[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / TypePromotion.cpp
blob426292345a1478ab4529d6963207ea09ae899a1d
1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
18 #include "llvm/CodeGen/TypePromotion.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Target/TargetMachine.h"
42 #define DEBUG_TYPE "type-promotion"
43 #define PASS_NAME "Type Promotion"
45 using namespace llvm;
47 static cl::opt<bool> DisablePromotion("disable-type-promotion", cl::Hidden,
48 cl::init(false),
49 cl::desc("Disable type promotion pass"));
51 // The goal of this pass is to enable more efficient code generation for
52 // operations on narrow types (i.e. types with < 32-bits) and this is a
53 // motivating IR code example:
55 // define hidden i32 @cmp(i8 zeroext) {
56 // %2 = add i8 %0, -49
57 // %3 = icmp ult i8 %2, 3
58 // ..
59 // }
61 // The issue here is that i8 is type-legalized to i32 because i8 is not a
62 // legal type. Thus, arithmetic is done in integer-precision, but then the
63 // byte value is masked out as follows:
65 // t19: i32 = add t4, Constant:i32<-49>
66 // t24: i32 = and t19, Constant:i32<255>
68 // Consequently, we generate code like this:
70 // subs r0, #49
71 // uxtb r1, r0
72 // cmp r1, #3
74 // This shows that masking out the byte value results in generation of
75 // the UXTB instruction. This is not optimal as r0 already contains the byte
76 // value we need, and so instead we can just generate:
78 // sub.w r1, r0, #49
79 // cmp r1, #3
81 // We achieve this by type promoting the IR to i32 like so for this example:
83 // define i32 @cmp(i8 zeroext %c) {
84 // %0 = zext i8 %c to i32
85 // %c.off = add i32 %0, -49
86 // %1 = icmp ult i32 %c.off, 3
87 // ..
88 // }
90 // For this to be valid and legal, we need to prove that the i32 add is
91 // producing the same value as the i8 addition, and that e.g. no overflow
92 // happens.
94 // A brief sketch of the algorithm and some terminology.
95 // We pattern match interesting IR patterns:
96 // - which have "sources": instructions producing narrow values (i8, i16), and
97 // - they have "sinks": instructions consuming these narrow values.
99 // We collect all instruction connecting sources and sinks in a worklist, so
100 // that we can mutate these instruction and perform type promotion when it is
101 // legal to do so.
103 namespace {
104 class IRPromoter {
105 LLVMContext &Ctx;
106 unsigned PromotedWidth = 0;
107 SetVector<Value *> &Visited;
108 SetVector<Value *> &Sources;
109 SetVector<Instruction *> &Sinks;
110 SmallPtrSetImpl<Instruction *> &SafeWrap;
111 SmallPtrSetImpl<Instruction *> &InstsToRemove;
112 IntegerType *ExtTy = nullptr;
113 SmallPtrSet<Value *, 8> NewInsts;
114 DenseMap<Value *, SmallVector<Type *, 4>> TruncTysMap;
115 SmallPtrSet<Value *, 8> Promoted;
117 void ReplaceAllUsersOfWith(Value *From, Value *To);
118 void ExtendSources();
119 void ConvertTruncs();
120 void PromoteTree();
121 void TruncateSinks();
122 void Cleanup();
124 public:
125 IRPromoter(LLVMContext &C, unsigned Width, SetVector<Value *> &visited,
126 SetVector<Value *> &sources, SetVector<Instruction *> &sinks,
127 SmallPtrSetImpl<Instruction *> &wrap,
128 SmallPtrSetImpl<Instruction *> &instsToRemove)
129 : Ctx(C), PromotedWidth(Width), Visited(visited), Sources(sources),
130 Sinks(sinks), SafeWrap(wrap), InstsToRemove(instsToRemove) {
131 ExtTy = IntegerType::get(Ctx, PromotedWidth);
134 void Mutate();
137 class TypePromotionImpl {
138 unsigned TypeSize = 0;
139 LLVMContext *Ctx = nullptr;
140 unsigned RegisterBitWidth = 0;
141 SmallPtrSet<Value *, 16> AllVisited;
142 SmallPtrSet<Instruction *, 8> SafeToPromote;
143 SmallPtrSet<Instruction *, 4> SafeWrap;
144 SmallPtrSet<Instruction *, 4> InstsToRemove;
146 // Does V have the same size result type as TypeSize.
