[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / RegAllocFast.cpp
blob864beb8720f439cc74e8bfa5d0202d56285fa08d
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocCommon.h"
32 #include "llvm/CodeGen/RegAllocRegistry.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <tuple>
46 #include <vector>
48 using namespace llvm;
50 #define DEBUG_TYPE "regalloc"
52 STATISTIC(NumStores, "Number of stores added");
53 STATISTIC(NumLoads , "Number of loads added");
54 STATISTIC(NumCoalesced, "Number of copies coalesced");
56 // FIXME: Remove this switch when all testcases are fixed!
57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
58 cl::Hidden);
60 static RegisterRegAlloc
61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
63 namespace {
65 class RegAllocFast : public MachineFunctionPass {
66 public:
67 static char ID;
69 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
70 bool ClearVirtRegs_ = true) :
71 MachineFunctionPass(ID),
72 ShouldAllocateClass(F),
73 StackSlotForVirtReg(-1),
74 ClearVirtRegs(ClearVirtRegs_) {
77 private:
78 MachineFrameInfo *MFI = nullptr;
79 MachineRegisterInfo *MRI = nullptr;
80 const TargetRegisterInfo *TRI = nullptr;
81 const TargetInstrInfo *TII = nullptr;
82 RegisterClassInfo RegClassInfo;
83 const RegClassFilterFunc ShouldAllocateClass;
85 /// Basic block currently being allocated.
86 MachineBasicBlock *MBB = nullptr;
88 /// Maps virtual regs to the frame index where these values are spilled.
89 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
91 bool ClearVirtRegs;
93 /// Everything we know about a live virtual register.
94 struct LiveReg {
95 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
96 Register VirtReg; ///< Virtual register number.
97 MCPhysReg PhysReg = 0; ///< Currently held here.
98 bool LiveOut = false; ///< Register is possibly live out.
99 bool Reloaded = false; ///< Register was reloaded.
100 bool Error = false; ///< Could not allocate.
102 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
104 unsigned getSparseSetIndex() const {
105 return Register::virtReg2Index(VirtReg);
109 using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>;
110 /// This map contains entries for each virtual register that is currently
111 /// available in a physical register.
112 LiveRegMap LiveVirtRegs;
114 /// Stores assigned virtual registers present in the bundle MI.
115 DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
117 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
118 /// List of DBG_VALUE that we encountered without the vreg being assigned
119 /// because they were placed after the last use of the vreg.
120 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
122 /// Has a bit set for every virtual register for which it was determined
123 /// that it is alive across blocks.
124 BitVector MayLiveAcrossBlocks;
126 /// State of a register unit.
127 enum RegUnitState {
128 /// A free register is not currently in use and can be allocated
129 /// immediately without checking aliases.
130 regFree,
132 /// A pre-assigned register has been assigned before register allocation
133 /// (e.g., setting up a call parameter).
134 regPreAssigned,
136 /// Used temporarily in reloadAtBegin() to mark register units that are
137 /// live-in to the basic block.
138 regLiveIn,
140 /// A register state may also be a virtual register number, indication
141 /// that the physical register is currently allocated to a virtual
142 /// register. In that case, LiveVirtRegs contains the inverse mapping.
145 /// Maps each physical register to a RegUnitState enum or virtual register.
146 std::vector<unsigned> RegUnitStates;
148 SmallVector<MachineInstr *, 32> Coalesced;
150 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
151 /// Set of register units that are used in the current instruction, and so
152 /// cannot be allocated.
153 RegUnitSet UsedInInstr;
154 RegUnitSet PhysRegUses;
155 SmallVector<uint16_t, 8> DefOperandIndexes;
156 // Register masks attached to the current instruction.
157 SmallVector<const uint32_t *> RegMasks;
159 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
160 bool isPhysRegFree(MCPhysReg PhysReg) const;
162 /// Mark a physreg as used in this instruction.
163 void markRegUsedInInstr(MCPhysReg PhysReg) {
164 for (MCRegUnit Unit : TRI->regunits(PhysReg))
165 UsedInInstr.insert(Unit);
168 // Check if physreg is clobbered by instruction's regmask(s).
169 bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
170 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
171 return MachineOperand::clobbersPhysReg(Mask, PhysReg);
175 /// Check if a physreg or any of its aliases are used in this instruction.
176 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
177 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
178 return true;
179 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
180 if (UsedInInstr.count(Unit))
181 return true;
182 if (LookAtPhysRegUses && PhysRegUses.count(Unit))
183 return true;
185 return false;
188 /// Mark physical register as being used in a register use operand.
189 /// This is only used by the special livethrough handling code.
190 void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
191 for (MCRegUnit Unit : TRI->regunits(PhysReg))
192 PhysRegUses.insert(Unit);
195 /// Remove mark of physical register being used in the instruction.
