[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / ScheduleDAGInstrs.cpp
blob239b44857c28862ef00b749291fcd853c802fc23
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/MC/LaneBitmask.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <iterator>
57 #include <utility>
58 #include <vector>
60 using namespace llvm;
62 #define DEBUG_TYPE "machine-scheduler"
64 static cl::opt<bool>
65 EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
66 cl::desc("Enable use of AA during MI DAG construction"));
68 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
69 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
71 // Note: the two options below might be used in tuning compile time vs
72 // output quality. Setting HugeRegion so large that it will never be
73 // reached means best-effort, but may be slow.
75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
76 // together hold this many SUs, a reduction of maps will be done.
77 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
78 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
79 "prior to scheduling, at which point a trade-off "
80 "is made to avoid excessive compile time."));
82 static cl::opt<unsigned> ReductionSize(
83 "dag-maps-reduction-size", cl::Hidden,
84 cl::desc("A huge scheduling region will have maps reduced by this many "
85 "nodes at a time. Defaults to HugeRegion / 2."));
87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
88 static cl::opt<bool> SchedPrintCycles(
89 "sched-print-cycles", cl::Hidden, cl::init(false),
90 cl::desc("Report top/bottom cycles when dumping SUnit instances"));
91 #endif
93 static unsigned getReductionSize() {
94 // Always reduce a huge region with half of the elements, except
95 // when user sets this number explicitly.
96 if (ReductionSize.getNumOccurrences() == 0)
97 return HugeRegion / 2;
98 return ReductionSize;
101 static void dumpSUList(const ScheduleDAGInstrs::SUList &L) {
102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
103 dbgs() << "{ ";
104 for (const SUnit *SU : L) {
105 dbgs() << "SU(" << SU->NodeNum << ")";
106 if (SU != L.back())
107 dbgs() << ", ";
109 dbgs() << "}\n";
110 #endif
113 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
114 const MachineLoopInfo *mli,
115 bool RemoveKillFlags)
116 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
117 RemoveKillFlags(RemoveKillFlags),
118 UnknownValue(UndefValue::get(
119 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
120 DbgValues.clear();
122 const TargetSubtargetInfo &ST = mf.getSubtarget();
123 SchedModel.init(&ST);
126 /// If this machine instr has memory reference information and it can be
127 /// tracked to a normal reference to a known object, return the Value
128 /// for that object. This function returns false the memory location is
129 /// unknown or may alias anything.
130 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
131 const MachineFrameInfo &MFI,
132 UnderlyingObjectsVector &Objects,
133 const DataLayout &DL) {
134 auto AllMMOsOkay = [&]() {
135 for (const MachineMemOperand *MMO : MI->memoperands()) {
136 // TODO: Figure out whether isAtomic is really necessary (see D57601).
137 if (MMO->isVolatile() || MMO->isAtomic())
138 return false;
140 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
141 // Function that contain tail calls don't have unique PseudoSourceValue
142 // objects. Two PseudoSourceValues might refer to the same or
143 // overlapping locations. The client code calling this function assumes
144 // this is not the case. So return a conservative answer of no known
145 // object.
146 if (MFI.hasTailCall())
147 return false;
149 // For now, ignore PseudoSourceValues which may alias LLVM IR values
150 // because the code that uses this function has no way to cope with
151 // such aliases.
152 if (PSV->isAliased(&MFI))
153 return false;
155 bool MayAlias = PSV->mayAlias(&MFI);
156 Objects.emplace_back(PSV, MayAlias);
157 } else if (const Value *V = MMO->getValue()) {
158 SmallVector<Value *, 4> Objs;
159 if (!getUnderlyingObjectsForCodeGen(V, Objs))
160 return false;
162 for (Value *V : Objs) {
163 assert(isIdentifiedObject(V));
164 Objects.emplace_back(V, true);
166 } else
167 return false;
169 return true;
172 if (!AllMMOsOkay()) {
173 Objects.clear();
174 return false;
177 return true;
180 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
181 BB = bb;
184 void ScheduleDAGInstrs::finishBlock() {
185 // Subclasses should no longer refer to the old block.
186 BB = nullptr;
189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190 MachineBasicBlock::iterator begin,
191 MachineBasicBlock::iterator end,
192 unsigned regioninstrs) {
193 assert(bb == BB && "startBlock should set BB");
194 RegionBegin = begin;
195 RegionEnd = end;
196 NumRegionInstrs = regioninstrs;
199 void ScheduleDAGInstrs::exitRegion() {
200 // Nothing to do.
203 void ScheduleDAGInstrs::addSchedBarrierDeps() {
204 MachineInstr *ExitMI =
205 RegionEnd != BB->end()
206 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin)
207 : nullptr;
208 ExitSU.setInstr(ExitMI);
209 // Add dependencies on the defs and uses of the instruction.
210 if (ExitMI) {
211 for (const MachineOperand &MO : ExitMI->all_uses()) {
212 Register Reg = MO.getReg();
213 if (Reg.isPhysical()) {
214 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
215 } else if (Reg.isVirtual() && MO.readsReg()) {
216 addVRegUseDeps(&ExitSU, MO.getOperandNo());
220 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
221 // For others, e.g. fallthrough, conditional branch, assume the exit
222 // uses all the registers that are livein to the successor blocks.
223 for (const MachineBasicBlock *Succ : BB->successors()) {
224 for (const auto &LI : Succ->liveins()) {
225 if (!Uses.contains(LI.PhysReg))
226 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
232 /// MO is an operand of SU's instruction that defines a physical register. Adds
233 /// data dependencies from SU to any uses of the physical register.
234 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
235 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
236 assert(MO.isDef() && "expect physreg def");
238 // Ask the target if address-backscheduling is desirable, and if so how much.
