1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocCommon.h"
32 #include "llvm/CodeGen/RegAllocRegistry.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "regalloc"
52 STATISTIC(NumStores
, "Number of stores added");
53 STATISTIC(NumLoads
, "Number of loads added");
54 STATISTIC(NumCoalesced
, "Number of copies coalesced");
56 // FIXME: Remove this switch when all testcases are fixed!
57 static cl::opt
<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
60 static RegisterRegAlloc
61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator
);
65 class RegAllocFast
: public MachineFunctionPass
{
69 RegAllocFast(const RegClassFilterFunc F
= allocateAllRegClasses
,
70 bool ClearVirtRegs_
= true) :
71 MachineFunctionPass(ID
),
72 ShouldAllocateClass(F
),
73 StackSlotForVirtReg(-1),
74 ClearVirtRegs(ClearVirtRegs_
) {
78 MachineFrameInfo
*MFI
= nullptr;
79 MachineRegisterInfo
*MRI
= nullptr;
80 const TargetRegisterInfo
*TRI
= nullptr;
81 const TargetInstrInfo
*TII
= nullptr;
82 RegisterClassInfo RegClassInfo
;
83 const RegClassFilterFunc ShouldAllocateClass
;
85 /// Basic block currently being allocated.
86 MachineBasicBlock
*MBB
= nullptr;
88 /// Maps virtual regs to the frame index where these values are spilled.
89 IndexedMap
<int, VirtReg2IndexFunctor
> StackSlotForVirtReg
;
93 /// Everything we know about a live virtual register.
95 MachineInstr
*LastUse
= nullptr; ///< Last instr to use reg.
96 Register VirtReg
; ///< Virtual register number.
97 MCPhysReg PhysReg
= 0; ///< Currently held here.
98 bool LiveOut
= false; ///< Register is possibly live out.
99 bool Reloaded
= false; ///< Register was reloaded.
100 bool Error
= false; ///< Could not allocate.
102 explicit LiveReg(Register VirtReg
) : VirtReg(VirtReg
) {}
104 unsigned getSparseSetIndex() const {
105 return Register::virtReg2Index(VirtReg
);
109 using LiveRegMap
= SparseSet
<LiveReg
, identity
<unsigned>, uint16_t>;
110 /// This map contains entries for each virtual register that is currently
111 /// available in a physical register.
112 LiveRegMap LiveVirtRegs
;
114 /// Stores assigned virtual registers present in the bundle MI.
115 DenseMap
<Register
, MCPhysReg
> BundleVirtRegsMap
;
117 DenseMap
<unsigned, SmallVector
<MachineOperand
*, 2>> LiveDbgValueMap
;
118 /// List of DBG_VALUE that we encountered without the vreg being assigned
119 /// because they were placed after the last use of the vreg.
120 DenseMap
<unsigned, SmallVector
<MachineInstr
*, 1>> DanglingDbgValues
;
122 /// Has a bit set for every virtual register for which it was determined
123 /// that it is alive across blocks.
124 BitVector MayLiveAcrossBlocks
;
126 /// State of a register unit.
128 /// A free register is not currently in use and can be allocated
129 /// immediately without checking aliases.
132 /// A pre-assigned register has been assigned before register allocation
133 /// (e.g., setting up a call parameter).
136 /// Used temporarily in reloadAtBegin() to mark register units that are
137 /// live-in to the basic block.
140 /// A register state may also be a virtual register number, indication
141 /// that the physical register is currently allocated to a virtual
142 /// register. In that case, LiveVirtRegs contains the inverse mapping.
145 /// Maps each physical register to a RegUnitState enum or virtual register.
146 std::vector
<unsigned> RegUnitStates
;
148 SmallVector
<MachineInstr
*, 32> Coalesced
;
150 using RegUnitSet
= SparseSet
<uint16_t, identity
<uint16_t>>;
151 /// Set of register units that are used in the current instruction, and so
152 /// cannot be allocated.
153 RegUnitSet UsedInInstr
;
154 RegUnitSet PhysRegUses
;
155 SmallVector
<uint16_t, 8> DefOperandIndexes
;
156 // Register masks attached to the current instruction.
157 SmallVector
<const uint32_t *> RegMasks
;
159 void setPhysRegState(MCPhysReg PhysReg
, unsigned NewState
);
160 bool isPhysRegFree(MCPhysReg PhysReg
) const;
162 /// Mark a physreg as used in this instruction.
163 void markRegUsedInInstr(MCPhysReg PhysReg
) {
164 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
))
165 UsedInInstr
.insert(Unit
);
168 // Check if physreg is clobbered by instruction's regmask(s).
169 bool isClobberedByRegMasks(MCPhysReg PhysReg
) const {
170 return llvm::any_of(RegMasks
, [PhysReg
](const uint32_t *Mask
) {
171 return MachineOperand::clobbersPhysReg(Mask
, PhysReg
);
175 /// Check if a physreg or any of its aliases are used in this instruction.
176 bool isRegUsedInInstr(MCPhysReg PhysReg
, bool LookAtPhysRegUses
) const {
177 if (LookAtPhysRegUses
&& isClobberedByRegMasks(PhysReg
))
179 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
180 if (UsedInInstr
.count(Unit
))
182 if (LookAtPhysRegUses
&& PhysRegUses
.count(Unit
))
188 /// Mark physical register as being used in a register use operand.
189 /// This is only used by the special livethrough handling code.
190 void markPhysRegUsedInInstr(MCPhysReg PhysReg
) {
191 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
))
192 PhysRegUses
.insert(Unit
);
195 /// Remove mark of physical register being used in the instruction.
