1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This is the code that handles AST -> LLVM type lowering.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenTypes.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
29 using namespace clang
;
30 using namespace CodeGen
;
32 CodeGenTypes::CodeGenTypes(CodeGenModule
&cgm
)
33 : CGM(cgm
), Context(cgm
.getContext()), TheModule(cgm
.getModule()),
34 Target(cgm
.getTarget()) {
35 SkippedLayout
= false;
36 LongDoubleReferenced
= false;
39 CodeGenTypes::~CodeGenTypes() {
40 for (llvm::FoldingSet
<CGFunctionInfo
>::iterator
41 I
= FunctionInfos
.begin(), E
= FunctionInfos
.end(); I
!= E
; )
45 CGCXXABI
&CodeGenTypes::getCXXABI() const { return getCGM().getCXXABI(); }
47 const CodeGenOptions
&CodeGenTypes::getCodeGenOpts() const {
48 return CGM
.getCodeGenOpts();
51 void CodeGenTypes::addRecordTypeName(const RecordDecl
*RD
,
54 SmallString
<256> TypeName
;
55 llvm::raw_svector_ostream
OS(TypeName
);
56 OS
<< RD
->getKindName() << '.';
58 // FIXME: We probably want to make more tweaks to the printing policy. For
59 // example, we should probably enable PrintCanonicalTypes and
60 // FullyQualifiedNames.
61 PrintingPolicy Policy
= RD
->getASTContext().getPrintingPolicy();
62 Policy
.SuppressInlineNamespace
= false;
64 // Name the codegen type after the typedef name
65 // if there is no tag type name available
66 if (RD
->getIdentifier()) {
67 // FIXME: We should not have to check for a null decl context here.
68 // Right now we do it because the implicit Obj-C decls don't have one.
69 if (RD
->getDeclContext())
70 RD
->printQualifiedName(OS
, Policy
);
72 RD
->printName(OS
, Policy
);
73 } else if (const TypedefNameDecl
*TDD
= RD
->getTypedefNameForAnonDecl()) {
74 // FIXME: We should not have to check for a null decl context here.
75 // Right now we do it because the implicit Obj-C decls don't have one.
76 if (TDD
->getDeclContext())
77 TDD
->printQualifiedName(OS
, Policy
);
86 Ty
->setName(OS
.str());
89 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
90 /// ConvertType in that it is used to convert to the memory representation for
91 /// a type. For example, the scalar representation for _Bool is i1, but the
92 /// memory representation is usually i8 or i32, depending on the target.
94 /// We generally assume that the alloc size of this type under the LLVM
95 /// data layout is the same as the size of the AST type. The alignment
96 /// does not have to match: Clang should always use explicit alignments
97 /// and packed structs as necessary to produce the layout it needs.
98 /// But the size does need to be exactly right or else things like struct
99 /// layout will break.
100 llvm::Type
*CodeGenTypes::ConvertTypeForMem(QualType T
) {
101 if (T
->isConstantMatrixType()) {
102 const Type
*Ty
= Context
.getCanonicalType(T
).getTypePtr();
103 const ConstantMatrixType
*MT
= cast
<ConstantMatrixType
>(Ty
);
104 return llvm::ArrayType::get(ConvertType(MT
->getElementType()),
105 MT
->getNumRows() * MT
->getNumColumns());
108 llvm::Type
*R
= ConvertType(T
);
110 // Check for the boolean vector case.
111 if (T
->isExtVectorBoolType()) {
112 auto *FixedVT
= cast
<llvm::FixedVectorType
>(R
);
113 // Pad to at least one byte.
114 uint64_t BytePadded
= std::max
<uint64_t>(FixedVT
->getNumElements(), 8);
115 return llvm::IntegerType::get(FixedVT
->getContext(), BytePadded
);
118 // If T is _Bool or a _BitInt type, ConvertType will produce an IR type
119 // with the exact semantic bit-width of the AST type; for example,
120 // _BitInt(17) will turn into i17. In memory, however, we need to store
121 // such values extended to their full storage size as decided by AST
122 // layout; this is an ABI requirement. Ideally, we would always use an
123 // integer type that's just the bit-size of the AST type; for example, if
124 // sizeof(_BitInt(17)) == 4, _BitInt(17) would turn into i32. That is what's
125 // returned by convertTypeForLoadStore. However, that type does not
126 // always satisfy the size requirement on memory representation types
127 // describe above. For example, a 32-bit platform might reasonably set
128 // sizeof(_BitInt(65)) == 12, but i96 is likely to have to have an alloc size
129 // of 16 bytes in the LLVM data layout. In these cases, we simply return
130 // a byte array of the appropriate size.
