[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / MachinePipeliner.cpp
blobc7e7497dab368a4e070ad2ecc2480731464961bc
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
30 //===----------------------------------------------------------------------===//
32 #include "llvm/CodeGen/MachinePipeliner.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/PriorityQueue.h"
38 #include "llvm/ADT/SetOperations.h"
39 #include "llvm/ADT/SetVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/iterator_range.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/Analysis/CycleAnalysis.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/CodeGen/DFAPacketizer.h"
51 #include "llvm/CodeGen/LiveIntervals.h"
52 #include "llvm/CodeGen/MachineBasicBlock.h"
53 #include "llvm/CodeGen/MachineDominators.h"
54 #include "llvm/CodeGen/MachineFunction.h"
55 #include "llvm/CodeGen/MachineFunctionPass.h"
56 #include "llvm/CodeGen/MachineInstr.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineLoopInfo.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineOperand.h"
61 #include "llvm/CodeGen/MachineRegisterInfo.h"
62 #include "llvm/CodeGen/ModuloSchedule.h"
63 #include "llvm/CodeGen/RegisterPressure.h"
64 #include "llvm/CodeGen/ScheduleDAG.h"
65 #include "llvm/CodeGen/ScheduleDAGMutation.h"
66 #include "llvm/CodeGen/TargetOpcodes.h"
67 #include "llvm/CodeGen/TargetRegisterInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/Config/llvm-config.h"
70 #include "llvm/IR/Attributes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/MC/LaneBitmask.h"
73 #include "llvm/MC/MCInstrDesc.h"
74 #include "llvm/MC/MCInstrItineraries.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <climits>
85 #include <cstdint>
86 #include <deque>
87 #include <functional>
88 #include <iomanip>
89 #include <iterator>
90 #include <map>
91 #include <memory>
92 #include <sstream>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
97 using namespace llvm;
99 #define DEBUG_TYPE "pipeliner"
101 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
102 STATISTIC(NumPipelined, "Number of loops software pipelined");
103 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
104 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
105 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
106 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
107 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
108 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
109 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
110 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
111 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
113 /// A command line option to turn software pipelining on or off.
114 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
115 cl::desc("Enable Software Pipelining"));
117 /// A command line option to enable SWP at -Os.
118 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
119 cl::desc("Enable SWP at Os."), cl::Hidden,
120 cl::init(false));
122 /// A command line argument to limit minimum initial interval for pipelining.
123 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
124 cl::desc("Size limit for the MII."),
125 cl::Hidden, cl::init(27));
127 /// A command line argument to force pipeliner to use specified initial
128 /// interval.
129 static cl::opt<int> SwpForceII("pipeliner-force-ii",
130 cl::desc("Force pipeliner to use specified II."),
131 cl::Hidden, cl::init(-1));
133 /// A command line argument to limit the number of stages in the pipeline.
134 static cl::opt<int>
135 SwpMaxStages("pipeliner-max-stages",
136 cl::desc("Maximum stages allowed in the generated scheduled."),
137 cl::Hidden, cl::init(3));
139 /// A command line option to disable the pruning of chain dependences due to
140 /// an unrelated Phi.
141 static cl::opt<bool>
142 SwpPruneDeps("pipeliner-prune-deps",
143 cl::desc("Prune dependences between unrelated Phi nodes."),
144 cl::Hidden, cl::init(true));
146 /// A command line option to disable the pruning of loop carried order
147 /// dependences.
148 static cl::opt<bool>
149 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
150 cl::desc("Prune loop carried order dependences."),
151 cl::Hidden, cl::init(true));
153 #ifndef NDEBUG
154 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
155 #endif
157 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
158 cl::ReallyHidden,
159 cl::desc("Ignore RecMII"));
161 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
162 cl::init(false));
163 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
164 cl::init(false));
166 static cl::opt<bool> EmitTestAnnotations(
167 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
168 cl::desc("Instead of emitting the pipelined code, annotate instructions "
169 "with the generated schedule for feeding into the "
170 "-modulo-schedule-test pass"));
172 static cl::opt<bool> ExperimentalCodeGen(
173 "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
174 cl::desc(
175 "Use the experimental peeling code generator for software pipelining"));
177 namespace llvm {
179 // A command line option to enable the CopyToPhi DAG mutation.
180 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
181 cl::init(true),
182 cl::desc("Enable CopyToPhi DAG Mutation"));
184 /// A command line argument to force pipeliner to use specified issue
185 /// width.
186 cl::opt<int> SwpForceIssueWidth(
187 "pipeliner-force-issue-width",
188 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden,
189 cl::init(-1));
191 } // end namespace llvm
193 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
194 char MachinePipeliner::ID = 0;
195 #ifndef NDEBUG
196 int MachinePipeliner::NumTries = 0;
197 #endif
198 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
200 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
201 "Modulo Software Pipelining", false, false)
202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
204 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
205 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
206 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
207 "Modulo Software Pipelining", false, false)
209 /// The "main" function for implementing Swing Modulo Scheduling.
210 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
211 if (skipFunction(mf.getFunction()))
212 return false;
214 if (!EnableSWP)
215 return false;
217 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
218 !EnableSWPOptSize.getPosition())
219 return false;
221 if (!mf.getSubtarget().enableMachinePipeliner())
222 return false;
224 // Cannot pipeline loops without instruction itineraries if we are using
225 // DFA for the pipeliner.
226 if (mf.getSubtarget().useDFAforSMS() &&
227 (!mf.getSubtarget().getInstrItineraryData() ||
228 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
229 return false;
231 MF = &mf;
232 MLI = &getAnalysis<MachineLoopInfo>();
233 MDT = &getAnalysis<MachineDominatorTree>();
234 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
235 TII = MF->getSubtarget().getInstrInfo();
236 RegClassInfo.runOnMachineFunction(*MF);
238 for (const auto &L : *MLI)
239 scheduleLoop(*L);
241 return false;
244 /// Attempt to perform the SMS algorithm on the specified loop. This function is
245 /// the main entry point for the algorithm. The function identifies candidate
246 /// loops, calculates the minimum initiation interval, and attempts to schedule
247 /// the loop.
248 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
249 bool Changed = false;
250 for (const auto &InnerLoop : L)
251 Changed |= scheduleLoop(*InnerLoop);
253 #ifndef NDEBUG
254 // Stop trying after reaching the limit (if any).
255 int Limit = SwpLoopLimit;
256 if (Limit >= 0) {
257 if (NumTries >= SwpLoopLimit)
258 return Changed;
259 NumTries++;
261 #endif
263 setPragmaPipelineOptions(L);
264 if (!canPipelineLoop(L)) {
265 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
266 ORE->emit([&]() {
267 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
268 L.getStartLoc(), L.getHeader())
269 << "Failed to pipeline loop";
272 LI.LoopPipelinerInfo.reset();
273 return Changed;
276 ++NumTrytoPipeline;
278 Changed = swingModuloScheduler(L);
280 LI.LoopPipelinerInfo.reset();
281 return Changed;
284 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
285 // Reset the pragma for the next loop in iteration.
286 disabledByPragma = false;
287 II_setByPragma = 0;
289 MachineBasicBlock *LBLK = L.getTopBlock();
291 if (LBLK == nullptr)
292 return;
294 const BasicBlock *BBLK = LBLK->getBasicBlock();
295 if (BBLK == nullptr)
296 return;
298 const Instruction *TI = BBLK->getTerminator();
299 if (TI == nullptr)
300 return;
302 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
303 if (LoopID == nullptr)
304 return;
306 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
307 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
309 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
310 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
312 if (MD == nullptr)
313 continue;
315 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
317 if (S == nullptr)
318 continue;
320 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
321 assert(MD->getNumOperands() == 2 &&
322 "Pipeline initiation interval hint metadata should have two operands.");
323 II_setByPragma =
324 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
325 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
326 } else if (S->getString() == "llvm.loop.pipeline.disable") {
327 disabledByPragma = true;
332 /// Return true if the loop can be software pipelined. The algorithm is
333 /// restricted to loops with a single basic block. Make sure that the
334 /// branch in the loop can be analyzed.
335 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
336 if (L.getNumBlocks() != 1) {
337 ORE->emit([&]() {
338 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
339 L.getStartLoc(), L.getHeader())
340 << "Not a single basic block: "
341 << ore::NV("NumBlocks", L.getNumBlocks());
343 return false;
346 if (disabledByPragma) {
347 ORE->emit([&]() {
348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349 L.getStartLoc(), L.getHeader())
350 << "Disabled by Pragma.";
352 return false;
355 // Check if the branch can't be understood because we can't do pipelining
356 // if that's the case.
357 LI.TBB = nullptr;
358 LI.FBB = nullptr;
359 LI.BrCond.clear();
360 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
361 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
362 NumFailBranch++;
363 ORE->emit([&]() {
364 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
365 L.getStartLoc(), L.getHeader())
366 << "The branch can't be understood";
368 return false;
371 LI.LoopInductionVar = nullptr;
372 LI.LoopCompare = nullptr;
373 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock());
374 if (!LI.LoopPipelinerInfo) {
375 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
376 NumFailLoop++;
377 ORE->emit([&]() {
378 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
379 L.getStartLoc(), L.getHeader())
380 << "The loop structure is not supported";
382 return false;
385 if (!L.getLoopPreheader()) {
386 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
387 NumFailPreheader++;
388 ORE->emit([&]() {
389 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
390 L.getStartLoc(), L.getHeader())
391 << "No loop preheader found";
393 return false;
396 // Remove any subregisters from inputs to phi nodes.
397 preprocessPhiNodes(*L.getHeader());
398 return true;
401 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
402 MachineRegisterInfo &MRI = MF->getRegInfo();
403 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
405 for (MachineInstr &PI : B.phis()) {
406 MachineOperand &DefOp = PI.getOperand(0);
407 assert(DefOp.getSubReg() == 0);
408 auto *RC = MRI.getRegClass(DefOp.getReg());
410 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
411 MachineOperand &RegOp = PI.getOperand(i);
412 if (RegOp.getSubReg() == 0)
413 continue;
415 // If the operand uses a subregister, replace it with a new register
416 // without subregisters, and generate a copy to the new register.
417 Register NewReg = MRI.createVirtualRegister(RC);
418 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
419 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
420 const DebugLoc &DL = PredB.findDebugLoc(At);
421 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
422 .addReg(RegOp.getReg(), getRegState(RegOp),
423 RegOp.getSubReg());
424 Slots.insertMachineInstrInMaps(*Copy);
425 RegOp.setReg(NewReg);
426 RegOp.setSubReg(0);
431 /// The SMS algorithm consists of the following main steps:
432 /// 1. Computation and analysis of the dependence graph.
433 /// 2. Ordering of the nodes (instructions).
434 /// 3. Attempt to Schedule the loop.
435 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
436 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
438 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
439 II_setByPragma, LI.LoopPipelinerInfo.get());
441 MachineBasicBlock *MBB = L.getHeader();
442 // The kernel should not include any terminator instructions. These
443 // will be added back later.
444 SMS.startBlock(MBB);
446 // Compute the number of 'real' instructions in the basic block by
447 // ignoring terminators.
448 unsigned size = MBB->size();
449 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
450 E = MBB->instr_end();
451 I != E; ++I, --size)
454 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
455 SMS.schedule();
456 SMS.exitRegion();
458 SMS.finishBlock();
459 return SMS.hasNewSchedule();
462 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
463 AU.addRequired<AAResultsWrapperPass>();
464 AU.addPreserved<AAResultsWrapperPass>();
465 AU.addRequired<MachineLoopInfo>();
466 AU.addRequired<MachineDominatorTree>();
467 AU.addRequired<LiveIntervals>();
468 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
469 MachineFunctionPass::getAnalysisUsage(AU);
472 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
473 if (SwpForceII > 0)
474 MII = SwpForceII;
475 else if (II_setByPragma > 0)
476 MII = II_setByPragma;
477 else
478 MII = std::max(ResMII, RecMII);
481 void SwingSchedulerDAG::setMAX_II() {
482 if (SwpForceII > 0)
483 MAX_II = SwpForceII;
484 else if (II_setByPragma > 0)
485 MAX_II = II_setByPragma;
486 else
487 MAX_II = MII + 10;
490 /// We override the schedule function in ScheduleDAGInstrs to implement the
491 /// scheduling part of the Swing Modulo Scheduling algorithm.
