334 LiveSet
->setLocKind(Var
, K
);
1337 SetKind(LiveSet
, Var
, K
);
1339 // Update the LocKind for all fragments contained within Var.
1340 for (VariableID Frag
: getContainedFragments(Var
))
1341 SetKind(LiveSet
, Frag
, K
);
1344 AssignmentTrackingLowering::LocKind
1345 AssignmentTrackingLowering::getLocKind(BlockInfo
*LiveSet
, VariableID Var
) {
1346 return LiveSet
->getLocKind(Var
);
1349 void AssignmentTrackingLowering::addMemDef(BlockInfo
*LiveSet
, VariableID Var
,
1350 const Assignment
&AV
) {
1351 LiveSet
->setAssignment(BlockInfo::Stack
, Var
, AV
);
1353 // Use this assigment for all fragments contained within Var, but do not
1354 // provide a Source because we cannot convert Var's value to a value for the
1356 Assignment FragAV
= AV
;
1357 FragAV
.Source
= nullptr;
1358 for (VariableID Frag
: getContainedFragments(Var
))
1359 LiveSet
->setAssignment(BlockInfo::Stack
, Frag
, FragAV
);
1362 void AssignmentTrackingLowering::addDbgDef(BlockInfo
*LiveSet
, VariableID Var
,
1363 const Assignment
&AV
) {
1364 LiveSet
->setAssignment(BlockInfo::Debug
, Var
, AV
);
1366 // Use this assigment for all fragments contained within Var, but do not
1367 // provide a Source because we cannot convert Var's value to a value for the
1369 Assignment FragAV
= AV
;
1370 FragAV
.Source
= nullptr;
1371 for (VariableID Frag
: getContainedFragments(Var
))
1372 LiveSet
->setAssignment(BlockInfo::Debug
, Frag
, FragAV
);
1375 static DIAssignID
*getIDFromInst(const Instruction
&I
) {
1376 return cast
<DIAssignID
>(I
.getMetadata(LLVMContext::MD_DIAssignID
));
1379 static DIAssignID
*getIDFromMarker(const DbgAssignIntrinsic
&DAI
) {
1380 return cast
<DIAssignID
>(DAI
.getAssignID());
1383 /// Return true if \p Var has an assignment in \p M matching \p AV.
1384 bool AssignmentTrackingLowering::hasVarWithAssignment(
1385 BlockInfo
*LiveSet
, BlockInfo::AssignmentKind Kind
, VariableID Var
,
1386 const Assignment
&AV
) {
1387 if (!LiveSet
->hasAssignment(Kind
, Var
, AV
))
1390 // Check all the frags contained within Var as these will have all been
1391 // mapped to AV at the last store to Var.
1392 for (VariableID Frag
: getContainedFragments(Var
))
1393 if (!LiveSet
->hasAssignment(Kind
, Frag
, AV
))
1399 const char *locStr(AssignmentTrackingLowering::LocKind Loc
) {
1400 using LocKind
= AssignmentTrackingLowering::LocKind
;
1409 llvm_unreachable("unknown LocKind");
1413 void AssignmentTrackingLowering::emitDbgValue(
1414 AssignmentTrackingLowering::LocKind Kind
,
1415 const DbgVariableIntrinsic
*Source
, Instruction
*After
) {
1417 DILocation
*DL
= Source
->getDebugLoc();
1418 auto Emit
= [this, Source
, After
, DL
](Metadata
*Val
, DIExpression
*Expr
) {
1421 Val
= ValueAsMetadata::get(
1422 PoisonValue::get(Type::getInt1Ty(Source
->getContext())));
1424 // Find a suitable insert point.
1425 Instruction
*InsertBefore
= After
->getNextNode();
1426 assert(InsertBefore
&& "Shouldn't be inserting after a terminator");
1428 VariableID Var
= getVariableID(DebugVariable(Source
));
1430 VarLoc
.VariableID
= static_cast<VariableID
>(Var
);
1432 VarLoc
.Values
= RawLocationWrapper(Val
);
1434 // Insert it into the map for later.
1435 InsertBeforeMap
[InsertBefore
].push_back(VarLoc
);
1438 // NOTE: This block can mutate Kind.
1439 if (Kind
== LocKind::Mem
) {
1440 const auto *DAI
= cast
<DbgAssignIntrinsic
>(Source
);
1441 // Check the address hasn't been dropped (e.g. the debug uses may not have
1442 // been replaced before deleting a Value).
1443 if (DAI
->isKillAddress()) {
1444 // The address isn't valid so treat this as a non-memory def.
1445 Kind
= LocKind::Val
;
1447 Value
*Val
= DAI
->getAddress();
1448 DIExpression
*Expr
= DAI
->getAddressExpression();
1449 assert(!Expr
->getFragmentInfo() &&
1450 "fragment info should be stored in value-expression only");
1451 // Copy the fragment info over from the value-expression to the new
1453 if (auto OptFragInfo
= Source
->getExpression()->getFragmentInfo()) {
1454 auto FragInfo
= *OptFragInfo
;
1455 Expr
= *DIExpression::createFragmentExpression(
1456 Expr
, FragInfo
.OffsetInBits
, FragInfo
.SizeInBits
);
1458 // The address-expression has an implicit deref, add it now.
1459 std::tie(Val
, Expr
) =
1460 walkToAllocaAndPrependOffsetDeref(Layout
, Val
, Expr
);
1461 Emit(ValueAsMetadata::get(Val
), Expr
);
1466 if (Kind
== LocKind::Val
) {
1467 Emit(Source
->getRawLocation(), Source
->getExpression());
1471 if (Kind
== LocKind::None
) {
1472 Emit(nullptr, Source
->getExpression());
1477 void AssignmentTrackingLowering::processNonDbgInstruction(
1478 Instruction
&I
, AssignmentTrackingLowering::BlockInfo
*LiveSet
) {
1479 if (I
.hasMetadata(LLVMContext::MD_DIAssignID
))
1480 processTaggedInstruction(I
, LiveSet
);
1482 processUntaggedInstruction(I
, LiveSet
);
1485 void AssignmentTrackingLowering::processUntaggedInstruction(
1486 Instruction
&I
, AssignmentTrackingLowering::BlockInfo
*LiveSet
) {
1487 // Interpret stack stores that are not tagged as an assignment in memory for
1488 // the variables associated with that address. These stores may not be tagged
1489 // because a) the store cannot be represented using dbg.assigns (non-const
1490 // length or offset) or b) the tag was accidentally dropped during
1491 // optimisations. For these stores we fall back to assuming that the stack
1492 // home is a valid location for the variables. The benefit is that this
1493 // prevents us missing an assignment and therefore incorrectly maintaining
1494 // earlier location definitions, and in many cases it should be a reasonable
1495 // assumption. However, this will occasionally lead to slight
1496 // inaccuracies. The value of a hoisted untagged store will be visible
1497 // "early", for example.