196 void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
197 for (MCRegUnit Unit : TRI->regunits(PhysReg))
198 UsedInInstr.erase(Unit);
201 enum : unsigned {
202 spillClean = 50,
203 spillDirty = 100,
204 spillPrefBonus = 20,
205 spillImpossible = ~0u
208 public:
209 StringRef getPassName() const override { return "Fast Register Allocator"; }
211 void getAnalysisUsage(AnalysisUsage &AU) const override {
212 AU.setPreservesCFG();
213 MachineFunctionPass::getAnalysisUsage(AU);
216 MachineFunctionProperties getRequiredProperties() const override {
217 return MachineFunctionProperties().set(
218 MachineFunctionProperties::Property::NoPHIs);
221 MachineFunctionProperties getSetProperties() const override {
222 if (ClearVirtRegs) {
223 return MachineFunctionProperties().set(
224 MachineFunctionProperties::Property::NoVRegs);
227 return MachineFunctionProperties();
230 MachineFunctionProperties getClearedProperties() const override {
231 return MachineFunctionProperties().set(
232 MachineFunctionProperties::Property::IsSSA);
235 private:
236 bool runOnMachineFunction(MachineFunction &MF) override;
238 void allocateBasicBlock(MachineBasicBlock &MBB);
240 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
241 Register Reg) const;
243 void findAndSortDefOperandIndexes(const MachineInstr &MI);
245 void allocateInstruction(MachineInstr &MI);
246 void handleDebugValue(MachineInstr &MI);
247 void handleBundle(MachineInstr &MI);
249 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
250 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
251 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
252 void freePhysReg(MCPhysReg PhysReg);
254 unsigned calcSpillCost(MCPhysReg PhysReg) const;
256 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
257 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
260 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
261 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
264 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
265 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
266 bool LookAtPhysRegUses = false);
267 void allocVirtRegUndef(MachineOperand &MO);
268 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
269 MCPhysReg Reg);
270 bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
271 Register VirtReg);
272 bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
273 bool LookAtPhysRegUses = false);
274 bool useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
276 MachineBasicBlock::iterator
277 getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
278 SmallSet<Register, 2> &PrologLiveIns) const;
280 void reloadAtBegin(MachineBasicBlock &MBB);
281 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
283 Register traceCopies(Register VirtReg) const;
284 Register traceCopyChain(Register Reg) const;
286 bool shouldAllocateRegister(const Register Reg) const;
287 int getStackSpaceFor(Register VirtReg);
288 void spill(MachineBasicBlock::iterator Before, Register VirtReg,
289 MCPhysReg AssignedReg, bool Kill, bool LiveOut);
290 void reload(MachineBasicBlock::iterator Before, Register VirtReg,
291 MCPhysReg PhysReg);
293 bool mayLiveOut(Register VirtReg);
294 bool mayLiveIn(Register VirtReg);
296 void dumpState() const;
299 } // end anonymous namespace
301 char RegAllocFast::ID = 0;
303 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
304 false)
306 bool RegAllocFast::shouldAllocateRegister(const Register Reg) const {
307 assert(Reg.isVirtual());
308 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
309 return ShouldAllocateClass(*TRI, RC);
312 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
313 for (MCRegUnit Unit : TRI->regunits(PhysReg))
314 RegUnitStates[Unit] = NewState;
317 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
318 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
319 if (RegUnitStates[Unit] != regFree)
320 return false;
322 return true;
325 /// This allocates space for the specified virtual register to be held on the
326 /// stack.
327 int RegAllocFast::getStackSpaceFor(Register VirtReg) {
328 // Find the location Reg would belong...
329 int SS = StackSlotForVirtReg[VirtReg];
330 // Already has space allocated?
331 if (SS != -1)
332 return SS;
334 // Allocate a new stack object for this spill location...
335 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
336 unsigned Size = TRI->getSpillSize(RC);
337 Align Alignment = TRI->getSpillAlign(RC);
338 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
340 // Assign the slot.
341 StackSlotForVirtReg[VirtReg] = FrameIdx;
342 return FrameIdx;
345 static bool dominates(MachineBasicBlock &MBB,
346 MachineBasicBlock::const_iterator A,
347 MachineBasicBlock::const_iterator B) {
348 auto MBBEnd = MBB.end();
349 if (B == MBBEnd)
350 return true;
352 MachineBasicBlock::const_iterator I = MBB.begin();
353 for (; &*I != A && &*I != B; ++I)
356 return &*I == A;
359 /// Returns false if \p VirtReg is known to not live out of the current block.
360 bool RegAllocFast::mayLiveOut(Register VirtReg) {
361 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
362 // Cannot be live-out if there are no successors.
363 return !MBB->succ_empty();
366 const MachineInstr *SelfLoopDef = nullptr;
368 // If this block loops back to itself, it is necessary to check whether the
369 // use comes after the def.
370 if (MBB->isSuccessor(MBB)) {
371 // Find the first def in the self loop MBB.
372 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
373 if (DefInst.getParent() != MBB) {
374 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
375 return true;
376 } else {
377 if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef))
378 SelfLoopDef = &DefInst;
381 if (!SelfLoopDef) {
382 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
383 return true;
387 // See if the first \p Limit uses of the register are all in the current
388 // block.
389 static const unsigned Limit = 8;
390 unsigned C = 0;
391 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
392 if (UseInst.getParent() != MBB || ++C >= Limit) {
393 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
394 // Cannot be live-out if there are no successors.
395 return !MBB->succ_empty();
398 if (SelfLoopDef) {
399 // Try to handle some simple cases to avoid spilling and reloading every
400 // value inside a self looping block.
401 if (SelfLoopDef == &UseInst ||
402 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
403 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
404 return true;
409 return false;
412 /// Returns false if \p VirtReg is known to not be live into the current block.
413 bool RegAllocFast::mayLiveIn(Register VirtReg) {
414 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
415 return !MBB->pred_empty();
417 // See if the first \p Limit def of the register are all in the current block.
418 static const unsigned Limit = 8;
419 unsigned C = 0;
420 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
421 if (DefInst.getParent() != MBB || ++C >= Limit) {
422 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
423 return !MBB->pred_empty();
427 return false;
430 /// Insert spill instruction for \p AssignedReg before \p Before. Update
431 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
432 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
433 MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
434 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
435 << " in " << printReg(AssignedReg, TRI));
436 int FI = getStackSpaceFor(VirtReg);
437 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
439 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
440 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI,
441 VirtReg);
442 ++NumStores;
444 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
446 // When we spill a virtual register, we will have spill instructions behind
447 // every definition of it, meaning we can switch all the DBG_VALUEs over
448 // to just reference the stack slot.
449 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
450 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
451 SpilledOperandsMap;
452 for (MachineOperand *MO : LRIDbgOperands)
453 SpilledOperandsMap[MO->getParent()].push_back(MO);
454 for (auto MISpilledOperands : SpilledOperandsMap) {
455 MachineInstr &DBG = *MISpilledOperands.first;
456 // We don't have enough support for tracking operands of DBG_VALUE_LISTs.
457 if (DBG.isDebugValueList())
458 continue;
459 MachineInstr *NewDV = buildDbgValueForSpill(
460 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
461 assert(NewDV->getParent() == MBB && "dangling parent pointer");
462 (void)NewDV;
463 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
465 if (LiveOut) {
466 // We need to insert a DBG_VALUE at the end of the block if the spill slot
467 // is live out, but there is another use of the value after the
468 // spill. This will allow LiveDebugValues to see the correct live out
469 // value to propagate to the successors.
