1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/WinEHFuncInfo.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/EHPersonalities.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Verifier.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/TargetParser/Triple.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/SSAUpdater.h"
41 #define DEBUG_TYPE "winehprepare"
43 static cl::opt
<bool> DisableDemotion(
44 "disable-demotion", cl::Hidden
,
46 "Clone multicolor basic blocks but do not demote cross scopes"),
49 static cl::opt
<bool> DisableCleanups(
50 "disable-cleanups", cl::Hidden
,
51 cl::desc("Do not remove implausible terminators or other similar cleanups"),
54 static cl::opt
<bool> DemoteCatchSwitchPHIOnlyOpt(
55 "demote-catchswitch-only", cl::Hidden
,
56 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
60 class WinEHPrepare
: public FunctionPass
{
62 static char ID
; // Pass identification, replacement for typeid.
63 WinEHPrepare(bool DemoteCatchSwitchPHIOnly
= false)
64 : FunctionPass(ID
), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly
) {}
66 bool runOnFunction(Function
&Fn
) override
;
68 bool doFinalization(Module
&M
) override
;
70 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
72 StringRef
getPassName() const override
{
73 return "Windows exception handling preparation";
77 void insertPHIStores(PHINode
*OriginalPHI
, AllocaInst
*SpillSlot
);
79 insertPHIStore(BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
80 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
);
81 AllocaInst
*insertPHILoads(PHINode
*PN
, Function
&F
);
82 void replaceUseWithLoad(Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
83 DenseMap
<BasicBlock
*, Value
*> &Loads
, Function
&F
);
84 bool prepareExplicitEH(Function
&F
);
85 void colorFunclets(Function
&F
);
87 void demotePHIsOnFunclets(Function
&F
, bool DemoteCatchSwitchPHIOnly
);
88 void cloneCommonBlocks(Function
&F
);
89 void removeImplausibleInstructions(Function
&F
);
90 void cleanupPreparedFunclets(Function
&F
);
91 void verifyPreparedFunclets(Function
&F
);
93 bool DemoteCatchSwitchPHIOnly
;
95 // All fields are reset by runOnFunction.
96 EHPersonality Personality
= EHPersonality::Unknown
;
98 const DataLayout
*DL
= nullptr;
99 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
;
100 MapVector
<BasicBlock
*, std::vector
<BasicBlock
*>> FuncletBlocks
;
103 } // end anonymous namespace
105 char WinEHPrepare::ID
= 0;
106 INITIALIZE_PASS(WinEHPrepare
, DEBUG_TYPE
, "Prepare Windows exceptions",
109 FunctionPass
*llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly
) {
110 return new WinEHPrepare(DemoteCatchSwitchPHIOnly
);
113 bool WinEHPrepare::runOnFunction(Function
&Fn
) {
114 if (!Fn
.hasPersonalityFn())
117 // Classify the personality to see what kind of preparation we need.
118 Personality
= classifyEHPersonality(Fn
.getPersonalityFn());
120 // Do nothing if this is not a scope-based personality.
121 if (!isScopedEHPersonality(Personality
))
124 DL
= &Fn
.getParent()->getDataLayout();
125 return prepareExplicitEH(Fn
);
128 bool WinEHPrepare::doFinalization(Module
&M
) { return false; }
130 void WinEHPrepare::getAnalysisUsage(AnalysisUsage
&AU
) const {}
132 static int addUnwindMapEntry(WinEHFuncInfo
&FuncInfo
, int ToState
,
133 const BasicBlock
*BB
) {
134 CxxUnwindMapEntry UME
;
135 UME
.ToState
= ToState
;
137 FuncInfo
.CxxUnwindMap
.push_back(UME
);
138 return FuncInfo
.getLastStateNumber();
141 static void addTryBlockMapEntry(WinEHFuncInfo
&FuncInfo
, int TryLow
,
142 int TryHigh
, int CatchHigh
,
143 ArrayRef
<const CatchPadInst
*> Handlers
) {
144 WinEHTryBlockMapEntry TBME
;
145 TBME
.TryLow
= TryLow
;
146 TBME
.TryHigh
= TryHigh
;
147 TBME
.CatchHigh
= CatchHigh
;
148 assert(TBME
.TryLow
<= TBME
.TryHigh
);
149 for (const CatchPadInst
*CPI
: Handlers
) {
151 Constant
*TypeInfo
= cast
<Constant
>(CPI
->getArgOperand(0));
152 if (TypeInfo
->isNullValue())
153 HT
.TypeDescriptor
= nullptr;
155 HT
.TypeDescriptor
= cast
<GlobalVariable
>(TypeInfo
->stripPointerCasts());
156 HT
.Adjectives
= cast
<ConstantInt
>(CPI
->getArgOperand(1))->getZExtValue();
157 HT
.Handler
= CPI
->getParent();
159 dyn_cast
<AllocaInst
>(CPI
->getArgOperand(2)->stripPointerCasts()))
160 HT
.CatchObj
.Alloca
= AI
;
162 HT
.CatchObj
.Alloca
= nullptr;
163 TBME
.HandlerArray
.push_back(HT
);
165 FuncInfo
.TryBlockMap
.push_back(TBME
);
168 static BasicBlock
*getCleanupRetUnwindDest(const CleanupPadInst
*CleanupPad
) {
169 for (const User
*U
: CleanupPad
->users())
170 if (const auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
))
171 return CRI
->getUnwindDest();
175 static void calculateStateNumbersForInvokes(const Function
*Fn
,
176 WinEHFuncInfo
&FuncInfo
) {
177 auto *F
= const_cast<Function
*>(Fn
);
178 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
= colorEHFunclets(*F
);
179 for (BasicBlock
&BB
: *F
) {
180 auto *II
= dyn_cast
<InvokeInst
>(BB
.getTerminator());
184 auto &BBColors
= BlockColors
[&BB
];
185 assert(BBColors
.size() == 1 && "multi-color BB not removed by preparation");
186 BasicBlock
*FuncletEntryBB
= BBColors
.front();
188 BasicBlock
*FuncletUnwindDest
;
190 dyn_cast
<FuncletPadInst
>(FuncletEntryBB
->getFirstNonPHI());
191 assert(FuncletPad
|| FuncletEntryBB
== &Fn
->getEntryBlock());
193 FuncletUnwindDest
= nullptr;
194 else if (auto *CatchPad
= dyn_cast
<CatchPadInst
>(FuncletPad
))
195 FuncletUnwindDest
= CatchPad
->getCatchSwitch()->getUnwindDest();
196 else if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(FuncletPad
))
197 FuncletUnwindDest
= getCleanupRetUnwindDest(CleanupPad
);
199 llvm_unreachable("unexpected funclet pad!");
201 BasicBlock
*InvokeUnwindDest
= II
->getUnwindDest();
203 if (FuncletUnwindDest
== InvokeUnwindDest
) {
204 auto BaseStateI
= FuncInfo
.FuncletBaseStateMap
.find(FuncletPad
);
205 if (BaseStateI
!= FuncInfo
.FuncletBaseStateMap
.end())
206 BaseState
= BaseStateI
->second
;
209 if (BaseState
!= -1) {
210 FuncInfo
.InvokeStateMap
[II
] = BaseState
;
212 Instruction
*PadInst
= InvokeUnwindDest
->getFirstNonPHI();
213 assert(FuncInfo
.EHPadStateMap
.count(PadInst
) && "EH Pad has no state!");
214 FuncInfo
.InvokeStateMap
[II
] = FuncInfo
.EHPadStateMap
[PadInst
];
219 // See comments below for calculateSEHStateForAsynchEH().
