[clang-repl] [codegen] Reduce the state in TBAA. NFC for static compilation. (#98138)
[llvm-project.git] / polly / lib / Support / ScopHelper.cpp
blob24c7011b06de93207c5e1eb5abc62f37c6dd79bd
1 //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Small functions that help with Scop and LLVM-IR.
11 //===----------------------------------------------------------------------===//
13 #include "polly/Support/ScopHelper.h"
14 #include "polly/Options.h"
15 #include "polly/ScopInfo.h"
16 #include "polly/Support/SCEVValidator.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/LoopUtils.h"
23 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
24 #include <optional>
26 using namespace llvm;
27 using namespace polly;
29 #define DEBUG_TYPE "polly-scop-helper"
31 static cl::list<std::string> DebugFunctions(
32 "polly-debug-func",
33 cl::desc("Allow calls to the specified functions in SCoPs even if their "
34 "side-effects are unknown. This can be used to do debug output in "
35 "Polly-transformed code."),
36 cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory));
38 // Ensures that there is just one predecessor to the entry node from outside the
39 // region.
40 // The identity of the region entry node is preserved.
41 static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
42 RegionInfo *RI) {
43 BasicBlock *EnteringBB = R->getEnteringBlock();
44 BasicBlock *Entry = R->getEntry();
46 // Before (one of):
48 // \ / //
49 // EnteringBB //
50 // | \------> //
51 // \ / | //
52 // Entry <--\ Entry <--\ //
53 // / \ / / \ / //
54 // .... .... //
56 // Create single entry edge if the region has multiple entry edges.
57 if (!EnteringBB) {
58 SmallVector<BasicBlock *, 4> Preds;
59 for (BasicBlock *P : predecessors(Entry))
60 if (!R->contains(P))
61 Preds.push_back(P);
63 BasicBlock *NewEntering =
64 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);
66 if (RI) {
67 // The exit block of predecessing regions must be changed to NewEntering
68 for (BasicBlock *ExitPred : predecessors(NewEntering)) {
69 Region *RegionOfPred = RI->getRegionFor(ExitPred);
70 if (RegionOfPred->getExit() != Entry)
71 continue;
73 while (!RegionOfPred->isTopLevelRegion() &&
74 RegionOfPred->getExit() == Entry) {
75 RegionOfPred->replaceExit(NewEntering);
76 RegionOfPred = RegionOfPred->getParent();
80 // Make all ancestors use EnteringBB as entry; there might be edges to it
81 Region *AncestorR = R->getParent();
82 RI->setRegionFor(NewEntering, AncestorR);
83 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
84 AncestorR->replaceEntry(NewEntering);
85 AncestorR = AncestorR->getParent();
89 EnteringBB = NewEntering;
91 assert(R->getEnteringBlock() == EnteringBB);
93 // After:
95 // \ / //
96 // EnteringBB //
97 // | //
98 // | //
99 // Entry <--\ //
100 // / \ / //
101 // .... //
104 // Ensure that the region has a single block that branches to the exit node.
105 static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
106 RegionInfo *RI) {
107 BasicBlock *ExitBB = R->getExit();
108 BasicBlock *ExitingBB = R->getExitingBlock();
110 // Before:
112 // (Region) ______/ //
113 // \ | / //
114 // ExitBB //
115 // / \ //
117 if (!ExitingBB) {
118 SmallVector<BasicBlock *, 4> Preds;
119 for (BasicBlock *P : predecessors(ExitBB))
120 if (R->contains(P))
121 Preds.push_back(P);
123 // Preds[0] Preds[1] otherBB //
124 // \ | ________/ //
125 // \ | / //
126 // BB //
127 ExitingBB =
128 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
129 // Preds[0] Preds[1] otherBB //
130 // \ / / //
131 // BB.region_exiting / //
132 // \ / //
133 // BB //
135 if (RI)
136 RI->setRegionFor(ExitingBB, R);
138 // Change the exit of nested regions, but not the region itself,
139 R->replaceExitRecursive(ExitingBB);
140 R->replaceExit(ExitBB);
142 assert(ExitingBB == R->getExitingBlock());
144 // After:
146 // \ / //
147 // ExitingBB _____/ //
148 // \ / //
149 // ExitBB //
150 // / \ //
153 void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
154 RegionInfo *RI) {
155 assert(R && !R->isTopLevelRegion());
156 assert(!RI || RI == R->getRegionInfo());
157 assert((!RI || DT) &&
158 "RegionInfo requires DominatorTree to be updated as well");
160 simplifyRegionEntry(R, DT, LI, RI);
161 simplifyRegionExit(R, DT, LI, RI);
162 assert(R->isSimple());
165 // Split the block into two successive blocks.