470 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
471 MBB->insert(FirstTerm, ClonedDV);
472 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
475 // Rewrite unassigned dbg_values to use the stack slot.
476 // TODO We can potentially do this for list debug values as well if we know
477 // how the dbg_values are getting unassigned.
478 if (DBG.isNonListDebugValue()) {
479 MachineOperand &MO = DBG.getDebugOperand(0);
480 if (MO.isReg() && MO.getReg() == 0) {
481 updateDbgValueForSpill(DBG, FI, 0);
485 // Now this register is spilled there is should not be any DBG_VALUE
486 // pointing to this register because they are all pointing to spilled value
487 // now.
488 LRIDbgOperands.clear();
491 /// Insert reload instruction for \p PhysReg before \p Before.
492 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
493 MCPhysReg PhysReg) {
494 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
495 << printReg(PhysReg, TRI) << '\n');
496 int FI = getStackSpaceFor(VirtReg);
497 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
498 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg);
499 ++NumLoads;
502 /// Get basic block begin insertion point.
503 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
504 /// instructions marking the begin of a basic block. This means we must insert
505 /// new instructions after such labels...
506 MachineBasicBlock::iterator
507 RegAllocFast::getMBBBeginInsertionPoint(
508 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
509 MachineBasicBlock::iterator I = MBB.begin();
510 while (I != MBB.end()) {
511 if (I->isLabel()) {
512 ++I;
513 continue;
516 // Most reloads should be inserted after prolog instructions.
517 if (!TII->isBasicBlockPrologue(*I))
518 break;
520 // However if a prolog instruction reads a register that needs to be
521 // reloaded, the reload should be inserted before the prolog.
522 for (MachineOperand &MO : I->operands()) {
523 if (MO.isReg())
524 PrologLiveIns.insert(MO.getReg());
527 ++I;
530 return I;
533 /// Reload all currently assigned virtual registers.
534 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
535 if (LiveVirtRegs.empty())
536 return;
538 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
539 MCPhysReg Reg = P.PhysReg;
540 // Set state to live-in. This possibly overrides mappings to virtual
541 // registers but we don't care anymore at this point.
542 setPhysRegState(Reg, regLiveIn);
546 SmallSet<Register, 2> PrologLiveIns;
548 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
549 // of spilling here is deterministic, if arbitrary.
550 MachineBasicBlock::iterator InsertBefore
551 = getMBBBeginInsertionPoint(MBB, PrologLiveIns);
552 for (const LiveReg &LR : LiveVirtRegs) {
553 MCPhysReg PhysReg = LR.PhysReg;
554 if (PhysReg == 0)
555 continue;
557 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
558 if (RegUnitStates[FirstUnit] == regLiveIn)
559 continue;
561 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
562 "no reload in start block. Missing vreg def?");
564 if (PrologLiveIns.count(PhysReg)) {
565 // FIXME: Theoretically this should use an insert point skipping labels
566 // but I'm not sure how labels should interact with prolog instruction
567 // that need reloads.
568 reload(MBB.begin(), LR.VirtReg, PhysReg);
569 } else
570 reload(InsertBefore, LR.VirtReg, PhysReg);
572 LiveVirtRegs.clear();
575 /// Handle the direct use of a physical register. Check that the register is
576 /// not used by a virtreg. Kill the physreg, marking it free. This may add
577 /// implicit kills to MO->getParent() and invalidate MO.
578 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
579 assert(Register::isPhysicalRegister(Reg) && "expected physreg");
580 bool displacedAny = displacePhysReg(MI, Reg);
581 setPhysRegState(Reg, regPreAssigned);
582 markRegUsedInInstr(Reg);
583 return displacedAny;
586 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
587 bool displacedAny = displacePhysReg(MI, Reg);
588 setPhysRegState(Reg, regPreAssigned);
589 return displacedAny;
592 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
593 /// similar to defineVirtReg except the physreg is reserved instead of
594 /// allocated.
595 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
596 bool displacedAny = false;
598 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
599 switch (unsigned VirtReg = RegUnitStates[Unit]) {
600 default: {
601 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
602 assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
603 MachineBasicBlock::iterator ReloadBefore =
604 std::next((MachineBasicBlock::iterator)MI.getIterator());
605 reload(ReloadBefore, VirtReg, LRI->PhysReg);
607 setPhysRegState(LRI->PhysReg, regFree);
608 LRI->PhysReg = 0;
609 LRI->Reloaded = true;
610 displacedAny = true;
611 break;
613 case regPreAssigned:
614 RegUnitStates[Unit] = regFree;
615 displacedAny = true;
616 break;
617 case regFree:
618 break;
621 return displacedAny;
624 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
625 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
627 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
628 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
629 case regFree:
630 LLVM_DEBUG(dbgs() << '\n');
631 return;
632 case regPreAssigned:
633 LLVM_DEBUG(dbgs() << '\n');
634 setPhysRegState(PhysReg, regFree);
635 return;
636 default: {
637 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
638 assert(LRI != LiveVirtRegs.end());
639 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
640 setPhysRegState(LRI->PhysReg, regFree);
641 LRI->PhysReg = 0;
643 return;
647 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
648 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
649 /// disabled - it can be allocated directly.
650 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
651 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
652 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
653 switch (unsigned VirtReg = RegUnitStates[Unit]) {
654 case regFree:
655 break;
656 case regPreAssigned:
657 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
658 << printReg(PhysReg, TRI) << '\n');
659 return spillImpossible;
660 default: {
661 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
662 findLiveVirtReg(VirtReg)->LiveOut;
663 return SureSpill ? spillClean : spillDirty;
667 return 0;
670 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
671 Register VirtReg, MCPhysReg Reg) {
672 auto UDBGValIter = DanglingDbgValues.find(VirtReg);
673 if (UDBGValIter == DanglingDbgValues.end())
674 return;
676 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
677 for (MachineInstr *DbgValue : Dangling) {
678 assert(DbgValue->isDebugValue());
679 if (!DbgValue->hasDebugOperandForReg(VirtReg))
680 continue;
682 // Test whether the physreg survives from the definition to the DBG_VALUE.
