[clang][extract-api] Emit "navigator" property of "name" in SymbolGraph
[llvm-project.git] / compiler-rt / lib / tsan / rtl / tsan_interceptors_posix.cpp
blobd6021a754e71aee4b257905712772e26faf70fc1
1 //===-- tsan_interceptors_posix.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 // FIXME: move as many interceptors as possible into
12 // sanitizer_common/sanitizer_common_interceptors.inc
13 //===----------------------------------------------------------------------===//
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_linux.h"
19 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
20 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
21 #include "sanitizer_common/sanitizer_placement_new.h"
22 #include "sanitizer_common/sanitizer_posix.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_tls_get_addr.h"
25 #include "interception/interception.h"
26 #include "tsan_interceptors.h"
27 #include "tsan_interface.h"
28 #include "tsan_platform.h"
29 #include "tsan_suppressions.h"
30 #include "tsan_rtl.h"
31 #include "tsan_mman.h"
32 #include "tsan_fd.h"
34 #include <stdarg.h>
36 using namespace __tsan;
38 #if SANITIZER_FREEBSD || SANITIZER_MAC
39 #define stdout __stdoutp
40 #define stderr __stderrp
41 #endif
43 #if SANITIZER_NETBSD
44 #define dirfd(dirp) (*(int *)(dirp))
45 #define fileno_unlocked(fp) \
46 (((__sanitizer_FILE *)fp)->_file == -1 \
47 ? -1 \
48 : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
50 #define stdout ((__sanitizer_FILE*)&__sF[1])
51 #define stderr ((__sanitizer_FILE*)&__sF[2])
53 #define nanosleep __nanosleep50
54 #define vfork __vfork14
55 #endif
57 #ifdef __mips__
58 const int kSigCount = 129;
59 #else
60 const int kSigCount = 65;
61 #endif
63 #ifdef __mips__
64 struct ucontext_t {
65 u64 opaque[768 / sizeof(u64) + 1];
67 #else
68 struct ucontext_t {
69 // The size is determined by looking at sizeof of real ucontext_t on linux.
70 u64 opaque[936 / sizeof(u64) + 1];
72 #endif
74 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \
75 defined(__s390x__)
76 #define PTHREAD_ABI_BASE "GLIBC_2.3.2"
77 #elif defined(__aarch64__) || SANITIZER_PPC64V2
78 #define PTHREAD_ABI_BASE "GLIBC_2.17"
79 #endif
81 extern "C" int pthread_attr_init(void *attr);
82 extern "C" int pthread_attr_destroy(void *attr);
83 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
84 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
85 extern "C" int pthread_atfork(void (*prepare)(void), void (*parent)(void),
86 void (*child)(void));
87 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
88 extern "C" int pthread_setspecific(unsigned key, const void *v);
89 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
90 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
91 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
92 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
93 extern "C" int pthread_equal(void *t1, void *t2);
94 extern "C" void *pthread_self();
95 extern "C" void _exit(int status);
96 #if !SANITIZER_NETBSD
97 extern "C" int fileno_unlocked(void *stream);
98 extern "C" int dirfd(void *dirp);
99 #endif
100 #if SANITIZER_NETBSD
101 extern __sanitizer_FILE __sF[];
102 #else
103 extern __sanitizer_FILE *stdout, *stderr;
104 #endif
105 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
106 const int PTHREAD_MUTEX_RECURSIVE = 1;
107 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
108 #else
109 const int PTHREAD_MUTEX_RECURSIVE = 2;
110 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
111 #endif
112 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
113 const int EPOLL_CTL_ADD = 1;
114 #endif
115 const int SIGILL = 4;
116 const int SIGTRAP = 5;
117 const int SIGABRT = 6;
118 const int SIGFPE = 8;
119 const int SIGSEGV = 11;
120 const int SIGPIPE = 13;
121 const int SIGTERM = 15;
122 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
123 const int SIGBUS = 10;
124 const int SIGSYS = 12;
125 #else
126 const int SIGBUS = 7;
127 const int SIGSYS = 31;
128 #endif
129 void *const MAP_FAILED = (void*)-1;
130 #if SANITIZER_NETBSD
131 const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
132 #elif !SANITIZER_MAC
133 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
134 #endif
135 const int MAP_FIXED = 0x10;
136 typedef long long_t;
137 typedef __sanitizer::u16 mode_t;
139 // From /usr/include/unistd.h
140 # define F_ULOCK 0 /* Unlock a previously locked region. */
141 # define F_LOCK 1 /* Lock a region for exclusive use. */
142 # define F_TLOCK 2 /* Test and lock a region for exclusive use. */
143 # define F_TEST 3 /* Test a region for other processes locks. */
145 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
146 const int SA_SIGINFO = 0x40;
147 const int SIG_SETMASK = 3;
148 #elif defined(__mips__)
149 const int SA_SIGINFO = 8;
150 const int SIG_SETMASK = 3;
151 #else
152 const int SA_SIGINFO = 4;
153 const int SIG_SETMASK = 2;
154 #endif
156 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
157 (!cur_thread_init()->is_inited)
159 namespace __tsan {
160 struct SignalDesc {
161 bool armed;
162 __sanitizer_siginfo siginfo;
163 ucontext_t ctx;
166 struct ThreadSignalContext {
167 int int_signal_send;
168 atomic_uintptr_t in_blocking_func;
169 SignalDesc pending_signals[kSigCount];
170 // emptyset and oldset are too big for stack.
171 __sanitizer_sigset_t emptyset;
172 __sanitizer_sigset_t oldset;
175 // The sole reason tsan wraps atexit callbacks is to establish synchronization
176 // between callback setup and callback execution.
177 struct AtExitCtx {
178 void (*f)();
179 void *arg;
180 uptr pc;
183 // InterceptorContext holds all global data required for interceptors.
184 // It's explicitly constructed in InitializeInterceptors with placement new
185 // and is never destroyed. This allows usage of members with non-trivial
186 // constructors and destructors.
187 struct InterceptorContext {
188 // The object is 64-byte aligned, because we want hot data to be located
189 // in a single cache line if possible (it's accessed in every interceptor).
190 ALIGNED(64) LibIgnore libignore;
191 __sanitizer_sigaction sigactions[kSigCount];
192 #if !SANITIZER_MAC && !SANITIZER_NETBSD
193 unsigned finalize_key;
194 #endif
196 Mutex atexit_mu;
197 Vector<struct AtExitCtx *> AtExitStack;
199 InterceptorContext() : libignore(LINKER_INITIALIZED), atexit_mu(MutexTypeAtExit), AtExitStack() {}
202 static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
203 InterceptorContext *interceptor_ctx() {
204 return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
207 LibIgnore *libignore() {
208 return &interceptor_ctx()->libignore;
211 void InitializeLibIgnore() {
212 const SuppressionContext &supp = *Suppressions();
213 const uptr n = supp.SuppressionCount();
214 for (uptr i = 0; i < n; i++) {
215 const Suppression *s = supp.SuppressionAt(i);
216 if (0 == internal_strcmp(s->type, kSuppressionLib))
217 libignore()->AddIgnoredLibrary(s->templ);
219 if (flags()->ignore_noninstrumented_modules)
220 libignore()->IgnoreNoninstrumentedModules(true);
221 libignore()->OnLibraryLoaded(0);
224 // The following two hooks can be used by for cooperative scheduling when
225 // locking.
