[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / TargetLoweringBase.cpp
blobbadb7fe533330fb70ee8677957375903e8343c88
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/MachineValueType.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/TargetParser/Triple.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
66 using namespace llvm;
68 static cl::opt<bool> JumpIsExpensiveOverride(
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
71 cl::Hidden);
73 static cl::opt<unsigned> MinimumJumpTableEntries
74 ("min-jump-table-entries", cl::init(4), cl::Hidden,
75 cl::desc("Set minimum number of entries to use a jump table."));
77 static cl::opt<unsigned> MaximumJumpTableSize
78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79 cl::desc("Set maximum size of jump tables."));
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89 "optsize-jump-table-density", cl::init(40), cl::Hidden,
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98 cl::desc("Don't mutate strict-float node to a legalize node"),
99 cl::init(false), cl::Hidden);
101 static bool darwinHasSinCos(const Triple &TT) {
102 assert(TT.isOSDarwin() && "should be called with darwin triple");
103 // Don't bother with 32 bit x86.
104 if (TT.getArch() == Triple::x86)
105 return false;
106 // Macos < 10.9 has no sincos_stret.
107 if (TT.isMacOSX())
108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109 // iOS < 7.0 has no sincos_stret.
110 if (TT.isiOS())
111 return !TT.isOSVersionLT(7, 0);
112 // Any other darwin such as WatchOS/TvOS is new enough.
113 return true;
116 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117 #define HANDLE_LIBCALL(code, name) \
118 setLibcallName(RTLIB::code, name);
119 #include "llvm/IR/RuntimeLibcalls.def"
120 #undef HANDLE_LIBCALL
121 // Initialize calling conventions to their default.
122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
125 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
126 if (TT.isPPC()) {
127 setLibcallName(RTLIB::ADD_F128, "__addkf3");
128 setLibcallName(RTLIB::SUB_F128, "__subkf3");
129 setLibcallName(RTLIB::MUL_F128, "__mulkf3");
130 setLibcallName(RTLIB::DIV_F128, "__divkf3");
131 setLibcallName(RTLIB::POWI_F128, "__powikf2");
132 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
139 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
140 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
141 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
142 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
143 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
144 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
145 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
146 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
147 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
148 setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
149 setLibcallName(RTLIB::UNE_F128, "__nekf2");
150 setLibcallName(RTLIB::OGE_F128, "__gekf2");
151 setLibcallName(RTLIB::OLT_F128, "__ltkf2");
152 setLibcallName(RTLIB::OLE_F128, "__lekf2");
153 setLibcallName(RTLIB::OGT_F128, "__gtkf2");
154 setLibcallName(RTLIB::UO_F128, "__unordkf2");
157 // A few names are different on particular architectures or environments.
158 if (TT.isOSDarwin()) {
159 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
160 // of the gnueabi-style __gnu_*_ieee.
161 // FIXME: What about other targets?
162 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
163 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
165 // Some darwins have an optimized __bzero/bzero function.
166 switch (TT.getArch()) {
167 case Triple::x86:
168 case Triple::x86_64:
169 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
170 setLibcallName(RTLIB::BZERO, "__bzero");
171 break;
172 case Triple::aarch64:
173 case Triple::aarch64_32:
174 setLibcallName(RTLIB::BZERO, "bzero");
175 break;
176 default:
177 break;
180 if (darwinHasSinCos(TT)) {
181 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
182 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
183 if (TT.isWatchABI()) {
184 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
185 CallingConv::ARM_AAPCS_VFP);
186 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
187 CallingConv::ARM_AAPCS_VFP);
190 } else {
191 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
192 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
195 if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
196 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
197 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
198 setLibcallName(RTLIB::SINCOS_F64, "sincos");
199 setLibcallName(RTLIB::SINCOS_F80, "sincosl");
200 setLibcallName(RTLIB::SINCOS_F128, "sincosl");
201 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
204 if (TT.isPS()) {
205 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
206 setLibcallName(RTLIB::SINCOS_F64, "sincos");
209 if (TT.isOSOpenBSD()) {
210 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
213 if (TT.isOSWindows() && !TT.isOSCygMing()) {
214 setLibcallName(RTLIB::LDEXP_F32, nullptr);
215 setLibcallName(RTLIB::LDEXP_F80, nullptr);
216 setLibcallName(RTLIB::LDEXP_F128, nullptr);
217 setLibcallName(RTLIB::LDEXP_PPCF128, nullptr);
219 setLibcallName(RTLIB::FREXP_F32, nullptr);
220 setLibcallName(RTLIB::FREXP_F80, nullptr);
221 setLibcallName(RTLIB::FREXP_F128, nullptr);
222 setLibcallName(RTLIB::FREXP_PPCF128, nullptr);
226 /// GetFPLibCall - Helper to return the right libcall for the given floating
227 /// point type, or UNKNOWN_LIBCALL if there is none.
228 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
229 RTLIB::Libcall Call_F32,
230 RTLIB::Libcall Call_F64,
231 RTLIB::Libcall Call_F80,
232 RTLIB::Libcall Call_F128,
233 RTLIB::Libcall Call_PPCF128) {
234 return
235 VT == MVT::f32 ? Call_F32 :
236 VT == MVT::f64 ? Call_F64 :
237 VT == MVT::f80 ? Call_F80 :
238 VT == MVT::f128 ? Call_F128 :
239 VT == MVT::ppcf128 ? Call_PPCF128 :
240 RTLIB::UNKNOWN_LIBCALL;
243 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
244 /// UNKNOWN_LIBCALL if there is none.
245 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
246 if (OpVT == MVT::f16) {
247 if (RetVT == MVT::f32)
248 return FPEXT_F16_F32;
249 if (RetVT == MVT::f64)
250 return FPEXT_F16_F64;
251 if (RetVT == MVT::f80)
252 return FPEXT_F16_F80;
253 if (RetVT == MVT::f128)
254 return FPEXT_F16_F128;
255 } else if (OpVT == MVT::f32) {
256 if (RetVT == MVT::f64)
257 return FPEXT_F32_F64;
258 if (RetVT == MVT::f128)
259 return FPEXT_F32_F128;
260 if (RetVT == MVT::ppcf128)
261 return FPEXT_F32_PPCF128;
262 } else if (OpVT == MVT::f64) {
263 if (RetVT == MVT::f128)
264 return FPEXT_F64_F128;
265 else if (RetVT == MVT::ppcf128)
266 return FPEXT_F64_PPCF128;
267 } else if (OpVT == MVT::f80) {
268 if (RetVT == MVT::f128)
269 return FPEXT_F80_F128;
272 return UNKNOWN_LIBCALL;
275 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
276 /// UNKNOWN_LIBCALL if there is none.
277 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
278 if (RetVT == MVT::f16) {
279 if (OpVT == MVT::f32)
280 return FPROUND_F32_F16;
281 if (OpVT == MVT::f64)
282 return FPROUND_F64_F16;
283 if (OpVT == MVT::f80)
284 return FPROUND_F80_F16;
285 if (OpVT == MVT::f128)
286 return FPROUND_F128_F16;
287 if (OpVT == MVT::ppcf128)
288 return FPROUND_PPCF128_F16;
289 } else if (RetVT == MVT::bf16) {
290 if (OpVT == MVT::f32)
291 return FPROUND_F32_BF16;
292 if (OpVT == MVT::f64)
293 return FPROUND_F64_BF16;
294 } else if (RetVT == MVT::f32) {
295 if (OpVT == MVT::f64)
296 return FPROUND_F64_F32;
297 if (OpVT == MVT::f80)
298 return FPROUND_F80_F32;
299 if (OpVT == MVT::f128)
300 return FPROUND_F128_F32;
301 if (OpVT == MVT::ppcf128)
302 return FPROUND_PPCF128_F32;
303 } else if (RetVT == MVT::f64) {
304 if (OpVT == MVT::f80)
305 return FPROUND_F80_F64;
306 if (OpVT == MVT::f128)
307 return FPROUND_F128_F64;
308 if (OpVT == MVT::ppcf128)
309 return FPROUND_PPCF128_F64;
310 } else if (RetVT == MVT::f80) {
311 if (OpVT == MVT::f128)
312 return FPROUND_F128_F80;
315 return UNKNOWN_LIBCALL;
318 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
319 /// UNKNOWN_LIBCALL if there is none.