683 MCPhysReg SetToReg = Reg;
684 unsigned Limit = 20;
685 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
686 E = DbgValue->getIterator(); I != E; ++I) {
687 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
688 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
689 << '\n');
690 SetToReg = 0;
691 break;
694 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
695 MO.setReg(SetToReg);
696 if (SetToReg != 0)
697 MO.setIsRenamable();
700 Dangling.clear();
703 /// This method updates local state so that we know that PhysReg is the
704 /// proper container for VirtReg now. The physical register must not be used
705 /// for anything else when this is called.
706 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
707 MCPhysReg PhysReg) {
708 Register VirtReg = LR.VirtReg;
709 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
710 << printReg(PhysReg, TRI) << '\n');
711 assert(LR.PhysReg == 0 && "Already assigned a physreg");
712 assert(PhysReg != 0 && "Trying to assign no register");
713 LR.PhysReg = PhysReg;
714 setPhysRegState(PhysReg, VirtReg);
716 assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
719 static bool isCoalescable(const MachineInstr &MI) {
720 return MI.isFullCopy();
723 Register RegAllocFast::traceCopyChain(Register Reg) const {
724 static const unsigned ChainLengthLimit = 3;
725 unsigned C = 0;
726 do {
727 if (Reg.isPhysical())
728 return Reg;
729 assert(Reg.isVirtual());
731 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
732 if (!VRegDef || !isCoalescable(*VRegDef))
733 return 0;
734 Reg = VRegDef->getOperand(1).getReg();
735 } while (++C <= ChainLengthLimit);
736 return 0;
739 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
740 /// chain of copies to check whether we reach a physical register we can
741 /// coalesce with.
742 Register RegAllocFast::traceCopies(Register VirtReg) const {
743 static const unsigned DefLimit = 3;
744 unsigned C = 0;
745 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
746 if (isCoalescable(MI)) {
747 Register Reg = MI.getOperand(1).getReg();
748 Reg = traceCopyChain(Reg);
749 if (Reg.isValid())
750 return Reg;
753 if (++C >= DefLimit)
754 break;
756 return Register();
759 /// Allocates a physical register for VirtReg.
760 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
761 Register Hint0, bool LookAtPhysRegUses) {
762 const Register VirtReg = LR.VirtReg;
763 assert(LR.PhysReg == 0);
765 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
766 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
767 << " in class " << TRI->getRegClassName(&RC)
768 << " with hint " << printReg(Hint0, TRI) << '\n');
770 // Take hint when possible.
771 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
772 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
773 // Take hint if the register is currently free.
774 if (isPhysRegFree(Hint0)) {
775 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
776 << '\n');
777 assignVirtToPhysReg(MI, LR, Hint0);
778 return;
779 } else {
780 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
781 << " occupied\n");
783 } else {
784 Hint0 = Register();
788 // Try other hint.
789 Register Hint1 = traceCopies(VirtReg);
790 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
791 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
792 // Take hint if the register is currently free.
793 if (isPhysRegFree(Hint1)) {
794 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
795 << '\n');
796 assignVirtToPhysReg(MI, LR, Hint1);
797 return;
798 } else {
799 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
800 << " occupied\n");
802 } else {
803 Hint1 = Register();
806 MCPhysReg BestReg = 0;
807 unsigned BestCost = spillImpossible;
808 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
809 for (MCPhysReg PhysReg : AllocationOrder) {
810 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
811 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
812 LLVM_DEBUG(dbgs() << "already used in instr.\n");
813 continue;
816 unsigned Cost = calcSpillCost(PhysReg);
817 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
818 // Immediate take a register with cost 0.
819 if (Cost == 0) {
820 assignVirtToPhysReg(MI, LR, PhysReg);
821 return;
824 if (PhysReg == Hint0 || PhysReg == Hint1)
825 Cost -= spillPrefBonus;
827 if (Cost < BestCost) {
828 BestReg = PhysReg;
829 BestCost = Cost;
833 if (!BestReg) {
834 // Nothing we can do: Report an error and keep going with an invalid
835 // allocation.
836 if (MI.isInlineAsm())
837 MI.emitError("inline assembly requires more registers than available");
838 else
839 MI.emitError("ran out of registers during register allocation");
841 LR.Error = true;
842 LR.PhysReg = 0;
843 return;
846 displacePhysReg(MI, BestReg);
847 assignVirtToPhysReg(MI, LR, BestReg);
850 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
851 assert(MO.isUndef() && "expected undef use");
852 Register VirtReg = MO.getReg();
853 assert(VirtReg.isVirtual() && "Expected virtreg");
854 if (!shouldAllocateRegister(VirtReg))
855 return;
857 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
858 MCPhysReg PhysReg;
859 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
860 PhysReg = LRI->PhysReg;
861 } else {
862 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
863 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
864 assert(!AllocationOrder.empty() && "Allocation order must not be empty");
865 PhysReg = AllocationOrder[0];
868 unsigned SubRegIdx = MO.getSubReg();
869 if (SubRegIdx != 0) {
870 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
871 MO.setSubReg(0);
873 MO.setReg(PhysReg);
874 MO.setIsRenamable(true);
877 /// Variation of defineVirtReg() with special handling for livethrough regs
878 /// (tied or earlyclobber) that may interfere with preassigned uses.
879 /// \return true if MI's MachineOperands were re-arranged/invalidated.
880 bool RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
881 Register VirtReg) {
882 if (!shouldAllocateRegister(VirtReg))
883 return false;
884 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
885 if (LRI != LiveVirtRegs.end()) {
886 MCPhysReg PrevReg = LRI->PhysReg;
887 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
888 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
889 << " (tied/earlyclobber resolution)\n");
890 freePhysReg(PrevReg);
891 LRI->PhysReg = 0;
892 allocVirtReg(MI, *LRI, 0, true);
893 MachineBasicBlock::iterator InsertBefore =
894 std::next((MachineBasicBlock::iterator)MI.getIterator());
895 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
896 << printReg(PrevReg, TRI) << '\n');
897 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
898 TII->get(TargetOpcode::COPY), PrevReg)
899 .addReg(LRI->PhysReg, llvm::RegState::Kill);
901 MachineOperand &MO = MI.getOperand(OpNum);
902 if (MO.getSubReg() && !MO.isUndef()) {
903 LRI->LastUse = &MI;
906 return defineVirtReg(MI, OpNum, VirtReg, true);
909 /// Allocates a register for VirtReg definition. Typically the register is
910 /// already assigned from a use of the virtreg, however we still need to
911 /// perform an allocation if:
912 /// - It is a dead definition without any uses.