226 #ifdef TSAN_EXTERNAL_HOOKS
227 void OnPotentiallyBlockingRegionBegin();
228 void OnPotentiallyBlockingRegionEnd();
229 #else
230 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
231 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
232 #endif
234 } // namespace __tsan
236 static ThreadSignalContext *SigCtx(ThreadState *thr) {
237 ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
238 if (ctx == 0 && !thr->is_dead) {
239 ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
240 MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
241 thr->signal_ctx = ctx;
243 return ctx;
246 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
247 uptr pc)
248 : thr_(thr), in_ignored_lib_(false), ignoring_(false) {
249 LazyInitialize(thr);
250 if (!thr_->is_inited) return;
251 if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
252 DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
253 ignoring_ =
254 !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
255 libignore()->IsIgnored(pc, &in_ignored_lib_));
256 EnableIgnores();
259 ScopedInterceptor::~ScopedInterceptor() {
260 if (!thr_->is_inited) return;
261 DisableIgnores();
262 if (!thr_->ignore_interceptors) {
263 ProcessPendingSignals(thr_);
264 FuncExit(thr_);
265 CheckedMutex::CheckNoLocks();
269 NOINLINE
270 void ScopedInterceptor::EnableIgnoresImpl() {
271 ThreadIgnoreBegin(thr_, 0);
272 if (flags()->ignore_noninstrumented_modules)
273 thr_->suppress_reports++;
274 if (in_ignored_lib_) {
275 DCHECK(!thr_->in_ignored_lib);
276 thr_->in_ignored_lib = true;
280 NOINLINE
281 void ScopedInterceptor::DisableIgnoresImpl() {
282 ThreadIgnoreEnd(thr_);
283 if (flags()->ignore_noninstrumented_modules)
284 thr_->suppress_reports--;
285 if (in_ignored_lib_) {
286 DCHECK(thr_->in_ignored_lib);
287 thr_->in_ignored_lib = false;
291 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
292 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
293 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
294 #else
295 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
296 #endif
297 #if SANITIZER_FREEBSD
298 # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) \
299 INTERCEPT_FUNCTION(_pthread_##func)
300 #else
301 # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func)
302 #endif
303 #if SANITIZER_NETBSD
304 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
305 INTERCEPT_FUNCTION(__libc_##func)
306 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
307 INTERCEPT_FUNCTION(__libc_thr_##func)
308 #else
309 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
310 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
311 #endif
313 #define READ_STRING_OF_LEN(thr, pc, s, len, n) \
314 MemoryAccessRange((thr), (pc), (uptr)(s), \
315 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
317 #define READ_STRING(thr, pc, s, n) \
318 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
320 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
322 struct BlockingCall {
323 explicit BlockingCall(ThreadState *thr)
324 : thr(thr)
325 , ctx(SigCtx(thr)) {
326 for (;;) {
327 atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
328 if (atomic_load(&thr->pending_signals, memory_order_relaxed) == 0)
329 break;
330 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
331 ProcessPendingSignals(thr);
333 // When we are in a "blocking call", we process signals asynchronously
334 // (right when they arrive). In this context we do not expect to be
335 // executing any user/runtime code. The known interceptor sequence when
336 // this is not true is: pthread_join -> munmap(stack). It's fine
337 // to ignore munmap in this case -- we handle stack shadow separately.
338 thr->ignore_interceptors++;
341 ~BlockingCall() {
342 thr->ignore_interceptors--;
343 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
346 ThreadState *thr;
347 ThreadSignalContext *ctx;
350 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
351 SCOPED_TSAN_INTERCEPTOR(sleep, sec);
352 unsigned res = BLOCK_REAL(sleep)(sec);
353 AfterSleep(thr, pc);
354 return res;
357 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
358 SCOPED_TSAN_INTERCEPTOR(usleep, usec);
359 int res = BLOCK_REAL(usleep)(usec);
360 AfterSleep(thr, pc);
361 return res;
364 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
365 SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
366 int res = BLOCK_REAL(nanosleep)(req, rem);
367 AfterSleep(thr, pc);
368 return res;
371 TSAN_INTERCEPTOR(int, pause, int fake) {
372 SCOPED_TSAN_INTERCEPTOR(pause, fake);
373 return BLOCK_REAL(pause)(fake);
376 // Note: we specifically call the function in such strange way
377 // with "installed_at" because in reports it will appear between
378 // callback frames and the frame that installed the callback.
379 static void at_exit_callback_installed_at() {
380 AtExitCtx *ctx;
382 // Ensure thread-safety.
383 Lock l(&interceptor_ctx()->atexit_mu);
385 // Pop AtExitCtx from the top of the stack of callback functions
386 uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
387 ctx = interceptor_ctx()->AtExitStack[element];
388 interceptor_ctx()->AtExitStack.PopBack();
391 ThreadState *thr = cur_thread();
392 Acquire(thr, ctx->pc, (uptr)ctx);
393 FuncEntry(thr, ctx->pc);
394 ((void(*)())ctx->f)();
395 FuncExit(thr);
396 Free(ctx);
399 static void cxa_at_exit_callback_installed_at(void *arg) {
400 ThreadState *thr = cur_thread();
401 AtExitCtx *ctx = (AtExitCtx*)arg;
402 Acquire(thr, ctx->pc, (uptr)arg);
403 FuncEntry(thr, ctx->pc);
404 ((void(*)(void *arg))ctx->f)(ctx->arg);
405 FuncExit(thr);
406 Free(ctx);
409 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
410 void *arg, void *dso);
412 #if !SANITIZER_ANDROID
413 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
414 if (in_symbolizer())
415 return 0;
416 // We want to setup the atexit callback even if we are in ignored lib
417 // or after fork.
418 SCOPED_INTERCEPTOR_RAW(atexit, f);
419 return setup_at_exit_wrapper(thr, GET_CALLER_PC(), (void (*)())f, 0, 0);
421 #endif
423 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
424 if (in_symbolizer())
425 return 0;
426 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
427 return setup_at_exit_wrapper(thr, GET_CALLER_PC(), (void (*)())f, arg, dso);
430 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
431 void *arg, void *dso) {
432 auto *ctx = New<AtExitCtx>();
433 ctx->f = f;
434 ctx->arg = arg;
435 ctx->pc = pc;
436 Release(thr, pc, (uptr)ctx);
437 // Memory allocation in __cxa_atexit will race with free during exit,
438 // because we do not see synchronization around atexit callback list.
439 ThreadIgnoreBegin(thr, pc);
440 int res;
441 if (!dso) {
442 // NetBSD does not preserve the 2nd argument if dso is equal to 0
443 // Store ctx in a local stack-like structure
445 // Ensure thread-safety.
446 Lock l(&interceptor_ctx()->atexit_mu);
447 // __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail
448 // due to atexit_mu held on exit from the calloc interceptor.
449 ScopedIgnoreInterceptors ignore;
451 res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_callback_installed_at,
452 0, 0);
453 // Push AtExitCtx on the top of the stack of callback functions
454 if (!res) {
455 interceptor_ctx()->AtExitStack.PushBack(ctx);
457 } else {
458 res = REAL(__cxa_atexit)(cxa_at_exit_callback_installed_at, ctx, dso);
460 ThreadIgnoreEnd(thr);
461 return res;
464 #if !SANITIZER_MAC && !SANITIZER_NETBSD
465 static void on_exit_callback_installed_at(int status, void *arg) {
466 ThreadState *thr = cur_thread();
467 AtExitCtx *ctx = (AtExitCtx*)arg;
468 Acquire(thr, ctx->pc, (uptr)arg);
469 FuncEntry(thr, ctx->pc);
470 ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
471 FuncExit(thr);
472 Free(ctx);
475 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
476 if (in_symbolizer())
477 return 0;
478 SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
479 auto *ctx = New<AtExitCtx>();
480 ctx->f = (void(*)())f;
481 ctx->arg = arg;
482 ctx->pc = GET_CALLER_PC();
483 Release(thr, pc, (uptr)ctx);
484 // Memory allocation in __cxa_atexit will race with free during exit,
485 // because we do not see synchronization around atexit callback list.
486 ThreadIgnoreBegin(thr, pc);
487 int res = REAL(on_exit)(on_exit_callback_installed_at, ctx);
488 ThreadIgnoreEnd(thr);
489 return res;
491 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
492 #else
493 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
494 #endif
496 // Cleanup old bufs.
497 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
498 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
499 JmpBuf *buf = &thr->jmp_bufs[i];
500 if (buf->sp <= sp) {
501 uptr sz = thr->jmp_bufs.Size();
502 internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
503 thr->jmp_bufs.PopBack();
504 i--;
509 static void SetJmp(ThreadState *thr, uptr sp) {
510 if (!thr->is_inited) // called from libc guts during bootstrap
511 return;
512 // Cleanup old bufs.
513 JmpBufGarbageCollect(thr, sp);
514 // Remember the buf.
515 JmpBuf *buf = thr->jmp_bufs.PushBack();
516 buf->sp = sp;
517 buf->shadow_stack_pos = thr->shadow_stack_pos;
518 ThreadSignalContext *sctx = SigCtx(thr);
519 buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
520 buf->in_blocking_func = sctx ?
521 atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
522 false;
523 buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
524 memory_order_relaxed);
527 static void LongJmp(ThreadState *thr, uptr *env) {
528 uptr sp = ExtractLongJmpSp(env);
529 // Find the saved buf with matching sp.
