[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / MachineLICM.cpp
blob1b84c021886758bd7f3f1b7e18a30e2a692bec05
1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegister.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <limits>
55 #include <vector>
57 using namespace llvm;
59 #define DEBUG_TYPE "machinelicm"
61 static cl::opt<bool>
62 AvoidSpeculation("avoid-speculation",
63 cl::desc("MachineLICM should avoid speculation"),
64 cl::init(true), cl::Hidden);
66 static cl::opt<bool>
67 HoistCheapInsts("hoist-cheap-insts",
68 cl::desc("MachineLICM should hoist even cheap instructions"),
69 cl::init(false), cl::Hidden);
71 static cl::opt<bool>
72 HoistConstStores("hoist-const-stores",
73 cl::desc("Hoist invariant stores"),
74 cl::init(true), cl::Hidden);
75 // The default threshold of 100 (i.e. if target block is 100 times hotter)
76 // is based on empirical data on a single target and is subject to tuning.
77 static cl::opt<unsigned>
78 BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
79 cl::desc("Do not hoist instructions if target"
80 "block is N times hotter than the source."),
81 cl::init(100), cl::Hidden);
83 enum class UseBFI { None, PGO, All };
85 static cl::opt<UseBFI>
86 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
87 cl::desc("Disable hoisting instructions to"
88 " hotter blocks"),
89 cl::init(UseBFI::PGO), cl::Hidden,
90 cl::values(clEnumValN(UseBFI::None, "none",
91 "disable the feature"),
92 clEnumValN(UseBFI::PGO, "pgo",
93 "enable the feature when using profile data"),
94 clEnumValN(UseBFI::All, "all",
95 "enable the feature with/wo profile data")));
97 STATISTIC(NumHoisted,
98 "Number of machine instructions hoisted out of loops");
99 STATISTIC(NumLowRP,
100 "Number of instructions hoisted in low reg pressure situation");
101 STATISTIC(NumHighLatency,
102 "Number of high latency instructions hoisted");
103 STATISTIC(NumCSEed,
104 "Number of hoisted machine instructions CSEed");
105 STATISTIC(NumPostRAHoisted,
106 "Number of machine instructions hoisted out of loops post regalloc");
107 STATISTIC(NumStoreConst,
108 "Number of stores of const phys reg hoisted out of loops");
109 STATISTIC(NumNotHoistedDueToHotness,
110 "Number of instructions not hoisted due to block frequency");
112 namespace {
114 class MachineLICMBase : public MachineFunctionPass {
115 const TargetInstrInfo *TII = nullptr;
116 const TargetLoweringBase *TLI = nullptr;
117 const TargetRegisterInfo *TRI = nullptr;
118 const MachineFrameInfo *MFI = nullptr;
119 MachineRegisterInfo *MRI = nullptr;
120 TargetSchedModel SchedModel;
121 bool PreRegAlloc = false;
122 bool HasProfileData = false;
124 // Various analyses that we use...
125 AliasAnalysis *AA = nullptr; // Alias analysis info.
126 MachineBlockFrequencyInfo *MBFI = nullptr; // Machine block frequncy info
127 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo
128 MachineDominatorTree *DT = nullptr; // Machine dominator tree for the cur loop
130 // State that is updated as we process loops
131 bool Changed = false; // True if a loop is changed.
132 bool FirstInLoop = false; // True if it's the first LICM in the loop.
133 MachineLoop *CurLoop = nullptr; // The current loop we are working on.
134 MachineBasicBlock *CurPreheader = nullptr; // The preheader for CurLoop.
136 // Exit blocks for CurLoop.
137 SmallVector<MachineBasicBlock *, 8> ExitBlocks;
139 bool isExitBlock(const MachineBasicBlock *MBB) const {
140 return is_contained(ExitBlocks, MBB);
143 // Track 'estimated' register pressure.
144 SmallSet<Register, 32> RegSeen;
145 SmallVector<unsigned, 8> RegPressure;
147 // Register pressure "limit" per register pressure set. If the pressure
148 // is higher than the limit, then it's considered high.
149 SmallVector<unsigned, 8> RegLimit;
151 // Register pressure on path leading from loop preheader to current BB.
152 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
154 // For each opcode, keep a list of potential CSE instructions.
155 DenseMap<unsigned, std::vector<MachineInstr *>> CSEMap;
157 enum {
158 SpeculateFalse = 0,
159 SpeculateTrue = 1,
160 SpeculateUnknown = 2
163 // If a MBB does not dominate loop exiting blocks then it may not safe
164 // to hoist loads from this block.
165 // Tri-state: 0 - false, 1 - true, 2 - unknown
166 unsigned SpeculationState = SpeculateUnknown;
168 public:
169 MachineLICMBase(char &PassID, bool PreRegAlloc)
170 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
172 bool runOnMachineFunction(MachineFunction &MF) override;
174 void getAnalysisUsage(AnalysisUsage &AU) const override {
175 AU.addRequired<MachineLoopInfo>();
176 if (DisableHoistingToHotterBlocks != UseBFI::None)
177 AU.addRequired<MachineBlockFrequencyInfo>();
178 AU.addRequired<MachineDominatorTree>();
179 AU.addRequired<AAResultsWrapperPass>();
180 AU.addPreserved<MachineLoopInfo>();
181 MachineFunctionPass::getAnalysisUsage(AU);
184 void releaseMemory() override {
185 RegSeen.clear();
186 RegPressure.clear();
187 RegLimit.clear();
188 BackTrace.clear();
189 CSEMap.clear();
192 private:
193 /// Keep track of information about hoisting candidates.