167 // Like llvm::SplitBlock, but also preserves RegionInfo
168 static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
169 DominatorTree *DT, llvm::LoopInfo *LI,
170 RegionInfo *RI) {
171 assert(Old && SplitPt);
173 // Before:
175 // \ / //
176 // Old //
177 // / \ //
179 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);
181 if (RI) {
182 Region *R = RI->getRegionFor(Old);
183 RI->setRegionFor(NewBlock, R);
186 // After:
188 // \ / //
189 // Old //
190 // | //
191 // NewBlock //
192 // / \ //
194 return NewBlock;
197 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT,
198 LoopInfo *LI, RegionInfo *RI) {
199 // Find first non-alloca instruction. Every basic block has a non-alloca
200 // instruction, as every well formed basic block has a terminator.
201 BasicBlock::iterator I = EntryBlock->begin();
202 while (isa<AllocaInst>(I))
203 ++I;
205 // splitBlock updates DT, LI and RI.
206 splitBlock(EntryBlock, &*I, DT, LI, RI);
209 void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
210 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
211 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
212 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
213 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
214 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
215 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;
217 // splitBlock updates DT, LI and RI.
218 polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI);
221 void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions,
222 polly::AssumptionKind Kind, isl::set Set,
223 DebugLoc Loc, polly::AssumptionSign Sign,
224 BasicBlock *BB, bool RTC) {
225 assert((Set.is_params() || BB) &&
226 "Assumptions without a basic block must be parameter sets");
227 if (RecordedAssumptions)
228 RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB, RTC});
231 /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
232 /// instruction but just use it, if it is referenced as a SCEVUnknown. We want
233 /// however to generate new code if the instruction is in the analyzed region
234 /// and we generate code outside/in front of that region. Hence, we generate the
235 /// code for the SDiv/SRem operands in front of the analyzed region and then
236 /// create a new SDiv/SRem operation there too.
237 struct ScopExpander final : SCEVVisitor<ScopExpander, const SCEV *> {
238 friend struct SCEVVisitor<ScopExpander, const SCEV *>;
240 explicit ScopExpander(const Region &R, ScalarEvolution &SE,
241 const DataLayout &DL, const char *Name, ValueMapT *VMap,
242 BasicBlock *RTCBB)
243 : Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name),
244 R(R), VMap(VMap), RTCBB(RTCBB) {}
246 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) {
247 // If we generate code in the region we will immediately fall back to the
248 // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if
249 // needed replace them by copies computed in the entering block.
250 if (!R.contains(I))
251 E = visit(E);
252 return Expander.expandCodeFor(E, Ty, I);
255 const SCEV *visit(const SCEV *E) {
256 // Cache the expansion results for intermediate SCEV expressions. A SCEV
257 // expression can refer to an operand multiple times (e.g. "x*x), so
258 // a naive visitor takes exponential time.
259 if (SCEVCache.count(E))
260 return SCEVCache[E];
261 const SCEV *Result = SCEVVisitor::visit(E);
262 SCEVCache[E] = Result;
263 return Result;
266 private:
267 SCEVExpander Expander;
268 ScalarEvolution &SE;
269 const char *Name;
270 const Region &R;
271 ValueMapT *VMap;
272 BasicBlock *RTCBB;
273 DenseMap<const SCEV *, const SCEV *> SCEVCache;
275 const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst,
276 Instruction *IP) {
277 if (!Inst || !R.contains(Inst))
278 return E;
280 assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() &&
281 !isa<PHINode>(Inst));
283 auto *InstClone = Inst->clone();
284 for (auto &Op : Inst->operands()) {
285 assert(SE.isSCEVable(Op->getType()));
286 auto *OpSCEV = SE.getSCEV(Op);
287 auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP);
288 InstClone->replaceUsesOfWith(Op, OpClone);
291 InstClone->setName(Name + Inst->getName());
292 InstClone->insertBefore(IP);
293 return SE.getSCEV(InstClone);
296 const SCEV *visitUnknown(const SCEVUnknown *E) {
298 // If a value mapping was given try if the underlying value is remapped.