492 void SwingSchedulerDAG::schedule() {
493 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
494 buildSchedGraph(AA);
495 addLoopCarriedDependences(AA);
496 updatePhiDependences();
497 Topo.InitDAGTopologicalSorting();
498 changeDependences();
499 postProcessDAG();
500 LLVM_DEBUG(dump());
502 NodeSetType NodeSets;
503 findCircuits(NodeSets);
504 NodeSetType Circuits = NodeSets;
506 // Calculate the MII.
507 unsigned ResMII = calculateResMII();
508 unsigned RecMII = calculateRecMII(NodeSets);
510 fuseRecs(NodeSets);
512 // This flag is used for testing and can cause correctness problems.
513 if (SwpIgnoreRecMII)
514 RecMII = 0;
516 setMII(ResMII, RecMII);
517 setMAX_II();
519 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
520 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
522 // Can't schedule a loop without a valid MII.
523 if (MII == 0) {
524 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
525 NumFailZeroMII++;
526 Pass.ORE->emit([&]() {
527 return MachineOptimizationRemarkAnalysis(
528 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
529 << "Invalid Minimal Initiation Interval: 0";
531 return;
534 // Don't pipeline large loops.
535 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
536 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
537 << ", we don't pipeline large loops\n");
538 NumFailLargeMaxMII++;
539 Pass.ORE->emit([&]() {
540 return MachineOptimizationRemarkAnalysis(
541 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
542 << "Minimal Initiation Interval too large: "
543 << ore::NV("MII", (int)MII) << " > "
544 << ore::NV("SwpMaxMii", SwpMaxMii) << "."
545 << "Refer to -pipeliner-max-mii.";
547 return;
550 computeNodeFunctions(NodeSets);
552 registerPressureFilter(NodeSets);
554 colocateNodeSets(NodeSets);
556 checkNodeSets(NodeSets);
558 LLVM_DEBUG({
559 for (auto &I : NodeSets) {
560 dbgs() << " Rec NodeSet ";
561 I.dump();
565 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
567 groupRemainingNodes(NodeSets);
569 removeDuplicateNodes(NodeSets);
571 LLVM_DEBUG({
572 for (auto &I : NodeSets) {
573 dbgs() << " NodeSet ";
574 I.dump();
578 computeNodeOrder(NodeSets);
580 // check for node order issues
581 checkValidNodeOrder(Circuits);
583 SMSchedule Schedule(Pass.MF, this);
584 Scheduled = schedulePipeline(Schedule);
586 if (!Scheduled){
587 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
588 NumFailNoSchedule++;
589 Pass.ORE->emit([&]() {
590 return MachineOptimizationRemarkAnalysis(
591 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
592 << "Unable to find schedule";
594 return;
597 unsigned numStages = Schedule.getMaxStageCount();
598 // No need to generate pipeline if there are no overlapped iterations.
599 if (numStages == 0) {
600 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
601 NumFailZeroStage++;
602 Pass.ORE->emit([&]() {
603 return MachineOptimizationRemarkAnalysis(
604 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
605 << "No need to pipeline - no overlapped iterations in schedule.";
607 return;
609 // Check that the maximum stage count is less than user-defined limit.
610 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
611 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
612 << " : too many stages, abort\n");
613 NumFailLargeMaxStage++;
614 Pass.ORE->emit([&]() {
615 return MachineOptimizationRemarkAnalysis(
616 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
617 << "Too many stages in schedule: "
618 << ore::NV("numStages", (int)numStages) << " > "
619 << ore::NV("SwpMaxStages", SwpMaxStages)
620 << ". Refer to -pipeliner-max-stages.";
622 return;
625 Pass.ORE->emit([&]() {
626 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
627 Loop.getHeader())
628 << "Pipelined succesfully!";
631 // Generate the schedule as a ModuloSchedule.
632 DenseMap<MachineInstr *, int> Cycles, Stages;
633 std::vector<MachineInstr *> OrderedInsts;
634 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
635 ++Cycle) {
636 for (SUnit *SU : Schedule.getInstructions(Cycle)) {
637 OrderedInsts.push_back(SU->getInstr());
638 Cycles[SU->getInstr()] = Cycle;
639 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
642 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
643 for (auto &KV : NewMIs) {
644 Cycles[KV.first] = Cycles[KV.second];
645 Stages[KV.first] = Stages[KV.second];
646 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
649 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
650 std::move(Stages));
651 if (EmitTestAnnotations) {
652 assert(NewInstrChanges.empty() &&
653 "Cannot serialize a schedule with InstrChanges!");
654 ModuloScheduleTestAnnotater MSTI(MF, MS);
655 MSTI.annotate();
656 return;
658 // The experimental code generator can't work if there are InstChanges.
659 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
660 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
661 MSE.expand();
662 } else {
663 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
664 MSE.expand();
665 MSE.cleanup();
667 ++NumPipelined;
670 /// Clean up after the software pipeliner runs.
671 void SwingSchedulerDAG::finishBlock() {
672 for (auto &KV : NewMIs)
673 MF.deleteMachineInstr(KV.second);
674 NewMIs.clear();
676 // Call the superclass.
677 ScheduleDAGInstrs::finishBlock();
680 /// Return the register values for the operands of a Phi instruction.
681 /// This function assume the instruction is a Phi.
682 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
683 unsigned &InitVal, unsigned &LoopVal) {
684 assert(Phi.isPHI() && "Expecting a Phi.");
686 InitVal = 0;
687 LoopVal = 0;
688 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
689 if (Phi.getOperand(i + 1).getMBB() != Loop)
690 InitVal = Phi.getOperand(i).getReg();
691 else
692 LoopVal = Phi.getOperand(i).getReg();
694 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
697 /// Return the Phi register value that comes the loop block.
698 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
699 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
700 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
701 return Phi.getOperand(i).getReg();
702 return 0;
705 /// Return true if SUb can be reached from SUa following the chain edges.
706 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
707 SmallPtrSet<SUnit *, 8> Visited;
708 SmallVector<SUnit *, 8> Worklist;
709 Worklist.push_back(SUa);
710 while (!Worklist.empty()) {
711 const SUnit *SU = Worklist.pop_back_val();
712 for (const auto &SI : SU->Succs) {
713 SUnit *SuccSU = SI.getSUnit();
714 if (SI.getKind() == SDep::Order) {
715 if (Visited.count(SuccSU))
716 continue;
717 if (SuccSU == SUb)
718 return true;
719 Worklist.push_back(SuccSU);
720 Visited.insert(SuccSU);
724 return false;
727 /// Return true if the instruction causes a chain between memory
728 /// references before and after it.
729 static bool isDependenceBarrier(MachineInstr &MI) {
730 return MI.isCall() || MI.mayRaiseFPException() ||
731 MI.hasUnmodeledSideEffects() ||
732 (MI.hasOrderedMemoryRef() &&
733 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
736 /// Return the underlying objects for the memory references of an instruction.
737 /// This function calls the code in ValueTracking, but first checks that the
738 /// instruction has a memory operand.
739 static void getUnderlyingObjects(const MachineInstr *MI,
740 SmallVectorImpl<const Value *> &Objs) {
741 if (!MI->hasOneMemOperand())
742 return;
743 MachineMemOperand *MM = *MI->memoperands_begin();
744 if (!MM->getValue())
745 return;
746 getUnderlyingObjects(MM->getValue(), Objs);
747 for (const Value *V : Objs) {
748 if (!isIdentifiedObject(V)) {
749 Objs.clear();
750 return;
752 Objs.push_back(V);
756 /// Add a chain edge between a load and store if the store can be an
757 /// alias of the load on a subsequent iteration, i.e., a loop carried
758 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
759 /// but that code doesn't create loop carried dependences.
760 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
761 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
762 Value *UnknownValue =
763 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
764 for (auto &SU : SUnits) {
765 MachineInstr &MI = *SU.getInstr();
766 if (isDependenceBarrier(MI))
767 PendingLoads.clear();
768 else if (MI.mayLoad()) {
769 SmallVector<const Value *, 4> Objs;
770 ::getUnderlyingObjects(&MI, Objs);
771 if (Objs.empty())
772 Objs.push_back(UnknownValue);
773 for (const auto *V : Objs) {
774 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
775 SUs.push_back(&SU);
777 } else if (MI.mayStore()) {
778 SmallVector<const Value *, 4> Objs;
779 ::getUnderlyingObjects(&MI, Objs);
780 if (Objs.empty())
781 Objs.push_back(UnknownValue);
782 for (const auto *V : Objs) {
783 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
784 PendingLoads.find(V);
785 if (I == PendingLoads.end())
786 continue;
787 for (auto *Load : I->second) {
788 if (isSuccOrder(Load, &SU))
789 continue;
790 MachineInstr &LdMI = *Load->getInstr();
791 // First, perform the cheaper check that compares the base register.
792 // If they are the same and the load offset is less than the store
793 // offset, then mark the dependence as loop carried potentially.
794 const MachineOperand *BaseOp1, *BaseOp2;
795 int64_t Offset1, Offset2;
796 bool Offset1IsScalable, Offset2IsScalable;
797 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
798 Offset1IsScalable, TRI) &&
799 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
800 Offset2IsScalable, TRI)) {
801 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
802 Offset1IsScalable == Offset2IsScalable &&
803 (int)Offset1 < (int)Offset2) {
804 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
805 "What happened to the chain edge?");
806 SDep Dep(Load, SDep::Barrier);
807 Dep.setLatency(1);
808 SU.addPred(Dep);
809 continue;
812 // Second, the more expensive check that uses alias analysis on the
813 // base registers. If they alias, and the load offset is less than
814 // the store offset, the mark the dependence as loop carried.
815 if (!AA) {
816 SDep Dep(Load, SDep::Barrier);
817 Dep.setLatency(1);
818 SU.addPred(Dep);
819 continue;
821 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
822 MachineMemOperand *MMO2 = *MI.memoperands_begin();
823 if (!MMO1->getValue() || !MMO2->getValue()) {
824 SDep Dep(Load, SDep::Barrier);
825 Dep.setLatency(1);
826 SU.addPred(Dep);
827 continue;
829 if (MMO1->getValue() == MMO2->getValue() &&
830 MMO1->getOffset() <= MMO2->getOffset()) {
831 SDep Dep(Load, SDep::Barrier);
832 Dep.setLatency(1);
833 SU.addPred(Dep);
834 continue;
836 if (!AA->isNoAlias(
837 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
838 MemoryLocation::getAfter(MMO2->getValue(),
839 MMO2->getAAInfo()))) {
840 SDep Dep(Load, SDep::Barrier);
841 Dep.setLatency(1);
842 SU.addPred(Dep);
850 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
851 /// processes dependences for PHIs. This function adds true dependences
852 /// from a PHI to a use, and a loop carried dependence from the use to the
853 /// PHI. The loop carried dependence is represented as an anti dependence
854 /// edge. This function also removes chain dependences between unrelated
855 /// PHIs.
856 void SwingSchedulerDAG::updatePhiDependences() {
857 SmallVector<SDep, 4> RemoveDeps;
858 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
860 // Iterate over each DAG node.
861 for (SUnit &I : SUnits) {
862 RemoveDeps.clear();
863 // Set to true if the instruction has an operand defined by a Phi.
864 unsigned HasPhiUse = 0;
865 unsigned HasPhiDef = 0;
866 MachineInstr *MI = I.getInstr();
867 // Iterate over each operand, and we process the definitions.
868 for (const MachineOperand &MO : MI->operands()) {
869 if (!MO.isReg())
870 continue;
871 Register Reg = MO.getReg();
872 if (MO.isDef()) {
873 // If the register is used by a Phi, then create an anti dependence.
874 for (MachineRegisterInfo::use_instr_iterator
875 UI = MRI.use_instr_begin(Reg),
876 UE = MRI.use_instr_end();
877 UI != UE; ++UI) {
878 MachineInstr *UseMI = &*UI;
879 SUnit *SU = getSUnit(UseMI);
880 if (SU != nullptr && UseMI->isPHI()) {
881 if (!MI->isPHI()) {
882 SDep Dep(SU, SDep::Anti, Reg);
883 Dep.setLatency(1);
884 I.addPred(Dep);
885 } else {
886 HasPhiDef = Reg;
887 // Add a chain edge to a dependent Phi that isn't an existing
888 // predecessor.
889 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
890 I.addPred(SDep(SU, SDep::Barrier));
894 } else if (MO.isUse()) {
895 // If the register is defined by a Phi, then create a true dependence.
896 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
897 if (DefMI == nullptr)
898 continue;
899 SUnit *SU = getSUnit(DefMI);
900 if (SU != nullptr && DefMI->isPHI()) {
901 if (!MI->isPHI()) {
902 SDep Dep(SU, SDep::Data, Reg);
903 Dep.setLatency(0);
904 ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep);
905 I.addPred(Dep);
906 } else {
907 HasPhiUse = Reg;
908 // Add a chain edge to a dependent Phi that isn't an existing
909 // predecessor.