320 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
321 if (OpVT == MVT::f16) {
322 if (RetVT == MVT::i32)
323 return FPTOSINT_F16_I32;
324 if (RetVT == MVT::i64)
325 return FPTOSINT_F16_I64;
326 if (RetVT == MVT::i128)
327 return FPTOSINT_F16_I128;
328 } else if (OpVT == MVT::f32) {
329 if (RetVT == MVT::i32)
330 return FPTOSINT_F32_I32;
331 if (RetVT == MVT::i64)
332 return FPTOSINT_F32_I64;
333 if (RetVT == MVT::i128)
334 return FPTOSINT_F32_I128;
335 } else if (OpVT == MVT::f64) {
336 if (RetVT == MVT::i32)
337 return FPTOSINT_F64_I32;
338 if (RetVT == MVT::i64)
339 return FPTOSINT_F64_I64;
340 if (RetVT == MVT::i128)
341 return FPTOSINT_F64_I128;
342 } else if (OpVT == MVT::f80) {
343 if (RetVT == MVT::i32)
344 return FPTOSINT_F80_I32;
345 if (RetVT == MVT::i64)
346 return FPTOSINT_F80_I64;
347 if (RetVT == MVT::i128)
348 return FPTOSINT_F80_I128;
349 } else if (OpVT == MVT::f128) {
350 if (RetVT == MVT::i32)
351 return FPTOSINT_F128_I32;
352 if (RetVT == MVT::i64)
353 return FPTOSINT_F128_I64;
354 if (RetVT == MVT::i128)
355 return FPTOSINT_F128_I128;
356 } else if (OpVT == MVT::ppcf128) {
357 if (RetVT == MVT::i32)
358 return FPTOSINT_PPCF128_I32;
359 if (RetVT == MVT::i64)
360 return FPTOSINT_PPCF128_I64;
361 if (RetVT == MVT::i128)
362 return FPTOSINT_PPCF128_I128;
364 return UNKNOWN_LIBCALL;
367 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
369 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
370 if (OpVT == MVT::f16) {
371 if (RetVT == MVT::i32)
372 return FPTOUINT_F16_I32;
373 if (RetVT == MVT::i64)
374 return FPTOUINT_F16_I64;
375 if (RetVT == MVT::i128)
376 return FPTOUINT_F16_I128;
377 } else if (OpVT == MVT::f32) {
378 if (RetVT == MVT::i32)
379 return FPTOUINT_F32_I32;
380 if (RetVT == MVT::i64)
381 return FPTOUINT_F32_I64;
382 if (RetVT == MVT::i128)
383 return FPTOUINT_F32_I128;
384 } else if (OpVT == MVT::f64) {
385 if (RetVT == MVT::i32)
386 return FPTOUINT_F64_I32;
387 if (RetVT == MVT::i64)
388 return FPTOUINT_F64_I64;
389 if (RetVT == MVT::i128)
390 return FPTOUINT_F64_I128;
391 } else if (OpVT == MVT::f80) {
392 if (RetVT == MVT::i32)
393 return FPTOUINT_F80_I32;
394 if (RetVT == MVT::i64)
395 return FPTOUINT_F80_I64;
396 if (RetVT == MVT::i128)
397 return FPTOUINT_F80_I128;
398 } else if (OpVT == MVT::f128) {
399 if (RetVT == MVT::i32)
400 return FPTOUINT_F128_I32;
401 if (RetVT == MVT::i64)
402 return FPTOUINT_F128_I64;
403 if (RetVT == MVT::i128)
404 return FPTOUINT_F128_I128;
405 } else if (OpVT == MVT::ppcf128) {
406 if (RetVT == MVT::i32)
407 return FPTOUINT_PPCF128_I32;
408 if (RetVT == MVT::i64)
409 return FPTOUINT_PPCF128_I64;
410 if (RetVT == MVT::i128)
411 return FPTOUINT_PPCF128_I128;
413 return UNKNOWN_LIBCALL;
416 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
417 /// UNKNOWN_LIBCALL if there is none.
418 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
419 if (OpVT == MVT::i32) {
420 if (RetVT == MVT::f16)
421 return SINTTOFP_I32_F16;
422 if (RetVT == MVT::f32)
423 return SINTTOFP_I32_F32;
424 if (RetVT == MVT::f64)
425 return SINTTOFP_I32_F64;
426 if (RetVT == MVT::f80)
427 return SINTTOFP_I32_F80;
428 if (RetVT == MVT::f128)
429 return SINTTOFP_I32_F128;
430 if (RetVT == MVT::ppcf128)
431 return SINTTOFP_I32_PPCF128;
432 } else if (OpVT == MVT::i64) {
433 if (RetVT == MVT::f16)
434 return SINTTOFP_I64_F16;
435 if (RetVT == MVT::f32)
436 return SINTTOFP_I64_F32;
437 if (RetVT == MVT::f64)
438 return SINTTOFP_I64_F64;
439 if (RetVT == MVT::f80)
440 return SINTTOFP_I64_F80;
441 if (RetVT == MVT::f128)
442 return SINTTOFP_I64_F128;
443 if (RetVT == MVT::ppcf128)
444 return SINTTOFP_I64_PPCF128;
445 } else if (OpVT == MVT::i128) {
446 if (RetVT == MVT::f16)
447 return SINTTOFP_I128_F16;
448 if (RetVT == MVT::f32)
449 return SINTTOFP_I128_F32;
450 if (RetVT == MVT::f64)
451 return SINTTOFP_I128_F64;
452 if (RetVT == MVT::f80)
453 return SINTTOFP_I128_F80;
454 if (RetVT == MVT::f128)
455 return SINTTOFP_I128_F128;
456 if (RetVT == MVT::ppcf128)
457 return SINTTOFP_I128_PPCF128;
459 return UNKNOWN_LIBCALL;
462 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
463 /// UNKNOWN_LIBCALL if there is none.
464 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
465 if (OpVT == MVT::i32) {
466 if (RetVT == MVT::f16)
467 return UINTTOFP_I32_F16;
468 if (RetVT == MVT::f32)
469 return UINTTOFP_I32_F32;
470 if (RetVT == MVT::f64)
471 return UINTTOFP_I32_F64;
472 if (RetVT == MVT::f80)
473 return UINTTOFP_I32_F80;
474 if (RetVT == MVT::f128)
475 return UINTTOFP_I32_F128;
476 if (RetVT == MVT::ppcf128)
477 return UINTTOFP_I32_PPCF128;
478 } else if (OpVT == MVT::i64) {
479 if (RetVT == MVT::f16)
480 return UINTTOFP_I64_F16;
481 if (RetVT == MVT::f32)
482 return UINTTOFP_I64_F32;
483 if (RetVT == MVT::f64)
484 return UINTTOFP_I64_F64;
485 if (RetVT == MVT::f80)
486 return UINTTOFP_I64_F80;
487 if (RetVT == MVT::f128)
488 return UINTTOFP_I64_F128;
489 if (RetVT == MVT::ppcf128)
490 return UINTTOFP_I64_PPCF128;
491 } else if (OpVT == MVT::i128) {
492 if (RetVT == MVT::f16)
493 return UINTTOFP_I128_F16;
494 if (RetVT == MVT::f32)
495 return UINTTOFP_I128_F32;
496 if (RetVT == MVT::f64)
497 return UINTTOFP_I128_F64;
498 if (RetVT == MVT::f80)
499 return UINTTOFP_I128_F80;
500 if (RetVT == MVT::f128)
501 return UINTTOFP_I128_F128;
502 if (RetVT == MVT::ppcf128)
503 return UINTTOFP_I128_PPCF128;
505 return UNKNOWN_LIBCALL;
508 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
509 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
510 POWI_PPCF128);
513 RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
514 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
515 LDEXP_PPCF128);
518 RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
519 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
520 FREXP_PPCF128);
523 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
524 MVT VT) {
525 unsigned ModeN, ModelN;
526 switch (VT.SimpleTy) {
527 case MVT::i8:
528 ModeN = 0;
529 break;
530 case MVT::i16:
531 ModeN = 1;
532 break;
533 case MVT::i32:
534 ModeN = 2;
535 break;
536 case MVT::i64:
537 ModeN = 3;
538 break;
539 case MVT::i128:
540 ModeN = 4;
541 break;
542 default:
543 return UNKNOWN_LIBCALL;
546 switch (Order) {
547 case AtomicOrdering::Monotonic:
548 ModelN = 0;
549 break;
550 case AtomicOrdering::Acquire:
551 ModelN = 1;
552 break;
553 case AtomicOrdering::Release:
554 ModelN = 2;
555 break;
556 case AtomicOrdering::AcquireRelease:
557 case AtomicOrdering::SequentiallyConsistent:
558 ModelN = 3;
559 break;
560 default:
561 return UNKNOWN_LIBCALL;
564 #define LCALLS(A, B) \
565 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
566 #define LCALL5(A) \
567 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
568 switch (Opc) {
569 case ISD::ATOMIC_CMP_SWAP: {
570 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
571 return LC[ModeN][ModelN];
573 case ISD::ATOMIC_SWAP: {
574 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
575 return LC[ModeN][ModelN];
577 case ISD::ATOMIC_LOAD_ADD: {
578 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
579 return LC[ModeN][ModelN];
581 case ISD::ATOMIC_LOAD_OR: {
582 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
583 return LC[ModeN][ModelN];
585 case ISD::ATOMIC_LOAD_CLR: {
586 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
587 return LC[ModeN][ModelN];
589 case ISD::ATOMIC_LOAD_XOR: {
590 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
591 return LC[ModeN][ModelN];
593 default:
594 return UNKNOWN_LIBCALL;
596 #undef LCALLS
597 #undef LCALL5
600 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
601 #define OP_TO_LIBCALL(Name, Enum) \
602 case Name: \
603 switch (VT.SimpleTy) { \
604 default: \
605 return UNKNOWN_LIBCALL; \
606 case MVT::i8: \
607 return Enum##_1; \
608 case MVT::i16: \
609 return Enum##_2; \
610 case MVT::i32: \
611 return Enum##_4; \
612 case MVT::i64: \
613 return Enum##_8; \
614 case MVT::i128: \
615 return Enum##_16; \
618 switch (Opc) {
619 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
620 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
621 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
622 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
623 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
624 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
625 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
626 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
627 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
628 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
629 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
630 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
633 #undef OP_TO_LIBCALL
635 return UNKNOWN_LIBCALL;
638 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
639 switch (ElementSize) {
640 case 1:
641 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
642 case 2:
643 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
644 case 4:
645 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
646 case 8:
647 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
648 case 16:
649 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
650 default:
651 return UNKNOWN_LIBCALL;
655 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
656 switch (ElementSize) {
657 case 1:
658 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
659 case 2:
660 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
661 case 4:
662 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
663 case 8:
664 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
665 case 16:
666 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
667 default:
668 return UNKNOWN_LIBCALL;
672 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
673 switch (ElementSize) {
674 case 1:
675 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
676 case 2:
677 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
678 case 4:
679 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
680 case 8:
681 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
682 case 16:
683 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
684 default:
685 return UNKNOWN_LIBCALL;
689 /// InitCmpLibcallCCs - Set default comparison libcall CC.