220 // State - incoming State of normal paths
222 const BasicBlock
*Block
;
224 WorkItem(const BasicBlock
*BB
, int St
) {
229 void llvm::calculateCXXStateForAsynchEH(const BasicBlock
*BB
, int State
,
230 WinEHFuncInfo
&EHInfo
) {
231 SmallVector
<struct WorkItem
*, 8> WorkList
;
232 struct WorkItem
*WI
= new WorkItem(BB
, State
);
233 WorkList
.push_back(WI
);
235 while (!WorkList
.empty()) {
236 WI
= WorkList
.pop_back_val();
237 const BasicBlock
*BB
= WI
->Block
;
238 int State
= WI
->State
;
240 if (EHInfo
.BlockToStateMap
.count(BB
) && EHInfo
.BlockToStateMap
[BB
] <= State
)
241 continue; // skip blocks already visited by lower State
243 const llvm::Instruction
*I
= BB
->getFirstNonPHI();
244 const llvm::Instruction
*TI
= BB
->getTerminator();
246 State
= EHInfo
.EHPadStateMap
[I
];
247 EHInfo
.BlockToStateMap
[BB
] = State
; // Record state, also flag visiting
249 if ((isa
<CleanupReturnInst
>(TI
) || isa
<CatchReturnInst
>(TI
)) && State
> 0) {
250 // Retrive the new State
251 State
= EHInfo
.CxxUnwindMap
[State
].ToState
; // Retrive next State
252 } else if (isa
<InvokeInst
>(TI
)) {
253 auto *Call
= cast
<CallBase
>(TI
);
254 const Function
*Fn
= Call
->getCalledFunction();
255 if (Fn
&& Fn
->isIntrinsic() &&
256 (Fn
->getIntrinsicID() == Intrinsic::seh_scope_begin
||
257 Fn
->getIntrinsicID() == Intrinsic::seh_try_begin
))
258 // Retrive the new State from seh_scope_begin
259 State
= EHInfo
.InvokeStateMap
[cast
<InvokeInst
>(TI
)];
260 else if (Fn
&& Fn
->isIntrinsic() &&
261 (Fn
->getIntrinsicID() == Intrinsic::seh_scope_end
||
262 Fn
->getIntrinsicID() == Intrinsic::seh_try_end
)) {
263 // In case of conditional ctor, let's retrieve State from Invoke
264 State
= EHInfo
.InvokeStateMap
[cast
<InvokeInst
>(TI
)];
265 // end of current state, retrive new state from UnwindMap
266 State
= EHInfo
.CxxUnwindMap
[State
].ToState
;
269 // Continue push successors into worklist
270 for (auto *SuccBB
: successors(BB
)) {
271 WI
= new WorkItem(SuccBB
, State
);
272 WorkList
.push_back(WI
);
277 // The central theory of this routine is based on the following:
278 // A _try scope is always a SEME (Single Entry Multiple Exits) region
279 // as jumping into a _try is not allowed
280 // The single entry must start with a seh_try_begin() invoke with a
281 // correct State number that is the initial state of the SEME.
282 // Through control-flow, state number is propagated into all blocks.
283 // Side exits marked by seh_try_end() will unwind to parent state via
284 // existing SEHUnwindMap[].
285 // Side exits can ONLY jump into parent scopes (lower state number).
286 // Thus, when a block succeeds various states from its predecessors,
287 // the lowest State trumphs others.
288 // If some exits flow to unreachable, propagation on those paths terminate,
289 // not affecting remaining blocks.
290 void llvm::calculateSEHStateForAsynchEH(const BasicBlock
*BB
, int State
,
291 WinEHFuncInfo
&EHInfo
) {
292 SmallVector
<struct WorkItem
*, 8> WorkList
;
293 struct WorkItem
*WI
= new WorkItem(BB
, State
);
294 WorkList
.push_back(WI
);
296 while (!WorkList
.empty()) {
297 WI
= WorkList
.pop_back_val();
298 const BasicBlock
*BB
= WI
->Block
;
299 int State
= WI
->State
;
301 if (EHInfo
.BlockToStateMap
.count(BB
) && EHInfo
.BlockToStateMap
[BB
] <= State
)
302 continue; // skip blocks already visited by lower State
304 const llvm::Instruction
*I
= BB
->getFirstNonPHI();
305 const llvm::Instruction
*TI
= BB
->getTerminator();
307 State
= EHInfo
.EHPadStateMap
[I
];
308 EHInfo
.BlockToStateMap
[BB
] = State
; // Record state
310 if (isa
<CatchPadInst
>(I
) && isa
<CatchReturnInst
>(TI
)) {
311 const Constant
*FilterOrNull
= cast
<Constant
>(
312 cast
<CatchPadInst
>(I
)->getArgOperand(0)->stripPointerCasts());
313 const Function
*Filter
= dyn_cast
<Function
>(FilterOrNull
);
314 if (!Filter
|| !Filter
->getName().startswith("__IsLocalUnwind"))
315 State
= EHInfo
.SEHUnwindMap
[State
].ToState
; // Retrive next State
316 } else if ((isa
<CleanupReturnInst
>(TI
) || isa
<CatchReturnInst
>(TI
)) &&
318 // Retrive the new State.
319 State
= EHInfo
.SEHUnwindMap
[State
].ToState
; // Retrive next State
320 } else if (isa
<InvokeInst
>(TI
)) {
321 auto *Call
= cast
<CallBase
>(TI
);
322 const Function
*Fn
= Call
->getCalledFunction();
323 if (Fn
&& Fn
->isIntrinsic() &&
324 Fn
->getIntrinsicID() == Intrinsic::seh_try_begin
)
325 // Retrive the new State from seh_try_begin
326 State
= EHInfo
.InvokeStateMap
[cast
<InvokeInst
>(TI
)];
327 else if (Fn
&& Fn
->isIntrinsic() &&
328 Fn
->getIntrinsicID() == Intrinsic::seh_try_end
)
329 // end of current state, retrive new state from UnwindMap
330 State
= EHInfo
.SEHUnwindMap
[State
].ToState
;
332 // Continue push successors into worklist
333 for (auto *SuccBB
: successors(BB
)) {
334 WI
= new WorkItem(SuccBB
, State
);
335 WorkList
.push_back(WI
);
340 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
341 // to. If the unwind edge came from an invoke, return null.