913 /// - The value is live out and all uses are in different basic blocks.
915 /// \return true if MI's MachineOperands were re-arranged/invalidated.
916 bool RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
917 Register VirtReg, bool LookAtPhysRegUses) {
918 assert(VirtReg.isVirtual() && "Not a virtual register");
919 if (!shouldAllocateRegister(VirtReg))
920 return false;
921 MachineOperand &MO = MI.getOperand(OpNum);
922 LiveRegMap::iterator LRI;
923 bool New;
924 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
925 if (New) {
926 if (!MO.isDead()) {
927 if (mayLiveOut(VirtReg)) {
928 LRI->LiveOut = true;
929 } else {
930 // It is a dead def without the dead flag; add the flag now.
931 MO.setIsDead(true);
935 if (LRI->PhysReg == 0)
936 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
937 else {
938 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
939 "TODO: preassign mismatch");
940 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
941 << " use existing assignment to "
942 << printReg(LRI->PhysReg, TRI) << '\n');
945 MCPhysReg PhysReg = LRI->PhysReg;
946 assert(PhysReg != 0 && "Register not assigned");
947 if (LRI->Reloaded || LRI->LiveOut) {
948 if (!MI.isImplicitDef()) {
949 MachineBasicBlock::iterator SpillBefore =
950 std::next((MachineBasicBlock::iterator)MI.getIterator());
951 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
952 << LRI->Reloaded << '\n');
953 bool Kill = LRI->LastUse == nullptr;
954 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
956 // We need to place additional spills for each indirect destination of an
957 // INLINEASM_BR.
958 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
959 int FI = StackSlotForVirtReg[VirtReg];
960 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
961 for (MachineOperand &MO : MI.operands()) {
962 if (MO.isMBB()) {
963 MachineBasicBlock *Succ = MO.getMBB();
964 TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill,
965 FI, &RC, TRI, VirtReg);
966 ++NumStores;
967 Succ->addLiveIn(PhysReg);
972 LRI->LastUse = nullptr;
974 LRI->LiveOut = false;
975 LRI->Reloaded = false;
977 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
978 BundleVirtRegsMap[VirtReg] = PhysReg;
980 markRegUsedInInstr(PhysReg);
981 return setPhysReg(MI, MO, PhysReg);
984 /// Allocates a register for a VirtReg use.
985 /// \return true if MI's MachineOperands were re-arranged/invalidated.
986 bool RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
987 Register VirtReg) {
988 assert(VirtReg.isVirtual() && "Not a virtual register");
989 if (!shouldAllocateRegister(VirtReg))
990 return false;
991 MachineOperand &MO = MI.getOperand(OpNum);
992 LiveRegMap::iterator LRI;
993 bool New;
994 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
995 if (New) {
996 MachineOperand &MO = MI.getOperand(OpNum);
997 if (!MO.isKill()) {
998 if (mayLiveOut(VirtReg)) {
999 LRI->LiveOut = true;
1000 } else {
1001 // It is a last (killing) use without the kill flag; add the flag now.
1002 MO.setIsKill(true);
1005 } else {
1006 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
1009 // If necessary allocate a register.
1010 if (LRI->PhysReg == 0) {
1011 assert(!MO.isTied() && "tied op should be allocated");
1012 Register Hint;
1013 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
1014 Hint = MI.getOperand(0).getReg();
1015 if (Hint.isVirtual()) {
1016 assert(!shouldAllocateRegister(Hint));
1017 Hint = Register();
1018 } else {
1019 assert(Hint.isPhysical() &&
1020 "Copy destination should already be assigned");
1023 allocVirtReg(MI, *LRI, Hint, false);
1024 if (LRI->Error) {
1025 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1026 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
1027 return setPhysReg(MI, MO, *AllocationOrder.begin());
1031 LRI->LastUse = &MI;
1033 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1034 BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
1036 markRegUsedInInstr(LRI->PhysReg);
1037 return setPhysReg(MI, MO, LRI->PhysReg);
1040 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs.
1041 /// \return true if MI's MachineOperands were re-arranged/invalidated.
1042 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
1043 MCPhysReg PhysReg) {
1044 if (!MO.getSubReg()) {
1045 MO.setReg(PhysReg);
1046 MO.setIsRenamable(true);
1047 return false;
1050 // Handle subregister index.
1051 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
1052 MO.setIsRenamable(true);
1053 // Note: We leave the subreg number around a little longer in case of defs.
1054 // This is so that the register freeing logic in allocateInstruction can still
1055 // recognize this as subregister defs. The code there will clear the number.
1056 if (!MO.isDef())
1057 MO.setSubReg(0);
1059 // A kill flag implies killing the full register. Add corresponding super
1060 // register kill.
1061 if (MO.isKill()) {
1062 MI.addRegisterKilled(PhysReg, TRI, true);
1063 // Conservatively assume implicit MOs were re-arranged
1064 return true;
1067 // A <def,read-undef> of a sub-register requires an implicit def of the full
1068 // register.