530 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
531 JmpBuf *buf = &thr->jmp_bufs[i];
532 if (buf->sp == sp) {
533 CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
534 // Unwind the stack.
535 while (thr->shadow_stack_pos > buf->shadow_stack_pos)
536 FuncExit(thr);
537 ThreadSignalContext *sctx = SigCtx(thr);
538 if (sctx) {
539 sctx->int_signal_send = buf->int_signal_send;
540 atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
541 memory_order_relaxed);
543 atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
544 memory_order_relaxed);
545 JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
546 return;
549 Printf("ThreadSanitizer: can't find longjmp buf\n");
550 CHECK(0);
553 // FIXME: put everything below into a common extern "C" block?
554 extern "C" void __tsan_setjmp(uptr sp) { SetJmp(cur_thread_init(), sp); }
556 #if SANITIZER_MAC
557 TSAN_INTERCEPTOR(int, setjmp, void *env);
558 TSAN_INTERCEPTOR(int, _setjmp, void *env);
559 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
560 #else // SANITIZER_MAC
562 #if SANITIZER_NETBSD
563 #define setjmp_symname __setjmp14
564 #define sigsetjmp_symname __sigsetjmp14
565 #else
566 #define setjmp_symname setjmp
567 #define sigsetjmp_symname sigsetjmp
568 #endif
570 #define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
571 #define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
572 #define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
573 #define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
575 #define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
576 #define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
578 // Not called. Merely to satisfy TSAN_INTERCEPT().
579 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
580 int TSAN_INTERCEPTOR_SETJMP(void *env);
581 extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
582 CHECK(0);
583 return 0;
586 // FIXME: any reason to have a separate declaration?
587 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
588 int __interceptor__setjmp(void *env);
589 extern "C" int __interceptor__setjmp(void *env) {
590 CHECK(0);
591 return 0;
594 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
595 int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
596 extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
597 CHECK(0);
598 return 0;
601 #if !SANITIZER_NETBSD
602 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
603 int __interceptor___sigsetjmp(void *env);
604 extern "C" int __interceptor___sigsetjmp(void *env) {
605 CHECK(0);
606 return 0;
608 #endif
610 extern "C" int setjmp_symname(void *env);
611 extern "C" int _setjmp(void *env);
612 extern "C" int sigsetjmp_symname(void *env);
613 #if !SANITIZER_NETBSD
614 extern "C" int __sigsetjmp(void *env);
615 #endif
616 DEFINE_REAL(int, setjmp_symname, void *env)
617 DEFINE_REAL(int, _setjmp, void *env)
618 DEFINE_REAL(int, sigsetjmp_symname, void *env)
619 #if !SANITIZER_NETBSD
620 DEFINE_REAL(int, __sigsetjmp, void *env)
621 #endif
622 #endif // SANITIZER_MAC
624 #if SANITIZER_NETBSD
625 #define longjmp_symname __longjmp14
626 #define siglongjmp_symname __siglongjmp14
627 #else
628 #define longjmp_symname longjmp
629 #define siglongjmp_symname siglongjmp
630 #endif
632 TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
633 // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
634 // bad things will happen. We will jump over ScopedInterceptor dtor and can
635 // leave thr->in_ignored_lib set.
637 SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
639 LongJmp(cur_thread(), env);
640 REAL(longjmp_symname)(env, val);
643 TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
645 SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
647 LongJmp(cur_thread(), env);
648 REAL(siglongjmp_symname)(env, val);
651 #if SANITIZER_NETBSD
652 TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
654 SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
656 LongJmp(cur_thread(), env);
657 REAL(_longjmp)(env, val);
659 #endif
661 #if !SANITIZER_MAC
662 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
663 if (in_symbolizer())
664 return InternalAlloc(size);
665 void *p = 0;
667 SCOPED_INTERCEPTOR_RAW(malloc, size);
668 p = user_alloc(thr, pc, size);
670 invoke_malloc_hook(p, size);
671 return p;
674 // In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept
675 // __libc_memalign so that (1) we can detect races (2) free will not be called
676 // on libc internally allocated blocks.
677 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
678 SCOPED_INTERCEPTOR_RAW(__libc_memalign, align, sz);
679 return user_memalign(thr, pc, align, sz);
682 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
683 if (in_symbolizer())
684 return InternalCalloc(size, n);
685 void *p = 0;
687 SCOPED_INTERCEPTOR_RAW(calloc, size, n);
688 p = user_calloc(thr, pc, size, n);
690 invoke_malloc_hook(p, n * size);
691 return p;
694 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
695 if (in_symbolizer())
696 return InternalRealloc(p, size);
697 if (p)
698 invoke_free_hook(p);
700 SCOPED_INTERCEPTOR_RAW(realloc, p, size);
701 p = user_realloc(thr, pc, p, size);
703 invoke_malloc_hook(p, size);
704 return p;
707 TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) {
708 if (in_symbolizer())
709 return InternalReallocArray(p, size, n);
710 if (p)
711 invoke_free_hook(p);
713 SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n);
714 p = user_reallocarray(thr, pc, p, size, n);
716 invoke_malloc_hook(p, size);
717 return p;
720 TSAN_INTERCEPTOR(void, free, void *p) {
721 if (p == 0)
722 return;
723 if (in_symbolizer())
724 return InternalFree(p);
725 invoke_free_hook(p);
726 SCOPED_INTERCEPTOR_RAW(free, p);
727 user_free(thr, pc, p);
730 TSAN_INTERCEPTOR(void, cfree, void *p) {
731 if (p == 0)
732 return;
733 if (in_symbolizer())
734 return InternalFree(p);
735 invoke_free_hook(p);
736 SCOPED_INTERCEPTOR_RAW(cfree, p);
737 user_free(thr, pc, p);
740 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
741 SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
742 return user_alloc_usable_size(p);
744 #endif
746 TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
747 SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
748 uptr srclen = internal_strlen(src);
749 MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
750 MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
751 return REAL(strcpy)(dst, src);
754 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
755 SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
756 uptr srclen = internal_strnlen(src, n);
757 MemoryAccessRange(thr, pc, (uptr)dst, n, true);
758 MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
759 return REAL(strncpy)(dst, src, n);
762 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
763 SCOPED_TSAN_INTERCEPTOR(strdup, str);
764 // strdup will call malloc, so no instrumentation is required here.
765 return REAL(strdup)(str);
768 // Zero out addr if it points into shadow memory and was provided as a hint
769 // only, i.e., MAP_FIXED is not set.
770 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
771 if (*addr) {
772 if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
773 if (flags & MAP_FIXED) {
774 errno = errno_EINVAL;
775 return false;
776 } else {
777 *addr = 0;
781 return true;
784 template <class Mmap>
785 static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
786 void *addr, SIZE_T sz, int prot, int flags,
787 int fd, OFF64_T off) {
788 if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
789 void *res = real_mmap(addr, sz, prot, flags, fd, off);
790 if (res != MAP_FAILED) {
791 if (!IsAppMem((uptr)res) || !IsAppMem((uptr)res + sz - 1)) {
792 Report("ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n",
793 addr, (void*)sz, res);
794 Die();
796 if (fd > 0) FdAccess(thr, pc, fd);
797 MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz);
799 return res;
802 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
803 SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
804 UnmapShadow(thr, (uptr)addr, sz);
805 int res = REAL(munmap)(addr, sz);
806 return res;
809 #if SANITIZER_LINUX
810 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
811 SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
812 return user_memalign(thr, pc, align, sz);
814 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
815 #else
816 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
817 #endif
819 #if !SANITIZER_MAC
820 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
821 if (in_symbolizer())
822 return InternalAlloc(sz, nullptr, align);
823 SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
824 return user_aligned_alloc(thr, pc, align, sz);
827 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
828 if (in_symbolizer())
829 return InternalAlloc(sz, nullptr, GetPageSizeCached());
830 SCOPED_INTERCEPTOR_RAW(valloc, sz);
831 return user_valloc(thr, pc, sz);
833 #endif
835 #if SANITIZER_LINUX
836 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
837 if (in_symbolizer()) {
838 uptr PageSize = GetPageSizeCached();
839 sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
840 return InternalAlloc(sz, nullptr, PageSize);
842 SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
843 return user_pvalloc(thr, pc, sz);
845 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
846 #else
847 #define TSAN_MAYBE_INTERCEPT_PVALLOC
848 #endif
850 #if !SANITIZER_MAC
851 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
852 if (in_symbolizer()) {
853 void *p = InternalAlloc(sz, nullptr, align);
854 if (!p)
855 return errno_ENOMEM;
856 *memptr = p;
857 return 0;
859 SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
860 return user_posix_memalign(thr, pc, memptr, align, sz);
862 #endif
864 // Both __cxa_guard_acquire and pthread_once 0-initialize
865 // the object initially. pthread_once does not have any
866 // other ABI requirements. __cxa_guard_acquire assumes
867 // that any non-0 value in the first byte means that
868 // initialization is completed. Contents of the remaining
869 // bytes are up to us.