239 const TargetSubtargetInfo &ST = MF.getSubtarget();
241 // Only use any non-zero latency for real defs/uses, in contrast to
242 // "fake" operands added by regalloc.
243 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
244 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
245 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
246 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
247 Alias.isValid(); ++Alias) {
248 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
249 SUnit *UseSU = I->SU;
250 if (UseSU == SU)
251 continue;
253 // Adjust the dependence latency using operand def/use information,
254 // then allow the target to perform its own adjustments.
255 int UseOp = I->OpIdx;
256 MachineInstr *RegUse = nullptr;
257 SDep Dep;
258 if (UseOp < 0)
259 Dep = SDep(SU, SDep::Artificial);
260 else {
261 // Set the hasPhysRegDefs only for physreg defs that have a use within
262 // the scheduling region.
263 SU->hasPhysRegDefs = true;
264 Dep = SDep(SU, SDep::Data, *Alias);
265 RegUse = UseSU->getInstr();
267 const MCInstrDesc *UseMIDesc =
268 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
269 bool ImplicitPseudoUse =
270 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
271 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
272 if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
273 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
274 RegUse, UseOp));
275 } else {
276 Dep.setLatency(0);
278 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
279 UseSU->addPred(Dep);
284 /// Adds register dependencies (data, anti, and output) from this SUnit
285 /// to following instructions in the same scheduling region that depend the
286 /// physical register referenced at OperIdx.
287 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
288 MachineInstr *MI = SU->getInstr();
289 MachineOperand &MO = MI->getOperand(OperIdx);
290 Register Reg = MO.getReg();
291 // We do not need to track any dependencies for constant registers.
292 if (MRI.isConstantPhysReg(Reg))
293 return;
295 const TargetSubtargetInfo &ST = MF.getSubtarget();
297 // Optionally add output and anti dependencies. For anti
298 // dependencies we use a latency of 0 because for a multi-issue
299 // target we want to allow the defining instruction to issue
300 // in the same cycle as the using instruction.
301 // TODO: Using a latency of 1 here for output dependencies assumes
302 // there's no cost for reusing registers.
303 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
304 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
305 if (!Defs.contains(*Alias))
306 continue;
307 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
308 SUnit *DefSU = I->SU;
309 if (DefSU == &ExitSU)
310 continue;
311 if (DefSU != SU &&
312 (Kind != SDep::Output || !MO.isDead() ||
313 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
314 SDep Dep(SU, Kind, /*Reg=*/*Alias);
315 if (Kind != SDep::Anti)
316 Dep.setLatency(
317 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
318 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep);
319 DefSU->addPred(Dep);
324 if (!MO.isDef()) {
325 SU->hasPhysRegUses = true;
326 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
327 // retrieve the existing SUnits list for this register's uses.
328 // Push this SUnit on the use list.
329 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
330 if (RemoveKillFlags)
331 MO.setIsKill(false);
332 } else {
333 addPhysRegDataDeps(SU, OperIdx);
335 // Clear previous uses and defs of this register and its subergisters.
336 for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) {
337 if (Uses.contains(SubReg))
338 Uses.eraseAll(SubReg);
339 if (!MO.isDead())
340 Defs.eraseAll(SubReg);
342 if (MO.isDead() && SU->isCall) {
343 // Calls will not be reordered because of chain dependencies (see
344 // below). Since call operands are dead, calls may continue to be added
345 // to the DefList making dependence checking quadratic in the size of
346 // the block. Instead, we leave only one call at the back of the
347 // DefList.
348 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
349 Reg2SUnitsMap::iterator B = P.first;
350 Reg2SUnitsMap::iterator I = P.second;
351 for (bool isBegin = I == B; !isBegin; /* empty */) {
352 isBegin = (--I) == B;
353 if (!I->SU->isCall)
354 break;
355 I = Defs.erase(I);
359 // Defs are pushed in the order they are visited and never reordered.
360 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
364 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
366 Register Reg = MO.getReg();
367 // No point in tracking lanemasks if we don't have interesting subregisters.
368 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
369 if (!RC.HasDisjunctSubRegs)
370 return LaneBitmask::getAll();
372 unsigned SubReg = MO.getSubReg();
373 if (SubReg == 0)
374 return RC.getLaneMask();
375 return TRI->getSubRegIndexLaneMask(SubReg);
378 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
379 auto RegUse = CurrentVRegUses.find(MO.getReg());
380 if (RegUse == CurrentVRegUses.end())
381 return true;
382 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
385 /// Adds register output and data dependencies from this SUnit to instructions
386 /// that occur later in the same scheduling region if they read from or write to
387 /// the virtual register defined at OperIdx.
389 /// TODO: Hoist loop induction variable increments. This has to be
390 /// reevaluated. Generally, IV scheduling should be done before coalescing.
391 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
392 MachineInstr *MI = SU->getInstr();
393 MachineOperand &MO = MI->getOperand(OperIdx);
394 Register Reg = MO.getReg();
396 LaneBitmask DefLaneMask;
397 LaneBitmask KillLaneMask;
398 if (TrackLaneMasks) {
399 bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
400 DefLaneMask = getLaneMaskForMO(MO);
401 // If we have a <read-undef> flag, none of the lane values comes from an
402 // earlier instruction.
403 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
405 if (MO.getSubReg() != 0 && MO.isUndef()) {
406 // There may be other subregister defs on the same instruction of the same
407 // register in later operands. The lanes of other defs will now be live
408 // after this instruction, so these should not be treated as killed by the
409 // instruction even though they appear to be killed in this one operand.
410 for (const MachineOperand &OtherMO :
411 llvm::drop_begin(MI->operands(), OperIdx + 1))
412 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
413 KillLaneMask &= ~getLaneMaskForMO(OtherMO);
416 // Clear undef flag, we'll re-add it later once we know which subregister
417 // Def is first.