194 struct CandidateInfo {
195 MachineInstr *MI;
196 unsigned Def;
197 int FI;
199 CandidateInfo(MachineInstr *mi, unsigned def, int fi)
200 : MI(mi), Def(def), FI(fi) {}
203 void HoistRegionPostRA();
205 void HoistPostRA(MachineInstr *MI, unsigned Def);
207 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
208 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
209 SmallVectorImpl<CandidateInfo> &Candidates);
211 void AddToLiveIns(MCRegister Reg);
213 bool IsLICMCandidate(MachineInstr &I);
215 bool IsLoopInvariantInst(MachineInstr &I);
217 bool HasLoopPHIUse(const MachineInstr *MI) const;
219 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
220 Register Reg) const;
222 bool IsCheapInstruction(MachineInstr &MI) const;
224 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
225 bool Cheap);
227 void UpdateBackTraceRegPressure(const MachineInstr *MI);
229 bool IsProfitableToHoist(MachineInstr &MI);
231 bool IsGuaranteedToExecute(MachineBasicBlock *BB);
233 bool isTriviallyReMaterializable(const MachineInstr &MI) const;
235 void EnterScope(MachineBasicBlock *MBB);
237 void ExitScope(MachineBasicBlock *MBB);
239 void ExitScopeIfDone(
240 MachineDomTreeNode *Node,
241 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
242 const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
244 void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
246 void InitRegPressure(MachineBasicBlock *BB);
248 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
249 bool ConsiderSeen,
250 bool ConsiderUnseenAsDef);
252 void UpdateRegPressure(const MachineInstr *MI,
253 bool ConsiderUnseenAsDef = false);
255 MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
257 MachineInstr *LookForDuplicate(const MachineInstr *MI,
258 std::vector<MachineInstr *> &PrevMIs);
260 bool
261 EliminateCSE(MachineInstr *MI,
262 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI);
264 bool MayCSE(MachineInstr *MI);
266 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
268 void InitCSEMap(MachineBasicBlock *BB);
270 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
271 MachineBasicBlock *TgtBlock);
272 MachineBasicBlock *getCurPreheader();
275 class MachineLICM : public MachineLICMBase {
276 public:
277 static char ID;
278 MachineLICM() : MachineLICMBase(ID, false) {
279 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
283 class EarlyMachineLICM : public MachineLICMBase {
284 public:
285 static char ID;
286 EarlyMachineLICM() : MachineLICMBase(ID, true) {
287 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
291 } // end anonymous namespace
293 char MachineLICM::ID;
294 char EarlyMachineLICM::ID;
296 char &llvm::MachineLICMID = MachineLICM::ID;
297 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
299 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
300 "Machine Loop Invariant Code Motion", false, false)
301 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
302 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
303 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
304 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
305 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
306 "Machine Loop Invariant Code Motion", false, false)
308 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
309 "Early Machine Loop Invariant Code Motion", false, false)
310 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
311 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
312 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
313 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
314 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
315 "Early Machine Loop Invariant Code Motion", false, false)
317 static void addSubLoopsToWorkList(MachineLoop *Loop,
318 SmallVectorImpl<MachineLoop *> &Worklist,
319 bool PreRA) {
320 // Add loop to worklist
321 Worklist.push_back(Loop);
323 // If it is pre-ra LICM, add sub loops to worklist.
324 if (PreRA && !Loop->isInnermost()) {
325 MachineLoop::iterator MLI = Loop->begin();
326 MachineLoop::iterator MLE = Loop->end();
327 for (; MLI != MLE; ++MLI)
328 addSubLoopsToWorkList(*MLI, Worklist, PreRA);
332 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
333 if (skipFunction(MF.getFunction()))
334 return false;
336 Changed = FirstInLoop = false;
337 const TargetSubtargetInfo &ST = MF.getSubtarget();
338 TII = ST.getInstrInfo();
339 TLI = ST.getTargetLowering();
340 TRI = ST.getRegisterInfo();
341 MFI = &MF.getFrameInfo();
342 MRI = &MF.getRegInfo();
343 SchedModel.init(&ST);
345 PreRegAlloc = MRI->isSSA();
346 HasProfileData = MF.getFunction().hasProfileData();
348 if (PreRegAlloc)
349 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
350 else
351 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
352 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
354 if (PreRegAlloc) {
355 // Estimate register pressure during pre-regalloc pass.
356 unsigned NumRPS = TRI->getNumRegPressureSets();
357 RegPressure.resize(NumRPS);
358 std::fill(RegPressure.begin(), RegPressure.end(), 0);
359 RegLimit.resize(NumRPS);
360 for (unsigned i = 0, e = NumRPS; i != e; ++i)
361 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
364 // Get our Loop information...
365 if (DisableHoistingToHotterBlocks != UseBFI::None)
366 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
367 MLI = &getAnalysis<MachineLoopInfo>();
368 DT = &getAnalysis<MachineDominatorTree>();
369 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
371 SmallVector<MachineLoop *, 8> Worklist;
373 MachineLoopInfo::iterator MLII = MLI->begin();
374 MachineLoopInfo::iterator MLIE = MLI->end();
375 for (; MLII != MLIE; ++MLII)
376 addSubLoopsToWorkList(*MLII, Worklist, PreRegAlloc);
378 while (!Worklist.empty()) {
379 CurLoop = Worklist.pop_back_val();
380 CurPreheader = nullptr;
381 ExitBlocks.clear();
383 CurLoop->getExitBlocks(ExitBlocks);
385 if (!PreRegAlloc)
386 HoistRegionPostRA();
387 else {
388 // CSEMap is initialized for loop header when the first instruction is
389 // being hoisted.
390 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
391 FirstInLoop = true;
392 HoistOutOfLoop(N);
393 CSEMap.clear();
397 return Changed;
400 /// Return true if instruction stores to the specified frame.
401 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
402 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
403 // true since they have no memory operands.
404 if (!MI->mayStore())
405 return false;
406 // If we lost memory operands, conservatively assume that the instruction
407 // writes to all slots.