910 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
911 I.addPred(SDep(SU, SDep::Barrier));
916 // Remove order dependences from an unrelated Phi.
917 if (!SwpPruneDeps)
918 continue;
919 for (auto &PI : I.Preds) {
920 MachineInstr *PMI = PI.getSUnit()->getInstr();
921 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
922 if (I.getInstr()->isPHI()) {
923 if (PMI->getOperand(0).getReg() == HasPhiUse)
924 continue;
925 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
926 continue;
928 RemoveDeps.push_back(PI);
931 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
932 I.removePred(RemoveDeps[i]);
936 /// Iterate over each DAG node and see if we can change any dependences
937 /// in order to reduce the recurrence MII.
938 void SwingSchedulerDAG::changeDependences() {
939 // See if an instruction can use a value from the previous iteration.
940 // If so, we update the base and offset of the instruction and change
941 // the dependences.
942 for (SUnit &I : SUnits) {
943 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
944 int64_t NewOffset = 0;
945 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
946 NewOffset))
947 continue;
949 // Get the MI and SUnit for the instruction that defines the original base.
950 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
951 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
952 if (!DefMI)
953 continue;
954 SUnit *DefSU = getSUnit(DefMI);
955 if (!DefSU)
956 continue;
957 // Get the MI and SUnit for the instruction that defins the new base.
958 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
959 if (!LastMI)
960 continue;
961 SUnit *LastSU = getSUnit(LastMI);
962 if (!LastSU)
963 continue;
965 if (Topo.IsReachable(&I, LastSU))
966 continue;
968 // Remove the dependence. The value now depends on a prior iteration.
969 SmallVector<SDep, 4> Deps;
970 for (const SDep &P : I.Preds)
971 if (P.getSUnit() == DefSU)
972 Deps.push_back(P);
973 for (int i = 0, e = Deps.size(); i != e; i++) {
974 Topo.RemovePred(&I, Deps[i].getSUnit());
975 I.removePred(Deps[i]);
977 // Remove the chain dependence between the instructions.
978 Deps.clear();
979 for (auto &P : LastSU->Preds)
980 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
981 Deps.push_back(P);
982 for (int i = 0, e = Deps.size(); i != e; i++) {
983 Topo.RemovePred(LastSU, Deps[i].getSUnit());
984 LastSU->removePred(Deps[i]);
987 // Add a dependence between the new instruction and the instruction
988 // that defines the new base.
989 SDep Dep(&I, SDep::Anti, NewBase);
990 Topo.AddPred(LastSU, &I);
991 LastSU->addPred(Dep);
993 // Remember the base and offset information so that we can update the
994 // instruction during code generation.
995 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
999 namespace {
1001 // FuncUnitSorter - Comparison operator used to sort instructions by
1002 // the number of functional unit choices.
1003 struct FuncUnitSorter {
1004 const InstrItineraryData *InstrItins;
1005 const MCSubtargetInfo *STI;
1006 DenseMap<InstrStage::FuncUnits, unsigned> Resources;
1008 FuncUnitSorter(const TargetSubtargetInfo &TSI)
1009 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
1011 // Compute the number of functional unit alternatives needed
1012 // at each stage, and take the minimum value. We prioritize the
1013 // instructions by the least number of choices first.
1014 unsigned minFuncUnits(const MachineInstr *Inst,
1015 InstrStage::FuncUnits &F) const {
1016 unsigned SchedClass = Inst->getDesc().getSchedClass();
1017 unsigned min = UINT_MAX;
1018 if (InstrItins && !InstrItins->isEmpty()) {
1019 for (const InstrStage &IS :
1020 make_range(InstrItins->beginStage(SchedClass),
1021 InstrItins->endStage(SchedClass))) {
1022 InstrStage::FuncUnits funcUnits = IS.getUnits();
1023 unsigned numAlternatives = llvm::popcount(funcUnits);
1024 if (numAlternatives < min) {
1025 min = numAlternatives;
1026 F = funcUnits;
1029 return min;
1031 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1032 const MCSchedClassDesc *SCDesc =
1033 STI->getSchedModel().getSchedClassDesc(SchedClass);
1034 if (!SCDesc->isValid())
1035 // No valid Schedule Class Desc for schedClass, should be
1036 // Pseudo/PostRAPseudo
1037 return min;
1039 for (const MCWriteProcResEntry &PRE :
1040 make_range(STI->getWriteProcResBegin(SCDesc),
1041 STI->getWriteProcResEnd(SCDesc))) {
1042 if (!PRE.Cycles)
1043 continue;
1044 const MCProcResourceDesc *ProcResource =
1045 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1046 unsigned NumUnits = ProcResource->NumUnits;
1047 if (NumUnits < min) {
1048 min = NumUnits;
1049 F = PRE.ProcResourceIdx;
1052 return min;
1054 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1057 // Compute the critical resources needed by the instruction. This
1058 // function records the functional units needed by instructions that
1059 // must use only one functional unit. We use this as a tie breaker
1060 // for computing the resource MII. The instrutions that require
1061 // the same, highly used, functional unit have high priority.
1062 void calcCriticalResources(MachineInstr &MI) {
1063 unsigned SchedClass = MI.getDesc().getSchedClass();
1064 if (InstrItins && !InstrItins->isEmpty()) {
1065 for (const InstrStage &IS :
1066 make_range(InstrItins->beginStage(SchedClass),
1067 InstrItins->endStage(SchedClass))) {
1068 InstrStage::FuncUnits FuncUnits = IS.getUnits();
1069 if (llvm::popcount(FuncUnits) == 1)
1070 Resources[FuncUnits]++;
1072 return;
1074 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1075 const MCSchedClassDesc *SCDesc =
1076 STI->getSchedModel().getSchedClassDesc(SchedClass);
1077 if (!SCDesc->isValid())
1078 // No valid Schedule Class Desc for schedClass, should be
1079 // Pseudo/PostRAPseudo
1080 return;
1082 for (const MCWriteProcResEntry &PRE :
1083 make_range(STI->getWriteProcResBegin(SCDesc),
1084 STI->getWriteProcResEnd(SCDesc))) {
1085 if (!PRE.Cycles)
1086 continue;
1087 Resources[PRE.ProcResourceIdx]++;
1089 return;
1091 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1094 /// Return true if IS1 has less priority than IS2.
1095 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1096 InstrStage::FuncUnits F1 = 0, F2 = 0;
1097 unsigned MFUs1 = minFuncUnits(IS1, F1);
1098 unsigned MFUs2 = minFuncUnits(IS2, F2);
1099 if (MFUs1 == MFUs2)
1100 return Resources.lookup(F1) < Resources.lookup(F2);
1101 return MFUs1 > MFUs2;
1105 } // end anonymous namespace
1107 /// Calculate the resource constrained minimum initiation interval for the
1108 /// specified loop. We use the DFA to model the resources needed for
1109 /// each instruction, and we ignore dependences. A different DFA is created
1110 /// for each cycle that is required. When adding a new instruction, we attempt
1111 /// to add it to each existing DFA, until a legal space is found. If the
1112 /// instruction cannot be reserved in an existing DFA, we create a new one.
1113 unsigned SwingSchedulerDAG::calculateResMII() {
1114 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1115 ResourceManager RM(&MF.getSubtarget(), this);
1116 return RM.calculateResMII();
1119 /// Calculate the recurrence-constrainted minimum initiation interval.
1120 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1121 /// for each circuit. The II needs to satisfy the inequality
1122 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1123 /// II that satisfies the inequality, and the RecMII is the maximum
1124 /// of those values.
1125 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1126 unsigned RecMII = 0;
1128 for (NodeSet &Nodes : NodeSets) {
1129 if (Nodes.empty())
1130 continue;
1132 unsigned Delay = Nodes.getLatency();
1133 unsigned Distance = 1;
1135 // ii = ceil(delay / distance)
1136 unsigned CurMII = (Delay + Distance - 1) / Distance;
1137 Nodes.setRecMII(CurMII);
1138 if (CurMII > RecMII)
1139 RecMII = CurMII;
1142 return RecMII;
1145 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1146 /// but we do this to find the circuits, and then change them back.
1147 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1148 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1149 for (SUnit &SU : SUnits) {
1150 for (SDep &Pred : SU.Preds)
1151 if (Pred.getKind() == SDep::Anti)
1152 DepsAdded.push_back(std::make_pair(&SU, Pred));
1154 for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1155 // Remove this anti dependency and add one in the reverse direction.
1156 SUnit *SU = P.first;
1157 SDep &D = P.second;
1158 SUnit *TargetSU = D.getSUnit();
1159 unsigned Reg = D.getReg();
1160 unsigned Lat = D.getLatency();
1161 SU->removePred(D);
1162 SDep Dep(SU, SDep::Anti, Reg);
1163 Dep.setLatency(Lat);
1164 TargetSU->addPred(Dep);
1168 /// Create the adjacency structure of the nodes in the graph.
1169 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1170 SwingSchedulerDAG *DAG) {
1171 BitVector Added(SUnits.size());
1172 DenseMap<int, int> OutputDeps;
1173 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1174 Added.reset();
1175 // Add any successor to the adjacency matrix and exclude duplicates.
1176 for (auto &SI : SUnits[i].Succs) {
1177 // Only create a back-edge on the first and last nodes of a dependence
1178 // chain. This records any chains and adds them later.
1179 if (SI.getKind() == SDep::Output) {
1180 int N = SI.getSUnit()->NodeNum;
1181 int BackEdge = i;
1182 auto Dep = OutputDeps.find(BackEdge);
1183 if (Dep != OutputDeps.end()) {
1184 BackEdge = Dep->second;
1185 OutputDeps.erase(Dep);
1187 OutputDeps[N] = BackEdge;
1189 // Do not process a boundary node, an artificial node.
1190 // A back-edge is processed only if it goes to a Phi.
1191 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1192 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1193 continue;
1194 int N = SI.getSUnit()->NodeNum;
1195 if (!Added.test(N)) {
1196 AdjK[i].push_back(N);
1197 Added.set(N);
1200 // A chain edge between a store and a load is treated as a back-edge in the
1201 // adjacency matrix.
1202 for (auto &PI : SUnits[i].Preds) {
1203 if (!SUnits[i].getInstr()->mayStore() ||
1204 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1205 continue;
1206 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1207 int N = PI.getSUnit()->NodeNum;
1208 if (!Added.test(N)) {
1209 AdjK[i].push_back(N);
1210 Added.set(N);
1215 // Add back-edges in the adjacency matrix for the output dependences.
1216 for (auto &OD : OutputDeps)
1217 if (!Added.test(OD.second)) {
1218 AdjK[OD.first].push_back(OD.second);
1219 Added.set(OD.second);
1223 /// Identify an elementary circuit in the dependence graph starting at the
1224 /// specified node.
1225 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1226 bool HasBackedge) {
1227 SUnit *SV = &SUnits[V];
1228 bool F = false;
1229 Stack.insert(SV);
1230 Blocked.set(V);
1232 for (auto W : AdjK[V]) {
1233 if (NumPaths > MaxPaths)
1234 break;
1235 if (W < S)
1236 continue;
1237 if (W == S) {
1238 if (!HasBackedge)
1239 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1240 F = true;
1241 ++NumPaths;
1242 break;
1243 } else if (!Blocked.test(W)) {
1244 if (circuit(W, S, NodeSets,
1245 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1246 F = true;
1250 if (F)
1251 unblock(V);
1252 else {
1253 for (auto W : AdjK[V]) {
1254 if (W < S)
1255 continue;
1256 B[W].insert(SV);
1259 Stack.pop_back();
1260 return F;
1263 /// Unblock a node in the circuit finding algorithm.
1264 void SwingSchedulerDAG::Circuits::unblock(int U) {
1265 Blocked.reset(U);
1266 SmallPtrSet<SUnit *, 4> &BU = B[U];
1267 while (!BU.empty()) {
1268 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1269 assert(SI != BU.end() && "Invalid B set.");
1270 SUnit *W = *SI;
1271 BU.erase(W);
1272 if (Blocked.test(W->NodeNum))
1273 unblock(W->NodeNum);
1277 /// Identify all the elementary circuits in the dependence graph using
1278 /// Johnson's circuit algorithm.
1279 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1280 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1281 // but we do this to find the circuits, and then change them back.
1282 swapAntiDependences(SUnits);
1284 Circuits Cir(SUnits, Topo);
1285 // Create the adjacency structure.