418 MO.setIsUndef(false);
419 } else {
420 DefLaneMask = LaneBitmask::getAll();
421 KillLaneMask = LaneBitmask::getAll();
424 if (MO.isDead()) {
425 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
426 } else {
427 // Add data dependence to all uses we found so far.
428 const TargetSubtargetInfo &ST = MF.getSubtarget();
429 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
430 E = CurrentVRegUses.end(); I != E; /*empty*/) {
431 LaneBitmask LaneMask = I->LaneMask;
432 // Ignore uses of other lanes.
433 if ((LaneMask & KillLaneMask).none()) {
434 ++I;
435 continue;
438 if ((LaneMask & DefLaneMask).any()) {
439 SUnit *UseSU = I->SU;
440 MachineInstr *Use = UseSU->getInstr();
441 SDep Dep(SU, SDep::Data, Reg);
442 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
443 I->OperandIndex));
444 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep);
445 UseSU->addPred(Dep);
448 LaneMask &= ~KillLaneMask;
449 // If we found a Def for all lanes of this use, remove it from the list.
450 if (LaneMask.any()) {
451 I->LaneMask = LaneMask;
452 ++I;
453 } else
454 I = CurrentVRegUses.erase(I);
458 // Shortcut: Singly defined vregs do not have output/anti dependencies.
459 if (MRI.hasOneDef(Reg))
460 return;
462 // Add output dependence to the next nearest defs of this vreg.
464 // Unless this definition is dead, the output dependence should be
465 // transitively redundant with antidependencies from this definition's
466 // uses. We're conservative for now until we have a way to guarantee the uses
467 // are not eliminated sometime during scheduling. The output dependence edge
468 // is also useful if output latency exceeds def-use latency.
469 LaneBitmask LaneMask = DefLaneMask;
470 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
471 CurrentVRegDefs.end())) {
472 // Ignore defs for other lanes.
473 if ((V2SU.LaneMask & LaneMask).none())
474 continue;
475 // Add an output dependence.
476 SUnit *DefSU = V2SU.SU;
477 // Ignore additional defs of the same lanes in one instruction. This can
478 // happen because lanemasks are shared for targets with too many
479 // subregisters. We also use some representration tricks/hacks where we
480 // add super-register defs/uses, to imply that although we only access parts
481 // of the reg we care about the full one.
482 if (DefSU == SU)
483 continue;
484 SDep Dep(SU, SDep::Output, Reg);
485 Dep.setLatency(
486 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
487 DefSU->addPred(Dep);
489 // Update current definition. This can get tricky if the def was about a
490 // bigger lanemask before. We then have to shrink it and create a new
491 // VReg2SUnit for the non-overlapping part.
492 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
493 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
494 V2SU.SU = SU;
495 V2SU.LaneMask = OverlapMask;
496 if (NonOverlapMask.any())
497 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
499 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
500 if (LaneMask.any())
501 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
504 /// Adds a register data dependency if the instruction that defines the
505 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
506 /// antidependency from this SUnit to instructions that occur later in the same
507 /// scheduling region if they write the virtual register.
509 /// TODO: Handle ExitSU "uses" properly.
510 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
511 const MachineInstr *MI = SU->getInstr();
512 assert(!MI->isDebugOrPseudoInstr());
514 const MachineOperand &MO = MI->getOperand(OperIdx);
515 Register Reg = MO.getReg();
517 // Remember the use. Data dependencies will be added when we find the def.
518 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
519 : LaneBitmask::getAll();
520 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
522 // Add antidependences to the following defs of the vreg.
523 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
524 CurrentVRegDefs.end())) {
525 // Ignore defs for unrelated lanes.
526 LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
527 if ((PrevDefLaneMask & LaneMask).none())
528 continue;
529 if (V2SU.SU == SU)
530 continue;
532 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
536 /// Returns true if MI is an instruction we are unable to reason about
537 /// (like a call or something with unmodeled side effects).
538 static inline bool isGlobalMemoryObject(MachineInstr *MI) {
539 return MI->isCall() || MI->hasUnmodeledSideEffects() ||
540 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad());
543 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
544 unsigned Latency) {
545 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
546 SDep Dep(SUa, SDep::MayAliasMem);
547 Dep.setLatency(Latency);
548 SUb->addPred(Dep);
552 /// Creates an SUnit for each real instruction, numbered in top-down
553 /// topological order. The instruction order A < B, implies that no edge exists
554 /// from B to A.
556 /// Map each real instruction to its SUnit.
558 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
559 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
560 /// instead of pointers.
562 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
563 /// the original instruction list.
564 void ScheduleDAGInstrs::initSUnits() {
565 // We'll be allocating one SUnit for each real instruction in the region,
566 // which is contained within a basic block.
567 SUnits.reserve(NumRegionInstrs);
569 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
570 if (MI.isDebugOrPseudoInstr())
571 continue;
573 SUnit *SU = newSUnit(&MI);
574 MISUnitMap[&MI] = SU;
576 SU->isCall = MI.isCall();
577 SU->isCommutable = MI.isCommutable();
579 // Assign the Latency field of SU using target-provided information.
580 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
582 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
584 // Reserved resources block an instruction from issuing and stall the
585 // entire pipeline. These are identified by BufferSize=0.
587 // Unbuffered resources prevent execution of subsequent instructions that
588 // require the same resources. This is used for in-order execution pipelines
589 // within an out-of-order core. These are identified by BufferSize=1.