1498 assert(!I
.hasMetadata(LLVMContext::MD_DIAssignID
));
1499 auto It
= UntaggedStoreVars
.find(&I
);
1500 if (It
== UntaggedStoreVars
.end())
1501 return; // No variables associated with the store destination.
1503 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1505 // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1506 // and mem def, set lockind to Mem, and emit a location def for each.
1507 for (auto [Var
, Info
] : It
->second
) {
1508 // This instruction is treated as both a debug and memory assignment,
1509 // meaning the memory location should be used. We don't have an assignment
1510 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1511 addMemDef(LiveSet
, Var
, Assignment::makeNoneOrPhi());
1512 addDbgDef(LiveSet
, Var
, Assignment::makeNoneOrPhi());
1513 setLocKind(LiveSet
, Var
, LocKind::Mem
);
1514 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem
)
1516 // Build the dbg location def to insert.
1518 // DIExpression: Add fragment and offset.
1519 DebugVariable V
= FnVarLocs
->getVariable(Var
);
1520 DIExpression
*DIE
= DIExpression::get(I
.getContext(), std::nullopt
);
1521 if (auto Frag
= V
.getFragment()) {
1522 auto R
= DIExpression::createFragmentExpression(DIE
, Frag
->OffsetInBits
,
1524 assert(R
&& "unexpected createFragmentExpression failure");
1527 SmallVector
<uint64_t, 3> Ops
;
1528 if (Info
.OffsetInBits
)
1529 Ops
= {dwarf::DW_OP_plus_uconst
, Info
.OffsetInBits
/ 8};
1530 Ops
.push_back(dwarf::DW_OP_deref
);
1531 DIE
= DIExpression::prependOpcodes(DIE
, Ops
, /*StackValue=*/false,
1532 /*EntryValue=*/false);
1533 // Find a suitable insert point.
1534 Instruction
*InsertBefore
= I
.getNextNode();
1535 assert(InsertBefore
&& "Shouldn't be inserting after a terminator");
1537 // Get DILocation for this unrecorded assignment.
1538 DILocation
*InlinedAt
= const_cast<DILocation
*>(V
.getInlinedAt());
1539 const DILocation
*DILoc
= DILocation::get(
1540 Fn
.getContext(), 0, 0, V
.getVariable()->getScope(), InlinedAt
);
1543 VarLoc
.VariableID
= static_cast<VariableID
>(Var
);
1545 VarLoc
.Values
= RawLocationWrapper(
1546 ValueAsMetadata::get(const_cast<AllocaInst
*>(Info
.Base
)));
1548 // 3. Insert it into the map for later.
1549 InsertBeforeMap
[InsertBefore
].push_back(VarLoc
);
1553 void AssignmentTrackingLowering::processTaggedInstruction(
1554 Instruction
&I
, AssignmentTrackingLowering::BlockInfo
*LiveSet
) {
1555 auto Linked
= at::getAssignmentMarkers(&I
);
1556 // No dbg.assign intrinsics linked.
1557 // FIXME: All vars that have a stack slot this store modifies that don't have
1558 // a dbg.assign linked to it should probably treat this like an untagged
1563 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I
<< "\n");
1564 for (DbgAssignIntrinsic
*DAI
: Linked
) {
1565 VariableID Var
= getVariableID(DebugVariable(DAI
));
1566 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1567 // that is linked to a store.
1568 assert(VarsWithStackSlot
->count(getAggregate(DAI
)) &&
1569 "expected DAI's variable to have stack slot");
1571 Assignment AV
= Assignment::makeFromMemDef(getIDFromInst(I
));
1572 addMemDef(LiveSet
, Var
, AV
);
1574 LLVM_DEBUG(dbgs() << " linked to " << *DAI
<< "\n");
1575 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet
, Var
))
1578 // The last assignment to the stack is now AV. Check if the last debug
1579 // assignment has a matching Assignment.
1580 if (hasVarWithAssignment(LiveSet
, BlockInfo::Debug
, Var
, AV
)) {
1581 // The StackHomeValue and DebugValue for this variable match so we can
1582 // emit a stack home location here.
1583 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1584 LLVM_DEBUG(dbgs() << " Stack val: "; AV
.dump(dbgs()); dbgs() << "\n");
1585 LLVM_DEBUG(dbgs() << " Debug val: ";
1586 LiveSet
->DebugValue
[static_cast<unsigned>(Var
)].dump(dbgs());
1588 setLocKind(LiveSet
, Var
, LocKind::Mem
);
1589 emitDbgValue(LocKind::Mem
, DAI
, &I
);
1593 // The StackHomeValue and DebugValue for this variable do not match. I.e.
1594 // The value currently stored in the stack is not what we'd expect to
1595 // see, so we cannot use emit a stack home location here. Now we will
1596 // look at the live LocKind for the variable and determine an appropriate
1597 // dbg.value to emit.
1598 LocKind PrevLoc
= getLocKind(LiveSet
, Var
);
1600 case LocKind::Val
: {
1601 // The value in memory in memory has changed but we're not currently
1602 // using the memory location. Do nothing.
1603 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1604 setLocKind(LiveSet
, Var
, LocKind::Val
);
1606 case LocKind::Mem
: {
1607 // There's been an assignment to memory that we were using as a
1608 // location for this variable, and the Assignment doesn't match what
1609 // we'd expect to see in memory.
1610 Assignment DbgAV
= LiveSet
->getAssignment(BlockInfo::Debug
, Var
);
1611 if (DbgAV
.Status
== Assignment::NoneOrPhi
) {
1612 // We need to terminate any previously open location now.
1613 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1614 setLocKind(LiveSet
, Var
, LocKind::None
);
1615 emitDbgValue(LocKind::None
, DAI
, &I
);
1617 // The previous DebugValue Value can be used here.
1618 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1619 setLocKind(LiveSet
, Var
, LocKind::Val
);
1621 emitDbgValue(LocKind::Val
, DbgAV
.Source
, &I
);
1623 // PrevAV.Source is nullptr so we must emit undef here.
1624 emitDbgValue(LocKind::None
, DAI
, &I
);
1628 case LocKind::None
: {
1629 // There's been an assignment to memory and we currently are
1630 // not tracking a location for the variable. Do not emit anything.
1631 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1632 setLocKind(LiveSet
, Var
, LocKind::None
);
1638 void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic
&DAI
,
1639 BlockInfo
*LiveSet
) {
1640 // Only bother tracking variables that are at some point stack homed. Other
1641 // variables can be dealt with trivially later.