870 constexpr u32 kGuardInit = 0;
871 constexpr u32 kGuardDone = 1;
872 constexpr u32 kGuardRunning = 1 << 16;
873 constexpr u32 kGuardWaiter = 1 << 17;
875 static int guard_acquire(ThreadState *thr, uptr pc, atomic_uint32_t *g,
876 bool blocking_hooks = true) {
877 if (blocking_hooks)
878 OnPotentiallyBlockingRegionBegin();
879 auto on_exit = at_scope_exit([blocking_hooks] {
880 if (blocking_hooks)
881 OnPotentiallyBlockingRegionEnd();
884 for (;;) {
885 u32 cmp = atomic_load(g, memory_order_acquire);
886 if (cmp == kGuardInit) {
887 if (atomic_compare_exchange_strong(g, &cmp, kGuardRunning,
888 memory_order_relaxed))
889 return 1;
890 } else if (cmp == kGuardDone) {
891 if (!thr->in_ignored_lib)
892 Acquire(thr, pc, (uptr)g);
893 return 0;
894 } else {
895 if ((cmp & kGuardWaiter) ||
896 atomic_compare_exchange_strong(g, &cmp, cmp | kGuardWaiter,
897 memory_order_relaxed))
898 FutexWait(g, cmp | kGuardWaiter);
903 static void guard_release(ThreadState *thr, uptr pc, atomic_uint32_t *g,
904 u32 v) {
905 if (!thr->in_ignored_lib)
906 Release(thr, pc, (uptr)g);
907 u32 old = atomic_exchange(g, v, memory_order_release);
908 if (old & kGuardWaiter)
909 FutexWake(g, 1 << 30);
912 // __cxa_guard_acquire and friends need to be intercepted in a special way -
913 // regular interceptors will break statically-linked libstdc++. Linux
914 // interceptors are especially defined as weak functions (so that they don't
915 // cause link errors when user defines them as well). So they silently
916 // auto-disable themselves when such symbol is already present in the binary. If
917 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
918 // will silently replace our interceptor. That's why on Linux we simply export
919 // these interceptors with INTERFACE_ATTRIBUTE.
920 // On OS X, we don't support statically linking, so we just use a regular
921 // interceptor.
922 #if SANITIZER_MAC
923 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
924 #else
925 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
926 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
927 #endif
929 // Used in thread-safe function static initialization.
930 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
931 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
932 return guard_acquire(thr, pc, g);
935 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
936 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
937 guard_release(thr, pc, g, kGuardDone);
940 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
941 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
942 guard_release(thr, pc, g, kGuardInit);
945 namespace __tsan {
946 void DestroyThreadState() {
947 ThreadState *thr = cur_thread();
948 Processor *proc = thr->proc();
949 ThreadFinish(thr);
950 ProcUnwire(proc, thr);
951 ProcDestroy(proc);
952 DTLS_Destroy();
953 cur_thread_finalize();
956 void PlatformCleanUpThreadState(ThreadState *thr) {
957 ThreadSignalContext *sctx = thr->signal_ctx;
958 if (sctx) {
959 thr->signal_ctx = 0;
960 UnmapOrDie(sctx, sizeof(*sctx));
963 } // namespace __tsan
965 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
966 static void thread_finalize(void *v) {
967 uptr iter = (uptr)v;
968 if (iter > 1) {
969 if (pthread_setspecific(interceptor_ctx()->finalize_key,
970 (void*)(iter - 1))) {
971 Printf("ThreadSanitizer: failed to set thread key\n");
972 Die();
974 return;
976 DestroyThreadState();
978 #endif
981 struct ThreadParam {
982 void* (*callback)(void *arg);
983 void *param;
984 Tid tid;
985 Semaphore created;
986 Semaphore started;
989 extern "C" void *__tsan_thread_start_func(void *arg) {
990 ThreadParam *p = (ThreadParam*)arg;
991 void* (*callback)(void *arg) = p->callback;
992 void *param = p->param;
994 ThreadState *thr = cur_thread_init();
995 // Thread-local state is not initialized yet.
996 ScopedIgnoreInterceptors ignore;
997 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
998 ThreadIgnoreBegin(thr, 0);
999 if (pthread_setspecific(interceptor_ctx()->finalize_key,
1000 (void *)GetPthreadDestructorIterations())) {
1001 Printf("ThreadSanitizer: failed to set thread key\n");
1002 Die();
1004 ThreadIgnoreEnd(thr);
1005 #endif
1006 p->created.Wait();
1007 Processor *proc = ProcCreate();
1008 ProcWire(proc, thr);
1009 ThreadStart(thr, p->tid, GetTid(), ThreadType::Regular);
1010 p->started.Post();
1012 void *res = callback(param);
1013 // Prevent the callback from being tail called,
1014 // it mixes up stack traces.
1015 volatile int foo = 42;
1016 foo++;
1017 return res;
1020 TSAN_INTERCEPTOR(int, pthread_create,
1021 void *th, void *attr, void *(*callback)(void*), void * param) {
1022 SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
1024 MaybeSpawnBackgroundThread();
1026 if (ctx->after_multithreaded_fork) {
1027 if (flags()->die_after_fork) {
1028 Report("ThreadSanitizer: starting new threads after multi-threaded "
1029 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
1030 Die();
1031 } else {
1032 VPrintf(1,
1033 "ThreadSanitizer: starting new threads after multi-threaded "
1034 "fork is not supported (pid %lu). Continuing because of "
1035 "die_after_fork=0, but you are on your own\n",
1036 internal_getpid());
1039 __sanitizer_pthread_attr_t myattr;
1040 if (attr == 0) {
1041 pthread_attr_init(&myattr);
1042 attr = &myattr;
1044 int detached = 0;
1045 REAL(pthread_attr_getdetachstate)(attr, &detached);
1046 AdjustStackSize(attr);
1048 ThreadParam p;
1049 p.callback = callback;
1050 p.param = param;
1051 p.tid = kMainTid;
1052 int res = -1;
1054 // Otherwise we see false positives in pthread stack manipulation.
1055 ScopedIgnoreInterceptors ignore;
1056 ThreadIgnoreBegin(thr, pc);
1057 res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
1058 ThreadIgnoreEnd(thr);
1060 if (res == 0) {
1061 p.tid = ThreadCreate(thr, pc, *(uptr *)th, IsStateDetached(detached));
1062 CHECK_NE(p.tid, kMainTid);
1063 // Synchronization on p.tid serves two purposes:
1064 // 1. ThreadCreate must finish before the new thread starts.
1065 // Otherwise the new thread can call pthread_detach, but the pthread_t
1066 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
1067 // 2. ThreadStart must finish before this thread continues.
1068 // Otherwise, this thread can call pthread_detach and reset thr->sync
1069 // before the new thread got a chance to acquire from it in ThreadStart.