147 bool EqualTypeSize(Value *V);
148 // Does V have the same size, or narrower, result type as TypeSize.
149 bool LessOrEqualTypeSize(Value *V);
150 // Does V have a result type that is wider than TypeSize.
151 bool GreaterThanTypeSize(Value *V);
152 // Does V have a result type that is narrower than TypeSize.
153 bool LessThanTypeSize(Value *V);
154 // Should V be a leaf in the promote tree?
155 bool isSource(Value *V);
156 // Should V be a root in the promotion tree?
157 bool isSink(Value *V);
158 // Should we change the result type of V? It will result in the users of V
159 // being visited.
160 bool shouldPromote(Value *V);
161 // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
162 // result won't affect the computation?
163 bool isSafeWrap(Instruction *I);
164 // Can V have its integer type promoted, or can the type be ignored.
165 bool isSupportedType(Value *V);
166 // Is V an instruction with a supported opcode or another value that we can
167 // handle, such as constants and basic blocks.
168 bool isSupportedValue(Value *V);
169 // Is V an instruction thats result can trivially promoted, or has safe
170 // wrapping.
171 bool isLegalToPromote(Value *V);
172 bool TryToPromote(Value *V, unsigned PromotedWidth, const LoopInfo &LI);
174 public:
175 bool run(Function &F, const TargetMachine *TM,
176 const TargetTransformInfo &TTI, const LoopInfo &LI);
179 class TypePromotionLegacy : public FunctionPass {
180 public:
181 static char ID;
183 TypePromotionLegacy() : FunctionPass(ID) {}
185 void getAnalysisUsage(AnalysisUsage &AU) const override {
186 AU.addRequired<LoopInfoWrapperPass>();
187 AU.addRequired<TargetTransformInfoWrapperPass>();
188 AU.addRequired<TargetPassConfig>();
189 AU.setPreservesCFG();
190 AU.addPreserved<LoopInfoWrapperPass>();
193 StringRef getPassName() const override { return PASS_NAME; }
195 bool runOnFunction(Function &F) override;
198 } // namespace
200 static bool GenerateSignBits(Instruction *I) {
201 unsigned Opc = I->getOpcode();
202 return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
203 Opc == Instruction::SRem || Opc == Instruction::SExt;
206 bool TypePromotionImpl::EqualTypeSize(Value *V) {
207 return V->getType()->getScalarSizeInBits() == TypeSize;
210 bool TypePromotionImpl::LessOrEqualTypeSize(Value *V) {
211 return V->getType()->getScalarSizeInBits() <= TypeSize;
214 bool TypePromotionImpl::GreaterThanTypeSize(Value *V) {
215 return V->getType()->getScalarSizeInBits() > TypeSize;
218 bool TypePromotionImpl::LessThanTypeSize(Value *V) {
219 return V->getType()->getScalarSizeInBits() < TypeSize;
222 /// Return true if the given value is a source in the use-def chain, producing
223 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
224 /// of the tree to i32. We guarantee that these won't populate the upper bits
225 /// of the register. ZExt on the loads will be free, and the same for call
226 /// return values because we only accept ones that guarantee a zeroext ret val.
227 /// Many arguments will have the zeroext attribute too, so those would be free
228 /// too.
229 bool TypePromotionImpl::isSource(Value *V) {
230 if (!isa<IntegerType>(V->getType()))
231 return false;
233 // TODO Allow zext to be sources.
234 if (isa<Argument>(V))
235 return true;
236 else if (isa<LoadInst>(V))
237 return true;
238 else if (auto *Call = dyn_cast<CallInst>(V))
239 return Call->hasRetAttr(Attribute::AttrKind::ZExt);
240 else if (auto *Trunc = dyn_cast<TruncInst>(V))
241 return EqualTypeSize(Trunc);
242 return false;
245 /// Return true if V will require any promoted values to be truncated for the
246 /// the IR to remain valid. We can't mutate the value type of these
247 /// instructions.
248 bool TypePromotionImpl::isSink(Value *V) {
249 // TODO The truncate also isn't actually necessary because we would already
250 // proved that the data value is kept within the range of the original data
251 // type. We currently remove any truncs inserted for handling zext sinks.