590 if (SchedModel.hasInstrSchedModel()) {
591 const MCSchedClassDesc *SC = getSchedClass(SU);
592 for (const MCWriteProcResEntry &PRE :
593 make_range(SchedModel.getWriteProcResBegin(SC),
594 SchedModel.getWriteProcResEnd(SC))) {
595 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
596 case 0:
597 SU->hasReservedResource = true;
598 break;
599 case 1:
600 SU->isUnbuffered = true;
601 break;
602 default:
603 break;
610 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
611 /// Current total number of SUs in map.
612 unsigned NumNodes = 0;
614 /// 1 for loads, 0 for stores. (see comment in SUList)
615 unsigned TrueMemOrderLatency;
617 public:
618 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
620 /// To keep NumNodes up to date, insert() is used instead of
621 /// this operator w/ push_back().
622 ValueType &operator[](const SUList &Key) {
623 llvm_unreachable("Don't use. Use insert() instead."); };
625 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
626 /// reduce().
627 void inline insert(SUnit *SU, ValueType V) {
628 MapVector::operator[](V).push_back(SU);
629 NumNodes++;
632 /// Clears the list of SUs mapped to V.
633 void inline clearList(ValueType V) {
634 iterator Itr = find(V);
635 if (Itr != end()) {
636 assert(NumNodes >= Itr->second.size());
637 NumNodes -= Itr->second.size();
639 Itr->second.clear();
643 /// Clears map from all contents.
644 void clear() {
645 MapVector<ValueType, SUList>::clear();
646 NumNodes = 0;
649 unsigned inline size() const { return NumNodes; }
651 /// Counts the number of SUs in this map after a reduction.
652 void reComputeSize() {
653 NumNodes = 0;
654 for (auto &I : *this)
655 NumNodes += I.second.size();
658 unsigned inline getTrueMemOrderLatency() const {
659 return TrueMemOrderLatency;
662 void dump();
665 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
666 Value2SUsMap &Val2SUsMap) {
667 for (auto &I : Val2SUsMap)
668 addChainDependencies(SU, I.second,
669 Val2SUsMap.getTrueMemOrderLatency());
672 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
673 Value2SUsMap &Val2SUsMap,
674 ValueType V) {
675 Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
676 if (Itr != Val2SUsMap.end())
677 addChainDependencies(SU, Itr->second,
678 Val2SUsMap.getTrueMemOrderLatency());
681 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
682 assert(BarrierChain != nullptr);
684 for (auto &[V, SUs] : map) {
685 (void)V;
686 for (auto *SU : SUs)
687 SU->addPredBarrier(BarrierChain);
689 map.clear();
692 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
693 assert(BarrierChain != nullptr);
695 // Go through all lists of SUs.
696 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
697 Value2SUsMap::iterator CurrItr = I++;
698 SUList &sus = CurrItr->second;
699 SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
700 for (; SUItr != SUEE; ++SUItr) {
701 // Stop on BarrierChain or any instruction above it.
702 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
703 break;
705 (*SUItr)->addPredBarrier(BarrierChain);
708 // Remove also the BarrierChain from list if present.
709 if (SUItr != SUEE && *SUItr == BarrierChain)
710 SUItr++;
712 // Remove all SUs that are now successors of BarrierChain.
713 if (SUItr != sus.begin())
714 sus.erase(sus.begin(), SUItr);
717 // Remove all entries with empty su lists.
718 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
719 return (mapEntry.second.empty()); });
721 // Recompute the size of the map (NumNodes).
722 map.reComputeSize();
725 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
726 RegPressureTracker *RPTracker,
727 PressureDiffs *PDiffs,
728 LiveIntervals *LIS,
729 bool TrackLaneMasks) {
730 const TargetSubtargetInfo &ST = MF.getSubtarget();
731 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
732 : ST.useAA();
733 AAForDep = UseAA ? AA : nullptr;
735 BarrierChain = nullptr;
737 this->TrackLaneMasks = TrackLaneMasks;
738 MISUnitMap.clear();
739 ScheduleDAG::clearDAG();
741 // Create an SUnit for each real instruction.
742 initSUnits();
744 if (PDiffs)
745 PDiffs->init(SUnits.size());
747 // We build scheduling units by walking a block's instruction list
748 // from bottom to top.
750 // Each MIs' memory operand(s) is analyzed to a list of underlying
751 // objects. The SU is then inserted in the SUList(s) mapped from the
752 // Value(s). Each Value thus gets mapped to lists of SUs depending
753 // on it, stores and loads kept separately. Two SUs are trivially
754 // non-aliasing if they both depend on only identified Values and do
755 // not share any common Value.
756 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
758 // Certain memory accesses are known to not alias any SU in Stores
759 // or Loads, and have therefore their own 'NonAlias'
760 // domain. E.g. spill / reload instructions never alias LLVM I/R
761 // Values. It would be nice to assume that this type of memory
762 // accesses always have a proper memory operand modelling, and are
763 // therefore never unanalyzable, but this is conservatively not
764 // done.
765 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
767 // Track all instructions that may raise floating-point exceptions.
768 // These do not depend on one other (or normal loads or stores), but
769 // must not be rescheduled across global barriers. Note that we don't
770 // really need a "map" here since we don't track those MIs by value;
771 // using the same Value2SUsMap data type here is simply a matter of
772 // convenience.
773 Value2SUsMap FPExceptions;
775 // Remove any stale debug info; sometimes BuildSchedGraph is called again
776 // without emitting the info from the previous call.
777 DbgValues.clear();
778 FirstDbgValue = nullptr;
780 assert(Defs.empty() && Uses.empty() &&
781 "Only BuildGraph should update Defs/Uses");
782 Defs.setUniverse(TRI->getNumRegs());
783 Uses.setUniverse(TRI->getNumRegs());
785 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
786 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
787 unsigned NumVirtRegs = MRI.getNumVirtRegs();
788 CurrentVRegDefs.setUniverse(NumVirtRegs);
789 CurrentVRegUses.setUniverse(NumVirtRegs);
791 // Model data dependencies between instructions being scheduled and the
792 // ExitSU.