690 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
691 std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
692 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
693 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
694 CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
695 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
696 CCs[RTLIB::UNE_F32] = ISD::SETNE;
697 CCs[RTLIB::UNE_F64] = ISD::SETNE;
698 CCs[RTLIB::UNE_F128] = ISD::SETNE;
699 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
700 CCs[RTLIB::OGE_F32] = ISD::SETGE;
701 CCs[RTLIB::OGE_F64] = ISD::SETGE;
702 CCs[RTLIB::OGE_F128] = ISD::SETGE;
703 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
704 CCs[RTLIB::OLT_F32] = ISD::SETLT;
705 CCs[RTLIB::OLT_F64] = ISD::SETLT;
706 CCs[RTLIB::OLT_F128] = ISD::SETLT;
707 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
708 CCs[RTLIB::OLE_F32] = ISD::SETLE;
709 CCs[RTLIB::OLE_F64] = ISD::SETLE;
710 CCs[RTLIB::OLE_F128] = ISD::SETLE;
711 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
712 CCs[RTLIB::OGT_F32] = ISD::SETGT;
713 CCs[RTLIB::OGT_F64] = ISD::SETGT;
714 CCs[RTLIB::OGT_F128] = ISD::SETGT;
715 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
716 CCs[RTLIB::UO_F32] = ISD::SETNE;
717 CCs[RTLIB::UO_F64] = ISD::SETNE;
718 CCs[RTLIB::UO_F128] = ISD::SETNE;
719 CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
722 /// NOTE: The TargetMachine owns TLOF.
723 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
724 initActions();
726 // Perform these initializations only once.
727 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
728 MaxLoadsPerMemcmp = 8;
729 MaxGluedStoresPerMemcpy = 0;
730 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
731 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
732 HasMultipleConditionRegisters = false;
733 HasExtractBitsInsn = false;
734 JumpIsExpensive = JumpIsExpensiveOverride;
735 PredictableSelectIsExpensive = false;
736 EnableExtLdPromotion = false;
737 StackPointerRegisterToSaveRestore = 0;
738 BooleanContents = UndefinedBooleanContent;
739 BooleanFloatContents = UndefinedBooleanContent;
740 BooleanVectorContents = UndefinedBooleanContent;
741 SchedPreferenceInfo = Sched::ILP;
742 GatherAllAliasesMaxDepth = 18;
743 IsStrictFPEnabled = DisableStrictNodeMutation;
744 MaxBytesForAlignment = 0;
745 // TODO: the default will be switched to 0 in the next commit, along
746 // with the Target-specific changes necessary.
747 MaxAtomicSizeInBitsSupported = 1024;
749 // Assume that even with libcalls, no target supports wider than 128 bit
750 // division.
751 MaxDivRemBitWidthSupported = 128;
753 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
755 MinCmpXchgSizeInBits = 0;
756 SupportsUnalignedAtomics = false;
758 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
760 InitLibcalls(TM.getTargetTriple());
761 InitCmpLibcallCCs(CmpLibcallCCs);
764 void TargetLoweringBase::initActions() {
765 // All operations default to being supported.
766 memset(OpActions, 0, sizeof(OpActions));
767 memset(LoadExtActions, 0, sizeof(LoadExtActions));
768 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
769 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
770 memset(CondCodeActions, 0, sizeof(CondCodeActions));
771 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
772 std::fill(std::begin(TargetDAGCombineArray),
773 std::end(TargetDAGCombineArray), 0);
775 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
776 // remove this and targets should individually set these types if not legal.
777 for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
778 force_iteration_on_noniterable_enum)) {
779 for (MVT VT : {MVT::i2, MVT::i4})
780 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
782 for (MVT AVT : MVT::all_valuetypes()) {
783 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
784 setTruncStoreAction(AVT, VT, Expand);
785 setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
786 setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
789 for (unsigned IM = (unsigned)ISD::PRE_INC;
790 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
791 for (MVT VT : {MVT::i2, MVT::i4}) {
792 setIndexedLoadAction(IM, VT, Expand);
793 setIndexedStoreAction(IM, VT, Expand);
794 setIndexedMaskedLoadAction(IM, VT, Expand);
795 setIndexedMaskedStoreAction(IM, VT, Expand);
799 for (MVT VT : MVT::fp_valuetypes()) {
800 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
801 if (IntVT.isValid()) {
802 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
803 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
807 // Set default actions for various operations.
808 for (MVT VT : MVT::all_valuetypes()) {
809 // Default all indexed load / store to expand.
810 for (unsigned IM = (unsigned)ISD::PRE_INC;
811 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
812 setIndexedLoadAction(IM, VT, Expand);
813 setIndexedStoreAction(IM, VT, Expand);
814 setIndexedMaskedLoadAction(IM, VT, Expand);
815 setIndexedMaskedStoreAction(IM, VT, Expand);
818 // Most backends expect to see the node which just returns the value loaded.
819 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
821 // These operations default to expand.
822 setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS,
823 ISD::FMINNUM, ISD::FMAXNUM,
824 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
825 ISD::FMINIMUM, ISD::FMAXIMUM,
826 ISD::FMAD, ISD::SMIN,
827 ISD::SMAX, ISD::UMIN,
828 ISD::UMAX, ISD::ABS,
829 ISD::FSHL, ISD::FSHR,
830 ISD::SADDSAT, ISD::UADDSAT,
831 ISD::SSUBSAT, ISD::USUBSAT,
832 ISD::SSHLSAT, ISD::USHLSAT,
833 ISD::SMULFIX, ISD::SMULFIXSAT,
834 ISD::UMULFIX, ISD::UMULFIXSAT,
835 ISD::SDIVFIX, ISD::SDIVFIXSAT,
836 ISD::UDIVFIX, ISD::UDIVFIXSAT,
837 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
838 ISD::IS_FPCLASS},
839 VT, Expand);
841 // Overflow operations default to expand
842 setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
843 ISD::SMULO, ISD::UMULO},
844 VT, Expand);
846 // Carry-using overflow operations default to expand.
847 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
848 ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
849 VT, Expand);
851 // ADDC/ADDE/SUBC/SUBE default to expand.
852 setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
853 Expand);
855 // Halving adds
856 setOperationAction(
857 {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
858 Expand);
860 // Absolute difference
861 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
863 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
864 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
865 Expand);
867 setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
869 // These library functions default to expand.
870 setOperationAction(
871 {ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP},
872 VT, Expand);
874 // These operations default to expand for vector types.
875 if (VT.isVector())
876 setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG,
877 ISD::ANY_EXTEND_VECTOR_INREG,
878 ISD::SIGN_EXTEND_VECTOR_INREG,
879 ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR},
880 VT, Expand);
882 // Constrained floating-point operations default to expand.
883 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
884 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
885 #include "llvm/IR/ConstrainedOps.def"
887 // For most targets @llvm.get.dynamic.area.offset just returns 0.
888 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
890 // Vector reduction default to expand.
891 setOperationAction(
892 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
893 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
894 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
895 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
896 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
897 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
898 VT, Expand);
900 // Named vector shuffles default to expand.
901 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
903 // VP operations default to expand.
904 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
905 setOperationAction(ISD::SDOPC, VT, Expand);
906 #include "llvm/IR/VPIntrinsics.def"
908 // FP environment operations default to expand.
909 setOperationAction(ISD::GET_FPENV, VT, Expand);
910 setOperationAction(ISD::SET_FPENV, VT, Expand);
911 setOperationAction(ISD::RESET_FPENV, VT, Expand);
914 // Most targets ignore the @llvm.prefetch intrinsic.
915 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
917 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
918 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
920 // ConstantFP nodes default to expand. Targets can either change this to
921 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
922 // to optimize expansions for certain constants.
923 setOperationAction(ISD::ConstantFP,
924 {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
925 Expand);
927 // These library functions default to expand.
928 setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
929 ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL,
930 ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND,
931 ISD::LRINT, ISD::LLRINT},
932 {MVT::f32, MVT::f64, MVT::f128}, Expand);
934 // Default ISD::TRAP to expand (which turns it into abort).