131 if (T
->isBitIntType()) {
132 if (typeRequiresSplitIntoByteArray(T
, R
))
133 return llvm::ArrayType::get(CGM
.Int8Ty
,
134 Context
.getTypeSizeInChars(T
).getQuantity());
135 return llvm::IntegerType::get(getLLVMContext(),
136 (unsigned)Context
.getTypeSize(T
));
139 if (R
->isIntegerTy(1))
140 return llvm::IntegerType::get(getLLVMContext(),
141 (unsigned)Context
.getTypeSize(T
));
143 // Else, don't map it.
147 bool CodeGenTypes::typeRequiresSplitIntoByteArray(QualType ASTTy
,
148 llvm::Type
*LLVMTy
) {
150 LLVMTy
= ConvertType(ASTTy
);
152 CharUnits ASTSize
= Context
.getTypeSizeInChars(ASTTy
);
154 CharUnits::fromQuantity(getDataLayout().getTypeAllocSize(LLVMTy
));
155 return ASTSize
!= LLVMSize
;
158 llvm::Type
*CodeGenTypes::convertTypeForLoadStore(QualType T
,
159 llvm::Type
*LLVMTy
) {
161 LLVMTy
= ConvertType(T
);
163 if (T
->isBitIntType())
164 return llvm::Type::getIntNTy(
165 getLLVMContext(), Context
.getTypeSizeInChars(T
).getQuantity() * 8);
167 if (LLVMTy
->isIntegerTy(1))
168 return llvm::IntegerType::get(getLLVMContext(),
169 (unsigned)Context
.getTypeSize(T
));
171 if (T
->isExtVectorBoolType())
172 return ConvertTypeForMem(T
);
177 /// isRecordLayoutComplete - Return true if the specified type is already
178 /// completely laid out.
179 bool CodeGenTypes::isRecordLayoutComplete(const Type
*Ty
) const {
180 llvm::DenseMap
<const Type
*, llvm::StructType
*>::const_iterator I
=
181 RecordDeclTypes
.find(Ty
);
182 return I
!= RecordDeclTypes
.end() && !I
->second
->isOpaque();
185 /// isFuncParamTypeConvertible - Return true if the specified type in a
186 /// function parameter or result position can be converted to an IR type at this
187 /// point. This boils down to being whether it is complete.
188 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty
) {
189 // Some ABIs cannot have their member pointers represented in IR unless
190 // certain circumstances have been reached.
191 if (const auto *MPT
= Ty
->getAs
<MemberPointerType
>())
192 return getCXXABI().isMemberPointerConvertible(MPT
);
194 // If this isn't a tagged type, we can convert it!
195 const TagType
*TT
= Ty
->getAs
<TagType
>();
196 if (!TT
) return true;
198 // Incomplete types cannot be converted.
199 return !TT
->isIncompleteType();
203 /// Code to verify a given function type is complete, i.e. the return type
204 /// and all of the parameter types are complete. Also check to see if we are in
205 /// a RS_StructPointer context, and if so whether any struct types have been
206 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
207 /// that cannot be converted to an IR type.
208 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType
*FT
) {
209 if (!isFuncParamTypeConvertible(FT
->getReturnType()))
212 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
))
213 for (unsigned i
= 0, e
= FPT
->getNumParams(); i
!= e
; i
++)
214 if (!isFuncParamTypeConvertible(FPT
->getParamType(i
)))
220 /// UpdateCompletedType - When we find the full definition for a TagDecl,
221 /// replace the 'opaque' type we previously made for it if applicable.
222 void CodeGenTypes::UpdateCompletedType(const TagDecl
*TD
) {
223 // If this is an enum being completed, then we flush all non-struct types from
224 // the cache. This allows function types and other things that may be derived
225 // from the enum to be recomputed.
226 if (const EnumDecl
*ED
= dyn_cast
<EnumDecl
>(TD
)) {
227 // Only flush the cache if we've actually already converted this type.
228 if (TypeCache
.count(ED
->getTypeForDecl())) {
229 // Okay, we formed some types based on this. We speculated that the enum
230 // would be lowered to i32, so we only need to flush the cache if this
232 if (!ConvertType(ED
->getIntegerType())->isIntegerTy(32))
235 // If necessary, provide the full definition of a type only used with a
236 // declaration so far.
237 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo())
238 DI
->completeType(ED
);
242 // If we completed a RecordDecl that we previously used and converted to an
243 // anonymous type, then go ahead and complete it now.
