[clang-repl] [codegen] Reduce the state in TBAA. NFC for static compilation. (#98138)
[llvm-project.git] / clang / lib / CodeGen / CGClass.cpp
blobe5ba50de3462da4da870e70f62145c83edd1f813
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
11 //===----------------------------------------------------------------------===//
13 #include "ABIInfoImpl.h"
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/CXXInheritance.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/Support/SaveAndRestore.h"
33 #include "llvm/Transforms/Utils/SanitizerStats.h"
34 #include <optional>
36 using namespace clang;
37 using namespace CodeGen;
39 /// Return the best known alignment for an unknown pointer to a
40 /// particular class.
41 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
42 if (!RD->hasDefinition())
43 return CharUnits::One(); // Hopefully won't be used anywhere.
45 auto &layout = getContext().getASTRecordLayout(RD);
47 // If the class is final, then we know that the pointer points to an
48 // object of that type and can use the full alignment.
49 if (RD->isEffectivelyFinal())
50 return layout.getAlignment();
52 // Otherwise, we have to assume it could be a subclass.
53 return layout.getNonVirtualAlignment();
56 /// Return the smallest possible amount of storage that might be allocated
57 /// starting from the beginning of an object of a particular class.
58 ///
59 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
60 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
61 if (!RD->hasDefinition())
62 return CharUnits::One();
64 auto &layout = getContext().getASTRecordLayout(RD);
66 // If the class is final, then we know that the pointer points to an
67 // object of that type and can use the full alignment.
68 if (RD->isEffectivelyFinal())
69 return layout.getSize();
71 // Otherwise, we have to assume it could be a subclass.
72 return std::max(layout.getNonVirtualSize(), CharUnits::One());
75 /// Return the best known alignment for a pointer to a virtual base,
76 /// given the alignment of a pointer to the derived class.
77 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
78 const CXXRecordDecl *derivedClass,
79 const CXXRecordDecl *vbaseClass) {
80 // The basic idea here is that an underaligned derived pointer might
81 // indicate an underaligned base pointer.
83 assert(vbaseClass->isCompleteDefinition());
84 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
85 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
87 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
88 expectedVBaseAlign);
91 CharUnits
92 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
93 const CXXRecordDecl *baseDecl,
94 CharUnits expectedTargetAlign) {
95 // If the base is an incomplete type (which is, alas, possible with
96 // member pointers), be pessimistic.
97 if (!baseDecl->isCompleteDefinition())
98 return std::min(actualBaseAlign, expectedTargetAlign);
100 auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
101 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
103 // If the class is properly aligned, assume the target offset is, too.
105 // This actually isn't necessarily the right thing to do --- if the
106 // class is a complete object, but it's only properly aligned for a
107 // base subobject, then the alignments of things relative to it are
108 // probably off as well. (Note that this requires the alignment of
109 // the target to be greater than the NV alignment of the derived
110 // class.)
112 // However, our approach to this kind of under-alignment can only
113 // ever be best effort; after all, we're never going to propagate
114 // alignments through variables or parameters. Note, in particular,
115 // that constructing a polymorphic type in an address that's less
116 // than pointer-aligned will generally trap in the constructor,
117 // unless we someday add some sort of attribute to change the
118 // assumed alignment of 'this'. So our goal here is pretty much
119 // just to allow the user to explicitly say that a pointer is
120 // under-aligned and then safely access its fields and vtables.
121 if (actualBaseAlign >= expectedBaseAlign) {
122 return expectedTargetAlign;
125 // Otherwise, we might be offset by an arbitrary multiple of the
126 // actual alignment. The correct adjustment is to take the min of
127 // the two alignments.
128 return std::min(actualBaseAlign, expectedTargetAlign);
131 Address CodeGenFunction::LoadCXXThisAddress() {
132 assert(CurFuncDecl && "loading 'this' without a func declaration?");
133 auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
135 // Lazily compute CXXThisAlignment.
136 if (CXXThisAlignment.isZero()) {
137 // Just use the best known alignment for the parent.
138 // TODO: if we're currently emitting a complete-object ctor/dtor,
139 // we can always use the complete-object alignment.
140 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
143 return makeNaturalAddressForPointer(
144 LoadCXXThis(), MD->getFunctionObjectParameterType(), CXXThisAlignment,
145 false, nullptr, nullptr, KnownNonNull);
148 /// Emit the address of a field using a member data pointer.
150 /// \param E Only used for emergency diagnostics
151 Address
152 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
153 llvm::Value *memberPtr,
154 const MemberPointerType *memberPtrType,
155 LValueBaseInfo *BaseInfo,
156 TBAAAccessInfo *TBAAInfo) {
157 // Ask the ABI to compute the actual address.
158 llvm::Value *ptr =
159 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
160 memberPtr, memberPtrType);
162 QualType memberType = memberPtrType->getPointeeType();
163 CharUnits memberAlign =
164 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
165 memberAlign =
166 CGM.getDynamicOffsetAlignment(base.getAlignment(),
167 memberPtrType->getClass()->getAsCXXRecordDecl(),
168 memberAlign);
169 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
170 memberAlign);
173 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
174 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
175 CastExpr::path_const_iterator End) {
176 CharUnits Offset = CharUnits::Zero();
178 const ASTContext &Context = getContext();
179 const CXXRecordDecl *RD = DerivedClass;
181 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
182 const CXXBaseSpecifier *Base = *I;
183 assert(!Base->isVirtual() && "Should not see virtual bases here!");
185 // Get the layout.
186 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
188 const auto *BaseDecl =
189 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
191 // Add the offset.
192 Offset += Layout.getBaseClassOffset(BaseDecl);
194 RD = BaseDecl;
197 return Offset;
200 llvm::Constant *
201 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
202 CastExpr::path_const_iterator PathBegin,
203 CastExpr::path_const_iterator PathEnd) {
204 assert(PathBegin != PathEnd && "Base path should not be empty!");
206 CharUnits Offset =
207 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
208 if (Offset.isZero())
209 return nullptr;
211 llvm::Type *PtrDiffTy =
212 getTypes().ConvertType(getContext().getPointerDiffType());
214 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
217 /// Gets the address of a direct base class within a complete object.
218 /// This should only be used for (1) non-virtual bases or (2) virtual bases
219 /// when the type is known to be complete (e.g. in complete destructors).
221 /// The object pointed to by 'This' is assumed to be non-null.
222 Address
223 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
224 const CXXRecordDecl *Derived,
225 const CXXRecordDecl *Base,
226 bool BaseIsVirtual) {
227 // 'this' must be a pointer (in some address space) to Derived.
228 assert(This.getElementType() == ConvertType(Derived));
230 // Compute the offset of the virtual base.
231 CharUnits Offset;
232 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
233 if (BaseIsVirtual)
234 Offset = Layout.getVBaseClassOffset(Base);
235 else
236 Offset = Layout.getBaseClassOffset(Base);
238 // Shift and cast down to the base type.
239 // TODO: for complete types, this should be possible with a GEP.
240 Address V = This;
241 if (!Offset.isZero()) {
242 V = V.withElementType(Int8Ty);
243 V = Builder.CreateConstInBoundsByteGEP(V, Offset);
245 return V.withElementType(ConvertType(Base));
248 static Address
249 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
250 CharUnits nonVirtualOffset,
251 llvm::Value *virtualOffset,
252 const CXXRecordDecl *derivedClass,
253 const CXXRecordDecl *nearestVBase) {
254 // Assert that we have something to do.
255 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
257 // Compute the offset from the static and dynamic components.
258 llvm::Value *baseOffset;
259 if (!nonVirtualOffset.isZero()) {
260 llvm::Type *OffsetType =
261 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
262 CGF.CGM.getItaniumVTableContext().isRelativeLayout())
263 ? CGF.Int32Ty
264 : CGF.PtrDiffTy;
265 baseOffset =
266 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
267 if (virtualOffset) {
268 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
270 } else {
271 baseOffset = virtualOffset;
274 // Apply the base offset.
275 llvm::Value *ptr = addr.emitRawPointer(CGF);
276 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
278 // If we have a virtual component, the alignment of the result will
279 // be relative only to the known alignment of that vbase.
280 CharUnits alignment;
281 if (virtualOffset) {
282 assert(nearestVBase && "virtual offset without vbase?");
283 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
284 derivedClass, nearestVBase);
285 } else {
286 alignment = addr.getAlignment();
288 alignment = alignment.alignmentAtOffset(nonVirtualOffset);
290 return Address(ptr, CGF.Int8Ty, alignment);
293 Address CodeGenFunction::GetAddressOfBaseClass(
294 Address Value, const CXXRecordDecl *Derived,
295 CastExpr::path_const_iterator PathBegin,
296 CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
297 SourceLocation Loc) {
298 assert(PathBegin != PathEnd && "Base path should not be empty!");
300 CastExpr::path_const_iterator Start = PathBegin;
301 const CXXRecordDecl *VBase = nullptr;
303 // Sema has done some convenient canonicalization here: if the
304 // access path involved any virtual steps, the conversion path will
305 // *start* with a step down to the correct virtual base subobject,
306 // and hence will not require any further steps.
307 if ((*Start)->isVirtual()) {
308 VBase = cast<CXXRecordDecl>(
309 (*Start)->getType()->castAs<RecordType>()->getDecl());
310 ++Start;
313 // Compute the static offset of the ultimate destination within its
314 // allocating subobject (the virtual base, if there is one, or else
315 // the "complete" object that we see).
316 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
317 VBase ? VBase : Derived, Start, PathEnd);
319 // If there's a virtual step, we can sometimes "devirtualize" it.
320 // For now, that's limited to when the derived type is final.
321 // TODO: "devirtualize" this for accesses to known-complete objects.
322 if (VBase && Derived->hasAttr<FinalAttr>()) {
323 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
324 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
325 NonVirtualOffset += vBaseOffset;
326 VBase = nullptr; // we no longer have a virtual step
329 // Get the base pointer type.
330 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
331 llvm::Type *PtrTy = llvm::PointerType::get(
332 CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace());
334 QualType DerivedTy = getContext().getRecordType(Derived);
335 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
337 // If the static offset is zero and we don't have a virtual step,
338 // just do a bitcast; null checks are unnecessary.
339 if (NonVirtualOffset.isZero() && !VBase) {
340 if (sanitizePerformTypeCheck()) {
341 SanitizerSet SkippedChecks;
342 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
343 EmitTypeCheck(TCK_Upcast, Loc, Value.emitRawPointer(*this), DerivedTy,
344 DerivedAlign, SkippedChecks);
346 return Value.withElementType(BaseValueTy);
349 llvm::BasicBlock *origBB = nullptr;
350 llvm::BasicBlock *endBB = nullptr;
352 // Skip over the offset (and the vtable load) if we're supposed to
353 // null-check the pointer.
354 if (NullCheckValue) {
355 origBB = Builder.GetInsertBlock();
356 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
357 endBB = createBasicBlock("cast.end");
359 llvm::Value *isNull = Builder.CreateIsNull(Value);
360 Builder.CreateCondBr(isNull, endBB, notNullBB);
361 EmitBlock(notNullBB);
364 if (sanitizePerformTypeCheck()) {
365 SanitizerSet SkippedChecks;
366 SkippedChecks.set(SanitizerKind::Null, true);
367 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
368 Value.emitRawPointer(*this), DerivedTy, DerivedAlign,
369 SkippedChecks);
372 // Compute the virtual offset.
373 llvm::Value *VirtualOffset = nullptr;
374 if (VBase) {
375 VirtualOffset =
376 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
379 // Apply both offsets.
380 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
381 VirtualOffset, Derived, VBase);
383 // Cast to the destination type.
