[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / ExpandMemCmp.cpp
blob500f31bd8e89295f0482edabcecce8567ada9c01
1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/DomTreeUpdater.h"
17 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
18 #include "llvm/Analysis/ProfileSummaryInfo.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Transforms/Utils/SizeOpts.h"
31 #include <optional>
33 using namespace llvm;
35 namespace llvm {
36 class TargetLowering;
39 #define DEBUG_TYPE "expandmemcmp"
41 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
42 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
43 STATISTIC(NumMemCmpGreaterThanMax,
44 "Number of memcmp calls with size greater than max size");
45 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
47 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
48 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
49 cl::desc("The number of loads per basic block for inline expansion of "
50 "memcmp that is only being compared against zero."));
52 static cl::opt<unsigned> MaxLoadsPerMemcmp(
53 "max-loads-per-memcmp", cl::Hidden,
54 cl::desc("Set maximum number of loads used in expanded memcmp"));
56 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
57 "max-loads-per-memcmp-opt-size", cl::Hidden,
58 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
60 namespace {
63 // This class provides helper functions to expand a memcmp library call into an
64 // inline expansion.
65 class MemCmpExpansion {
66 struct ResultBlock {
67 BasicBlock *BB = nullptr;
68 PHINode *PhiSrc1 = nullptr;
69 PHINode *PhiSrc2 = nullptr;
71 ResultBlock() = default;
74 CallInst *const CI = nullptr;
75 ResultBlock ResBlock;
76 const uint64_t Size;
77 unsigned MaxLoadSize = 0;
78 uint64_t NumLoadsNonOneByte = 0;
79 const uint64_t NumLoadsPerBlockForZeroCmp;
80 std::vector<BasicBlock *> LoadCmpBlocks;
81 BasicBlock *EndBlock = nullptr;
82 PHINode *PhiRes = nullptr;
83 const bool IsUsedForZeroCmp;
84 const DataLayout &DL;
85 DomTreeUpdater *DTU = nullptr;
86 IRBuilder<> Builder;
87 // Represents the decomposition in blocks of the expansion. For example,
88 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
89 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
90 struct LoadEntry {
91 LoadEntry(unsigned LoadSize, uint64_t Offset)
92 : LoadSize(LoadSize), Offset(Offset) {
95 // The size of the load for this block, in bytes.
96 unsigned LoadSize;
97 // The offset of this load from the base pointer, in bytes.
98 uint64_t Offset;
100 using LoadEntryVector = SmallVector<LoadEntry, 8>;
101 LoadEntryVector LoadSequence;
103 void createLoadCmpBlocks();
104 void createResultBlock();
105 void setupResultBlockPHINodes();
106 void setupEndBlockPHINodes();
107 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
108 void emitLoadCompareBlock(unsigned BlockIndex);
109 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
110 unsigned &LoadIndex);
111 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
112 void emitMemCmpResultBlock();
113 Value *getMemCmpExpansionZeroCase();
114 Value *getMemCmpEqZeroOneBlock();
115 Value *getMemCmpOneBlock();
116 struct LoadPair {
117 Value *Lhs = nullptr;
118 Value *Rhs = nullptr;
120 LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType,
121 unsigned OffsetBytes);
123 static LoadEntryVector
124 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
125 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
126 static LoadEntryVector
127 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
128 unsigned MaxNumLoads,
129 unsigned &NumLoadsNonOneByte);
131 public:
132 MemCmpExpansion(CallInst *CI, uint64_t Size,
133 const TargetTransformInfo::MemCmpExpansionOptions &Options,
134 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
135 DomTreeUpdater *DTU);
137 unsigned getNumBlocks();
138 uint64_t getNumLoads() const { return LoadSequence.size(); }
140 Value *getMemCmpExpansion();
143 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
144 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
145 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
146 NumLoadsNonOneByte = 0;
147 LoadEntryVector LoadSequence;
148 uint64_t Offset = 0;
149 while (Size && !LoadSizes.empty()) {
150 const unsigned LoadSize = LoadSizes.front();
151 const uint64_t NumLoadsForThisSize = Size / LoadSize;
152 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
153 // Do not expand if the total number of loads is larger than what the
154 // target allows. Note that it's important that we exit before completing
155 // the expansion to avoid using a ton of memory to store the expansion for
156 // large sizes.