244 const RecordDecl
*RD
= cast
<RecordDecl
>(TD
);
245 if (RD
->isDependentType()) return;
247 // Only complete it if we converted it already. If we haven't converted it
248 // yet, we'll just do it lazily.
249 if (RecordDeclTypes
.count(Context
.getTagDeclType(RD
).getTypePtr()))
250 ConvertRecordDeclType(RD
);
252 // If necessary, provide the full definition of a type only used with a
253 // declaration so far.
254 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo())
255 DI
->completeType(RD
);
258 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl
*RD
) {
259 QualType T
= Context
.getRecordType(RD
);
260 T
= Context
.getCanonicalType(T
);
262 const Type
*Ty
= T
.getTypePtr();
263 if (RecordsWithOpaqueMemberPointers
.count(Ty
)) {
265 RecordsWithOpaqueMemberPointers
.clear();
269 static llvm::Type
*getTypeForFormat(llvm::LLVMContext
&VMContext
,
270 const llvm::fltSemantics
&format
,
271 bool UseNativeHalf
= false) {
272 if (&format
== &llvm::APFloat::IEEEhalf()) {
274 return llvm::Type::getHalfTy(VMContext
);
276 return llvm::Type::getInt16Ty(VMContext
);
278 if (&format
== &llvm::APFloat::BFloat())
279 return llvm::Type::getBFloatTy(VMContext
);
280 if (&format
== &llvm::APFloat::IEEEsingle())
281 return llvm::Type::getFloatTy(VMContext
);
282 if (&format
== &llvm::APFloat::IEEEdouble())
283 return llvm::Type::getDoubleTy(VMContext
);
284 if (&format
== &llvm::APFloat::IEEEquad())
285 return llvm::Type::getFP128Ty(VMContext
);
286 if (&format
== &llvm::APFloat::PPCDoubleDouble())
287 return llvm::Type::getPPC_FP128Ty(VMContext
);
288 if (&format
== &llvm::APFloat::x87DoubleExtended())
289 return llvm::Type::getX86_FP80Ty(VMContext
);
290 llvm_unreachable("Unknown float format!");
293 llvm::Type
*CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT
) {
294 assert(QFT
.isCanonical());
295 const FunctionType
*FT
= cast
<FunctionType
>(QFT
.getTypePtr());
296 // First, check whether we can build the full function type. If the
297 // function type depends on an incomplete type (e.g. a struct or enum), we
298 // cannot lower the function type.
299 if (!isFuncTypeConvertible(FT
)) {
300 // This function's type depends on an incomplete tag type.
302 // Force conversion of all the relevant record types, to make sure
303 // we re-convert the FunctionType when appropriate.
304 if (const RecordType
*RT
= FT
->getReturnType()->getAs
<RecordType
>())
305 ConvertRecordDeclType(RT
->getDecl());
306 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
))
307 for (unsigned i
= 0, e
= FPT
->getNumParams(); i
!= e
; i
++)
308 if (const RecordType
*RT
= FPT
->getParamType(i
)->getAs
<RecordType
>())
309 ConvertRecordDeclType(RT
->getDecl());
311 SkippedLayout
= true;
313 // Return a placeholder type.
314 return llvm::StructType::get(getLLVMContext());
317 // The function type can be built; call the appropriate routines to
319 const CGFunctionInfo
*FI
;
320 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
)) {
321 FI
= &arrangeFreeFunctionType(
322 CanQual
<FunctionProtoType
>::CreateUnsafe(QualType(FPT
, 0)));
324 const FunctionNoProtoType
*FNPT
= cast
<FunctionNoProtoType
>(FT
);
325 FI
= &arrangeFreeFunctionType(
326 CanQual
<FunctionNoProtoType
>::CreateUnsafe(QualType(FNPT
, 0)));
329 llvm::Type
*ResultType
= nullptr;
330 // If there is something higher level prodding our CGFunctionInfo, then
331 // don't recurse into it again.
332 if (FunctionsBeingProcessed
.count(FI
)) {
334 ResultType
= llvm::StructType::get(getLLVMContext());
335 SkippedLayout
= true;
338 // Otherwise, we're good to go, go ahead and convert it.
339 ResultType
= GetFunctionType(*FI
);
345 /// ConvertType - Convert the specified type to its LLVM form.
346 llvm::Type
*CodeGenTypes::ConvertType(QualType T
) {
347 T
= Context
.getCanonicalType(T
);
349 const Type
*Ty
= T
.getTypePtr();
351 // For the device-side compilation, CUDA device builtin surface/texture types
352 // may be represented in different types.