1642 if (!VarsWithStackSlot
->count(getAggregate(&DAI
)))
1645 VariableID Var
= getVariableID(DebugVariable(&DAI
));
1646 Assignment AV
= Assignment::make(getIDFromMarker(DAI
), &DAI
);
1647 addDbgDef(LiveSet
, Var
, AV
);
1649 LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI
<< "\n";);
1650 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet
, Var
))
1653 // Check if the DebugValue and StackHomeValue both hold the same
1655 if (hasVarWithAssignment(LiveSet
, BlockInfo::Stack
, Var
, AV
)) {
1656 // They match. We can use the stack home because the debug intrinsics state
1657 // that an assignment happened here, and we know that specific assignment
1658 // was the last one to take place in memory for this variable.
1660 if (DAI
.isKillAddress()) {
1663 << "Val, Stack matches Debug program but address is killed\n";);
1664 Kind
= LocKind::Val
;
1666 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1667 Kind
= LocKind::Mem
;
1669 setLocKind(LiveSet
, Var
, Kind
);
1670 emitDbgValue(Kind
, &DAI
, &DAI
);
1672 // The last assignment to the memory location isn't the one that we want to
1673 // show to the user so emit a dbg.value(Value). Value may be undef.
1674 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1675 setLocKind(LiveSet
, Var
, LocKind::Val
);
1676 emitDbgValue(LocKind::Val
, &DAI
, &DAI
);
1680 void AssignmentTrackingLowering::processDbgValue(DbgValueInst
&DVI
,
1681 BlockInfo
*LiveSet
) {
1682 // Only other tracking variables that are at some point stack homed.
1683 // Other variables can be dealt with trivally later.
1684 if (!VarsWithStackSlot
->count(getAggregate(&DVI
)))
1687 VariableID Var
= getVariableID(DebugVariable(&DVI
));
1688 // We have no ID to create an Assignment with so we mark this assignment as
1689 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1690 // the assignment responsible for setting this value.
1691 // This is fine; dbg.values are essentially interchangable with unlinked
1692 // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1693 // PHIs for promoted variables.
1694 Assignment AV
= Assignment::makeNoneOrPhi();
1695 addDbgDef(LiveSet
, Var
, AV
);
1697 LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI
<< "\n";);
1698 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet
, Var
))
1699 << " -> Val, dbg.value override");
1701 setLocKind(LiveSet
, Var
, LocKind::Val
);
1702 emitDbgValue(LocKind::Val
, &DVI
, &DVI
);
1705 static bool hasZeroSizedFragment(DbgVariableIntrinsic
&DVI
) {
1706 if (auto F
= DVI
.getExpression()->getFragmentInfo())
1707 return F
->SizeInBits
== 0;
1711 void AssignmentTrackingLowering::processDbgInstruction(
1712 DbgInfoIntrinsic
&I
, AssignmentTrackingLowering::BlockInfo
*LiveSet
) {
1713 auto *DVI
= dyn_cast
<DbgVariableIntrinsic
>(&I
);
1717 // Ignore assignments to zero bits of the variable.
1718 if (hasZeroSizedFragment(*DVI
))
1721 if (auto *DAI
= dyn_cast
<DbgAssignIntrinsic
>(&I
))
1722 processDbgAssign(*DAI
, LiveSet
);
1723 else if (auto *DVI
= dyn_cast
<DbgValueInst
>(&I
))
1724 processDbgValue(*DVI
, LiveSet
);
1727 void AssignmentTrackingLowering::resetInsertionPoint(Instruction
&After
) {
1728 assert(!After
.isTerminator() && "Can't insert after a terminator");
1729 auto R
= InsertBeforeMap
.find(After
.getNextNode());
1730 if (R
== InsertBeforeMap
.end())
1735 void AssignmentTrackingLowering::process(BasicBlock
&BB
, BlockInfo
*LiveSet
) {
1736 for (auto II
= BB
.begin(), EI
= BB
.end(); II
!= EI
;) {
1737 assert(VarsTouchedThisFrame
.empty());
1738 // Process the instructions in "frames". A "frame" includes a single
1739 // non-debug instruction followed any debug instructions before the
1740 // next non-debug instruction.
1741 if (!isa
<DbgInfoIntrinsic
>(&*II
)) {
1742 if (II
->isTerminator())
1744 resetInsertionPoint(*II
);
1745 processNonDbgInstruction(*II
, LiveSet
);
1746 assert(LiveSet
->isValid());
1750 auto *Dbg
= dyn_cast
<DbgInfoIntrinsic
>(&*II
);
1753 resetInsertionPoint(*II
);
1754 processDbgInstruction(*Dbg
, LiveSet
);
1755 assert(LiveSet
->isValid());
1759 // We've processed everything in the "frame". Now determine which variables
1760 // cannot be represented by a dbg.declare.
1761 for (auto Var
: VarsTouchedThisFrame
) {
1762 LocKind Loc
= getLocKind(LiveSet
, Var
);
1763 // If a variable's LocKind is anything other than LocKind::Mem then we
1764 // must note that it cannot be represented with a dbg.declare.
1765 // Note that this check is enough without having to check the result of
1766 // joins() because for join to produce anything other than Mem after
1767 // we've already seen a Mem we'd be joining None or Val with Mem. In that
1768 // case, we've already hit this codepath when we set the LocKind to Val
1769 // or None in that block.
1770 if (Loc
!= LocKind::Mem
) {
1771 DebugVariable DbgVar
= FnVarLocs
->getVariable(Var
);
1772 DebugAggregate Aggr
{DbgVar
.getVariable(), DbgVar
.getInlinedAt()};
1773 NotAlwaysStackHomed
.insert(Aggr
);
1776 VarsTouchedThisFrame
.clear();
1780 AssignmentTrackingLowering::LocKind
1781 AssignmentTrackingLowering::joinKind(LocKind A
, LocKind B
) {
1784 return A
== B
? A
: LocKind::None
;
1787 AssignmentTrackingLowering::Assignment
1788 AssignmentTrackingLowering::joinAssignment(const Assignment
&A
,
1789 const Assignment
&B
) {
1791 // NoneOrPhi(null, null) > Known(v, ?s)
1793 // If either are NoneOrPhi the join is NoneOrPhi.
1794 // If either value is different then the result is
1795 // NoneOrPhi (joining two values is a Phi).
1796 if (!A
.isSameSourceAssignment(B
))
1797 return Assignment::makeNoneOrPhi();
1798 if (A
.Status
== Assignment::NoneOrPhi
)
1799 return Assignment::makeNoneOrPhi();
1801 // Source is used to lookup the value + expression in the debug program if
1802 // the stack slot gets assigned a value earlier than expected. Because
1803 // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1804 // It's unlikely that we're losing out on much coverage by avoiding that
1806 // The Source may differ in this situation:
1808 // dbg.assign i32 0, ..., !1, ...