408 if (MI->memoperands_empty())
409 return true;
410 for (const MachineMemOperand *MemOp : MI->memoperands()) {
411 if (!MemOp->isStore() || !MemOp->getPseudoValue())
412 continue;
413 if (const FixedStackPseudoSourceValue *Value =
414 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
415 if (Value->getFrameIndex() == FI)
416 return true;
419 return false;
422 /// Examine the instruction for potentai LICM candidate. Also
423 /// gather register def and frame object update information.
424 void MachineLICMBase::ProcessMI(MachineInstr *MI,
425 BitVector &PhysRegDefs,
426 BitVector &PhysRegClobbers,
427 SmallSet<int, 32> &StoredFIs,
428 SmallVectorImpl<CandidateInfo> &Candidates) {
429 bool RuledOut = false;
430 bool HasNonInvariantUse = false;
431 unsigned Def = 0;
432 for (const MachineOperand &MO : MI->operands()) {
433 if (MO.isFI()) {
434 // Remember if the instruction stores to the frame index.
435 int FI = MO.getIndex();
436 if (!StoredFIs.count(FI) &&
437 MFI->isSpillSlotObjectIndex(FI) &&
438 InstructionStoresToFI(MI, FI))
439 StoredFIs.insert(FI);
440 HasNonInvariantUse = true;
441 continue;
444 // We can't hoist an instruction defining a physreg that is clobbered in
445 // the loop.
446 if (MO.isRegMask()) {
447 PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
448 continue;
451 if (!MO.isReg())
452 continue;
453 Register Reg = MO.getReg();
454 if (!Reg)
455 continue;
456 assert(Reg.isPhysical() && "Not expecting virtual register!");
458 if (!MO.isDef()) {
459 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
460 // If it's using a non-loop-invariant register, then it's obviously not
461 // safe to hoist.
462 HasNonInvariantUse = true;
463 continue;
466 if (MO.isImplicit()) {
467 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
468 PhysRegClobbers.set(*AI);
469 if (!MO.isDead())
470 // Non-dead implicit def? This cannot be hoisted.
471 RuledOut = true;
472 // No need to check if a dead implicit def is also defined by
473 // another instruction.
474 continue;
477 // FIXME: For now, avoid instructions with multiple defs, unless
478 // it's a dead implicit def.
479 if (Def)
480 RuledOut = true;
481 else
482 Def = Reg;
484 // If we have already seen another instruction that defines the same
485 // register, then this is not safe. Two defs is indicated by setting a
486 // PhysRegClobbers bit.
487 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
488 if (PhysRegDefs.test(*AS))
489 PhysRegClobbers.set(*AS);
491 // Need a second loop because MCRegAliasIterator can visit the same
492 // register twice.
493 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
494 PhysRegDefs.set(*AS);
496 if (PhysRegClobbers.test(Reg))
497 // MI defined register is seen defined by another instruction in
498 // the loop, it cannot be a LICM candidate.
499 RuledOut = true;
502 // Only consider reloads for now and remats which do not have register
503 // operands. FIXME: Consider unfold load folding instructions.
504 if (Def && !RuledOut) {
505 int FI = std::numeric_limits<int>::min();
506 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
507 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
508 Candidates.push_back(CandidateInfo(MI, Def, FI));
512 /// Walk the specified region of the CFG and hoist loop invariants out to the
513 /// preheader.
514 void MachineLICMBase::HoistRegionPostRA() {
515 MachineBasicBlock *Preheader = getCurPreheader();
516 if (!Preheader)
517 return;
519 unsigned NumRegs = TRI->getNumRegs();
520 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
521 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
523 SmallVector<CandidateInfo, 32> Candidates;
524 SmallSet<int, 32> StoredFIs;
526 // Walk the entire region, count number of defs for each register, and
527 // collect potential LICM candidates.
528 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
529 // If the header of the loop containing this basic block is a landing pad,
530 // then don't try to hoist instructions out of this loop.
531 const MachineLoop *ML = MLI->getLoopFor(BB);
532 if (ML && ML->getHeader()->isEHPad()) continue;
534 // Conservatively treat live-in's as an external def.
535 // FIXME: That means a reload that're reused in successor block(s) will not
536 // be LICM'ed.
537 for (const auto &LI : BB->liveins()) {
538 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
539 PhysRegDefs.set(*AI);
542 SpeculationState = SpeculateUnknown;
543 for (MachineInstr &MI : *BB)
544 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
547 // Gather the registers read / clobbered by the terminator.
548 BitVector TermRegs(NumRegs);
549 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
550 if (TI != Preheader->end()) {
551 for (const MachineOperand &MO : TI->operands()) {
552 if (!MO.isReg())
553 continue;
554 Register Reg = MO.getReg();
555 if (!Reg)
556 continue;
557 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
558 TermRegs.set(*AI);
562 // Now evaluate whether the potential candidates qualify.
563 // 1. Check if the candidate defined register is defined by another
564 // instruction in the loop.
565 // 2. If the candidate is a load from stack slot (always true for now),
566 // check if the slot is stored anywhere in the loop.
567 // 3. Make sure candidate def should not clobber
568 // registers read by the terminator. Similarly its def should not be
569 // clobbered by the terminator.
570 for (CandidateInfo &Candidate : Candidates) {
571 if (Candidate.FI != std::numeric_limits<int>::min() &&
572 StoredFIs.count(Candidate.FI))
573 continue;
575 unsigned Def = Candidate.Def;
576 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
577 bool Safe = true;
578 MachineInstr *MI = Candidate.MI;
579 for (const MachineOperand &MO : MI->all_uses()) {
580 if (!MO.getReg())
581 continue;
582 Register Reg = MO.getReg();
583 if (PhysRegDefs.test(Reg) ||
584 PhysRegClobbers.test(Reg)) {
585 // If it's using a non-loop-invariant register, then it's obviously
586 // not safe to hoist.