1069 if (MO.isDef() && MO.isUndef()) {
1070 if (MO.isDead())
1071 MI.addRegisterDead(PhysReg, TRI, true);
1072 else
1073 MI.addRegisterDefined(PhysReg, TRI);
1074 // Conservatively assume implicit MOs were re-arranged
1075 return true;
1077 return false;
1080 #ifndef NDEBUG
1082 void RegAllocFast::dumpState() const {
1083 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
1084 ++Unit) {
1085 switch (unsigned VirtReg = RegUnitStates[Unit]) {
1086 case regFree:
1087 break;
1088 case regPreAssigned:
1089 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1090 break;
1091 case regLiveIn:
1092 llvm_unreachable("Should not have regLiveIn in map");
1093 default: {
1094 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
1095 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1096 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1097 if (I->LiveOut || I->Reloaded) {
1098 dbgs() << '[';
1099 if (I->LiveOut) dbgs() << 'O';
1100 if (I->Reloaded) dbgs() << 'R';
1101 dbgs() << ']';
1103 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1104 break;
1108 dbgs() << '\n';
1109 // Check that LiveVirtRegs is the inverse.
1110 for (const LiveReg &LR : LiveVirtRegs) {
1111 Register VirtReg = LR.VirtReg;
1112 assert(VirtReg.isVirtual() && "Bad map key");
1113 MCPhysReg PhysReg = LR.PhysReg;
1114 if (PhysReg != 0) {
1115 assert(Register::isPhysicalRegister(PhysReg) &&
1116 "mapped to physreg");
1117 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1118 assert(RegUnitStates[Unit] == VirtReg && "inverse map valid");
1123 #endif
1125 /// Count number of defs consumed from each register class by \p Reg
1126 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
1127 Register Reg) const {
1128 assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1130 if (Reg.isVirtual()) {
1131 if (!shouldAllocateRegister(Reg))
1132 return;
1133 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1134 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1135 RCIdx != RCIdxEnd; ++RCIdx) {
1136 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1137 // FIXME: Consider aliasing sub/super registers.
1138 if (OpRC->hasSubClassEq(IdxRC))
1139 ++RegClassDefCounts[RCIdx];
1142 return;
1145 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1146 RCIdx != RCIdxEnd; ++RCIdx) {
1147 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1148 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1149 if (IdxRC->contains(*Alias)) {
1150 ++RegClassDefCounts[RCIdx];
1151 break;
1157 /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands
1158 /// that are to be allocated. Those are ordered in a way that small classes,
1159 /// early clobbers and livethroughs are allocated first.
1160 void RegAllocFast::findAndSortDefOperandIndexes(const MachineInstr &MI) {
1161 DefOperandIndexes.clear();
1163 // Track number of defs which may consume a register from the class.
1164 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1165 assert(RegClassDefCounts[0] == 0);
1167 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1168 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1169 const MachineOperand &MO = MI.getOperand(I);
1170 if (!MO.isReg())
1171 continue;
1172 Register Reg = MO.getReg();
1173 if (MO.readsReg()) {
1174 if (Reg.isPhysical()) {
1175 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n');
1176 markPhysRegUsedInInstr(Reg);
1180 if (MO.isDef()) {
1181 if (Reg.isVirtual() && shouldAllocateRegister(Reg))
1182 DefOperandIndexes.push_back(I);
1184 addRegClassDefCounts(RegClassDefCounts, Reg);
1188 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
1189 const MachineOperand &MO0 = MI.getOperand(I0);
1190 const MachineOperand &MO1 = MI.getOperand(I1);
1191 Register Reg0 = MO0.getReg();
1192 Register Reg1 = MO1.getReg();
1193 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
1194 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
1196 // Identify regclass that are easy to use up completely just in this
1197 // instruction.
1198 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
1199 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
1201 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1202 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1203 if (SmallClass0 > SmallClass1)
1204 return true;
1205 if (SmallClass0 < SmallClass1)
1206 return false;
1208 // Allocate early clobbers and livethrough operands first.
1209 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1210 (MO0.getSubReg() == 0 && !MO0.isUndef());
1211 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1212 (MO1.getSubReg() == 0 && !MO1.isUndef());
1213 if (Livethrough0 > Livethrough1)
1214 return true;
1215 if (Livethrough0 < Livethrough1)
1216 return false;
1218 // Tie-break rule: operand index.
1219 return I0 < I1;
1223 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1224 // The basic algorithm here is:
1225 // 1. Mark registers of def operands as free
1226 // 2. Allocate registers to use operands and place reload instructions for
1227 // registers displaced by the allocation.
1229 // However we need to handle some corner cases:
1230 // - pre-assigned defs and uses need to be handled before the other def/use
1231 // operands are processed to avoid the allocation heuristics clashing with
1232 // the pre-assignment.
1233 // - The "free def operands" step has to come last instead of first for tied
1234 // operands and early-clobbers.
1236 UsedInInstr.clear();
1237 RegMasks.clear();
1238 BundleVirtRegsMap.clear();
1240 auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) {
1241 assert(MO.isTied());
1242 unsigned TiedIdx = MI.findTiedOperandIdx(Idx);
1243 const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
1244 return TiedMO.isUndef();
1246 // Scan for special cases; Apply pre-assigned register defs to state.
1247 bool HasPhysRegUse = false;
1248 bool HasRegMask = false;
1249 bool HasVRegDef = false;
1250 bool HasDef = false;
1251 bool HasEarlyClobber = false;
1252 bool NeedToAssignLiveThroughs = false;
1253 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1254 MachineOperand &MO = MI.getOperand(I);
1255 if (MO.isReg()) {
1256 Register Reg = MO.getReg();
1257 if (Reg.isVirtual()) {
1258 if (!shouldAllocateRegister(Reg))
1259 continue;
1260 if (MO.isDef()) {
1261 HasDef = true;
1262 HasVRegDef = true;
1263 if (MO.isEarlyClobber()) {
1264 HasEarlyClobber = true;
1265 NeedToAssignLiveThroughs = true;
1267 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) ||
1268 (MO.getSubReg() != 0 && !MO.isUndef()))
1269 NeedToAssignLiveThroughs = true;
1271 } else if (Reg.isPhysical()) {
1272 if (!MRI->isReserved(Reg)) {
1273 if (MO.isDef()) {
1274 HasDef = true;
1275 bool displacedAny = definePhysReg(MI, Reg);
1276 if (MO.isEarlyClobber())
1277 HasEarlyClobber = true;
1278 if (!displacedAny)
1279 MO.setIsDead(true);
1281 if (MO.readsReg())
1282 HasPhysRegUse = true;
1285 } else if (MO.isRegMask()) {
1286 HasRegMask = true;
1287 RegMasks.push_back(MO.getRegMask());
1291 // Allocate virtreg defs.