1286 Cir.createAdjacencyStructure(this);
1287 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1288 Cir.reset();
1289 Cir.circuit(i, i, NodeSets);
1292 // Change the dependences back so that we've created a DAG again.
1293 swapAntiDependences(SUnits);
1296 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1297 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1298 // additional copies that are needed across iterations. An artificial dependence
1299 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1301 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1302 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1303 // PHI-------True-Dep------> USEOfPhi
1305 // The mutation creates
1306 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1308 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1309 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1310 // late to avoid additional copies across iterations. The possible scheduling
1311 // order would be
1312 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1314 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1315 for (SUnit &SU : DAG->SUnits) {
1316 // Find the COPY/REG_SEQUENCE instruction.
1317 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1318 continue;
1320 // Record the loop carried PHIs.
1321 SmallVector<SUnit *, 4> PHISUs;
1322 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1323 SmallVector<SUnit *, 4> SrcSUs;
1325 for (auto &Dep : SU.Preds) {
1326 SUnit *TmpSU = Dep.getSUnit();
1327 MachineInstr *TmpMI = TmpSU->getInstr();
1328 SDep::Kind DepKind = Dep.getKind();
1329 // Save the loop carried PHI.
1330 if (DepKind == SDep::Anti && TmpMI->isPHI())
1331 PHISUs.push_back(TmpSU);
1332 // Save the source of COPY/REG_SEQUENCE.
1333 // If the source has no pre-decessors, we will end up creating cycles.
1334 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1335 SrcSUs.push_back(TmpSU);
1338 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1339 continue;
1341 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1342 // SUnit to the container.
1343 SmallVector<SUnit *, 8> UseSUs;
1344 // Do not use iterator based loop here as we are updating the container.
1345 for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1346 for (auto &Dep : PHISUs[Index]->Succs) {
1347 if (Dep.getKind() != SDep::Data)
1348 continue;
1350 SUnit *TmpSU = Dep.getSUnit();
1351 MachineInstr *TmpMI = TmpSU->getInstr();
1352 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1353 PHISUs.push_back(TmpSU);
1354 continue;
1356 UseSUs.push_back(TmpSU);
1360 if (UseSUs.size() == 0)
1361 continue;
1363 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1364 // Add the artificial dependencies if it does not form a cycle.
1365 for (auto *I : UseSUs) {
1366 for (auto *Src : SrcSUs) {
1367 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1368 Src->addPred(SDep(I, SDep::Artificial));
1369 SDAG->Topo.AddPred(Src, I);
1376 /// Return true for DAG nodes that we ignore when computing the cost functions.
1377 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1378 /// in the calculation of the ASAP, ALAP, etc functions.
1379 static bool ignoreDependence(const SDep &D, bool isPred) {
1380 if (D.isArtificial() || D.getSUnit()->isBoundaryNode())
1381 return true;
1382 return D.getKind() == SDep::Anti && isPred;
1385 /// Compute several functions need to order the nodes for scheduling.
1386 /// ASAP - Earliest time to schedule a node.
1387 /// ALAP - Latest time to schedule a node.
1388 /// MOV - Mobility function, difference between ALAP and ASAP.
1389 /// D - Depth of each node.
1390 /// H - Height of each node.
1391 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1392 ScheduleInfo.resize(SUnits.size());
1394 LLVM_DEBUG({
1395 for (int I : Topo) {
1396 const SUnit &SU = SUnits[I];
1397 dumpNode(SU);
1401 int maxASAP = 0;
1402 // Compute ASAP and ZeroLatencyDepth.
1403 for (int I : Topo) {
1404 int asap = 0;
1405 int zeroLatencyDepth = 0;
1406 SUnit *SU = &SUnits[I];
1407 for (const SDep &P : SU->Preds) {
1408 SUnit *pred = P.getSUnit();
1409 if (P.getLatency() == 0)
1410 zeroLatencyDepth =
1411 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1412 if (ignoreDependence(P, true))
1413 continue;
1414 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
1415 getDistance(pred, SU, P) * MII));
1417 maxASAP = std::max(maxASAP, asap);
1418 ScheduleInfo[I].ASAP = asap;
1419 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1422 // Compute ALAP, ZeroLatencyHeight, and MOV.
1423 for (int I : llvm::reverse(Topo)) {
1424 int alap = maxASAP;
1425 int zeroLatencyHeight = 0;
1426 SUnit *SU = &SUnits[I];
1427 for (const SDep &S : SU->Succs) {
1428 SUnit *succ = S.getSUnit();
1429 if (succ->isBoundaryNode())
1430 continue;
1431 if (S.getLatency() == 0)
1432 zeroLatencyHeight =
1433 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1434 if (ignoreDependence(S, true))
1435 continue;
1436 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
1437 getDistance(SU, succ, S) * MII));
1440 ScheduleInfo[I].ALAP = alap;
1441 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1444 // After computing the node functions, compute the summary for each node set.
1445 for (NodeSet &I : NodeSets)
1446 I.computeNodeSetInfo(this);
1448 LLVM_DEBUG({
1449 for (unsigned i = 0; i < SUnits.size(); i++) {
1450 dbgs() << "\tNode " << i << ":\n";
1451 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1452 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1453 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1454 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1455 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1456 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1457 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1462 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1463 /// as the predecessors of the elements of NodeOrder that are not also in
1464 /// NodeOrder.
1465 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1466 SmallSetVector<SUnit *, 8> &Preds,
1467 const NodeSet *S = nullptr) {
1468 Preds.clear();
1469 for (const SUnit *SU : NodeOrder) {
1470 for (const SDep &Pred : SU->Preds) {
1471 if (S && S->count(Pred.getSUnit()) == 0)
1472 continue;
1473 if (ignoreDependence(Pred, true))
1474 continue;
1475 if (NodeOrder.count(Pred.getSUnit()) == 0)
1476 Preds.insert(Pred.getSUnit());
1478 // Back-edges are predecessors with an anti-dependence.
1479 for (const SDep &Succ : SU->Succs) {
1480 if (Succ.getKind() != SDep::Anti)
1481 continue;
1482 if (S && S->count(Succ.getSUnit()) == 0)
1483 continue;
1484 if (NodeOrder.count(Succ.getSUnit()) == 0)
1485 Preds.insert(Succ.getSUnit());
1488 return !Preds.empty();
1491 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1492 /// as the successors of the elements of NodeOrder that are not also in
1493 /// NodeOrder.
1494 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1495 SmallSetVector<SUnit *, 8> &Succs,
1496 const NodeSet *S = nullptr) {
1497 Succs.clear();
1498 for (const SUnit *SU : NodeOrder) {
1499 for (const SDep &Succ : SU->Succs) {
1500 if (S && S->count(Succ.getSUnit()) == 0)
1501 continue;
1502 if (ignoreDependence(Succ, false))
1503 continue;
1504 if (NodeOrder.count(Succ.getSUnit()) == 0)
1505 Succs.insert(Succ.getSUnit());
1507 for (const SDep &Pred : SU->Preds) {
1508 if (Pred.getKind() != SDep::Anti)
1509 continue;
1510 if (S && S->count(Pred.getSUnit()) == 0)
1511 continue;
1512 if (NodeOrder.count(Pred.getSUnit()) == 0)
1513 Succs.insert(Pred.getSUnit());
1516 return !Succs.empty();
1519 /// Return true if there is a path from the specified node to any of the nodes
1520 /// in DestNodes. Keep track and return the nodes in any path.
1521 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1522 SetVector<SUnit *> &DestNodes,
1523 SetVector<SUnit *> &Exclude,
1524 SmallPtrSet<SUnit *, 8> &Visited) {
1525 if (Cur->isBoundaryNode())
1526 return false;
1527 if (Exclude.contains(Cur))
1528 return false;
1529 if (DestNodes.contains(Cur))
1530 return true;
1531 if (!Visited.insert(Cur).second)
1532 return Path.contains(Cur);
1533 bool FoundPath = false;
1534 for (auto &SI : Cur->Succs)
1535 if (!ignoreDependence(SI, false))
1536 FoundPath |=
1537 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1538 for (auto &PI : Cur->Preds)
1539 if (PI.getKind() == SDep::Anti)
1540 FoundPath |=
1541 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1542 if (FoundPath)
1543 Path.insert(Cur);
1544 return FoundPath;
1547 /// Compute the live-out registers for the instructions in a node-set.
1548 /// The live-out registers are those that are defined in the node-set,
1549 /// but not used. Except for use operands of Phis.
1550 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1551 NodeSet &NS) {
1552 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1553 MachineRegisterInfo &MRI = MF.getRegInfo();
1554 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1555 SmallSet<unsigned, 4> Uses;
1556 for (SUnit *SU : NS) {
1557 const MachineInstr *MI = SU->getInstr();
1558 if (MI->isPHI())
1559 continue;
1560 for (const MachineOperand &MO : MI->all_uses()) {
1561 Register Reg = MO.getReg();
1562 if (Reg.isVirtual())
1563 Uses.insert(Reg);
1564 else if (MRI.isAllocatable(Reg))
1565 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
1566 Uses.insert(Unit);
1569 for (SUnit *SU : NS)
1570 for (const MachineOperand &MO : SU->getInstr()->all_defs())
1571 if (!MO.isDead()) {
1572 Register Reg = MO.getReg();
1573 if (Reg.isVirtual()) {
1574 if (!Uses.count(Reg))
1575 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1576 LaneBitmask::getNone()));
1577 } else if (MRI.isAllocatable(Reg)) {
1578 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
1579 if (!Uses.count(Unit))
1580 LiveOutRegs.push_back(
1581 RegisterMaskPair(Unit, LaneBitmask::getNone()));
1584 RPTracker.addLiveRegs(LiveOutRegs);
1587 /// A heuristic to filter nodes in recurrent node-sets if the register
1588 /// pressure of a set is too high.
1589 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1590 for (auto &NS : NodeSets) {
1591 // Skip small node-sets since they won't cause register pressure problems.
1592 if (NS.size() <= 2)
1593 continue;
1594 IntervalPressure RecRegPressure;
1595 RegPressureTracker RecRPTracker(RecRegPressure);
1596 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1597 computeLiveOuts(MF, RecRPTracker, NS);
1598 RecRPTracker.closeBottom();
1600 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1601 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1602 return A->NodeNum > B->NodeNum;
1605 for (auto &SU : SUnits) {
1606 // Since we're computing the register pressure for a subset of the
1607 // instructions in a block, we need to set the tracker for each
1608 // instruction in the node-set. The tracker is set to the instruction
1609 // just after the one we're interested in.
1610 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1611 RecRPTracker.setPos(std::next(CurInstI));
1613 RegPressureDelta RPDelta;
1614 ArrayRef<PressureChange> CriticalPSets;
1615 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1616 CriticalPSets,
1617 RecRegPressure.MaxSetPressure);
1618 if (RPDelta.Excess.isValid()) {
1619 LLVM_DEBUG(
1620 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1621 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1622 << ":" << RPDelta.Excess.getUnitInc() << "\n");
1623 NS.setExceedPressure(SU);
1624 break;
1626 RecRPTracker.recede();
1631 /// A heuristic to colocate node sets that have the same set of
1632 /// successors.
1633 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1634 unsigned Colocate = 0;
1635 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1636 NodeSet &N1 = NodeSets[i];
1637 SmallSetVector<SUnit *, 8> S1;
1638 if (N1.empty() || !succ_L(N1, S1))
1639 continue;
1640 for (int j = i + 1; j < e; ++j) {
1641 NodeSet &N2 = NodeSets[j];
1642 if (N1.compareRecMII(N2) != 0)
1643 continue;
1644 SmallSetVector<SUnit *, 8> S2;
1645 if (N2.empty() || !succ_L(N2, S2))
1646 continue;
1647 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1648 N1.setColocate(++Colocate);
1649 N2.setColocate(Colocate);
1650 break;
1656 /// Check if the existing node-sets are profitable. If not, then ignore the
1657 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1658 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1659 /// then it's best to try to schedule all instructions together instead of
1660 /// starting with the recurrent node-sets.
1661 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1662 // Look for loops with a large MII.
1663 if (MII < 17)
1664 return;
1665 // Check if the node-set contains only a simple add recurrence.
1666 for (auto &NS : NodeSets) {
1667 if (NS.getRecMII() > 2)
1668 return;
1669 if (NS.getMaxDepth() > MII)
1670 return;
1672 NodeSets.clear();
1673 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1676 /// Add the nodes that do not belong to a recurrence set into groups
1677 /// based upon connected components.