935 setOperationAction(ISD::TRAP, MVT::Other, Expand);
937 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
938 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
939 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
941 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
943 setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
944 setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
947 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
948 EVT) const {
949 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
952 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
953 bool LegalTypes) const {
954 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
955 if (LHSTy.isVector())
956 return LHSTy;
957 MVT ShiftVT =
958 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
959 // If any possible shift value won't fit in the prefered type, just use
960 // something safe. Assume it will be legalized when the shift is expanded.
961 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
962 ShiftVT = MVT::i32;
963 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
964 "ShiftVT is still too small!");
965 return ShiftVT;
968 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
969 assert(isTypeLegal(VT));
970 switch (Op) {
971 default:
972 return false;
973 case ISD::SDIV:
974 case ISD::UDIV:
975 case ISD::SREM:
976 case ISD::UREM:
977 return true;
981 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
982 unsigned DestAS) const {
983 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
986 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
987 // If the command-line option was specified, ignore this request.
988 if (!JumpIsExpensiveOverride.getNumOccurrences())
989 JumpIsExpensive = isExpensive;
992 TargetLoweringBase::LegalizeKind
993 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
994 // If this is a simple type, use the ComputeRegisterProp mechanism.
995 if (VT.isSimple()) {
996 MVT SVT = VT.getSimpleVT();
997 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
998 MVT NVT = TransformToType[SVT.SimpleTy];
999 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1001 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1002 LA == TypeSoftPromoteHalf ||
1003 (NVT.isVector() ||
1004 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1005 "Promote may not follow Expand or Promote");
1007 if (LA == TypeSplitVector)
1008 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1009 if (LA == TypeScalarizeVector)
1010 return LegalizeKind(LA, SVT.getVectorElementType());
1011 return LegalizeKind(LA, NVT);
1014 // Handle Extended Scalar Types.
1015 if (!VT.isVector()) {
1016 assert(VT.isInteger() && "Float types must be simple");
1017 unsigned BitSize = VT.getSizeInBits();
1018 // First promote to a power-of-two size, then expand if necessary.
1019 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1020 EVT NVT = VT.getRoundIntegerType(Context);
1021 assert(NVT != VT && "Unable to round integer VT");
1022 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1023 // Avoid multi-step promotion.
1024 if (NextStep.first == TypePromoteInteger)
1025 return NextStep;
1026 // Return rounded integer type.
1027 return LegalizeKind(TypePromoteInteger, NVT);
1030 return LegalizeKind(TypeExpandInteger,
1031 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1034 // Handle vector types.
1035 ElementCount NumElts = VT.getVectorElementCount();
1036 EVT EltVT = VT.getVectorElementType();
1038 // Vectors with only one element are always scalarized.
1039 if (NumElts.isScalar())
1040 return LegalizeKind(TypeScalarizeVector, EltVT);
1042 // Try to widen vector elements until the element type is a power of two and
1043 // promote it to a legal type later on, for example:
1044 // <3 x i8> -> <4 x i8> -> <4 x i32>
1045 if (EltVT.isInteger()) {
1046 // Vectors with a number of elements that is not a power of two are always
1047 // widened, for example <3 x i8> -> <4 x i8>.
1048 if (!VT.isPow2VectorType()) {
1049 NumElts = NumElts.coefficientNextPowerOf2();
1050 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1051 return LegalizeKind(TypeWidenVector, NVT);
1054 // Examine the element type.
1055 LegalizeKind LK = getTypeConversion(Context, EltVT);
1057 // If type is to be expanded, split the vector.
1058 // <4 x i140> -> <2 x i140>
1059 if (LK.first == TypeExpandInteger) {
1060 if (VT.getVectorElementCount().isScalable())
1061 return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1062 return LegalizeKind(TypeSplitVector,
1063 VT.getHalfNumVectorElementsVT(Context));
1066 // Promote the integer element types until a legal vector type is found
1067 // or until the element integer type is too big. If a legal type was not
1068 // found, fallback to the usual mechanism of widening/splitting the
1069 // vector.
1070 EVT OldEltVT = EltVT;
1071 while (true) {
1072 // Increase the bitwidth of the element to the next pow-of-two
1073 // (which is greater than 8 bits).
1074 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1075 .getRoundIntegerType(Context);
1077 // Stop trying when getting a non-simple element type.
1078 // Note that vector elements may be greater than legal vector element
1079 // types. Example: X86 XMM registers hold 64bit element on 32bit
1080 // systems.
1081 if (!EltVT.isSimple())
1082 break;
1084 // Build a new vector type and check if it is legal.
1085 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1086 // Found a legal promoted vector type.
1087 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1088 return LegalizeKind(TypePromoteInteger,
1089 EVT::getVectorVT(Context, EltVT, NumElts));
1092 // Reset the type to the unexpanded type if we did not find a legal vector
1093 // type with a promoted vector element type.
1094 EltVT = OldEltVT;
1097 // Try to widen the vector until a legal type is found.
1098 // If there is no wider legal type, split the vector.
1099 while (true) {
1100 // Round up to the next power of 2.
1101 NumElts = NumElts.coefficientNextPowerOf2();
1103 // If there is no simple vector type with this many elements then there
1104 // cannot be a larger legal vector type. Note that this assumes that
1105 // there are no skipped intermediate vector types in the simple types.
1106 if (!EltVT.isSimple())
1107 break;
1108 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1109 if (LargerVector == MVT())
1110 break;
1112 // If this type is legal then widen the vector.
1113 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1114 return LegalizeKind(TypeWidenVector, LargerVector);
1117 // Widen odd vectors to next power of two.
1118 if (!VT.isPow2VectorType()) {
1119 EVT NVT = VT.getPow2VectorType(Context);
1120 return LegalizeKind(TypeWidenVector, NVT);
1123 if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1124 return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1126 // Vectors with illegal element types are expanded.
1127 EVT NVT = EVT::getVectorVT(Context, EltVT,
1128 VT.getVectorElementCount().divideCoefficientBy(2));
1129 return LegalizeKind(TypeSplitVector, NVT);
1132 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1133 unsigned &NumIntermediates,
1134 MVT &RegisterVT,
1135 TargetLoweringBase *TLI) {
1136 // Figure out the right, legal destination reg to copy into.
1137 ElementCount EC = VT.getVectorElementCount();
1138 MVT EltTy = VT.getVectorElementType();
1140 unsigned NumVectorRegs = 1;
1142 // Scalable vectors cannot be scalarized, so splitting or widening is
1143 // required.
1144 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1145 llvm_unreachable(
1146 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1148 // FIXME: We don't support non-power-of-2-sized vectors for now.
1149 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1150 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1151 // Split EC to unit size (scalable property is preserved).
1152 NumVectorRegs = EC.getKnownMinValue();
1153 EC = ElementCount::getFixed(1);
1156 // Divide the input until we get to a supported size. This will
1157 // always end up with an EC that represent a scalar or a scalable
1158 // scalar.
1159 while (EC.getKnownMinValue() > 1 &&
1160 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1161 EC = EC.divideCoefficientBy(2);
1162 NumVectorRegs <<= 1;
1165 NumIntermediates = NumVectorRegs;
1167 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1168 if (!TLI->isTypeLegal(NewVT))
1169 NewVT = EltTy;
1170 IntermediateVT = NewVT;
1172 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1174 // Convert sizes such as i33 to i64.
1175 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1177 MVT DestVT = TLI->getRegisterType(NewVT);
1178 RegisterVT = DestVT;
1179 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1180 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1182 // Otherwise, promotion or legal types use the same number of registers as
1183 // the vector decimated to the appropriate level.
1184 return NumVectorRegs;
1187 /// isLegalRC - Return true if the value types that can be represented by the
1188 /// specified register class are all legal.
1189 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1190 const TargetRegisterClass &RC) const {
1191 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1192 if (isTypeLegal(*I))
1193 return true;
1194 return false;
1197 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1198 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1199 MachineBasicBlock *
1200 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1201 MachineBasicBlock *MBB) const {
1202 MachineInstr *MI = &InitialMI;
1203 MachineFunction &MF = *MI->getMF();
1204 MachineFrameInfo &MFI = MF.getFrameInfo();
1206 // We're handling multiple types of operands here:
1207 // PATCHPOINT MetaArgs - live-in, read only, direct
1208 // STATEPOINT Deopt Spill - live-through, read only, indirect
1209 // STATEPOINT Deopt Alloca - live-through, read only, direct
1210 // (We're currently conservative and mark the deopt slots read/write in
1211 // practice.)
1212 // STATEPOINT GC Spill - live-through, read/write, indirect
1213 // STATEPOINT GC Alloca - live-through, read/write, direct
1214 // The live-in vs live-through is handled already (the live through ones are
1215 // all stack slots), but we need to handle the different type of stackmap
1216 // operands and memory effects here.
1218 if (llvm::none_of(MI->operands(),
1219 [](MachineOperand &Operand) { return Operand.isFI(); }))
1220 return MBB;
1222 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1224 // Inherit previous memory operands.