342 static const BasicBlock
*getEHPadFromPredecessor(const BasicBlock
*BB
,
344 const Instruction
*TI
= BB
->getTerminator();
345 if (isa
<InvokeInst
>(TI
))
347 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
348 if (CatchSwitch
->getParentPad() != ParentPad
)
352 assert(!TI
->isEHPad() && "unexpected EHPad!");
353 auto *CleanupPad
= cast
<CleanupReturnInst
>(TI
)->getCleanupPad();
354 if (CleanupPad
->getParentPad() != ParentPad
)
356 return CleanupPad
->getParent();
359 // Starting from a EHPad, Backward walk through control-flow graph
360 // to produce two primary outputs:
361 // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
362 static void calculateCXXStateNumbers(WinEHFuncInfo
&FuncInfo
,
363 const Instruction
*FirstNonPHI
,
365 const BasicBlock
*BB
= FirstNonPHI
->getParent();
366 assert(BB
->isEHPad() && "not a funclet!");
368 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
369 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
370 "shouldn't revist catch funclets!");
372 SmallVector
<const CatchPadInst
*, 2> Handlers
;
373 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
374 auto *CatchPad
= cast
<CatchPadInst
>(CatchPadBB
->getFirstNonPHI());
375 Handlers
.push_back(CatchPad
);
377 int TryLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
378 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryLow
;
379 for (const BasicBlock
*PredBlock
: predecessors(BB
))
380 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
381 CatchSwitch
->getParentPad())))
382 calculateCXXStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
384 int CatchLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
386 // catchpads are separate funclets in C++ EH due to the way rethrow works.
387 int TryHigh
= CatchLow
- 1;
389 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
390 // stored in pre-order (outer first, inner next), not post-order
391 // Add to map here. Fix the CatchHigh after children are processed
392 const Module
*Mod
= BB
->getParent()->getParent();
393 bool IsPreOrder
= Triple(Mod
->getTargetTriple()).isArch64Bit();
395 addTryBlockMapEntry(FuncInfo
, TryLow
, TryHigh
, CatchLow
, Handlers
);
396 unsigned TBMEIdx
= FuncInfo
.TryBlockMap
.size() - 1;
398 for (const auto *CatchPad
: Handlers
) {
399 FuncInfo
.FuncletBaseStateMap
[CatchPad
] = CatchLow
;
400 FuncInfo
.EHPadStateMap
[CatchPad
] = CatchLow
;
401 for (const User
*U
: CatchPad
->users()) {
402 const auto *UserI
= cast
<Instruction
>(U
);
403 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
404 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
405 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
406 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
408 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
409 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
410 // If a nested cleanup pad reports a null unwind destination and the
411 // enclosing catch pad doesn't it must be post-dominated by an
412 // unreachable instruction.
413 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
414 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
418 int CatchHigh
= FuncInfo
.getLastStateNumber();
419 // Now child Catches are processed, update CatchHigh
421 FuncInfo
.TryBlockMap
[TBMEIdx
].CatchHigh
= CatchHigh
;
423 addTryBlockMapEntry(FuncInfo
, TryLow
, TryHigh
, CatchHigh
, Handlers
);
425 LLVM_DEBUG(dbgs() << "TryLow[" << BB
->getName() << "]: " << TryLow
<< '\n');
426 LLVM_DEBUG(dbgs() << "TryHigh[" << BB
->getName() << "]: " << TryHigh
428 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB
->getName() << "]: " << CatchHigh
431 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
433 // It's possible for a cleanup to be visited twice: it might have multiple
434 // cleanupret instructions.
435 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
438 int CleanupState
= addUnwindMapEntry(FuncInfo
, ParentState
, BB
);
439 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
440 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
441 << BB
->getName() << '\n');
442 for (const BasicBlock
*PredBlock
: predecessors(BB
)) {
443 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
444 CleanupPad
->getParentPad()))) {
445 calculateCXXStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
449 for (const User
*U
: CleanupPad
->users()) {
450 const auto *UserI
= cast
<Instruction
>(U
);
451 if (UserI
->isEHPad())
452 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
453 "contain exceptional actions");
458 static int addSEHExcept(WinEHFuncInfo
&FuncInfo
, int ParentState
,
459 const Function
*Filter
, const BasicBlock
*Handler
) {
460 SEHUnwindMapEntry Entry
;
461 Entry
.ToState
= ParentState
;
462 Entry
.IsFinally
= false;
463 Entry
.Filter
= Filter
;
464 Entry
.Handler
= Handler
;
465 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
466 return FuncInfo
.SEHUnwindMap
.size() - 1;
469 static int addSEHFinally(WinEHFuncInfo
&FuncInfo
, int ParentState
,
470 const BasicBlock
*Handler
) {
471 SEHUnwindMapEntry Entry
;
472 Entry
.ToState
= ParentState
;
473 Entry
.IsFinally
= true;
474 Entry
.Filter
= nullptr;
475 Entry
.Handler
= Handler
;
476 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
477 return FuncInfo
.SEHUnwindMap
.size() - 1;
480 // Starting from a EHPad, Backward walk through control-flow graph
481 // to produce two primary outputs:
482 // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
483 static void calculateSEHStateNumbers(WinEHFuncInfo
&FuncInfo
,
484 const Instruction
*FirstNonPHI
,
486 const BasicBlock
*BB
= FirstNonPHI
->getParent();
487 assert(BB
->isEHPad() && "no a funclet!");
489 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
490 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
491 "shouldn't revist catch funclets!");
493 // Extract the filter function and the __except basic block and create a
495 assert(CatchSwitch
->getNumHandlers() == 1 &&
496 "SEH doesn't have multiple handlers per __try");
497 const auto *CatchPad
=
498 cast
<CatchPadInst
>((*CatchSwitch
->handler_begin())->getFirstNonPHI());
499 const BasicBlock
*CatchPadBB
= CatchPad
->getParent();
500 const Constant
*FilterOrNull
=
501 cast
<Constant
>(CatchPad
->getArgOperand(0)->stripPointerCasts());
502 const Function
*Filter
= dyn_cast
<Function
>(FilterOrNull
);
503 assert((Filter
|| FilterOrNull
->isNullValue()) &&
504 "unexpected filter value");
505 int TryState
= addSEHExcept(FuncInfo
, ParentState
, Filter
, CatchPadBB
);
507 // Everything in the __try block uses TryState as its parent state.
508 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryState
;
509 FuncInfo
.EHPadStateMap
[CatchPad
] = TryState
;
510 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState
<< " to BB "
511 << CatchPadBB
->getName() << '\n');
512 for (const BasicBlock
*PredBlock
: predecessors(BB
))
513 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
514 CatchSwitch
->getParentPad())))
515 calculateSEHStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
518 // Everything in the __except block unwinds to ParentState, just like code
519 // outside the __try.
520 for (const User
*U
: CatchPad
->users()) {
521 const auto *UserI
= cast
<Instruction
>(U
);
522 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
523 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
524 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
525 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
527 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
528 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
529 // If a nested cleanup pad reports a null unwind destination and the
530 // enclosing catch pad doesn't it must be post-dominated by an
531 // unreachable instruction.
532 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
533 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
537 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
539 // It's possible for a cleanup to be visited twice: it might have multiple
540 // cleanupret instructions.