196 void unmarkRegUsedInInstr(MCPhysReg PhysReg
) {
197 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
))
198 UsedInInstr
.erase(Unit
);
205 spillImpossible
= ~0u
209 StringRef
getPassName() const override
{ return "Fast Register Allocator"; }
211 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
212 AU
.setPreservesCFG();
213 MachineFunctionPass::getAnalysisUsage(AU
);
216 MachineFunctionProperties
getRequiredProperties() const override
{
217 return MachineFunctionProperties().set(
218 MachineFunctionProperties::Property::NoPHIs
);
221 MachineFunctionProperties
getSetProperties() const override
{
223 return MachineFunctionProperties().set(
224 MachineFunctionProperties::Property::NoVRegs
);
227 return MachineFunctionProperties();
230 MachineFunctionProperties
getClearedProperties() const override
{
231 return MachineFunctionProperties().set(
232 MachineFunctionProperties::Property::IsSSA
);
236 bool runOnMachineFunction(MachineFunction
&MF
) override
;
238 void allocateBasicBlock(MachineBasicBlock
&MBB
);
240 void addRegClassDefCounts(std::vector
<unsigned> &RegClassDefCounts
,
243 void findAndSortDefOperandIndexes(const MachineInstr
&MI
);
245 void allocateInstruction(MachineInstr
&MI
);
246 void handleDebugValue(MachineInstr
&MI
);
247 void handleBundle(MachineInstr
&MI
);
249 bool usePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
);
250 bool definePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
);
251 bool displacePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
);
252 void freePhysReg(MCPhysReg PhysReg
);
254 unsigned calcSpillCost(MCPhysReg PhysReg
) const;
256 LiveRegMap::iterator
findLiveVirtReg(Register VirtReg
) {
257 return LiveVirtRegs
.find(Register::virtReg2Index(VirtReg
));
260 LiveRegMap::const_iterator
findLiveVirtReg(Register VirtReg
) const {
261 return LiveVirtRegs
.find(Register::virtReg2Index(VirtReg
));
264 void assignVirtToPhysReg(MachineInstr
&MI
, LiveReg
&, MCPhysReg PhysReg
);
265 void allocVirtReg(MachineInstr
&MI
, LiveReg
&LR
, Register Hint
,
266 bool LookAtPhysRegUses
= false);
267 void allocVirtRegUndef(MachineOperand
&MO
);
268 void assignDanglingDebugValues(MachineInstr
&Def
, Register VirtReg
,
270 bool defineLiveThroughVirtReg(MachineInstr
&MI
, unsigned OpNum
,
272 bool defineVirtReg(MachineInstr
&MI
, unsigned OpNum
, Register VirtReg
,
273 bool LookAtPhysRegUses
= false);
274 bool useVirtReg(MachineInstr
&MI
, unsigned OpNum
, Register VirtReg
);
276 MachineBasicBlock::iterator
277 getMBBBeginInsertionPoint(MachineBasicBlock
&MBB
,
278 SmallSet
<Register
, 2> &PrologLiveIns
) const;
280 void reloadAtBegin(MachineBasicBlock
&MBB
);
281 bool setPhysReg(MachineInstr
&MI
, MachineOperand
&MO
, MCPhysReg PhysReg
);
283 Register
traceCopies(Register VirtReg
) const;
284 Register
traceCopyChain(Register Reg
) const;
286 bool shouldAllocateRegister(const Register Reg
) const;
287 int getStackSpaceFor(Register VirtReg
);
288 void spill(MachineBasicBlock::iterator Before
, Register VirtReg
,
289 MCPhysReg AssignedReg
, bool Kill
, bool LiveOut
);
290 void reload(MachineBasicBlock::iterator Before
, Register VirtReg
,
293 bool mayLiveOut(Register VirtReg
);
294 bool mayLiveIn(Register VirtReg
);
296 void dumpState() const;
299 } // end anonymous namespace
301 char RegAllocFast::ID
= 0;
303 INITIALIZE_PASS(RegAllocFast
, "regallocfast", "Fast Register Allocator", false,
306 bool RegAllocFast::shouldAllocateRegister(const Register Reg
) const {
307 assert(Reg
.isVirtual());
308 const TargetRegisterClass
&RC
= *MRI
->getRegClass(Reg
);
309 return ShouldAllocateClass(*TRI
, RC
);
312 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg
, unsigned NewState
) {
313 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
))
314 RegUnitStates
[Unit
] = NewState
;
317 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg
) const {
318 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
319 if (RegUnitStates
[Unit
] != regFree
)
325 /// This allocates space for the specified virtual register to be held on the
327 int RegAllocFast::getStackSpaceFor(Register VirtReg
) {
328 // Find the location Reg would belong...
329 int SS
= StackSlotForVirtReg
[VirtReg
];
330 // Already has space allocated?
334 // Allocate a new stack object for this spill location...
335 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
336 unsigned Size
= TRI
->getSpillSize(RC
);
337 Align Alignment
= TRI
->getSpillAlign(RC
);
338 int FrameIdx
= MFI
->CreateSpillStackObject(Size
, Alignment
);
341 StackSlotForVirtReg
[VirtReg
] = FrameIdx
;
345 static bool dominates(MachineBasicBlock
&MBB
,
346 MachineBasicBlock::const_iterator A
,
347 MachineBasicBlock::const_iterator B
) {
348 auto MBBEnd
= MBB
.end();
352 MachineBasicBlock::const_iterator I
= MBB
.begin();
353 for (; &*I
!= A
&& &*I
!= B
; ++I
)
359 /// Returns false if \p VirtReg is known to not live out of the current block.
360 bool RegAllocFast::mayLiveOut(Register VirtReg
) {
361 if (MayLiveAcrossBlocks
.test(Register::virtReg2Index(VirtReg
))) {
362 // Cannot be live-out if there are no successors.
363 return !MBB
->succ_empty();
366 const MachineInstr
*SelfLoopDef
= nullptr;
368 // If this block loops back to itself, it is necessary to check whether the
369 // use comes after the def.
370 if (MBB
->isSuccessor(MBB
)) {
371 // Find the first def in the self loop MBB.
372 for (const MachineInstr
&DefInst
: MRI
->def_instructions(VirtReg
)) {
373 if (DefInst
.getParent() != MBB
) {
374 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
377 if (!SelfLoopDef
|| dominates(*MBB
, DefInst
.getIterator(), SelfLoopDef
))
378 SelfLoopDef
= &DefInst
;
382 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
387 // See if the first \p Limit uses of the register are all in the current
389 static const unsigned Limit
= 8;
391 for (const MachineInstr
&UseInst
: MRI
->use_nodbg_instructions(VirtReg
)) {
392 if (UseInst
.getParent() != MBB
|| ++C
>= Limit
) {
393 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
394 // Cannot be live-out if there are no successors.
395 return !MBB
->succ_empty();
399 // Try to handle some simple cases to avoid spilling and reloading every
400 // value inside a self looping block.
401 if (SelfLoopDef
== &UseInst
||
402 !dominates(*MBB
, SelfLoopDef
->getIterator(), UseInst
.getIterator())) {
403 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
412 /// Returns false if \p VirtReg is known to not be live into the current block.
413 bool RegAllocFast::mayLiveIn(Register VirtReg
) {
414 if (MayLiveAcrossBlocks
.test(Register::virtReg2Index(VirtReg
)))
415 return !MBB
->pred_empty();
417 // See if the first \p Limit def of the register are all in the current block.
418 static const unsigned Limit
= 8;
420 for (const MachineInstr
&DefInst
: MRI
->def_instructions(VirtReg
)) {
421 if (DefInst
.getParent() != MBB
|| ++C
>= Limit
) {
422 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
423 return !MBB
->pred_empty();
430 /// Insert spill instruction for \p AssignedReg before \p Before. Update
431 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
432 void RegAllocFast::spill(MachineBasicBlock::iterator Before
, Register VirtReg
,
433 MCPhysReg AssignedReg
, bool Kill
, bool LiveOut
) {
434 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg
, TRI
)
435 << " in " << printReg(AssignedReg
, TRI
));
436 int FI
= getStackSpaceFor(VirtReg
);
437 LLVM_DEBUG(dbgs() << " to stack slot #" << FI
<< '\n');
439 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
440 TII
->storeRegToStackSlot(*MBB
, Before
, AssignedReg
, Kill
, FI
, &RC
, TRI
,
444 MachineBasicBlock::iterator FirstTerm
= MBB
->getFirstTerminator();
446 // When we spill a virtual register, we will have spill instructions behind
447 // every definition of it, meaning we can switch all the DBG_VALUEs over
448 // to just reference the stack slot.