1225 MIB.cloneMemRefs(*MI);
1227 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1228 MachineOperand &MO = MI->getOperand(i);
1229 if (!MO.isFI()) {
1230 // Index of Def operand this Use it tied to.
1231 // Since Defs are coming before Uses, if Use is tied, then
1232 // index of Def must be smaller that index of that Use.
1233 // Also, Defs preserve their position in new MI.
1234 unsigned TiedTo = i;
1235 if (MO.isReg() && MO.isTied())
1236 TiedTo = MI->findTiedOperandIdx(i);
1237 MIB.add(MO);
1238 if (TiedTo < i)
1239 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1240 continue;
1243 // foldMemoryOperand builds a new MI after replacing a single FI operand
1244 // with the canonical set of five x86 addressing-mode operands.
1245 int FI = MO.getIndex();
1247 // Add frame index operands recognized by stackmaps.cpp
1248 if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1249 // indirect-mem-ref tag, size, #FI, offset.
1250 // Used for spills inserted by StatepointLowering. This codepath is not
1251 // used for patchpoints/stackmaps at all, for these spilling is done via
1252 // foldMemoryOperand callback only.
1253 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1254 MIB.addImm(StackMaps::IndirectMemRefOp);
1255 MIB.addImm(MFI.getObjectSize(FI));
1256 MIB.add(MO);
1257 MIB.addImm(0);
1258 } else {
1259 // direct-mem-ref tag, #FI, offset.
1260 // Used by patchpoint, and direct alloca arguments to statepoints
1261 MIB.addImm(StackMaps::DirectMemRefOp);
1262 MIB.add(MO);
1263 MIB.addImm(0);
1266 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1268 // Add a new memory operand for this FI.
1269 assert(MFI.getObjectOffset(FI) != -1);
1271 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1272 // PATCHPOINT should be updated to do the same. (TODO)
1273 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1274 auto Flags = MachineMemOperand::MOLoad;
1275 MachineMemOperand *MMO = MF.getMachineMemOperand(
1276 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1277 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1278 MIB->addMemOperand(MF, MMO);
1281 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1282 MI->eraseFromParent();
1283 return MBB;
1286 /// findRepresentativeClass - Return the largest legal super-reg register class
1287 /// of the register class for the specified type and its associated "cost".
1288 // This function is in TargetLowering because it uses RegClassForVT which would
1289 // need to be moved to TargetRegisterInfo and would necessitate moving
1290 // isTypeLegal over as well - a massive change that would just require
1291 // TargetLowering having a TargetRegisterInfo class member that it would use.
1292 std::pair<const TargetRegisterClass *, uint8_t>
1293 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1294 MVT VT) const {
1295 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1296 if (!RC)
1297 return std::make_pair(RC, 0);
1299 // Compute the set of all super-register classes.
1300 BitVector SuperRegRC(TRI->getNumRegClasses());
1301 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1302 SuperRegRC.setBitsInMask(RCI.getMask());
1304 // Find the first legal register class with the largest spill size.
1305 const TargetRegisterClass *BestRC = RC;
1306 for (unsigned i : SuperRegRC.set_bits()) {
1307 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1308 // We want the largest possible spill size.
1309 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1310 continue;
1311 if (!isLegalRC(*TRI, *SuperRC))
1312 continue;
1313 BestRC = SuperRC;
1315 return std::make_pair(BestRC, 1);
1318 /// computeRegisterProperties - Once all of the register classes are added,
1319 /// this allows us to compute derived properties we expose.
1320 void TargetLoweringBase::computeRegisterProperties(
1321 const TargetRegisterInfo *TRI) {
1322 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1323 "Too many value types for ValueTypeActions to hold!");
1325 // Everything defaults to needing one register.
1326 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1327 NumRegistersForVT[i] = 1;
1328 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1330 // ...except isVoid, which doesn't need any registers.
1331 NumRegistersForVT[MVT::isVoid] = 0;
1333 // Find the largest integer register class.
1334 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1335 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1336 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1338 // Every integer value type larger than this largest register takes twice as
1339 // many registers to represent as the previous ValueType.
1340 for (unsigned ExpandedReg = LargestIntReg + 1;
1341 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1342 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1343 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1344 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1345 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1346 TypeExpandInteger);
1349 // Inspect all of the ValueType's smaller than the largest integer
1350 // register to see which ones need promotion.
1351 unsigned LegalIntReg = LargestIntReg;
1352 for (unsigned IntReg = LargestIntReg - 1;
1353 IntReg >= (unsigned)MVT::i1; --IntReg) {
1354 MVT IVT = (MVT::SimpleValueType)IntReg;
1355 if (isTypeLegal(IVT)) {
1356 LegalIntReg = IntReg;
1357 } else {
1358 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1359 (MVT::SimpleValueType)LegalIntReg;
1360 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1364 // ppcf128 type is really two f64's.
1365 if (!isTypeLegal(MVT::ppcf128)) {
1366 if (isTypeLegal(MVT::f64)) {
1367 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1368 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1369 TransformToType[MVT::ppcf128] = MVT::f64;
1370 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1371 } else {
1372 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1373 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1374 TransformToType[MVT::ppcf128] = MVT::i128;
1375 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1379 // Decide how to handle f128. If the target does not have native f128 support,
1380 // expand it to i128 and we will be generating soft float library calls.
1381 if (!isTypeLegal(MVT::f128)) {
1382 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1383 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1384 TransformToType[MVT::f128] = MVT::i128;
1385 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1388 // Decide how to handle f80. If the target does not have native f80 support,
1389 // expand it to i96 and we will be generating soft float library calls.
1390 if (!isTypeLegal(MVT::f80)) {
1391 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1392 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1393 TransformToType[MVT::f80] = MVT::i32;
1394 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1397 // Decide how to handle f64. If the target does not have native f64 support,
1398 // expand it to i64 and we will be generating soft float library calls.
1399 if (!isTypeLegal(MVT::f64)) {
1400 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1401 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1402 TransformToType[MVT::f64] = MVT::i64;
1403 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1406 // Decide how to handle f32. If the target does not have native f32 support,
1407 // expand it to i32 and we will be generating soft float library calls.
1408 if (!isTypeLegal(MVT::f32)) {
1409 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1410 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1411 TransformToType[MVT::f32] = MVT::i32;
1412 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1415 // Decide how to handle f16. If the target does not have native f16 support,
1416 // promote it to f32, because there are no f16 library calls (except for
1417 // conversions).
1418 if (!isTypeLegal(MVT::f16)) {
1419 // Allow targets to control how we legalize half.
1420 if (softPromoteHalfType()) {
1421 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1422 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1423 TransformToType[MVT::f16] = MVT::f32;
1424 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1425 } else {
1426 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1427 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1428 TransformToType[MVT::f16] = MVT::f32;
1429 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1433 // Decide how to handle bf16. If the target does not have native bf16 support,
1434 // promote it to f32, because there are no bf16 library calls (except for
1435 // converting from f32 to bf16).
1436 if (!isTypeLegal(MVT::bf16)) {
1437 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1438 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1439 TransformToType[MVT::bf16] = MVT::f32;
1440 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1443 // Loop over all of the vector value types to see which need transformations.
1444 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1445 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1446 MVT VT = (MVT::SimpleValueType) i;
1447 if (isTypeLegal(VT))
1448 continue;
1450 MVT EltVT = VT.getVectorElementType();
1451 ElementCount EC = VT.getVectorElementCount();
1452 bool IsLegalWiderType = false;
1453 bool IsScalable = VT.isScalableVector();
1454 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1455 switch (PreferredAction) {
1456 case TypePromoteInteger: {
1457 MVT::SimpleValueType EndVT = IsScalable ?
1458 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1459 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1460 // Try to promote the elements of integer vectors. If no legal
1461 // promotion was found, fall through to the widen-vector method.
1462 for (unsigned nVT = i + 1;
1463 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1464 MVT SVT = (MVT::SimpleValueType) nVT;
1465 // Promote vectors of integers to vectors with the same number
1466 // of elements, with a wider element type.
1467 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1468 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1469 TransformToType[i] = SVT;
1470 RegisterTypeForVT[i] = SVT;
1471 NumRegistersForVT[i] = 1;
1472 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1473 IsLegalWiderType = true;
1474 break;
1477 if (IsLegalWiderType)
1478 break;
1479 [[fallthrough]];
1482 case TypeWidenVector:
1483 if (isPowerOf2_32(EC.getKnownMinValue())) {
1484 // Try to widen the vector.
1485 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1486 MVT SVT = (MVT::SimpleValueType) nVT;
1487 if (SVT.getVectorElementType() == EltVT &&
1488 SVT.isScalableVector() == IsScalable &&
1489 SVT.getVectorElementCount().getKnownMinValue() >
1490 EC.getKnownMinValue() &&
1491 isTypeLegal(SVT)) {
1492 TransformToType[i] = SVT;
1493 RegisterTypeForVT[i] = SVT;
1494 NumRegistersForVT[i] = 1;
1495 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1496 IsLegalWiderType = true;
1497 break;
1500 if (IsLegalWiderType)
1501 break;
1502 } else {
1503 // Only widen to the next power of 2 to keep consistency with EVT.