793 addSchedBarrierDeps();
795 // Walk the list of instructions, from bottom moving up.
796 MachineInstr *DbgMI = nullptr;
797 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
798 MII != MIE; --MII) {
799 MachineInstr &MI = *std::prev(MII);
800 if (DbgMI) {
801 DbgValues.emplace_back(DbgMI, &MI);
802 DbgMI = nullptr;
805 if (MI.isDebugValue() || MI.isDebugPHI()) {
806 DbgMI = &MI;
807 continue;
810 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe())
811 continue;
813 SUnit *SU = MISUnitMap[&MI];
814 assert(SU && "No SUnit mapped to this MI");
816 if (RPTracker) {
817 RegisterOperands RegOpers;
818 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
819 if (TrackLaneMasks) {
820 SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
821 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
823 if (PDiffs != nullptr)
824 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
826 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
827 RPTracker->recedeSkipDebugValues();
828 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
829 RPTracker->recede(RegOpers);
832 assert(
833 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
834 "Cannot schedule terminators or labels!");
836 // Add register-based dependencies (data, anti, and output).
837 // For some instructions (calls, returns, inline-asm, etc.) there can
838 // be explicit uses and implicit defs, in which case the use will appear
839 // on the operand list before the def. Do two passes over the operand
840 // list to make sure that defs are processed before any uses.
841 bool HasVRegDef = false;
842 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
843 const MachineOperand &MO = MI.getOperand(j);
844 if (!MO.isReg() || !MO.isDef())
845 continue;
846 Register Reg = MO.getReg();
847 if (Reg.isPhysical()) {
848 addPhysRegDeps(SU, j);
849 } else if (Reg.isVirtual()) {
850 HasVRegDef = true;
851 addVRegDefDeps(SU, j);
854 // Now process all uses.
855 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
856 const MachineOperand &MO = MI.getOperand(j);
857 // Only look at use operands.
858 // We do not need to check for MO.readsReg() here because subsequent
859 // subregister defs will get output dependence edges and need no
860 // additional use dependencies.
861 if (!MO.isReg() || !MO.isUse())
862 continue;
863 Register Reg = MO.getReg();
864 if (Reg.isPhysical()) {
865 addPhysRegDeps(SU, j);
866 } else if (Reg.isVirtual() && MO.readsReg()) {
867 addVRegUseDeps(SU, j);
871 // If we haven't seen any uses in this scheduling region, create a
872 // dependence edge to ExitSU to model the live-out latency. This is required
873 // for vreg defs with no in-region use, and prefetches with no vreg def.
875 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
876 // check currently relies on being called before adding chain deps.
877 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
878 SDep Dep(SU, SDep::Artificial);
879 Dep.setLatency(SU->Latency - 1);
880 ExitSU.addPred(Dep);
883 // Add memory dependencies (Note: isStoreToStackSlot and
884 // isLoadFromStackSLot are not usable after stack slots are lowered to
885 // actual addresses).
887 // This is a barrier event that acts as a pivotal node in the DAG.
888 if (isGlobalMemoryObject(&MI)) {
890 // Become the barrier chain.
891 if (BarrierChain)
892 BarrierChain->addPredBarrier(SU);
893 BarrierChain = SU;
895 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
896 << BarrierChain->NodeNum << ").\n";);
898 // Add dependencies against everything below it and clear maps.
899 addBarrierChain(Stores);
900 addBarrierChain(Loads);
901 addBarrierChain(NonAliasStores);
902 addBarrierChain(NonAliasLoads);
903 addBarrierChain(FPExceptions);
905 continue;
908 // Instructions that may raise FP exceptions may not be moved
909 // across any global barriers.
910 if (MI.mayRaiseFPException()) {
911 if (BarrierChain)
912 BarrierChain->addPredBarrier(SU);
914 FPExceptions.insert(SU, UnknownValue);
916 if (FPExceptions.size() >= HugeRegion) {
917 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
918 Value2SUsMap empty;
919 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
923 // If it's not a store or a variant load, we're done.
924 if (!MI.mayStore() &&
925 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad()))
926 continue;
928 // Always add dependecy edge to BarrierChain if present.
929 if (BarrierChain)
930 BarrierChain->addPredBarrier(SU);
932 // Find the underlying objects for MI. The Objs vector is either
933 // empty, or filled with the Values of memory locations which this
934 // SU depends on.
935 UnderlyingObjectsVector Objs;
936 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
937 MF.getDataLayout());
939 if (MI.mayStore()) {
940 if (!ObjsFound) {
941 // An unknown store depends on all stores and loads.
942 addChainDependencies(SU, Stores);
943 addChainDependencies(SU, NonAliasStores);
944 addChainDependencies(SU, Loads);
945 addChainDependencies(SU, NonAliasLoads);
947 // Map this store to 'UnknownValue'.
948 Stores.insert(SU, UnknownValue);
949 } else {
950 // Add precise dependencies against all previously seen memory
951 // accesses mapped to the same Value(s).
952 for (const UnderlyingObject &UnderlObj : Objs) {
953 ValueType V = UnderlObj.getValue();
954 bool ThisMayAlias = UnderlObj.mayAlias();
956 // Add dependencies to previous stores and loads mapped to V.
957 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
958 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
960 // Update the store map after all chains have been added to avoid adding
961 // self-loop edge if multiple underlying objects are present.
962 for (const UnderlyingObject &UnderlObj : Objs) {
963 ValueType V = UnderlObj.getValue();
964 bool ThisMayAlias = UnderlObj.mayAlias();
966 // Map this store to V.