353 if (Context
.getLangOpts().CUDAIsDevice
) {
354 if (T
->isCUDADeviceBuiltinSurfaceType()) {
355 if (auto *Ty
= CGM
.getTargetCodeGenInfo()
356 .getCUDADeviceBuiltinSurfaceDeviceType())
358 } else if (T
->isCUDADeviceBuiltinTextureType()) {
359 if (auto *Ty
= CGM
.getTargetCodeGenInfo()
360 .getCUDADeviceBuiltinTextureDeviceType())
365 // RecordTypes are cached and processed specially.
366 if (const RecordType
*RT
= dyn_cast
<RecordType
>(Ty
))
367 return ConvertRecordDeclType(RT
->getDecl());
369 llvm::Type
*CachedType
= nullptr;
370 auto TCI
= TypeCache
.find(Ty
);
371 if (TCI
!= TypeCache
.end())
372 CachedType
= TCI
->second
;
373 // With expensive checks, check that the type we compute matches the
375 #ifndef EXPENSIVE_CHECKS
380 // If we don't have it in the cache, convert it now.
381 llvm::Type
*ResultType
= nullptr;
382 switch (Ty
->getTypeClass()) {
383 case Type::Record
: // Handled above.
384 #define TYPE(Class, Base)
385 #define ABSTRACT_TYPE(Class, Base)
386 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
387 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
388 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
389 #include "clang/AST/TypeNodes.inc"
390 llvm_unreachable("Non-canonical or dependent types aren't possible.");
392 case Type::Builtin
: {
393 switch (cast
<BuiltinType
>(Ty
)->getKind()) {
394 case BuiltinType::Void
:
395 case BuiltinType::ObjCId
:
396 case BuiltinType::ObjCClass
:
397 case BuiltinType::ObjCSel
:
398 // LLVM void type can only be used as the result of a function call. Just
399 // map to the same as char.
400 ResultType
= llvm::Type::getInt8Ty(getLLVMContext());
403 case BuiltinType::Bool
:
404 // Note that we always return bool as i1 for use as a scalar type.
405 ResultType
= llvm::Type::getInt1Ty(getLLVMContext());
408 case BuiltinType::Char_S
:
409 case BuiltinType::Char_U
:
410 case BuiltinType::SChar
:
411 case BuiltinType::UChar
:
412 case BuiltinType::Short
:
413 case BuiltinType::UShort
:
414 case BuiltinType::Int
:
415 case BuiltinType::UInt
:
416 case BuiltinType::Long
:
417 case BuiltinType::ULong
:
418 case BuiltinType::LongLong
:
419 case BuiltinType::ULongLong
:
420 case BuiltinType::WChar_S
:
421 case BuiltinType::WChar_U
:
422 case BuiltinType::Char8
:
423 case BuiltinType::Char16
:
424 case BuiltinType::Char32
:
425 case BuiltinType::ShortAccum
:
426 case BuiltinType::Accum
:
427 case BuiltinType::LongAccum
:
428 case BuiltinType::UShortAccum
:
429 case BuiltinType::UAccum
:
430 case BuiltinType::ULongAccum
:
431 case BuiltinType::ShortFract
:
432 case BuiltinType::Fract
:
433 case BuiltinType::LongFract
:
434 case BuiltinType::UShortFract
:
435 case BuiltinType::UFract
:
436 case BuiltinType::ULongFract
:
437 case BuiltinType::SatShortAccum
:
438 case BuiltinType::SatAccum
:
439 case BuiltinType::SatLongAccum
:
440 case BuiltinType::SatUShortAccum
:
441 case BuiltinType::SatUAccum
:
442 case BuiltinType::SatULongAccum
:
443 case BuiltinType::SatShortFract
:
444 case BuiltinType::SatFract
:
445 case BuiltinType::SatLongFract
:
446 case BuiltinType::SatUShortFract
:
447 case BuiltinType::SatUFract
:
448 case BuiltinType::SatULongFract
:
449 ResultType
= llvm::IntegerType::get(getLLVMContext(),
450 static_cast<unsigned>(Context
.getTypeSize(T
)));
453 case BuiltinType::Float16
:
455 getTypeForFormat(getLLVMContext(), Context
.getFloatTypeSemantics(T
),
456 /* UseNativeHalf = */ true);
459 case BuiltinType::Half
:
460 // Half FP can either be storage-only (lowered to i16) or native.