384 Value = Value.withElementType(BaseValueTy);
386 // Build a phi if we needed a null check.
387 if (NullCheckValue) {
388 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
389 Builder.CreateBr(endBB);
390 EmitBlock(endBB);
392 llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result");
393 PHI->addIncoming(Value.emitRawPointer(*this), notNullBB);
394 PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB);
395 Value = Value.withPointer(PHI, NotKnownNonNull);
398 return Value;
401 Address
402 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
403 const CXXRecordDecl *Derived,
404 CastExpr::path_const_iterator PathBegin,
405 CastExpr::path_const_iterator PathEnd,
406 bool NullCheckValue) {
407 assert(PathBegin != PathEnd && "Base path should not be empty!");
409 QualType DerivedTy =
410 getContext().getCanonicalType(getContext().getTagDeclType(Derived));
411 llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
413 llvm::Value *NonVirtualOffset =
414 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
416 if (!NonVirtualOffset) {
417 // No offset, we can just cast back.
418 return BaseAddr.withElementType(DerivedValueTy);
421 llvm::BasicBlock *CastNull = nullptr;
422 llvm::BasicBlock *CastNotNull = nullptr;
423 llvm::BasicBlock *CastEnd = nullptr;
425 if (NullCheckValue) {
426 CastNull = createBasicBlock("cast.null");
427 CastNotNull = createBasicBlock("cast.notnull");
428 CastEnd = createBasicBlock("cast.end");
430 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr);
431 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
432 EmitBlock(CastNotNull);
435 // Apply the offset.
436 Address Addr = BaseAddr.withElementType(Int8Ty);
437 Addr = Builder.CreateInBoundsGEP(
438 Addr, Builder.CreateNeg(NonVirtualOffset), Int8Ty,
439 CGM.getClassPointerAlignment(Derived), "sub.ptr");
441 // Just cast.
442 Addr = Addr.withElementType(DerivedValueTy);
444 // Produce a PHI if we had a null-check.
445 if (NullCheckValue) {
446 Builder.CreateBr(CastEnd);
447 EmitBlock(CastNull);
448 Builder.CreateBr(CastEnd);
449 EmitBlock(CastEnd);
451 llvm::Value *Value = Addr.emitRawPointer(*this);
452 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
453 PHI->addIncoming(Value, CastNotNull);
454 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
455 return Address(PHI, Addr.getElementType(),
456 CGM.getClassPointerAlignment(Derived));
459 return Addr;
462 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
463 bool ForVirtualBase,
464 bool Delegating) {
465 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
466 // This constructor/destructor does not need a VTT parameter.
467 return nullptr;
470 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
471 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
473 uint64_t SubVTTIndex;
475 if (Delegating) {
476 // If this is a delegating constructor call, just load the VTT.
477 return LoadCXXVTT();
478 } else if (RD == Base) {
479 // If the record matches the base, this is the complete ctor/dtor
480 // variant calling the base variant in a class with virtual bases.
481 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
482 "doing no-op VTT offset in base dtor/ctor?");
483 assert(!ForVirtualBase && "Can't have same class as virtual base!");
484 SubVTTIndex = 0;
485 } else {
486 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
487 CharUnits BaseOffset = ForVirtualBase ?
488 Layout.getVBaseClassOffset(Base) :
489 Layout.getBaseClassOffset(Base);
491 SubVTTIndex =
492 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
493 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
496 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
497 // A VTT parameter was passed to the constructor, use it.
498 llvm::Value *VTT = LoadCXXVTT();
499 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
500 } else {
501 // We're the complete constructor, so get the VTT by name.
502 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
503 return Builder.CreateConstInBoundsGEP2_64(
504 VTT->getValueType(), VTT, 0, SubVTTIndex);
508 namespace {
509 /// Call the destructor for a direct base class.
510 struct CallBaseDtor final : EHScopeStack::Cleanup {
511 const CXXRecordDecl *BaseClass;
512 bool BaseIsVirtual;
513 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
514 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
516 void Emit(CodeGenFunction &CGF, Flags flags) override {
517 const CXXRecordDecl *DerivedClass =
518 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
520 const CXXDestructorDecl *D = BaseClass->getDestructor();
521 // We are already inside a destructor, so presumably the object being
522 // destroyed should have the expected type.
523 QualType ThisTy = D->getFunctionObjectParameterType();
524 Address Addr =
525 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
526 DerivedClass, BaseClass,
527 BaseIsVirtual);
528 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
529 /*Delegating=*/false, Addr, ThisTy);
533 /// A visitor which checks whether an initializer uses 'this' in a
534 /// way which requires the vtable to be properly set.
535 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
536 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
538 bool UsesThis;
540 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
542 // Black-list all explicit and implicit references to 'this'.
544 // Do we need to worry about external references to 'this' derived
545 // from arbitrary code? If so, then anything which runs arbitrary
546 // external code might potentially access the vtable.
547 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
549 } // end anonymous namespace
551 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
552 DynamicThisUseChecker Checker(C);
553 Checker.Visit(Init);
554 return Checker.UsesThis;
557 static void EmitBaseInitializer(CodeGenFunction &CGF,
558 const CXXRecordDecl *ClassDecl,
559 CXXCtorInitializer *BaseInit) {
560 assert(BaseInit->isBaseInitializer() &&
561 "Must have base initializer!");
563 Address ThisPtr = CGF.LoadCXXThisAddress();
565 const Type *BaseType = BaseInit->getBaseClass();
566 const auto *BaseClassDecl =
567 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
569 bool isBaseVirtual = BaseInit->isBaseVirtual();
571 // If the initializer for the base (other than the constructor
572 // itself) accesses 'this' in any way, we need to initialize the
573 // vtables.
574 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
575 CGF.InitializeVTablePointers(ClassDecl);
577 // We can pretend to be a complete class because it only matters for
578 // virtual bases, and we only do virtual bases for complete ctors.
579 Address V =
580 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
581 BaseClassDecl,
582 isBaseVirtual);
583 AggValueSlot AggSlot =
584 AggValueSlot::forAddr(
585 V, Qualifiers(),
586 AggValueSlot::IsDestructed,
587 AggValueSlot::DoesNotNeedGCBarriers,
588 AggValueSlot::IsNotAliased,
589 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
591 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
593 if (CGF.CGM.getLangOpts().Exceptions &&
594 !BaseClassDecl->hasTrivialDestructor())
595 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
596 isBaseVirtual);
599 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
600 auto *CD = dyn_cast<CXXConstructorDecl>(D);
601 if (!(CD && CD->isCopyOrMoveConstructor()) &&
602 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
603 return false;
605 // We can emit a memcpy for a trivial copy or move constructor/assignment.
606 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
607 return true;
609 // We *must* emit a memcpy for a defaulted union copy or move op.
610 if (D->getParent()->isUnion() && D->isDefaulted())
611 return true;
613 return false;
616 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
617 CXXCtorInitializer *MemberInit,
618 LValue &LHS) {
619 FieldDecl *Field = MemberInit->getAnyMember();
620 if (MemberInit->isIndirectMemberInitializer()) {
621 // If we are initializing an anonymous union field, drill down to the field.
622 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
623 for (const auto *I : IndirectField->chain())
624 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
625 } else {
626 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
630 static void EmitMemberInitializer(CodeGenFunction &CGF,
631 const CXXRecordDecl *ClassDecl,
632 CXXCtorInitializer *MemberInit,
633 const CXXConstructorDecl *Constructor,
634 FunctionArgList &Args) {
635 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
636 assert(MemberInit->isAnyMemberInitializer() &&
637 "Must have member initializer!");
638 assert(MemberInit->getInit() && "Must have initializer!");
640 // non-static data member initializers.
641 FieldDecl *Field = MemberInit->getAnyMember();
642 QualType FieldType = Field->getType();
644 llvm::Value *ThisPtr = CGF.LoadCXXThis();
645 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
646 LValue LHS;
648 // If a base constructor is being emitted, create an LValue that has the
649 // non-virtual alignment.
650 if (CGF.CurGD.getCtorType() == Ctor_Base)
651 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
652 else
653 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
655 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
657 // Special case: if we are in a copy or move constructor, and we are copying
658 // an array of PODs or classes with trivial copy constructors, ignore the
659 // AST and perform the copy we know is equivalent.
660 // FIXME: This is hacky at best... if we had a bit more explicit information
661 // in the AST, we could generalize it more easily.
662 const ConstantArrayType *Array
663 = CGF.getContext().getAsConstantArrayType(FieldType);
664 if (Array && Constructor->isDefaulted() &&
665 Constructor->isCopyOrMoveConstructor()) {
666 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
667 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
668 if (BaseElementTy.isPODType(CGF.getContext()) ||
669 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
670 unsigned SrcArgIndex =
671 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
672 llvm::Value *SrcPtr
673 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
674 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
675 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
677 // Copy the aggregate.
678 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
679 LHS.isVolatileQualified());
680 // Ensure that we destroy the objects if an exception is thrown later in
681 // the constructor.
682 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
683 if (CGF.needsEHCleanup(dtorKind))
684 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
685 return;
689 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
692 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
693 Expr *Init) {
694 QualType FieldType = Field->getType();
695 switch (getEvaluationKind(FieldType)) {
696 case TEK_Scalar:
697 if (LHS.isSimple()) {
698 EmitExprAsInit(Init, Field, LHS, false);
699 } else {
700 RValue RHS = RValue::get(EmitScalarExpr(Init));
701 EmitStoreThroughLValue(RHS, LHS);
703 break;
704 case TEK_Complex:
705 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
706 break;
707 case TEK_Aggregate: {
708 AggValueSlot Slot = AggValueSlot::forLValue(
709 LHS, AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers,
710 AggValueSlot::IsNotAliased, getOverlapForFieldInit(Field),
711 AggValueSlot::IsNotZeroed,
712 // Checks are made by the code that calls constructor.
713 AggValueSlot::IsSanitizerChecked);
714 EmitAggExpr(Init, Slot);
715 break;
719 // Ensure that we destroy this object if an exception is thrown
720 // later in the constructor.
721 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
722 if (needsEHCleanup(dtorKind))
723 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
726 /// Checks whether the given constructor is a valid subject for the
727 /// complete-to-base constructor delegation optimization, i.e.
728 /// emitting the complete constructor as a simple call to the base
729 /// constructor.
730 bool CodeGenFunction::IsConstructorDelegationValid(
731 const CXXConstructorDecl *Ctor) {
733 // Currently we disable the optimization for classes with virtual
734 // bases because (1) the addresses of parameter variables need to be
735 // consistent across all initializers but (2) the delegate function
736 // call necessarily creates a second copy of the parameter variable.
738 // The limiting example (purely theoretical AFAIK):
739 // struct A { A(int &c) { c++; } };
740 // struct B : virtual A {
741 // B(int count) : A(count) { printf("%d\n", count); }
742 // };
743 // ...although even this example could in principle be emitted as a
744 // delegation since the address of the parameter doesn't escape.
745 if (Ctor->getParent()->getNumVBases()) {
746 // TODO: white-list trivial vbase initializers. This case wouldn't
747 // be subject to the restrictions below.
749 // TODO: white-list cases where:
750 // - there are no non-reference parameters to the constructor
751 // - the initializers don't access any non-reference parameters
752 // - the initializers don't take the address of non-reference
753 // parameters
754 // - etc.
755 // If we ever add any of the above cases, remember that:
756 // - function-try-blocks will always exclude this optimization
757 // - we need to perform the constructor prologue and cleanup in
758 // EmitConstructorBody.
760 return false;
763 // We also disable the optimization for variadic functions because
764 // it's impossible to "re-pass" varargs.