1810 // dbg.assign i32 1, ..., !1, ...
1811 // Here the same assignment (!1) was performed in both preds in the source,
1812 // but we can't use either one unless they are identical (e.g. .we don't
1813 // want to arbitrarily pick between constant values).
1814 auto JoinSource
= [&]() -> DbgAssignIntrinsic
* {
1815 if (A
.Source
== B
.Source
)
1817 if (A
.Source
== nullptr || B
.Source
== nullptr)
1819 if (A
.Source
->isIdenticalTo(B
.Source
))
1823 DbgAssignIntrinsic
*Source
= JoinSource();
1824 assert(A
.Status
== B
.Status
&& A
.Status
== Assignment::Known
);
1825 assert(A
.ID
== B
.ID
);
1826 return Assignment::make(A
.ID
, Source
);
1829 AssignmentTrackingLowering::BlockInfo
1830 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo
&A
,
1831 const BlockInfo
&B
) {
1832 return BlockInfo::join(A
, B
, TrackedVariablesVectorSize
);
1835 bool AssignmentTrackingLowering::join(
1836 const BasicBlock
&BB
, const SmallPtrSet
<BasicBlock
*, 16> &Visited
) {
1838 SmallVector
<const BasicBlock
*> VisitedPreds
;
1839 // Ignore backedges if we have not visited the predecessor yet. As the
1840 // predecessor hasn't yet had locations propagated into it, most locations
1841 // will not yet be valid, so treat them as all being uninitialized and
1842 // potentially valid. If a location guessed to be correct here is
1843 // invalidated later, we will remove it when we revisit this block. This
1844 // is essentially the same as initialising all LocKinds and Assignments to
1845 // an implicit ⊥ value which is the identity value for the join operation.
1846 for (auto I
= pred_begin(&BB
), E
= pred_end(&BB
); I
!= E
; I
++) {
1847 const BasicBlock
*Pred
= *I
;
1848 if (Visited
.count(Pred
))
1849 VisitedPreds
.push_back(Pred
);
1852 // No preds visited yet.
1853 if (VisitedPreds
.empty()) {
1854 auto It
= LiveIn
.try_emplace(&BB
, BlockInfo());
1855 bool DidInsert
= It
.second
;
1857 It
.first
->second
.init(TrackedVariablesVectorSize
);
1858 return /*Changed*/ DidInsert
;
1861 // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
1862 if (VisitedPreds
.size() == 1) {
1863 const BlockInfo
&PredLiveOut
= LiveOut
.find(VisitedPreds
[0])->second
;
1864 auto CurrentLiveInEntry
= LiveIn
.find(&BB
);
1866 // Check if there isn't an entry, or there is but the LiveIn set has
1867 // changed (expensive check).
1868 if (CurrentLiveInEntry
== LiveIn
.end())
1869 LiveIn
.insert(std::make_pair(&BB
, PredLiveOut
));
1870 else if (PredLiveOut
!= CurrentLiveInEntry
->second
)
1871 CurrentLiveInEntry
->second
= PredLiveOut
;
1873 return /*Changed*/ false;
1874 return /*Changed*/ true;
1877 // More than one pred. Join LiveOuts of blocks 1 and 2.
1878 assert(VisitedPreds
.size() > 1);
1879 const BlockInfo
&PredLiveOut0
= LiveOut
.find(VisitedPreds
[0])->second
;
1880 const BlockInfo
&PredLiveOut1
= LiveOut
.find(VisitedPreds
[1])->second
;
1881 BlockInfo BBLiveIn
= joinBlockInfo(PredLiveOut0
, PredLiveOut1
);
1883 // Join the LiveOuts of subsequent blocks.
1884 ArrayRef Tail
= ArrayRef(VisitedPreds
).drop_front(2);
1885 for (const BasicBlock
*Pred
: Tail
) {
1886 const auto &PredLiveOut
= LiveOut
.find(Pred
);
1887 assert(PredLiveOut
!= LiveOut
.end() &&
1888 "block should have been processed already");
1889 BBLiveIn
= joinBlockInfo(std::move(BBLiveIn
), PredLiveOut
->second
);
1892 // Save the joined result for BB.
1893 auto CurrentLiveInEntry
= LiveIn
.find(&BB
);
1894 // Check if there isn't an entry, or there is but the LiveIn set has changed
1895 // (expensive check).
1896 if (CurrentLiveInEntry
== LiveIn
.end())
1897 LiveIn
.try_emplace(&BB
, std::move(BBLiveIn
));
1898 else if (BBLiveIn
!= CurrentLiveInEntry
->second
)
1899 CurrentLiveInEntry
->second
= std::move(BBLiveIn
);
1901 return /*Changed*/ false;
1902 return /*Changed*/ true;
1905 /// Return true if A fully contains B.
1906 static bool fullyContains(DIExpression::FragmentInfo A
,
1907 DIExpression::FragmentInfo B
) {
1908 auto ALeft
= A
.OffsetInBits
;
1909 auto BLeft
= B
.OffsetInBits
;
1913 auto ARight
= ALeft
+ A
.SizeInBits
;
1914 auto BRight
= BLeft
+ B
.SizeInBits
;
1915 if (BRight
> ARight
)
1920 static std::optional
<at::AssignmentInfo
>
1921 getUntaggedStoreAssignmentInfo(const Instruction
&I
, const DataLayout
&Layout
) {
1922 // Don't bother checking if this is an AllocaInst. We know this
1923 // instruction has no tag which means there are no variables associated
1925 if (const auto *SI
= dyn_cast
<StoreInst
>(&I
))
1926 return at::getAssignmentInfo(Layout
, SI
);
1927 if (const auto *MI
= dyn_cast
<MemIntrinsic
>(&I
))
1928 return at::getAssignmentInfo(Layout
, MI
);
1929 // Alloca or non-store-like inst.
1930 return std::nullopt
;
1933 /// Build a map of {Variable x: Variables y} where all variable fragments
1934 /// contained within the variable fragment x are in set y. This means that
1935 /// y does not contain all overlaps because partial overlaps are excluded.
1937 /// While we're iterating over the function, add single location defs for
1938 /// dbg.declares to \p FnVarLocs.
1940 /// Variables that are interesting to this pass in are added to
1941 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
1942 /// the last interesting variable plus 1, meaning variables with ID 1
1943 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
1944 /// subsequent variables are either stack homed or fully promoted.
1946 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
1947 /// the stored-to variable fragments.
1949 /// These tasks are bundled together to reduce the number of times we need
1950 /// to iterate over the function as they can be achieved together in one pass.