449 SmallVectorImpl
<MachineOperand
*> &LRIDbgOperands
= LiveDbgValueMap
[VirtReg
];
450 SmallMapVector
<MachineInstr
*, SmallVector
<const MachineOperand
*>, 2>
452 for (MachineOperand
*MO
: LRIDbgOperands
)
453 SpilledOperandsMap
[MO
->getParent()].push_back(MO
);
454 for (auto MISpilledOperands
: SpilledOperandsMap
) {
455 MachineInstr
&DBG
= *MISpilledOperands
.first
;
456 // We don't have enough support for tracking operands of DBG_VALUE_LISTs.
457 if (DBG
.isDebugValueList())
459 MachineInstr
*NewDV
= buildDbgValueForSpill(
460 *MBB
, Before
, *MISpilledOperands
.first
, FI
, MISpilledOperands
.second
);
461 assert(NewDV
->getParent() == MBB
&& "dangling parent pointer");
463 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV
);
466 // We need to insert a DBG_VALUE at the end of the block if the spill slot
467 // is live out, but there is another use of the value after the
468 // spill. This will allow LiveDebugValues to see the correct live out
469 // value to propagate to the successors.
470 MachineInstr
*ClonedDV
= MBB
->getParent()->CloneMachineInstr(NewDV
);
471 MBB
->insert(FirstTerm
, ClonedDV
);
472 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
475 // Rewrite unassigned dbg_values to use the stack slot.
476 // TODO We can potentially do this for list debug values as well if we know
477 // how the dbg_values are getting unassigned.
478 if (DBG
.isNonListDebugValue()) {
479 MachineOperand
&MO
= DBG
.getDebugOperand(0);
480 if (MO
.isReg() && MO
.getReg() == 0) {
481 updateDbgValueForSpill(DBG
, FI
, 0);
485 // Now this register is spilled there is should not be any DBG_VALUE
486 // pointing to this register because they are all pointing to spilled value
488 LRIDbgOperands
.clear();
491 /// Insert reload instruction for \p PhysReg before \p Before.
492 void RegAllocFast::reload(MachineBasicBlock::iterator Before
, Register VirtReg
,
494 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg
, TRI
) << " into "
495 << printReg(PhysReg
, TRI
) << '\n');
496 int FI
= getStackSpaceFor(VirtReg
);
497 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
498 TII
->loadRegFromStackSlot(*MBB
, Before
, PhysReg
, FI
, &RC
, TRI
, VirtReg
);
502 /// Get basic block begin insertion point.
503 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
504 /// instructions marking the begin of a basic block. This means we must insert
505 /// new instructions after such labels...
506 MachineBasicBlock::iterator
507 RegAllocFast::getMBBBeginInsertionPoint(
508 MachineBasicBlock
&MBB
, SmallSet
<Register
, 2> &PrologLiveIns
) const {
509 MachineBasicBlock::iterator I
= MBB
.begin();
510 while (I
!= MBB
.end()) {
516 // Most reloads should be inserted after prolog instructions.
517 if (!TII
->isBasicBlockPrologue(*I
))
520 // However if a prolog instruction reads a register that needs to be
521 // reloaded, the reload should be inserted before the prolog.
522 for (MachineOperand
&MO
: I
->operands()) {
524 PrologLiveIns
.insert(MO
.getReg());
533 /// Reload all currently assigned virtual registers.
534 void RegAllocFast::reloadAtBegin(MachineBasicBlock
&MBB
) {
535 if (LiveVirtRegs
.empty())
538 for (MachineBasicBlock::RegisterMaskPair P
: MBB
.liveins()) {
539 MCPhysReg Reg
= P
.PhysReg
;
540 // Set state to live-in. This possibly overrides mappings to virtual
541 // registers but we don't care anymore at this point.
542 setPhysRegState(Reg
, regLiveIn
);
546 SmallSet
<Register
, 2> PrologLiveIns
;
548 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
549 // of spilling here is deterministic, if arbitrary.
550 MachineBasicBlock::iterator InsertBefore
551 = getMBBBeginInsertionPoint(MBB
, PrologLiveIns
);
552 for (const LiveReg
&LR
: LiveVirtRegs
) {
553 MCPhysReg PhysReg
= LR
.PhysReg
;
557 MCRegister FirstUnit
= *TRI
->regunits(PhysReg
).begin();
558 if (RegUnitStates
[FirstUnit
] == regLiveIn
)
561 assert((&MBB
!= &MBB
.getParent()->front() || IgnoreMissingDefs
) &&
562 "no reload in start block. Missing vreg def?");
564 if (PrologLiveIns
.count(PhysReg
)) {
565 // FIXME: Theoretically this should use an insert point skipping labels
566 // but I'm not sure how labels should interact with prolog instruction
567 // that need reloads.
568 reload(MBB
.begin(), LR
.VirtReg
, PhysReg
);
570 reload(InsertBefore
, LR
.VirtReg
, PhysReg
);
572 LiveVirtRegs
.clear();
575 /// Handle the direct use of a physical register. Check that the register is
576 /// not used by a virtreg. Kill the physreg, marking it free. This may add
577 /// implicit kills to MO->getParent() and invalidate MO.
578 bool RegAllocFast::usePhysReg(MachineInstr
&MI
, MCPhysReg Reg
) {
579 assert(Register::isPhysicalRegister(Reg
) && "expected physreg");
580 bool displacedAny
= displacePhysReg(MI
, Reg
);
581 setPhysRegState(Reg
, regPreAssigned
);
582 markRegUsedInInstr(Reg
);
586 bool RegAllocFast::definePhysReg(MachineInstr
&MI
, MCPhysReg Reg
) {
587 bool displacedAny
= displacePhysReg(MI
, Reg
);
588 setPhysRegState(Reg
, regPreAssigned
);
592 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
593 /// similar to defineVirtReg except the physreg is reserved instead of
595 bool RegAllocFast::displacePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
) {
596 bool displacedAny
= false;
598 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
599 switch (unsigned VirtReg
= RegUnitStates
[Unit
]) {
601 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
602 assert(LRI
!= LiveVirtRegs
.end() && "datastructures in sync");
603 MachineBasicBlock::iterator ReloadBefore
=
604 std::next((MachineBasicBlock::iterator
)MI
.getIterator());
605 reload(ReloadBefore
, VirtReg
, LRI
->PhysReg
);
607 setPhysRegState(LRI
->PhysReg
, regFree
);
609 LRI
->Reloaded
= true;
614 RegUnitStates
[Unit
] = regFree
;
624 void RegAllocFast::freePhysReg(MCPhysReg PhysReg
) {
625 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg
, TRI
) << ':');
627 MCRegister FirstUnit
= *TRI
->regunits(PhysReg
).begin();
628 switch (unsigned VirtReg
= RegUnitStates
[FirstUnit
]) {
630 LLVM_DEBUG(dbgs() << '\n');
633 LLVM_DEBUG(dbgs() << '\n');
634 setPhysRegState(PhysReg
, regFree
);
637 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
638 assert(LRI
!= LiveVirtRegs
.end());
639 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI
->VirtReg
, TRI
) << '\n');
640 setPhysRegState(LRI
->PhysReg
, regFree
);
647 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
648 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
649 /// disabled - it can be allocated directly.