1504 MVT NVT = VT.getPow2VectorType();
1505 if (isTypeLegal(NVT)) {
1506 TransformToType[i] = NVT;
1507 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1508 RegisterTypeForVT[i] = NVT;
1509 NumRegistersForVT[i] = 1;
1510 break;
1513 [[fallthrough]];
1515 case TypeSplitVector:
1516 case TypeScalarizeVector: {
1517 MVT IntermediateVT;
1518 MVT RegisterVT;
1519 unsigned NumIntermediates;
1520 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1521 NumIntermediates, RegisterVT, this);
1522 NumRegistersForVT[i] = NumRegisters;
1523 assert(NumRegistersForVT[i] == NumRegisters &&
1524 "NumRegistersForVT size cannot represent NumRegisters!");
1525 RegisterTypeForVT[i] = RegisterVT;
1527 MVT NVT = VT.getPow2VectorType();
1528 if (NVT == VT) {
1529 // Type is already a power of 2. The default action is to split.
1530 TransformToType[i] = MVT::Other;
1531 if (PreferredAction == TypeScalarizeVector)
1532 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1533 else if (PreferredAction == TypeSplitVector)
1534 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1535 else if (EC.getKnownMinValue() > 1)
1536 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1537 else
1538 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1539 ? TypeScalarizeScalableVector
1540 : TypeScalarizeVector);
1541 } else {
1542 TransformToType[i] = NVT;
1543 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1545 break;
1547 default:
1548 llvm_unreachable("Unknown vector legalization action!");
1552 // Determine the 'representative' register class for each value type.
1553 // An representative register class is the largest (meaning one which is
1554 // not a sub-register class / subreg register class) legal register class for
1555 // a group of value types. For example, on i386, i8, i16, and i32
1556 // representative would be GR32; while on x86_64 it's GR64.
1557 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1558 const TargetRegisterClass* RRC;
1559 uint8_t Cost;
1560 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1561 RepRegClassForVT[i] = RRC;
1562 RepRegClassCostForVT[i] = Cost;
1566 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1567 EVT VT) const {
1568 assert(!VT.isVector() && "No default SetCC type for vectors!");
1569 return getPointerTy(DL).SimpleTy;
1572 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1573 return MVT::i32; // return the default value
1576 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1577 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1578 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1579 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1581 /// This method returns the number of registers needed, and the VT for each
1582 /// register. It also returns the VT and quantity of the intermediate values
1583 /// before they are promoted/expanded.
1584 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1585 EVT VT, EVT &IntermediateVT,
1586 unsigned &NumIntermediates,
1587 MVT &RegisterVT) const {
1588 ElementCount EltCnt = VT.getVectorElementCount();
1590 // If there is a wider vector type with the same element type as this one,
1591 // or a promoted vector type that has the same number of elements which
1592 // are wider, then we should convert to that legal vector type.
1593 // This handles things like <2 x float> -> <4 x float> and
1594 // <4 x i1> -> <4 x i32>.
1595 LegalizeTypeAction TA = getTypeAction(Context, VT);
1596 if (!EltCnt.isScalar() &&
1597 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1598 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1599 if (isTypeLegal(RegisterEVT)) {
1600 IntermediateVT = RegisterEVT;
1601 RegisterVT = RegisterEVT.getSimpleVT();
1602 NumIntermediates = 1;
1603 return 1;
1607 // Figure out the right, legal destination reg to copy into.
1608 EVT EltTy = VT.getVectorElementType();
1610 unsigned NumVectorRegs = 1;
1612 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1613 // types like done elsewhere in SelectionDAG.
1614 if (EltCnt.isScalable()) {
1615 LegalizeKind LK;
1616 EVT PartVT = VT;
1617 do {
1618 // Iterate until we've found a legal (part) type to hold VT.
1619 LK = getTypeConversion(Context, PartVT);
1620 PartVT = LK.second;
1621 } while (LK.first != TypeLegal);
1623 if (!PartVT.isVector()) {
1624 report_fatal_error(
1625 "Don't know how to legalize this scalable vector type");
1628 NumIntermediates =
1629 divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1630 PartVT.getVectorElementCount().getKnownMinValue());
1631 IntermediateVT = PartVT;
1632 RegisterVT = getRegisterType(Context, IntermediateVT);
1633 return NumIntermediates;
1636 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1637 // we could break down into LHS/RHS like LegalizeDAG does.
1638 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1639 NumVectorRegs = EltCnt.getKnownMinValue();
1640 EltCnt = ElementCount::getFixed(1);
1643 // Divide the input until we get to a supported size. This will always
1644 // end with a scalar if the target doesn't support vectors.
1645 while (EltCnt.getKnownMinValue() > 1 &&
1646 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1647 EltCnt = EltCnt.divideCoefficientBy(2);
1648 NumVectorRegs <<= 1;
1651 NumIntermediates = NumVectorRegs;
1653 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1654 if (!isTypeLegal(NewVT))
1655 NewVT = EltTy;
1656 IntermediateVT = NewVT;
1658 MVT DestVT = getRegisterType(Context, NewVT);
1659 RegisterVT = DestVT;
1661 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1662 TypeSize NewVTSize = NewVT.getSizeInBits();
1663 // Convert sizes such as i33 to i64.
1664 if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1665 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1666 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1669 // Otherwise, promotion or legal types use the same number of registers as
1670 // the vector decimated to the appropriate level.
1671 return NumVectorRegs;
1674 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1675 uint64_t NumCases,
1676 uint64_t Range,
1677 ProfileSummaryInfo *PSI,
1678 BlockFrequencyInfo *BFI) const {
1679 // FIXME: This function check the maximum table size and density, but the
1680 // minimum size is not checked. It would be nice if the minimum size is
1681 // also combined within this function. Currently, the minimum size check is
1682 // performed in findJumpTable() in SelectionDAGBuiler and
1683 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1684 const bool OptForSize =
1685 SI->getParent()->getParent()->hasOptSize() ||
1686 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1687 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1688 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1690 // Check whether the number of cases is small enough and
1691 // the range is dense enough for a jump table.
1692 return (OptForSize || Range <= MaxJumpTableSize) &&
1693 (NumCases * 100 >= Range * MinDensity);
1696 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1697 EVT ConditionVT) const {
1698 return getRegisterType(Context, ConditionVT);
1701 /// Get the EVTs and ArgFlags collections that represent the legalized return
1702 /// type of the given function. This does not require a DAG or a return value,
1703 /// and is suitable for use before any DAGs for the function are constructed.
1704 /// TODO: Move this out of TargetLowering.cpp.
1705 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1706 AttributeList attr,
1707 SmallVectorImpl<ISD::OutputArg> &Outs,
1708 const TargetLowering &TLI, const DataLayout &DL) {
1709 SmallVector<EVT, 4> ValueVTs;
1710 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1711 unsigned NumValues = ValueVTs.size();
1712 if (NumValues == 0) return;
1714 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1715 EVT VT = ValueVTs[j];
1716 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1718 if (attr.hasRetAttr(Attribute::SExt))
1719 ExtendKind = ISD::SIGN_EXTEND;
1720 else if (attr.hasRetAttr(Attribute::ZExt))
1721 ExtendKind = ISD::ZERO_EXTEND;
1723 // FIXME: C calling convention requires the return type to be promoted to
1724 // at least 32-bit. But this is not necessary for non-C calling
1725 // conventions. The frontend should mark functions whose return values
1726 // require promoting with signext or zeroext attributes.
1727 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1728 MVT MinVT = TLI.getRegisterType(MVT::i32);
1729 if (VT.bitsLT(MinVT))
1730 VT = MinVT;
1733 unsigned NumParts =
1734 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1735 MVT PartVT =
1736 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1738 // 'inreg' on function refers to return value
1739 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1740 if (attr.hasRetAttr(Attribute::InReg))
1741 Flags.setInReg();
1743 // Propagate extension type if any
1744 if (attr.hasRetAttr(Attribute::SExt))
1745 Flags.setSExt();
1746 else if (attr.hasRetAttr(Attribute::ZExt))
1747 Flags.setZExt();
1749 for (unsigned i = 0; i < NumParts; ++i)
1750 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1754 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1755 /// function arguments in the caller parameter area. This is the actual
1756 /// alignment, not its logarithm.
1757 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1758 const DataLayout &DL) const {
1759 return DL.getABITypeAlign(Ty).value();
1762 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1763 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1764 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1765 // Check if the specified alignment is sufficient based on the data layout.
1766 // TODO: While using the data layout works in practice, a better solution
1767 // would be to implement this check directly (make this a virtual function).
1768 // For example, the ABI alignment may change based on software platform while
1769 // this function should only be affected by hardware implementation.
1770 Type *Ty = VT.getTypeForEVT(Context);
1771 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1772 // Assume that an access that meets the ABI-specified alignment is fast.
1773 if (Fast != nullptr)
1774 *Fast = 1;
1775 return true;
1778 // This is a misaligned access.