1951 static AssignmentTrackingLowering::OverlapMap
buildOverlapMapAndRecordDeclares(
1952 Function
&Fn
, FunctionVarLocsBuilder
*FnVarLocs
,
1953 const DenseSet
<DebugAggregate
> &VarsWithStackSlot
,
1954 AssignmentTrackingLowering::UntaggedStoreAssignmentMap
&UntaggedStoreVars
,
1955 unsigned &TrackedVariablesVectorSize
) {
1956 DenseSet
<DebugVariable
> Seen
;
1957 // Map of Variable: [Fragments].
1958 DenseMap
<DebugAggregate
, SmallVector
<DebugVariable
, 8>> FragmentMap
;
1959 // Iterate over all instructions:
1960 // - dbg.declare -> add single location variable record
1961 // - dbg.* -> Add fragments to FragmentMap
1962 // - untagged store -> Add fragments to FragmentMap and update
1963 // UntaggedStoreVars.
1964 // We need to add fragments for untagged stores too so that we can correctly
1965 // clobber overlapped fragment locations later.
1966 SmallVector
<DbgDeclareInst
*> Declares
;
1967 for (auto &BB
: Fn
) {
1968 for (auto &I
: BB
) {
1969 if (auto *DDI
= dyn_cast
<DbgDeclareInst
>(&I
)) {
1970 Declares
.push_back(DDI
);
1971 } else if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
1972 DebugVariable DV
= DebugVariable(DII
);
1973 DebugAggregate DA
= {DV
.getVariable(), DV
.getInlinedAt()};
1974 if (!VarsWithStackSlot
.contains(DA
))
1976 if (Seen
.insert(DV
).second
)
1977 FragmentMap
[DA
].push_back(DV
);
1978 } else if (auto Info
= getUntaggedStoreAssignmentInfo(
1979 I
, Fn
.getParent()->getDataLayout())) {
1980 // Find markers linked to this alloca.
1981 for (DbgAssignIntrinsic
*DAI
: at::getAssignmentMarkers(Info
->Base
)) {
1982 // Discard the fragment if it covers the entire variable.
1983 std::optional
<DIExpression::FragmentInfo
> FragInfo
=
1984 [&Info
, DAI
]() -> std::optional
<DIExpression::FragmentInfo
> {
1985 DIExpression::FragmentInfo F
;
1986 F
.OffsetInBits
= Info
->OffsetInBits
;
1987 F
.SizeInBits
= Info
->SizeInBits
;
1988 if (auto ExistingFrag
= DAI
->getExpression()->getFragmentInfo())
1989 F
.OffsetInBits
+= ExistingFrag
->OffsetInBits
;
1990 if (auto Sz
= DAI
->getVariable()->getSizeInBits()) {
1991 if (F
.OffsetInBits
== 0 && F
.SizeInBits
== *Sz
)
1992 return std::nullopt
;
1997 DebugVariable DV
= DebugVariable(DAI
->getVariable(), FragInfo
,
1998 DAI
->getDebugLoc().getInlinedAt());
1999 DebugAggregate DA
= {DV
.getVariable(), DV
.getInlinedAt()};
2000 if (!VarsWithStackSlot
.contains(DA
))
2003 // Cache this info for later.
2004 UntaggedStoreVars
[&I
].push_back(
2005 {FnVarLocs
->insertVariable(DV
), *Info
});
2007 if (Seen
.insert(DV
).second
)
2008 FragmentMap
[DA
].push_back(DV
);
2014 // Sort the fragment map for each DebugAggregate in ascending
2015 // order of fragment size - there should be no duplicates.
2016 for (auto &Pair
: FragmentMap
) {
2017 SmallVector
<DebugVariable
, 8> &Frags
= Pair
.second
;
2018 std::sort(Frags
.begin(), Frags
.end(),
2019 [](const DebugVariable
&Next
, const DebugVariable
&Elmt
) {
2020 return Elmt
.getFragmentOrDefault().SizeInBits
>
2021 Next
.getFragmentOrDefault().SizeInBits
;
2023 // Check for duplicates.
2024 assert(std::adjacent_find(Frags
.begin(), Frags
.end()) == Frags
.end());
2028 AssignmentTrackingLowering::OverlapMap Map
;
2029 for (auto &Pair
: FragmentMap
) {
2030 auto &Frags
= Pair
.second
;
2031 for (auto It
= Frags
.begin(), IEnd
= Frags
.end(); It
!= IEnd
; ++It
) {
2032 DIExpression::FragmentInfo Frag
= It
->getFragmentOrDefault();
2033 // Find the frags that this is contained within.
2035 // Because Frags is sorted by size and none have the same offset and
2036 // size, we know that this frag can only be contained by subsequent
2038 SmallVector
<DebugVariable
, 8>::iterator OtherIt
= It
;
2040 VariableID ThisVar
= FnVarLocs
->insertVariable(*It
);
2041 for (; OtherIt
!= IEnd
; ++OtherIt
) {
2042 DIExpression::FragmentInfo OtherFrag
= OtherIt
->getFragmentOrDefault();
2043 VariableID OtherVar
= FnVarLocs
->insertVariable(*OtherIt
);
2044 if (fullyContains(OtherFrag
, Frag
))
2045 Map
[OtherVar
].push_back(ThisVar
);
2050 // VariableIDs are 1-based so the variable-tracking bitvector needs
2051 // NumVariables plus 1 bits.
2052 TrackedVariablesVectorSize
= FnVarLocs
->getNumVariables() + 1;
2054 // Finally, insert the declares afterwards, so the first IDs are all
2055 // partially stack homed vars.
2056 for (auto *DDI
: Declares
)
2057 FnVarLocs
->addSingleLocVar(DebugVariable(DDI
), DDI
->getExpression(),
2058 DDI
->getDebugLoc(), DDI
->getWrappedLocation());
2062 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder
*FnVarLocsBuilder
) {
2063 if (Fn
.size() > MaxNumBlocks
) {
2064 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn
.getName()
2065 << ": too many blocks (" << Fn
.size() << ")\n");
2070 FnVarLocs
= FnVarLocsBuilder
;
2072 // The general structure here is inspired by VarLocBasedImpl.cpp
2073 // (LiveDebugValues).
2075 // Build the variable fragment overlap map.
2076 // Note that this pass doesn't handle partial overlaps correctly (FWIW
2077 // neither does LiveDebugVariables) because that is difficult to do and
2078 // appears to be rare occurance.
2079 VarContains
= buildOverlapMapAndRecordDeclares(
2080 Fn
, FnVarLocs
, *VarsWithStackSlot
, UntaggedStoreVars
,
2081 TrackedVariablesVectorSize
);
2083 // Prepare for traversal.