157 return {};
159 if (NumLoadsForThisSize > 0) {
160 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
161 LoadSequence.push_back({LoadSize, Offset});
162 Offset += LoadSize;
164 if (LoadSize > 1)
165 ++NumLoadsNonOneByte;
166 Size = Size % LoadSize;
168 LoadSizes = LoadSizes.drop_front();
170 return LoadSequence;
173 MemCmpExpansion::LoadEntryVector
174 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
175 const unsigned MaxLoadSize,
176 const unsigned MaxNumLoads,
177 unsigned &NumLoadsNonOneByte) {
178 // These are already handled by the greedy approach.
179 if (Size < 2 || MaxLoadSize < 2)
180 return {};
182 // We try to do as many non-overlapping loads as possible starting from the
183 // beginning.
184 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
185 assert(NumNonOverlappingLoads && "there must be at least one load");
186 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
187 // an overlapping load.
188 Size = Size - NumNonOverlappingLoads * MaxLoadSize;
189 // Bail if we do not need an overloapping store, this is already handled by
190 // the greedy approach.
191 if (Size == 0)
192 return {};
193 // Bail if the number of loads (non-overlapping + potential overlapping one)
194 // is larger than the max allowed.
195 if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
196 return {};
198 // Add non-overlapping loads.
199 LoadEntryVector LoadSequence;
200 uint64_t Offset = 0;
201 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
202 LoadSequence.push_back({MaxLoadSize, Offset});
203 Offset += MaxLoadSize;
206 // Add the last overlapping load.
207 assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
208 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
209 NumLoadsNonOneByte = 1;
210 return LoadSequence;
213 // Initialize the basic block structure required for expansion of memcmp call
214 // with given maximum load size and memcmp size parameter.
215 // This structure includes:
216 // 1. A list of load compare blocks - LoadCmpBlocks.
217 // 2. An EndBlock, split from original instruction point, which is the block to
218 // return from.
219 // 3. ResultBlock, block to branch to for early exit when a
220 // LoadCmpBlock finds a difference.
221 MemCmpExpansion::MemCmpExpansion(
222 CallInst *const CI, uint64_t Size,
223 const TargetTransformInfo::MemCmpExpansionOptions &Options,
224 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
225 DomTreeUpdater *DTU)
226 : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
227 IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU),
228 Builder(CI) {
229 assert(Size > 0 && "zero blocks");
230 // Scale the max size down if the target can load more bytes than we need.
231 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
232 while (!LoadSizes.empty() && LoadSizes.front() > Size) {
233 LoadSizes = LoadSizes.drop_front();
235 assert(!LoadSizes.empty() && "cannot load Size bytes");
236 MaxLoadSize = LoadSizes.front();
237 // Compute the decomposition.
238 unsigned GreedyNumLoadsNonOneByte = 0;
239 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
240 GreedyNumLoadsNonOneByte);
241 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
242 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
243 // If we allow overlapping loads and the load sequence is not already optimal,
244 // use overlapping loads.
245 if (Options.AllowOverlappingLoads &&
246 (LoadSequence.empty() || LoadSequence.size() > 2)) {
247 unsigned OverlappingNumLoadsNonOneByte = 0;
248 auto OverlappingLoads = computeOverlappingLoadSequence(
249 Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
250 if (!OverlappingLoads.empty() &&
251 (LoadSequence.empty() ||
252 OverlappingLoads.size() < LoadSequence.size())) {
253 LoadSequence = OverlappingLoads;
254 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
257 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
260 unsigned MemCmpExpansion::getNumBlocks() {
261 if (IsUsedForZeroCmp)
262 return getNumLoads() / NumLoadsPerBlockForZeroCmp +
263 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
264 return getNumLoads();
267 void MemCmpExpansion::createLoadCmpBlocks() {
268 for (unsigned i = 0; i < getNumBlocks(); i++) {
269 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
270 EndBlock->getParent(), EndBlock);
271 LoadCmpBlocks.push_back(BB);
275 void MemCmpExpansion::createResultBlock() {
276 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
277 EndBlock->getParent(), EndBlock);
280 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
281 bool NeedsBSwap,
282 Type *CmpSizeType,
283 unsigned OffsetBytes) {
284 // Get the memory source at offset `OffsetBytes`.