1070 p.created.Post();
1071 p.started.Wait();
1073 if (attr == &myattr)
1074 pthread_attr_destroy(&myattr);
1075 return res;
1078 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1079 SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1080 Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1081 ThreadIgnoreBegin(thr, pc);
1082 int res = BLOCK_REAL(pthread_join)(th, ret);
1083 ThreadIgnoreEnd(thr);
1084 if (res == 0) {
1085 ThreadJoin(thr, pc, tid);
1087 return res;
1090 DEFINE_REAL_PTHREAD_FUNCTIONS
1092 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1093 SCOPED_INTERCEPTOR_RAW(pthread_detach, th);
1094 Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1095 int res = REAL(pthread_detach)(th);
1096 if (res == 0) {
1097 ThreadDetach(thr, pc, tid);
1099 return res;
1102 TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
1104 SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
1105 #if !SANITIZER_MAC && !SANITIZER_ANDROID
1106 CHECK_EQ(thr, &cur_thread_placeholder);
1107 #endif
1109 REAL(pthread_exit)(retval);
1112 #if SANITIZER_LINUX
1113 TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
1114 SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret);
1115 Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1116 ThreadIgnoreBegin(thr, pc);
1117 int res = REAL(pthread_tryjoin_np)(th, ret);
1118 ThreadIgnoreEnd(thr);
1119 if (res == 0)
1120 ThreadJoin(thr, pc, tid);
1121 else
1122 ThreadNotJoined(thr, pc, tid, (uptr)th);
1123 return res;
1126 TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
1127 const struct timespec *abstime) {
1128 SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime);
1129 Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1130 ThreadIgnoreBegin(thr, pc);
1131 int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
1132 ThreadIgnoreEnd(thr);
1133 if (res == 0)
1134 ThreadJoin(thr, pc, tid);
1135 else
1136 ThreadNotJoined(thr, pc, tid, (uptr)th);
1137 return res;
1139 #endif
1141 // Problem:
1142 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1143 // pthread_cond_t has different size in the different versions.
1144 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1145 // after pthread_cond_t (old cond is smaller).
1146 // If we call old REAL functions for new pthread_cond_t, we will lose some
1147 // functionality (e.g. old functions do not support waiting against
1148 // CLOCK_REALTIME).
1149 // Proper handling would require to have 2 versions of interceptors as well.
1150 // But this is messy, in particular requires linker scripts when sanitizer
1151 // runtime is linked into a shared library.
1152 // Instead we assume we don't have dynamic libraries built against old
1153 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1154 // that allows to work with old libraries (but this mode does not support
1155 // some features, e.g. pthread_condattr_getpshared).
1156 static void *init_cond(void *c, bool force = false) {
1157 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1158 // So we allocate additional memory on the side large enough to hold
1159 // any pthread_cond_t object. Always call new REAL functions, but pass
1160 // the aux object to them.
1161 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1162 // first word of pthread_cond_t to zero.
1163 // It's all relevant only for linux.
1164 if (!common_flags()->legacy_pthread_cond)
1165 return c;
1166 atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1167 uptr cond = atomic_load(p, memory_order_acquire);
1168 if (!force && cond != 0)
1169 return (void*)cond;
1170 void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1171 internal_memset(newcond, 0, pthread_cond_t_sz);
1172 if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1173 memory_order_acq_rel))
1174 return newcond;
1175 WRAP(free)(newcond);
1176 return (void*)cond;
1179 namespace {
1181 template <class Fn>
1182 struct CondMutexUnlockCtx {
1183 ScopedInterceptor *si;
1184 ThreadState *thr;
1185 uptr pc;
1186 void *m;
1187 void *c;
1188 const Fn &fn;
1190 int Cancel() const { return fn(); }
1191 void Unlock() const;
1194 template <class Fn>
1195 void CondMutexUnlockCtx<Fn>::Unlock() const {
1196 // pthread_cond_wait interceptor has enabled async signal delivery
1197 // (see BlockingCall below). Disable async signals since we are running
1198 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1199 // since the thread is cancelled, so we have to manually execute them
1200 // (the thread still can run some user code due to pthread_cleanup_push).
1201 ThreadSignalContext *ctx = SigCtx(thr);
1202 CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1203 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1204 MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1205 // Undo BlockingCall ctor effects.
1206 thr->ignore_interceptors--;
1207 si->~ScopedInterceptor();
1209 } // namespace
1211 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1212 void *cond = init_cond(c, true);
1213 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1214 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1215 return REAL(pthread_cond_init)(cond, a);
1218 template <class Fn>
1219 int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si, const Fn &fn,
1220 void *c, void *m) {
1221 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1222 MutexUnlock(thr, pc, (uptr)m);
1223 int res = 0;
1224 // This ensures that we handle mutex lock even in case of pthread_cancel.
1225 // See test/tsan/cond_cancel.cpp.
1227 // Enable signal delivery while the thread is blocked.
1228 BlockingCall bc(thr);
1229 CondMutexUnlockCtx<Fn> arg = {si, thr, pc, m, c, fn};
1230 res = call_pthread_cancel_with_cleanup(
1231 [](void *arg) -> int {
1232 return ((const CondMutexUnlockCtx<Fn> *)arg)->Cancel();
1234 [](void *arg) { ((const CondMutexUnlockCtx<Fn> *)arg)->Unlock(); },
1235 &arg);
1237 if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1238 MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1239 return res;
1242 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1243 void *cond = init_cond(c);
1244 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1245 return cond_wait(
1246 thr, pc, &si, [=]() { return REAL(pthread_cond_wait)(cond, m); }, cond,
1250 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1251 void *cond = init_cond(c);
1252 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1253 return cond_wait(
1254 thr, pc, &si,
1255 [=]() { return REAL(pthread_cond_timedwait)(cond, m, abstime); }, cond,
1259 #if SANITIZER_LINUX
1260 INTERCEPTOR(int, pthread_cond_clockwait, void *c, void *m,
1261 __sanitizer_clockid_t clock, void *abstime) {
1262 void *cond = init_cond(c);
1263 SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait, cond, m, clock, abstime);
1264 return cond_wait(
1265 thr, pc, &si,
1266 [=]() { return REAL(pthread_cond_clockwait)(cond, m, clock, abstime); },
1267 cond, m);
1269 #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait)
1270 #else
1271 #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT
1272 #endif
1274 #if SANITIZER_MAC
1275 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1276 void *reltime) {
1277 void *cond = init_cond(c);
1278 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1279 return cond_wait(
1280 thr, pc, &si,
1281 [=]() {
1282 return REAL(pthread_cond_timedwait_relative_np)(cond, m, reltime);
1284 cond, m);
1286 #endif
1288 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1289 void *cond = init_cond(c);
1290 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1291 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1292 return REAL(pthread_cond_signal)(cond);
1295 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1296 void *cond = init_cond(c);
1297 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1298 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1299 return REAL(pthread_cond_broadcast)(cond);
1302 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1303 void *cond = init_cond(c);
1304 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1305 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1306 int res = REAL(pthread_cond_destroy)(cond);
1307 if (common_flags()->legacy_pthread_cond) {
1308 // Free our aux cond and zero the pointer to not leave dangling pointers.