650 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
651 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg
) const {
652 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
653 switch (unsigned VirtReg
= RegUnitStates
[Unit
]) {
657 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
658 << printReg(PhysReg
, TRI
) << '\n');
659 return spillImpossible
;
661 bool SureSpill
= StackSlotForVirtReg
[VirtReg
] != -1 ||
662 findLiveVirtReg(VirtReg
)->LiveOut
;
663 return SureSpill
? spillClean
: spillDirty
;
670 void RegAllocFast::assignDanglingDebugValues(MachineInstr
&Definition
,
671 Register VirtReg
, MCPhysReg Reg
) {
672 auto UDBGValIter
= DanglingDbgValues
.find(VirtReg
);
673 if (UDBGValIter
== DanglingDbgValues
.end())
676 SmallVectorImpl
<MachineInstr
*> &Dangling
= UDBGValIter
->second
;
677 for (MachineInstr
*DbgValue
: Dangling
) {
678 assert(DbgValue
->isDebugValue());
679 if (!DbgValue
->hasDebugOperandForReg(VirtReg
))
682 // Test whether the physreg survives from the definition to the DBG_VALUE.
683 MCPhysReg SetToReg
= Reg
;
685 for (MachineBasicBlock::iterator I
= std::next(Definition
.getIterator()),
686 E
= DbgValue
->getIterator(); I
!= E
; ++I
) {
687 if (I
->modifiesRegister(Reg
, TRI
) || --Limit
== 0) {
688 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
694 for (MachineOperand
&MO
: DbgValue
->getDebugOperandsForReg(VirtReg
)) {
703 /// This method updates local state so that we know that PhysReg is the
704 /// proper container for VirtReg now. The physical register must not be used
705 /// for anything else when this is called.
706 void RegAllocFast::assignVirtToPhysReg(MachineInstr
&AtMI
, LiveReg
&LR
,
708 Register VirtReg
= LR
.VirtReg
;
709 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg
, TRI
) << " to "
710 << printReg(PhysReg
, TRI
) << '\n');
711 assert(LR
.PhysReg
== 0 && "Already assigned a physreg");
712 assert(PhysReg
!= 0 && "Trying to assign no register");
713 LR
.PhysReg
= PhysReg
;
714 setPhysRegState(PhysReg
, VirtReg
);
716 assignDanglingDebugValues(AtMI
, VirtReg
, PhysReg
);
719 static bool isCoalescable(const MachineInstr
&MI
) {
720 return MI
.isFullCopy();
723 Register
RegAllocFast::traceCopyChain(Register Reg
) const {
724 static const unsigned ChainLengthLimit
= 3;
727 if (Reg
.isPhysical())
729 assert(Reg
.isVirtual());
731 MachineInstr
*VRegDef
= MRI
->getUniqueVRegDef(Reg
);
732 if (!VRegDef
|| !isCoalescable(*VRegDef
))
734 Reg
= VRegDef
->getOperand(1).getReg();
735 } while (++C
<= ChainLengthLimit
);
739 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
740 /// chain of copies to check whether we reach a physical register we can
742 Register
RegAllocFast::traceCopies(Register VirtReg
) const {
743 static const unsigned DefLimit
= 3;
745 for (const MachineInstr
&MI
: MRI
->def_instructions(VirtReg
)) {
746 if (isCoalescable(MI
)) {
747 Register Reg
= MI
.getOperand(1).getReg();
748 Reg
= traceCopyChain(Reg
);
759 /// Allocates a physical register for VirtReg.
760 void RegAllocFast::allocVirtReg(MachineInstr
&MI
, LiveReg
&LR
,
761 Register Hint0
, bool LookAtPhysRegUses
) {
762 const Register VirtReg
= LR
.VirtReg
;
763 assert(LR
.PhysReg
== 0);
765 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
766 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg
)
767 << " in class " << TRI
->getRegClassName(&RC
)
768 << " with hint " << printReg(Hint0
, TRI
) << '\n');
770 // Take hint when possible.
771 if (Hint0
.isPhysical() && MRI
->isAllocatable(Hint0
) && RC
.contains(Hint0
) &&
772 !isRegUsedInInstr(Hint0
, LookAtPhysRegUses
)) {
773 // Take hint if the register is currently free.
774 if (isPhysRegFree(Hint0
)) {
775 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0
, TRI
)
777 assignVirtToPhysReg(MI
, LR
, Hint0
);
780 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0
, TRI
)
789 Register Hint1
= traceCopies(VirtReg
);
790 if (Hint1
.isPhysical() && MRI
->isAllocatable(Hint1
) && RC
.contains(Hint1
) &&
791 !isRegUsedInInstr(Hint1
, LookAtPhysRegUses
)) {
792 // Take hint if the register is currently free.
793 if (isPhysRegFree(Hint1
)) {
794 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1
, TRI
)
796 assignVirtToPhysReg(MI
, LR
, Hint1
);
799 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1
, TRI
)
806 MCPhysReg BestReg
= 0;
807 unsigned BestCost
= spillImpossible
;
808 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
809 for (MCPhysReg PhysReg
: AllocationOrder
) {
810 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg
, TRI
) << ' ');
811 if (isRegUsedInInstr(PhysReg
, LookAtPhysRegUses
)) {
812 LLVM_DEBUG(dbgs() << "already used in instr.\n");
816 unsigned Cost
= calcSpillCost(PhysReg
);
817 LLVM_DEBUG(dbgs() << "Cost: " << Cost
<< " BestCost: " << BestCost
<< '\n');
818 // Immediate take a register with cost 0.
820 assignVirtToPhysReg(MI
, LR
, PhysReg
);
824 if (PhysReg
== Hint0
|| PhysReg
== Hint1
)
825 Cost
-= spillPrefBonus
;
827 if (Cost
< BestCost
) {
834 // Nothing we can do: Report an error and keep going with an invalid
836 if (MI
.isInlineAsm())
837 MI
.emitError("inline assembly requires more registers than available");
839 MI
.emitError("ran out of registers during register allocation");
846 displacePhysReg(MI
, BestReg
);
847 assignVirtToPhysReg(MI
, LR
, BestReg
);
850 void RegAllocFast::allocVirtRegUndef(MachineOperand
&MO
) {
851 assert(MO
.isUndef() && "expected undef use");
852 Register VirtReg
= MO
.getReg();
853 assert(VirtReg
.isVirtual() && "Expected virtreg");
854 if (!shouldAllocateRegister(VirtReg
))
857 LiveRegMap::const_iterator LRI
= findLiveVirtReg(VirtReg
);
859 if (LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
) {
860 PhysReg
= LRI
->PhysReg
;
862 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
863 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
864 assert(!AllocationOrder
.empty() && "Allocation order must not be empty");
865 PhysReg
= AllocationOrder
[0];
868 unsigned SubRegIdx
= MO
.getSubReg();
869 if (SubRegIdx
!= 0) {
870 PhysReg
= TRI
->getSubReg(PhysReg
, SubRegIdx
);
874 MO
.setIsRenamable(true);
877 /// Variation of defineVirtReg() with special handling for livethrough regs
878 /// (tied or earlyclobber) that may interfere with preassigned uses.
879 /// \return true if MI's MachineOperands were re-arranged/invalidated.