461 ResultType
= getTypeForFormat(
462 getLLVMContext(), Context
.getFloatTypeSemantics(T
),
463 Context
.getLangOpts().NativeHalfType
||
464 !Context
.getTargetInfo().useFP16ConversionIntrinsics());
466 case BuiltinType::LongDouble
:
467 LongDoubleReferenced
= true;
469 case BuiltinType::BFloat16
:
470 case BuiltinType::Float
:
471 case BuiltinType::Double
:
472 case BuiltinType::Float128
:
473 case BuiltinType::Ibm128
:
474 ResultType
= getTypeForFormat(getLLVMContext(),
475 Context
.getFloatTypeSemantics(T
),
476 /* UseNativeHalf = */ false);
479 case BuiltinType::NullPtr
:
480 // Model std::nullptr_t as i8*
481 ResultType
= llvm::PointerType::getUnqual(getLLVMContext());
484 case BuiltinType::UInt128
:
485 case BuiltinType::Int128
:
486 ResultType
= llvm::IntegerType::get(getLLVMContext(), 128);
489 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
490 case BuiltinType::Id:
491 #include "clang/Basic/OpenCLImageTypes.def"
492 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
493 case BuiltinType::Id:
494 #include "clang/Basic/OpenCLExtensionTypes.def"
495 case BuiltinType::OCLSampler
:
496 case BuiltinType::OCLEvent
:
497 case BuiltinType::OCLClkEvent
:
498 case BuiltinType::OCLQueue
:
499 case BuiltinType::OCLReserveID
:
500 ResultType
= CGM
.getOpenCLRuntime().convertOpenCLSpecificType(Ty
);
502 case BuiltinType::SveInt8
:
503 case BuiltinType::SveUint8
:
504 case BuiltinType::SveInt8x2
:
505 case BuiltinType::SveUint8x2
:
506 case BuiltinType::SveInt8x3
:
507 case BuiltinType::SveUint8x3
:
508 case BuiltinType::SveInt8x4
:
509 case BuiltinType::SveUint8x4
:
510 case BuiltinType::SveInt16
:
511 case BuiltinType::SveUint16
:
512 case BuiltinType::SveInt16x2
:
513 case BuiltinType::SveUint16x2
:
514 case BuiltinType::SveInt16x3
:
515 case BuiltinType::SveUint16x3
:
516 case BuiltinType::SveInt16x4
:
517 case BuiltinType::SveUint16x4
:
518 case BuiltinType::SveInt32
:
519 case BuiltinType::SveUint32
:
520 case BuiltinType::SveInt32x2
:
521 case BuiltinType::SveUint32x2
:
522 case BuiltinType::SveInt32x3
:
523 case BuiltinType::SveUint32x3
:
524 case BuiltinType::SveInt32x4
:
525 case BuiltinType::SveUint32x4
:
526 case BuiltinType::SveInt64
:
527 case BuiltinType::SveUint64
:
528 case BuiltinType::SveInt64x2
:
529 case BuiltinType::SveUint64x2
:
530 case BuiltinType::SveInt64x3
:
531 case BuiltinType::SveUint64x3
:
532 case BuiltinType::SveInt64x4
:
533 case BuiltinType::SveUint64x4
:
534 case BuiltinType::SveBool
:
535 case BuiltinType::SveBoolx2
:
536 case BuiltinType::SveBoolx4
:
537 case BuiltinType::SveFloat16
:
538 case BuiltinType::SveFloat16x2
:
539 case BuiltinType::SveFloat16x3
:
540 case BuiltinType::SveFloat16x4
:
541 case BuiltinType::SveFloat32
:
542 case BuiltinType::SveFloat32x2
:
543 case BuiltinType::SveFloat32x3
:
544 case BuiltinType::SveFloat32x4
:
545 case BuiltinType::SveFloat64
:
546 case BuiltinType::SveFloat64x2
:
547 case BuiltinType::SveFloat64x3
:
548 case BuiltinType::SveFloat64x4
:
549 case BuiltinType::SveBFloat16
:
550 case BuiltinType::SveBFloat16x2
:
551 case BuiltinType::SveBFloat16x3
:
552 case BuiltinType::SveBFloat16x4
: {
553 ASTContext::BuiltinVectorTypeInfo Info
=
554 Context
.getBuiltinVectorTypeInfo(cast
<BuiltinType
>(Ty
));
555 return llvm::ScalableVectorType::get(ConvertType(Info
.ElementType
),
556 Info
.EC
.getKnownMinValue() *
559 case BuiltinType::SveCount
:
560 return llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
561 #define PPC_VECTOR_TYPE(Name, Id, Size) \
562 case BuiltinType::Id: \
564 llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
566 #include "clang/Basic/PPCTypes.def"
567 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
568 #include "clang/Basic/RISCVVTypes.def"
570 ASTContext::BuiltinVectorTypeInfo Info
=
571 Context
.getBuiltinVectorTypeInfo(cast
<BuiltinType
>(Ty
));
572 // Tuple types are expressed as aggregregate types of the same scalable
573 // vector type (e.g. vint32m1x2_t is two vint32m1_t, which is {<vscale x
574 // 2 x i32>, <vscale x 2 x i32>}).