1309 WRAP(free)(cond);
1310 atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1312 return res;
1315 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1316 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1317 int res = REAL(pthread_mutex_init)(m, a);
1318 if (res == 0) {
1319 u32 flagz = 0;
1320 if (a) {
1321 int type = 0;
1322 if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1323 if (type == PTHREAD_MUTEX_RECURSIVE ||
1324 type == PTHREAD_MUTEX_RECURSIVE_NP)
1325 flagz |= MutexFlagWriteReentrant;
1327 MutexCreate(thr, pc, (uptr)m, flagz);
1329 return res;
1332 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1333 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1334 int res = REAL(pthread_mutex_destroy)(m);
1335 if (res == 0 || res == errno_EBUSY) {
1336 MutexDestroy(thr, pc, (uptr)m);
1338 return res;
1341 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1342 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1343 int res = REAL(pthread_mutex_trylock)(m);
1344 if (res == errno_EOWNERDEAD)
1345 MutexRepair(thr, pc, (uptr)m);
1346 if (res == 0 || res == errno_EOWNERDEAD)
1347 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1348 return res;
1351 #if !SANITIZER_MAC
1352 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1353 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1354 int res = REAL(pthread_mutex_timedlock)(m, abstime);
1355 if (res == 0) {
1356 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1358 return res;
1360 #endif
1362 #if !SANITIZER_MAC
1363 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1364 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1365 int res = REAL(pthread_spin_init)(m, pshared);
1366 if (res == 0) {
1367 MutexCreate(thr, pc, (uptr)m);
1369 return res;
1372 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1373 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1374 int res = REAL(pthread_spin_destroy)(m);
1375 if (res == 0) {
1376 MutexDestroy(thr, pc, (uptr)m);
1378 return res;
1381 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1382 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1383 MutexPreLock(thr, pc, (uptr)m);
1384 int res = REAL(pthread_spin_lock)(m);
1385 if (res == 0) {
1386 MutexPostLock(thr, pc, (uptr)m);
1388 return res;
1391 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1392 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1393 int res = REAL(pthread_spin_trylock)(m);
1394 if (res == 0) {
1395 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1397 return res;
1400 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1401 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1402 MutexUnlock(thr, pc, (uptr)m);
1403 int res = REAL(pthread_spin_unlock)(m);
1404 return res;
1406 #endif
1408 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1409 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1410 int res = REAL(pthread_rwlock_init)(m, a);
1411 if (res == 0) {
1412 MutexCreate(thr, pc, (uptr)m);
1414 return res;
1417 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1418 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1419 int res = REAL(pthread_rwlock_destroy)(m);
1420 if (res == 0) {
1421 MutexDestroy(thr, pc, (uptr)m);
1423 return res;
1426 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1427 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1428 MutexPreReadLock(thr, pc, (uptr)m);
1429 int res = REAL(pthread_rwlock_rdlock)(m);
1430 if (res == 0) {
1431 MutexPostReadLock(thr, pc, (uptr)m);
1433 return res;
1436 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1437 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1438 int res = REAL(pthread_rwlock_tryrdlock)(m);
1439 if (res == 0) {
1440 MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1442 return res;
1445 #if !SANITIZER_MAC
1446 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1447 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1448 int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1449 if (res == 0) {
1450 MutexPostReadLock(thr, pc, (uptr)m);
1452 return res;
1454 #endif
1456 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1457 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1458 MutexPreLock(thr, pc, (uptr)m);
1459 int res = REAL(pthread_rwlock_wrlock)(m);
1460 if (res == 0) {
1461 MutexPostLock(thr, pc, (uptr)m);
1463 return res;
1466 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1467 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1468 int res = REAL(pthread_rwlock_trywrlock)(m);
1469 if (res == 0) {
1470 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1472 return res;
1475 #if !SANITIZER_MAC
1476 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1477 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1478 int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1479 if (res == 0) {
1480 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1482 return res;
1484 #endif
1486 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1487 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1488 MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1489 int res = REAL(pthread_rwlock_unlock)(m);
1490 return res;
1493 #if !SANITIZER_MAC
1494 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1495 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1496 MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite);
1497 int res = REAL(pthread_barrier_init)(b, a, count);
1498 return res;
1501 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1502 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1503 MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite);
1504 int res = REAL(pthread_barrier_destroy)(b);
1505 return res;
1508 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1509 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1510 Release(thr, pc, (uptr)b);
1511 MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead);
1512 int res = REAL(pthread_barrier_wait)(b);
1513 MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead);
1514 if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1515 Acquire(thr, pc, (uptr)b);
1517 return res;
1519 #endif
1521 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1522 SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1523 if (o == 0 || f == 0)
1524 return errno_EINVAL;
1525 atomic_uint32_t *a;
1527 if (SANITIZER_MAC)
1528 a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1529 else if (SANITIZER_NETBSD)
1530 a = static_cast<atomic_uint32_t*>
1531 ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1532 else
1533 a = static_cast<atomic_uint32_t*>(o);
1535 // Mac OS X appears to use pthread_once() where calling BlockingRegion hooks
1536 // result in crashes due to too little stack space.
1537 if (guard_acquire(thr, pc, a, !SANITIZER_MAC)) {
1538 (*f)();
1539 guard_release(thr, pc, a, kGuardDone);
1541 return 0;
1544 #if SANITIZER_GLIBC
1545 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1546 SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1547 if (fd > 0)
1548 FdAccess(thr, pc, fd);
1549 return REAL(__fxstat)(version, fd, buf);
1551 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1552 #else
1553 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1554 #endif
1556 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1557 #if SANITIZER_GLIBC
1558 SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1559 if (fd > 0)
1560 FdAccess(thr, pc, fd);
1561 return REAL(__fxstat)(0, fd, buf);
1562 #else
1563 SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1564 if (fd > 0)
1565 FdAccess(thr, pc, fd);
1566 return REAL(fstat)(fd, buf);
1567 #endif
1570 #if SANITIZER_GLIBC
1571 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1572 SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1573 if (fd > 0)
1574 FdAccess(thr, pc, fd);
1575 return REAL(__fxstat64)(version, fd, buf);
1577 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1578 #else
1579 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1580 #endif
1582 #if SANITIZER_GLIBC
1583 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1584 SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1585 if (fd > 0)
1586 FdAccess(thr, pc, fd);
1587 return REAL(__fxstat64)(0, fd, buf);
1589 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1590 #else
1591 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1592 #endif
1594 TSAN_INTERCEPTOR(int, open, const char *name, int oflag, ...) {
1595 va_list ap;
1596 va_start(ap, oflag);
1597 mode_t mode = va_arg(ap, int);
1598 va_end(ap);
1599 SCOPED_TSAN_INTERCEPTOR(open, name, oflag, mode);
1600 READ_STRING(thr, pc, name, 0);
1601 int fd = REAL(open)(name, oflag, mode);
1602 if (fd >= 0)
1603 FdFileCreate(thr, pc, fd);
1604 return fd;
1607 #if SANITIZER_LINUX
1608 TSAN_INTERCEPTOR(int, open64, const char *name, int oflag, ...) {
1609 va_list ap;
1610 va_start(ap, oflag);
1611 mode_t mode = va_arg(ap, int);
1612 va_end(ap);
1613 SCOPED_TSAN_INTERCEPTOR(open64, name, oflag, mode);
1614 READ_STRING(thr, pc, name, 0);
1615 int fd = REAL(open64)(name, oflag, mode);
1616 if (fd >= 0)
1617 FdFileCreate(thr, pc, fd);
1618 return fd;
1620 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1621 #else
1622 #define TSAN_MAYBE_INTERCEPT_OPEN64
1623 #endif
1625 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1626 SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1627 READ_STRING(thr, pc, name, 0);
1628 int fd = REAL(creat)(name, mode);
1629 if (fd >= 0)
1630 FdFileCreate(thr, pc, fd);
1631 return fd;
1634 #if SANITIZER_LINUX
1635 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1636 SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1637 READ_STRING(thr, pc, name, 0);
1638 int fd = REAL(creat64)(name, mode);
1639 if (fd >= 0)
1640 FdFileCreate(thr, pc, fd);
1641 return fd;
1643 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1644 #else
1645 #define TSAN_MAYBE_INTERCEPT_CREAT64
1646 #endif
1648 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1649 SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1650 int newfd = REAL(dup)(oldfd);
1651 if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1652 FdDup(thr, pc, oldfd, newfd, true);
1653 return newfd;
1656 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1657 SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1658 int newfd2 = REAL(dup2)(oldfd, newfd);
1659 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1660 FdDup(thr, pc, oldfd, newfd2, false);
1661 return newfd2;
1664 #if !SANITIZER_MAC
1665 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1666 SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1667 int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1668 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1669 FdDup(thr, pc, oldfd, newfd2, false);
1670 return newfd2;
1672 #endif
1674 #if SANITIZER_LINUX
1675 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1676 SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1677 int fd = REAL(eventfd)(initval, flags);
1678 if (fd >= 0)
1679 FdEventCreate(thr, pc, fd);