880 bool RegAllocFast::defineLiveThroughVirtReg(MachineInstr
&MI
, unsigned OpNum
,
882 if (!shouldAllocateRegister(VirtReg
))
884 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
885 if (LRI
!= LiveVirtRegs
.end()) {
886 MCPhysReg PrevReg
= LRI
->PhysReg
;
887 if (PrevReg
!= 0 && isRegUsedInInstr(PrevReg
, true)) {
888 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg
, TRI
)
889 << " (tied/earlyclobber resolution)\n");
890 freePhysReg(PrevReg
);
892 allocVirtReg(MI
, *LRI
, 0, true);
893 MachineBasicBlock::iterator InsertBefore
=
894 std::next((MachineBasicBlock::iterator
)MI
.getIterator());
895 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI
->PhysReg
, TRI
) << " to "
896 << printReg(PrevReg
, TRI
) << '\n');
897 BuildMI(*MBB
, InsertBefore
, MI
.getDebugLoc(),
898 TII
->get(TargetOpcode::COPY
), PrevReg
)
899 .addReg(LRI
->PhysReg
, llvm::RegState::Kill
);
901 MachineOperand
&MO
= MI
.getOperand(OpNum
);
902 if (MO
.getSubReg() && !MO
.isUndef()) {
906 return defineVirtReg(MI
, OpNum
, VirtReg
, true);
909 /// Allocates a register for VirtReg definition. Typically the register is
910 /// already assigned from a use of the virtreg, however we still need to
911 /// perform an allocation if:
912 /// - It is a dead definition without any uses.
913 /// - The value is live out and all uses are in different basic blocks.
915 /// \return true if MI's MachineOperands were re-arranged/invalidated.
916 bool RegAllocFast::defineVirtReg(MachineInstr
&MI
, unsigned OpNum
,
917 Register VirtReg
, bool LookAtPhysRegUses
) {
918 assert(VirtReg
.isVirtual() && "Not a virtual register");
919 if (!shouldAllocateRegister(VirtReg
))
921 MachineOperand
&MO
= MI
.getOperand(OpNum
);
922 LiveRegMap::iterator LRI
;
924 std::tie(LRI
, New
) = LiveVirtRegs
.insert(LiveReg(VirtReg
));
927 if (mayLiveOut(VirtReg
)) {
930 // It is a dead def without the dead flag; add the flag now.
935 if (LRI
->PhysReg
== 0)
936 allocVirtReg(MI
, *LRI
, 0, LookAtPhysRegUses
);
938 assert(!isRegUsedInInstr(LRI
->PhysReg
, LookAtPhysRegUses
) &&
939 "TODO: preassign mismatch");
940 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg
, TRI
)
941 << " use existing assignment to "
942 << printReg(LRI
->PhysReg
, TRI
) << '\n');
945 MCPhysReg PhysReg
= LRI
->PhysReg
;
946 assert(PhysReg
!= 0 && "Register not assigned");
947 if (LRI
->Reloaded
|| LRI
->LiveOut
) {
948 if (!MI
.isImplicitDef()) {
949 MachineBasicBlock::iterator SpillBefore
=
950 std::next((MachineBasicBlock::iterator
)MI
.getIterator());
951 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI
->LiveOut
<< " RL: "
952 << LRI
->Reloaded
<< '\n');
953 bool Kill
= LRI
->LastUse
== nullptr;
954 spill(SpillBefore
, VirtReg
, PhysReg
, Kill
, LRI
->LiveOut
);
956 // We need to place additional spills for each indirect destination of an
958 if (MI
.getOpcode() == TargetOpcode::INLINEASM_BR
) {
959 int FI
= StackSlotForVirtReg
[VirtReg
];
960 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
961 for (MachineOperand
&MO
: MI
.operands()) {
963 MachineBasicBlock
*Succ
= MO
.getMBB();
964 TII
->storeRegToStackSlot(*Succ
, Succ
->begin(), PhysReg
, Kill
,
965 FI
, &RC
, TRI
, VirtReg
);
967 Succ
->addLiveIn(PhysReg
);
972 LRI
->LastUse
= nullptr;
974 LRI
->LiveOut
= false;
975 LRI
->Reloaded
= false;
977 if (MI
.getOpcode() == TargetOpcode::BUNDLE
) {
978 BundleVirtRegsMap
[VirtReg
] = PhysReg
;
980 markRegUsedInInstr(PhysReg
);
981 return setPhysReg(MI
, MO
, PhysReg
);
984 /// Allocates a register for a VirtReg use.
985 /// \return true if MI's MachineOperands were re-arranged/invalidated.
986 bool RegAllocFast::useVirtReg(MachineInstr
&MI
, unsigned OpNum
,
988 assert(VirtReg
.isVirtual() && "Not a virtual register");
989 if (!shouldAllocateRegister(VirtReg
))
991 MachineOperand
&MO
= MI
.getOperand(OpNum
);
992 LiveRegMap::iterator LRI
;
994 std::tie(LRI
, New
) = LiveVirtRegs
.insert(LiveReg(VirtReg
));
996 MachineOperand
&MO
= MI
.getOperand(OpNum
);
998 if (mayLiveOut(VirtReg
)) {
1001 // It is a last (killing) use without the kill flag; add the flag now.
1006 assert((!MO
.isKill() || LRI
->LastUse
== &MI
) && "Invalid kill flag");
1009 // If necessary allocate a register.
1010 if (LRI
->PhysReg
== 0) {
1011 assert(!MO
.isTied() && "tied op should be allocated");
1013 if (MI
.isCopy() && MI
.getOperand(1).getSubReg() == 0) {
1014 Hint
= MI
.getOperand(0).getReg();
1015 if (Hint
.isVirtual()) {
1016 assert(!shouldAllocateRegister(Hint
));
1019 assert(Hint
.isPhysical() &&
1020 "Copy destination should already be assigned");
1023 allocVirtReg(MI
, *LRI
, Hint
, false);
1025 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
1026 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
1027 return setPhysReg(MI
, MO
, *AllocationOrder
.begin());
1033 if (MI
.getOpcode() == TargetOpcode::BUNDLE
) {
1034 BundleVirtRegsMap
[VirtReg
] = LRI
->PhysReg
;
1036 markRegUsedInInstr(LRI
->PhysReg
);
1037 return setPhysReg(MI
, MO
, LRI
->PhysReg
);
1040 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs.
1041 /// \return true if MI's MachineOperands were re-arranged/invalidated.
1042 bool RegAllocFast::setPhysReg(MachineInstr
&MI
, MachineOperand
&MO
,
1043 MCPhysReg PhysReg
) {
1044 if (!MO
.getSubReg()) {
1046 MO
.setIsRenamable(true);
1050 // Handle subregister index.
1051 MO
.setReg(PhysReg
? TRI
->getSubReg(PhysReg
, MO
.getSubReg()) : MCRegister());
1052 MO
.setIsRenamable(true);
1053 // Note: We leave the subreg number around a little longer in case of defs.
1054 // This is so that the register freeing logic in allocateInstruction can still
1055 // recognize this as subregister defs. The code there will clear the number.