2084 ReversePostOrderTraversal
<Function
*> RPOT(&Fn
);
2085 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
2086 std::greater
<unsigned int>>
2088 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
2089 std::greater
<unsigned int>>
2091 DenseMap
<unsigned int, BasicBlock
*> OrderToBB
;
2092 DenseMap
<BasicBlock
*, unsigned int> BBToOrder
;
2093 { // Init OrderToBB and BBToOrder.
2094 unsigned int RPONumber
= 0;
2095 for (auto RI
= RPOT
.begin(), RE
= RPOT
.end(); RI
!= RE
; ++RI
) {
2096 OrderToBB
[RPONumber
] = *RI
;
2097 BBToOrder
[*RI
] = RPONumber
;
2098 Worklist
.push(RPONumber
);
2101 LiveIn
.init(RPONumber
);
2102 LiveOut
.init(RPONumber
);
2105 // Perform the traversal.
2107 // This is a standard "union of predecessor outs" dataflow problem. To solve
2108 // it, we perform join() and process() using the two worklist method until
2109 // the LiveIn data for each block becomes unchanging. The "proof" that this
2110 // terminates can be put together by looking at the comments around LocKind,
2111 // Assignment, and the various join methods, which show that all the elements
2112 // involved are made up of join-semilattices; LiveIn(n) can only
2113 // monotonically increase in value throughout the dataflow.
2115 SmallPtrSet
<BasicBlock
*, 16> Visited
;
2116 while (!Worklist
.empty()) {
2117 // We track what is on the pending worklist to avoid inserting the same
2119 SmallPtrSet
<BasicBlock
*, 16> OnPending
;
2120 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2121 while (!Worklist
.empty()) {
2122 BasicBlock
*BB
= OrderToBB
[Worklist
.top()];
2123 LLVM_DEBUG(dbgs() << "\nPop BB " << BB
->getName() << "\n");
2125 bool InChanged
= join(*BB
, Visited
);
2126 // Always consider LiveIn changed on the first visit.
2127 InChanged
|= Visited
.insert(BB
).second
;
2129 LLVM_DEBUG(dbgs() << BB
->getName() << " has new InLocs, process it\n");
2130 // Mutate a copy of LiveIn while processing BB. After calling process
2131 // LiveSet is the LiveOut set for BB.
2132 BlockInfo LiveSet
= LiveIn
[BB
];
2134 // Process the instructions in the block.
2135 process(*BB
, &LiveSet
);
2137 // Relatively expensive check: has anything changed in LiveOut for BB?
2138 if (LiveOut
[BB
] != LiveSet
) {
2139 LLVM_DEBUG(dbgs() << BB
->getName()
2140 << " has new OutLocs, add succs to worklist: [ ");
2141 LiveOut
[BB
] = std::move(LiveSet
);
2142 for (auto I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; I
++) {
2143 if (OnPending
.insert(*I
).second
) {
2144 LLVM_DEBUG(dbgs() << I
->getName() << " ");
2145 Pending
.push(BBToOrder
[*I
]);
2148 LLVM_DEBUG(dbgs() << "]\n");
2152 Worklist
.swap(Pending
);
2153 // At this point, pending must be empty, since it was just the empty
2155 assert(Pending
.empty() && "Pending should be empty");
2158 // That's the hard part over. Now we just have some admin to do.
2160 // Record whether we inserted any intrinsics.
2161 bool InsertedAnyIntrinsics
= false;
2163 // Identify and add defs for single location variables.
2165 // Go through all of the defs that we plan to add. If the aggregate variable
2166 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2167 // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2168 // we can identify those uneeded defs later.
2169 DenseSet
<DebugAggregate
> AlwaysStackHomed
;
2170 for (const auto &Pair
: InsertBeforeMap
) {
2171 const auto &Vec
= Pair
.second
;
2172 for (VarLocInfo VarLoc
: Vec
) {
2173 DebugVariable Var
= FnVarLocs
->getVariable(VarLoc
.VariableID
);
2174 DebugAggregate Aggr
{Var
.getVariable(), Var
.getInlinedAt()};
2176 // Skip this Var if it's not always stack homed.
2177 if (NotAlwaysStackHomed
.contains(Aggr
))
2180 // Skip complex cases such as when different fragments of a variable have
2181 // been split into different allocas. Skipping in this case means falling
2182 // back to using a list of defs (which could reduce coverage, but is no
2185 VarLoc
.Expr
->getNumElements() == 1 && VarLoc
.Expr
->startsWithDeref();
2187 NotAlwaysStackHomed
.insert(Aggr
);
2191 // All source assignments to this variable remain and all stores to any
2192 // part of the variable store to the same address (with varying
2193 // offsets). We can just emit a single location for the whole variable.
2195 // Unless we've already done so, create the single location def now.
2196 if (AlwaysStackHomed
.insert(Aggr
).second
) {
2197 assert(!VarLoc
.Values
.hasArgList());
2198 // TODO: When more complex cases are handled VarLoc.Expr should be
2199 // built appropriately rather than always using an empty DIExpression.
2200 // The assert below is a reminder.
2202 VarLoc
.Expr
= DIExpression::get(Fn
.getContext(), std::nullopt
);
2203 DebugVariable Var
= FnVarLocs
->getVariable(VarLoc
.VariableID
);
2204 FnVarLocs
->addSingleLocVar(Var
, VarLoc
.Expr
, VarLoc
.DL
, VarLoc
.Values
);
2205 InsertedAnyIntrinsics
= true;
2210 // Insert the other DEFs.
2211 for (const auto &[InsertBefore
, Vec
] : InsertBeforeMap
) {
2212 SmallVector
<VarLocInfo
> NewDefs
;
2213 for (const VarLocInfo
&VarLoc
: Vec
) {
2214 DebugVariable Var
= FnVarLocs
->getVariable(VarLoc
.VariableID
);
2215 DebugAggregate Aggr
{Var
.getVariable(), Var
.getInlinedAt()};
2216 // If this variable is always stack homed then we have already inserted a
2217 // dbg.declare and deleted this dbg.value.
2218 if (AlwaysStackHomed
.contains(Aggr
))
2220 NewDefs
.push_back(VarLoc
);
2221 InsertedAnyIntrinsics
= true;
2224 FnVarLocs
->setWedge(InsertBefore
, std::move(NewDefs
));
2227 InsertedAnyIntrinsics
|= emitPromotedVarLocs(FnVarLocs
);
2229 return InsertedAnyIntrinsics
;
2232 bool AssignmentTrackingLowering::emitPromotedVarLocs(
2233 FunctionVarLocsBuilder
*FnVarLocs
) {
2234 bool InsertedAnyIntrinsics
= false;
2235 // Go through every block, translating debug intrinsics for fully promoted
2236 // variables into FnVarLocs location defs. No analysis required for these.