587 Safe = false;
588 break;
591 if (Safe)
592 HoistPostRA(MI, Candidate.Def);
597 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
598 /// sure it is not killed by any instructions in the loop.
599 void MachineLICMBase::AddToLiveIns(MCRegister Reg) {
600 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
601 if (!BB->isLiveIn(Reg))
602 BB->addLiveIn(Reg);
603 for (MachineInstr &MI : *BB) {
604 for (MachineOperand &MO : MI.all_uses()) {
605 if (!MO.getReg())
606 continue;
607 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
608 MO.setIsKill(false);
614 /// When an instruction is found to only use loop invariant operands that is
615 /// safe to hoist, this instruction is called to do the dirty work.
616 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
617 MachineBasicBlock *Preheader = getCurPreheader();
619 // Now move the instructions to the predecessor, inserting it before any
620 // terminator instructions.
621 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
622 << " from " << printMBBReference(*MI->getParent()) << ": "
623 << *MI);
625 // Splice the instruction to the preheader.
626 MachineBasicBlock *MBB = MI->getParent();
627 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
629 // Since we are moving the instruction out of its basic block, we do not
630 // retain its debug location. Doing so would degrade the debugging
631 // experience and adversely affect the accuracy of profiling information.
632 assert(!MI->isDebugInstr() && "Should not hoist debug inst");
633 MI->setDebugLoc(DebugLoc());
635 // Add register to livein list to all the BBs in the current loop since a
636 // loop invariant must be kept live throughout the whole loop. This is
637 // important to ensure later passes do not scavenge the def register.
638 AddToLiveIns(Def);
640 ++NumPostRAHoisted;
641 Changed = true;
644 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
645 /// may not be safe to hoist.
646 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
647 if (SpeculationState != SpeculateUnknown)
648 return SpeculationState == SpeculateFalse;
650 if (BB != CurLoop->getHeader()) {
651 // Check loop exiting blocks.
652 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
653 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
654 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
655 if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
656 SpeculationState = SpeculateTrue;
657 return false;
661 SpeculationState = SpeculateFalse;
662 return true;
665 /// Check if \p MI is trivially remateralizable and if it does not have any
666 /// virtual register uses. Even though rematerializable RA might not actually
667 /// rematerialize it in this scenario. In that case we do not want to hoist such
668 /// instruction out of the loop in a belief RA will sink it back if needed.
669 bool MachineLICMBase::isTriviallyReMaterializable(
670 const MachineInstr &MI) const {
671 if (!TII->isTriviallyReMaterializable(MI))
672 return false;
674 for (const MachineOperand &MO : MI.all_uses()) {
675 if (MO.getReg().isVirtual())
676 return false;
679 return true;
682 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
683 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
685 // Remember livein register pressure.
686 BackTrace.push_back(RegPressure);
689 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
690 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
691 BackTrace.pop_back();
694 /// Destroy scope for the MBB that corresponds to the given dominator tree node
695 /// if its a leaf or all of its children are done. Walk up the dominator tree to
696 /// destroy ancestors which are now done.
697 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
698 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
699 const DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
700 if (OpenChildren[Node])
701 return;
703 for(;;) {
704 ExitScope(Node->getBlock());
705 // Now traverse upwards to pop ancestors whose offsprings are all done.
706 MachineDomTreeNode *Parent = ParentMap.lookup(Node);
707 if (!Parent || --OpenChildren[Parent] != 0)
708 break;
709 Node = Parent;
713 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
714 /// specified header block, and that are in the current loop) in depth first
715 /// order w.r.t the DominatorTree. This allows us to visit definitions before
716 /// uses, allowing us to hoist a loop body in one pass without iteration.
717 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
718 MachineBasicBlock *Preheader = getCurPreheader();
719 if (!Preheader)
720 return;
722 SmallVector<MachineDomTreeNode*, 32> Scopes;
723 SmallVector<MachineDomTreeNode*, 8> WorkList;
724 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
725 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
727 // Perform a DFS walk to determine the order of visit.
728 WorkList.push_back(HeaderN);
729 while (!WorkList.empty()) {
730 MachineDomTreeNode *Node = WorkList.pop_back_val();
731 assert(Node && "Null dominator tree node?");
732 MachineBasicBlock *BB = Node->getBlock();
734 // If the header of the loop containing this basic block is a landing pad,
735 // then don't try to hoist instructions out of this loop.
736 const MachineLoop *ML = MLI->getLoopFor(BB);
737 if (ML && ML->getHeader()->isEHPad())
738 continue;
740 // If this subregion is not in the top level loop at all, exit.
741 if (!CurLoop->contains(BB))
742 continue;
744 Scopes.push_back(Node);
745 unsigned NumChildren = Node->getNumChildren();
747 // Don't hoist things out of a large switch statement. This often causes
748 // code to be hoisted that wasn't going to be executed, and increases
749 // register pressure in a situation where it's likely to matter.
750 if (BB->succ_size() >= 25)
751 NumChildren = 0;
753 OpenChildren[Node] = NumChildren;
754 if (NumChildren) {
755 // Add children in reverse order as then the next popped worklist node is
756 // the first child of this node. This means we ultimately traverse the
757 // DOM tree in exactly the same order as if we'd recursed.
758 for (MachineDomTreeNode *Child : reverse(Node->children())) {
759 ParentMap[Child] = Node;
760 WorkList.push_back(Child);
765 if (Scopes.size() == 0)
766 return;
768 // Compute registers which are livein into the loop headers.
769 RegSeen.clear();
770 BackTrace.clear();
771 InitRegPressure(Preheader);
773 // Now perform LICM.