765 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
766 return false;
768 // FIXME: Decide if we can do a delegation of a delegating constructor.
769 if (Ctor->isDelegatingConstructor())
770 return false;
772 return true;
775 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
776 // to poison the extra field paddings inserted under
777 // -fsanitize-address-field-padding=1|2.
778 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
779 ASTContext &Context = getContext();
780 const CXXRecordDecl *ClassDecl =
781 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
782 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
783 if (!ClassDecl->mayInsertExtraPadding()) return;
785 struct SizeAndOffset {
786 uint64_t Size;
787 uint64_t Offset;
790 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
791 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
793 // Populate sizes and offsets of fields.
794 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
795 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
796 SSV[i].Offset =
797 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
799 size_t NumFields = 0;
800 for (const auto *Field : ClassDecl->fields()) {
801 const FieldDecl *D = Field;
802 auto FieldInfo = Context.getTypeInfoInChars(D->getType());
803 CharUnits FieldSize = FieldInfo.Width;
804 assert(NumFields < SSV.size());
805 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
806 NumFields++;
808 assert(NumFields == SSV.size());
809 if (SSV.size() <= 1) return;
811 // We will insert calls to __asan_* run-time functions.
812 // LLVM AddressSanitizer pass may decide to inline them later.
813 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
814 llvm::FunctionType *FTy =
815 llvm::FunctionType::get(CGM.VoidTy, Args, false);
816 llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
817 FTy, Prologue ? "__asan_poison_intra_object_redzone"
818 : "__asan_unpoison_intra_object_redzone");
820 llvm::Value *ThisPtr = LoadCXXThis();
821 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
822 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
823 // For each field check if it has sufficient padding,
824 // if so (un)poison it with a call.
825 for (size_t i = 0; i < SSV.size(); i++) {
826 uint64_t AsanAlignment = 8;
827 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
828 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
829 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
830 if (PoisonSize < AsanAlignment || !SSV[i].Size ||
831 (NextField % AsanAlignment) != 0)
832 continue;
833 Builder.CreateCall(
834 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
835 Builder.getIntN(PtrSize, PoisonSize)});
839 /// EmitConstructorBody - Emits the body of the current constructor.
840 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
841 EmitAsanPrologueOrEpilogue(true);
842 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
843 CXXCtorType CtorType = CurGD.getCtorType();
845 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
846 CtorType == Ctor_Complete) &&
847 "can only generate complete ctor for this ABI");
849 // Before we go any further, try the complete->base constructor
850 // delegation optimization.
851 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
852 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
853 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
854 return;
857 const FunctionDecl *Definition = nullptr;
858 Stmt *Body = Ctor->getBody(Definition);
859 assert(Definition == Ctor && "emitting wrong constructor body");
861 // Enter the function-try-block before the constructor prologue if
862 // applicable.
863 bool IsTryBody = isa_and_nonnull<CXXTryStmt>(Body);
864 if (IsTryBody)
865 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
867 incrementProfileCounter(Body);
868 maybeCreateMCDCCondBitmap();
870 RunCleanupsScope RunCleanups(*this);
872 // TODO: in restricted cases, we can emit the vbase initializers of
873 // a complete ctor and then delegate to the base ctor.
875 // Emit the constructor prologue, i.e. the base and member
876 // initializers.
877 EmitCtorPrologue(Ctor, CtorType, Args);
879 // Emit the body of the statement.
880 if (IsTryBody)
881 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
882 else if (Body)
883 EmitStmt(Body);
885 // Emit any cleanup blocks associated with the member or base
886 // initializers, which includes (along the exceptional path) the
887 // destructors for those members and bases that were fully
888 // constructed.
889 RunCleanups.ForceCleanup();
891 if (IsTryBody)
892 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
895 namespace {
896 /// RAII object to indicate that codegen is copying the value representation
897 /// instead of the object representation. Useful when copying a struct or
898 /// class which has uninitialized members and we're only performing
899 /// lvalue-to-rvalue conversion on the object but not its members.
900 class CopyingValueRepresentation {
901 public:
902 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
903 : CGF(CGF), OldSanOpts(CGF.SanOpts) {
904 CGF.SanOpts.set(SanitizerKind::Bool, false);
905 CGF.SanOpts.set(SanitizerKind::Enum, false);
907 ~CopyingValueRepresentation() {
908 CGF.SanOpts = OldSanOpts;
910 private:
911 CodeGenFunction &CGF;
912 SanitizerSet OldSanOpts;
914 } // end anonymous namespace
916 namespace {
917 class FieldMemcpyizer {
918 public:
919 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
920 const VarDecl *SrcRec)
921 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
922 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
923 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
924 LastFieldOffset(0), LastAddedFieldIndex(0) {}
926 bool isMemcpyableField(FieldDecl *F) const {
927 // Never memcpy fields when we are adding poisoned paddings.
928 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
929 return false;
930 Qualifiers Qual = F->getType().getQualifiers();
931 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
932 return false;
933 return true;
936 void addMemcpyableField(FieldDecl *F) {
937 if (isEmptyFieldForLayout(CGF.getContext(), F))
938 return;
939 if (!FirstField)
940 addInitialField(F);
941 else
942 addNextField(F);
945 CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
946 ASTContext &Ctx = CGF.getContext();
947 unsigned LastFieldSize =
948 LastField->isBitField()
949 ? LastField->getBitWidthValue(Ctx)
950 : Ctx.toBits(
951 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
952 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
953 FirstByteOffset + Ctx.getCharWidth() - 1;
954 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
955 return MemcpySize;
958 void emitMemcpy() {
959 // Give the subclass a chance to bail out if it feels the memcpy isn't
960 // worth it (e.g. Hasn't aggregated enough data).
961 if (!FirstField) {
962 return;
965 uint64_t FirstByteOffset;
966 if (FirstField->isBitField()) {
967 const CGRecordLayout &RL =
968 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
969 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
970 // FirstFieldOffset is not appropriate for bitfields,
971 // we need to use the storage offset instead.
972 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
973 } else {
974 FirstByteOffset = FirstFieldOffset;
977 CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
978 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
979 Address ThisPtr = CGF.LoadCXXThisAddress();
980 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
981 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
982 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
983 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
984 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
986 emitMemcpyIR(
987 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
988 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
989 MemcpySize);
990 reset();
993 void reset() {
994 FirstField = nullptr;
997 protected:
998 CodeGenFunction &CGF;
999 const CXXRecordDecl *ClassDecl;
1001 private:
1002 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1003 DestPtr = DestPtr.withElementType(CGF.Int8Ty);
1004 SrcPtr = SrcPtr.withElementType(CGF.Int8Ty);
1005 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1008 void addInitialField(FieldDecl *F) {
1009 FirstField = F;
1010 LastField = F;
1011 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1012 LastFieldOffset = FirstFieldOffset;
1013 LastAddedFieldIndex = F->getFieldIndex();
1016 void addNextField(FieldDecl *F) {
1017 // For the most part, the following invariant will hold:
1018 // F->getFieldIndex() == LastAddedFieldIndex + 1
1019 // The one exception is that Sema won't add a copy-initializer for an
1020 // unnamed bitfield, which will show up here as a gap in the sequence.
1021 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1022 "Cannot aggregate fields out of order.");
1023 LastAddedFieldIndex = F->getFieldIndex();
1025 // The 'first' and 'last' fields are chosen by offset, rather than field
1026 // index. This allows the code to support bitfields, as well as regular
1027 // fields.
1028 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1029 if (FOffset < FirstFieldOffset) {
1030 FirstField = F;
1031 FirstFieldOffset = FOffset;
1032 } else if (FOffset >= LastFieldOffset) {
1033 LastField = F;
1034 LastFieldOffset = FOffset;
1038 const VarDecl *SrcRec;
1039 const ASTRecordLayout &RecLayout;
1040 FieldDecl *FirstField;
1041 FieldDecl *LastField;
1042 uint64_t FirstFieldOffset, LastFieldOffset;
1043 unsigned LastAddedFieldIndex;
1046 class ConstructorMemcpyizer : public FieldMemcpyizer {
1047 private:
1048 /// Get source argument for copy constructor. Returns null if not a copy
1049 /// constructor.
1050 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1051 const CXXConstructorDecl *CD,
1052 FunctionArgList &Args) {
1053 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1054 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1055 return nullptr;
1058 // Returns true if a CXXCtorInitializer represents a member initialization
1059 // that can be rolled into a memcpy.
1060 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1061 if (!MemcpyableCtor)
1062 return false;
1063 FieldDecl *Field = MemberInit->getMember();
1064 assert(Field && "No field for member init.");
1065 QualType FieldType = Field->getType();
1066 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1068 // Bail out on non-memcpyable, not-trivially-copyable members.
1069 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1070 !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1071 FieldType->isReferenceType()))
1072 return false;
1074 // Bail out on volatile fields.
1075 if (!isMemcpyableField(Field))
1076 return false;
1078 // Otherwise we're good.
1079 return true;
1082 public:
1083 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1084 FunctionArgList &Args)
1085 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1086 ConstructorDecl(CD),
1087 MemcpyableCtor(CD->isDefaulted() &&
1088 CD->isCopyOrMoveConstructor() &&
1089 CGF.getLangOpts().getGC() == LangOptions::NonGC),
1090 Args(Args) { }
1092 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1093 if (isMemberInitMemcpyable(MemberInit)) {
1094 AggregatedInits.push_back(MemberInit);
1095 addMemcpyableField(MemberInit->getMember());
1096 } else {
1097 emitAggregatedInits();
1098 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1099 ConstructorDecl, Args);
1103 void emitAggregatedInits() {
1104 if (AggregatedInits.size() <= 1) {
1105 // This memcpy is too small to be worthwhile. Fall back on default
1106 // codegen.
1107 if (!AggregatedInits.empty()) {
1108 CopyingValueRepresentation CVR(CGF);
1109 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1110 AggregatedInits[0], ConstructorDecl, Args);
1111 AggregatedInits.clear();
1113 reset();
1114 return;
1117 pushEHDestructors();
1118 emitMemcpy();
1119 AggregatedInits.clear();
1122 void pushEHDestructors() {
1123 Address ThisPtr = CGF.LoadCXXThisAddress();
1124 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1125 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1127 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1128 CXXCtorInitializer *MemberInit = AggregatedInits[i];
1129 QualType FieldType = MemberInit->getAnyMember()->getType();
1130 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1131 if (!CGF.needsEHCleanup(dtorKind))
1132 continue;
1133 LValue FieldLHS = LHS;
1134 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1135 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1139 void finish() {
1140 emitAggregatedInits();
1143 private:
1144 const CXXConstructorDecl *ConstructorDecl;
1145 bool MemcpyableCtor;
1146 FunctionArgList &Args;
1147 SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1150 class AssignmentMemcpyizer : public FieldMemcpyizer {
1151 private:
1152 // Returns the memcpyable field copied by the given statement, if one
1153 // exists. Otherwise returns null.
1154 FieldDecl *getMemcpyableField(Stmt *S) {
1155 if (!AssignmentsMemcpyable)
1156 return nullptr;
1157 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1158 // Recognise trivial assignments.