299 Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr;
300 if (NewVal) {
301 auto *NewE = SE.getSCEV(NewVal);
303 // While the mapped value might be different the SCEV representation might
304 // not be. To this end we will check before we go into recursion here.
305 if (E != NewE)
306 return visit(NewE);
309 Instruction *Inst = dyn_cast<Instruction>(E->getValue());
310 Instruction *IP;
311 if (Inst && !R.contains(Inst))
312 IP = Inst;
313 else if (Inst && RTCBB->getParent() == Inst->getFunction())
314 IP = RTCBB->getTerminator();
315 else
316 IP = RTCBB->getParent()->getEntryBlock().getTerminator();
318 if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
319 Inst->getOpcode() != Instruction::SDiv))
320 return visitGenericInst(E, Inst, IP);
322 const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0));
323 const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1));
325 if (!SE.isKnownNonZero(RHSScev))
326 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
328 Value *LHS = expandCodeFor(LHSScev, E->getType(), IP);
329 Value *RHS = expandCodeFor(RHSScev, E->getType(), IP);
331 Inst =
332 BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), LHS,
333 RHS, Inst->getName() + Name, IP->getIterator());
334 return SE.getSCEV(Inst);
337 /// The following functions will just traverse the SCEV and rebuild it with
338 /// the new operands returned by the traversal.
340 ///{
341 const SCEV *visitConstant(const SCEVConstant *E) { return E; }
342 const SCEV *visitVScale(const SCEVVScale *E) { return E; }
343 const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) {
344 return SE.getPtrToIntExpr(visit(E->getOperand()), E->getType());
346 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
347 return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
349 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
350 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
352 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
353 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
355 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
356 auto *RHSScev = visit(E->getRHS());
357 if (!SE.isKnownNonZero(RHSScev))
358 RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
359 return SE.getUDivExpr(visit(E->getLHS()), RHSScev);
361 const SCEV *visitAddExpr(const SCEVAddExpr *E) {
362 SmallVector<const SCEV *, 4> NewOps;
363 for (const SCEV *Op : E->operands())
364 NewOps.push_back(visit(Op));
365 return SE.getAddExpr(NewOps);
367 const SCEV *visitMulExpr(const SCEVMulExpr *E) {
368 SmallVector<const SCEV *, 4> NewOps;
369 for (const SCEV *Op : E->operands())
370 NewOps.push_back(visit(Op));
371 return SE.getMulExpr(NewOps);
373 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
374 SmallVector<const SCEV *, 4> NewOps;
375 for (const SCEV *Op : E->operands())
376 NewOps.push_back(visit(Op));
377 return SE.getUMaxExpr(NewOps);
379 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
380 SmallVector<const SCEV *, 4> NewOps;
381 for (const SCEV *Op : E->operands())
382 NewOps.push_back(visit(Op));
383 return SE.getSMaxExpr(NewOps);
385 const SCEV *visitUMinExpr(const SCEVUMinExpr *E) {
386 SmallVector<const SCEV *, 4> NewOps;
387 for (const SCEV *Op : E->operands())
388 NewOps.push_back(visit(Op));
389 return SE.getUMinExpr(NewOps);
391 const SCEV *visitSMinExpr(const SCEVSMinExpr *E) {
392 SmallVector<const SCEV *, 4> NewOps;
393 for (const SCEV *Op : E->operands())
394 NewOps.push_back(visit(Op));
395 return SE.getSMinExpr(NewOps);
397 const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *E) {
398 SmallVector<const SCEV *, 4> NewOps;
399 for (const SCEV *Op : E->operands())
400 NewOps.push_back(visit(Op));
401 return SE.getUMinExpr(NewOps, /*Sequential=*/true);
403 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
404 SmallVector<const SCEV *, 4> NewOps;
405 for (const SCEV *Op : E->operands())
406 NewOps.push_back(visit(Op));
407 return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags());
409 ///}
412 Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL,
413 const char *Name, const SCEV *E, Type *Ty,
414 Instruction *IP, ValueMapT *VMap,
415 BasicBlock *RTCBB) {
416 ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB);
417 return Expander.expandCodeFor(E, Ty, IP);
420 Value *polly::getConditionFromTerminator(Instruction *TI) {
421 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
422 if (BR->isUnconditional())
423 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));
425 return BR->getCondition();
428 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
429 return SI->getCondition();
431 return nullptr;
434 Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) {
435 // Start with the smallest loop containing the entry and expand that
436 // loop until it contains all blocks in the region. If there is a loop
437 // containing all blocks in the region check if it is itself contained
438 // and if so take the parent loop as it will be the smallest containing
439 // the region but not contained by it.