285 Value *LhsSource = CI->getArgOperand(0);
286 Value *RhsSource = CI->getArgOperand(1);
287 Align LhsAlign = LhsSource->getPointerAlignment(DL);
288 Align RhsAlign = RhsSource->getPointerAlignment(DL);
289 if (OffsetBytes > 0) {
290 auto *ByteType = Type::getInt8Ty(CI->getContext());
291 LhsSource = Builder.CreateConstGEP1_64(ByteType, LhsSource, OffsetBytes);
292 RhsSource = Builder.CreateConstGEP1_64(ByteType, RhsSource, OffsetBytes);
293 LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
294 RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
297 // Create a constant or a load from the source.
298 Value *Lhs = nullptr;
299 if (auto *C = dyn_cast<Constant>(LhsSource))
300 Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
301 if (!Lhs)
302 Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
304 Value *Rhs = nullptr;
305 if (auto *C = dyn_cast<Constant>(RhsSource))
306 Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
307 if (!Rhs)
308 Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
310 // Swap bytes if required.
311 if (NeedsBSwap) {
312 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
313 Intrinsic::bswap, LoadSizeType);
314 Lhs = Builder.CreateCall(Bswap, Lhs);
315 Rhs = Builder.CreateCall(Bswap, Rhs);
318 // Zero extend if required.
319 if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) {
320 Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
321 Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
323 return {Lhs, Rhs};
326 // This function creates the IR instructions for loading and comparing 1 byte.
327 // It loads 1 byte from each source of the memcmp parameters with the given
328 // GEPIndex. It then subtracts the two loaded values and adds this result to the
329 // final phi node for selecting the memcmp result.
330 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
331 unsigned OffsetBytes) {
332 BasicBlock *BB = LoadCmpBlocks[BlockIndex];
333 Builder.SetInsertPoint(BB);
334 const LoadPair Loads =
335 getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false,
336 Type::getInt32Ty(CI->getContext()), OffsetBytes);
337 Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
339 PhiRes->addIncoming(Diff, BB);
341 if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
342 // Early exit branch if difference found to EndBlock. Otherwise, continue to
343 // next LoadCmpBlock,
344 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
345 ConstantInt::get(Diff->getType(), 0));
346 BranchInst *CmpBr =
347 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
348 Builder.Insert(CmpBr);
349 if (DTU)
350 DTU->applyUpdates(
351 {{DominatorTree::Insert, BB, EndBlock},
352 {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}});
353 } else {
354 // The last block has an unconditional branch to EndBlock.
355 BranchInst *CmpBr = BranchInst::Create(EndBlock);
356 Builder.Insert(CmpBr);
357 if (DTU)
358 DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}});
362 /// Generate an equality comparison for one or more pairs of loaded values.
363 /// This is used in the case where the memcmp() call is compared equal or not
364 /// equal to zero.
365 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
366 unsigned &LoadIndex) {
367 assert(LoadIndex < getNumLoads() &&
368 "getCompareLoadPairs() called with no remaining loads");
369 std::vector<Value *> XorList, OrList;
370 Value *Diff = nullptr;
372 const unsigned NumLoads =
373 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
375 // For a single-block expansion, start inserting before the memcmp call.
376 if (LoadCmpBlocks.empty())
377 Builder.SetInsertPoint(CI);
378 else
379 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
381 Value *Cmp = nullptr;
382 // If we have multiple loads per block, we need to generate a composite
383 // comparison using xor+or. The type for the combinations is the largest load
384 // type.
385 IntegerType *const MaxLoadType =
386 NumLoads == 1 ? nullptr
387 : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
388 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
389 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
390 const LoadPair Loads = getLoadPair(
391 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8),
392 /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset);
394 if (NumLoads != 1) {
395 // If we have multiple loads per block, we need to generate a composite
396 // comparison using xor+or.
397 Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
398 Diff = Builder.CreateZExt(Diff, MaxLoadType);
399 XorList.push_back(Diff);
400 } else {
401 // If there's only one load per block, we just compare the loaded values.