774 for (MachineDomTreeNode *Node : Scopes) {
775 MachineBasicBlock *MBB = Node->getBlock();
777 EnterScope(MBB);
779 // Process the block
780 SpeculationState = SpeculateUnknown;
781 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
782 if (!Hoist(&MI, Preheader))
783 UpdateRegPressure(&MI);
784 // If we have hoisted an instruction that may store, it can only be a
785 // constant store.
788 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
789 ExitScopeIfDone(Node, OpenChildren, ParentMap);
793 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
794 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
797 /// Find all virtual register references that are liveout of the preheader to
798 /// initialize the starting "register pressure". Note this does not count live
799 /// through (livein but not used) registers.
800 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
801 std::fill(RegPressure.begin(), RegPressure.end(), 0);
803 // If the preheader has only a single predecessor and it ends with a
804 // fallthrough or an unconditional branch, then scan its predecessor for live
805 // defs as well. This happens whenever the preheader is created by splitting
806 // the critical edge from the loop predecessor to the loop header.
807 if (BB->pred_size() == 1) {
808 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
809 SmallVector<MachineOperand, 4> Cond;
810 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
811 InitRegPressure(*BB->pred_begin());
814 for (const MachineInstr &MI : *BB)
815 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
818 /// Update estimate of register pressure after the specified instruction.
819 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
820 bool ConsiderUnseenAsDef) {
821 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
822 for (const auto &RPIdAndCost : Cost) {
823 unsigned Class = RPIdAndCost.first;
824 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
825 RegPressure[Class] = 0;
826 else
827 RegPressure[Class] += RPIdAndCost.second;
831 /// Calculate the additional register pressure that the registers used in MI
832 /// cause.
834 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
835 /// figure out which usages are live-ins.
836 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
837 DenseMap<unsigned, int>
838 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
839 bool ConsiderUnseenAsDef) {
840 DenseMap<unsigned, int> Cost;
841 if (MI->isImplicitDef())
842 return Cost;
843 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
844 const MachineOperand &MO = MI->getOperand(i);
845 if (!MO.isReg() || MO.isImplicit())
846 continue;
847 Register Reg = MO.getReg();
848 if (!Reg.isVirtual())
849 continue;
851 // FIXME: It seems bad to use RegSeen only for some of these calculations.
852 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
853 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
855 RegClassWeight W = TRI->getRegClassWeight(RC);
856 int RCCost = 0;
857 if (MO.isDef())
858 RCCost = W.RegWeight;
859 else {
860 bool isKill = isOperandKill(MO, MRI);
861 if (isNew && !isKill && ConsiderUnseenAsDef)
862 // Haven't seen this, it must be a livein.
863 RCCost = W.RegWeight;
864 else if (!isNew && isKill)
865 RCCost = -W.RegWeight;
867 if (RCCost == 0)
868 continue;
869 const int *PS = TRI->getRegClassPressureSets(RC);
870 for (; *PS != -1; ++PS) {
871 if (!Cost.contains(*PS))
872 Cost[*PS] = RCCost;
873 else
874 Cost[*PS] += RCCost;
877 return Cost;
880 /// Return true if this machine instruction loads from global offset table or
881 /// constant pool.
882 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
883 assert(MI.mayLoad() && "Expected MI that loads!");
885 // If we lost memory operands, conservatively assume that the instruction
886 // reads from everything..
887 if (MI.memoperands_empty())
888 return true;
890 for (MachineMemOperand *MemOp : MI.memoperands())
891 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
892 if (PSV->isGOT() || PSV->isConstantPool())
893 return true;
895 return false;
898 // This function iterates through all the operands of the input store MI and
899 // checks that each register operand statisfies isCallerPreservedPhysReg.
900 // This means, the value being stored and the address where it is being stored
901 // is constant throughout the body of the function (not including prologue and
902 // epilogue). When called with an MI that isn't a store, it returns false.
903 // A future improvement can be to check if the store registers are constant
904 // throughout the loop rather than throughout the funtion.
905 static bool isInvariantStore(const MachineInstr &MI,
906 const TargetRegisterInfo *TRI,
907 const MachineRegisterInfo *MRI) {
909 bool FoundCallerPresReg = false;
910 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
911 (MI.getNumOperands() == 0))
912 return false;
914 // Check that all register operands are caller-preserved physical registers.
915 for (const MachineOperand &MO : MI.operands()) {
916 if (MO.isReg()) {
917 Register Reg = MO.getReg();
918 // If operand is a virtual register, check if it comes from a copy of a
919 // physical register.
920 if (Reg.isVirtual())
921 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
922 if (Reg.isVirtual())
923 return false;
924 if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF()))
925 return false;
926 else
927 FoundCallerPresReg = true;
928 } else if (!MO.isImm()) {
929 return false;
932 return FoundCallerPresReg;
935 // Return true if the input MI is a copy instruction that feeds an invariant
936 // store instruction. This means that the src of the copy has to satisfy
937 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
938 // isInvariantStore.
939 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
940 const MachineRegisterInfo *MRI,
941 const TargetRegisterInfo *TRI) {
943 // FIXME: If targets would like to look through instructions that aren't
944 // pure copies, this can be updated to a query.
945 if (!MI.isCopy())
946 return false;
948 const MachineFunction *MF = MI.getMF();
949 // Check that we are copying a constant physical register.
950 Register CopySrcReg = MI.getOperand(1).getReg();
951 if (CopySrcReg.isVirtual())
952 return false;
954 if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF))
955 return false;
957 Register CopyDstReg = MI.getOperand(0).getReg();
958 // Check if any of the uses of the copy are invariant stores.
959 assert(CopyDstReg.isVirtual() && "copy dst is not a virtual reg");
961 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
962 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
963 return true;
965 return false;
968 /// Returns true if the instruction may be a suitable candidate for LICM.