1678 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1679 SetVector<SUnit *> NodesAdded;
1680 SmallPtrSet<SUnit *, 8> Visited;
1681 // Add the nodes that are on a path between the previous node sets and
1682 // the current node set.
1683 for (NodeSet &I : NodeSets) {
1684 SmallSetVector<SUnit *, 8> N;
1685 // Add the nodes from the current node set to the previous node set.
1686 if (succ_L(I, N)) {
1687 SetVector<SUnit *> Path;
1688 for (SUnit *NI : N) {
1689 Visited.clear();
1690 computePath(NI, Path, NodesAdded, I, Visited);
1692 if (!Path.empty())
1693 I.insert(Path.begin(), Path.end());
1695 // Add the nodes from the previous node set to the current node set.
1696 N.clear();
1697 if (succ_L(NodesAdded, N)) {
1698 SetVector<SUnit *> Path;
1699 for (SUnit *NI : N) {
1700 Visited.clear();
1701 computePath(NI, Path, I, NodesAdded, Visited);
1703 if (!Path.empty())
1704 I.insert(Path.begin(), Path.end());
1706 NodesAdded.insert(I.begin(), I.end());
1709 // Create a new node set with the connected nodes of any successor of a node
1710 // in a recurrent set.
1711 NodeSet NewSet;
1712 SmallSetVector<SUnit *, 8> N;
1713 if (succ_L(NodesAdded, N))
1714 for (SUnit *I : N)
1715 addConnectedNodes(I, NewSet, NodesAdded);
1716 if (!NewSet.empty())
1717 NodeSets.push_back(NewSet);
1719 // Create a new node set with the connected nodes of any predecessor of a node
1720 // in a recurrent set.
1721 NewSet.clear();
1722 if (pred_L(NodesAdded, N))
1723 for (SUnit *I : N)
1724 addConnectedNodes(I, NewSet, NodesAdded);
1725 if (!NewSet.empty())
1726 NodeSets.push_back(NewSet);
1728 // Create new nodes sets with the connected nodes any remaining node that
1729 // has no predecessor.
1730 for (SUnit &SU : SUnits) {
1731 if (NodesAdded.count(&SU) == 0) {
1732 NewSet.clear();
1733 addConnectedNodes(&SU, NewSet, NodesAdded);
1734 if (!NewSet.empty())
1735 NodeSets.push_back(NewSet);
1740 /// Add the node to the set, and add all of its connected nodes to the set.
1741 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1742 SetVector<SUnit *> &NodesAdded) {
1743 NewSet.insert(SU);
1744 NodesAdded.insert(SU);
1745 for (auto &SI : SU->Succs) {
1746 SUnit *Successor = SI.getSUnit();
1747 if (!SI.isArtificial() && !Successor->isBoundaryNode() &&
1748 NodesAdded.count(Successor) == 0)
1749 addConnectedNodes(Successor, NewSet, NodesAdded);
1751 for (auto &PI : SU->Preds) {
1752 SUnit *Predecessor = PI.getSUnit();
1753 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1754 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1758 /// Return true if Set1 contains elements in Set2. The elements in common
1759 /// are returned in a different container.
1760 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1761 SmallSetVector<SUnit *, 8> &Result) {
1762 Result.clear();
1763 for (SUnit *SU : Set1) {
1764 if (Set2.count(SU) != 0)
1765 Result.insert(SU);
1767 return !Result.empty();
1770 /// Merge the recurrence node sets that have the same initial node.
1771 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1772 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1773 ++I) {
1774 NodeSet &NI = *I;
1775 for (NodeSetType::iterator J = I + 1; J != E;) {
1776 NodeSet &NJ = *J;
1777 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1778 if (NJ.compareRecMII(NI) > 0)
1779 NI.setRecMII(NJ.getRecMII());
1780 for (SUnit *SU : *J)
1781 I->insert(SU);
1782 NodeSets.erase(J);
1783 E = NodeSets.end();
1784 } else {
1785 ++J;
1791 /// Remove nodes that have been scheduled in previous NodeSets.
1792 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1793 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1794 ++I)
1795 for (NodeSetType::iterator J = I + 1; J != E;) {
1796 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1798 if (J->empty()) {
1799 NodeSets.erase(J);
1800 E = NodeSets.end();
1801 } else {
1802 ++J;
1807 /// Compute an ordered list of the dependence graph nodes, which
1808 /// indicates the order that the nodes will be scheduled. This is a
1809 /// two-level algorithm. First, a partial order is created, which
1810 /// consists of a list of sets ordered from highest to lowest priority.
1811 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1812 SmallSetVector<SUnit *, 8> R;
1813 NodeOrder.clear();
1815 for (auto &Nodes : NodeSets) {
1816 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1817 OrderKind Order;
1818 SmallSetVector<SUnit *, 8> N;
1819 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1820 R.insert(N.begin(), N.end());
1821 Order = BottomUp;
1822 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1823 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1824 R.insert(N.begin(), N.end());
1825 Order = TopDown;
1826 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1827 } else if (isIntersect(N, Nodes, R)) {
1828 // If some of the successors are in the existing node-set, then use the
1829 // top-down ordering.
1830 Order = TopDown;
1831 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1832 } else if (NodeSets.size() == 1) {
1833 for (const auto &N : Nodes)
1834 if (N->Succs.size() == 0)
1835 R.insert(N);
1836 Order = BottomUp;
1837 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1838 } else {
1839 // Find the node with the highest ASAP.
1840 SUnit *maxASAP = nullptr;
1841 for (SUnit *SU : Nodes) {
1842 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1843 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1844 maxASAP = SU;
1846 R.insert(maxASAP);
1847 Order = BottomUp;
1848 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1851 while (!R.empty()) {
1852 if (Order == TopDown) {
1853 // Choose the node with the maximum height. If more than one, choose
1854 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1855 // choose the node with the lowest MOV.
1856 while (!R.empty()) {
1857 SUnit *maxHeight = nullptr;
1858 for (SUnit *I : R) {
1859 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1860 maxHeight = I;
1861 else if (getHeight(I) == getHeight(maxHeight) &&
1862 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1863 maxHeight = I;
1864 else if (getHeight(I) == getHeight(maxHeight) &&
1865 getZeroLatencyHeight(I) ==
1866 getZeroLatencyHeight(maxHeight) &&
1867 getMOV(I) < getMOV(maxHeight))
1868 maxHeight = I;
1870 NodeOrder.insert(maxHeight);
1871 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1872 R.remove(maxHeight);
1873 for (const auto &I : maxHeight->Succs) {
1874 if (Nodes.count(I.getSUnit()) == 0)
1875 continue;
1876 if (NodeOrder.contains(I.getSUnit()))
1877 continue;
1878 if (ignoreDependence(I, false))
1879 continue;
1880 R.insert(I.getSUnit());
1882 // Back-edges are predecessors with an anti-dependence.
1883 for (const auto &I : maxHeight->Preds) {
1884 if (I.getKind() != SDep::Anti)
1885 continue;
1886 if (Nodes.count(I.getSUnit()) == 0)
1887 continue;
1888 if (NodeOrder.contains(I.getSUnit()))
1889 continue;
1890 R.insert(I.getSUnit());
1893 Order = BottomUp;
1894 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1895 SmallSetVector<SUnit *, 8> N;
1896 if (pred_L(NodeOrder, N, &Nodes))
1897 R.insert(N.begin(), N.end());
1898 } else {
1899 // Choose the node with the maximum depth. If more than one, choose
1900 // the node with the maximum ZeroLatencyDepth. If still more than one,
1901 // choose the node with the lowest MOV.
1902 while (!R.empty()) {
1903 SUnit *maxDepth = nullptr;
1904 for (SUnit *I : R) {
1905 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1906 maxDepth = I;
1907 else if (getDepth(I) == getDepth(maxDepth) &&
1908 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1909 maxDepth = I;
1910 else if (getDepth(I) == getDepth(maxDepth) &&
1911 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1912 getMOV(I) < getMOV(maxDepth))
1913 maxDepth = I;
1915 NodeOrder.insert(maxDepth);
1916 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1917 R.remove(maxDepth);
1918 if (Nodes.isExceedSU(maxDepth)) {
1919 Order = TopDown;
1920 R.clear();
1921 R.insert(Nodes.getNode(0));
1922 break;
1924 for (const auto &I : maxDepth->Preds) {
1925 if (Nodes.count(I.getSUnit()) == 0)
1926 continue;
1927 if (NodeOrder.contains(I.getSUnit()))
1928 continue;
1929 R.insert(I.getSUnit());
1931 // Back-edges are predecessors with an anti-dependence.
1932 for (const auto &I : maxDepth->Succs) {
1933 if (I.getKind() != SDep::Anti)
1934 continue;
1935 if (Nodes.count(I.getSUnit()) == 0)
1936 continue;
1937 if (NodeOrder.contains(I.getSUnit()))
1938 continue;
1939 R.insert(I.getSUnit());
1942 Order = TopDown;
1943 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
1944 SmallSetVector<SUnit *, 8> N;
1945 if (succ_L(NodeOrder, N, &Nodes))
1946 R.insert(N.begin(), N.end());
1949 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1952 LLVM_DEBUG({
1953 dbgs() << "Node order: ";
1954 for (SUnit *I : NodeOrder)
1955 dbgs() << " " << I->NodeNum << " ";
1956 dbgs() << "\n";
1960 /// Process the nodes in the computed order and create the pipelined schedule
1961 /// of the instructions, if possible. Return true if a schedule is found.
1962 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
1964 if (NodeOrder.empty()){
1965 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
1966 return false;
1969 bool scheduleFound = false;
1970 // Keep increasing II until a valid schedule is found.
1971 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
1972 Schedule.reset();
1973 Schedule.setInitiationInterval(II);
1974 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
1976 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1977 SetVector<SUnit *>::iterator NE = NodeOrder.end();
1978 do {
1979 SUnit *SU = *NI;
1981 // Compute the schedule time for the instruction, which is based
1982 // upon the scheduled time for any predecessors/successors.
1983 int EarlyStart = INT_MIN;
1984 int LateStart = INT_MAX;
1985 // These values are set when the size of the schedule window is limited
1986 // due to chain dependences.
1987 int SchedEnd = INT_MAX;
1988 int SchedStart = INT_MIN;
1989 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1990 II, this);
1991 LLVM_DEBUG({
1992 dbgs() << "\n";
1993 dbgs() << "Inst (" << SU->NodeNum << ") ";
1994 SU->getInstr()->dump();
1995 dbgs() << "\n";
1997 LLVM_DEBUG({
1998 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
1999 LateStart, SchedEnd, SchedStart);
2002 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2003 SchedStart > LateStart)
2004 scheduleFound = false;
2005 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2006 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2007 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2008 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2009 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2010 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2011 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2012 SchedEnd =
2013 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2014 // When scheduling a Phi it is better to start at the late cycle and go
2015 // backwards. The default order may insert the Phi too far away from
2016 // its first dependence.
2017 if (SU->getInstr()->isPHI())
2018 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2019 else
2020 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2021 } else {
2022 int FirstCycle = Schedule.getFirstCycle();
2023 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2024 FirstCycle + getASAP(SU) + II - 1, II);
2026 // Even if we find a schedule, make sure the schedule doesn't exceed the
2027 // allowable number of stages. We keep trying if this happens.
2028 if (scheduleFound)
2029 if (SwpMaxStages > -1 &&
2030 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2031 scheduleFound = false;
2033 LLVM_DEBUG({
2034 if (!scheduleFound)
2035 dbgs() << "\tCan't schedule\n";
2037 } while (++NI != NE && scheduleFound);
2039 // If a schedule is found, ensure non-pipelined instructions are in stage 0
2040 if (scheduleFound)
2041 scheduleFound =
2042 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo);
2044 // If a schedule is found, check if it is a valid schedule too.
2045 if (scheduleFound)
2046 scheduleFound = Schedule.isValidSchedule(this);
2049 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2050 << " (II=" << Schedule.getInitiationInterval()
2051 << ")\n");
2053 if (scheduleFound) {
2054 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule);
2055 if (!scheduleFound)
2056 LLVM_DEBUG(dbgs() << "Target rejected schedule\n");
2059 if (scheduleFound) {
2060 Schedule.finalizeSchedule(this);
2061 Pass.ORE->emit([&]() {
2062 return MachineOptimizationRemarkAnalysis(
2063 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2064 << "Schedule found with Initiation Interval: "
2065 << ore::NV("II", Schedule.getInitiationInterval())
2066 << ", MaxStageCount: "
2067 << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2069 } else
2070 Schedule.reset();
2072 return scheduleFound && Schedule.getMaxStageCount() > 0;
2075 /// Return true if we can compute the amount the instruction changes
2076 /// during each iteration. Set Delta to the amount of the change.