541 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
544 int CleanupState
= addSEHFinally(FuncInfo
, ParentState
, BB
);
545 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
546 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
547 << BB
->getName() << '\n');
548 for (const BasicBlock
*PredBlock
: predecessors(BB
))
550 getEHPadFromPredecessor(PredBlock
, CleanupPad
->getParentPad())))
551 calculateSEHStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
553 for (const User
*U
: CleanupPad
->users()) {
554 const auto *UserI
= cast
<Instruction
>(U
);
555 if (UserI
->isEHPad())
556 report_fatal_error("Cleanup funclets for the SEH personality cannot "
557 "contain exceptional actions");
562 static bool isTopLevelPadForMSVC(const Instruction
*EHPad
) {
563 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(EHPad
))
564 return isa
<ConstantTokenNone
>(CatchSwitch
->getParentPad()) &&
565 CatchSwitch
->unwindsToCaller();
566 if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(EHPad
))
567 return isa
<ConstantTokenNone
>(CleanupPad
->getParentPad()) &&
568 getCleanupRetUnwindDest(CleanupPad
) == nullptr;
569 if (isa
<CatchPadInst
>(EHPad
))
571 llvm_unreachable("unexpected EHPad!");
574 void llvm::calculateSEHStateNumbers(const Function
*Fn
,
575 WinEHFuncInfo
&FuncInfo
) {
576 // Don't compute state numbers twice.
577 if (!FuncInfo
.SEHUnwindMap
.empty())
580 for (const BasicBlock
&BB
: *Fn
) {
583 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
584 if (!isTopLevelPadForMSVC(FirstNonPHI
))
586 ::calculateSEHStateNumbers(FuncInfo
, FirstNonPHI
, -1);
589 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
591 bool IsEHa
= Fn
->getParent()->getModuleFlag("eh-asynch");
593 const BasicBlock
*EntryBB
= &(Fn
->getEntryBlock());
594 calculateSEHStateForAsynchEH(EntryBB
, -1, FuncInfo
);
598 void llvm::calculateWinCXXEHStateNumbers(const Function
*Fn
,
599 WinEHFuncInfo
&FuncInfo
) {
600 // Return if it's already been done.
601 if (!FuncInfo
.EHPadStateMap
.empty())
604 for (const BasicBlock
&BB
: *Fn
) {
607 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
608 if (!isTopLevelPadForMSVC(FirstNonPHI
))
610 calculateCXXStateNumbers(FuncInfo
, FirstNonPHI
, -1);
613 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
615 bool IsEHa
= Fn
->getParent()->getModuleFlag("eh-asynch");
617 const BasicBlock
*EntryBB
= &(Fn
->getEntryBlock());
618 calculateCXXStateForAsynchEH(EntryBB
, -1, FuncInfo
);
622 static int addClrEHHandler(WinEHFuncInfo
&FuncInfo
, int HandlerParentState
,
623 int TryParentState
, ClrHandlerType HandlerType
,
624 uint32_t TypeToken
, const BasicBlock
*Handler
) {
625 ClrEHUnwindMapEntry Entry
;
626 Entry
.HandlerParentState
= HandlerParentState
;
627 Entry
.TryParentState
= TryParentState
;
628 Entry
.Handler
= Handler
;
629 Entry
.HandlerType
= HandlerType
;
630 Entry
.TypeToken
= TypeToken
;
631 FuncInfo
.ClrEHUnwindMap
.push_back(Entry
);
632 return FuncInfo
.ClrEHUnwindMap
.size() - 1;
635 void llvm::calculateClrEHStateNumbers(const Function
*Fn
,
636 WinEHFuncInfo
&FuncInfo
) {
637 // Return if it's already been done.
638 if (!FuncInfo
.EHPadStateMap
.empty())
641 // This numbering assigns one state number to each catchpad and cleanuppad.
642 // It also computes two tree-like relations over states:
643 // 1) Each state has a "HandlerParentState", which is the state of the next
644 // outer handler enclosing this state's handler (same as nearest ancestor
645 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
646 // 2) Each state has a "TryParentState", which:
647 // a) for a catchpad that's not the last handler on its catchswitch, is
648 // the state of the next catchpad on that catchswitch
649 // b) for all other pads, is the state of the pad whose try region is the
650 // next outer try region enclosing this state's try region. The "try
651 // regions are not present as such in the IR, but will be inferred
652 // based on the placement of invokes and pads which reach each other
653 // by exceptional exits
654 // Catchswitches do not get their own states, but each gets mapped to the
655 // state of its first catchpad.
657 // Step one: walk down from outermost to innermost funclets, assigning each
658 // catchpad and cleanuppad a state number. Add an entry to the
659 // ClrEHUnwindMap for each state, recording its HandlerParentState and
660 // handler attributes. Record the TryParentState as well for each catchpad
661 // that's not the last on its catchswitch, but initialize all other entries'
662 // TryParentStates to a sentinel -1 value that the next pass will update.
664 // Seed a worklist with pads that have no parent.
665 SmallVector
<std::pair
<const Instruction
*, int>, 8> Worklist
;
666 for (const BasicBlock
&BB
: *Fn
) {
667 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
668 const Value
*ParentPad
;
669 if (const auto *CPI
= dyn_cast
<CleanupPadInst
>(FirstNonPHI
))
670 ParentPad
= CPI
->getParentPad();
671 else if (const auto *CSI
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
))
672 ParentPad
= CSI
->getParentPad();
675 if (isa
<ConstantTokenNone
>(ParentPad
))
676 Worklist
.emplace_back(FirstNonPHI
, -1);
679 // Use the worklist to visit all pads, from outer to inner. Record
680 // HandlerParentState for all pads. Record TryParentState only for catchpads
681 // that aren't the last on their catchswitch (setting all other entries'
682 // TryParentStates to an initial value of -1). This loop is also responsible
683 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
685 while (!Worklist
.empty()) {
686 const Instruction
*Pad
;
687 int HandlerParentState
;
688 std::tie(Pad
, HandlerParentState
) = Worklist
.pop_back_val();
690 if (const auto *Cleanup
= dyn_cast
<CleanupPadInst
>(Pad
)) {
691 // Create the entry for this cleanup with the appropriate handler
692 // properties. Finally and fault handlers are distinguished by arity.
693 ClrHandlerType HandlerType
=
694 (Cleanup
->arg_size() ? ClrHandlerType::Fault
695 : ClrHandlerType::Finally
);
696 int CleanupState
= addClrEHHandler(FuncInfo
, HandlerParentState
, -1,
697 HandlerType
, 0, Pad
->getParent());
698 // Queue any child EH pads on the worklist.
699 for (const User
*U
: Cleanup
->users())
700 if (const auto *I
= dyn_cast
<Instruction
>(U
))
702 Worklist
.emplace_back(I
, CleanupState
);
703 // Remember this pad's state.
704 FuncInfo
.EHPadStateMap
[Cleanup
] = CleanupState
;
706 // Walk the handlers of this catchswitch in reverse order since all but
707 // the last need to set the following one as its TryParentState.
708 const auto *CatchSwitch
= cast
<CatchSwitchInst
>(Pad
);
709 int CatchState
= -1, FollowerState
= -1;
710 SmallVector
<const BasicBlock
*, 4> CatchBlocks(CatchSwitch
->handlers());
711 for (const BasicBlock
*CatchBlock
: llvm::reverse(CatchBlocks
)) {
712 // Create the entry for this catch with the appropriate handler
714 const auto *Catch
= cast
<CatchPadInst
>(CatchBlock
->getFirstNonPHI());
715 uint32_t TypeToken
= static_cast<uint32_t>(
716 cast
<ConstantInt
>(Catch
->getArgOperand(0))->getZExtValue());
718 addClrEHHandler(FuncInfo
, HandlerParentState
, FollowerState
,
719 ClrHandlerType::Catch
, TypeToken
, CatchBlock
);
720 // Queue any child EH pads on the worklist.