1159 if (BO->getOpcode() != BO_Assign)
1160 return nullptr;
1161 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1162 if (!ME)
1163 return nullptr;
1164 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1165 if (!Field || !isMemcpyableField(Field))
1166 return nullptr;
1167 Stmt *RHS = BO->getRHS();
1168 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1169 RHS = EC->getSubExpr();
1170 if (!RHS)
1171 return nullptr;
1172 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1173 if (ME2->getMemberDecl() == Field)
1174 return Field;
1176 return nullptr;
1177 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1178 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1179 if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1180 return nullptr;
1181 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1182 if (!IOA)
1183 return nullptr;
1184 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1185 if (!Field || !isMemcpyableField(Field))
1186 return nullptr;
1187 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1188 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1189 return nullptr;
1190 return Field;
1191 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1192 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1193 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1194 return nullptr;
1195 Expr *DstPtr = CE->getArg(0);
1196 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1197 DstPtr = DC->getSubExpr();
1198 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1199 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1200 return nullptr;
1201 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1202 if (!ME)
1203 return nullptr;
1204 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1205 if (!Field || !isMemcpyableField(Field))
1206 return nullptr;
1207 Expr *SrcPtr = CE->getArg(1);
1208 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1209 SrcPtr = SC->getSubExpr();
1210 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1211 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1212 return nullptr;
1213 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1214 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1215 return nullptr;
1216 return Field;
1219 return nullptr;
1222 bool AssignmentsMemcpyable;
1223 SmallVector<Stmt*, 16> AggregatedStmts;
1225 public:
1226 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1227 FunctionArgList &Args)
1228 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1229 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1230 assert(Args.size() == 2);
1233 void emitAssignment(Stmt *S) {
1234 FieldDecl *F = getMemcpyableField(S);
1235 if (F) {
1236 addMemcpyableField(F);
1237 AggregatedStmts.push_back(S);
1238 } else {
1239 emitAggregatedStmts();
1240 CGF.EmitStmt(S);
1244 void emitAggregatedStmts() {
1245 if (AggregatedStmts.size() <= 1) {
1246 if (!AggregatedStmts.empty()) {
1247 CopyingValueRepresentation CVR(CGF);
1248 CGF.EmitStmt(AggregatedStmts[0]);
1250 reset();
1253 emitMemcpy();
1254 AggregatedStmts.clear();
1257 void finish() {
1258 emitAggregatedStmts();
1261 } // end anonymous namespace
1263 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1264 const Type *BaseType = BaseInit->getBaseClass();
1265 const auto *BaseClassDecl =
1266 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1267 return BaseClassDecl->isDynamicClass();
1270 /// EmitCtorPrologue - This routine generates necessary code to initialize
1271 /// base classes and non-static data members belonging to this constructor.
1272 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1273 CXXCtorType CtorType,
1274 FunctionArgList &Args) {
1275 if (CD->isDelegatingConstructor())
1276 return EmitDelegatingCXXConstructorCall(CD, Args);
1278 const CXXRecordDecl *ClassDecl = CD->getParent();
1280 CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1281 E = CD->init_end();
1283 // Virtual base initializers first, if any. They aren't needed if:
1284 // - This is a base ctor variant
1285 // - There are no vbases
1286 // - The class is abstract, so a complete object of it cannot be constructed
1288 // The check for an abstract class is necessary because sema may not have
1289 // marked virtual base destructors referenced.
1290 bool ConstructVBases = CtorType != Ctor_Base &&
1291 ClassDecl->getNumVBases() != 0 &&
1292 !ClassDecl->isAbstract();
1294 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1295 // constructor of a class with virtual bases takes an additional parameter to
1296 // conditionally construct the virtual bases. Emit that check here.
1297 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1298 if (ConstructVBases &&
1299 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1300 BaseCtorContinueBB =
1301 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1302 assert(BaseCtorContinueBB);
1305 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1306 if (!ConstructVBases)
1307 continue;
1308 SaveAndRestore ThisRAII(CXXThisValue);
1309 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1310 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1311 isInitializerOfDynamicClass(*B))
1312 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1313 EmitBaseInitializer(*this, ClassDecl, *B);
1316 if (BaseCtorContinueBB) {
1317 // Complete object handler should continue to the remaining initializers.
1318 Builder.CreateBr(BaseCtorContinueBB);
1319 EmitBlock(BaseCtorContinueBB);
1322 // Then, non-virtual base initializers.
1323 for (; B != E && (*B)->isBaseInitializer(); B++) {
1324 assert(!(*B)->isBaseVirtual());
1325 SaveAndRestore ThisRAII(CXXThisValue);
1326 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1327 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1328 isInitializerOfDynamicClass(*B))
1329 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1330 EmitBaseInitializer(*this, ClassDecl, *B);
1333 InitializeVTablePointers(ClassDecl);
1335 // And finally, initialize class members.
1336 FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1337 ConstructorMemcpyizer CM(*this, CD, Args);
1338 for (; B != E; B++) {
1339 CXXCtorInitializer *Member = (*B);
1340 assert(!Member->isBaseInitializer());
1341 assert(Member->isAnyMemberInitializer() &&
1342 "Delegating initializer on non-delegating constructor");
1343 CM.addMemberInitializer(Member);
1345 CM.finish();
1348 static bool
1349 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1351 static bool
1352 HasTrivialDestructorBody(ASTContext &Context,
1353 const CXXRecordDecl *BaseClassDecl,
1354 const CXXRecordDecl *MostDerivedClassDecl)
1356 // If the destructor is trivial we don't have to check anything else.
1357 if (BaseClassDecl->hasTrivialDestructor())
1358 return true;
1360 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1361 return false;
1363 // Check fields.
1364 for (const auto *Field : BaseClassDecl->fields())
1365 if (!FieldHasTrivialDestructorBody(Context, Field))
1366 return false;
1368 // Check non-virtual bases.
1369 for (const auto &I : BaseClassDecl->bases()) {
1370 if (I.isVirtual())
1371 continue;
1373 const CXXRecordDecl *NonVirtualBase =
1374 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1375 if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1376 MostDerivedClassDecl))
1377 return false;
1380 if (BaseClassDecl == MostDerivedClassDecl) {
1381 // Check virtual bases.
1382 for (const auto &I : BaseClassDecl->vbases()) {
1383 const CXXRecordDecl *VirtualBase =
1384 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1385 if (!HasTrivialDestructorBody(Context, VirtualBase,
1386 MostDerivedClassDecl))
1387 return false;
1391 return true;
1394 static bool
1395 FieldHasTrivialDestructorBody(ASTContext &Context,
1396 const FieldDecl *Field)
1398 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1400 const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1401 if (!RT)
1402 return true;
1404 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1406 // The destructor for an implicit anonymous union member is never invoked.
1407 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1408 return true;
1410 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1413 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1414 /// any vtable pointers before calling this destructor.
1415 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1416 const CXXDestructorDecl *Dtor) {
1417 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1418 if (!ClassDecl->isDynamicClass())
1419 return true;
1421 // For a final class, the vtable pointer is known to already point to the
1422 // class's vtable.
1423 if (ClassDecl->isEffectivelyFinal())
1424 return true;
1426 if (!Dtor->hasTrivialBody())
1427 return false;
1429 // Check the fields.
1430 for (const auto *Field : ClassDecl->fields())
1431 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1432 return false;
1434 return true;
1437 /// EmitDestructorBody - Emits the body of the current destructor.
1438 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1439 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1440 CXXDtorType DtorType = CurGD.getDtorType();
1442 // For an abstract class, non-base destructors are never used (and can't
1443 // be emitted in general, because vbase dtors may not have been validated
1444 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1445 // in fact emit references to them from other compilations, so emit them
1446 // as functions containing a trap instruction.
1447 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1448 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1449 TrapCall->setDoesNotReturn();
1450 TrapCall->setDoesNotThrow();
1451 Builder.CreateUnreachable();
1452 Builder.ClearInsertionPoint();
1453 return;
1456 Stmt *Body = Dtor->getBody();
1457 if (Body) {
1458 incrementProfileCounter(Body);
1459 maybeCreateMCDCCondBitmap();
1462 // The call to operator delete in a deleting destructor happens
1463 // outside of the function-try-block, which means it's always
1464 // possible to delegate the destructor body to the complete
1465 // destructor. Do so.
1466 if (DtorType == Dtor_Deleting) {
1467 RunCleanupsScope DtorEpilogue(*this);
1468 EnterDtorCleanups(Dtor, Dtor_Deleting);
1469 if (HaveInsertPoint()) {
1470 QualType ThisTy = Dtor->getFunctionObjectParameterType();
1471 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1472 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1474 return;
1477 // If the body is a function-try-block, enter the try before
1478 // anything else.
1479 bool isTryBody = isa_and_nonnull<CXXTryStmt>(Body);
1480 if (isTryBody)
1481 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1482 EmitAsanPrologueOrEpilogue(false);
1484 // Enter the epilogue cleanups.
1485 RunCleanupsScope DtorEpilogue(*this);
1487 // If this is the complete variant, just invoke the base variant;
1488 // the epilogue will destruct the virtual bases. But we can't do
1489 // this optimization if the body is a function-try-block, because
1490 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1491 // always delegate because we might not have a definition in this TU.
1492 switch (DtorType) {
1493 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1494 case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1496 case Dtor_Complete:
1497 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1498 "can't emit a dtor without a body for non-Microsoft ABIs");
1500 // Enter the cleanup scopes for virtual bases.
1501 EnterDtorCleanups(Dtor, Dtor_Complete);
1503 if (!isTryBody) {
1504 QualType ThisTy = Dtor->getFunctionObjectParameterType();
1505 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1506 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1507 break;
1510 // Fallthrough: act like we're in the base variant.
1511 [[fallthrough]];
1513 case Dtor_Base:
1514 assert(Body);
1516 // Enter the cleanup scopes for fields and non-virtual bases.
1517 EnterDtorCleanups(Dtor, Dtor_Base);
1519 // Initialize the vtable pointers before entering the body.
1520 if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1521 // Insert the llvm.launder.invariant.group intrinsic before initializing
1522 // the vptrs to cancel any previous assumptions we might have made.
1523 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1524 CGM.getCodeGenOpts().OptimizationLevel > 0)
1525 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1526 InitializeVTablePointers(Dtor->getParent());
1529 if (isTryBody)
1530 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1531 else if (Body)
1532 EmitStmt(Body);
1533 else {
1534 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1535 // nothing to do besides what's in the epilogue
1537 // -fapple-kext must inline any call to this dtor into
1538 // the caller's body.
1539 if (getLangOpts().AppleKext)
1540 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1542 break;
1545 // Jump out through the epilogue cleanups.
1546 DtorEpilogue.ForceCleanup();
1548 // Exit the try if applicable.
1549 if (isTryBody)
1550 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1553 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1554 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1555 const Stmt *RootS = AssignOp->getBody();
1556 assert(isa<CompoundStmt>(RootS) &&
1557 "Body of an implicit assignment operator should be compound stmt.");
1558 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1560 LexicalScope Scope(*this, RootCS->getSourceRange());
1562 incrementProfileCounter(RootCS);
1563 maybeCreateMCDCCondBitmap();
1564 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1565 for (auto *I : RootCS->body())
1566 AM.emitAssignment(I);
1567 AM.finish();
1570 namespace {
1571 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1572 const CXXDestructorDecl *DD) {
1573 if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1574 return CGF.EmitScalarExpr(ThisArg);
1575 return CGF.LoadCXXThis();
1578 /// Call the operator delete associated with the current destructor.