575 if (Info
.NumVectors
!= 1) {
576 llvm::Type
*EltTy
= llvm::ScalableVectorType::get(
577 ConvertType(Info
.ElementType
), Info
.EC
.getKnownMinValue());
578 llvm::SmallVector
<llvm::Type
*, 4> EltTys(Info
.NumVectors
, EltTy
);
579 return llvm::StructType::get(getLLVMContext(), EltTys
);
581 return llvm::ScalableVectorType::get(ConvertType(Info
.ElementType
),
582 Info
.EC
.getKnownMinValue());
584 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \
585 case BuiltinType::Id: { \
586 if (BuiltinType::Id == BuiltinType::WasmExternRef) \
587 ResultType = CGM.getTargetCodeGenInfo().getWasmExternrefReferenceType(); \
589 llvm_unreachable("Unexpected wasm reference builtin type!"); \
591 #include "clang/Basic/WebAssemblyReferenceTypes.def"
592 #define AMDGPU_OPAQUE_PTR_TYPE(Name, MangledName, AS, Width, Align, Id, \
594 case BuiltinType::Id: \
595 return llvm::PointerType::get(getLLVMContext(), AS);
596 #include "clang/Basic/AMDGPUTypes.def"
597 case BuiltinType::Dependent
:
598 #define BUILTIN_TYPE(Id, SingletonId)
599 #define PLACEHOLDER_TYPE(Id, SingletonId) \
600 case BuiltinType::Id:
601 #include "clang/AST/BuiltinTypes.def"
602 llvm_unreachable("Unexpected placeholder builtin type!");
607 case Type::DeducedTemplateSpecialization
:
608 llvm_unreachable("Unexpected undeduced type!");
609 case Type::Complex
: {
610 llvm::Type
*EltTy
= ConvertType(cast
<ComplexType
>(Ty
)->getElementType());
611 ResultType
= llvm::StructType::get(EltTy
, EltTy
);
614 case Type::LValueReference
:
615 case Type::RValueReference
: {
616 const ReferenceType
*RTy
= cast
<ReferenceType
>(Ty
);
617 QualType ETy
= RTy
->getPointeeType();
618 unsigned AS
= getTargetAddressSpace(ETy
);
619 ResultType
= llvm::PointerType::get(getLLVMContext(), AS
);
622 case Type::Pointer
: {
623 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
624 QualType ETy
= PTy
->getPointeeType();
625 unsigned AS
= getTargetAddressSpace(ETy
);
626 ResultType
= llvm::PointerType::get(getLLVMContext(), AS
);
630 case Type::VariableArray
: {
631 const VariableArrayType
*A
= cast
<VariableArrayType
>(Ty
);
632 assert(A
->getIndexTypeCVRQualifiers() == 0 &&
633 "FIXME: We only handle trivial array types so far!");
634 // VLAs resolve to the innermost element type; this matches
635 // the return of alloca, and there isn't any obviously better choice.
636 ResultType
= ConvertTypeForMem(A
->getElementType());
639 case Type::IncompleteArray
: {
640 const IncompleteArrayType
*A
= cast
<IncompleteArrayType
>(Ty
);
641 assert(A
->getIndexTypeCVRQualifiers() == 0 &&
642 "FIXME: We only handle trivial array types so far!");
643 // int X[] -> [0 x int], unless the element type is not sized. If it is
644 // unsized (e.g. an incomplete struct) just use [0 x i8].
645 ResultType
= ConvertTypeForMem(A
->getElementType());
646 if (!ResultType
->isSized()) {
647 SkippedLayout
= true;
648 ResultType
= llvm::Type::getInt8Ty(getLLVMContext());
650 ResultType
= llvm::ArrayType::get(ResultType
, 0);
653 case Type::ArrayParameter
:
654 case Type::ConstantArray
: {
655 const ConstantArrayType
*A
= cast
<ConstantArrayType
>(Ty
);
656 llvm::Type
*EltTy
= ConvertTypeForMem(A
->getElementType());
658 // Lower arrays of undefined struct type to arrays of i8 just to have a
660 if (!EltTy
->isSized()) {
661 SkippedLayout
= true;
662 EltTy
= llvm::Type::getInt8Ty(getLLVMContext());
665 ResultType
= llvm::ArrayType::get(EltTy
, A
->getZExtSize());
668 case Type::ExtVector
:
670 const auto *VT
= cast
<VectorType
>(Ty
);
671 // An ext_vector_type of Bool is really a vector of bits.