721 for (const User
*U
: Catch
->users())
722 if (const auto *I
= dyn_cast
<Instruction
>(U
))
724 Worklist
.emplace_back(I
, CatchState
);
725 // Remember this catch's state.
726 FuncInfo
.EHPadStateMap
[Catch
] = CatchState
;
727 FollowerState
= CatchState
;
729 // Associate the catchswitch with the state of its first catch.
730 assert(CatchSwitch
->getNumHandlers());
731 FuncInfo
.EHPadStateMap
[CatchSwitch
] = CatchState
;
735 // Step two: record the TryParentState of each state. For cleanuppads that
736 // don't have cleanuprets, we may need to infer this from their child pads,
737 // so visit pads in descendant-most to ancestor-most order.
738 for (ClrEHUnwindMapEntry
&Entry
: llvm::reverse(FuncInfo
.ClrEHUnwindMap
)) {
739 const Instruction
*Pad
=
740 cast
<const BasicBlock
*>(Entry
.Handler
)->getFirstNonPHI();
741 // For most pads, the TryParentState is the state associated with the
742 // unwind dest of exceptional exits from it.
743 const BasicBlock
*UnwindDest
;
744 if (const auto *Catch
= dyn_cast
<CatchPadInst
>(Pad
)) {
745 // If a catch is not the last in its catchswitch, its TryParentState is
746 // the state associated with the next catch in the switch, even though
747 // that's not the unwind dest of exceptions escaping the catch. Those
748 // cases were already assigned a TryParentState in the first pass, so
750 if (Entry
.TryParentState
!= -1)
752 // Otherwise, get the unwind dest from the catchswitch.
753 UnwindDest
= Catch
->getCatchSwitch()->getUnwindDest();
755 const auto *Cleanup
= cast
<CleanupPadInst
>(Pad
);
756 UnwindDest
= nullptr;
757 for (const User
*U
: Cleanup
->users()) {
758 if (auto *CleanupRet
= dyn_cast
<CleanupReturnInst
>(U
)) {
759 // Common and unambiguous case -- cleanupret indicates cleanup's
761 UnwindDest
= CleanupRet
->getUnwindDest();
765 // Get an unwind dest for the user
766 const BasicBlock
*UserUnwindDest
= nullptr;
767 if (auto *Invoke
= dyn_cast
<InvokeInst
>(U
)) {
768 UserUnwindDest
= Invoke
->getUnwindDest();
769 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(U
)) {
770 UserUnwindDest
= CatchSwitch
->getUnwindDest();
771 } else if (auto *ChildCleanup
= dyn_cast
<CleanupPadInst
>(U
)) {
772 int UserState
= FuncInfo
.EHPadStateMap
[ChildCleanup
];
773 int UserUnwindState
=
774 FuncInfo
.ClrEHUnwindMap
[UserState
].TryParentState
;
775 if (UserUnwindState
!= -1)
776 UserUnwindDest
= cast
<const BasicBlock
*>(
777 FuncInfo
.ClrEHUnwindMap
[UserUnwindState
].Handler
);
780 // Not having an unwind dest for this user might indicate that it
781 // doesn't unwind, so can't be taken as proof that the cleanup itself
782 // may unwind to caller (see e.g. SimplifyUnreachable and
783 // RemoveUnwindEdge).
787 // Now we have an unwind dest for the user, but we need to see if it
788 // unwinds all the way out of the cleanup or if it stays within it.
789 const Instruction
*UserUnwindPad
= UserUnwindDest
->getFirstNonPHI();
790 const Value
*UserUnwindParent
;
791 if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(UserUnwindPad
))
792 UserUnwindParent
= CSI
->getParentPad();
795 cast
<CleanupPadInst
>(UserUnwindPad
)->getParentPad();
797 // The unwind stays within the cleanup iff it targets a child of the
799 if (UserUnwindParent
== Cleanup
)
802 // This unwind exits the cleanup, so its dest is the cleanup's dest.
803 UnwindDest
= UserUnwindDest
;
808 // Record the state of the unwind dest as the TryParentState.
811 // If UnwindDest is null at this point, either the pad in question can
812 // be exited by unwind to caller, or it cannot be exited by unwind. In
813 // either case, reporting such cases as unwinding to caller is correct.
814 // This can lead to EH tables that "look strange" -- if this pad's is in
815 // a parent funclet which has other children that do unwind to an enclosing
816 // pad, the try region for this pad will be missing the "duplicate" EH
817 // clause entries that you'd expect to see covering the whole parent. That
818 // should be benign, since the unwind never actually happens. If it were
819 // an issue, we could add a subsequent pass that pushes unwind dests down
820 // from parents that have them to children that appear to unwind to caller.
822 UnwindDestState
= -1;
824 UnwindDestState
= FuncInfo
.EHPadStateMap
[UnwindDest
->getFirstNonPHI()];
827 Entry
.TryParentState
= UnwindDestState
;
830 // Step three: transfer information from pads to invokes.
831 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
834 void WinEHPrepare::colorFunclets(Function
&F
) {
835 BlockColors
= colorEHFunclets(F
);
837 // Invert the map from BB to colors to color to BBs.
838 for (BasicBlock
&BB
: F
) {
839 ColorVector
&Colors
= BlockColors
[&BB
];
840 for (BasicBlock
*Color
: Colors
)
841 FuncletBlocks
[Color
].push_back(&BB
);
845 void WinEHPrepare::demotePHIsOnFunclets(Function
&F
,
846 bool DemoteCatchSwitchPHIOnly
) {
847 // Strip PHI nodes off of EH pads.
848 SmallVector
<PHINode
*, 16> PHINodes
;
849 for (BasicBlock
&BB
: make_early_inc_range(F
)) {
852 if (DemoteCatchSwitchPHIOnly
&& !isa
<CatchSwitchInst
>(BB
.getFirstNonPHI()))
855 for (Instruction
&I
: make_early_inc_range(BB
)) {
856 auto *PN
= dyn_cast
<PHINode
>(&I
);
857 // Stop at the first non-PHI.
861 AllocaInst
*SpillSlot
= insertPHILoads(PN
, F
);
863 insertPHIStores(PN
, SpillSlot
);
865 PHINodes
.push_back(PN
);
869 for (auto *PN
: PHINodes
) {
870 // There may be lingering uses on other EH PHIs being removed
871 PN
->replaceAllUsesWith(PoisonValue::get(PN
->getType()));
872 PN
->eraseFromParent();
876 void WinEHPrepare::cloneCommonBlocks(Function
&F
) {
877 // We need to clone all blocks which belong to multiple funclets. Values are
878 // remapped throughout the funclet to propagate both the new instructions
879 // *and* the new basic blocks themselves.
880 for (auto &Funclets
: FuncletBlocks
) {
881 BasicBlock
*FuncletPadBB
= Funclets
.first
;
882 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclets
.second
;
884 if (FuncletPadBB
== &F
.getEntryBlock())
885 FuncletToken
= ConstantTokenNone::get(F
.getContext());
887 FuncletToken
= FuncletPadBB
->getFirstNonPHI();
889 std::vector
<std::pair
<BasicBlock
*, BasicBlock
*>> Orig2Clone
;
890 ValueToValueMapTy VMap
;
891 for (BasicBlock
*BB
: BlocksInFunclet
) {
892 ColorVector
&ColorsForBB
= BlockColors
[BB
];
893 // We don't need to do anything if the block is monochromatic.