2077 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2078 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2079 const MachineOperand *BaseOp;
2080 int64_t Offset;
2081 bool OffsetIsScalable;
2082 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2083 return false;
2085 // FIXME: This algorithm assumes instructions have fixed-size offsets.
2086 if (OffsetIsScalable)
2087 return false;
2089 if (!BaseOp->isReg())
2090 return false;
2092 Register BaseReg = BaseOp->getReg();
2094 MachineRegisterInfo &MRI = MF.getRegInfo();
2095 // Check if there is a Phi. If so, get the definition in the loop.
2096 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2097 if (BaseDef && BaseDef->isPHI()) {
2098 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2099 BaseDef = MRI.getVRegDef(BaseReg);
2101 if (!BaseDef)
2102 return false;
2104 int D = 0;
2105 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2106 return false;
2108 Delta = D;
2109 return true;
2112 /// Check if we can change the instruction to use an offset value from the
2113 /// previous iteration. If so, return true and set the base and offset values
2114 /// so that we can rewrite the load, if necessary.
2115 /// v1 = Phi(v0, v3)
2116 /// v2 = load v1, 0
2117 /// v3 = post_store v1, 4, x
2118 /// This function enables the load to be rewritten as v2 = load v3, 4.
2119 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2120 unsigned &BasePos,
2121 unsigned &OffsetPos,
2122 unsigned &NewBase,
2123 int64_t &Offset) {
2124 // Get the load instruction.
2125 if (TII->isPostIncrement(*MI))
2126 return false;
2127 unsigned BasePosLd, OffsetPosLd;
2128 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2129 return false;
2130 Register BaseReg = MI->getOperand(BasePosLd).getReg();
2132 // Look for the Phi instruction.
2133 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2134 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2135 if (!Phi || !Phi->isPHI())
2136 return false;
2137 // Get the register defined in the loop block.
2138 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2139 if (!PrevReg)
2140 return false;
2142 // Check for the post-increment load/store instruction.
2143 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2144 if (!PrevDef || PrevDef == MI)
2145 return false;
2147 if (!TII->isPostIncrement(*PrevDef))
2148 return false;
2150 unsigned BasePos1 = 0, OffsetPos1 = 0;
2151 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2152 return false;
2154 // Make sure that the instructions do not access the same memory location in
2155 // the next iteration.
2156 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2157 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2158 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2159 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2160 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2161 MF.deleteMachineInstr(NewMI);
2162 if (!Disjoint)
2163 return false;
2165 // Set the return value once we determine that we return true.
2166 BasePos = BasePosLd;
2167 OffsetPos = OffsetPosLd;
2168 NewBase = PrevReg;
2169 Offset = StoreOffset;
2170 return true;
2173 /// Apply changes to the instruction if needed. The changes are need
2174 /// to improve the scheduling and depend up on the final schedule.
2175 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2176 SMSchedule &Schedule) {
2177 SUnit *SU = getSUnit(MI);
2178 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2179 InstrChanges.find(SU);
2180 if (It != InstrChanges.end()) {
2181 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2182 unsigned BasePos, OffsetPos;
2183 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2184 return;
2185 Register BaseReg = MI->getOperand(BasePos).getReg();
2186 MachineInstr *LoopDef = findDefInLoop(BaseReg);
2187 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2188 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2189 int BaseStageNum = Schedule.stageScheduled(SU);
2190 int BaseCycleNum = Schedule.cycleScheduled(SU);
2191 if (BaseStageNum < DefStageNum) {
2192 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2193 int OffsetDiff = DefStageNum - BaseStageNum;
2194 if (DefCycleNum < BaseCycleNum) {
2195 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2196 if (OffsetDiff > 0)
2197 --OffsetDiff;
2199 int64_t NewOffset =
2200 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2201 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2202 SU->setInstr(NewMI);
2203 MISUnitMap[NewMI] = SU;
2204 NewMIs[MI] = NewMI;
2209 /// Return the instruction in the loop that defines the register.
2210 /// If the definition is a Phi, then follow the Phi operand to
2211 /// the instruction in the loop.
2212 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2213 SmallPtrSet<MachineInstr *, 8> Visited;
2214 MachineInstr *Def = MRI.getVRegDef(Reg);
2215 while (Def->isPHI()) {
2216 if (!Visited.insert(Def).second)
2217 break;
2218 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2219 if (Def->getOperand(i + 1).getMBB() == BB) {
2220 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2221 break;
2224 return Def;
2227 /// Return true for an order or output dependence that is loop carried
2228 /// potentially. A dependence is loop carried if the destination defines a valu
2229 /// that may be used or defined by the source in a subsequent iteration.
2230 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2231 bool isSucc) {
2232 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2233 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode())
2234 return false;
2236 if (!SwpPruneLoopCarried)
2237 return true;
2239 if (Dep.getKind() == SDep::Output)
2240 return true;
2242 MachineInstr *SI = Source->getInstr();
2243 MachineInstr *DI = Dep.getSUnit()->getInstr();
2244 if (!isSucc)
2245 std::swap(SI, DI);
2246 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2248 // Assume ordered loads and stores may have a loop carried dependence.
2249 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2250 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2251 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2252 return true;
2254 // Only chain dependences between a load and store can be loop carried.
2255 if (!DI->mayStore() || !SI->mayLoad())
2256 return false;
2258 unsigned DeltaS, DeltaD;
2259 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2260 return true;
2262 const MachineOperand *BaseOpS, *BaseOpD;
2263 int64_t OffsetS, OffsetD;
2264 bool OffsetSIsScalable, OffsetDIsScalable;
2265 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2266 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2267 TRI) ||
2268 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2269 TRI))
2270 return true;
2272 assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2273 "Expected offsets to be byte offsets");
2275 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg());
2276 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg());
2277 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI())
2278 return true;
2280 unsigned InitValS = 0;
2281 unsigned LoopValS = 0;
2282 unsigned InitValD = 0;
2283 unsigned LoopValD = 0;
2284 getPhiRegs(*DefS, BB, InitValS, LoopValS);
2285 getPhiRegs(*DefD, BB, InitValD, LoopValD);
2286 MachineInstr *InitDefS = MRI.getVRegDef(InitValS);
2287 MachineInstr *InitDefD = MRI.getVRegDef(InitValD);
2289 if (!InitDefS->isIdenticalTo(*InitDefD))
2290 return true;
2292 // Check that the base register is incremented by a constant value for each
2293 // iteration.
2294 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS);
2295 int D = 0;
2296 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D))
2297 return true;
2299 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2300 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2302 // This is the main test, which checks the offset values and the loop
2303 // increment value to determine if the accesses may be loop carried.
2304 if (AccessSizeS == MemoryLocation::UnknownSize ||
2305 AccessSizeD == MemoryLocation::UnknownSize)
2306 return true;
2308 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2309 return true;
2311 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2314 void SwingSchedulerDAG::postProcessDAG() {
2315 for (auto &M : Mutations)
2316 M->apply(this);
2319 /// Try to schedule the node at the specified StartCycle and continue
2320 /// until the node is schedule or the EndCycle is reached. This function
2321 /// returns true if the node is scheduled. This routine may search either
2322 /// forward or backward for a place to insert the instruction based upon
2323 /// the relative values of StartCycle and EndCycle.
2324 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2325 bool forward = true;
2326 LLVM_DEBUG({
2327 dbgs() << "Trying to insert node between " << StartCycle << " and "
2328 << EndCycle << " II: " << II << "\n";
2330 if (StartCycle > EndCycle)
2331 forward = false;
2333 // The terminating condition depends on the direction.
2334 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2335 for (int curCycle = StartCycle; curCycle != termCycle;
2336 forward ? ++curCycle : --curCycle) {
2338 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2339 ProcItinResources.canReserveResources(*SU, curCycle)) {
2340 LLVM_DEBUG({
2341 dbgs() << "\tinsert at cycle " << curCycle << " ";
2342 SU->getInstr()->dump();
2345 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
2346 ProcItinResources.reserveResources(*SU, curCycle);
2347 ScheduledInstrs[curCycle].push_back(SU);
2348 InstrToCycle.insert(std::make_pair(SU, curCycle));
2349 if (curCycle > LastCycle)
2350 LastCycle = curCycle;
2351 if (curCycle < FirstCycle)
2352 FirstCycle = curCycle;
2353 return true;
2355 LLVM_DEBUG({
2356 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2357 SU->getInstr()->dump();
2360 return false;
2363 // Return the cycle of the earliest scheduled instruction in the chain.
2364 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2365 SmallPtrSet<SUnit *, 8> Visited;
2366 SmallVector<SDep, 8> Worklist;
2367 Worklist.push_back(Dep);
2368 int EarlyCycle = INT_MAX;
2369 while (!Worklist.empty()) {
2370 const SDep &Cur = Worklist.pop_back_val();
2371 SUnit *PrevSU = Cur.getSUnit();
2372 if (Visited.count(PrevSU))
2373 continue;
2374 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2375 if (it == InstrToCycle.end())
2376 continue;
2377 EarlyCycle = std::min(EarlyCycle, it->second);
2378 for (const auto &PI : PrevSU->Preds)
2379 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2380 Worklist.push_back(PI);
2381 Visited.insert(PrevSU);
2383 return EarlyCycle;
2386 // Return the cycle of the latest scheduled instruction in the chain.
2387 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2388 SmallPtrSet<SUnit *, 8> Visited;
2389 SmallVector<SDep, 8> Worklist;
2390 Worklist.push_back(Dep);
2391 int LateCycle = INT_MIN;
2392 while (!Worklist.empty()) {
2393 const SDep &Cur = Worklist.pop_back_val();
2394 SUnit *SuccSU = Cur.getSUnit();
2395 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode())
2396 continue;
2397 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2398 if (it == InstrToCycle.end())
2399 continue;
2400 LateCycle = std::max(LateCycle, it->second);
2401 for (const auto &SI : SuccSU->Succs)
2402 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2403 Worklist.push_back(SI);
2404 Visited.insert(SuccSU);
2406 return LateCycle;
2409 /// If an instruction has a use that spans multiple iterations, then
2410 /// return true. These instructions are characterized by having a back-ege
2411 /// to a Phi, which contains a reference to another Phi.
2412 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2413 for (auto &P : SU->Preds)
2414 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2415 for (auto &S : P.getSUnit()->Succs)
2416 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2417 return P.getSUnit();
2418 return nullptr;
2421 /// Compute the scheduling start slot for the instruction. The start slot
2422 /// depends on any predecessor or successor nodes scheduled already.
2423 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2424 int *MinEnd, int *MaxStart, int II,
2425 SwingSchedulerDAG *DAG) {
2426 // Iterate over each instruction that has been scheduled already. The start
2427 // slot computation depends on whether the previously scheduled instruction
2428 // is a predecessor or successor of the specified instruction.
2429 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2431 // Iterate over each instruction in the current cycle.
2432 for (SUnit *I : getInstructions(cycle)) {
2433 // Because we're processing a DAG for the dependences, we recognize
2434 // the back-edge in recurrences by anti dependences.
2435 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2436 const SDep &Dep = SU->Preds[i];
2437 if (Dep.getSUnit() == I) {
2438 if (!DAG->isBackedge(SU, Dep)) {
2439 int EarlyStart = cycle + Dep.getLatency() -
2440 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2441 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2442 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2443 int End = earliestCycleInChain(Dep) + (II - 1);
2444 *MinEnd = std::min(*MinEnd, End);
2446 } else {
2447 int LateStart = cycle - Dep.getLatency() +
2448 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2449 *MinLateStart = std::min(*MinLateStart, LateStart);
2452 // For instruction that requires multiple iterations, make sure that
2453 // the dependent instruction is not scheduled past the definition.
2454 SUnit *BE = multipleIterations(I, DAG);
2455 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2456 !SU->isPred(I))
2457 *MinLateStart = std::min(*MinLateStart, cycle);
2459 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2460 if (SU->Succs[i].getSUnit() == I) {
2461 const SDep &Dep = SU->Succs[i];
2462 if (!DAG->isBackedge(SU, Dep)) {
2463 int LateStart = cycle - Dep.getLatency() +
2464 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2465 *MinLateStart = std::min(*MinLateStart, LateStart);
2466 if (DAG->isLoopCarriedDep(SU, Dep)) {
2467 int Start = latestCycleInChain(Dep) + 1 - II;
2468 *MaxStart = std::max(*MaxStart, Start);
2470 } else {
2471 int EarlyStart = cycle + Dep.getLatency() -
2472 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2473 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2481 /// Order the instructions within a cycle so that the definitions occur
2482 /// before the uses. Returns true if the instruction is added to the start
2483 /// of the list, or false if added to the end.