253 // Sinks are:
254 // - points where the value in the register is being observed, such as an
255 // icmp, switch or store.
256 // - points where value types have to match, such as calls and returns.
257 // - zext are included to ease the transformation and are generally removed
258 // later on.
259 if (auto *Store = dyn_cast<StoreInst>(V))
260 return LessOrEqualTypeSize(Store->getValueOperand());
261 if (auto *Return = dyn_cast<ReturnInst>(V))
262 return LessOrEqualTypeSize(Return->getReturnValue());
263 if (auto *ZExt = dyn_cast<ZExtInst>(V))
264 return GreaterThanTypeSize(ZExt);
265 if (auto *Switch = dyn_cast<SwitchInst>(V))
266 return LessThanTypeSize(Switch->getCondition());
267 if (auto *ICmp = dyn_cast<ICmpInst>(V))
268 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
270 return isa<CallInst>(V);
273 /// Return whether this instruction can safely wrap.
274 bool TypePromotionImpl::isSafeWrap(Instruction *I) {
275 // We can support a potentially wrapping instruction (I) if:
276 // - It is only used by an unsigned icmp.
277 // - The icmp uses a constant.
278 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
279 // around zero to become a larger number than before.
280 // - The wrapping instruction (I) also uses a constant.
282 // We can then use the two constants to calculate whether the result would
283 // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
284 // just underflows the range, the icmp would give the same result whether the
285 // result has been truncated or not. We calculate this by:
286 // - Zero extending both constants, if needed, to RegisterBitWidth.
287 // - Take the absolute value of I's constant, adding this to the icmp const.
288 // - Check that this value is not out of range for small type. If it is, it
289 // means that it has underflowed enough to wrap around the icmp constant.
291 // For example:
293 // %sub = sub i8 %a, 2
294 // %cmp = icmp ule i8 %sub, 254
296 // If %a = 0, %sub = -2 == FE == 254
297 // But if this is evalulated as a i32
298 // %sub = -2 == FF FF FF FE == 4294967294
299 // So the unsigned compares (i8 and i32) would not yield the same result.
301 // Another way to look at it is:
302 // %a - 2 <= 254
303 // %a + 2 <= 254 + 2
304 // %a <= 256
305 // And we can't represent 256 in the i8 format, so we don't support it.
307 // Whereas:
309 // %sub i8 %a, 1
310 // %cmp = icmp ule i8 %sub, 254
312 // If %a = 0, %sub = -1 == FF == 255
313 // As i32:
314 // %sub = -1 == FF FF FF FF == 4294967295
316 // In this case, the unsigned compare results would be the same and this
317 // would also be true for ult, uge and ugt:
318 // - (255 < 254) == (0xFFFFFFFF < 254) == false
319 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
320 // - (255 > 254) == (0xFFFFFFFF > 254) == true
321 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
323 // To demonstrate why we can't handle increasing values:
325 // %add = add i8 %a, 2
326 // %cmp = icmp ult i8 %add, 127
328 // If %a = 254, %add = 256 == (i8 1)
329 // As i32:
330 // %add = 256
332 // (1 < 127) != (256 < 127)
334 unsigned Opc = I->getOpcode();
335 if (Opc != Instruction::Add && Opc != Instruction::Sub)
336 return false;
338 if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) ||
339 !isa<ConstantInt>(I->getOperand(1)))
340 return false;
342 // Don't support an icmp that deals with sign bits.
343 auto *CI = cast<ICmpInst>(*I->user_begin());
344 if (CI->isSigned() || CI->isEquality())
345 return false;
347 ConstantInt *ICmpConstant = nullptr;
348 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
349 ICmpConstant = Const;
350 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
351 ICmpConstant = Const;
352 else
353 return false;
355 const APInt &ICmpConst = ICmpConstant->getValue();
356 APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue();
357 if (Opc == Instruction::Sub)
358 OverflowConst = -OverflowConst;
359 if (!OverflowConst.isNonPositive())
360 return false;
362 // Using C1 = OverflowConst and C2 = ICmpConst, we can either prove that:
363 // zext(x) + sext(C1) <u zext(C2) if C1 < 0 and C1 >s C2
364 // zext(x) + sext(C1) <u sext(C2) if C1 < 0 and C1 <=s C2
365 if (OverflowConst.sgt(ICmpConst)) {
366 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
367 << "const of " << *I << "\n");
368 SafeWrap.insert(I);
369 return true;
370 } else {
371 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
372 << "const of " << *I << " and " << *CI << "\n");
373 SafeWrap.insert(I);
374 SafeWrap.insert(CI);
375 return true;
377 return false;
380 bool TypePromotionImpl::shouldPromote(Value *V) {
381 if (!isa<IntegerType>(V->getType()) || isSink(V))
382 return false;
384 if (isSource(V))
385 return true;
387 auto *I = dyn_cast<Instruction>(V);
388 if (!I)
389 return false;
391 if (isa<ICmpInst>(I))
392 return false;
394 return true;
397 /// Return whether we can safely mutate V's type to ExtTy without having to be
398 /// concerned with zero extending or truncation.