894 size_t NumColorsForBB
= ColorsForBB
.size();
895 if (NumColorsForBB
== 1)
898 DEBUG_WITH_TYPE("winehprepare-coloring",
899 dbgs() << " Cloning block \'" << BB
->getName()
900 << "\' for funclet \'" << FuncletPadBB
->getName()
903 // Create a new basic block and copy instructions into it!
905 CloneBasicBlock(BB
, VMap
, Twine(".for.", FuncletPadBB
->getName()));
906 // Insert the clone immediately after the original to ensure determinism
907 // and to keep the same relative ordering of any funclet's blocks.
908 CBB
->insertInto(&F
, BB
->getNextNode());
910 // Add basic block mapping.
913 // Record delta operations that we need to perform to our color mappings.
914 Orig2Clone
.emplace_back(BB
, CBB
);
917 // If nothing was cloned, we're done cloning in this funclet.
918 if (Orig2Clone
.empty())
921 // Update our color mappings to reflect that one block has lost a color and
922 // another has gained a color.
923 for (auto &BBMapping
: Orig2Clone
) {
924 BasicBlock
*OldBlock
= BBMapping
.first
;
925 BasicBlock
*NewBlock
= BBMapping
.second
;
927 BlocksInFunclet
.push_back(NewBlock
);
928 ColorVector
&NewColors
= BlockColors
[NewBlock
];
929 assert(NewColors
.empty() && "A new block should only have one color!");
930 NewColors
.push_back(FuncletPadBB
);
932 DEBUG_WITH_TYPE("winehprepare-coloring",
933 dbgs() << " Assigned color \'" << FuncletPadBB
->getName()
934 << "\' to block \'" << NewBlock
->getName()
937 llvm::erase_value(BlocksInFunclet
, OldBlock
);
938 ColorVector
&OldColors
= BlockColors
[OldBlock
];
939 llvm::erase_value(OldColors
, FuncletPadBB
);
941 DEBUG_WITH_TYPE("winehprepare-coloring",
942 dbgs() << " Removed color \'" << FuncletPadBB
->getName()
943 << "\' from block \'" << OldBlock
->getName()
947 // Loop over all of the instructions in this funclet, fixing up operand
948 // references as we go. This uses VMap to do all the hard work.
949 for (BasicBlock
*BB
: BlocksInFunclet
)
950 // Loop over all instructions, fixing each one as we find it...
951 for (Instruction
&I
: *BB
)
952 RemapInstruction(&I
, VMap
,
953 RF_IgnoreMissingLocals
| RF_NoModuleLevelChanges
);
955 // Catchrets targeting cloned blocks need to be updated separately from
956 // the loop above because they are not in the current funclet.
957 SmallVector
<CatchReturnInst
*, 2> FixupCatchrets
;
958 for (auto &BBMapping
: Orig2Clone
) {
959 BasicBlock
*OldBlock
= BBMapping
.first
;
960 BasicBlock
*NewBlock
= BBMapping
.second
;
962 FixupCatchrets
.clear();
963 for (BasicBlock
*Pred
: predecessors(OldBlock
))
964 if (auto *CatchRet
= dyn_cast
<CatchReturnInst
>(Pred
->getTerminator()))
965 if (CatchRet
->getCatchSwitchParentPad() == FuncletToken
)
966 FixupCatchrets
.push_back(CatchRet
);
968 for (CatchReturnInst
*CatchRet
: FixupCatchrets
)
969 CatchRet
->setSuccessor(NewBlock
);
972 auto UpdatePHIOnClonedBlock
= [&](PHINode
*PN
, bool IsForOldBlock
) {
973 unsigned NumPreds
= PN
->getNumIncomingValues();
974 for (unsigned PredIdx
= 0, PredEnd
= NumPreds
; PredIdx
!= PredEnd
;
976 BasicBlock
*IncomingBlock
= PN
->getIncomingBlock(PredIdx
);
977 bool EdgeTargetsFunclet
;
979 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
980 EdgeTargetsFunclet
= (CRI
->getCatchSwitchParentPad() == FuncletToken
);
982 ColorVector
&IncomingColors
= BlockColors
[IncomingBlock
];
983 assert(!IncomingColors
.empty() && "Block not colored!");
984 assert((IncomingColors
.size() == 1 ||
985 !llvm::is_contained(IncomingColors
, FuncletPadBB
)) &&
986 "Cloning should leave this funclet's blocks monochromatic");
987 EdgeTargetsFunclet
= (IncomingColors
.front() == FuncletPadBB
);
989 if (IsForOldBlock
!= EdgeTargetsFunclet
)
991 PN
->removeIncomingValue(IncomingBlock
, /*DeletePHIIfEmpty=*/false);
992 // Revisit the next entry.
998 for (auto &BBMapping
: Orig2Clone
) {
999 BasicBlock
*OldBlock
= BBMapping
.first
;
1000 BasicBlock
*NewBlock
= BBMapping
.second
;
1001 for (PHINode
&OldPN
: OldBlock
->phis()) {
1002 UpdatePHIOnClonedBlock(&OldPN
, /*IsForOldBlock=*/true);
1004 for (PHINode
&NewPN
: NewBlock
->phis()) {
1005 UpdatePHIOnClonedBlock(&NewPN
, /*IsForOldBlock=*/false);
1009 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
1010 // the PHI nodes for NewBB now.
1011 for (auto &BBMapping
: Orig2Clone
) {
1012 BasicBlock
*OldBlock
= BBMapping
.first
;
1013 BasicBlock
*NewBlock
= BBMapping
.second
;
1014 for (BasicBlock
*SuccBB
: successors(NewBlock
)) {
1015 for (PHINode
&SuccPN
: SuccBB
->phis()) {
1016 // Ok, we have a PHI node. Figure out what the incoming value was for
1018 int OldBlockIdx
= SuccPN
.getBasicBlockIndex(OldBlock
);
1019 if (OldBlockIdx
== -1)
1021 Value
*IV
= SuccPN
.getIncomingValue(OldBlockIdx
);
1023 // Remap the value if necessary.
1024 if (auto *Inst
= dyn_cast
<Instruction
>(IV
)) {
1025 ValueToValueMapTy::iterator I
= VMap
.find(Inst
);
1026 if (I
!= VMap
.end())
1030 SuccPN
.addIncoming(IV
, NewBlock
);
1035 for (ValueToValueMapTy::value_type VT
: VMap
) {
1036 // If there were values defined in BB that are used outside the funclet,
1037 // then we now have to update all uses of the value to use either the
1038 // original value, the cloned value, or some PHI derived value. This can
1039 // require arbitrary PHI insertion, of which we are prepared to do, clean
1041 SmallVector
<Use
*, 16> UsesToRename
;
1043 auto *OldI
= dyn_cast
<Instruction
>(const_cast<Value
*>(VT
.first
));
1046 auto *NewI
= cast
<Instruction
>(VT
.second
);
1047 // Scan all uses of this instruction to see if it is used outside of its
1048 // funclet, and if so, record them in UsesToRename.