672 llvm::Type
*IRElemTy
= VT
->isExtVectorBoolType()
673 ? llvm::Type::getInt1Ty(getLLVMContext())
674 : ConvertType(VT
->getElementType());
675 ResultType
= llvm::FixedVectorType::get(IRElemTy
, VT
->getNumElements());
678 case Type::ConstantMatrix
: {
679 const ConstantMatrixType
*MT
= cast
<ConstantMatrixType
>(Ty
);
681 llvm::FixedVectorType::get(ConvertType(MT
->getElementType()),
682 MT
->getNumRows() * MT
->getNumColumns());
685 case Type::FunctionNoProto
:
686 case Type::FunctionProto
:
687 ResultType
= ConvertFunctionTypeInternal(T
);
689 case Type::ObjCObject
:
690 ResultType
= ConvertType(cast
<ObjCObjectType
>(Ty
)->getBaseType());
693 case Type::ObjCInterface
: {
694 // Objective-C interfaces are always opaque (outside of the
695 // runtime, which can do whatever it likes); we never refine
697 llvm::Type
*&T
= InterfaceTypes
[cast
<ObjCInterfaceType
>(Ty
)];
699 T
= llvm::StructType::create(getLLVMContext());
704 case Type::ObjCObjectPointer
:
705 ResultType
= llvm::PointerType::getUnqual(getLLVMContext());
709 const EnumDecl
*ED
= cast
<EnumType
>(Ty
)->getDecl();
710 if (ED
->isCompleteDefinition() || ED
->isFixed())
711 return ConvertType(ED
->getIntegerType());
712 // Return a placeholder 'i32' type. This can be changed later when the
713 // type is defined (see UpdateCompletedType), but is likely to be the
715 ResultType
= llvm::Type::getInt32Ty(getLLVMContext());
719 case Type::BlockPointer
: {
720 // Block pointers lower to function type. For function type,
721 // getTargetAddressSpace() returns default address space for
722 // function pointer i.e. program address space. Therefore, for block
723 // pointers, it is important to pass the pointee AST address space when
724 // calling getTargetAddressSpace(), to ensure that we get the LLVM IR
725 // address space for data pointers and not function pointers.
726 const QualType FTy
= cast
<BlockPointerType
>(Ty
)->getPointeeType();
727 unsigned AS
= Context
.getTargetAddressSpace(FTy
.getAddressSpace());
728 ResultType
= llvm::PointerType::get(getLLVMContext(), AS
);
732 case Type::MemberPointer
: {
733 auto *MPTy
= cast
<MemberPointerType
>(Ty
);
734 if (!getCXXABI().isMemberPointerConvertible(MPTy
)) {
735 auto *C
= MPTy
->getClass();
736 auto Insertion
= RecordsWithOpaqueMemberPointers
.insert({C
, nullptr});
737 if (Insertion
.second
)
738 Insertion
.first
->second
= llvm::StructType::create(getLLVMContext());
739 ResultType
= Insertion
.first
->second
;
741 ResultType
= getCXXABI().ConvertMemberPointerType(MPTy
);
747 QualType valueType
= cast
<AtomicType
>(Ty
)->getValueType();
748 ResultType
= ConvertTypeForMem(valueType
);
750 // Pad out to the inflated size if necessary.
751 uint64_t valueSize
= Context
.getTypeSize(valueType
);
752 uint64_t atomicSize
= Context
.getTypeSize(Ty
);
753 if (valueSize
!= atomicSize
) {
754 assert(valueSize
< atomicSize
);
755 llvm::Type
*elts
[] = {
757 llvm::ArrayType::get(CGM
.Int8Ty
, (atomicSize
- valueSize
) / 8)
760 llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts
));
765 ResultType
= CGM
.getOpenCLRuntime().getPipeType(cast
<PipeType
>(Ty
));
769 const auto &EIT
= cast
<BitIntType
>(Ty
);
770 ResultType
= llvm::Type::getIntNTy(getLLVMContext(), EIT
->getNumBits());
775 assert(ResultType
&& "Didn't convert a type?");
776 assert((!CachedType
|| CachedType
== ResultType
) &&
777 "Cached type doesn't match computed type");
779 TypeCache
[Ty
] = ResultType
;
783 bool CodeGenModule::isPaddedAtomicType(QualType type
) {
784 return isPaddedAtomicType(type
->castAs
<AtomicType
>());
787 bool CodeGenModule::isPaddedAtomicType(const AtomicType
*type
) {
788 return Context
.getTypeSize(type
) != Context
.getTypeSize(type
->getValueType());
791 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
792 llvm::StructType
*CodeGenTypes::ConvertRecordDeclType(const RecordDecl
*RD
) {
793 // TagDecl's are not necessarily unique, instead use the (clang)
794 // type connected to the decl.