399 static bool isPromotedResultSafe(Instruction *I) {
400 if (GenerateSignBits(I))
401 return false;
403 if (!isa<OverflowingBinaryOperator>(I))
404 return true;
406 return I->hasNoUnsignedWrap();
409 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
410 SmallVector<Instruction *, 4> Users;
411 Instruction *InstTo = dyn_cast<Instruction>(To);
412 bool ReplacedAll = true;
414 LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
415 << "\n");
417 for (Use &U : From->uses()) {
418 auto *User = cast<Instruction>(U.getUser());
419 if (InstTo && User->isIdenticalTo(InstTo)) {
420 ReplacedAll = false;
421 continue;
423 Users.push_back(User);
426 for (auto *U : Users)
427 U->replaceUsesOfWith(From, To);
429 if (ReplacedAll)
430 if (auto *I = dyn_cast<Instruction>(From))
431 InstsToRemove.insert(I);
434 void IRPromoter::ExtendSources() {
435 IRBuilder<> Builder{Ctx};
437 auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
438 assert(V->getType() != ExtTy && "zext already extends to i32");
439 LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
440 Builder.SetInsertPoint(InsertPt);
441 if (auto *I = dyn_cast<Instruction>(V))
442 Builder.SetCurrentDebugLocation(I->getDebugLoc());
444 Value *ZExt = Builder.CreateZExt(V, ExtTy);
445 if (auto *I = dyn_cast<Instruction>(ZExt)) {
446 if (isa<Argument>(V))
447 I->moveBefore(InsertPt);
448 else
449 I->moveAfter(InsertPt);
450 NewInsts.insert(I);
453 ReplaceAllUsersOfWith(V, ZExt);
456 // Now, insert extending instructions between the sources and their users.
457 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
458 for (auto *V : Sources) {
459 LLVM_DEBUG(dbgs() << " - " << *V << "\n");
460 if (auto *I = dyn_cast<Instruction>(V))
461 InsertZExt(I, I);
462 else if (auto *Arg = dyn_cast<Argument>(V)) {
463 BasicBlock &BB = Arg->getParent()->front();
464 InsertZExt(Arg, &*BB.getFirstInsertionPt());
465 } else {
466 llvm_unreachable("unhandled source that needs extending");
468 Promoted.insert(V);
472 void IRPromoter::PromoteTree() {
473 LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
475 // Mutate the types of the instructions within the tree. Here we handle
476 // constant operands.
477 for (auto *V : Visited) {
478 if (Sources.count(V))
479 continue;
481 auto *I = cast<Instruction>(V);
482 if (Sinks.count(I))
483 continue;
485 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
486 Value *Op = I->getOperand(i);
487 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
488 continue;
490 if (auto *Const = dyn_cast<ConstantInt>(Op)) {
491 // For subtract, we don't need to sext the constant. We only put it in
492 // SafeWrap because SafeWrap.size() is used elsewhere.
493 // For cmp, we need to sign extend a constant appearing in either
494 // operand. For add, we should only sign extend the RHS.
495 Constant *NewConst = (SafeWrap.contains(I) &&
496 (I->getOpcode() == Instruction::ICmp || i == 1) &&
497 I->getOpcode() != Instruction::Sub)
498 ? ConstantExpr::getSExt(Const, ExtTy)
499 : ConstantExpr::getZExt(Const, ExtTy);
500 I->setOperand(i, NewConst);
501 } else if (isa<UndefValue>(Op))
502 I->setOperand(i, ConstantInt::get(ExtTy, 0));
505 // Mutate the result type, unless this is an icmp or switch.