1049 for (Use
&U
: OldI
->uses()) {
1050 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
1051 BasicBlock
*UserBB
= UserI
->getParent();
1052 ColorVector
&ColorsForUserBB
= BlockColors
[UserBB
];
1053 assert(!ColorsForUserBB
.empty());
1054 if (ColorsForUserBB
.size() > 1 ||
1055 *ColorsForUserBB
.begin() != FuncletPadBB
)
1056 UsesToRename
.push_back(&U
);
1059 // If there are no uses outside the block, we're done with this
1061 if (UsesToRename
.empty())
1064 // We found a use of OldI outside of the funclet. Rename all uses of OldI
1065 // that are outside its funclet to be uses of the appropriate PHI node
1067 SSAUpdater SSAUpdate
;
1068 SSAUpdate
.Initialize(OldI
->getType(), OldI
->getName());
1069 SSAUpdate
.AddAvailableValue(OldI
->getParent(), OldI
);
1070 SSAUpdate
.AddAvailableValue(NewI
->getParent(), NewI
);
1072 while (!UsesToRename
.empty())
1073 SSAUpdate
.RewriteUseAfterInsertions(*UsesToRename
.pop_back_val());
1078 void WinEHPrepare::removeImplausibleInstructions(Function
&F
) {
1079 // Remove implausible terminators and replace them with UnreachableInst.
1080 for (auto &Funclet
: FuncletBlocks
) {
1081 BasicBlock
*FuncletPadBB
= Funclet
.first
;
1082 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclet
.second
;
1083 Instruction
*FirstNonPHI
= FuncletPadBB
->getFirstNonPHI();
1084 auto *FuncletPad
= dyn_cast
<FuncletPadInst
>(FirstNonPHI
);
1085 auto *CatchPad
= dyn_cast_or_null
<CatchPadInst
>(FuncletPad
);
1086 auto *CleanupPad
= dyn_cast_or_null
<CleanupPadInst
>(FuncletPad
);
1088 for (BasicBlock
*BB
: BlocksInFunclet
) {
1089 for (Instruction
&I
: *BB
) {
1090 auto *CB
= dyn_cast
<CallBase
>(&I
);
1094 Value
*FuncletBundleOperand
= nullptr;
1095 if (auto BU
= CB
->getOperandBundle(LLVMContext::OB_funclet
))
1096 FuncletBundleOperand
= BU
->Inputs
.front();
1098 if (FuncletBundleOperand
== FuncletPad
)
1101 // Skip call sites which are nounwind intrinsics or inline asm.
1103 dyn_cast
<Function
>(CB
->getCalledOperand()->stripPointerCasts());
1104 if (CalledFn
&& ((CalledFn
->isIntrinsic() && CB
->doesNotThrow()) ||
1108 // This call site was not part of this funclet, remove it.
1109 if (isa
<InvokeInst
>(CB
)) {
1110 // Remove the unwind edge if it was an invoke.
1111 removeUnwindEdge(BB
);
1112 // Get a pointer to the new call.
1113 BasicBlock::iterator CallI
=
1114 std::prev(BB
->getTerminator()->getIterator());
1115 auto *CI
= cast
<CallInst
>(&*CallI
);
1116 changeToUnreachable(CI
);
1118 changeToUnreachable(&I
);
1121 // There are no more instructions in the block (except for unreachable),
1126 Instruction
*TI
= BB
->getTerminator();
1127 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
1128 bool IsUnreachableRet
= isa
<ReturnInst
>(TI
) && FuncletPad
;
1129 // The token consumed by a CatchReturnInst must match the funclet token.
1130 bool IsUnreachableCatchret
= false;
1131 if (auto *CRI
= dyn_cast
<CatchReturnInst
>(TI
))
1132 IsUnreachableCatchret
= CRI
->getCatchPad() != CatchPad
;
1133 // The token consumed by a CleanupReturnInst must match the funclet token.
1134 bool IsUnreachableCleanupret
= false;
1135 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
))
1136 IsUnreachableCleanupret
= CRI
->getCleanupPad() != CleanupPad
;
1137 if (IsUnreachableRet
|| IsUnreachableCatchret
||
1138 IsUnreachableCleanupret
) {
1139 changeToUnreachable(TI
);
1140 } else if (isa
<InvokeInst
>(TI
)) {
1141 if (Personality
== EHPersonality::MSVC_CXX
&& CleanupPad
) {
1142 // Invokes within a cleanuppad for the MSVC++ personality never
1143 // transfer control to their unwind edge: the personality will
1144 // terminate the program.
1145 removeUnwindEdge(BB
);
1152 void WinEHPrepare::cleanupPreparedFunclets(Function
&F
) {
1153 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1155 for (BasicBlock
&BB
: llvm::make_early_inc_range(F
)) {
1156 SimplifyInstructionsInBlock(&BB
);
1157 ConstantFoldTerminator(&BB
, /*DeleteDeadConditions=*/true);
1158 MergeBlockIntoPredecessor(&BB
);
1161 // We might have some unreachable blocks after cleaning up some impossible
1163 removeUnreachableBlocks(F
);
1167 void WinEHPrepare::verifyPreparedFunclets(Function
&F
) {
1168 for (BasicBlock
&BB
: F
) {
1169 size_t NumColors
= BlockColors
[&BB
].size();
1170 assert(NumColors
== 1 && "Expected monochromatic BB!");
1172 report_fatal_error("Uncolored BB!");
1174 report_fatal_error("Multicolor BB!");
1175 assert((DisableDemotion
|| !(BB
.isEHPad() && isa
<PHINode
>(BB
.begin()))) &&
1176 "EH Pad still has a PHI!");
1181 bool WinEHPrepare::prepareExplicitEH(Function
&F
) {
1182 // Remove unreachable blocks. It is not valuable to assign them a color and
1183 // their existence can trick us into thinking values are alive when they are
1185 removeUnreachableBlocks(F
);
1187 // Determine which blocks are reachable from which funclet entries.
1190 cloneCommonBlocks(F
);
1192 if (!DisableDemotion
)
1193 demotePHIsOnFunclets(F
, DemoteCatchSwitchPHIOnly
||
1194 DemoteCatchSwitchPHIOnlyOpt
);
1196 if (!DisableCleanups
) {
1197 assert(!verifyFunction(F
, &dbgs()));
1198 removeImplausibleInstructions(F
);
1200 assert(!verifyFunction(F
, &dbgs()));
1201 cleanupPreparedFunclets(F
);
1204 LLVM_DEBUG(verifyPreparedFunclets(F
));
1205 // Recolor the CFG to verify that all is well.
1206 LLVM_DEBUG(colorFunclets(F
));
1207 LLVM_DEBUG(verifyPreparedFunclets(F
));
1209 BlockColors
.clear();
1210 FuncletBlocks
.clear();
1215 // TODO: Share loads when one use dominates another, or when a catchpad exit
1216 // dominates uses (needs dominators).
1217 AllocaInst
*WinEHPrepare::insertPHILoads(PHINode
*PN
, Function
&F
) {
1218 BasicBlock
*PHIBlock
= PN
->getParent();
1219 AllocaInst
*SpillSlot
= nullptr;
1220 Instruction
*EHPad
= PHIBlock
->getFirstNonPHI();
1222 if (!EHPad
->isTerminator()) {
1223 // If the EHPad isn't a terminator, then we can insert a load in this block
1224 // that will dominate all uses.