2484 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2485 std::deque<SUnit *> &Insts) {
2486 MachineInstr *MI = SU->getInstr();
2487 bool OrderBeforeUse = false;
2488 bool OrderAfterDef = false;
2489 bool OrderBeforeDef = false;
2490 unsigned MoveDef = 0;
2491 unsigned MoveUse = 0;
2492 int StageInst1 = stageScheduled(SU);
2494 unsigned Pos = 0;
2495 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2496 ++I, ++Pos) {
2497 for (MachineOperand &MO : MI->operands()) {
2498 if (!MO.isReg() || !MO.getReg().isVirtual())
2499 continue;
2501 Register Reg = MO.getReg();
2502 unsigned BasePos, OffsetPos;
2503 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2504 if (MI->getOperand(BasePos).getReg() == Reg)
2505 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2506 Reg = NewReg;
2507 bool Reads, Writes;
2508 std::tie(Reads, Writes) =
2509 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2510 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2511 OrderBeforeUse = true;
2512 if (MoveUse == 0)
2513 MoveUse = Pos;
2514 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2515 // Add the instruction after the scheduled instruction.
2516 OrderAfterDef = true;
2517 MoveDef = Pos;
2518 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2519 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2520 OrderBeforeUse = true;
2521 if (MoveUse == 0)
2522 MoveUse = Pos;
2523 } else {
2524 OrderAfterDef = true;
2525 MoveDef = Pos;
2527 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2528 OrderBeforeUse = true;
2529 if (MoveUse == 0)
2530 MoveUse = Pos;
2531 if (MoveUse != 0) {
2532 OrderAfterDef = true;
2533 MoveDef = Pos - 1;
2535 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2536 // Add the instruction before the scheduled instruction.
2537 OrderBeforeUse = true;
2538 if (MoveUse == 0)
2539 MoveUse = Pos;
2540 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2541 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2542 if (MoveUse == 0) {
2543 OrderBeforeDef = true;
2544 MoveUse = Pos;
2548 // Check for order dependences between instructions. Make sure the source
2549 // is ordered before the destination.
2550 for (auto &S : SU->Succs) {
2551 if (S.getSUnit() != *I)
2552 continue;
2553 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2554 OrderBeforeUse = true;
2555 if (Pos < MoveUse)
2556 MoveUse = Pos;
2558 // We did not handle HW dependences in previous for loop,
2559 // and we normally set Latency = 0 for Anti deps,
2560 // so may have nodes in same cycle with Anti denpendent on HW regs.
2561 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2562 OrderBeforeUse = true;
2563 if ((MoveUse == 0) || (Pos < MoveUse))
2564 MoveUse = Pos;
2567 for (auto &P : SU->Preds) {
2568 if (P.getSUnit() != *I)
2569 continue;
2570 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2571 OrderAfterDef = true;
2572 MoveDef = Pos;
2577 // A circular dependence.
2578 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2579 OrderBeforeUse = false;
2581 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2582 // to a loop-carried dependence.
2583 if (OrderBeforeDef)
2584 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2586 // The uncommon case when the instruction order needs to be updated because
2587 // there is both a use and def.
2588 if (OrderBeforeUse && OrderAfterDef) {
2589 SUnit *UseSU = Insts.at(MoveUse);
2590 SUnit *DefSU = Insts.at(MoveDef);
2591 if (MoveUse > MoveDef) {
2592 Insts.erase(Insts.begin() + MoveUse);
2593 Insts.erase(Insts.begin() + MoveDef);
2594 } else {
2595 Insts.erase(Insts.begin() + MoveDef);
2596 Insts.erase(Insts.begin() + MoveUse);
2598 orderDependence(SSD, UseSU, Insts);
2599 orderDependence(SSD, SU, Insts);
2600 orderDependence(SSD, DefSU, Insts);
2601 return;
2603 // Put the new instruction first if there is a use in the list. Otherwise,
2604 // put it at the end of the list.
2605 if (OrderBeforeUse)
2606 Insts.push_front(SU);
2607 else
2608 Insts.push_back(SU);
2611 /// Return true if the scheduled Phi has a loop carried operand.
2612 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2613 if (!Phi.isPHI())
2614 return false;
2615 assert(Phi.isPHI() && "Expecting a Phi.");
2616 SUnit *DefSU = SSD->getSUnit(&Phi);
2617 unsigned DefCycle = cycleScheduled(DefSU);
2618 int DefStage = stageScheduled(DefSU);
2620 unsigned InitVal = 0;
2621 unsigned LoopVal = 0;
2622 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2623 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2624 if (!UseSU)
2625 return true;
2626 if (UseSU->getInstr()->isPHI())
2627 return true;
2628 unsigned LoopCycle = cycleScheduled(UseSU);
2629 int LoopStage = stageScheduled(UseSU);
2630 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2633 /// Return true if the instruction is a definition that is loop carried
2634 /// and defines the use on the next iteration.
2635 /// v1 = phi(v2, v3)
2636 /// (Def) v3 = op v1
2637 /// (MO) = v1
2638 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2639 /// register.
2640 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2641 MachineInstr *Def, MachineOperand &MO) {
2642 if (!MO.isReg())
2643 return false;
2644 if (Def->isPHI())
2645 return false;
2646 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2647 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2648 return false;
2649 if (!isLoopCarried(SSD, *Phi))
2650 return false;
2651 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2652 for (MachineOperand &DMO : Def->all_defs()) {
2653 if (DMO.getReg() == LoopReg)
2654 return true;
2656 return false;
2659 /// Determine transitive dependences of unpipelineable instructions
2660 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
2661 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2662 SmallSet<SUnit *, 8> DoNotPipeline;
2663 SmallVector<SUnit *, 8> Worklist;
2665 for (auto &SU : SSD->SUnits)
2666 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr()))
2667 Worklist.push_back(&SU);
2669 while (!Worklist.empty()) {
2670 auto SU = Worklist.pop_back_val();
2671 if (DoNotPipeline.count(SU))
2672 continue;
2673 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
2674 DoNotPipeline.insert(SU);
2675 for (auto &Dep : SU->Preds)
2676 Worklist.push_back(Dep.getSUnit());
2677 if (SU->getInstr()->isPHI())
2678 for (auto &Dep : SU->Succs)
2679 if (Dep.getKind() == SDep::Anti)
2680 Worklist.push_back(Dep.getSUnit());
2682 return DoNotPipeline;
2685 // Determine all instructions upon which any unpipelineable instruction depends
2686 // and ensure that they are in stage 0. If unable to do so, return false.
2687 bool SMSchedule::normalizeNonPipelinedInstructions(
2688 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2689 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
2691 int NewLastCycle = INT_MIN;
2692 for (SUnit &SU : SSD->SUnits) {
2693 if (!SU.isInstr())
2694 continue;
2695 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) {
2696 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]);
2697 continue;
2700 // Put the non-pipelined instruction as early as possible in the schedule
2701 int NewCycle = getFirstCycle();
2702 for (auto &Dep : SU.Preds)
2703 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle);
2705 int OldCycle = InstrToCycle[&SU];
2706 if (OldCycle != NewCycle) {
2707 InstrToCycle[&SU] = NewCycle;
2708 auto &OldS = getInstructions(OldCycle);
2709 llvm::erase_value(OldS, &SU);
2710 getInstructions(NewCycle).emplace_back(&SU);
2711 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
2712 << ") is not pipelined; moving from cycle " << OldCycle
2713 << " to " << NewCycle << " Instr:" << *SU.getInstr());
2715 NewLastCycle = std::max(NewLastCycle, NewCycle);
2717 LastCycle = NewLastCycle;
2718 return true;
2721 // Check if the generated schedule is valid. This function checks if
2722 // an instruction that uses a physical register is scheduled in a
2723 // different stage than the definition. The pipeliner does not handle
2724 // physical register values that may cross a basic block boundary.
2725 // Furthermore, if a physical def/use pair is assigned to the same
2726 // cycle, orderDependence does not guarantee def/use ordering, so that
2727 // case should be considered invalid. (The test checks for both
2728 // earlier and same-cycle use to be more robust.)
2729 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2730 for (SUnit &SU : SSD->SUnits) {
2731 if (!SU.hasPhysRegDefs)
2732 continue;
2733 int StageDef = stageScheduled(&SU);
2734 int CycleDef = InstrToCycle[&SU];
2735 assert(StageDef != -1 && "Instruction should have been scheduled.");
2736 for (auto &SI : SU.Succs)
2737 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode())
2738 if (Register::isPhysicalRegister(SI.getReg())) {
2739 if (stageScheduled(SI.getSUnit()) != StageDef)
2740 return false;
2741 if (InstrToCycle[SI.getSUnit()] <= CycleDef)
2742 return false;
2745 return true;
2748 /// A property of the node order in swing-modulo-scheduling is
2749 /// that for nodes outside circuits the following holds:
2750 /// none of them is scheduled after both a successor and a
2751 /// predecessor.
2752 /// The method below checks whether the property is met.
2753 /// If not, debug information is printed and statistics information updated.
2754 /// Note that we do not use an assert statement.
2755 /// The reason is that although an invalid node oder may prevent
2756 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2757 /// it does not lead to the generation of incorrect code.
2758 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2760 // a sorted vector that maps each SUnit to its index in the NodeOrder
2761 typedef std::pair<SUnit *, unsigned> UnitIndex;
2762 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2764 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2765 Indices.push_back(std::make_pair(NodeOrder[i], i));
2767 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2768 return std::get<0>(i1) < std::get<0>(i2);
2771 // sort, so that we can perform a binary search
2772 llvm::sort(Indices, CompareKey);
2774 bool Valid = true;
2775 (void)Valid;
2776 // for each SUnit in the NodeOrder, check whether
2777 // it appears after both a successor and a predecessor
2778 // of the SUnit. If this is the case, and the SUnit
2779 // is not part of circuit, then the NodeOrder is not
2780 // valid.
2781 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2782 SUnit *SU = NodeOrder[i];
2783 unsigned Index = i;
2785 bool PredBefore = false;
2786 bool SuccBefore = false;
2788 SUnit *Succ;
2789 SUnit *Pred;
2790 (void)Succ;
2791 (void)Pred;
2793 for (SDep &PredEdge : SU->Preds) {
2794 SUnit *PredSU = PredEdge.getSUnit();
2795 unsigned PredIndex = std::get<1>(
2796 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2797 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2798 PredBefore = true;
2799 Pred = PredSU;
2800 break;
2804 for (SDep &SuccEdge : SU->Succs) {
2805 SUnit *SuccSU = SuccEdge.getSUnit();
2806 // Do not process a boundary node, it was not included in NodeOrder,
2807 // hence not in Indices either, call to std::lower_bound() below will
2808 // return Indices.end().
2809 if (SuccSU->isBoundaryNode())
2810 continue;
2811 unsigned SuccIndex = std::get<1>(
2812 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2813 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2814 SuccBefore = true;
2815 Succ = SuccSU;
2816 break;
2820 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2821 // instructions in circuits are allowed to be scheduled
2822 // after both a successor and predecessor.
2823 bool InCircuit = llvm::any_of(
2824 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2825 if (InCircuit)
2826 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2827 else {
2828 Valid = false;
2829 NumNodeOrderIssues++;
2830 LLVM_DEBUG(dbgs() << "Predecessor ";);
2832 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2833 << " are scheduled before node " << SU->NodeNum
2834 << "\n";);
2838 LLVM_DEBUG({
2839 if (!Valid)
2840 dbgs() << "Invalid node order found!\n";
2844 /// Attempt to fix the degenerate cases when the instruction serialization
2845 /// causes the register lifetimes to overlap. For example,
2846 /// p' = store_pi(p, b)
2847 /// = load p, offset
2848 /// In this case p and p' overlap, which means that two registers are needed.
2849 /// Instead, this function changes the load to use p' and updates the offset.
2850 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2851 unsigned OverlapReg = 0;
2852 unsigned NewBaseReg = 0;
2853 for (SUnit *SU : Instrs) {
2854 MachineInstr *MI = SU->getInstr();
2855 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2856 const MachineOperand &MO = MI->getOperand(i);
2857 // Look for an instruction that uses p. The instruction occurs in the
2858 // same cycle but occurs later in the serialized order.