2237 for (auto &BB
: Fn
) {
2238 for (auto &I
: BB
) {
2239 // Skip instructions other than dbg.values and dbg.assigns.
2240 auto *DVI
= dyn_cast
<DbgValueInst
>(&I
);
2243 // Skip variables that haven't been promoted - we've dealt with those
2245 if (VarsWithStackSlot
->contains(getAggregate(DVI
)))
2247 Instruction
*InsertBefore
= I
.getNextNode();
2248 assert(InsertBefore
&& "Unexpected: debug intrinsics after a terminator");
2249 FnVarLocs
->addVarLoc(InsertBefore
, DebugVariable(DVI
),
2250 DVI
->getExpression(), DVI
->getDebugLoc(),
2251 DVI
->getWrappedLocation());
2252 InsertedAnyIntrinsics
= true;
2255 return InsertedAnyIntrinsics
;
2258 /// Remove redundant definitions within sequences of consecutive location defs.
2259 /// This is done using a backward scan to keep the last def describing a
2260 /// specific variable/fragment.
2262 /// This implements removeRedundantDbgInstrsUsingBackwardScan from
2263 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2264 /// FunctionVarLocsBuilder instead of with intrinsics.
2266 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock
*BB
,
2267 FunctionVarLocsBuilder
&FnVarLocs
) {
2268 bool Changed
= false;
2269 SmallDenseMap
<DebugAggregate
, BitVector
> VariableDefinedBits
;
2270 // Scan over the entire block, not just over the instructions mapped by
2271 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2273 for (const Instruction
&I
: reverse(*BB
)) {
2274 if (!isa
<DbgVariableIntrinsic
>(I
)) {
2275 // Sequence of consecutive defs ended. Clear map for the next one.
2276 VariableDefinedBits
.clear();
2279 // Get the location defs that start just before this instruction.
2280 const auto *Locs
= FnVarLocs
.getWedge(&I
);
2285 bool ChangedThisWedge
= false;
2286 // The new pruned set of defs, reversed because we're scanning backwards.
2287 SmallVector
<VarLocInfo
> NewDefsReversed
;
2289 // Iterate over the existing defs in reverse.
2290 for (auto RIt
= Locs
->rbegin(), REnd
= Locs
->rend(); RIt
!= REnd
; ++RIt
) {
2292 DebugAggregate Aggr
=
2293 getAggregate(FnVarLocs
.getVariable(RIt
->VariableID
));
2294 uint64_t SizeInBits
= Aggr
.first
->getSizeInBits().value_or(0);
2296 if (SizeInBits
== 0) {
2297 // If the size is unknown (0) then keep this location def to be safe.
2298 NewDefsReversed
.push_back(*RIt
);
2302 // Only keep this location definition if it is not fully eclipsed by
2303 // other definitions in this wedge that come after it
2305 // Inert the bits the location definition defines.
2307 VariableDefinedBits
.try_emplace(Aggr
, BitVector(SizeInBits
));
2308 bool FirstDefinition
= InsertResult
.second
;
2309 BitVector
&DefinedBits
= InsertResult
.first
->second
;
2311 DIExpression::FragmentInfo Fragment
=
2312 RIt
->Expr
->getFragmentInfo().value_or(
2313 DIExpression::FragmentInfo(SizeInBits
, 0));
2314 bool InvalidFragment
= Fragment
.endInBits() > SizeInBits
;
2316 // If this defines any previously undefined bits, keep it.
2317 if (FirstDefinition
|| InvalidFragment
||
2318 DefinedBits
.find_first_unset_in(Fragment
.startInBits(),
2319 Fragment
.endInBits()) != -1) {
2320 if (!InvalidFragment
)
2321 DefinedBits
.set(Fragment
.startInBits(), Fragment
.endInBits());
2322 NewDefsReversed
.push_back(*RIt
);
2326 // Redundant def found: throw it away. Since the wedge of defs is being
2327 // rebuilt, doing nothing is the same as deleting an entry.
2328 ChangedThisWedge
= true;
2332 // Un-reverse the defs and replace the wedge with the pruned version.
2333 if (ChangedThisWedge
) {
2334 std::reverse(NewDefsReversed
.begin(), NewDefsReversed
.end());
2335 FnVarLocs
.setWedge(&I
, std::move(NewDefsReversed
));
2344 /// Remove redundant location defs using a forward scan. This can remove a
2345 /// location definition that is redundant due to indicating that a variable has
2346 /// the same value as is already being indicated by an earlier def.
2348 /// This implements removeRedundantDbgInstrsUsingForwardScan from
2349 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2350 /// FunctionVarLocsBuilder instead of with intrinsics
2352 removeRedundantDbgLocsUsingForwardScan(const BasicBlock
*BB
,
2353 FunctionVarLocsBuilder
&FnVarLocs
) {
2354 bool Changed
= false;
2355 DenseMap
<DebugVariable
, std::pair
<RawLocationWrapper
, DIExpression
*>>
2358 // Scan over the entire block, not just over the instructions mapped by
2359 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2361 for (const Instruction
&I
: *BB
) {
2362 // Get the defs that come just before this instruction.
2363 const auto *Locs
= FnVarLocs
.getWedge(&I
);
2368 bool ChangedThisWedge
= false;
2369 // The new pruned set of defs.
2370 SmallVector
<VarLocInfo
> NewDefs
;
2372 // Iterate over the existing defs.
2373 for (const VarLocInfo
&Loc
: *Locs
) {
2375 DebugVariable
Key(FnVarLocs
.getVariable(Loc
.VariableID
).getVariable(),
2376 std::nullopt
, Loc
.DL
.getInlinedAt());
2377 auto VMI
= VariableMap
.find(Key
);
2379 // Update the map if we found a new value/expression describing the
2380 // variable, or if the variable wasn't mapped already.
2381 if (VMI
== VariableMap
.end() || VMI
->second
.first
!= Loc
.Values
||
2382 VMI
->second
.second
!= Loc
.Expr
) {
2383 VariableMap
[Key
] = {Loc
.Values
, Loc
.Expr
};
2384 NewDefs
.push_back(Loc
);
2388 // Did not insert this Loc, which is the same as removing it.
2389 ChangedThisWedge
= true;
2393 // Replace the existing wedge with the pruned version.
2394 if (ChangedThisWedge
) {
2395 FnVarLocs
.setWedge(&I
, std::move(NewDefs
));
2405 removeUndefDbgLocsFromEntryBlock(const BasicBlock
*BB
,
2406 FunctionVarLocsBuilder
&FnVarLocs
) {
2407 assert(BB
->isEntryBlock());
2408 // Do extra work to ensure that we remove semantically unimportant undefs.