440 Loop *L = LI.getLoopFor(S.getEntry());
441 while (L) {
442 bool AllContained = true;
443 for (auto *BB : S.blocks())
444 AllContained &= L->contains(BB);
445 if (AllContained)
446 break;
447 L = L->getParentLoop();
450 return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr;
453 unsigned polly::getNumBlocksInLoop(Loop *L) {
454 unsigned NumBlocks = L->getNumBlocks();
455 SmallVector<BasicBlock *, 4> ExitBlocks;
456 L->getExitBlocks(ExitBlocks);
458 for (auto ExitBlock : ExitBlocks) {
459 if (isa<UnreachableInst>(ExitBlock->getTerminator()))
460 NumBlocks++;
462 return NumBlocks;
465 unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) {
466 if (!RN->isSubRegion())
467 return 1;
469 Region *R = RN->getNodeAs<Region>();
470 return std::distance(R->block_begin(), R->block_end());
473 Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
474 if (!RN->isSubRegion()) {
475 BasicBlock *BB = RN->getNodeAs<BasicBlock>();
476 Loop *L = LI.getLoopFor(BB);
478 // Unreachable statements are not considered to belong to a LLVM loop, as
479 // they are not part of an actual loop in the control flow graph.
480 // Nevertheless, we handle certain unreachable statements that are common
481 // when modeling run-time bounds checks as being part of the loop to be
482 // able to model them and to later eliminate the run-time bounds checks.
484 // Specifically, for basic blocks that terminate in an unreachable and
485 // where the immediate predecessor is part of a loop, we assume these
486 // basic blocks belong to the loop the predecessor belongs to. This
487 // allows us to model the following code.
489 // for (i = 0; i < N; i++) {
490 // if (i > 1024)
491 // abort(); <- this abort might be translated to an
492 // unreachable
494 // A[i] = ...
495 // }
496 if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode())
497 L = LI.getLoopFor(BB->getPrevNode());
498 return L;
501 Region *NonAffineSubRegion = RN->getNodeAs<Region>();
502 Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
503 while (L && NonAffineSubRegion->contains(L))
504 L = L->getParentLoop();
505 return L;
508 static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R,
509 ScalarEvolution &SE) {
510 for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) {
511 const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L);
512 Loop *OuterLoop = R.outermostLoopInRegion(L);
513 if (!SE.isLoopInvariant(PtrSCEV, OuterLoop))
514 return true;
516 return false;
519 bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI,
520 ScalarEvolution &SE, const DominatorTree &DT,
521 const InvariantLoadsSetTy &KnownInvariantLoads) {
522 Loop *L = LI.getLoopFor(LInst->getParent());
523 auto *Ptr = LInst->getPointerOperand();
525 // A LoadInst is hoistable if the address it is loading from is also
526 // invariant; in this case: another invariant load (whether that address
527 // is also not written to has to be checked separately)
528 // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst
529 // pattern generated by the Chapel frontend, but generally this applies
530 // for any chain of instruction that does not also depend on any
531 // induction variable
532 if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) {
533 if (!hasVariantIndex(GepInst, L, R, SE)) {
534 if (auto *DecidingLoad =
535 dyn_cast<LoadInst>(GepInst->getPointerOperand())) {
536 if (KnownInvariantLoads.count(DecidingLoad))
537 return true;