1292 if (HasDef) {
1293 if (HasVRegDef) {
1294 // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop
1295 // multiple times to ensure no operand is missed.
1296 bool ReArrangedImplicitOps = true;
1298 // Special handling for early clobbers, tied operands or subregister defs:
1299 // Compared to "normal" defs these:
1300 // - Must not use a register that is pre-assigned for a use operand.
1301 // - In order to solve tricky inline assembly constraints we change the
1302 // heuristic to figure out a good operand order before doing
1303 // assignments.
1304 if (NeedToAssignLiveThroughs) {
1305 PhysRegUses.clear();
1307 while (ReArrangedImplicitOps) {
1308 ReArrangedImplicitOps = false;
1309 findAndSortDefOperandIndexes(MI);
1310 for (uint16_t OpIdx : DefOperandIndexes) {
1311 MachineOperand &MO = MI.getOperand(OpIdx);
1312 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1313 unsigned Reg = MO.getReg();
1314 if (MO.isEarlyClobber() ||
1315 (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) ||
1316 (MO.getSubReg() && !MO.isUndef())) {
1317 ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg);
1318 } else {
1319 ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg);
1321 if (ReArrangedImplicitOps) {
1322 // Implicit operands of MI were re-arranged,
1323 // re-compute DefOperandIndexes.
1324 break;
1328 } else {
1329 // Assign virtual register defs.
1330 while (ReArrangedImplicitOps) {
1331 ReArrangedImplicitOps = false;
1332 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1333 MachineOperand &MO = MI.getOperand(I);
1334 if (!MO.isReg() || !MO.isDef())
1335 continue;
1336 Register Reg = MO.getReg();
1337 if (Reg.isVirtual()) {
1338 ReArrangedImplicitOps = defineVirtReg(MI, I, Reg);
1339 if (ReArrangedImplicitOps) {
1340 break;
1348 // Free registers occupied by defs.
1349 // Iterate operands in reverse order, so we see the implicit super register
1350 // defs first (we added them earlier in case of <def,read-undef>).
1351 for (signed I = MI.getNumOperands() - 1; I >= 0; --I) {
1352 MachineOperand &MO = MI.getOperand(I);
1353 if (!MO.isReg() || !MO.isDef())
1354 continue;
1356 Register Reg = MO.getReg();
1358 // subreg defs don't free the full register. We left the subreg number
1359 // around as a marker in setPhysReg() to recognize this case here.
1360 if (Reg.isPhysical() && MO.getSubReg() != 0) {
1361 MO.setSubReg(0);
1362 continue;
1365 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
1366 "tied def assigned to clobbered register");
1368 // Do not free tied operands and early clobbers.
1369 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber())
1370 continue;
1371 if (!Reg)
1372 continue;
1373 if (Reg.isVirtual()) {
1374 assert(!shouldAllocateRegister(Reg));
1375 continue;
1377 assert(Reg.isPhysical());
1378 if (MRI->isReserved(Reg))
1379 continue;
1380 freePhysReg(Reg);
1381 unmarkRegUsedInInstr(Reg);
1385 // Displace clobbered registers.
1386 if (HasRegMask) {
1387 assert(!RegMasks.empty() && "expected RegMask");
1388 // MRI bookkeeping.
1389 for (const auto *RM : RegMasks)
1390 MRI->addPhysRegsUsedFromRegMask(RM);
1392 // Displace clobbered registers.
1393 for (const LiveReg &LR : LiveVirtRegs) {
1394 MCPhysReg PhysReg = LR.PhysReg;
1395 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
1396 displacePhysReg(MI, PhysReg);
1400 // Apply pre-assigned register uses to state.
1401 if (HasPhysRegUse) {
1402 for (MachineOperand &MO : MI.operands()) {
1403 if (!MO.isReg() || !MO.readsReg())
1404 continue;
1405 Register Reg = MO.getReg();
1406 if (!Reg.isPhysical())
1407 continue;
1408 if (MRI->isReserved(Reg))
1409 continue;
1410 bool displacedAny = usePhysReg(MI, Reg);
1411 if (!displacedAny)
1412 MO.setIsKill(true);
1416 // Allocate virtreg uses and insert reloads as necessary.
1417 // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple
1418 // times to ensure no operand is missed.
1419 bool HasUndefUse = false;
1420 bool ReArrangedImplicitMOs = true;
1421 while (ReArrangedImplicitMOs) {
1422 ReArrangedImplicitMOs = false;
1423 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1424 MachineOperand &MO = MI.getOperand(I);
1425 if (!MO.isReg() || !MO.isUse())
1426 continue;
1427 Register Reg = MO.getReg();
1428 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1429 continue;
1431 if (MO.isUndef()) {
1432 HasUndefUse = true;
1433 continue;
1436 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1437 // the def block (removing the vreg uses).
1438 mayLiveIn(Reg);
1440 assert(!MO.isInternalRead() && "Bundles not supported");
1441 assert(MO.readsReg() && "reading use");
1442 ReArrangedImplicitMOs = useVirtReg(MI, I, Reg);
1443 if (ReArrangedImplicitMOs)
1444 break;
1448 // Allocate undef operands. This is a separate step because in a situation
1449 // like ` = OP undef %X, %X` both operands need the same register assign
1450 // so we should perform the normal assignment first.
1451 if (HasUndefUse) {
1452 for (MachineOperand &MO : MI.all_uses()) {
1453 Register Reg = MO.getReg();
1454 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1455 continue;
1457 assert(MO.isUndef() && "Should only have undef virtreg uses left");
1458 allocVirtRegUndef(MO);
1462 // Free early clobbers.