1579 struct CallDtorDelete final : EHScopeStack::Cleanup {
1580 CallDtorDelete() {}
1582 void Emit(CodeGenFunction &CGF, Flags flags) override {
1583 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1584 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1585 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1586 LoadThisForDtorDelete(CGF, Dtor),
1587 CGF.getContext().getTagDeclType(ClassDecl));
1591 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1592 llvm::Value *ShouldDeleteCondition,
1593 bool ReturnAfterDelete) {
1594 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1595 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1596 llvm::Value *ShouldCallDelete
1597 = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1598 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1600 CGF.EmitBlock(callDeleteBB);
1601 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1602 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1603 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1604 LoadThisForDtorDelete(CGF, Dtor),
1605 CGF.getContext().getTagDeclType(ClassDecl));
1606 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1607 ReturnAfterDelete &&
1608 "unexpected value for ReturnAfterDelete");
1609 if (ReturnAfterDelete)
1610 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1611 else
1612 CGF.Builder.CreateBr(continueBB);
1614 CGF.EmitBlock(continueBB);
1617 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1618 llvm::Value *ShouldDeleteCondition;
1620 public:
1621 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1622 : ShouldDeleteCondition(ShouldDeleteCondition) {
1623 assert(ShouldDeleteCondition != nullptr);
1626 void Emit(CodeGenFunction &CGF, Flags flags) override {
1627 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1628 /*ReturnAfterDelete*/false);
1632 class DestroyField final : public EHScopeStack::Cleanup {
1633 const FieldDecl *field;
1634 CodeGenFunction::Destroyer *destroyer;
1635 bool useEHCleanupForArray;
1637 public:
1638 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1639 bool useEHCleanupForArray)
1640 : field(field), destroyer(destroyer),
1641 useEHCleanupForArray(useEHCleanupForArray) {}
1643 void Emit(CodeGenFunction &CGF, Flags flags) override {
1644 // Find the address of the field.
1645 Address thisValue = CGF.LoadCXXThisAddress();
1646 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1647 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1648 LValue LV = CGF.EmitLValueForField(ThisLV, field);
1649 assert(LV.isSimple());
1651 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1652 flags.isForNormalCleanup() && useEHCleanupForArray);
1656 class DeclAsInlineDebugLocation {
1657 CGDebugInfo *DI;
1658 llvm::MDNode *InlinedAt;
1659 std::optional<ApplyDebugLocation> Location;
1661 public:
1662 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1663 : DI(CGF.getDebugInfo()) {
1664 if (!DI)
1665 return;
1666 InlinedAt = DI->getInlinedAt();
1667 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1668 Location.emplace(CGF, Decl.getLocation());
1671 ~DeclAsInlineDebugLocation() {
1672 if (!DI)
1673 return;
1674 Location.reset();
1675 DI->setInlinedAt(InlinedAt);
1679 static void EmitSanitizerDtorCallback(
1680 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1681 std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1682 CodeGenFunction::SanitizerScope SanScope(&CGF);
1683 // Pass in void pointer and size of region as arguments to runtime
1684 // function
1685 SmallVector<llvm::Value *, 2> Args = {Ptr};
1686 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1688 if (PoisonSize.has_value()) {
1689 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1690 ArgTypes.emplace_back(CGF.SizeTy);
1693 llvm::FunctionType *FnType =
1694 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1695 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1697 CGF.EmitNounwindRuntimeCall(Fn, Args);
1700 static void
1701 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1702 CharUnits::QuantityType PoisonSize) {
1703 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1704 PoisonSize);
1707 /// Poison base class with a trivial destructor.
1708 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1709 const CXXRecordDecl *BaseClass;
1710 bool BaseIsVirtual;
1711 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1712 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1714 void Emit(CodeGenFunction &CGF, Flags flags) override {
1715 const CXXRecordDecl *DerivedClass =
1716 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1718 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1719 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1721 const ASTRecordLayout &BaseLayout =
1722 CGF.getContext().getASTRecordLayout(BaseClass);
1723 CharUnits BaseSize = BaseLayout.getSize();
1725 if (!BaseSize.isPositive())
1726 return;
1728 // Use the base class declaration location as inline DebugLocation. All
1729 // fields of the class are destroyed.
1730 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1731 EmitSanitizerDtorFieldsCallback(CGF, Addr.emitRawPointer(CGF),
1732 BaseSize.getQuantity());
1734 // Prevent the current stack frame from disappearing from the stack trace.
1735 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1739 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1740 const CXXDestructorDecl *Dtor;
1741 unsigned StartIndex;
1742 unsigned EndIndex;
1744 public:
1745 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1746 unsigned EndIndex)
1747 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1749 // Generate function call for handling object poisoning.
1750 // Disables tail call elimination, to prevent the current stack frame
1751 // from disappearing from the stack trace.
1752 void Emit(CodeGenFunction &CGF, Flags flags) override {
1753 const ASTContext &Context = CGF.getContext();
1754 const ASTRecordLayout &Layout =
1755 Context.getASTRecordLayout(Dtor->getParent());
1757 // It's a first trivial field so it should be at the begining of a char,
1758 // still round up start offset just in case.
1759 CharUnits PoisonStart = Context.toCharUnitsFromBits(
1760 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1761 llvm::ConstantInt *OffsetSizePtr =
1762 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1764 llvm::Value *OffsetPtr =
1765 CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr);
1767 CharUnits PoisonEnd;
1768 if (EndIndex >= Layout.getFieldCount()) {
1769 PoisonEnd = Layout.getNonVirtualSize();
1770 } else {
1771 PoisonEnd =
1772 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1774 CharUnits PoisonSize = PoisonEnd - PoisonStart;
1775 if (!PoisonSize.isPositive())
1776 return;
1778 // Use the top field declaration location as inline DebugLocation.
1779 DeclAsInlineDebugLocation InlineHere(
1780 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1781 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1783 // Prevent the current stack frame from disappearing from the stack trace.
1784 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1788 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1789 const CXXDestructorDecl *Dtor;
1791 public:
1792 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1794 // Generate function call for handling vtable pointer poisoning.
1795 void Emit(CodeGenFunction &CGF, Flags flags) override {
1796 assert(Dtor->getParent()->isDynamicClass());
1797 (void)Dtor;
1798 // Poison vtable and vtable ptr if they exist for this class.
1799 llvm::Value *VTablePtr = CGF.LoadCXXThis();
1801 // Pass in void pointer and size of region as arguments to runtime
1802 // function
1803 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr",
1804 VTablePtr);
1808 class SanitizeDtorCleanupBuilder {
1809 ASTContext &Context;
1810 EHScopeStack &EHStack;
1811 const CXXDestructorDecl *DD;
1812 std::optional<unsigned> StartIndex;
1814 public:
1815 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1816 const CXXDestructorDecl *DD)
1817 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1818 void PushCleanupForField(const FieldDecl *Field) {
1819 if (isEmptyFieldForLayout(Context, Field))
1820 return;
1821 unsigned FieldIndex = Field->getFieldIndex();
1822 if (FieldHasTrivialDestructorBody(Context, Field)) {
1823 if (!StartIndex)
1824 StartIndex = FieldIndex;
1825 } else if (StartIndex) {
1826 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1827 *StartIndex, FieldIndex);
1828 StartIndex = std::nullopt;
1831 void End() {
1832 if (StartIndex)
1833 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1834 *StartIndex, -1);
1837 } // end anonymous namespace
1839 /// Emit all code that comes at the end of class's
1840 /// destructor. This is to call destructors on members and base classes
1841 /// in reverse order of their construction.
1843 /// For a deleting destructor, this also handles the case where a destroying
1844 /// operator delete completely overrides the definition.
1845 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1846 CXXDtorType DtorType) {
1847 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1848 "Should not emit dtor epilogue for non-exported trivial dtor!");
1850 // The deleting-destructor phase just needs to call the appropriate
1851 // operator delete that Sema picked up.
1852 if (DtorType == Dtor_Deleting) {
1853 assert(DD->getOperatorDelete() &&
1854 "operator delete missing - EnterDtorCleanups");
1855 if (CXXStructorImplicitParamValue) {
1856 // If there is an implicit param to the deleting dtor, it's a boolean
1857 // telling whether this is a deleting destructor.
1858 if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1859 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1860 /*ReturnAfterDelete*/true);
1861 else
1862 EHStack.pushCleanup<CallDtorDeleteConditional>(
1863 NormalAndEHCleanup, CXXStructorImplicitParamValue);
1864 } else {
1865 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1866 const CXXRecordDecl *ClassDecl = DD->getParent();
1867 EmitDeleteCall(DD->getOperatorDelete(),
1868 LoadThisForDtorDelete(*this, DD),
1869 getContext().getTagDeclType(ClassDecl));
1870 EmitBranchThroughCleanup(ReturnBlock);
1871 } else {
1872 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1875 return;
1878 const CXXRecordDecl *ClassDecl = DD->getParent();
1880 // Unions have no bases and do not call field destructors.
1881 if (ClassDecl->isUnion())
1882 return;
1884 // The complete-destructor phase just destructs all the virtual bases.
1885 if (DtorType == Dtor_Complete) {
1886 // Poison the vtable pointer such that access after the base
1887 // and member destructors are invoked is invalid.
1888 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1889 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1890 ClassDecl->isPolymorphic())
1891 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1893 // We push them in the forward order so that they'll be popped in
1894 // the reverse order.
1895 for (const auto &Base : ClassDecl->vbases()) {
1896 auto *BaseClassDecl =
1897 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1899 if (BaseClassDecl->hasTrivialDestructor()) {
1900 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1901 // memory. For non-trival base classes the same is done in the class
1902 // destructor.
1903 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1904 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1905 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1906 BaseClassDecl,
1907 /*BaseIsVirtual*/ true);
1908 } else {
1909 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1910 /*BaseIsVirtual*/ true);
1914 return;
1917 assert(DtorType == Dtor_Base);
1918 // Poison the vtable pointer if it has no virtual bases, but inherits
1919 // virtual functions.
1920 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1921 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1922 ClassDecl->isPolymorphic())
1923 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1925 // Destroy non-virtual bases.
1926 for (const auto &Base : ClassDecl->bases()) {
1927 // Ignore virtual bases.
1928 if (Base.isVirtual())
1929 continue;
1931 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1933 if (BaseClassDecl->hasTrivialDestructor()) {
1934 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1935 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1936 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1937 BaseClassDecl,
1938 /*BaseIsVirtual*/ false);
1939 } else {
1940 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1941 /*BaseIsVirtual*/ false);
1945 // Poison fields such that access after their destructors are
1946 // invoked, and before the base class destructor runs, is invalid.
1947 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1948 SanOpts.has(SanitizerKind::Memory);
1949 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1951 // Destroy direct fields.
1952 for (const auto *Field : ClassDecl->fields()) {
1953 if (SanitizeFields)
1954 SanitizeBuilder.PushCleanupForField(Field);
1956 QualType type = Field->getType();
1957 QualType::DestructionKind dtorKind = type.isDestructedType();
1958 if (!dtorKind)
1959 continue;
1961 // Anonymous union members do not have their destructors called.
1962 const RecordType *RT = type->getAsUnionType();
1963 if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1964 continue;
1966 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1967 EHStack.pushCleanup<DestroyField>(
1968 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1971 if (SanitizeFields)
1972 SanitizeBuilder.End();
1975 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1976 /// constructor for each of several members of an array.
1978 /// \param ctor the constructor to call for each element
1979 /// \param arrayType the type of the array to initialize
1980 /// \param arrayBegin an arrayType*
1981 /// \param zeroInitialize true if each element should be
1982 /// zero-initialized before it is constructed
1983 void CodeGenFunction::EmitCXXAggrConstructorCall(
1984 const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1985 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1986 bool zeroInitialize) {
1987 QualType elementType;
1988 llvm::Value *numElements =
1989 emitArrayLength(arrayType, elementType, arrayBegin);
1991 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1992 NewPointerIsChecked, zeroInitialize);
1995 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1996 /// constructor for each of several members of an array.