1779 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1782 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1783 LLVMContext &Context, const DataLayout &DL, EVT VT,
1784 const MachineMemOperand &MMO, unsigned *Fast) const {
1785 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1786 MMO.getAlign(), MMO.getFlags(), Fast);
1789 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1790 const DataLayout &DL, EVT VT,
1791 unsigned AddrSpace, Align Alignment,
1792 MachineMemOperand::Flags Flags,
1793 unsigned *Fast) const {
1794 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1795 Flags, Fast);
1798 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1799 const DataLayout &DL, EVT VT,
1800 const MachineMemOperand &MMO,
1801 unsigned *Fast) const {
1802 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1803 MMO.getFlags(), Fast);
1806 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1807 const DataLayout &DL, LLT Ty,
1808 const MachineMemOperand &MMO,
1809 unsigned *Fast) const {
1810 EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1811 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1812 MMO.getFlags(), Fast);
1815 //===----------------------------------------------------------------------===//
1816 // TargetTransformInfo Helpers
1817 //===----------------------------------------------------------------------===//
1819 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1820 enum InstructionOpcodes {
1821 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1822 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1823 #include "llvm/IR/Instruction.def"
1825 switch (static_cast<InstructionOpcodes>(Opcode)) {
1826 case Ret: return 0;
1827 case Br: return 0;
1828 case Switch: return 0;
1829 case IndirectBr: return 0;
1830 case Invoke: return 0;
1831 case CallBr: return 0;
1832 case Resume: return 0;
1833 case Unreachable: return 0;
1834 case CleanupRet: return 0;
1835 case CatchRet: return 0;
1836 case CatchPad: return 0;
1837 case CatchSwitch: return 0;
1838 case CleanupPad: return 0;
1839 case FNeg: return ISD::FNEG;
1840 case Add: return ISD::ADD;
1841 case FAdd: return ISD::FADD;
1842 case Sub: return ISD::SUB;
1843 case FSub: return ISD::FSUB;
1844 case Mul: return ISD::MUL;
1845 case FMul: return ISD::FMUL;
1846 case UDiv: return ISD::UDIV;
1847 case SDiv: return ISD::SDIV;
1848 case FDiv: return ISD::FDIV;
1849 case URem: return ISD::UREM;
1850 case SRem: return ISD::SREM;
1851 case FRem: return ISD::FREM;
1852 case Shl: return ISD::SHL;
1853 case LShr: return ISD::SRL;
1854 case AShr: return ISD::SRA;
1855 case And: return ISD::AND;
1856 case Or: return ISD::OR;
1857 case Xor: return ISD::XOR;
1858 case Alloca: return 0;
1859 case Load: return ISD::LOAD;
1860 case Store: return ISD::STORE;
1861 case GetElementPtr: return 0;
1862 case Fence: return 0;
1863 case AtomicCmpXchg: return 0;
1864 case AtomicRMW: return 0;
1865 case Trunc: return ISD::TRUNCATE;
1866 case ZExt: return ISD::ZERO_EXTEND;
1867 case SExt: return ISD::SIGN_EXTEND;
1868 case FPToUI: return ISD::FP_TO_UINT;
1869 case FPToSI: return ISD::FP_TO_SINT;
1870 case UIToFP: return ISD::UINT_TO_FP;
1871 case SIToFP: return ISD::SINT_TO_FP;
1872 case FPTrunc: return ISD::FP_ROUND;
1873 case FPExt: return ISD::FP_EXTEND;
1874 case PtrToInt: return ISD::BITCAST;
1875 case IntToPtr: return ISD::BITCAST;
1876 case BitCast: return ISD::BITCAST;
1877 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1878 case ICmp: return ISD::SETCC;
1879 case FCmp: return ISD::SETCC;
1880 case PHI: return 0;
1881 case Call: return 0;
1882 case Select: return ISD::SELECT;
1883 case UserOp1: return 0;
1884 case UserOp2: return 0;
1885 case VAArg: return 0;
1886 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1887 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1888 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1889 case ExtractValue: return ISD::MERGE_VALUES;
1890 case InsertValue: return ISD::MERGE_VALUES;
1891 case LandingPad: return 0;
1892 case Freeze: return ISD::FREEZE;
1895 llvm_unreachable("Unknown instruction type encountered!");
1898 Value *
1899 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1900 bool UseTLS) const {
1901 // compiler-rt provides a variable with a magic name. Targets that do not
1902 // link with compiler-rt may also provide such a variable.
1903 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1904 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1905 auto UnsafeStackPtr =
1906 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1908 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1910 if (!UnsafeStackPtr) {
1911 auto TLSModel = UseTLS ?
1912 GlobalValue::InitialExecTLSModel :
1913 GlobalValue::NotThreadLocal;
1914 // The global variable is not defined yet, define it ourselves.
1915 // We use the initial-exec TLS model because we do not support the
1916 // variable living anywhere other than in the main executable.
1917 UnsafeStackPtr = new GlobalVariable(
1918 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1919 UnsafeStackPtrVar, nullptr, TLSModel);
1920 } else {
1921 // The variable exists, check its type and attributes.
1922 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1923 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1924 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1925 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1926 (UseTLS ? "" : "not ") + "be thread-local");
1928 return UnsafeStackPtr;
1931 Value *
1932 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1933 if (!TM.getTargetTriple().isAndroid())
1934 return getDefaultSafeStackPointerLocation(IRB, true);
1936 // Android provides a libc function to retrieve the address of the current
1937 // thread's unsafe stack pointer.
1938 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1939 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1940 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1941 StackPtrTy->getPointerTo(0));
1942 return IRB.CreateCall(Fn);
1945 //===----------------------------------------------------------------------===//
1946 // Loop Strength Reduction hooks
1947 //===----------------------------------------------------------------------===//
1949 /// isLegalAddressingMode - Return true if the addressing mode represented
1950 /// by AM is legal for this target, for a load/store of the specified type.
1951 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1952 const AddrMode &AM, Type *Ty,
1953 unsigned AS, Instruction *I) const {
1954 // The default implementation of this implements a conservative RISCy, r+r and
1955 // r+i addr mode.
1957 // Allows a sign-extended 16-bit immediate field.
1958 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1959 return false;
1961 // No global is ever allowed as a base.
1962 if (AM.BaseGV)
1963 return false;
1965 // Only support r+r,
1966 switch (AM.Scale) {
1967 case 0: // "r+i" or just "i", depending on HasBaseReg.
1968 break;
1969 case 1:
1970 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1971 return false;
1972 // Otherwise we have r+r or r+i.
1973 break;
1974 case 2:
1975 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1976 return false;
1977 // Allow 2*r as r+r.
1978 break;
1979 default: // Don't allow n * r
1980 return false;
1983 return true;
1986 //===----------------------------------------------------------------------===//
1987 // Stack Protector
1988 //===----------------------------------------------------------------------===//
1990 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1991 // so that SelectionDAG handle SSP.
1992 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1993 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1994 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1995 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1996 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1997 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1998 G->setVisibility(GlobalValue::HiddenVisibility);
1999 return C;
2001 return nullptr;
2004 // Currently only support "standard" __stack_chk_guard.
2005 // TODO: add LOAD_STACK_GUARD support.
2006 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
2007 if (!M.getNamedValue("__stack_chk_guard")) {
2008 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
2009 GlobalVariable::ExternalLinkage, nullptr,
2010 "__stack_chk_guard");
2012 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2013 if (M.getDirectAccessExternalData() &&
2014 !TM.getTargetTriple().isWindowsGNUEnvironment() &&
2015 !TM.getTargetTriple().isOSFreeBSD() &&
2016 !TM.getTargetTriple().isOSDarwin())
2017 GV->setDSOLocal(true);
2021 // Currently only support "standard" __stack_chk_guard.
2022 // TODO: add LOAD_STACK_GUARD support.
2023 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2024 return M.getNamedValue("__stack_chk_guard");
2027 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2028 return nullptr;
2031 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2032 return MinimumJumpTableEntries;
2035 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2036 MinimumJumpTableEntries = Val;
2039 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2040 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2043 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2044 return MaximumJumpTableSize;
2047 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2048 MaximumJumpTableSize = Val;
2051 bool TargetLoweringBase::isJumpTableRelative() const {
2052 return getTargetMachine().isPositionIndependent();
2055 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2056 if (TM.Options.LoopAlignment)
2057 return Align(TM.Options.LoopAlignment);
2058 return PrefLoopAlignment;
2061 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2062 MachineBasicBlock *MBB) const {
2063 return MaxBytesForAlignment;
2066 //===----------------------------------------------------------------------===//
2067 // Reciprocal Estimates
2068 //===----------------------------------------------------------------------===//
2070 /// Get the reciprocal estimate attribute string for a function that will
2071 /// override the target defaults.
2072 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2073 const Function &F = MF.getFunction();
2074 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2077 /// Construct a string for the given reciprocal operation of the given type.
2078 /// This string should match the corresponding option to the front-end's
2079 /// "-mrecip" flag assuming those strings have been passed through in an
2080 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2081 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2082 std::string Name = VT.isVector() ? "vec-" : "";
2084 Name += IsSqrt ? "sqrt" : "div";
2086 // TODO: Handle other float types?