402 Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
406 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
407 std::vector<Value *> OutList;
408 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
409 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
410 OutList.push_back(Or);
412 if (InList.size() % 2 != 0)
413 OutList.push_back(InList.back());
414 return OutList;
417 if (!Cmp) {
418 // Pairwise OR the XOR results.
419 OrList = pairWiseOr(XorList);
421 // Pairwise OR the OR results until one result left.
422 while (OrList.size() != 1) {
423 OrList = pairWiseOr(OrList);
426 assert(Diff && "Failed to find comparison diff");
427 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
430 return Cmp;
433 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
434 unsigned &LoadIndex) {
435 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
437 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
438 ? EndBlock
439 : LoadCmpBlocks[BlockIndex + 1];
440 // Early exit branch if difference found to ResultBlock. Otherwise,
441 // continue to next LoadCmpBlock or EndBlock.
442 BasicBlock *BB = Builder.GetInsertBlock();
443 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
444 Builder.Insert(CmpBr);
445 if (DTU)
446 DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB},
447 {DominatorTree::Insert, BB, NextBB}});
449 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
450 // since early exit to ResultBlock was not taken (no difference was found in
451 // any of the bytes).
452 if (BlockIndex == LoadCmpBlocks.size() - 1) {
453 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
454 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
458 // This function creates the IR intructions for loading and comparing using the
459 // given LoadSize. It loads the number of bytes specified by LoadSize from each
460 // source of the memcmp parameters. It then does a subtract to see if there was
461 // a difference in the loaded values. If a difference is found, it branches
462 // with an early exit to the ResultBlock for calculating which source was
463 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
464 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
465 // a special case through emitLoadCompareByteBlock. The special handling can
466 // simply subtract the loaded values and add it to the result phi node.
467 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
468 // There is one load per block in this case, BlockIndex == LoadIndex.
469 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
471 if (CurLoadEntry.LoadSize == 1) {
472 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
473 return;
476 Type *LoadSizeType =
477 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
478 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
479 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
481 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
483 const LoadPair Loads =
484 getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType,
485 CurLoadEntry.Offset);
487 // Add the loaded values to the phi nodes for calculating memcmp result only
488 // if result is not used in a zero equality.
489 if (!IsUsedForZeroCmp) {
490 ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
491 ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
494 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
495 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
496 ? EndBlock
497 : LoadCmpBlocks[BlockIndex + 1];
498 // Early exit branch if difference found to ResultBlock. Otherwise, continue
499 // to next LoadCmpBlock or EndBlock.
500 BasicBlock *BB = Builder.GetInsertBlock();
501 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
502 Builder.Insert(CmpBr);
503 if (DTU)
504 DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB},
505 {DominatorTree::Insert, BB, ResBlock.BB}});
507 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
508 // since early exit to ResultBlock was not taken (no difference was found in
509 // any of the bytes).
510 if (BlockIndex == LoadCmpBlocks.size() - 1) {
511 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
512 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
516 // This function populates the ResultBlock with a sequence to calculate the
517 // memcmp result. It compares the two loaded source values and returns -1 if
518 // src1 < src2 and 1 if src1 > src2.
519 void MemCmpExpansion::emitMemCmpResultBlock() {
520 // Special case: if memcmp result is used in a zero equality, result does not
521 // need to be calculated and can simply return 1.
522 if (IsUsedForZeroCmp) {
523 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
524 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
525 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
526 PhiRes->addIncoming(Res, ResBlock.BB);
527 BranchInst *NewBr = BranchInst::Create(EndBlock);
528 Builder.Insert(NewBr);
529 if (DTU)
530 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
531 return;
533 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
534 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
536 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
537 ResBlock.PhiSrc2);
539 Value *Res =
540 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
541 ConstantInt::get(Builder.getInt32Ty(), 1));
543 PhiRes->addIncoming(Res, ResBlock.BB);
544 BranchInst *NewBr = BranchInst::Create(EndBlock);
545 Builder.Insert(NewBr);
546 if (DTU)
547 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
550 void MemCmpExpansion::setupResultBlockPHINodes() {
551 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
552 Builder.SetInsertPoint(ResBlock.BB);
553 // Note: this assumes one load per block.