1998 /// \param ctor the constructor to call for each element
1999 /// \param numElements the number of elements in the array;
2000 /// may be zero
2001 /// \param arrayBase a T*, where T is the type constructed by ctor
2002 /// \param zeroInitialize true if each element should be
2003 /// zero-initialized before it is constructed
2004 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
2005 llvm::Value *numElements,
2006 Address arrayBase,
2007 const CXXConstructExpr *E,
2008 bool NewPointerIsChecked,
2009 bool zeroInitialize) {
2010 // It's legal for numElements to be zero. This can happen both
2011 // dynamically, because x can be zero in 'new A[x]', and statically,
2012 // because of GCC extensions that permit zero-length arrays. There
2013 // are probably legitimate places where we could assume that this
2014 // doesn't happen, but it's not clear that it's worth it.
2015 llvm::BranchInst *zeroCheckBranch = nullptr;
2017 // Optimize for a constant count.
2018 llvm::ConstantInt *constantCount
2019 = dyn_cast<llvm::ConstantInt>(numElements);
2020 if (constantCount) {
2021 // Just skip out if the constant count is zero.
2022 if (constantCount->isZero()) return;
2024 // Otherwise, emit the check.
2025 } else {
2026 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2027 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2028 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2029 EmitBlock(loopBB);
2032 // Find the end of the array.
2033 llvm::Type *elementType = arrayBase.getElementType();
2034 llvm::Value *arrayBegin = arrayBase.emitRawPointer(*this);
2035 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2036 elementType, arrayBegin, numElements, "arrayctor.end");
2038 // Enter the loop, setting up a phi for the current location to initialize.
2039 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2040 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2041 EmitBlock(loopBB);
2042 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2043 "arrayctor.cur");
2044 cur->addIncoming(arrayBegin, entryBB);
2046 // Inside the loop body, emit the constructor call on the array element.
2048 // The alignment of the base, adjusted by the size of a single element,
2049 // provides a conservative estimate of the alignment of every element.
2050 // (This assumes we never start tracking offsetted alignments.)
2052 // Note that these are complete objects and so we don't need to
2053 // use the non-virtual size or alignment.
2054 QualType type = getContext().getTypeDeclType(ctor->getParent());
2055 CharUnits eltAlignment =
2056 arrayBase.getAlignment()
2057 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2058 Address curAddr = Address(cur, elementType, eltAlignment);
2060 // Zero initialize the storage, if requested.
2061 if (zeroInitialize)
2062 EmitNullInitialization(curAddr, type);
2064 // C++ [class.temporary]p4:
2065 // There are two contexts in which temporaries are destroyed at a different
2066 // point than the end of the full-expression. The first context is when a
2067 // default constructor is called to initialize an element of an array.
2068 // If the constructor has one or more default arguments, the destruction of
2069 // every temporary created in a default argument expression is sequenced
2070 // before the construction of the next array element, if any.
2073 RunCleanupsScope Scope(*this);
2075 // Evaluate the constructor and its arguments in a regular
2076 // partial-destroy cleanup.
2077 if (getLangOpts().Exceptions &&
2078 !ctor->getParent()->hasTrivialDestructor()) {
2079 Destroyer *destroyer = destroyCXXObject;
2080 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2081 *destroyer);
2083 auto currAVS = AggValueSlot::forAddr(
2084 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2085 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2086 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2087 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2088 : AggValueSlot::IsNotSanitizerChecked);
2089 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2090 /*Delegating=*/false, currAVS, E);
2093 // Go to the next element.
2094 llvm::Value *next = Builder.CreateInBoundsGEP(
2095 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2096 cur->addIncoming(next, Builder.GetInsertBlock());
2098 // Check whether that's the end of the loop.
2099 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2100 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2101 Builder.CreateCondBr(done, contBB, loopBB);
2103 // Patch the earlier check to skip over the loop.
2104 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2106 EmitBlock(contBB);
2109 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2110 Address addr,
2111 QualType type) {
2112 const RecordType *rtype = type->castAs<RecordType>();
2113 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2114 const CXXDestructorDecl *dtor = record->getDestructor();
2115 assert(!dtor->isTrivial());
2116 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2117 /*Delegating=*/false, addr, type);
2120 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2121 CXXCtorType Type,
2122 bool ForVirtualBase,
2123 bool Delegating,
2124 AggValueSlot ThisAVS,
2125 const CXXConstructExpr *E) {
2126 CallArgList Args;
2127 Address This = ThisAVS.getAddress();
2128 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2129 LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace();
2130 llvm::Value *ThisPtr =
2131 getAsNaturalPointerTo(This, D->getThisType()->getPointeeType());
2133 if (SlotAS != ThisAS) {
2134 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2135 llvm::Type *NewType =
2136 llvm::PointerType::get(getLLVMContext(), TargetThisAS);
2137 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, ThisPtr, ThisAS,
2138 SlotAS, NewType);
2141 // Push the this ptr.
2142 Args.add(RValue::get(ThisPtr), D->getThisType());
2144 // If this is a trivial constructor, emit a memcpy now before we lose
2145 // the alignment information on the argument.
2146 // FIXME: It would be better to preserve alignment information into CallArg.
2147 if (isMemcpyEquivalentSpecialMember(D)) {
2148 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2150 const Expr *Arg = E->getArg(0);
2151 LValue Src = EmitLValue(Arg);
2152 QualType DestTy = getContext().getTypeDeclType(D->getParent());
2153 LValue Dest = MakeAddrLValue(This, DestTy);
2154 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2155 return;
2158 // Add the rest of the user-supplied arguments.
2159 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2160 EvaluationOrder Order = E->isListInitialization()
2161 ? EvaluationOrder::ForceLeftToRight
2162 : EvaluationOrder::Default;
2163 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2164 /*ParamsToSkip*/ 0, Order);
2166 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2167 ThisAVS.mayOverlap(), E->getExprLoc(),
2168 ThisAVS.isSanitizerChecked());
2171 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2172 const CXXConstructorDecl *Ctor,
2173 CXXCtorType Type, CallArgList &Args) {
2174 // We can't forward a variadic call.
2175 if (Ctor->isVariadic())
2176 return false;
2178 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2179 // If the parameters are callee-cleanup, it's not safe to forward.
2180 for (auto *P : Ctor->parameters())
2181 if (P->needsDestruction(CGF.getContext()))
2182 return false;
2184 // Likewise if they're inalloca.
2185 const CGFunctionInfo &Info =
2186 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2187 if (Info.usesInAlloca())
2188 return false;
2191 // Anything else should be OK.
2192 return true;
2195 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2196 CXXCtorType Type,
2197 bool ForVirtualBase,
2198 bool Delegating,
2199 Address This,
2200 CallArgList &Args,
2201 AggValueSlot::Overlap_t Overlap,
2202 SourceLocation Loc,
2203 bool NewPointerIsChecked) {
2204 const CXXRecordDecl *ClassDecl = D->getParent();
2206 if (!NewPointerIsChecked)
2207 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This,
2208 getContext().getRecordType(ClassDecl), CharUnits::Zero());
2210 if (D->isTrivial() && D->isDefaultConstructor()) {
2211 assert(Args.size() == 1 && "trivial default ctor with args");
2212 return;
2215 // If this is a trivial constructor, just emit what's needed. If this is a
2216 // union copy constructor, we must emit a memcpy, because the AST does not
2217 // model that copy.
2218 if (isMemcpyEquivalentSpecialMember(D)) {
2219 assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2220 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2221 Address Src = makeNaturalAddressForPointer(
2222 Args[1].getRValue(*this).getScalarVal(), SrcTy);
2223 LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2224 QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2225 LValue DestLVal = MakeAddrLValue(This, DestTy);
2226 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2227 return;
2230 bool PassPrototypeArgs = true;
2231 // Check whether we can actually emit the constructor before trying to do so.
2232 if (auto Inherited = D->getInheritedConstructor()) {
2233 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2234 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2235 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2236 Delegating, Args);
2237 return;
2241 // Insert any ABI-specific implicit constructor arguments.
2242 CGCXXABI::AddedStructorArgCounts ExtraArgs =
2243 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2244 Delegating, Args);
2246 // Emit the call.
2247 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2248 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2249 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2250 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2251 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
2253 // Generate vtable assumptions if we're constructing a complete object
2254 // with a vtable. We don't do this for base subobjects for two reasons:
2255 // first, it's incorrect for classes with virtual bases, and second, we're
2256 // about to overwrite the vptrs anyway.
2257 // We also have to make sure if we can refer to vtable:
2258 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2259 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2260 // sure that definition of vtable is not hidden,
2261 // then we are always safe to refer to it.
2262 // FIXME: It looks like InstCombine is very inefficient on dealing with
2263 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2264 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2265 ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2266 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2267 CGM.getCodeGenOpts().StrictVTablePointers)
2268 EmitVTableAssumptionLoads(ClassDecl, This);
2271 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2272 const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2273 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2274 CallArgList Args;
2275 CallArg ThisArg(RValue::get(getAsNaturalPointerTo(
2276 This, D->getThisType()->getPointeeType())),
2277 D->getThisType());
2279 // Forward the parameters.
2280 if (InheritedFromVBase &&
2281 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2282 // Nothing to do; this construction is not responsible for constructing
2283 // the base class containing the inherited constructor.
2284 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2285 // have constructor variants?
2286 Args.push_back(ThisArg);
2287 } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2288 // The inheriting constructor was inlined; just inject its arguments.
2289 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2290 "wrong number of parameters for inherited constructor call");
2291 Args = CXXInheritedCtorInitExprArgs;
2292 Args[0] = ThisArg;
2293 } else {
2294 // The inheriting constructor was not inlined. Emit delegating arguments.
2295 Args.push_back(ThisArg);
2296 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2297 assert(OuterCtor->getNumParams() == D->getNumParams());
2298 assert(!OuterCtor->isVariadic() && "should have been inlined");
2300 for (const auto *Param : OuterCtor->parameters()) {
2301 assert(getContext().hasSameUnqualifiedType(
2302 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2303 Param->getType()));
2304 EmitDelegateCallArg(Args, Param, E->getLocation());
2306 // Forward __attribute__(pass_object_size).
2307 if (Param->hasAttr<PassObjectSizeAttr>()) {
2308 auto *POSParam = SizeArguments[Param];
2309 assert(POSParam && "missing pass_object_size value for forwarding");
2310 EmitDelegateCallArg(Args, POSParam, E->getLocation());
2315 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2316 This, Args, AggValueSlot::MayOverlap,
2317 E->getLocation(), /*NewPointerIsChecked*/true);
2320 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2321 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2322 bool Delegating, CallArgList &Args) {
2323 GlobalDecl GD(Ctor, CtorType);
2324 InlinedInheritingConstructorScope Scope(*this, GD);
2325 ApplyInlineDebugLocation DebugScope(*this, GD);
2326 RunCleanupsScope RunCleanups(*this);
2328 // Save the arguments to be passed to the inherited constructor.
2329 CXXInheritedCtorInitExprArgs = Args;
2331 FunctionArgList Params;
2332 QualType RetType = BuildFunctionArgList(CurGD, Params);
2333 FnRetTy = RetType;
2335 // Insert any ABI-specific implicit constructor arguments.
2336 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2337 ForVirtualBase, Delegating, Args);
2339 // Emit a simplified prolog. We only need to emit the implicit params.
2340 assert(Args.size() >= Params.size() && "too few arguments for call");
2341 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2342 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2343 const RValue &RV = Args[I].getRValue(*this);
2344 assert(!RV.isComplex() && "complex indirect params not supported");
2345 ParamValue Val = RV.isScalar()
2346 ? ParamValue::forDirect(RV.getScalarVal())
2347 : ParamValue::forIndirect(RV.getAggregateAddress());
2348 EmitParmDecl(*Params[I], Val, I + 1);
2352 // Create a return value slot if the ABI implementation wants one.