542 const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L);
543 while (L && R.contains(L)) {
544 if (!SE.isLoopInvariant(PtrSCEV, L))
545 return false;
546 L = L->getParentLoop();
549 for (auto *User : Ptr->users()) {
550 auto *UserI = dyn_cast<Instruction>(User);
551 if (!UserI || !R.contains(UserI))
552 continue;
553 if (!UserI->mayWriteToMemory())
554 continue;
556 auto &BB = *UserI->getParent();
557 if (DT.dominates(&BB, LInst->getParent()))
558 return false;
560 bool DominatesAllPredecessors = true;
561 if (R.isTopLevelRegion()) {
562 for (BasicBlock &I : *R.getEntry()->getParent())
563 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I))
564 DominatesAllPredecessors = false;
565 } else {
566 for (auto Pred : predecessors(R.getExit()))
567 if (R.contains(Pred) && !DT.dominates(&BB, Pred))
568 DominatesAllPredecessors = false;
571 if (!DominatesAllPredecessors)
572 continue;
574 return false;
577 return true;
580 bool polly::isIgnoredIntrinsic(const Value *V) {
581 if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
582 switch (IT->getIntrinsicID()) {
583 // Lifetime markers are supported/ignored.
584 case llvm::Intrinsic::lifetime_start:
585 case llvm::Intrinsic::lifetime_end:
586 // Invariant markers are supported/ignored.
587 case llvm::Intrinsic::invariant_start:
588 case llvm::Intrinsic::invariant_end:
589 // Some misc annotations are supported/ignored.
590 case llvm::Intrinsic::var_annotation:
591 case llvm::Intrinsic::ptr_annotation:
592 case llvm::Intrinsic::annotation:
593 case llvm::Intrinsic::donothing:
594 case llvm::Intrinsic::assume:
595 // Some debug info intrinsics are supported/ignored.
596 case llvm::Intrinsic::dbg_value:
597 case llvm::Intrinsic::dbg_declare:
598 return true;
599 default:
600 break;
603 return false;
606 bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE,
607 Loop *Scope) {
608 if (!V || !SE->isSCEVable(V->getType()))
609 return false;
611 const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads();
612 if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope))
613 if (!isa<SCEVCouldNotCompute>(Scev))
614 if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS))
615 return true;
617 return false;
620 llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) {
621 Instruction *UI = dyn_cast<Instruction>(U.getUser());
622 if (!UI)
623 return nullptr;
625 if (PHINode *PHI = dyn_cast<PHINode>(UI))
626 return PHI->getIncomingBlock(U);
628 return UI->getParent();
631 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI,
632 const BoxedLoopsSetTy &BoxedLoops) {
633 while (BoxedLoops.count(L))
634 L = L->getParentLoop();
635 return L;
638 llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB,
639 llvm::LoopInfo &LI,
640 const BoxedLoopsSetTy &BoxedLoops) {
641 Loop *L = LI.getLoopFor(BB);
642 return getFirstNonBoxedLoopFor(L, LI, BoxedLoops);
645 bool polly::isDebugCall(Instruction *Inst) {
646 auto *CI = dyn_cast<CallInst>(Inst);
647 if (!CI)
648 return false;
650 Function *CF = CI->getCalledFunction();
651 if (!CF)
652 return false;
654 return std::find(DebugFunctions.begin(), DebugFunctions.end(),
655 CF->getName()) != DebugFunctions.end();
658 static bool hasDebugCall(BasicBlock *BB) {
659 for (Instruction &Inst : *BB) {
660 if (isDebugCall(&Inst))
661 return true;
663 return false;
666 bool polly::hasDebugCall(ScopStmt *Stmt) {
667 // Quick skip if no debug functions have been defined.