795 const Type
*Key
= Context
.getTagDeclType(RD
).getTypePtr();
797 llvm::StructType
*&Entry
= RecordDeclTypes
[Key
];
799 // If we don't have a StructType at all yet, create the forward declaration.
801 Entry
= llvm::StructType::create(getLLVMContext());
802 addRecordTypeName(RD
, Entry
, "");
804 llvm::StructType
*Ty
= Entry
;
806 // If this is still a forward declaration, or the LLVM type is already
807 // complete, there's nothing more to do.
808 RD
= RD
->getDefinition();
809 if (!RD
|| !RD
->isCompleteDefinition() || !Ty
->isOpaque())
812 // Force conversion of non-virtual base classes recursively.
813 if (const CXXRecordDecl
*CRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
814 for (const auto &I
: CRD
->bases()) {
815 if (I
.isVirtual()) continue;
816 ConvertRecordDeclType(I
.getType()->castAs
<RecordType
>()->getDecl());
821 std::unique_ptr
<CGRecordLayout
> Layout
= ComputeRecordLayout(RD
, Ty
);
822 CGRecordLayouts
[Key
] = std::move(Layout
);
824 // If this struct blocked a FunctionType conversion, then recompute whatever
825 // was derived from that.
826 // FIXME: This is hugely overconservative.
833 /// getCGRecordLayout - Return record layout info for the given record decl.
834 const CGRecordLayout
&
835 CodeGenTypes::getCGRecordLayout(const RecordDecl
*RD
) {
836 const Type
*Key
= Context
.getTagDeclType(RD
).getTypePtr();
838 auto I
= CGRecordLayouts
.find(Key
);
839 if (I
!= CGRecordLayouts
.end())
841 // Compute the type information.
842 ConvertRecordDeclType(RD
);
845 I
= CGRecordLayouts
.find(Key
);
847 assert(I
!= CGRecordLayouts
.end() &&
848 "Unable to find record layout information for type");
852 bool CodeGenTypes::isPointerZeroInitializable(QualType T
) {
853 assert((T
->isAnyPointerType() || T
->isBlockPointerType()) && "Invalid type");
854 return isZeroInitializable(T
);
857 bool CodeGenTypes::isZeroInitializable(QualType T
) {
858 if (T
->getAs
<PointerType
>())
859 return Context
.getTargetNullPointerValue(T
) == 0;
861 if (const auto *AT
= Context
.getAsArrayType(T
)) {
862 if (isa
<IncompleteArrayType
>(AT
))
864 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(AT
))
865 if (Context
.getConstantArrayElementCount(CAT
) == 0)
867 T
= Context
.getBaseElementType(T
);
870 // Records are non-zero-initializable if they contain any
871 // non-zero-initializable subobjects.
872 if (const RecordType
*RT
= T
->getAs
<RecordType
>()) {
873 const RecordDecl
*RD
= RT
->getDecl();
874 return isZeroInitializable(RD
);
877 // We have to ask the ABI about member pointers.
878 if (const MemberPointerType
*MPT
= T
->getAs
<MemberPointerType
>())
879 return getCXXABI().isZeroInitializable(MPT
);
881 // Everything else is okay.
885 bool CodeGenTypes::isZeroInitializable(const RecordDecl
*RD
) {
886 return getCGRecordLayout(RD
).isZeroInitializable();
889 unsigned CodeGenTypes::getTargetAddressSpace(QualType T
) const {
890 // Return the address space for the type. If the type is a
891 // function type without an address space qualifier, the
892 // program address space is used. Otherwise, the target picks
893 // the best address space based on the type information
894 return T
->isFunctionType() && !T
.hasAddressSpace()
895 ? getDataLayout().getProgramAddressSpace()
896 : getContext().getTargetAddressSpace(T
.getAddressSpace());