967 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
969 // The store may have dependencies to unanalyzable loads and
970 // stores.
971 addChainDependencies(SU, Loads, UnknownValue);
972 addChainDependencies(SU, Stores, UnknownValue);
974 } else { // SU is a load.
975 if (!ObjsFound) {
976 // An unknown load depends on all stores.
977 addChainDependencies(SU, Stores);
978 addChainDependencies(SU, NonAliasStores);
980 Loads.insert(SU, UnknownValue);
981 } else {
982 for (const UnderlyingObject &UnderlObj : Objs) {
983 ValueType V = UnderlObj.getValue();
984 bool ThisMayAlias = UnderlObj.mayAlias();
986 // Add precise dependencies against all previously seen stores
987 // mapping to the same Value(s).
988 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
990 // Map this load to V.
991 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
993 // The load may have dependencies to unanalyzable stores.
994 addChainDependencies(SU, Stores, UnknownValue);
998 // Reduce maps if they grow huge.
999 if (Stores.size() + Loads.size() >= HugeRegion) {
1000 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1001 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1003 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1004 LLVM_DEBUG(
1005 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1006 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1010 if (DbgMI)
1011 FirstDbgValue = DbgMI;
1013 Defs.clear();
1014 Uses.clear();
1015 CurrentVRegDefs.clear();
1016 CurrentVRegUses.clear();
1018 Topo.MarkDirty();
1021 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1022 PSV->printCustom(OS);
1023 return OS;
1026 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1027 for (const auto &[ValType, SUs] : *this) {
1028 if (isa<const Value *>(ValType)) {
1029 const Value *V = cast<const Value *>(ValType);
1030 if (isa<UndefValue>(V))
1031 dbgs() << "Unknown";
1032 else
1033 V->printAsOperand(dbgs());
1034 } else if (isa<const PseudoSourceValue *>(ValType))
1035 dbgs() << cast<const PseudoSourceValue *>(ValType);
1036 else
1037 llvm_unreachable("Unknown Value type.");
1039 dbgs() << " : ";
1040 dumpSUList(SUs);
1044 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1045 Value2SUsMap &loads, unsigned N) {
1046 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1047 dbgs() << "Loading SUnits:\n"; loads.dump());
1049 // Insert all SU's NodeNums into a vector and sort it.
1050 std::vector<unsigned> NodeNums;
1051 NodeNums.reserve(stores.size() + loads.size());
1052 for (const auto &[V, SUs] : stores) {
1053 (void)V;
1054 for (const auto *SU : SUs)
1055 NodeNums.push_back(SU->NodeNum);
1057 for (const auto &[V, SUs] : loads) {
1058 (void)V;
1059 for (const auto *SU : SUs)
1060 NodeNums.push_back(SU->NodeNum);
1062 llvm::sort(NodeNums);
1064 // The N last elements in NodeNums will be removed, and the SU with
1065 // the lowest NodeNum of them will become the new BarrierChain to
1066 // let the not yet seen SUs have a dependency to the removed SUs.
1067 assert(N <= NodeNums.size());
1068 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1069 if (BarrierChain) {
1070 // The aliasing and non-aliasing maps reduce independently of each
1071 // other, but share a common BarrierChain. Check if the
1072 // newBarrierChain is above the former one. If it is not, it may
1073 // introduce a loop to use newBarrierChain, so keep the old one.
1074 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1075 BarrierChain->addPredBarrier(newBarrierChain);
1076 BarrierChain = newBarrierChain;
1077 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1078 << BarrierChain->NodeNum << ").\n";);
1080 else
1081 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1082 << BarrierChain->NodeNum << ").\n";);
1084 else
1085 BarrierChain = newBarrierChain;
1087 insertBarrierChain(stores);
1088 insertBarrierChain(loads);
1090 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1091 dbgs() << "Loading SUnits:\n"; loads.dump());
1094 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1095 MachineInstr &MI, bool addToLiveRegs) {
1096 for (MachineOperand &MO : MI.operands()) {
1097 if (!MO.isReg() || !MO.readsReg())
1098 continue;
1099 Register Reg = MO.getReg();
1100 if (!Reg)
1101 continue;
1103 // Things that are available after the instruction are killed by it.
1104 bool IsKill = LiveRegs.available(MRI, Reg);
1105 MO.setIsKill(IsKill);
1106 if (addToLiveRegs)
1107 LiveRegs.addReg(Reg);
1111 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1112 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1114 LiveRegs.init(*TRI);
1115 LiveRegs.addLiveOuts(MBB);
1117 // Examine block from end to start...
1118 for (MachineInstr &MI : llvm::reverse(MBB)) {
1119 if (MI.isDebugOrPseudoInstr())
1120 continue;
1122 // Update liveness. Registers that are defed but not used in this
1123 // instruction are now dead. Mark register and all subregs as they
1124 // are completely defined.
1125 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1126 const MachineOperand &MO = *O;
1127 if (MO.isReg()) {
1128 if (!MO.isDef())
1129 continue;
1130 Register Reg = MO.getReg();
1131 if (!Reg)
1132 continue;
1133 LiveRegs.removeReg(Reg);
1134 } else if (MO.isRegMask()) {
1135 LiveRegs.removeRegsInMask(MO);
1139 // If there is a bundle header fix it up first.
1140 if (!MI.isBundled()) {
1141 toggleKills(MRI, LiveRegs, MI, true);
1142 } else {
1143 MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1144 if (MI.isBundle())
1145 toggleKills(MRI, LiveRegs, MI, false);
1147 // Some targets make the (questionable) assumtion that the instructions
1148 // inside the bundle are ordered and consequently only the last use of
1149 // a register inside the bundle can kill it.