554 ResBlock.PhiSrc1 =
555 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
556 ResBlock.PhiSrc2 =
557 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
560 void MemCmpExpansion::setupEndBlockPHINodes() {
561 Builder.SetInsertPoint(&EndBlock->front());
562 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
565 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
566 unsigned LoadIndex = 0;
567 // This loop populates each of the LoadCmpBlocks with the IR sequence to
568 // handle multiple loads per block.
569 for (unsigned I = 0; I < getNumBlocks(); ++I) {
570 emitLoadCompareBlockMultipleLoads(I, LoadIndex);
573 emitMemCmpResultBlock();
574 return PhiRes;
577 /// A memcmp expansion that compares equality with 0 and only has one block of
578 /// load and compare can bypass the compare, branch, and phi IR that is required
579 /// in the general case.
580 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
581 unsigned LoadIndex = 0;
582 Value *Cmp = getCompareLoadPairs(0, LoadIndex);
583 assert(LoadIndex == getNumLoads() && "some entries were not consumed");
584 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
587 /// A memcmp expansion that only has one block of load and compare can bypass
588 /// the compare, branch, and phi IR that is required in the general case.
589 Value *MemCmpExpansion::getMemCmpOneBlock() {
590 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
591 bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
593 // The i8 and i16 cases don't need compares. We zext the loaded values and
594 // subtract them to get the suitable negative, zero, or positive i32 result.
595 if (Size < 4) {
596 const LoadPair Loads =
597 getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(),
598 /*Offset*/ 0);
599 return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
602 const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType,
603 /*Offset*/ 0);
604 // The result of memcmp is negative, zero, or positive, so produce that by
605 // subtracting 2 extended compare bits: sub (ugt, ult).
606 // If a target prefers to use selects to get -1/0/1, they should be able
607 // to transform this later. The inverse transform (going from selects to math)
608 // may not be possible in the DAG because the selects got converted into
609 // branches before we got there.
610 Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
611 Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
612 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
613 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
614 return Builder.CreateSub(ZextUGT, ZextULT);
617 // This function expands the memcmp call into an inline expansion and returns
618 // the memcmp result.
619 Value *MemCmpExpansion::getMemCmpExpansion() {
620 // Create the basic block framework for a multi-block expansion.
621 if (getNumBlocks() != 1) {
622 BasicBlock *StartBlock = CI->getParent();
623 EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr,
624 /*MSSAU=*/nullptr, "endblock");
625 setupEndBlockPHINodes();
626 createResultBlock();
628 // If return value of memcmp is not used in a zero equality, we need to
629 // calculate which source was larger. The calculation requires the
630 // two loaded source values of each load compare block.
631 // These will be saved in the phi nodes created by setupResultBlockPHINodes.
632 if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
634 // Create the number of required load compare basic blocks.
635 createLoadCmpBlocks();
637 // Update the terminator added by SplitBlock to branch to the first
638 // LoadCmpBlock.
639 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
640 if (DTU)
641 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]},
642 {DominatorTree::Delete, StartBlock, EndBlock}});
645 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
647 if (IsUsedForZeroCmp)
648 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
649 : getMemCmpExpansionZeroCase();
651 if (getNumBlocks() == 1)
652 return getMemCmpOneBlock();
654 for (unsigned I = 0; I < getNumBlocks(); ++I) {
655 emitLoadCompareBlock(I);
658 emitMemCmpResultBlock();
659 return PhiRes;
662 // This function checks to see if an expansion of memcmp can be generated.
663 // It checks for constant compare size that is less than the max inline size.
664 // If an expansion cannot occur, returns false to leave as a library call.
665 // Otherwise, the library call is replaced with a new IR instruction sequence.