506 if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) {
507 I->mutateType(ExtTy);
508 Promoted.insert(I);
513 void IRPromoter::TruncateSinks() {
514 LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
516 IRBuilder<> Builder{Ctx};
518 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction * {
519 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
520 return nullptr;
522 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
523 return nullptr;
525 LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
526 << *V << "\n");
527 Builder.SetInsertPoint(cast<Instruction>(V));
528 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
529 if (Trunc)
530 NewInsts.insert(Trunc);
531 return Trunc;
534 // Fix up any stores or returns that use the results of the promoted
535 // chain.
536 for (auto *I : Sinks) {
537 LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
539 // Handle calls separately as we need to iterate over arg operands.
540 if (auto *Call = dyn_cast<CallInst>(I)) {
541 for (unsigned i = 0; i < Call->arg_size(); ++i) {
542 Value *Arg = Call->getArgOperand(i);
543 Type *Ty = TruncTysMap[Call][i];
544 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
545 Trunc->moveBefore(Call);
546 Call->setArgOperand(i, Trunc);
549 continue;
552 // Special case switches because we need to truncate the condition.
553 if (auto *Switch = dyn_cast<SwitchInst>(I)) {
554 Type *Ty = TruncTysMap[Switch][0];
555 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
556 Trunc->moveBefore(Switch);
557 Switch->setCondition(Trunc);
559 continue;
562 // Don't insert a trunc for a zext which can still legally promote.
563 // Nor insert a trunc when the input value to that trunc has the same width
564 // as the zext we are inserting it for. When this happens the input operand
565 // for the zext will be promoted to the same width as the zext's return type
566 // rendering that zext unnecessary. This zext gets removed before the end
567 // of the pass.
568 if (auto ZExt = dyn_cast<ZExtInst>(I))
569 if (ZExt->getType()->getScalarSizeInBits() >= PromotedWidth)
570 continue;
572 // Now handle the others.
573 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
574 Type *Ty = TruncTysMap[I][i];
575 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
576 Trunc->moveBefore(I);
577 I->setOperand(i, Trunc);
583 void IRPromoter::Cleanup() {
584 LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
585 // Some zexts will now have become redundant, along with their trunc
586 // operands, so remove them.
587 for (auto *V : Visited) {
588 if (!isa<ZExtInst>(V))
589 continue;
591 auto ZExt = cast<ZExtInst>(V);
592 if (ZExt->getDestTy() != ExtTy)
593 continue;
595 Value *Src = ZExt->getOperand(0);
596 if (ZExt->getSrcTy() == ZExt->getDestTy()) {
597 LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
598 << "\n");
599 ReplaceAllUsersOfWith(ZExt, Src);
600 continue;
603 // We've inserted a trunc for a zext sink, but we already know that the
604 // input is in range, negating the need for the trunc.
605 if (NewInsts.count(Src) && isa<TruncInst>(Src)) {
606 auto *Trunc = cast<TruncInst>(Src);
607 assert(Trunc->getOperand(0)->getType() == ExtTy &&
608 "expected inserted trunc to be operating on i32");
609 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
613 for (auto *I : InstsToRemove) {
614 LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
615 I->dropAllReferences();
619 void IRPromoter::ConvertTruncs() {
620 LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
621 IRBuilder<> Builder{Ctx};
623 for (auto *V : Visited) {
624 if (!isa<TruncInst>(V) || Sources.count(V))
625 continue;
627 auto *Trunc = cast<TruncInst>(V);
628 Builder.SetInsertPoint(Trunc);
629 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
630 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
632 unsigned NumBits = DestTy->getScalarSizeInBits();
633 ConstantInt *Mask =
634 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
635 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
636 if (SrcTy != ExtTy)
637 Masked = Builder.CreateTrunc(Masked, ExtTy);
639 if (auto *I = dyn_cast<Instruction>(Masked))
640 NewInsts.insert(I);
642 ReplaceAllUsersOfWith(Trunc, Masked);
646 void IRPromoter::Mutate() {
647 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains to "
648 << PromotedWidth << "-bits\n");
650 // Cache original types of the values that will likely need truncating
651 for (auto *I : Sinks) {
652 if (auto *Call = dyn_cast<CallInst>(I)) {
653 for (Value *Arg : Call->args())
654 TruncTysMap[Call].push_back(Arg->getType());
655 } else if (auto *Switch = dyn_cast<SwitchInst>(I))
656 TruncTysMap[I].push_back(Switch->getCondition()->getType());
657 else {
658 for (unsigned i = 0; i < I->getNumOperands(); ++i)
659 TruncTysMap[I].push_back(I->getOperand(i)->getType());
662 for (auto *V : Visited) {
663 if (!isa<TruncInst>(V) || Sources.count(V))
664 continue;
665 auto *Trunc = cast<TruncInst>(V);
666 TruncTysMap[Trunc].push_back(Trunc->getDestTy());
669 // Insert zext instructions between sources and their users.