969 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
970 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
971 // Check if it's safe to move the instruction.
972 bool DontMoveAcrossStore = true;
973 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
974 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
975 LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n");
976 return false;
979 // If it is a load then check if it is guaranteed to execute by making sure
980 // that it dominates all exiting blocks. If it doesn't, then there is a path
981 // out of the loop which does not execute this load, so we can't hoist it.
982 // Loads from constant memory are safe to speculate, for example indexed load
983 // from a jump table.
984 // Stores and side effects are already checked by isSafeToMove.
985 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
986 !IsGuaranteedToExecute(I.getParent())) {
987 LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n");
988 return false;
991 // Convergent attribute has been used on operations that involve inter-thread
992 // communication which results are implicitly affected by the enclosing
993 // control flows. It is not safe to hoist or sink such operations across
994 // control flow.
995 if (I.isConvergent())
996 return false;
998 if (!TII->shouldHoist(I, CurLoop))
999 return false;
1001 return true;
1004 /// Returns true if the instruction is loop invariant.
1005 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1006 if (!IsLICMCandidate(I)) {
1007 LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n");
1008 return false;
1010 return CurLoop->isLoopInvariant(I);
1013 /// Return true if the specified instruction is used by a phi node and hoisting
1014 /// it could cause a copy to be inserted.
1015 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1016 SmallVector<const MachineInstr*, 8> Work(1, MI);
1017 do {
1018 MI = Work.pop_back_val();
1019 for (const MachineOperand &MO : MI->all_defs()) {
1020 Register Reg = MO.getReg();
1021 if (!Reg.isVirtual())
1022 continue;
1023 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1024 // A PHI may cause a copy to be inserted.
1025 if (UseMI.isPHI()) {
1026 // A PHI inside the loop causes a copy because the live range of Reg is
1027 // extended across the PHI.
1028 if (CurLoop->contains(&UseMI))
1029 return true;
1030 // A PHI in an exit block can cause a copy to be inserted if the PHI
1031 // has multiple predecessors in the loop with different values.
1032 // For now, approximate by rejecting all exit blocks.
1033 if (isExitBlock(UseMI.getParent()))
1034 return true;
1035 continue;
1037 // Look past copies as well.
1038 if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1039 Work.push_back(&UseMI);
1042 } while (!Work.empty());
1043 return false;
1046 /// Compute operand latency between a def of 'Reg' and an use in the current
1047 /// loop, return true if the target considered it high.
1048 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
1049 Register Reg) const {
1050 if (MRI->use_nodbg_empty(Reg))
1051 return false;
1053 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1054 if (UseMI.isCopyLike())
1055 continue;
1056 if (!CurLoop->contains(UseMI.getParent()))
1057 continue;
1058 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1059 const MachineOperand &MO = UseMI.getOperand(i);
1060 if (!MO.isReg() || !MO.isUse())
1061 continue;
1062 Register MOReg = MO.getReg();
1063 if (MOReg != Reg)
1064 continue;
1066 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1067 return true;
1070 // Only look at the first in loop use.
1071 break;
1074 return false;
1077 /// Return true if the instruction is marked "cheap" or the operand latency
1078 /// between its def and a use is one or less.
1079 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1080 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1081 return true;
1083 bool isCheap = false;
1084 unsigned NumDefs = MI.getDesc().getNumDefs();
1085 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1086 MachineOperand &DefMO = MI.getOperand(i);
1087 if (!DefMO.isReg() || !DefMO.isDef())
1088 continue;
1089 --NumDefs;
1090 Register Reg = DefMO.getReg();
1091 if (Reg.isPhysical())
1092 continue;
1094 if (!TII->hasLowDefLatency(SchedModel, MI, i))
1095 return false;
1096 isCheap = true;
1099 return isCheap;
1102 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1103 /// given cost matrix can cause high register pressure.
1104 bool
1105 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1106 bool CheapInstr) {
1107 for (const auto &RPIdAndCost : Cost) {
1108 if (RPIdAndCost.second <= 0)
1109 continue;
1111 unsigned Class = RPIdAndCost.first;
1112 int Limit = RegLimit[Class];
1114 // Don't hoist cheap instructions if they would increase register pressure,
1115 // even if we're under the limit.
1116 if (CheapInstr && !HoistCheapInsts)
1117 return true;
1119 for (const auto &RP : BackTrace)
1120 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1121 return true;
1124 return false;
1127 /// Traverse the back trace from header to the current block and update their
1128 /// register pressures to reflect the effect of hoisting MI from the current
1129 /// block to the preheader.
1130 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1131 // First compute the 'cost' of the instruction, i.e. its contribution
1132 // to register pressure.
1133 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1134 /*ConsiderUnseenAsDef=*/false);
1136 // Update register pressure of blocks from loop header to current block.
1137 for (auto &RP : BackTrace)
1138 for (const auto &RPIdAndCost : Cost)
1139 RP[RPIdAndCost.first] += RPIdAndCost.second;
1142 /// Return true if it is potentially profitable to hoist the given loop
1143 /// invariant.
1144 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1145 if (MI.isImplicitDef())
1146 return true;
1148 // Besides removing computation from the loop, hoisting an instruction has
1149 // these effects:
1151 // - The value defined by the instruction becomes live across the entire
1152 // loop. This increases register pressure in the loop.
1154 // - If the value is used by a PHI in the loop, a copy will be required for
1155 // lowering the PHI after extending the live range.
1157 // - When hoisting the last use of a value in the loop, that value no longer
1158 // needs to be live in the loop. This lowers register pressure in the loop.
1160 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI))
1161 return true;
1163 bool CheapInstr = IsCheapInstruction(MI);
1164 bool CreatesCopy = HasLoopPHIUse(&MI);
1166 // Don't hoist a cheap instruction if it would create a copy in the loop.