1150 MachineBasicBlock::instr_iterator I = std::next(Bundle);
1151 while (I->isBundledWithSucc())
1152 ++I;
1153 do {
1154 if (!I->isDebugOrPseudoInstr())
1155 toggleKills(MRI, LiveRegs, *I, true);
1156 --I;
1157 } while (I != Bundle);
1162 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1163 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1164 dumpNodeName(SU);
1165 if (SchedPrintCycles)
1166 dbgs() << " [TopReadyCycle = " << SU.TopReadyCycle
1167 << ", BottomReadyCycle = " << SU.BotReadyCycle << "]";
1168 dbgs() << ": ";
1169 SU.getInstr()->dump();
1170 #endif
1173 void ScheduleDAGInstrs::dump() const {
1174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1175 if (EntrySU.getInstr() != nullptr)
1176 dumpNodeAll(EntrySU);
1177 for (const SUnit &SU : SUnits)
1178 dumpNodeAll(SU);
1179 if (ExitSU.getInstr() != nullptr)
1180 dumpNodeAll(ExitSU);
1181 #endif
1184 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1185 std::string s;
1186 raw_string_ostream oss(s);
1187 if (SU == &EntrySU)
1188 oss << "<entry>";
1189 else if (SU == &ExitSU)
1190 oss << "<exit>";
1191 else
1192 SU->getInstr()->print(oss, /*IsStandalone=*/true);
1193 return oss.str();
1196 /// Return the basic block label. It is not necessarilly unique because a block
1197 /// contains multiple scheduling regions. But it is fine for visualization.
1198 std::string ScheduleDAGInstrs::getDAGName() const {
1199 return "dag." + BB->getFullName();
1202 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1203 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1206 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1207 if (SuccSU != &ExitSU) {
1208 // Do not use WillCreateCycle, it assumes SD scheduling.
1209 // If Pred is reachable from Succ, then the edge creates a cycle.
1210 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1211 return false;
1212 Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1214 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1215 // Return true regardless of whether a new edge needed to be inserted.
1216 return true;
1219 //===----------------------------------------------------------------------===//
1220 // SchedDFSResult Implementation
1221 //===----------------------------------------------------------------------===//
1223 namespace llvm {
1225 /// Internal state used to compute SchedDFSResult.
1226 class SchedDFSImpl {
1227 SchedDFSResult &R;
1229 /// Join DAG nodes into equivalence classes by their subtree.
1230 IntEqClasses SubtreeClasses;
1231 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1232 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1234 struct RootData {
1235 unsigned NodeID;
1236 unsigned ParentNodeID; ///< Parent node (member of the parent subtree).
1237 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1238 /// children.
1240 RootData(unsigned id): NodeID(id),
1241 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1243 unsigned getSparseSetIndex() const { return NodeID; }
1246 SparseSet<RootData> RootSet;
1248 public:
1249 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1250 RootSet.setUniverse(R.DFSNodeData.size());
1253 /// Returns true if this node been visited by the DFS traversal.
1255 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1256 /// ID. Later, SubtreeID is updated but remains valid.
1257 bool isVisited(const SUnit *SU) const {
1258 return R.DFSNodeData[SU->NodeNum].SubtreeID
1259 != SchedDFSResult::InvalidSubtreeID;
1262 /// Initializes this node's instruction count. We don't need to flag the node
1263 /// visited until visitPostorder because the DAG cannot have cycles.
1264 void visitPreorder(const SUnit *SU) {
1265 R.DFSNodeData[SU->NodeNum].InstrCount =
1266 SU->getInstr()->isTransient() ? 0 : 1;
1269 /// Called once for each node after all predecessors are visited. Revisit this
1270 /// node's predecessors and potentially join them now that we know the ILP of
1271 /// the other predecessors.
1272 void visitPostorderNode(const SUnit *SU) {
1273 // Mark this node as the root of a subtree. It may be joined with its
1274 // successors later.
1275 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1276 RootData RData(SU->NodeNum);
1277 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1279 // If any predecessors are still in their own subtree, they either cannot be
1280 // joined or are large enough to remain separate. If this parent node's
1281 // total instruction count is not greater than a child subtree by at least
1282 // the subtree limit, then try to join it now since splitting subtrees is
1283 // only useful if multiple high-pressure paths are possible.
1284 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1285 for (const SDep &PredDep : SU->Preds) {
1286 if (PredDep.getKind() != SDep::Data)
1287 continue;
1288 unsigned PredNum = PredDep.getSUnit()->NodeNum;
1289 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1290 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1292 // Either link or merge the TreeData entry from the child to the parent.
1293 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1294 // If the predecessor's parent is invalid, this is a tree edge and the
1295 // current node is the parent.
1296 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1297 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1299 else if (RootSet.count(PredNum)) {
1300 // The predecessor is not a root, but is still in the root set. This
1301 // must be the new parent that it was just joined to. Note that
1302 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1303 // set to the original parent.
1304 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1305 RootSet.erase(PredNum);
1308 RootSet[SU->NodeNum] = RData;
1311 /// Called once for each tree edge after calling visitPostOrderNode on
1312 /// the predecessor. Increment the parent node's instruction count and
1313 /// preemptively join this subtree to its parent's if it is small enough.
1314 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1315 R.DFSNodeData[Succ->NodeNum].InstrCount
1316 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1317 joinPredSubtree(PredDep, Succ);
1320 /// Adds a connection for cross edges.
1321 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1322 ConnectionPairs.emplace_back(PredDep.getSUnit(), Succ);
1325 /// Sets each node's subtree ID to the representative ID and record
1326 /// connections between trees.