2410 // This is to work around the fact that SelectionDAG will hoist dbg.values
2411 // using argument values to the top of the entry block. That can move arg
2412 // dbg.values before undef and constant dbg.values which they previously
2413 // followed. The easiest thing to do is to just try to feed SelectionDAG
2414 // input it's happy with.
2416 // Map of {Variable x: Fragments y} where the fragments y of variable x have
2417 // have at least one non-undef location defined already. Don't use directly,
2418 // instead call DefineBits and HasDefinedBits.
2419 SmallDenseMap
<DebugAggregate
, SmallDenseSet
<DIExpression::FragmentInfo
>>
2421 // Specify that V (a fragment of A) has a non-undef location.
2422 auto DefineBits
= [&VarsWithDef
](DebugAggregate A
, DebugVariable V
) {
2423 VarsWithDef
[A
].insert(V
.getFragmentOrDefault());
2425 // Return true if a non-undef location has been defined for V (a fragment of
2426 // A). Doesn't imply that the location is currently non-undef, just that a
2427 // non-undef location has been seen previously.
2428 auto HasDefinedBits
= [&VarsWithDef
](DebugAggregate A
, DebugVariable V
) {
2429 auto FragsIt
= VarsWithDef
.find(A
);
2430 if (FragsIt
== VarsWithDef
.end())
2432 return llvm::any_of(FragsIt
->second
, [V
](auto Frag
) {
2433 return DIExpression::fragmentsOverlap(Frag
, V
.getFragmentOrDefault());
2437 bool Changed
= false;
2438 DenseMap
<DebugVariable
, std::pair
<Value
*, DIExpression
*>> VariableMap
;
2440 // Scan over the entire block, not just over the instructions mapped by
2441 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2443 for (const Instruction
&I
: *BB
) {
2444 // Get the defs that come just before this instruction.
2445 const auto *Locs
= FnVarLocs
.getWedge(&I
);
2450 bool ChangedThisWedge
= false;
2451 // The new pruned set of defs.
2452 SmallVector
<VarLocInfo
> NewDefs
;
2454 // Iterate over the existing defs.
2455 for (const VarLocInfo
&Loc
: *Locs
) {
2457 DebugAggregate Aggr
{FnVarLocs
.getVariable(Loc
.VariableID
).getVariable(),
2458 Loc
.DL
.getInlinedAt()};
2459 DebugVariable Var
= FnVarLocs
.getVariable(Loc
.VariableID
);
2461 // Remove undef entries that are encountered before any non-undef
2462 // intrinsics from the entry block.
2463 if (Loc
.Values
.isKillLocation(Loc
.Expr
) && !HasDefinedBits(Aggr
, Var
)) {
2464 // Did not insert this Loc, which is the same as removing it.
2466 ChangedThisWedge
= true;
2470 DefineBits(Aggr
, Var
);
2471 NewDefs
.push_back(Loc
);
2474 // Replace the existing wedge with the pruned version.
2475 if (ChangedThisWedge
) {
2476 FnVarLocs
.setWedge(&I
, std::move(NewDefs
));
2485 static bool removeRedundantDbgLocs(const BasicBlock
*BB
,
2486 FunctionVarLocsBuilder
&FnVarLocs
) {
2487 bool MadeChanges
= false;
2488 MadeChanges
|= removeRedundantDbgLocsUsingBackwardScan(BB
, FnVarLocs
);
2489 if (BB
->isEntryBlock())
2490 MadeChanges
|= removeUndefDbgLocsFromEntryBlock(BB
, FnVarLocs
);
2491 MadeChanges
|= removeRedundantDbgLocsUsingForwardScan(BB
, FnVarLocs
);
2494 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB
->getName()
2499 static DenseSet
<DebugAggregate
> findVarsWithStackSlot(Function
&Fn
) {
2500 DenseSet
<DebugAggregate
> Result
;
2501 for (auto &BB
: Fn
) {
2502 for (auto &I
: BB
) {
2503 // Any variable linked to an instruction is considered
2504 // interesting. Ideally we only need to check Allocas, however, a
2505 // DIAssignID might get dropped from an alloca but not stores. In that
2506 // case, we need to consider the variable interesting for NFC behaviour
2507 // with this change. TODO: Consider only looking at allocas.
2508 for (DbgAssignIntrinsic
*DAI
: at::getAssignmentMarkers(&I
)) {
2509 Result
.insert({DAI
->getVariable(), DAI
->getDebugLoc().getInlinedAt()});
2516 static void analyzeFunction(Function
&Fn
, const DataLayout
&Layout
,
2517 FunctionVarLocsBuilder
*FnVarLocs
) {
2518 // The analysis will generate location definitions for all variables, but we
2519 // only need to perform a dataflow on the set of variables which have a stack
2520 // slot. Find those now.
2521 DenseSet
<DebugAggregate
> VarsWithStackSlot
= findVarsWithStackSlot(Fn
);
2523 bool Changed
= false;
2525 // Use a scope block to clean up AssignmentTrackingLowering before running
2526 // MemLocFragmentFill to reduce peak memory consumption.
2528 AssignmentTrackingLowering
Pass(Fn
, Layout
, &VarsWithStackSlot
);
2529 Changed
= Pass
.run(FnVarLocs
);
2533 MemLocFragmentFill
Pass(Fn
, &VarsWithStackSlot
,
2534 shouldCoalesceFragments(Fn
));
2535 Pass
.run(FnVarLocs
);
2537 // Remove redundant entries. As well as reducing memory consumption and
2538 // avoiding waiting cycles later by burning some now, this has another
2539 // important job. That is to work around some SelectionDAG quirks. See
2540 // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2542 removeRedundantDbgLocs(&BB
, *FnVarLocs
);
2546 bool AssignmentTrackingAnalysis::runOnFunction(Function
&F
) {
2547 if (!isAssignmentTrackingEnabled(*F
.getParent()))
2550 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F
.getName()
2552 auto DL
= std::make_unique
<DataLayout
>(F
.getParent());
2554 // Clear previous results.
2557 FunctionVarLocsBuilder Builder
;
2558 analyzeFunction(F
, *DL
.get(), &Builder
);
2560 // Save these results.
2561 Results
->init(Builder
);
2563 if (PrintResults
&& isFunctionInPrintList(F
.getName()))
2564 Results
->print(errs(), F
);
2566 // Return false because this pass does not modify the function.
2570 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2571 : FunctionPass(ID
), Results(std::make_unique
<FunctionVarLocs
>()) {}
2573 char AssignmentTrackingAnalysis::ID
= 0;
2575 INITIALIZE_PASS(AssignmentTrackingAnalysis
, DEBUG_TYPE
,
2576 "Assignment Tracking Analysis", false, true)