1059 // A kill flag implies killing the full register. Add corresponding super
1062 MI
.addRegisterKilled(PhysReg
, TRI
, true);
1063 // Conservatively assume implicit MOs were re-arranged
1067 // A <def,read-undef> of a sub-register requires an implicit def of the full
1069 if (MO
.isDef() && MO
.isUndef()) {
1071 MI
.addRegisterDead(PhysReg
, TRI
, true);
1073 MI
.addRegisterDefined(PhysReg
, TRI
);
1074 // Conservatively assume implicit MOs were re-arranged
1082 void RegAllocFast::dumpState() const {
1083 for (unsigned Unit
= 1, UnitE
= TRI
->getNumRegUnits(); Unit
!= UnitE
;
1085 switch (unsigned VirtReg
= RegUnitStates
[Unit
]) {
1088 case regPreAssigned
:
1089 dbgs() << " " << printRegUnit(Unit
, TRI
) << "[P]";
1092 llvm_unreachable("Should not have regLiveIn in map");
1094 dbgs() << ' ' << printRegUnit(Unit
, TRI
) << '=' << printReg(VirtReg
);
1095 LiveRegMap::const_iterator I
= findLiveVirtReg(VirtReg
);
1096 assert(I
!= LiveVirtRegs
.end() && "have LiveVirtRegs entry");
1097 if (I
->LiveOut
|| I
->Reloaded
) {
1099 if (I
->LiveOut
) dbgs() << 'O';
1100 if (I
->Reloaded
) dbgs() << 'R';
1103 assert(TRI
->hasRegUnit(I
->PhysReg
, Unit
) && "inverse mapping present");
1109 // Check that LiveVirtRegs is the inverse.
1110 for (const LiveReg
&LR
: LiveVirtRegs
) {
1111 Register VirtReg
= LR
.VirtReg
;
1112 assert(VirtReg
.isVirtual() && "Bad map key");
1113 MCPhysReg PhysReg
= LR
.PhysReg
;
1115 assert(Register::isPhysicalRegister(PhysReg
) &&
1116 "mapped to physreg");
1117 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
1118 assert(RegUnitStates
[Unit
] == VirtReg
&& "inverse map valid");
1125 /// Count number of defs consumed from each register class by \p Reg
1126 void RegAllocFast::addRegClassDefCounts(std::vector
<unsigned> &RegClassDefCounts
,
1127 Register Reg
) const {
1128 assert(RegClassDefCounts
.size() == TRI
->getNumRegClasses());
1130 if (Reg
.isVirtual()) {
1131 if (!shouldAllocateRegister(Reg
))
1133 const TargetRegisterClass
*OpRC
= MRI
->getRegClass(Reg
);
1134 for (unsigned RCIdx
= 0, RCIdxEnd
= TRI
->getNumRegClasses();
1135 RCIdx
!= RCIdxEnd
; ++RCIdx
) {
1136 const TargetRegisterClass
*IdxRC
= TRI
->getRegClass(RCIdx
);
1137 // FIXME: Consider aliasing sub/super registers.
1138 if (OpRC
->hasSubClassEq(IdxRC
))
1139 ++RegClassDefCounts
[RCIdx
];
1145 for (unsigned RCIdx
= 0, RCIdxEnd
= TRI
->getNumRegClasses();
1146 RCIdx
!= RCIdxEnd
; ++RCIdx
) {
1147 const TargetRegisterClass
*IdxRC
= TRI
->getRegClass(RCIdx
);
1148 for (MCRegAliasIterator
Alias(Reg
, TRI
, true); Alias
.isValid(); ++Alias
) {
1149 if (IdxRC
->contains(*Alias
)) {
1150 ++RegClassDefCounts
[RCIdx
];
1157 /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands
1158 /// that are to be allocated. Those are ordered in a way that small classes,
1159 /// early clobbers and livethroughs are allocated first.
1160 void RegAllocFast::findAndSortDefOperandIndexes(const MachineInstr
&MI
) {
1161 DefOperandIndexes
.clear();
1163 // Track number of defs which may consume a register from the class.
1164 std::vector
<unsigned> RegClassDefCounts(TRI
->getNumRegClasses(), 0);
1165 assert(RegClassDefCounts
[0] == 0);
1167 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1168 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
< E
; ++I
) {
1169 const MachineOperand
&MO
= MI
.getOperand(I
);
1172 Register Reg
= MO
.getReg();
1173 if (MO
.readsReg()) {
1174 if (Reg
.isPhysical()) {
1175 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg
, TRI
) << '\n');
1176 markPhysRegUsedInInstr(Reg
);
1181 if (Reg
.isVirtual() && shouldAllocateRegister(Reg
))
1182 DefOperandIndexes
.push_back(I
);
1184 addRegClassDefCounts(RegClassDefCounts
, Reg
);
1188 llvm::sort(DefOperandIndexes
, [&](uint16_t I0
, uint16_t I1
) {
1189 const MachineOperand
&MO0
= MI
.getOperand(I0
);
1190 const MachineOperand
&MO1
= MI
.getOperand(I1
);
1191 Register Reg0
= MO0
.getReg();
1192 Register Reg1
= MO1
.getReg();
1193 const TargetRegisterClass
&RC0
= *MRI
->getRegClass(Reg0
);
1194 const TargetRegisterClass
&RC1
= *MRI
->getRegClass(Reg1
);
1196 // Identify regclass that are easy to use up completely just in this
1198 unsigned ClassSize0
= RegClassInfo
.getOrder(&RC0
).size();
1199 unsigned ClassSize1
= RegClassInfo
.getOrder(&RC1
).size();
1201 bool SmallClass0
= ClassSize0
< RegClassDefCounts
[RC0
.getID()];
1202 bool SmallClass1
= ClassSize1
< RegClassDefCounts
[RC1
.getID()];
1203 if (SmallClass0
> SmallClass1
)
1205 if (SmallClass0
< SmallClass1
)
1208 // Allocate early clobbers and livethrough operands first.
1209 bool Livethrough0
= MO0
.isEarlyClobber() || MO0
.isTied() ||
1210 (MO0
.getSubReg() == 0 && !MO0
.isUndef());
1211 bool Livethrough1
= MO1
.isEarlyClobber() || MO1
.isTied() ||
1212 (MO1
.getSubReg() == 0 && !MO1
.isUndef());
1213 if (Livethrough0
> Livethrough1
)
1215 if (Livethrough0
< Livethrough1
)
1218 // Tie-break rule: operand index.
1223 void RegAllocFast::allocateInstruction(MachineInstr
&MI
) {
1224 // The basic algorithm here is:
1225 // 1. Mark registers of def operands as free
1226 // 2. Allocate registers to use operands and place reload instructions for
1227 // registers displaced by the allocation.
1229 // However we need to handle some corner cases:
1230 // - pre-assigned defs and uses need to be handled before the other def/use
1231 // operands are processed to avoid the allocation heuristics clashing with
1232 // the pre-assignment.
1233 // - The "free def operands" step has to come last instead of first for tied
1234 // operands and early-clobbers.
1236 UsedInInstr
.clear();
1238 BundleVirtRegsMap
.clear();
1240 auto TiedOpIsUndef
= [&](const MachineOperand
&MO
, unsigned Idx
) {
1241 assert(MO
.isTied());
1242 unsigned TiedIdx
= MI
.findTiedOperandIdx(Idx
);
1243 const MachineOperand
&TiedMO
= MI
.getOperand(TiedIdx
);
1244 return TiedMO
.isUndef();
1246 // Scan for special cases; Apply pre-assigned register defs to state.