670 ExtendSources();
672 // Promote visited instructions, mutating their types in place.
673 PromoteTree();
675 // Convert any truncs, that aren't sources, into AND masks.
676 ConvertTruncs();
678 // Insert trunc instructions for use by calls, stores etc...
679 TruncateSinks();
681 // Finally, remove unecessary zexts and truncs, delete old instructions and
682 // clear the data structures.
683 Cleanup();
685 LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
688 /// We disallow booleans to make life easier when dealing with icmps but allow
689 /// any other integer that fits in a scalar register. Void types are accepted
690 /// so we can handle switches.
691 bool TypePromotionImpl::isSupportedType(Value *V) {
692 Type *Ty = V->getType();
694 // Allow voids and pointers, these won't be promoted.
695 if (Ty->isVoidTy() || Ty->isPointerTy())
696 return true;
698 if (!isa<IntegerType>(Ty) || cast<IntegerType>(Ty)->getBitWidth() == 1 ||
699 cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
700 return false;
702 return LessOrEqualTypeSize(V);
705 /// We accept most instructions, as well as Arguments and ConstantInsts. We
706 /// Disallow casts other than zext and truncs and only allow calls if their
707 /// return value is zeroext. We don't allow opcodes that can introduce sign
708 /// bits.
709 bool TypePromotionImpl::isSupportedValue(Value *V) {
710 if (auto *I = dyn_cast<Instruction>(V)) {
711 switch (I->getOpcode()) {
712 default:
713 return isa<BinaryOperator>(I) && isSupportedType(I) &&
714 !GenerateSignBits(I);
715 case Instruction::GetElementPtr:
716 case Instruction::Store:
717 case Instruction::Br:
718 case Instruction::Switch:
719 return true;
720 case Instruction::PHI:
721 case Instruction::Select:
722 case Instruction::Ret:
723 case Instruction::Load:
724 case Instruction::Trunc:
725 return isSupportedType(I);
726 case Instruction::BitCast:
727 return I->getOperand(0)->getType() == I->getType();
728 case Instruction::ZExt:
729 return isSupportedType(I->getOperand(0));
730 case Instruction::ICmp:
731 // Now that we allow small types than TypeSize, only allow icmp of
732 // TypeSize because they will require a trunc to be legalised.
733 // TODO: Allow icmp of smaller types, and calculate at the end
734 // whether the transform would be beneficial.
735 if (isa<PointerType>(I->getOperand(0)->getType()))
736 return true;
737 return EqualTypeSize(I->getOperand(0));
738 case Instruction::Call: {
739 // Special cases for calls as we need to check for zeroext
740 // TODO We should accept calls even if they don't have zeroext, as they
741 // can still be sinks.
742 auto *Call = cast<CallInst>(I);
743 return isSupportedType(Call) &&
744 Call->hasRetAttr(Attribute::AttrKind::ZExt);
747 } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
748 return isSupportedType(V);
749 } else if (isa<Argument>(V))
750 return isSupportedType(V);
752 return isa<BasicBlock>(V);
755 /// Check that the type of V would be promoted and that the original type is
756 /// smaller than the targeted promoted type. Check that we're not trying to
757 /// promote something larger than our base 'TypeSize' type.