666 /// We want to transform:
667 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
668 /// To:
669 /// loadbb:
670 /// %0 = bitcast i32* %buffer2 to i8*
671 /// %1 = bitcast i32* %buffer1 to i8*
672 /// %2 = bitcast i8* %1 to i64*
673 /// %3 = bitcast i8* %0 to i64*
674 /// %4 = load i64, i64* %2
675 /// %5 = load i64, i64* %3
676 /// %6 = call i64 @llvm.bswap.i64(i64 %4)
677 /// %7 = call i64 @llvm.bswap.i64(i64 %5)
678 /// %8 = sub i64 %6, %7
679 /// %9 = icmp ne i64 %8, 0
680 /// br i1 %9, label %res_block, label %loadbb1
681 /// res_block: ; preds = %loadbb2,
682 /// %loadbb1, %loadbb
683 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
684 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
685 /// %10 = icmp ult i64 %phi.src1, %phi.src2
686 /// %11 = select i1 %10, i32 -1, i32 1
687 /// br label %endblock
688 /// loadbb1: ; preds = %loadbb
689 /// %12 = bitcast i32* %buffer2 to i8*
690 /// %13 = bitcast i32* %buffer1 to i8*
691 /// %14 = bitcast i8* %13 to i32*
692 /// %15 = bitcast i8* %12 to i32*
693 /// %16 = getelementptr i32, i32* %14, i32 2
694 /// %17 = getelementptr i32, i32* %15, i32 2
695 /// %18 = load i32, i32* %16
696 /// %19 = load i32, i32* %17
697 /// %20 = call i32 @llvm.bswap.i32(i32 %18)
698 /// %21 = call i32 @llvm.bswap.i32(i32 %19)
699 /// %22 = zext i32 %20 to i64
700 /// %23 = zext i32 %21 to i64
701 /// %24 = sub i64 %22, %23
702 /// %25 = icmp ne i64 %24, 0
703 /// br i1 %25, label %res_block, label %loadbb2
704 /// loadbb2: ; preds = %loadbb1
705 /// %26 = bitcast i32* %buffer2 to i8*
706 /// %27 = bitcast i32* %buffer1 to i8*
707 /// %28 = bitcast i8* %27 to i16*
708 /// %29 = bitcast i8* %26 to i16*
709 /// %30 = getelementptr i16, i16* %28, i16 6
710 /// %31 = getelementptr i16, i16* %29, i16 6
711 /// %32 = load i16, i16* %30
712 /// %33 = load i16, i16* %31
713 /// %34 = call i16 @llvm.bswap.i16(i16 %32)
714 /// %35 = call i16 @llvm.bswap.i16(i16 %33)
715 /// %36 = zext i16 %34 to i64
716 /// %37 = zext i16 %35 to i64
717 /// %38 = sub i64 %36, %37
718 /// %39 = icmp ne i64 %38, 0
719 /// br i1 %39, label %res_block, label %loadbb3
720 /// loadbb3: ; preds = %loadbb2
721 /// %40 = bitcast i32* %buffer2 to i8*
722 /// %41 = bitcast i32* %buffer1 to i8*
723 /// %42 = getelementptr i8, i8* %41, i8 14
724 /// %43 = getelementptr i8, i8* %40, i8 14
725 /// %44 = load i8, i8* %42
726 /// %45 = load i8, i8* %43
727 /// %46 = zext i8 %44 to i32
728 /// %47 = zext i8 %45 to i32
729 /// %48 = sub i32 %46, %47
730 /// br label %endblock
731 /// endblock: ; preds = %res_block,
732 /// %loadbb3
733 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
734 /// ret i32 %phi.res
735 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
736 const TargetLowering *TLI, const DataLayout *DL,
737 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
738 DomTreeUpdater *DTU, const bool IsBCmp) {
739 NumMemCmpCalls++;
741 // Early exit from expansion if -Oz.
742 if (CI->getFunction()->hasMinSize())
743 return false;
745 // Early exit from expansion if size is not a constant.
746 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
747 if (!SizeCast) {
748 NumMemCmpNotConstant++;
749 return false;
751 const uint64_t SizeVal = SizeCast->getZExtValue();
753 if (SizeVal == 0) {
754 return false;
756 // TTI call to check if target would like to expand memcmp. Also, get the
757 // available load sizes.
758 const bool IsUsedForZeroCmp =
759 IsBCmp || isOnlyUsedInZeroEqualityComparison(CI);
760 bool OptForSize = CI->getFunction()->hasOptSize() ||
761 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
762 auto Options = TTI->enableMemCmpExpansion(OptForSize,
763 IsUsedForZeroCmp);
764 if (!Options) return false;
766 if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
767 Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
769 if (OptForSize &&
770 MaxLoadsPerMemcmpOptSize.getNumOccurrences())
771 Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
773 if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
774 Options.MaxNumLoads = MaxLoadsPerMemcmp;
776 MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU);
778 // Don't expand if this will require more loads than desired by the target.