1167 if (CheapInstr && CreatesCopy) {
1168 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1169 return false;
1172 // Rematerializable instructions should always be hoisted providing the
1173 // register allocator can just pull them down again when needed.
1174 if (isTriviallyReMaterializable(MI))
1175 return true;
1177 // FIXME: If there are long latency loop-invariant instructions inside the
1178 // loop at this point, why didn't the optimizer's LICM hoist them?
1179 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1180 const MachineOperand &MO = MI.getOperand(i);
1181 if (!MO.isReg() || MO.isImplicit())
1182 continue;
1183 Register Reg = MO.getReg();
1184 if (!Reg.isVirtual())
1185 continue;
1186 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1187 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1188 ++NumHighLatency;
1189 return true;
1193 // Estimate register pressure to determine whether to LICM the instruction.
1194 // In low register pressure situation, we can be more aggressive about
1195 // hoisting. Also, favors hoisting long latency instructions even in
1196 // moderately high pressure situation.
1197 // Cheap instructions will only be hoisted if they don't increase register
1198 // pressure at all.
1199 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1200 /*ConsiderUnseenAsDef=*/false);
1202 // Visit BBs from header to current BB, if hoisting this doesn't cause
1203 // high register pressure, then it's safe to proceed.
1204 if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1205 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1206 ++NumLowRP;
1207 return true;
1210 // Don't risk increasing register pressure if it would create copies.
1211 if (CreatesCopy) {
1212 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1213 return false;
1216 // Do not "speculate" in high register pressure situation. If an
1217 // instruction is not guaranteed to be executed in the loop, it's best to be
1218 // conservative.
1219 if (AvoidSpeculation &&
1220 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1221 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1222 return false;
1225 // High register pressure situation, only hoist if the instruction is going
1226 // to be remat'ed.
1227 if (!isTriviallyReMaterializable(MI) &&
1228 !MI.isDereferenceableInvariantLoad()) {
1229 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1230 return false;
1233 return true;
1236 /// Unfold a load from the given machineinstr if the load itself could be
1237 /// hoisted. Return the unfolded and hoistable load, or null if the load
1238 /// couldn't be unfolded or if it wouldn't be hoistable.
1239 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1240 // Don't unfold simple loads.
1241 if (MI->canFoldAsLoad())
1242 return nullptr;
1244 // If not, we may be able to unfold a load and hoist that.
1245 // First test whether the instruction is loading from an amenable
1246 // memory location.
1247 if (!MI->isDereferenceableInvariantLoad())
1248 return nullptr;
1250 // Next determine the register class for a temporary register.
1251 unsigned LoadRegIndex;
1252 unsigned NewOpc =
1253 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1254 /*UnfoldLoad=*/true,
1255 /*UnfoldStore=*/false,
1256 &LoadRegIndex);
1257 if (NewOpc == 0) return nullptr;
1258 const MCInstrDesc &MID = TII->get(NewOpc);
1259 MachineFunction &MF = *MI->getMF();
1260 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1261 // Ok, we're unfolding. Create a temporary register and do the unfold.
1262 Register Reg = MRI->createVirtualRegister(RC);
1264 SmallVector<MachineInstr *, 2> NewMIs;
1265 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1266 /*UnfoldLoad=*/true,
1267 /*UnfoldStore=*/false, NewMIs);
1268 (void)Success;
1269 assert(Success &&
1270 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1271 "succeeded!");
1272 assert(NewMIs.size() == 2 &&
1273 "Unfolded a load into multiple instructions!");
1274 MachineBasicBlock *MBB = MI->getParent();
1275 MachineBasicBlock::iterator Pos = MI;
1276 MBB->insert(Pos, NewMIs[0]);
1277 MBB->insert(Pos, NewMIs[1]);
1278 // If unfolding produced a load that wasn't loop-invariant or profitable to
1279 // hoist, discard the new instructions and bail.
1280 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1281 NewMIs[0]->eraseFromParent();
1282 NewMIs[1]->eraseFromParent();
1283 return nullptr;
1286 // Update register pressure for the unfolded instruction.
1287 UpdateRegPressure(NewMIs[1]);
1289 // Otherwise we successfully unfolded a load that we can hoist.
1291 // Update the call site info.
1292 if (MI->shouldUpdateCallSiteInfo())
1293 MF.eraseCallSiteInfo(MI);
1295 MI->eraseFromParent();
1296 return NewMIs[0];
1299 /// Initialize the CSE map with instructions that are in the current loop
1300 /// preheader that may become duplicates of instructions that are hoisted
1301 /// out of the loop.
1302 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1303 for (MachineInstr &MI : *BB)
1304 CSEMap[MI.getOpcode()].push_back(&MI);
1307 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1308 /// Return this instruction if it's found.
1309 MachineInstr *
1310 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1311 std::vector<MachineInstr *> &PrevMIs) {
1312 for (MachineInstr *PrevMI : PrevMIs)
1313 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1314 return PrevMI;
1316 return nullptr;
1319 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1320 /// computes the same value. If it's found, do a RAU on with the definition of
1321 /// the existing instruction rather than hoisting the instruction to the
1322 /// preheader.
1323 bool MachineLICMBase::EliminateCSE(
1324 MachineInstr *MI,
1325 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) {
1326 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1327 // the undef property onto uses.
1328 if (CI == CSEMap.end() || MI->isImplicitDef())
1329 return false;
1331 if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1332 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1334 // Replace virtual registers defined by MI by their counterparts defined
1335 // by Dup.
1336 SmallVector<unsigned, 2> Defs;
1337 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1338 const MachineOperand &MO = MI->getOperand(i);
1340 // Physical registers may not differ here.