1463 if (HasEarlyClobber) {
1464 for (MachineOperand &MO : llvm::reverse(MI.all_defs())) {
1465 if (!MO.isEarlyClobber())
1466 continue;
1467 assert(!MO.getSubReg() && "should be already handled in def processing");
1469 Register Reg = MO.getReg();
1470 if (!Reg)
1471 continue;
1472 if (Reg.isVirtual()) {
1473 assert(!shouldAllocateRegister(Reg));
1474 continue;
1476 assert(Reg.isPhysical() && "should have register assigned");
1478 // We sometimes get odd situations like:
1479 // early-clobber %x0 = INSTRUCTION %x0
1480 // which is semantically questionable as the early-clobber should
1481 // apply before the use. But in practice we consider the use to
1482 // happen before the early clobber now. Don't free the early clobber
1483 // register in this case.
1484 if (MI.readsRegister(Reg, TRI))
1485 continue;
1487 freePhysReg(Reg);
1491 LLVM_DEBUG(dbgs() << "<< " << MI);
1492 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
1493 MI.getNumOperands() == 2) {
1494 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1495 Coalesced.push_back(&MI);
1499 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1500 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1501 // mostly constants and frame indices.
1502 for (Register Reg : MI.getUsedDebugRegs()) {
1503 if (!Reg.isVirtual())
1504 continue;
1505 if (!shouldAllocateRegister(Reg))
1506 continue;
1508 // Already spilled to a stackslot?
1509 int SS = StackSlotForVirtReg[Reg];
1510 if (SS != -1) {
1511 // Modify DBG_VALUE now that the value is in a spill slot.
1512 updateDbgValueForSpill(MI, SS, Reg);
1513 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1514 continue;
1517 // See if this virtual register has already been allocated to a physical
1518 // register or spilled to a stack slot.
1519 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1520 SmallVector<MachineOperand *> DbgOps;
1521 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
1522 DbgOps.push_back(&Op);
1524 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1525 // Update every use of Reg within MI.
1526 for (auto &RegMO : DbgOps)
1527 setPhysReg(MI, *RegMO, LRI->PhysReg);
1528 } else {
1529 DanglingDbgValues[Reg].push_back(&MI);
1532 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1533 // that future spills of Reg will have DBG_VALUEs.
1534 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
1538 void RegAllocFast::handleBundle(MachineInstr &MI) {
1539 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1540 ++BundledMI;
1541 while (BundledMI->isBundledWithPred()) {
1542 for (MachineOperand &MO : BundledMI->operands()) {
1543 if (!MO.isReg())
1544 continue;
1546 Register Reg = MO.getReg();
1547 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1548 continue;
1550 DenseMap<Register, MCPhysReg>::iterator DI;
1551 DI = BundleVirtRegsMap.find(Reg);
1552 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1554 setPhysReg(MI, MO, DI->second);
1557 ++BundledMI;
1561 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1562 this->MBB = &MBB;
1563 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1565 RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
1566 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1568 for (const auto &LiveReg : MBB.liveouts())
1569 setPhysRegState(LiveReg.PhysReg, regPreAssigned);
1571 Coalesced.clear();
1573 // Traverse block in reverse order allocating instructions one by one.
1574 for (MachineInstr &MI : reverse(MBB)) {
1575 LLVM_DEBUG(
1576 dbgs() << "\n>> " << MI << "Regs:";
1577 dumpState()
1580 // Special handling for debug values. Note that they are not allowed to
1581 // affect codegen of the other instructions in any way.
1582 if (MI.isDebugValue()) {
1583 handleDebugValue(MI);
1584 continue;
1587 allocateInstruction(MI);
1589 // Once BUNDLE header is assigned registers, same assignments need to be
1590 // done for bundled MIs.
1591 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1592 handleBundle(MI);
1596 LLVM_DEBUG(
1597 dbgs() << "Begin Regs:";
1598 dumpState()
1601 // Spill all physical registers holding virtual registers now.
1602 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1603 reloadAtBegin(MBB);
1605 // Erase all the coalesced copies. We are delaying it until now because
1606 // LiveVirtRegs might refer to the instrs.
1607 for (MachineInstr *MI : Coalesced)
1608 MBB.erase(MI);
1609 NumCoalesced += Coalesced.size();
1611 for (auto &UDBGPair : DanglingDbgValues) {
1612 for (MachineInstr *DbgValue : UDBGPair.second) {
1613 assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1614 // Nothing to do if the vreg was spilled in the meantime.
1615 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
1616 continue;
1617 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1618 << '\n');
1619 DbgValue->setDebugValueUndef();
1622 DanglingDbgValues.clear();
1624 LLVM_DEBUG(MBB.dump());
1627 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1628 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1629 << "********** Function: " << MF.getName() << '\n');
1630 MRI = &MF.getRegInfo();
1631 const TargetSubtargetInfo &STI = MF.getSubtarget();
1632 TRI = STI.getRegisterInfo();
1633 TII = STI.getInstrInfo();
1634 MFI = &MF.getFrameInfo();
1635 MRI->freezeReservedRegs(MF);
1636 RegClassInfo.runOnMachineFunction(MF);
1637 unsigned NumRegUnits = TRI->getNumRegUnits();
1638 UsedInInstr.clear();
1639 UsedInInstr.setUniverse(NumRegUnits);
1640 PhysRegUses.clear();
1641 PhysRegUses.setUniverse(NumRegUnits);
1643 // initialize the virtual->physical register map to have a 'null'
1644 // mapping for all virtual registers
1645 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1646 StackSlotForVirtReg.resize(NumVirtRegs);
1647 LiveVirtRegs.setUniverse(NumVirtRegs);
1648 MayLiveAcrossBlocks.clear();
1649 MayLiveAcrossBlocks.resize(NumVirtRegs);
1651 // Loop over all of the basic blocks, eliminating virtual register references
1652 for (MachineBasicBlock &MBB : MF)
1653 allocateBasicBlock(MBB);
1655 if (ClearVirtRegs) {
1656 // All machine operands and other references to virtual registers have been
1657 // replaced. Remove the virtual registers.
1658 MRI->clearVirtRegs();
1661 StackSlotForVirtReg.clear();
1662 LiveDbgValueMap.clear();
1663 return true;
1666 FunctionPass *llvm::createFastRegisterAllocator() {
1667 return new RegAllocFast();
1670 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor,
1671 bool ClearVirtRegs) {
1672 return new RegAllocFast(Ftor, ClearVirtRegs);