779 if (Expansion.getNumLoads() == 0) {
780 NumMemCmpGreaterThanMax++;
781 return false;
784 NumMemCmpInlined++;
786 Value *Res = Expansion.getMemCmpExpansion();
788 // Replace call with result of expansion and erase call.
789 CI->replaceAllUsesWith(Res);
790 CI->eraseFromParent();
792 return true;
795 class ExpandMemCmpPass : public FunctionPass {
796 public:
797 static char ID;
799 ExpandMemCmpPass() : FunctionPass(ID) {
800 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
803 bool runOnFunction(Function &F) override {
804 if (skipFunction(F)) return false;
806 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
807 if (!TPC) {
808 return false;
810 const TargetLowering* TL =
811 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
813 const TargetLibraryInfo *TLI =
814 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
815 const TargetTransformInfo *TTI =
816 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
817 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
818 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
819 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
820 nullptr;
821 DominatorTree *DT = nullptr;
822 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
823 DT = &DTWP->getDomTree();
824 auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT);
825 return !PA.areAllPreserved();
828 private:
829 void getAnalysisUsage(AnalysisUsage &AU) const override {
830 AU.addRequired<TargetLibraryInfoWrapperPass>();
831 AU.addRequired<TargetTransformInfoWrapperPass>();
832 AU.addRequired<ProfileSummaryInfoWrapperPass>();
833 AU.addPreserved<DominatorTreeWrapperPass>();
834 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
835 FunctionPass::getAnalysisUsage(AU);
838 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
839 const TargetTransformInfo *TTI,
840 const TargetLowering *TL, ProfileSummaryInfo *PSI,
841 BlockFrequencyInfo *BFI, DominatorTree *DT);
842 // Returns true if a change was made.
843 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
844 const TargetTransformInfo *TTI, const TargetLowering *TL,
845 const DataLayout &DL, ProfileSummaryInfo *PSI,
846 BlockFrequencyInfo *BFI, DomTreeUpdater *DTU);
849 bool ExpandMemCmpPass::runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
850 const TargetTransformInfo *TTI,
851 const TargetLowering *TL,
852 const DataLayout &DL, ProfileSummaryInfo *PSI,
853 BlockFrequencyInfo *BFI,
854 DomTreeUpdater *DTU) {
855 for (Instruction& I : BB) {
856 CallInst *CI = dyn_cast<CallInst>(&I);
857 if (!CI) {
858 continue;
860 LibFunc Func;
861 if (TLI->getLibFunc(*CI, Func) &&
862 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
863 expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) {
864 return true;
867 return false;
870 PreservedAnalyses
871 ExpandMemCmpPass::runImpl(Function &F, const TargetLibraryInfo *TLI,
872 const TargetTransformInfo *TTI,
873 const TargetLowering *TL, ProfileSummaryInfo *PSI,
874 BlockFrequencyInfo *BFI, DominatorTree *DT) {
875 std::optional<DomTreeUpdater> DTU;
876 if (DT)
877 DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy);
879 const DataLayout& DL = F.getParent()->getDataLayout();
880 bool MadeChanges = false;
881 for (auto BBIt = F.begin(); BBIt != F.end();) {
882 if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU ? &*DTU : nullptr)) {
883 MadeChanges = true;
884 // If changes were made, restart the function from the beginning, since
885 // the structure of the function was changed.
886 BBIt = F.begin();
887 } else {
888 ++BBIt;
891 if (MadeChanges)
892 for (BasicBlock &BB : F)
893 SimplifyInstructionsInBlock(&BB);
894 if (!MadeChanges)
895 return PreservedAnalyses::all();
896 PreservedAnalyses PA;
897 PA.preserve<DominatorTreeAnalysis>();
898 return PA;
901 } // namespace
903 char ExpandMemCmpPass::ID = 0;
904 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
905 "Expand memcmp() to load/stores", false, false)
906 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
907 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
908 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
909 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
910 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
911 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
912 "Expand memcmp() to load/stores", false, false)
914 FunctionPass *llvm::createExpandMemCmpPass() {
915 return new ExpandMemCmpPass();