1247 bool HasPhysRegUse
= false;
1248 bool HasRegMask
= false;
1249 bool HasVRegDef
= false;
1250 bool HasDef
= false;
1251 bool HasEarlyClobber
= false;
1252 bool NeedToAssignLiveThroughs
= false;
1253 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
) {
1254 MachineOperand
&MO
= MI
.getOperand(I
);
1256 Register Reg
= MO
.getReg();
1257 if (Reg
.isVirtual()) {
1258 if (!shouldAllocateRegister(Reg
))
1263 if (MO
.isEarlyClobber()) {
1264 HasEarlyClobber
= true;
1265 NeedToAssignLiveThroughs
= true;
1267 if ((MO
.isTied() && !TiedOpIsUndef(MO
, I
)) ||
1268 (MO
.getSubReg() != 0 && !MO
.isUndef()))
1269 NeedToAssignLiveThroughs
= true;
1271 } else if (Reg
.isPhysical()) {
1272 if (!MRI
->isReserved(Reg
)) {
1275 bool displacedAny
= definePhysReg(MI
, Reg
);
1276 if (MO
.isEarlyClobber())
1277 HasEarlyClobber
= true;
1282 HasPhysRegUse
= true;
1285 } else if (MO
.isRegMask()) {
1287 RegMasks
.push_back(MO
.getRegMask());
1291 // Allocate virtreg defs.
1294 // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop
1295 // multiple times to ensure no operand is missed.
1296 bool ReArrangedImplicitOps
= true;
1298 // Special handling for early clobbers, tied operands or subregister defs:
1299 // Compared to "normal" defs these:
1300 // - Must not use a register that is pre-assigned for a use operand.
1301 // - In order to solve tricky inline assembly constraints we change the
1302 // heuristic to figure out a good operand order before doing
1304 if (NeedToAssignLiveThroughs
) {
1305 PhysRegUses
.clear();
1307 while (ReArrangedImplicitOps
) {
1308 ReArrangedImplicitOps
= false;
1309 findAndSortDefOperandIndexes(MI
);
1310 for (uint16_t OpIdx
: DefOperandIndexes
) {
1311 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
1312 LLVM_DEBUG(dbgs() << "Allocating " << MO
<< '\n');
1313 unsigned Reg
= MO
.getReg();
1314 if (MO
.isEarlyClobber() ||
1315 (MO
.isTied() && !TiedOpIsUndef(MO
, OpIdx
)) ||
1316 (MO
.getSubReg() && !MO
.isUndef())) {
1317 ReArrangedImplicitOps
= defineLiveThroughVirtReg(MI
, OpIdx
, Reg
);
1319 ReArrangedImplicitOps
= defineVirtReg(MI
, OpIdx
, Reg
);
1321 if (ReArrangedImplicitOps
) {
1322 // Implicit operands of MI were re-arranged,
1323 // re-compute DefOperandIndexes.
1329 // Assign virtual register defs.
1330 while (ReArrangedImplicitOps
) {
1331 ReArrangedImplicitOps
= false;
1332 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
< E
; ++I
) {
1333 MachineOperand
&MO
= MI
.getOperand(I
);
1334 if (!MO
.isReg() || !MO
.isDef())
1336 Register Reg
= MO
.getReg();
1337 if (Reg
.isVirtual()) {
1338 ReArrangedImplicitOps
= defineVirtReg(MI
, I
, Reg
);
1339 if (ReArrangedImplicitOps
) {
1348 // Free registers occupied by defs.
1349 // Iterate operands in reverse order, so we see the implicit super register
1350 // defs first (we added them earlier in case of <def,read-undef>).
1351 for (signed I
= MI
.getNumOperands() - 1; I
>= 0; --I
) {
1352 MachineOperand
&MO
= MI
.getOperand(I
);
1353 if (!MO
.isReg() || !MO
.isDef())
1356 Register Reg
= MO
.getReg();
1358 // subreg defs don't free the full register. We left the subreg number
1359 // around as a marker in setPhysReg() to recognize this case here.
1360 if (Reg
.isPhysical() && MO
.getSubReg() != 0) {
1365 assert((!MO
.isTied() || !isClobberedByRegMasks(MO
.getReg())) &&
1366 "tied def assigned to clobbered register");
1368 // Do not free tied operands and early clobbers.
1369 if ((MO
.isTied() && !TiedOpIsUndef(MO
, I
)) || MO
.isEarlyClobber())
1373 if (Reg
.isVirtual()) {
1374 assert(!shouldAllocateRegister(Reg
));
1377 assert(Reg
.isPhysical());
1378 if (MRI
->isReserved(Reg
))
1381 unmarkRegUsedInInstr(Reg
);
1385 // Displace clobbered registers.
1387 assert(!RegMasks
.empty() && "expected RegMask");
1389 for (const auto *RM
: RegMasks
)
1390 MRI
->addPhysRegsUsedFromRegMask(RM
);
1392 // Displace clobbered registers.
1393 for (const LiveReg
&LR
: LiveVirtRegs
) {
1394 MCPhysReg PhysReg
= LR
.PhysReg
;
1395 if (PhysReg
!= 0 && isClobberedByRegMasks(PhysReg
))
1396 displacePhysReg(MI
, PhysReg
);
1400 // Apply pre-assigned register uses to state.
1401 if (HasPhysRegUse
) {
1402 for (MachineOperand
&MO
: MI
.operands()) {
1403 if (!MO
.isReg() || !MO
.readsReg())
1405 Register Reg
= MO
.getReg();
1406 if (!Reg
.isPhysical())
1408 if (MRI
->isReserved(Reg
))
1410 bool displacedAny
= usePhysReg(MI
, Reg
);
1416 // Allocate virtreg uses and insert reloads as necessary.
1417 // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple
1418 // times to ensure no operand is missed.
1419 bool HasUndefUse
= false;
1420 bool ReArrangedImplicitMOs
= true;
1421 while (ReArrangedImplicitMOs
) {
1422 ReArrangedImplicitMOs
= false;
1423 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
) {
1424 MachineOperand
&MO
= MI
.getOperand(I
);
1425 if (!MO
.isReg() || !MO
.isUse())
1427 Register Reg
= MO
.getReg();
1428 if (!Reg
.isVirtual() || !shouldAllocateRegister(Reg
))
1436 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1437 // the def block (removing the vreg uses).
1440 assert(!MO
.isInternalRead() && "Bundles not supported");
1441 assert(MO
.readsReg() && "reading use");
1442 ReArrangedImplicitMOs
= useVirtReg(MI
, I
, Reg
);
1443 if (ReArrangedImplicitMOs
)
1448 // Allocate undef operands. This is a separate step because in a situation
1449 // like ` = OP undef %X, %X` both operands need the same register assign
1450 // so we should perform the normal assignment first.
1452 for (MachineOperand
&MO
: MI
.all_uses()) {
1453 Register Reg
= MO
.getReg();
1454 if (!Reg
.isVirtual() || !shouldAllocateRegister(Reg
))
1457 assert(MO
.isUndef() && "Should only have undef virtreg uses left");
1458 allocVirtRegUndef(MO
);
1462 // Free early clobbers.