2353 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2354 // value instead.
2355 if (!RetType->isVoidType())
2356 ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2358 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2359 CXXThisValue = CXXABIThisValue;
2361 // Directly emit the constructor initializers.
2362 EmitCtorPrologue(Ctor, CtorType, Params);
2365 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2366 llvm::Value *VTableGlobal =
2367 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2368 if (!VTableGlobal)
2369 return;
2371 // We can just use the base offset in the complete class.
2372 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2374 if (!NonVirtualOffset.isZero())
2375 This =
2376 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2377 Vptr.VTableClass, Vptr.NearestVBase);
2379 llvm::Value *VPtrValue =
2380 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2381 llvm::Value *Cmp =
2382 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2383 Builder.CreateAssumption(Cmp);
2386 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2387 Address This) {
2388 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2389 for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2390 EmitVTableAssumptionLoad(Vptr, This);
2393 void
2394 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2395 Address This, Address Src,
2396 const CXXConstructExpr *E) {
2397 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2399 CallArgList Args;
2401 // Push the this ptr.
2402 Args.add(RValue::get(getAsNaturalPointerTo(This, D->getThisType())),
2403 D->getThisType());
2405 // Push the src ptr.
2406 QualType QT = *(FPT->param_type_begin());
2407 llvm::Type *t = CGM.getTypes().ConvertType(QT);
2408 llvm::Value *Val = getAsNaturalPointerTo(Src, D->getThisType());
2409 llvm::Value *SrcVal = Builder.CreateBitCast(Val, t);
2410 Args.add(RValue::get(SrcVal), QT);
2412 // Skip over first argument (Src).
2413 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2414 /*ParamsToSkip*/ 1);
2416 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2417 /*Delegating*/false, This, Args,
2418 AggValueSlot::MayOverlap, E->getExprLoc(),
2419 /*NewPointerIsChecked*/false);
2422 void
2423 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2424 CXXCtorType CtorType,
2425 const FunctionArgList &Args,
2426 SourceLocation Loc) {
2427 CallArgList DelegateArgs;
2429 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2430 assert(I != E && "no parameters to constructor");
2432 // this
2433 Address This = LoadCXXThisAddress();
2434 DelegateArgs.add(RValue::get(getAsNaturalPointerTo(
2435 This, (*I)->getType()->getPointeeType())),
2436 (*I)->getType());
2437 ++I;
2439 // FIXME: The location of the VTT parameter in the parameter list is
2440 // specific to the Itanium ABI and shouldn't be hardcoded here.
2441 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2442 assert(I != E && "cannot skip vtt parameter, already done with args");
2443 assert((*I)->getType()->isPointerType() &&
2444 "skipping parameter not of vtt type");
2445 ++I;
2448 // Explicit arguments.
2449 for (; I != E; ++I) {
2450 const VarDecl *param = *I;
2451 // FIXME: per-argument source location
2452 EmitDelegateCallArg(DelegateArgs, param, Loc);
2455 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2456 /*Delegating=*/true, This, DelegateArgs,
2457 AggValueSlot::MayOverlap, Loc,
2458 /*NewPointerIsChecked=*/true);
2461 namespace {
2462 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2463 const CXXDestructorDecl *Dtor;
2464 Address Addr;
2465 CXXDtorType Type;
2467 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2468 CXXDtorType Type)
2469 : Dtor(D), Addr(Addr), Type(Type) {}
2471 void Emit(CodeGenFunction &CGF, Flags flags) override {
2472 // We are calling the destructor from within the constructor.
2473 // Therefore, "this" should have the expected type.
2474 QualType ThisTy = Dtor->getFunctionObjectParameterType();
2475 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2476 /*Delegating=*/true, Addr, ThisTy);
2479 } // end anonymous namespace
2481 void
2482 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2483 const FunctionArgList &Args) {
2484 assert(Ctor->isDelegatingConstructor());
2486 Address ThisPtr = LoadCXXThisAddress();
2488 AggValueSlot AggSlot =
2489 AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2490 AggValueSlot::IsDestructed,
2491 AggValueSlot::DoesNotNeedGCBarriers,
2492 AggValueSlot::IsNotAliased,
2493 AggValueSlot::MayOverlap,
2494 AggValueSlot::IsNotZeroed,
2495 // Checks are made by the code that calls constructor.
2496 AggValueSlot::IsSanitizerChecked);
2498 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2500 const CXXRecordDecl *ClassDecl = Ctor->getParent();
2501 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2502 CXXDtorType Type =
2503 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2505 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2506 ClassDecl->getDestructor(),
2507 ThisPtr, Type);
2511 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2512 CXXDtorType Type,
2513 bool ForVirtualBase,
2514 bool Delegating, Address This,
2515 QualType ThisTy) {
2516 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2517 Delegating, This, ThisTy);
2520 namespace {
2521 struct CallLocalDtor final : EHScopeStack::Cleanup {
2522 const CXXDestructorDecl *Dtor;
2523 Address Addr;
2524 QualType Ty;
2526 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2527 : Dtor(D), Addr(Addr), Ty(Ty) {}
2529 void Emit(CodeGenFunction &CGF, Flags flags) override {
2530 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2531 /*ForVirtualBase=*/false,
2532 /*Delegating=*/false, Addr, Ty);
2535 } // end anonymous namespace
2537 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2538 QualType T, Address Addr) {
2539 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2542 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2543 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2544 if (!ClassDecl) return;
2545 if (ClassDecl->hasTrivialDestructor()) return;
2547 const CXXDestructorDecl *D = ClassDecl->getDestructor();
2548 assert(D && D->isUsed() && "destructor not marked as used!");
2549 PushDestructorCleanup(D, T, Addr);
2552 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2553 // Compute the address point.
2554 llvm::Value *VTableAddressPoint =
2555 CGM.getCXXABI().getVTableAddressPointInStructor(
2556 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2558 if (!VTableAddressPoint)
2559 return;
2561 // Compute where to store the address point.
2562 llvm::Value *VirtualOffset = nullptr;
2563 CharUnits NonVirtualOffset = CharUnits::Zero();
2565 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2566 // We need to use the virtual base offset offset because the virtual base
2567 // might have a different offset in the most derived class.
2569 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2570 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2571 NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2572 } else {
2573 // We can just use the base offset in the complete class.
2574 NonVirtualOffset = Vptr.Base.getBaseOffset();
2577 // Apply the offsets.
2578 Address VTableField = LoadCXXThisAddress();
2579 if (!NonVirtualOffset.isZero() || VirtualOffset)
2580 VTableField = ApplyNonVirtualAndVirtualOffset(
2581 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2582 Vptr.NearestVBase);
2584 // Finally, store the address point. Use the same LLVM types as the field to
2585 // support optimization.
2586 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2587 llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS);
2588 // vtable field is derived from `this` pointer, therefore they should be in
2589 // the same addr space. Note that this might not be LLVM address space 0.
2590 VTableField = VTableField.withElementType(PtrTy);
2592 if (auto AuthenticationInfo = CGM.getVTablePointerAuthInfo(
2593 this, Vptr.Base.getBase(), VTableField.emitRawPointer(*this)))
2594 VTableAddressPoint =
2595 EmitPointerAuthSign(*AuthenticationInfo, VTableAddressPoint);
2597 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2598 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy);
2599 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2600 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2601 CGM.getCodeGenOpts().StrictVTablePointers)
2602 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2605 CodeGenFunction::VPtrsVector
2606 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2607 CodeGenFunction::VPtrsVector VPtrsResult;
2608 VisitedVirtualBasesSetTy VBases;
2609 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2610 /*NearestVBase=*/nullptr,
2611 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2612 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2613 VPtrsResult);
2614 return VPtrsResult;
2617 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2618 const CXXRecordDecl *NearestVBase,
2619 CharUnits OffsetFromNearestVBase,
2620 bool BaseIsNonVirtualPrimaryBase,
2621 const CXXRecordDecl *VTableClass,
2622 VisitedVirtualBasesSetTy &VBases,
2623 VPtrsVector &Vptrs) {
2624 // If this base is a non-virtual primary base the address point has already
2625 // been set.
2626 if (!BaseIsNonVirtualPrimaryBase) {
2627 // Initialize the vtable pointer for this base.
2628 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2629 Vptrs.push_back(Vptr);
2632 const CXXRecordDecl *RD = Base.getBase();
2634 // Traverse bases.
2635 for (const auto &I : RD->bases()) {
2636 auto *BaseDecl =
2637 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2639 // Ignore classes without a vtable.
2640 if (!BaseDecl->isDynamicClass())
2641 continue;
2643 CharUnits BaseOffset;
2644 CharUnits BaseOffsetFromNearestVBase;
2645 bool BaseDeclIsNonVirtualPrimaryBase;
2647 if (I.isVirtual()) {
2648 // Check if we've visited this virtual base before.
2649 if (!VBases.insert(BaseDecl).second)
2650 continue;
2652 const ASTRecordLayout &Layout =
2653 getContext().getASTRecordLayout(VTableClass);
2655 BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2656 BaseOffsetFromNearestVBase = CharUnits::Zero();
2657 BaseDeclIsNonVirtualPrimaryBase = false;
2658 } else {
2659 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2661 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2662 BaseOffsetFromNearestVBase =
2663 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2664 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2667 getVTablePointers(
2668 BaseSubobject(BaseDecl, BaseOffset),
2669 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2670 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2674 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2675 // Ignore classes without a vtable.
2676 if (!RD->isDynamicClass())
2677 return;
2679 // Initialize the vtable pointers for this class and all of its bases.
2680 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2681 for (const VPtr &Vptr : getVTablePointers(RD))
2682 InitializeVTablePointer(Vptr);
2684 if (RD->getNumVBases())
2685 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2688 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2689 llvm::Type *VTableTy,
2690 const CXXRecordDecl *RD,
2691 VTableAuthMode AuthMode) {
2692 Address VTablePtrSrc = This.withElementType(VTableTy);
2693 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2694 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2695 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2697 if (auto AuthenticationInfo =
2698 CGM.getVTablePointerAuthInfo(this, RD, This.emitRawPointer(*this))) {
2699 if (AuthMode != VTableAuthMode::UnsafeUbsanStrip) {
2700 VTable = cast<llvm::Instruction>(
2701 EmitPointerAuthAuth(*AuthenticationInfo, VTable));
2702 if (AuthMode == VTableAuthMode::MustTrap) {
2703 // This is clearly suboptimal but until we have an ability
2704 // to rely on the authentication intrinsic trapping and force
2705 // an authentication to occur we don't really have a choice.
2706 VTable =
2707 cast<llvm::Instruction>(Builder.CreateBitCast(VTable, Int8PtrTy));
2708 Builder.CreateLoad(RawAddress(VTable, Int8Ty, CGM.getPointerAlign()),
2709 /* IsVolatile */ true);
2711 } else {
2712 VTable = cast<llvm::Instruction>(EmitPointerAuthAuth(
2713 CGPointerAuthInfo(0, PointerAuthenticationMode::Strip, false, false,
2714 nullptr),
2715 VTable));
2719 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2720 CGM.getCodeGenOpts().StrictVTablePointers)
2721 CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2723 return VTable;
2726 // If a class has a single non-virtual base and does not introduce or override
2727 // virtual member functions or fields, it will have the same layout as its base.
2728 // This function returns the least derived such class.