2087 if (VT.getScalarType() == MVT::f64) {
2088 Name += "d";
2089 } else if (VT.getScalarType() == MVT::f16) {
2090 Name += "h";
2091 } else {
2092 assert(VT.getScalarType() == MVT::f32 &&
2093 "Unexpected FP type for reciprocal estimate");
2094 Name += "f";
2097 return Name;
2100 /// Return the character position and value (a single numeric character) of a
2101 /// customized refinement operation in the input string if it exists. Return
2102 /// false if there is no customized refinement step count.
2103 static bool parseRefinementStep(StringRef In, size_t &Position,
2104 uint8_t &Value) {
2105 const char RefStepToken = ':';
2106 Position = In.find(RefStepToken);
2107 if (Position == StringRef::npos)
2108 return false;
2110 StringRef RefStepString = In.substr(Position + 1);
2111 // Allow exactly one numeric character for the additional refinement
2112 // step parameter.
2113 if (RefStepString.size() == 1) {
2114 char RefStepChar = RefStepString[0];
2115 if (isDigit(RefStepChar)) {
2116 Value = RefStepChar - '0';
2117 return true;
2120 report_fatal_error("Invalid refinement step for -recip.");
2123 /// For the input attribute string, return one of the ReciprocalEstimate enum
2124 /// status values (enabled, disabled, or not specified) for this operation on
2125 /// the specified data type.
2126 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2127 if (Override.empty())
2128 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2130 SmallVector<StringRef, 4> OverrideVector;
2131 Override.split(OverrideVector, ',');
2132 unsigned NumArgs = OverrideVector.size();
2134 // Check if "all", "none", or "default" was specified.
2135 if (NumArgs == 1) {
2136 // Look for an optional setting of the number of refinement steps needed
2137 // for this type of reciprocal operation.
2138 size_t RefPos;
2139 uint8_t RefSteps;
2140 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2141 // Split the string for further processing.
2142 Override = Override.substr(0, RefPos);
2145 // All reciprocal types are enabled.
2146 if (Override == "all")
2147 return TargetLoweringBase::ReciprocalEstimate::Enabled;
2149 // All reciprocal types are disabled.
2150 if (Override == "none")
2151 return TargetLoweringBase::ReciprocalEstimate::Disabled;
2153 // Target defaults for enablement are used.
2154 if (Override == "default")
2155 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2158 // The attribute string may omit the size suffix ('f'/'d').
2159 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2160 std::string VTNameNoSize = VTName;
2161 VTNameNoSize.pop_back();
2162 static const char DisabledPrefix = '!';
2164 for (StringRef RecipType : OverrideVector) {
2165 size_t RefPos;
2166 uint8_t RefSteps;
2167 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2168 RecipType = RecipType.substr(0, RefPos);
2170 // Ignore the disablement token for string matching.
2171 bool IsDisabled = RecipType[0] == DisabledPrefix;
2172 if (IsDisabled)
2173 RecipType = RecipType.substr(1);
2175 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2176 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2177 : TargetLoweringBase::ReciprocalEstimate::Enabled;
2180 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2183 /// For the input attribute string, return the customized refinement step count
2184 /// for this operation on the specified data type. If the step count does not
2185 /// exist, return the ReciprocalEstimate enum value for unspecified.
2186 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2187 if (Override.empty())
2188 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2190 SmallVector<StringRef, 4> OverrideVector;
2191 Override.split(OverrideVector, ',');
2192 unsigned NumArgs = OverrideVector.size();
2194 // Check if "all", "default", or "none" was specified.
2195 if (NumArgs == 1) {
2196 // Look for an optional setting of the number of refinement steps needed
2197 // for this type of reciprocal operation.
2198 size_t RefPos;
2199 uint8_t RefSteps;
2200 if (!parseRefinementStep(Override, RefPos, RefSteps))
2201 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2203 // Split the string for further processing.
2204 Override = Override.substr(0, RefPos);
2205 assert(Override != "none" &&
2206 "Disabled reciprocals, but specifed refinement steps?");
2208 // If this is a general override, return the specified number of steps.
2209 if (Override == "all" || Override == "default")
2210 return RefSteps;
2213 // The attribute string may omit the size suffix ('f'/'d').
2214 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2215 std::string VTNameNoSize = VTName;
2216 VTNameNoSize.pop_back();
2218 for (StringRef RecipType : OverrideVector) {
2219 size_t RefPos;
2220 uint8_t RefSteps;
2221 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2222 continue;
2224 RecipType = RecipType.substr(0, RefPos);
2225 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2226 return RefSteps;
2229 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2232 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2233 MachineFunction &MF) const {
2234 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2237 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2238 MachineFunction &MF) const {
2239 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2242 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2243 MachineFunction &MF) const {
2244 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2247 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2248 MachineFunction &MF) const {
2249 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2252 bool TargetLoweringBase::isLoadBitCastBeneficial(
2253 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2254 const MachineMemOperand &MMO) const {
2255 // Single-element vectors are scalarized, so we should generally avoid having
2256 // any memory operations on such types, as they would get scalarized too.
2257 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2258 BitcastVT.getVectorNumElements() == 1)
2259 return false;
2261 // Don't do if we could do an indexed load on the original type, but not on
2262 // the new one.
2263 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2264 return true;
2266 MVT LoadMVT = LoadVT.getSimpleVT();
2268 // Don't bother doing this if it's just going to be promoted again later, as
2269 // doing so might interfere with other combines.
2270 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2271 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2272 return false;
2274 unsigned Fast = 0;
2275 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2276 MMO, &Fast) &&
2277 Fast;
2280 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2281 MF.getRegInfo().freezeReservedRegs(MF);
2284 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2285 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2286 const TargetLibraryInfo *LibInfo) const {
2287 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2288 if (LI.isVolatile())
2289 Flags |= MachineMemOperand::MOVolatile;
2291 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2292 Flags |= MachineMemOperand::MONonTemporal;
2294 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2295 Flags |= MachineMemOperand::MOInvariant;
2297 if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2298 LI.getAlign(), DL, &LI, AC,
2299 /*DT=*/nullptr, LibInfo))
2300 Flags |= MachineMemOperand::MODereferenceable;
2302 Flags |= getTargetMMOFlags(LI);
2303 return Flags;
2306 MachineMemOperand::Flags
2307 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2308 const DataLayout &DL) const {
2309 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2311 if (SI.isVolatile())
2312 Flags |= MachineMemOperand::MOVolatile;
2314 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2315 Flags |= MachineMemOperand::MONonTemporal;
2317 // FIXME: Not preserving dereferenceable
2318 Flags |= getTargetMMOFlags(SI);
2319 return Flags;
2322 MachineMemOperand::Flags
2323 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2324 const DataLayout &DL) const {
2325 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2327 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2328 if (RMW->isVolatile())
2329 Flags |= MachineMemOperand::MOVolatile;
2330 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2331 if (CmpX->isVolatile())
2332 Flags |= MachineMemOperand::MOVolatile;
2333 } else
2334 llvm_unreachable("not an atomic instruction");
2336 // FIXME: Not preserving dereferenceable
2337 Flags |= getTargetMMOFlags(AI);
2338 return Flags;
2341 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2342 Instruction *Inst,
2343 AtomicOrdering Ord) const {
2344 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2345 return Builder.CreateFence(Ord);
2346 else
2347 return nullptr;
2350 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2351 Instruction *Inst,
2352 AtomicOrdering Ord) const {
2353 if (isAcquireOrStronger(Ord))
2354 return Builder.CreateFence(Ord);
2355 else
2356 return nullptr;
2359 //===----------------------------------------------------------------------===//
2360 // GlobalISel Hooks
2361 //===----------------------------------------------------------------------===//
2363 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2364 const TargetTransformInfo *TTI) const {
2365 auto &MF = *MI.getMF();
2366 auto &MRI = MF.getRegInfo();
2367 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2368 // this helper function computes the maximum number of uses we should consider
2369 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2370 // break even in terms of code size when the original MI has 2 users vs
2371 // choosing to potentially spill. Any more than 2 users we we have a net code
2372 // size increase. This doesn't take into account register pressure though.
2373 auto maxUses = [](unsigned RematCost) {
2374 // A cost of 1 means remats are basically free.
2375 if (RematCost == 1)
2376 return std::numeric_limits<unsigned>::max();
2377 if (RematCost == 2)
2378 return 2U;
2380 // Remat is too expensive, only sink if there's one user.
2381 if (RematCost > 2)
2382 return 1U;
2383 llvm_unreachable("Unexpected remat cost");
2386 switch (MI.getOpcode()) {
2387 default:
2388 return false;
2389 // Constants-like instructions should be close to their users.
2390 // We don't want long live-ranges for them.
2391 case TargetOpcode::G_CONSTANT:
2392 case TargetOpcode::G_FCONSTANT:
2393 case TargetOpcode::G_FRAME_INDEX:
2394 case TargetOpcode::G_INTTOPTR:
2395 return true;
2396 case TargetOpcode::G_GLOBAL_VALUE: {
2397 unsigned RematCost = TTI->getGISelRematGlobalCost();
2398 Register Reg = MI.getOperand(0).getReg();
2399 unsigned MaxUses = maxUses(RematCost);
2400 if (MaxUses == UINT_MAX)
2401 return true; // Remats are "free" so always localize.
2402 return MRI.hasAtMostUserInstrs(Reg, MaxUses);