668 if (DebugFunctions.empty())
669 return false;
671 if (!Stmt)
672 return false;
674 for (Instruction *Inst : Stmt->getInstructions())
675 if (isDebugCall(Inst))
676 return true;
678 if (Stmt->isRegionStmt()) {
679 for (BasicBlock *RBB : Stmt->getRegion()->blocks())
680 if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB))
681 return true;
684 return false;
687 /// Find a property in a LoopID.
688 static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) {
689 if (!LoopMD)
690 return nullptr;
691 for (const MDOperand &X : drop_begin(LoopMD->operands(), 1)) {
692 auto *OpNode = dyn_cast<MDNode>(X.get());
693 if (!OpNode)
694 continue;
696 auto *OpName = dyn_cast<MDString>(OpNode->getOperand(0));
697 if (!OpName)
698 continue;
699 if (OpName->getString() == Name)
700 return OpNode;
702 return nullptr;
705 static std::optional<const MDOperand *> findNamedMetadataArg(MDNode *LoopID,
706 StringRef Name) {
707 MDNode *MD = findNamedMetadataNode(LoopID, Name);
708 if (!MD)
709 return std::nullopt;
710 switch (MD->getNumOperands()) {
711 case 1:
712 return nullptr;
713 case 2:
714 return &MD->getOperand(1);
715 default:
716 llvm_unreachable("loop metadata has 0 or 1 operand");
720 std::optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD,
721 StringRef Name) {
722 MDNode *MD = findNamedMetadataNode(LoopMD, Name);
723 if (!MD)
724 return std::nullopt;
725 switch (MD->getNumOperands()) {
726 case 1:
727 return nullptr;
728 case 2:
729 return MD->getOperand(1).get();
730 default:
731 llvm_unreachable("loop metadata must have 0 or 1 operands");
735 static std::optional<bool> getOptionalBoolLoopAttribute(MDNode *LoopID,
736 StringRef Name) {
737 MDNode *MD = findNamedMetadataNode(LoopID, Name);
738 if (!MD)
739 return std::nullopt;
740 switch (MD->getNumOperands()) {
741 case 1:
742 return true;
743 case 2:
744 if (ConstantInt *IntMD =
745 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
746 return IntMD->getZExtValue();
747 return true;
749 llvm_unreachable("unexpected number of options");
752 bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) {
753 return getOptionalBoolLoopAttribute(LoopID, Name).value_or(false);
756 std::optional<int> polly::getOptionalIntLoopAttribute(MDNode *LoopID,
757 StringRef Name) {
758 const MDOperand *AttrMD =
759 findNamedMetadataArg(LoopID, Name).value_or(nullptr);
760 if (!AttrMD)
761 return std::nullopt;
763 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
764 if (!IntMD)
765 return std::nullopt;
767 return IntMD->getSExtValue();
770 bool polly::hasDisableAllTransformsHint(Loop *L) {
771 return llvm::hasDisableAllTransformsHint(L);
774 bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) {
775 return getBooleanLoopAttribute(LoopID, "llvm.loop.disable_nonforced");
778 isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) {
779 assert(Attr && "Must be a valid BandAttr");
781 // The name "Loop" signals that this id contains a pointer to a BandAttr.
782 // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in
783 // markers, but it's user pointer is an llvm::Value.
784 isl::id Result = isl::id::alloc(Ctx, "Loop with Metadata", Attr);
785 Result = isl::manage(isl_id_set_free_user(Result.release(), [](void *Ptr) {
786 BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr);
787 delete Attr;
788 }));
789 return Result;
792 isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) {
793 if (!L)
794 return {};
796 // A loop without metadata does not need to be annotated.
797 MDNode *LoopID = L->getLoopID();
798 if (!LoopID)
799 return {};
801 BandAttr *Attr = new BandAttr();
802 Attr->OriginalLoop = L;
803 Attr->Metadata = L->getLoopID();
805 return getIslLoopAttr(Ctx, Attr);
808 bool polly::isLoopAttr(const isl::id &Id) {
809 if (Id.is_null())
810 return false;
812 return Id.get_name() == "Loop with Metadata";
815 BandAttr *polly::getLoopAttr(const isl::id &Id) {
816 if (!isLoopAttr(Id))
817 return nullptr;
819 return reinterpret_cast<BandAttr *>(Id.get_user());