2730 // Casting an instance of a base class to such a derived class is technically
2731 // undefined behavior, but it is a relatively common hack for introducing member
2732 // functions on class instances with specific properties (e.g. llvm::Operator)
2733 // that works under most compilers and should not have security implications, so
2734 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2735 static const CXXRecordDecl *
2736 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2737 if (!RD->field_empty())
2738 return RD;
2740 if (RD->getNumVBases() != 0)
2741 return RD;
2743 if (RD->getNumBases() != 1)
2744 return RD;
2746 for (const CXXMethodDecl *MD : RD->methods()) {
2747 if (MD->isVirtual()) {
2748 // Virtual member functions are only ok if they are implicit destructors
2749 // because the implicit destructor will have the same semantics as the
2750 // base class's destructor if no fields are added.
2751 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2752 continue;
2753 return RD;
2757 return LeastDerivedClassWithSameLayout(
2758 RD->bases_begin()->getType()->getAsCXXRecordDecl());
2761 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2762 llvm::Value *VTable,
2763 SourceLocation Loc) {
2764 if (SanOpts.has(SanitizerKind::CFIVCall))
2765 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2766 else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2767 // Don't insert type test assumes if we are forcing public
2768 // visibility.
2769 !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2770 QualType Ty = QualType(RD->getTypeForDecl(), 0);
2771 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2772 llvm::Value *TypeId =
2773 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2775 // If we already know that the call has hidden LTO visibility, emit
2776 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2777 // will convert to @llvm.type.test() if we assert at link time that we have
2778 // whole program visibility.
2779 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2780 ? llvm::Intrinsic::type_test
2781 : llvm::Intrinsic::public_type_test;
2782 llvm::Value *TypeTest =
2783 Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId});
2784 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2788 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2789 llvm::Value *VTable,
2790 CFITypeCheckKind TCK,
2791 SourceLocation Loc) {
2792 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2793 RD = LeastDerivedClassWithSameLayout(RD);
2795 EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2798 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2799 bool MayBeNull,
2800 CFITypeCheckKind TCK,
2801 SourceLocation Loc) {
2802 if (!getLangOpts().CPlusPlus)
2803 return;
2805 auto *ClassTy = T->getAs<RecordType>();
2806 if (!ClassTy)
2807 return;
2809 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2811 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2812 return;
2814 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2815 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2817 llvm::BasicBlock *ContBlock = nullptr;
2819 if (MayBeNull) {
2820 llvm::Value *DerivedNotNull =
2821 Builder.CreateIsNotNull(Derived.emitRawPointer(*this), "cast.nonnull");
2823 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2824 ContBlock = createBasicBlock("cast.cont");
2826 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2828 EmitBlock(CheckBlock);
2831 llvm::Value *VTable;
2832 std::tie(VTable, ClassDecl) =
2833 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2835 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2837 if (MayBeNull) {
2838 Builder.CreateBr(ContBlock);
2839 EmitBlock(ContBlock);
2843 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2844 llvm::Value *VTable,
2845 CFITypeCheckKind TCK,
2846 SourceLocation Loc) {
2847 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2848 !CGM.HasHiddenLTOVisibility(RD))
2849 return;
2851 SanitizerMask M;
2852 llvm::SanitizerStatKind SSK;
2853 switch (TCK) {
2854 case CFITCK_VCall:
2855 M = SanitizerKind::CFIVCall;
2856 SSK = llvm::SanStat_CFI_VCall;
2857 break;
2858 case CFITCK_NVCall:
2859 M = SanitizerKind::CFINVCall;
2860 SSK = llvm::SanStat_CFI_NVCall;
2861 break;
2862 case CFITCK_DerivedCast:
2863 M = SanitizerKind::CFIDerivedCast;
2864 SSK = llvm::SanStat_CFI_DerivedCast;
2865 break;
2866 case CFITCK_UnrelatedCast:
2867 M = SanitizerKind::CFIUnrelatedCast;
2868 SSK = llvm::SanStat_CFI_UnrelatedCast;
2869 break;
2870 case CFITCK_ICall:
2871 case CFITCK_NVMFCall:
2872 case CFITCK_VMFCall:
2873 llvm_unreachable("unexpected sanitizer kind");
2876 std::string TypeName = RD->getQualifiedNameAsString();
2877 if (getContext().getNoSanitizeList().containsType(M, TypeName))
2878 return;
2880 SanitizerScope SanScope(this);
2881 EmitSanitizerStatReport(SSK);
2883 llvm::Metadata *MD =
2884 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2885 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2887 llvm::Value *TypeTest = Builder.CreateCall(
2888 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
2890 llvm::Constant *StaticData[] = {
2891 llvm::ConstantInt::get(Int8Ty, TCK),
2892 EmitCheckSourceLocation(Loc),
2893 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2896 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2897 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2898 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData);
2899 return;
2902 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2903 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2904 return;
2907 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2908 CGM.getLLVMContext(),
2909 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2910 llvm::Value *ValidVtable = Builder.CreateCall(
2911 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
2912 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2913 StaticData, {VTable, ValidVtable});
2916 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2917 if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2918 !CGM.HasHiddenLTOVisibility(RD))
2919 return false;
2921 if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2922 return true;
2924 if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2925 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2926 return false;
2928 std::string TypeName = RD->getQualifiedNameAsString();
2929 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2930 TypeName);
2933 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2934 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2935 uint64_t VTableByteOffset) {
2936 SanitizerScope SanScope(this);
2938 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2940 llvm::Metadata *MD =
2941 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2942 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2944 llvm::Value *CheckedLoad = Builder.CreateCall(
2945 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2946 {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
2947 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2949 std::string TypeName = RD->getQualifiedNameAsString();
2950 if (SanOpts.has(SanitizerKind::CFIVCall) &&
2951 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2952 TypeName)) {
2953 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2954 SanitizerHandler::CFICheckFail, {}, {});
2957 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2958 VTableTy);
2961 void CodeGenFunction::EmitForwardingCallToLambda(
2962 const CXXMethodDecl *callOperator, CallArgList &callArgs,
2963 const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
2964 // Get the address of the call operator.
2965 if (!calleeFnInfo)
2966 calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2968 if (!calleePtr)
2969 calleePtr =
2970 CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2971 CGM.getTypes().GetFunctionType(*calleeFnInfo));
2973 // Prepare the return slot.
2974 const FunctionProtoType *FPT =
2975 callOperator->getType()->castAs<FunctionProtoType>();
2976 QualType resultType = FPT->getReturnType();
2977 ReturnValueSlot returnSlot;
2978 if (!resultType->isVoidType() &&
2979 calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2980 !hasScalarEvaluationKind(calleeFnInfo->getReturnType()))
2981 returnSlot =
2982 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2983 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2985 // We don't need to separately arrange the call arguments because
2986 // the call can't be variadic anyway --- it's impossible to forward
2987 // variadic arguments.
2989 // Now emit our call.
2990 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2991 RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
2993 // If necessary, copy the returned value into the slot.
2994 if (!resultType->isVoidType() && returnSlot.isNull()) {
2995 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2996 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2998 EmitReturnOfRValue(RV, resultType);
2999 } else
3000 EmitBranchThroughCleanup(ReturnBlock);
3003 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
3004 const BlockDecl *BD = BlockInfo->getBlockDecl();
3005 const VarDecl *variable = BD->capture_begin()->getVariable();
3006 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
3007 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3009 if (CallOp->isVariadic()) {
3010 // FIXME: Making this work correctly is nasty because it requires either
3011 // cloning the body of the call operator or making the call operator
3012 // forward.
3013 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
3014 return;
3017 // Start building arguments for forwarding call
3018 CallArgList CallArgs;
3020 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
3021 Address ThisPtr = GetAddrOfBlockDecl(variable);
3022 CallArgs.add(RValue::get(getAsNaturalPointerTo(ThisPtr, ThisType)), ThisType);
3024 // Add the rest of the parameters.
3025 for (auto *param : BD->parameters())
3026 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
3028 assert(!Lambda->isGenericLambda() &&
3029 "generic lambda interconversion to block not implemented");
3030 EmitForwardingCallToLambda(CallOp, CallArgs);
3033 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
3034 if (MD->isVariadic()) {
3035 // FIXME: Making this work correctly is nasty because it requires either
3036 // cloning the body of the call operator or making the call operator
3037 // forward.
3038 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3039 return;
3042 const CXXRecordDecl *Lambda = MD->getParent();
3044 // Start building arguments for forwarding call
3045 CallArgList CallArgs;
3047 QualType LambdaType = getContext().getRecordType(Lambda);
3048 QualType ThisType = getContext().getPointerType(LambdaType);
3049 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3050 CallArgs.add(RValue::get(ThisPtr.emitRawPointer(*this)), ThisType);
3052 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3055 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
3056 CallArgList &CallArgs) {
3057 // Add the rest of the forwarded parameters.
3058 for (auto *Param : MD->parameters())
3059 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3061 const CXXRecordDecl *Lambda = MD->getParent();
3062 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3063 // For a generic lambda, find the corresponding call operator specialization
3064 // to which the call to the static-invoker shall be forwarded.
3065 if (Lambda->isGenericLambda()) {
3066 assert(MD->isFunctionTemplateSpecialization());
3067 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3068 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3069 void *InsertPos = nullptr;
3070 FunctionDecl *CorrespondingCallOpSpecialization =
3071 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3072 assert(CorrespondingCallOpSpecialization);
3073 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3076 // Special lambda forwarding when there are inalloca parameters.
3077 if (hasInAllocaArg(MD)) {
3078 const CGFunctionInfo *ImplFnInfo = nullptr;
3079 llvm::Function *ImplFn = nullptr;
3080 EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn);
3082 EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn);
3083 return;
3086 EmitForwardingCallToLambda(CallOp, CallArgs);
3089 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) {
3090 if (MD->isVariadic()) {
3091 // FIXME: Making this work correctly is nasty because it requires either
3092 // cloning the body of the call operator or making the call operator forward.
3093 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3094 return;
3097 // Forward %this argument.
3098 CallArgList CallArgs;
3099 QualType LambdaType = getContext().getRecordType(MD->getParent());
3100 QualType ThisType = getContext().getPointerType(LambdaType);
3101 llvm::Value *ThisArg = CurFn->getArg(0);
3102 CallArgs.add(RValue::get(ThisArg), ThisType);
3104 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3107 void CodeGenFunction::EmitLambdaInAllocaImplFn(
3108 const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3109 llvm::Function **ImplFn) {
3110 const CGFunctionInfo &FnInfo =
3111 CGM.getTypes().arrangeCXXMethodDeclaration(CallOp);
3112 llvm::Function *CallOpFn =
3113 cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp)));
3115 // Emit function containing the original call op body. __invoke will delegate
3116 // to this function.
3117 SmallVector<CanQualType, 4> ArgTypes;
3118 for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3119 ArgTypes.push_back(I->type);
3120 *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3121 FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes,
3122 FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs());
3124 // Create mangled name as if this was a method named __impl. If for some
3125 // reason the name doesn't look as expected then just tack __impl to the
3126 // front.
3127 // TODO: Use the name mangler to produce the right name instead of using
3128 // string replacement.
3129 StringRef CallOpName = CallOpFn->getName();
3130 std::string ImplName;
3131 if (size_t Pos = CallOpName.find_first_of("<lambda"))
3132 ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str();
3133 else
3134 ImplName = ("__impl" + CallOpName).str();
3136 llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName);
3137 if (!Fn) {
3138 Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo),
3139 llvm::GlobalValue::InternalLinkage, ImplName,
3140 CGM.getModule());
3141 CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3143 const GlobalDecl &GD = GlobalDecl(CallOp);
3144 const auto *D = cast<FunctionDecl>(GD.getDecl());
3145 CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo);
3146 CGM.SetLLVMFunctionAttributesForDefinition(D, Fn);
3148 *ImplFn = Fn;