1341 assert((!MO.isReg() || MO.getReg() == 0 || !MO.getReg().isPhysical() ||
1342 MO.getReg() == Dup->getOperand(i).getReg()) &&
1343 "Instructions with different phys regs are not identical!");
1345 if (MO.isReg() && MO.isDef() && !MO.getReg().isPhysical())
1346 Defs.push_back(i);
1349 SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1350 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1351 unsigned Idx = Defs[i];
1352 Register Reg = MI->getOperand(Idx).getReg();
1353 Register DupReg = Dup->getOperand(Idx).getReg();
1354 OrigRCs.push_back(MRI->getRegClass(DupReg));
1356 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1357 // Restore old RCs if more than one defs.
1358 for (unsigned j = 0; j != i; ++j)
1359 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1360 return false;
1364 for (unsigned Idx : Defs) {
1365 Register Reg = MI->getOperand(Idx).getReg();
1366 Register DupReg = Dup->getOperand(Idx).getReg();
1367 MRI->replaceRegWith(Reg, DupReg);
1368 MRI->clearKillFlags(DupReg);
1369 // Clear Dup dead flag if any, we reuse it for Reg.
1370 if (!MRI->use_nodbg_empty(DupReg))
1371 Dup->getOperand(Idx).setIsDead(false);
1374 MI->eraseFromParent();
1375 ++NumCSEed;
1376 return true;
1378 return false;
1381 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1382 /// the loop.
1383 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1384 unsigned Opcode = MI->getOpcode();
1385 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1386 CSEMap.find(Opcode);
1387 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1388 // the undef property onto uses.
1389 if (CI == CSEMap.end() || MI->isImplicitDef())
1390 return false;
1392 return LookForDuplicate(MI, CI->second) != nullptr;
1395 /// When an instruction is found to use only loop invariant operands
1396 /// that are safe to hoist, this instruction is called to do the dirty work.
1397 /// It returns true if the instruction is hoisted.
1398 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1399 MachineBasicBlock *SrcBlock = MI->getParent();
1401 // Disable the instruction hoisting due to block hotness
1402 if ((DisableHoistingToHotterBlocks == UseBFI::All ||
1403 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) &&
1404 isTgtHotterThanSrc(SrcBlock, Preheader)) {
1405 ++NumNotHoistedDueToHotness;
1406 return false;
1408 // First check whether we should hoist this instruction.
1409 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1410 // If not, try unfolding a hoistable load.
1411 MI = ExtractHoistableLoad(MI);
1412 if (!MI) return false;
1415 // If we have hoisted an instruction that may store, it can only be a constant
1416 // store.
1417 if (MI->mayStore())
1418 NumStoreConst++;
1420 // Now move the instructions to the predecessor, inserting it before any
1421 // terminator instructions.
1422 LLVM_DEBUG({
1423 dbgs() << "Hoisting " << *MI;
1424 if (MI->getParent()->getBasicBlock())
1425 dbgs() << " from " << printMBBReference(*MI->getParent());
1426 if (Preheader->getBasicBlock())
1427 dbgs() << " to " << printMBBReference(*Preheader);
1428 dbgs() << "\n";
1431 // If this is the first instruction being hoisted to the preheader,
1432 // initialize the CSE map with potential common expressions.
1433 if (FirstInLoop) {
1434 InitCSEMap(Preheader);
1435 FirstInLoop = false;
1438 // Look for opportunity to CSE the hoisted instruction.
1439 unsigned Opcode = MI->getOpcode();
1440 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1441 CSEMap.find(Opcode);
1442 if (!EliminateCSE(MI, CI)) {
1443 // Otherwise, splice the instruction to the preheader.
1444 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1446 // Since we are moving the instruction out of its basic block, we do not
1447 // retain its debug location. Doing so would degrade the debugging
1448 // experience and adversely affect the accuracy of profiling information.
1449 assert(!MI->isDebugInstr() && "Should not hoist debug inst");
1450 MI->setDebugLoc(DebugLoc());
1452 // Update register pressure for BBs from header to this block.
1453 UpdateBackTraceRegPressure(MI);
1455 // Clear the kill flags of any register this instruction defines,
1456 // since they may need to be live throughout the entire loop
1457 // rather than just live for part of it.
1458 for (MachineOperand &MO : MI->all_defs())
1459 if (!MO.isDead())
1460 MRI->clearKillFlags(MO.getReg());
1462 // Add to the CSE map.
1463 if (CI != CSEMap.end())
1464 CI->second.push_back(MI);
1465 else
1466 CSEMap[Opcode].push_back(MI);
1469 ++NumHoisted;
1470 Changed = true;
1472 return true;
1475 /// Get the preheader for the current loop, splitting a critical edge if needed.
1476 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1477 // Determine the block to which to hoist instructions. If we can't find a
1478 // suitable loop predecessor, we can't do any hoisting.
1480 // If we've tried to get a preheader and failed, don't try again.
1481 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1482 return nullptr;
1484 if (!CurPreheader) {
1485 CurPreheader = CurLoop->getLoopPreheader();
1486 if (!CurPreheader) {
1487 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1488 if (!Pred) {
1489 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1490 return nullptr;
1493 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1494 if (!CurPreheader) {
1495 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1496 return nullptr;
1500 return CurPreheader;
1503 /// Is the target basic block at least "BlockFrequencyRatioThreshold"
1504 /// times hotter than the source basic block.
1505 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
1506 MachineBasicBlock *TgtBlock) {
1507 // Parse source and target basic block frequency from MBFI
1508 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency();
1509 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency();
1511 // Disable the hoisting if source block frequency is zero
1512 if (!SrcBF)
1513 return true;
1515 double Ratio = (double)DstBF / SrcBF;
1517 // Compare the block frequency ratio with the threshold
1518 return Ratio > BlockFrequencyRatioThreshold;