1463 if (HasEarlyClobber
) {
1464 for (MachineOperand
&MO
: llvm::reverse(MI
.all_defs())) {
1465 if (!MO
.isEarlyClobber())
1467 assert(!MO
.getSubReg() && "should be already handled in def processing");
1469 Register Reg
= MO
.getReg();
1472 if (Reg
.isVirtual()) {
1473 assert(!shouldAllocateRegister(Reg
));
1476 assert(Reg
.isPhysical() && "should have register assigned");
1478 // We sometimes get odd situations like:
1479 // early-clobber %x0 = INSTRUCTION %x0
1480 // which is semantically questionable as the early-clobber should
1481 // apply before the use. But in practice we consider the use to
1482 // happen before the early clobber now. Don't free the early clobber
1483 // register in this case.
1484 if (MI
.readsRegister(Reg
, TRI
))
1491 LLVM_DEBUG(dbgs() << "<< " << MI
);
1492 if (MI
.isCopy() && MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg() &&
1493 MI
.getNumOperands() == 2) {
1494 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1495 Coalesced
.push_back(&MI
);
1499 void RegAllocFast::handleDebugValue(MachineInstr
&MI
) {
1500 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1501 // mostly constants and frame indices.
1502 for (Register Reg
: MI
.getUsedDebugRegs()) {
1503 if (!Reg
.isVirtual())
1505 if (!shouldAllocateRegister(Reg
))
1508 // Already spilled to a stackslot?
1509 int SS
= StackSlotForVirtReg
[Reg
];
1511 // Modify DBG_VALUE now that the value is in a spill slot.
1512 updateDbgValueForSpill(MI
, SS
, Reg
);
1513 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI
);
1517 // See if this virtual register has already been allocated to a physical
1518 // register or spilled to a stack slot.
1519 LiveRegMap::iterator LRI
= findLiveVirtReg(Reg
);
1520 SmallVector
<MachineOperand
*> DbgOps
;
1521 for (MachineOperand
&Op
: MI
.getDebugOperandsForReg(Reg
))
1522 DbgOps
.push_back(&Op
);
1524 if (LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
) {
1525 // Update every use of Reg within MI.
1526 for (auto &RegMO
: DbgOps
)
1527 setPhysReg(MI
, *RegMO
, LRI
->PhysReg
);
1529 DanglingDbgValues
[Reg
].push_back(&MI
);
1532 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1533 // that future spills of Reg will have DBG_VALUEs.
1534 LiveDbgValueMap
[Reg
].append(DbgOps
.begin(), DbgOps
.end());
1538 void RegAllocFast::handleBundle(MachineInstr
&MI
) {
1539 MachineBasicBlock::instr_iterator BundledMI
= MI
.getIterator();
1541 while (BundledMI
->isBundledWithPred()) {
1542 for (MachineOperand
&MO
: BundledMI
->operands()) {
1546 Register Reg
= MO
.getReg();
1547 if (!Reg
.isVirtual() || !shouldAllocateRegister(Reg
))
1550 DenseMap
<Register
, MCPhysReg
>::iterator DI
;
1551 DI
= BundleVirtRegsMap
.find(Reg
);
1552 assert(DI
!= BundleVirtRegsMap
.end() && "Unassigned virtual register");
1554 setPhysReg(MI
, MO
, DI
->second
);
1561 void RegAllocFast::allocateBasicBlock(MachineBasicBlock
&MBB
) {
1563 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB
);
1565 RegUnitStates
.assign(TRI
->getNumRegUnits(), regFree
);
1566 assert(LiveVirtRegs
.empty() && "Mapping not cleared from last block?");
1568 for (const auto &LiveReg
: MBB
.liveouts())
1569 setPhysRegState(LiveReg
.PhysReg
, regPreAssigned
);
1573 // Traverse block in reverse order allocating instructions one by one.
1574 for (MachineInstr
&MI
: reverse(MBB
)) {
1576 dbgs() << "\n>> " << MI
<< "Regs:";
1580 // Special handling for debug values. Note that they are not allowed to
1581 // affect codegen of the other instructions in any way.
1582 if (MI
.isDebugValue()) {
1583 handleDebugValue(MI
);
1587 allocateInstruction(MI
);
1589 // Once BUNDLE header is assigned registers, same assignments need to be
1590 // done for bundled MIs.
1591 if (MI
.getOpcode() == TargetOpcode::BUNDLE
) {
1597 dbgs() << "Begin Regs:";
1601 // Spill all physical registers holding virtual registers now.
1602 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1605 // Erase all the coalesced copies. We are delaying it until now because
1606 // LiveVirtRegs might refer to the instrs.
1607 for (MachineInstr
*MI
: Coalesced
)
1609 NumCoalesced
+= Coalesced
.size();
1611 for (auto &UDBGPair
: DanglingDbgValues
) {
1612 for (MachineInstr
*DbgValue
: UDBGPair
.second
) {
1613 assert(DbgValue
->isDebugValue() && "expected DBG_VALUE");
1614 // Nothing to do if the vreg was spilled in the meantime.
1615 if (!DbgValue
->hasDebugOperandForReg(UDBGPair
.first
))
1617 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1619 DbgValue
->setDebugValueUndef();
1622 DanglingDbgValues
.clear();
1624 LLVM_DEBUG(MBB
.dump());
1627 bool RegAllocFast::runOnMachineFunction(MachineFunction
&MF
) {
1628 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1629 << "********** Function: " << MF
.getName() << '\n');
1630 MRI
= &MF
.getRegInfo();
1631 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
1632 TRI
= STI
.getRegisterInfo();
1633 TII
= STI
.getInstrInfo();
1634 MFI
= &MF
.getFrameInfo();
1635 MRI
->freezeReservedRegs(MF
);
1636 RegClassInfo
.runOnMachineFunction(MF
);
1637 unsigned NumRegUnits
= TRI
->getNumRegUnits();
1638 UsedInInstr
.clear();
1639 UsedInInstr
.setUniverse(NumRegUnits
);
1640 PhysRegUses
.clear();
1641 PhysRegUses
.setUniverse(NumRegUnits
);
1643 // initialize the virtual->physical register map to have a 'null'
1644 // mapping for all virtual registers
1645 unsigned NumVirtRegs
= MRI
->getNumVirtRegs();
1646 StackSlotForVirtReg
.resize(NumVirtRegs
);
1647 LiveVirtRegs
.setUniverse(NumVirtRegs
);
1648 MayLiveAcrossBlocks
.clear();
1649 MayLiveAcrossBlocks
.resize(NumVirtRegs
);
1651 // Loop over all of the basic blocks, eliminating virtual register references
1652 for (MachineBasicBlock
&MBB
: MF
)
1653 allocateBasicBlock(MBB
);
1655 if (ClearVirtRegs
) {
1656 // All machine operands and other references to virtual registers have been
1657 // replaced. Remove the virtual registers.
1658 MRI
->clearVirtRegs();
1661 StackSlotForVirtReg
.clear();
1662 LiveDbgValueMap
.clear();
1666 FunctionPass
*llvm::createFastRegisterAllocator() {
1667 return new RegAllocFast();
1670 FunctionPass
*llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor
,
1671 bool ClearVirtRegs
) {
1672 return new RegAllocFast(Ftor
, ClearVirtRegs
);