1680 return fd;
1682 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1683 #else
1684 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1685 #endif
1687 #if SANITIZER_LINUX
1688 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1689 SCOPED_INTERCEPTOR_RAW(signalfd, fd, mask, flags);
1690 FdClose(thr, pc, fd);
1691 fd = REAL(signalfd)(fd, mask, flags);
1692 if (!MustIgnoreInterceptor(thr))
1693 FdSignalCreate(thr, pc, fd);
1694 return fd;
1696 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1697 #else
1698 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1699 #endif
1701 #if SANITIZER_LINUX
1702 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1703 SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1704 int fd = REAL(inotify_init)(fake);
1705 if (fd >= 0)
1706 FdInotifyCreate(thr, pc, fd);
1707 return fd;
1709 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1710 #else
1711 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1712 #endif
1714 #if SANITIZER_LINUX
1715 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1716 SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1717 int fd = REAL(inotify_init1)(flags);
1718 if (fd >= 0)
1719 FdInotifyCreate(thr, pc, fd);
1720 return fd;
1722 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1723 #else
1724 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1725 #endif
1727 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1728 SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1729 int fd = REAL(socket)(domain, type, protocol);
1730 if (fd >= 0)
1731 FdSocketCreate(thr, pc, fd);
1732 return fd;
1735 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1736 SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1737 int res = REAL(socketpair)(domain, type, protocol, fd);
1738 if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1739 FdPipeCreate(thr, pc, fd[0], fd[1]);
1740 return res;
1743 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1744 SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1745 FdSocketConnecting(thr, pc, fd);
1746 int res = REAL(connect)(fd, addr, addrlen);
1747 if (res == 0 && fd >= 0)
1748 FdSocketConnect(thr, pc, fd);
1749 return res;
1752 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1753 SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1754 int res = REAL(bind)(fd, addr, addrlen);
1755 if (fd > 0 && res == 0)
1756 FdAccess(thr, pc, fd);
1757 return res;
1760 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1761 SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1762 int res = REAL(listen)(fd, backlog);
1763 if (fd > 0 && res == 0)
1764 FdAccess(thr, pc, fd);
1765 return res;
1768 TSAN_INTERCEPTOR(int, close, int fd) {
1769 SCOPED_INTERCEPTOR_RAW(close, fd);
1770 FdClose(thr, pc, fd);
1771 return REAL(close)(fd);
1774 #if SANITIZER_LINUX
1775 TSAN_INTERCEPTOR(int, __close, int fd) {
1776 SCOPED_INTERCEPTOR_RAW(__close, fd);
1777 FdClose(thr, pc, fd);
1778 return REAL(__close)(fd);
1780 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1781 #else
1782 #define TSAN_MAYBE_INTERCEPT___CLOSE
1783 #endif
1785 // glibc guts
1786 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1787 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1788 SCOPED_INTERCEPTOR_RAW(__res_iclose, state, free_addr);
1789 int fds[64];
1790 int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1791 for (int i = 0; i < cnt; i++) FdClose(thr, pc, fds[i]);
1792 REAL(__res_iclose)(state, free_addr);
1794 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1795 #else
1796 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1797 #endif
1799 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1800 SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1801 int res = REAL(pipe)(pipefd);
1802 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1803 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1804 return res;
1807 #if !SANITIZER_MAC
1808 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1809 SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1810 int res = REAL(pipe2)(pipefd, flags);
1811 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1812 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1813 return res;
1815 #endif
1817 TSAN_INTERCEPTOR(int, unlink, char *path) {
1818 SCOPED_TSAN_INTERCEPTOR(unlink, path);
1819 Release(thr, pc, File2addr(path));
1820 int res = REAL(unlink)(path);
1821 return res;
1824 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1825 SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1826 void *res = REAL(tmpfile)(fake);
1827 if (res) {
1828 int fd = fileno_unlocked(res);
1829 if (fd >= 0)
1830 FdFileCreate(thr, pc, fd);
1832 return res;
1835 #if SANITIZER_LINUX
1836 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1837 SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1838 void *res = REAL(tmpfile64)(fake);
1839 if (res) {
1840 int fd = fileno_unlocked(res);
1841 if (fd >= 0)
1842 FdFileCreate(thr, pc, fd);
1844 return res;
1846 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1847 #else
1848 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1849 #endif
1851 static void FlushStreams() {
1852 // Flushing all the streams here may freeze the process if a child thread is
1853 // performing file stream operations at the same time.
1854 REAL(fflush)(stdout);
1855 REAL(fflush)(stderr);
1858 TSAN_INTERCEPTOR(void, abort, int fake) {
1859 SCOPED_TSAN_INTERCEPTOR(abort, fake);
1860 FlushStreams();
1861 REAL(abort)(fake);
1864 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1865 SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1866 Release(thr, pc, Dir2addr(path));
1867 int res = REAL(rmdir)(path);
1868 return res;
1871 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1872 SCOPED_INTERCEPTOR_RAW(closedir, dirp);
1873 if (dirp) {
1874 int fd = dirfd(dirp);
1875 FdClose(thr, pc, fd);
1877 return REAL(closedir)(dirp);
1880 #if SANITIZER_LINUX
1881 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1882 SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1883 int fd = REAL(epoll_create)(size);
1884 if (fd >= 0)
1885 FdPollCreate(thr, pc, fd);
1886 return fd;
1889 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1890 SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1891 int fd = REAL(epoll_create1)(flags);
1892 if (fd >= 0)
1893 FdPollCreate(thr, pc, fd);
1894 return fd;
1897 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1898 SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1899 if (epfd >= 0)
1900 FdAccess(thr, pc, epfd);
1901 if (epfd >= 0 && fd >= 0)
1902 FdAccess(thr, pc, fd);
1903 if (op == EPOLL_CTL_ADD && epfd >= 0)
1904 FdRelease(thr, pc, epfd);
1905 int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1906 return res;
1909 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1910 SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1911 if (epfd >= 0)
1912 FdAccess(thr, pc, epfd);
1913 int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1914 if (res > 0 && epfd >= 0)
1915 FdAcquire(thr, pc, epfd);
1916 return res;
1919 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1920 void *sigmask) {
1921 SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1922 if (epfd >= 0)
1923 FdAccess(thr, pc, epfd);
1924 int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1925 if (res > 0 && epfd >= 0)
1926 FdAcquire(thr, pc, epfd);
1927 return res;
1930 #define TSAN_MAYBE_INTERCEPT_EPOLL \
1931 TSAN_INTERCEPT(epoll_create); \
1932 TSAN_INTERCEPT(epoll_create1); \
1933 TSAN_INTERCEPT(epoll_ctl); \
1934 TSAN_INTERCEPT(epoll_wait); \
1935 TSAN_INTERCEPT(epoll_pwait)
1936 #else
1937 #define TSAN_MAYBE_INTERCEPT_EPOLL
1938 #endif
1940 // The following functions are intercepted merely to process pending signals.
1941 // If program blocks signal X, we must deliver the signal before the function
1942 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
1943 // it's better to deliver the signal straight away.
1944 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
1945 SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
1946 return REAL(sigsuspend)(mask);
1949 TSAN_INTERCEPTOR(int, sigblock, int mask) {
1950 SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
1951 return REAL(sigblock)(mask);
1954 TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
1955 SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
1956 return REAL(sigsetmask)(mask);
1959 TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
1960 __sanitizer_sigset_t *oldset) {
1961 SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
1962 return REAL(pthread_sigmask)(how, set, oldset);
1965 namespace __tsan {
1967 static void ReportErrnoSpoiling(ThreadState *thr, uptr pc, int sig) {
1968 VarSizeStackTrace stack;
1969 // StackTrace::GetNestInstructionPc(pc) is used because return address is
1970 // expected, OutputReport() will undo this.
1971 ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1972 ThreadRegistryLock l(&ctx->thread_registry);
1973 ScopedReport rep(ReportTypeErrnoInSignal);
1974 rep.SetSigNum(sig);
1975 if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1976 rep.AddStack(stack, true);
1977 OutputReport(thr, rep);
1981 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1982 int sig, __sanitizer_siginfo *info,
1983 void *uctx) {
1984 CHECK(thr->slot);
1985 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
1986 if (acquire)
1987 Acquire(thr, 0, (uptr)&sigactions[sig]);
1988 // Signals are generally asynchronous, so if we receive a signals when
1989 // ignores are enabled we should disable ignores. This is critical for sync
1990 // and interceptors, because otherwise we can miss synchronization and report
1991 // false races.
1992 int ignore_reads_and_writes = thr->ignore_reads_and_writes;
1993 int ignore_interceptors = thr->ignore_interceptors;
1994 int ignore_sync = thr->ignore_sync;
1995 // For symbolizer we only process SIGSEGVs synchronously
1996 // (bug in symbolizer or in tsan). But we want to reset
1997 // in_symbolizer to fail gracefully. Symbolizer and user code
1998 // use different memory allocators, so if we don't reset
1999 // in_symbolizer we can get memory allocated with one being
2000 // feed with another, which can cause more crashes.
2001 int in_symbolizer = thr->in_symbolizer;
2002 if (!ctx->after_multithreaded_fork) {
2003 thr->ignore_reads_and_writes = 0;
2004 thr->fast_state.ClearIgnoreBit();
2005 thr->ignore_interceptors = 0;
2006 thr->ignore_sync = 0;
2007 thr->in_symbolizer = 0;
2009 // Ensure that the handler does not spoil errno.
2010 const int saved_errno = errno;
2011 errno = 99;
2012 // This code races with sigaction. Be careful to not read sa_sigaction twice.
2013 // Also need to remember pc for reporting before the call,
2014 // because the handler can reset it.
2015 volatile uptr pc = (sigactions[sig].sa_flags & SA_SIGINFO)
2016 ? (uptr)sigactions[sig].sigaction
2017 : (uptr)sigactions[sig].handler;
2018 if (pc != sig_dfl && pc != sig_ign) {
2019 // The callback can be either sa_handler or sa_sigaction.