1327 void finalize() {
1328 SubtreeClasses.compress();
1329 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1330 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1331 && "number of roots should match trees");
1332 for (const RootData &Root : RootSet) {
1333 unsigned TreeID = SubtreeClasses[Root.NodeID];
1334 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1335 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1336 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1337 // Note that SubInstrCount may be greater than InstrCount if we joined
1338 // subtrees across a cross edge. InstrCount will be attributed to the
1339 // original parent, while SubInstrCount will be attributed to the joined
1340 // parent.
1342 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1343 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1344 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1345 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1346 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1347 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1348 << R.DFSNodeData[Idx].SubtreeID << '\n');
1350 for (const auto &[Pred, Succ] : ConnectionPairs) {
1351 unsigned PredTree = SubtreeClasses[Pred->NodeNum];
1352 unsigned SuccTree = SubtreeClasses[Succ->NodeNum];
1353 if (PredTree == SuccTree)
1354 continue;
1355 unsigned Depth = Pred->getDepth();
1356 addConnection(PredTree, SuccTree, Depth);
1357 addConnection(SuccTree, PredTree, Depth);
1361 protected:
1362 /// Joins the predecessor subtree with the successor that is its DFS parent.
1363 /// Applies some heuristics before joining.
1364 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1365 bool CheckLimit = true) {
1366 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1368 // Check if the predecessor is already joined.
1369 const SUnit *PredSU = PredDep.getSUnit();
1370 unsigned PredNum = PredSU->NodeNum;
1371 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1372 return false;
1374 // Four is the magic number of successors before a node is considered a
1375 // pinch point.
1376 unsigned NumDataSucs = 0;
1377 for (const SDep &SuccDep : PredSU->Succs) {
1378 if (SuccDep.getKind() == SDep::Data) {
1379 if (++NumDataSucs >= 4)
1380 return false;
1383 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1384 return false;
1385 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1386 SubtreeClasses.join(Succ->NodeNum, PredNum);
1387 return true;
1390 /// Called by finalize() to record a connection between trees.
1391 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1392 if (!Depth)
1393 return;
1395 do {
1396 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1397 R.SubtreeConnections[FromTree];
1398 for (SchedDFSResult::Connection &C : Connections) {
1399 if (C.TreeID == ToTree) {
1400 C.Level = std::max(C.Level, Depth);
1401 return;
1404 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1405 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1406 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1410 } // end namespace llvm
1412 namespace {
1414 /// Manage the stack used by a reverse depth-first search over the DAG.
1415 class SchedDAGReverseDFS {
1416 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1418 public:
1419 bool isComplete() const { return DFSStack.empty(); }
1421 void follow(const SUnit *SU) {
1422 DFSStack.emplace_back(SU, SU->Preds.begin());
1424 void advance() { ++DFSStack.back().second; }
1426 const SDep *backtrack() {
1427 DFSStack.pop_back();
1428 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1431 const SUnit *getCurr() const { return DFSStack.back().first; }
1433 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1435 SUnit::const_pred_iterator getPredEnd() const {
1436 return getCurr()->Preds.end();
1440 } // end anonymous namespace
1442 static bool hasDataSucc(const SUnit *SU) {
1443 for (const SDep &SuccDep : SU->Succs) {
1444 if (SuccDep.getKind() == SDep::Data &&
1445 !SuccDep.getSUnit()->isBoundaryNode())
1446 return true;
1448 return false;
1451 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1452 /// search from this root.
1453 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1454 if (!IsBottomUp)
1455 llvm_unreachable("Top-down ILP metric is unimplemented");
1457 SchedDFSImpl Impl(*this);
1458 for (const SUnit &SU : SUnits) {
1459 if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1460 continue;
1462 SchedDAGReverseDFS DFS;
1463 Impl.visitPreorder(&SU);
1464 DFS.follow(&SU);
1465 while (true) {
1466 // Traverse the leftmost path as far as possible.
1467 while (DFS.getPred() != DFS.getPredEnd()) {
1468 const SDep &PredDep = *DFS.getPred();
1469 DFS.advance();
1470 // Ignore non-data edges.
1471 if (PredDep.getKind() != SDep::Data
1472 || PredDep.getSUnit()->isBoundaryNode()) {
1473 continue;
1475 // An already visited edge is a cross edge, assuming an acyclic DAG.
1476 if (Impl.isVisited(PredDep.getSUnit())) {
1477 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1478 continue;
1480 Impl.visitPreorder(PredDep.getSUnit());
1481 DFS.follow(PredDep.getSUnit());
1483 // Visit the top of the stack in postorder and backtrack.
1484 const SUnit *Child = DFS.getCurr();
1485 const SDep *PredDep = DFS.backtrack();
1486 Impl.visitPostorderNode(Child);
1487 if (PredDep)
1488 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1489 if (DFS.isComplete())
1490 break;
1493 Impl.finalize();
1496 /// The root of the given SubtreeID was just scheduled. For all subtrees
1497 /// connected to this tree, record the depth of the connection so that the
1498 /// nearest connected subtrees can be prioritized.
1499 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1500 for (const Connection &C : SubtreeConnections[SubtreeID]) {
1501 SubtreeConnectLevels[C.TreeID] =
1502 std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1503 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @"
1504 << SubtreeConnectLevels[C.TreeID] << '\n');
1508 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1509 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1510 OS << InstrCount << " / " << Length << " = ";
1511 if (!Length)
1512 OS << "BADILP";
1513 else
1514 OS << format("%g", ((double)InstrCount / Length));
1517 LLVM_DUMP_METHOD void ILPValue::dump() const {
1518 dbgs() << *this << '\n';
1521 namespace llvm {
1523 LLVM_ATTRIBUTE_UNUSED
1524 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1525 Val.print(OS);
1526 return OS;
1529 } // end namespace llvm
1531 #endif