2859 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2860 // Check that the instruction appears in the InstrChanges structure,
2861 // which contains instructions that can have the offset updated.
2862 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2863 InstrChanges.find(SU);
2864 if (It != InstrChanges.end()) {
2865 unsigned BasePos, OffsetPos;
2866 // Update the base register and adjust the offset.
2867 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2868 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2869 NewMI->getOperand(BasePos).setReg(NewBaseReg);
2870 int64_t NewOffset =
2871 MI->getOperand(OffsetPos).getImm() - It->second.second;
2872 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2873 SU->setInstr(NewMI);
2874 MISUnitMap[NewMI] = SU;
2875 NewMIs[MI] = NewMI;
2878 OverlapReg = 0;
2879 NewBaseReg = 0;
2880 break;
2882 // Look for an instruction of the form p' = op(p), which uses and defines
2883 // two virtual registers that get allocated to the same physical register.
2884 unsigned TiedUseIdx = 0;
2885 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2886 // OverlapReg is p in the example above.
2887 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2888 // NewBaseReg is p' in the example above.
2889 NewBaseReg = MI->getOperand(i).getReg();
2890 break;
2896 /// After the schedule has been formed, call this function to combine
2897 /// the instructions from the different stages/cycles. That is, this
2898 /// function creates a schedule that represents a single iteration.
2899 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2900 // Move all instructions to the first stage from later stages.
2901 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2902 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2903 ++stage) {
2904 std::deque<SUnit *> &cycleInstrs =
2905 ScheduledInstrs[cycle + (stage * InitiationInterval)];
2906 for (SUnit *SU : llvm::reverse(cycleInstrs))
2907 ScheduledInstrs[cycle].push_front(SU);
2911 // Erase all the elements in the later stages. Only one iteration should
2912 // remain in the scheduled list, and it contains all the instructions.
2913 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2914 ScheduledInstrs.erase(cycle);
2916 // Change the registers in instruction as specified in the InstrChanges
2917 // map. We need to use the new registers to create the correct order.
2918 for (const SUnit &SU : SSD->SUnits)
2919 SSD->applyInstrChange(SU.getInstr(), *this);
2921 // Reorder the instructions in each cycle to fix and improve the
2922 // generated code.
2923 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2924 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2925 std::deque<SUnit *> newOrderPhi;
2926 for (SUnit *SU : cycleInstrs) {
2927 if (SU->getInstr()->isPHI())
2928 newOrderPhi.push_back(SU);
2930 std::deque<SUnit *> newOrderI;
2931 for (SUnit *SU : cycleInstrs) {
2932 if (!SU->getInstr()->isPHI())
2933 orderDependence(SSD, SU, newOrderI);
2935 // Replace the old order with the new order.
2936 cycleInstrs.swap(newOrderPhi);
2937 llvm::append_range(cycleInstrs, newOrderI);
2938 SSD->fixupRegisterOverlaps(cycleInstrs);
2941 LLVM_DEBUG(dump(););
2944 void NodeSet::print(raw_ostream &os) const {
2945 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2946 << " depth " << MaxDepth << " col " << Colocate << "\n";
2947 for (const auto &I : Nodes)
2948 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
2949 os << "\n";
2952 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2953 /// Print the schedule information to the given output.
2954 void SMSchedule::print(raw_ostream &os) const {
2955 // Iterate over each cycle.
2956 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2957 // Iterate over each instruction in the cycle.
2958 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2959 for (SUnit *CI : cycleInstrs->second) {
2960 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2961 os << "(" << CI->NodeNum << ") ";
2962 CI->getInstr()->print(os);
2963 os << "\n";
2968 /// Utility function used for debugging to print the schedule.
2969 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2970 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2972 void ResourceManager::dumpMRT() const {
2973 LLVM_DEBUG({
2974 if (UseDFA)
2975 return;
2976 std::stringstream SS;
2977 SS << "MRT:\n";
2978 SS << std::setw(4) << "Slot";
2979 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
2980 SS << std::setw(3) << I;
2981 SS << std::setw(7) << "#Mops"
2982 << "\n";
2983 for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
2984 SS << std::setw(4) << Slot;
2985 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
2986 SS << std::setw(3) << MRT[Slot][I];
2987 SS << std::setw(7) << NumScheduledMops[Slot] << "\n";
2989 dbgs() << SS.str();
2992 #endif
2994 void ResourceManager::initProcResourceVectors(
2995 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2996 unsigned ProcResourceID = 0;
2998 // We currently limit the resource kinds to 64 and below so that we can use
2999 // uint64_t for Masks
3000 assert(SM.getNumProcResourceKinds() < 64 &&
3001 "Too many kinds of resources, unsupported");
3002 // Create a unique bitmask for every processor resource unit.
3003 // Skip resource at index 0, since it always references 'InvalidUnit'.
3004 Masks.resize(SM.getNumProcResourceKinds());
3005 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3006 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3007 if (Desc.SubUnitsIdxBegin)
3008 continue;
3009 Masks[I] = 1ULL << ProcResourceID;
3010 ProcResourceID++;
3012 // Create a unique bitmask for every processor resource group.
3013 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3014 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3015 if (!Desc.SubUnitsIdxBegin)
3016 continue;
3017 Masks[I] = 1ULL << ProcResourceID;
3018 for (unsigned U = 0; U < Desc.NumUnits; ++U)
3019 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3020 ProcResourceID++;
3022 LLVM_DEBUG({
3023 if (SwpShowResMask) {
3024 dbgs() << "ProcResourceDesc:\n";
3025 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3026 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3027 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3028 ProcResource->Name, I, Masks[I],
3029 ProcResource->NumUnits);
3031 dbgs() << " -----------------\n";
3036 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) {
3037 LLVM_DEBUG({
3038 if (SwpDebugResource)
3039 dbgs() << "canReserveResources:\n";
3041 if (UseDFA)
3042 return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3043 ->canReserveResources(&SU.getInstr()->getDesc());
3045 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3046 if (!SCDesc->isValid()) {
3047 LLVM_DEBUG({
3048 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3049 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3051 return true;
3054 reserveResources(SCDesc, Cycle);
3055 bool Result = !isOverbooked();
3056 unreserveResources(SCDesc, Cycle);
3058 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";);
3059 return Result;
3062 void ResourceManager::reserveResources(SUnit &SU, int Cycle) {
3063 LLVM_DEBUG({
3064 if (SwpDebugResource)
3065 dbgs() << "reserveResources:\n";
3067 if (UseDFA)
3068 return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3069 ->reserveResources(&SU.getInstr()->getDesc());
3071 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3072 if (!SCDesc->isValid()) {
3073 LLVM_DEBUG({
3074 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3075 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3077 return;
3080 reserveResources(SCDesc, Cycle);
3082 LLVM_DEBUG({
3083 if (SwpDebugResource) {
3084 dumpMRT();
3085 dbgs() << "reserveResources: done!\n\n";
3090 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc,
3091 int Cycle) {
3092 assert(!UseDFA);
3093 for (const MCWriteProcResEntry &PRE : make_range(
3094 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3095 for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
3096 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3098 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3099 ++NumScheduledMops[positiveModulo(C, InitiationInterval)];
3102 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc,
3103 int Cycle) {
3104 assert(!UseDFA);
3105 for (const MCWriteProcResEntry &PRE : make_range(
3106 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3107 for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
3108 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3110 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3111 --NumScheduledMops[positiveModulo(C, InitiationInterval)];
3114 bool ResourceManager::isOverbooked() const {
3115 assert(!UseDFA);
3116 for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3117 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3118 const MCProcResourceDesc *Desc = SM.getProcResource(I);
3119 if (MRT[Slot][I] > Desc->NumUnits)
3120 return true;
3122 if (NumScheduledMops[Slot] > IssueWidth)
3123 return true;
3125 return false;
3128 int ResourceManager::calculateResMIIDFA() const {
3129 assert(UseDFA);
3131 // Sort the instructions by the number of available choices for scheduling,
3132 // least to most. Use the number of critical resources as the tie breaker.
3133 FuncUnitSorter FUS = FuncUnitSorter(*ST);
3134 for (SUnit &SU : DAG->SUnits)
3135 FUS.calcCriticalResources(*SU.getInstr());
3136 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
3137 FuncUnitOrder(FUS);
3139 for (SUnit &SU : DAG->SUnits)
3140 FuncUnitOrder.push(SU.getInstr());
3142 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources;
3143 Resources.push_back(
3144 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST)));
3146 while (!FuncUnitOrder.empty()) {
3147 MachineInstr *MI = FuncUnitOrder.top();
3148 FuncUnitOrder.pop();
3149 if (TII->isZeroCost(MI->getOpcode()))
3150 continue;
3152 // Attempt to reserve the instruction in an existing DFA. At least one
3153 // DFA is needed for each cycle.
3154 unsigned NumCycles = DAG->getSUnit(MI)->Latency;
3155 unsigned ReservedCycles = 0;
3156 auto *RI = Resources.begin();
3157 auto *RE = Resources.end();
3158 LLVM_DEBUG({
3159 dbgs() << "Trying to reserve resource for " << NumCycles
3160 << " cycles for \n";
3161 MI->dump();
3163 for (unsigned C = 0; C < NumCycles; ++C)
3164 while (RI != RE) {
3165 if ((*RI)->canReserveResources(*MI)) {
3166 (*RI)->reserveResources(*MI);
3167 ++ReservedCycles;
3168 break;
3170 RI++;
3172 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
3173 << ", NumCycles:" << NumCycles << "\n");
3174 // Add new DFAs, if needed, to reserve resources.
3175 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
3176 LLVM_DEBUG(if (SwpDebugResource) dbgs()
3177 << "NewResource created to reserve resources"
3178 << "\n");
3179 auto *NewResource = TII->CreateTargetScheduleState(*ST);
3180 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
3181 NewResource->reserveResources(*MI);
3182 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource));
3186 int Resmii = Resources.size();
3187 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
3188 return Resmii;
3191 int ResourceManager::calculateResMII() const {
3192 if (UseDFA)
3193 return calculateResMIIDFA();
3195 // Count each resource consumption and divide it by the number of units.
3196 // ResMII is the max value among them.
3198 int NumMops = 0;
3199 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds());
3200 for (SUnit &SU : DAG->SUnits) {
3201 if (TII->isZeroCost(SU.getInstr()->getOpcode()))
3202 continue;
3204 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3205 if (!SCDesc->isValid())
3206 continue;
3208 LLVM_DEBUG({
3209 if (SwpDebugResource) {
3210 DAG->dumpNode(SU);
3211 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n"
3212 << " WriteProcRes: ";
3215 NumMops += SCDesc->NumMicroOps;
3216 for (const MCWriteProcResEntry &PRE :
3217 make_range(STI->getWriteProcResBegin(SCDesc),
3218 STI->getWriteProcResEnd(SCDesc))) {
3219 LLVM_DEBUG({
3220 if (SwpDebugResource) {
3221 const MCProcResourceDesc *Desc =
3222 SM.getProcResource(PRE.ProcResourceIdx);
3223 dbgs() << Desc->Name << ": " << PRE.Cycles << ", ";
3226 ResourceCount[PRE.ProcResourceIdx] += PRE.Cycles;
3228 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n");
3231 int Result = (NumMops + IssueWidth - 1) / IssueWidth;
3232 LLVM_DEBUG({
3233 if (SwpDebugResource)
3234 dbgs() << "#Mops: " << NumMops << ", "
3235 << "IssueWidth: " << IssueWidth << ", "
3236 << "Cycles: " << Result << "\n";
3239 LLVM_DEBUG({
3240 if (SwpDebugResource) {
3241 std::stringstream SS;
3242 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10)
3243 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles"
3244 << "\n";
3245 dbgs() << SS.str();
3248 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3249 const MCProcResourceDesc *Desc = SM.getProcResource(I);
3250 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits;
3251 LLVM_DEBUG({
3252 if (SwpDebugResource) {
3253 std::stringstream SS;
3254 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10)
3255 << Desc->NumUnits << std::setw(10) << ResourceCount[I]
3256 << std::setw(10) << Cycles << "\n";
3257 dbgs() << SS.str();
3260 if (Cycles > Result)
3261 Result = Cycles;
3263 return Result;
3266 void ResourceManager::init(int II) {
3267 InitiationInterval = II;
3268 DFAResources.clear();
3269 DFAResources.resize(II);
3270 for (auto &I : DFAResources)
3271 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST));
3272 MRT.clear();
3273 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds()));
3274 NumScheduledMops.clear();
3275 NumScheduledMops.resize(II);