1225 SpillSlot
= new AllocaInst(PN
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1226 Twine(PN
->getName(), ".wineh.spillslot"),
1227 &F
.getEntryBlock().front());
1228 Value
*V
= new LoadInst(PN
->getType(), SpillSlot
,
1229 Twine(PN
->getName(), ".wineh.reload"),
1230 &*PHIBlock
->getFirstInsertionPt());
1231 PN
->replaceAllUsesWith(V
);
1235 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1236 // loads of the slot before every use.
1237 DenseMap
<BasicBlock
*, Value
*> Loads
;
1238 for (Use
&U
: llvm::make_early_inc_range(PN
->uses())) {
1239 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1240 if (isa
<PHINode
>(UsingInst
) && UsingInst
->getParent()->isEHPad()) {
1241 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1242 // stores for it separately.
1245 replaceUseWithLoad(PN
, U
, SpillSlot
, Loads
, F
);
1250 // TODO: improve store placement. Inserting at def is probably good, but need
1251 // to be careful not to introduce interfering stores (needs liveness analysis).
1252 // TODO: identify related phi nodes that can share spill slots, and share them
1253 // (also needs liveness).
1254 void WinEHPrepare::insertPHIStores(PHINode
*OriginalPHI
,
1255 AllocaInst
*SpillSlot
) {
1256 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1257 // stored to the spill slot by the end of the given Block.
1258 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 4> Worklist
;
1260 Worklist
.push_back({OriginalPHI
->getParent(), OriginalPHI
});
1262 while (!Worklist
.empty()) {
1263 BasicBlock
*EHBlock
;
1265 std::tie(EHBlock
, InVal
) = Worklist
.pop_back_val();
1267 PHINode
*PN
= dyn_cast
<PHINode
>(InVal
);
1268 if (PN
&& PN
->getParent() == EHBlock
) {
1269 // The value is defined by another PHI we need to remove, with no room to
1270 // insert a store after the PHI, so each predecessor needs to store its
1272 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
< e
; ++i
) {
1273 Value
*PredVal
= PN
->getIncomingValue(i
);
1275 // Undef can safely be skipped.
1276 if (isa
<UndefValue
>(PredVal
))
1279 insertPHIStore(PN
->getIncomingBlock(i
), PredVal
, SpillSlot
, Worklist
);
1282 // We need to store InVal, which dominates EHBlock, but can't put a store
1283 // in EHBlock, so need to put stores in each predecessor.
1284 for (BasicBlock
*PredBlock
: predecessors(EHBlock
)) {
1285 insertPHIStore(PredBlock
, InVal
, SpillSlot
, Worklist
);
1291 void WinEHPrepare::insertPHIStore(
1292 BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
1293 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
) {
1295 if (PredBlock
->isEHPad() && PredBlock
->getFirstNonPHI()->isTerminator()) {
1296 // Pred is unsplittable, so we need to queue it on the worklist.
1297 Worklist
.push_back({PredBlock
, PredVal
});
1301 // Otherwise, insert the store at the end of the basic block.
1302 new StoreInst(PredVal
, SpillSlot
, PredBlock
->getTerminator());
1305 void WinEHPrepare::replaceUseWithLoad(Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
1306 DenseMap
<BasicBlock
*, Value
*> &Loads
,
1308 // Lazilly create the spill slot.
1310 SpillSlot
= new AllocaInst(V
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1311 Twine(V
->getName(), ".wineh.spillslot"),
1312 &F
.getEntryBlock().front());
1314 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1315 if (auto *UsingPHI
= dyn_cast
<PHINode
>(UsingInst
)) {
1316 // If this is a PHI node, we can't insert a load of the value before
1317 // the use. Instead insert the load in the predecessor block
1318 // corresponding to the incoming value.
1320 // Note that if there are multiple edges from a basic block to this
1321 // PHI node that we cannot have multiple loads. The problem is that
1322 // the resulting PHI node will have multiple values (from each load)
1323 // coming in from the same block, which is illegal SSA form.
1324 // For this reason, we keep track of and reuse loads we insert.
1325 BasicBlock
*IncomingBlock
= UsingPHI
->getIncomingBlock(U
);
1326 if (auto *CatchRet
=
1327 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
1328 // Putting a load above a catchret and use on the phi would still leave
1329 // a cross-funclet def/use. We need to split the edge, change the
1330 // catchret to target the new block, and put the load there.
1331 BasicBlock
*PHIBlock
= UsingInst
->getParent();
1332 BasicBlock
*NewBlock
= SplitEdge(IncomingBlock
, PHIBlock
);
1333 // SplitEdge gives us:
1336 // br label %NewBlock
1338 // catchret label %PHIBlock
1342 // catchret label %NewBlock
1344 // br label %PHIBlock
1345 // So move the terminators to each others' blocks and swap their
1347 BranchInst
*Goto
= cast
<BranchInst
>(IncomingBlock
->getTerminator());
1348 Goto
->removeFromParent();
1349 CatchRet
->removeFromParent();
1350 CatchRet
->insertInto(IncomingBlock
, IncomingBlock
->end());
1351 Goto
->insertInto(NewBlock
, NewBlock
->end());
1352 Goto
->setSuccessor(0, PHIBlock
);
1353 CatchRet
->setSuccessor(NewBlock
);
1354 // Update the color mapping for the newly split edge.
1355 // Grab a reference to the ColorVector to be inserted before getting the
1356 // reference to the vector we are copying because inserting the new
1357 // element in BlockColors might cause the map to be reallocated.
1358 ColorVector
&ColorsForNewBlock
= BlockColors
[NewBlock
];
1359 ColorVector
&ColorsForPHIBlock
= BlockColors
[PHIBlock
];
1360 ColorsForNewBlock
= ColorsForPHIBlock
;
1361 for (BasicBlock
*FuncletPad
: ColorsForPHIBlock
)
1362 FuncletBlocks
[FuncletPad
].push_back(NewBlock
);
1363 // Treat the new block as incoming for load insertion.
1364 IncomingBlock
= NewBlock
;
1366 Value
*&Load
= Loads
[IncomingBlock
];
1367 // Insert the load into the predecessor block
1369 Load
= new LoadInst(V
->getType(), SpillSlot
,
1370 Twine(V
->getName(), ".wineh.reload"),
1371 /*isVolatile=*/false, IncomingBlock
->getTerminator());
1375 // Reload right before the old use.
1376 auto *Load
= new LoadInst(V
->getType(), SpillSlot
,
1377 Twine(V
->getName(), ".wineh.reload"),
1378 /*isVolatile=*/false, UsingInst
);
1383 void WinEHFuncInfo::addIPToStateRange(const InvokeInst
*II
,
1384 MCSymbol
*InvokeBegin
,
1385 MCSymbol
*InvokeEnd
) {
1386 assert(InvokeStateMap
.count(II
) &&
1387 "should get invoke with precomputed state");
1388 LabelToStateMap
[InvokeBegin
] = std::make_pair(InvokeStateMap
[II
], InvokeEnd
);
1391 void WinEHFuncInfo::addIPToStateRange(int State
, MCSymbol
* InvokeBegin
,
1392 MCSymbol
* InvokeEnd
) {
1393 LabelToStateMap
[InvokeBegin
] = std::make_pair(State
, InvokeEnd
);
1396 WinEHFuncInfo::WinEHFuncInfo() = default;