758 bool TypePromotionImpl::isLegalToPromote(Value *V) {
759 auto *I = dyn_cast<Instruction>(V);
760 if (!I)
761 return true;
763 if (SafeToPromote.count(I))
764 return true;
766 if (isPromotedResultSafe(I) || isSafeWrap(I)) {
767 SafeToPromote.insert(I);
768 return true;
770 return false;
773 bool TypePromotionImpl::TryToPromote(Value *V, unsigned PromotedWidth,
774 const LoopInfo &LI) {
775 Type *OrigTy = V->getType();
776 TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedValue();
777 SafeToPromote.clear();
778 SafeWrap.clear();
780 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
781 return false;
783 LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
784 << TypeSize << " bits to " << PromotedWidth << "\n");
786 SetVector<Value *> WorkList;
787 SetVector<Value *> Sources;
788 SetVector<Instruction *> Sinks;
789 SetVector<Value *> CurrentVisited;
790 WorkList.insert(V);
792 // Return true if V was added to the worklist as a supported instruction,
793 // if it was already visited, or if we don't need to explore it (e.g.
794 // pointer values and GEPs), and false otherwise.
795 auto AddLegalInst = [&](Value *V) {
796 if (CurrentVisited.count(V))
797 return true;
799 // Ignore GEPs because they don't need promoting and the constant indices
800 // will prevent the transformation.
801 if (isa<GetElementPtrInst>(V))
802 return true;
804 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
805 LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
806 return false;
809 WorkList.insert(V);
810 return true;
813 // Iterate through, and add to, a tree of operands and users in the use-def.
814 while (!WorkList.empty()) {
815 Value *V = WorkList.pop_back_val();
816 if (CurrentVisited.count(V))
817 continue;
819 // Ignore non-instructions, other than arguments.
820 if (!isa<Instruction>(V) && !isSource(V))
821 continue;
823 // If we've already visited this value from somewhere, bail now because
824 // the tree has already been explored.
825 // TODO: This could limit the transform, ie if we try to promote something
826 // from an i8 and fail first, before trying an i16.
827 if (AllVisited.count(V))
828 return false;
830 CurrentVisited.insert(V);
831 AllVisited.insert(V);
833 // Calls can be both sources and sinks.
834 if (isSink(V))
835 Sinks.insert(cast<Instruction>(V));
837 if (isSource(V))
838 Sources.insert(V);
840 if (!isSink(V) && !isSource(V)) {
841 if (auto *I = dyn_cast<Instruction>(V)) {
842 // Visit operands of any instruction visited.
843 for (auto &U : I->operands()) {
844 if (!AddLegalInst(U))
845 return false;
850 // Don't visit users of a node which isn't going to be mutated unless its a
851 // source.
852 if (isSource(V) || shouldPromote(V)) {
853 for (Use &U : V->uses()) {
854 if (!AddLegalInst(U.getUser()))
855 return false;
860 LLVM_DEBUG({
861 dbgs() << "IR Promotion: Visited nodes:\n";
862 for (auto *I : CurrentVisited)
863 I->dump();
866 unsigned ToPromote = 0;
867 unsigned NonFreeArgs = 0;
868 unsigned NonLoopSources = 0, LoopSinks = 0;
869 SmallPtrSet<BasicBlock *, 4> Blocks;
870 for (auto *CV : CurrentVisited) {
871 if (auto *I = dyn_cast<Instruction>(CV))
872 Blocks.insert(I->getParent());
874 if (Sources.count(CV)) {
875 if (auto *Arg = dyn_cast<Argument>(CV))
876 if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
877 ++NonFreeArgs;
878 if (!isa<Instruction>(CV) ||
879 !LI.getLoopFor(cast<Instruction>(CV)->getParent()))
880 ++NonLoopSources;
881 continue;
884 if (isa<PHINode>(CV))
885 continue;
886 if (LI.getLoopFor(cast<Instruction>(CV)->getParent()))
887 ++LoopSinks;
888 if (Sinks.count(cast<Instruction>(CV)))
889 continue;
890 ++ToPromote;
893 // DAG optimizations should be able to handle these cases better, especially
894 // for function arguments.
895 if (!isa<PHINode>(V) && !(LoopSinks && NonLoopSources) &&
896 (ToPromote < 2 || (Blocks.size() == 1 && NonFreeArgs > SafeWrap.size())))
897 return false;
899 IRPromoter Promoter(*Ctx, PromotedWidth, CurrentVisited, Sources, Sinks,
900 SafeWrap, InstsToRemove);
901 Promoter.Mutate();
902 return true;
905 bool TypePromotionImpl::run(Function &F, const TargetMachine *TM,
906 const TargetTransformInfo &TTI,
907 const LoopInfo &LI) {
908 if (DisablePromotion)
909 return false;
911 LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
913 AllVisited.clear();
914 SafeToPromote.clear();
915 SafeWrap.clear();
916 bool MadeChange = false;
917 const DataLayout &DL = F.getParent()->getDataLayout();
918 const TargetSubtargetInfo *SubtargetInfo = TM->getSubtargetImpl(F);
919 const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
920 RegisterBitWidth =
921 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedValue();
922 Ctx = &F.getParent()->getContext();
924 // Return the preferred integer width of the instruction, or zero if we
925 // shouldn't try.
926 auto GetPromoteWidth = [&](Instruction *I) -> uint32_t {
927 if (!isa<IntegerType>(I->getType()))
928 return 0;
930 EVT SrcVT = TLI->getValueType(DL, I->getType());
931 if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
932 return 0;
934 if (TLI->getTypeAction(*Ctx, SrcVT) != TargetLowering::TypePromoteInteger)
935 return 0;
937 EVT PromotedVT = TLI->getTypeToTransformTo(*Ctx, SrcVT);
938 if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
939 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
940 << "for promoted type\n");
941 return 0;
944 // TODO: Should we prefer to use RegisterBitWidth instead?
945 return PromotedVT.getFixedSizeInBits();
948 auto BBIsInLoop = [&](BasicBlock *BB) -> bool {
949 for (auto *L : LI)
950 if (L->contains(BB))
951 return true;
952 return false;
955 for (BasicBlock &BB : F) {
956 for (Instruction &I : BB) {
957 if (AllVisited.count(&I))
958 continue;
960 if (isa<ZExtInst>(&I) && isa<PHINode>(I.getOperand(0)) &&
961 isa<IntegerType>(I.getType()) && BBIsInLoop(&BB)) {
962 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: "
963 << *I.getOperand(0) << "\n");
964 EVT ZExtVT = TLI->getValueType(DL, I.getType());
965 Instruction *Phi = static_cast<Instruction *>(I.getOperand(0));
966 auto PromoteWidth = ZExtVT.getFixedSizeInBits();
967 if (RegisterBitWidth < PromoteWidth) {
968 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target "
969 << "register for ZExt type\n");
970 continue;
972 MadeChange |= TryToPromote(Phi, PromoteWidth, LI);
973 } else if (auto *ICmp = dyn_cast<ICmpInst>(&I)) {
974 // Search up from icmps to try to promote their operands.
975 // Skip signed or pointer compares
976 if (ICmp->isSigned())
977 continue;
979 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
981 for (auto &Op : ICmp->operands()) {
982 if (auto *OpI = dyn_cast<Instruction>(Op)) {
983 if (auto PromotedWidth = GetPromoteWidth(OpI)) {
984 MadeChange |= TryToPromote(OpI, PromotedWidth, LI);
985 break;
991 if (!InstsToRemove.empty()) {
992 for (auto *I : InstsToRemove)
993 I->eraseFromParent();
994 InstsToRemove.clear();
998 AllVisited.clear();
999 SafeToPromote.clear();
1000 SafeWrap.clear();
1002 return MadeChange;
1005 INITIALIZE_PASS_BEGIN(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false)
1006 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1007 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1008 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1009 INITIALIZE_PASS_END(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false)
1011 char TypePromotionLegacy::ID = 0;
1013 bool TypePromotionLegacy::runOnFunction(Function &F) {
1014 if (skipFunction(F))
1015 return false;
1017 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1018 if (!TPC)
1019 return false;
1021 auto *TM = &TPC->getTM<TargetMachine>();
1022 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1023 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1025 TypePromotionImpl TP;
1026 return TP.run(F, TM, TTI, LI);
1029 FunctionPass *llvm::createTypePromotionLegacyPass() {
1030 return new TypePromotionLegacy();
1033 PreservedAnalyses TypePromotionPass::run(Function &F,
1034 FunctionAnalysisManager &AM) {
1035 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1036 auto &LI = AM.getResult<LoopAnalysis>(F);
1037 TypePromotionImpl TP;
1039 bool Changed = TP.run(F, TM, TTI, LI);
1040 if (!Changed)
1041 return PreservedAnalyses::all();
1043 PreservedAnalyses PA;
1044 PA.preserveSet<CFGAnalyses>();
1045 PA.preserve<LoopAnalysis>();
1046 return PA;