2020 // They have different signatures, but we assume that passing
2021 // additional arguments to sa_handler works and is harmless.
2022 ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
2024 if (!ctx->after_multithreaded_fork) {
2025 thr->ignore_reads_and_writes = ignore_reads_and_writes;
2026 if (ignore_reads_and_writes)
2027 thr->fast_state.SetIgnoreBit();
2028 thr->ignore_interceptors = ignore_interceptors;
2029 thr->ignore_sync = ignore_sync;
2030 thr->in_symbolizer = in_symbolizer;
2032 // We do not detect errno spoiling for SIGTERM,
2033 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
2034 // tsan reports false positive in such case.
2035 // It's difficult to properly detect this situation (reraise),
2036 // because in async signal processing case (when handler is called directly
2037 // from rtl_generic_sighandler) we have not yet received the reraised
2038 // signal; and it looks too fragile to intercept all ways to reraise a signal.
2039 if (ShouldReport(thr, ReportTypeErrnoInSignal) && !sync && sig != SIGTERM &&
2040 errno != 99)
2041 ReportErrnoSpoiling(thr, pc, sig);
2042 errno = saved_errno;
2045 void ProcessPendingSignalsImpl(ThreadState *thr) {
2046 atomic_store(&thr->pending_signals, 0, memory_order_relaxed);
2047 ThreadSignalContext *sctx = SigCtx(thr);
2048 if (sctx == 0)
2049 return;
2050 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
2051 internal_sigfillset(&sctx->emptyset);
2052 int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
2053 CHECK_EQ(res, 0);
2054 for (int sig = 0; sig < kSigCount; sig++) {
2055 SignalDesc *signal = &sctx->pending_signals[sig];
2056 if (signal->armed) {
2057 signal->armed = false;
2058 CallUserSignalHandler(thr, false, true, sig, &signal->siginfo,
2059 &signal->ctx);
2062 res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
2063 CHECK_EQ(res, 0);
2064 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2067 } // namespace __tsan
2069 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
2070 return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
2071 sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
2072 // If we are sending signal to ourselves, we must process it now.
2073 (sctx && sig == sctx->int_signal_send);
2076 void sighandler(int sig, __sanitizer_siginfo *info, void *ctx) {
2077 ThreadState *thr = cur_thread_init();
2078 ThreadSignalContext *sctx = SigCtx(thr);
2079 if (sig < 0 || sig >= kSigCount) {
2080 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
2081 return;
2083 // Don't mess with synchronous signals.
2084 const bool sync = is_sync_signal(sctx, sig);
2085 if (sync ||
2086 // If we are in blocking function, we can safely process it now
2087 // (but check if we are in a recursive interceptor,
2088 // i.e. pthread_join()->munmap()).
2089 (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
2090 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
2091 if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
2092 atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
2093 CallUserSignalHandler(thr, sync, true, sig, info, ctx);
2094 atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
2095 } else {
2096 // Be very conservative with when we do acquire in this case.
2097 // It's unsafe to do acquire in async handlers, because ThreadState
2098 // can be in inconsistent state.
2099 // SIGSYS looks relatively safe -- it's synchronous and can actually
2100 // need some global state.
2101 bool acq = (sig == SIGSYS);
2102 CallUserSignalHandler(thr, sync, acq, sig, info, ctx);
2104 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2105 return;
2108 if (sctx == 0)
2109 return;
2110 SignalDesc *signal = &sctx->pending_signals[sig];
2111 if (signal->armed == false) {
2112 signal->armed = true;
2113 internal_memcpy(&signal->siginfo, info, sizeof(*info));
2114 internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
2115 atomic_store(&thr->pending_signals, 1, memory_order_relaxed);
2119 TSAN_INTERCEPTOR(int, raise, int sig) {
2120 SCOPED_TSAN_INTERCEPTOR(raise, sig);
2121 ThreadSignalContext *sctx = SigCtx(thr);
2122 CHECK_NE(sctx, 0);
2123 int prev = sctx->int_signal_send;
2124 sctx->int_signal_send = sig;
2125 int res = REAL(raise)(sig);
2126 CHECK_EQ(sctx->int_signal_send, sig);
2127 sctx->int_signal_send = prev;
2128 return res;
2131 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2132 SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2133 ThreadSignalContext *sctx = SigCtx(thr);
2134 CHECK_NE(sctx, 0);
2135 int prev = sctx->int_signal_send;
2136 if (pid == (int)internal_getpid()) {
2137 sctx->int_signal_send = sig;
2139 int res = REAL(kill)(pid, sig);
2140 if (pid == (int)internal_getpid()) {
2141 CHECK_EQ(sctx->int_signal_send, sig);
2142 sctx->int_signal_send = prev;
2144 return res;
2147 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2148 SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2149 ThreadSignalContext *sctx = SigCtx(thr);
2150 CHECK_NE(sctx, 0);
2151 int prev = sctx->int_signal_send;
2152 bool self = pthread_equal(tid, pthread_self());
2153 if (self)
2154 sctx->int_signal_send = sig;
2155 int res = REAL(pthread_kill)(tid, sig);
2156 if (self) {
2157 CHECK_EQ(sctx->int_signal_send, sig);
2158 sctx->int_signal_send = prev;
2160 return res;
2163 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2164 SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2165 // It's intercepted merely to process pending signals.
2166 return REAL(gettimeofday)(tv, tz);
2169 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2170 void *hints, void *rv) {
2171 SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2172 // We miss atomic synchronization in getaddrinfo,
2173 // and can report false race between malloc and free
2174 // inside of getaddrinfo. So ignore memory accesses.
2175 ThreadIgnoreBegin(thr, pc);
2176 int res = REAL(getaddrinfo)(node, service, hints, rv);
2177 ThreadIgnoreEnd(thr);
2178 return res;
2181 TSAN_INTERCEPTOR(int, fork, int fake) {
2182 if (in_symbolizer())
2183 return REAL(fork)(fake);
2184 SCOPED_INTERCEPTOR_RAW(fork, fake);
2185 return REAL(fork)(fake);
2188 void atfork_prepare() {
2189 if (in_symbolizer())
2190 return;
2191 ThreadState *thr = cur_thread();
2192 const uptr pc = StackTrace::GetCurrentPc();
2193 ForkBefore(thr, pc);
2196 void atfork_parent() {
2197 if (in_symbolizer())
2198 return;
2199 ThreadState *thr = cur_thread();
2200 const uptr pc = StackTrace::GetCurrentPc();
2201 ForkParentAfter(thr, pc);
2204 void atfork_child() {
2205 if (in_symbolizer())
2206 return;
2207 ThreadState *thr = cur_thread();
2208 const uptr pc = StackTrace::GetCurrentPc();
2209 ForkChildAfter(thr, pc, true);
2210 FdOnFork(thr, pc);
2213 #if !SANITIZER_IOS
2214 TSAN_INTERCEPTOR(int, vfork, int fake) {
2215 // Some programs (e.g. openjdk) call close for all file descriptors
2216 // in the child process. Under tsan it leads to false positives, because
2217 // address space is shared, so the parent process also thinks that
2218 // the descriptors are closed (while they are actually not).
2219 // This leads to false positives due to missed synchronization.
2220 // Strictly saying this is undefined behavior, because vfork child is not
2221 // allowed to call any functions other than exec/exit. But this is what
2222 // openjdk does, so we want to handle it.
2223 // We could disable interceptors in the child process. But it's not possible
2224 // to simply intercept and wrap vfork, because vfork child is not allowed
2225 // to return from the function that calls vfork, and that's exactly what
2226 // we would do. So this would require some assembly trickery as well.
2227 // Instead we simply turn vfork into fork.
2228 return WRAP(fork)(fake);
2230 #endif
2232 #if SANITIZER_LINUX
2233 TSAN_INTERCEPTOR(int, clone, int (*fn)(void *), void *stack, int flags,
2234 void *arg, int *parent_tid, void *tls, pid_t *child_tid) {
2235 SCOPED_INTERCEPTOR_RAW(clone, fn, stack, flags, arg, parent_tid, tls,
2236 child_tid);
2237 struct Arg {
2238 int (*fn)(void *);
2239 void *arg;
2241 auto wrapper = +[](void *p) -> int {
2242 auto *thr = cur_thread();
2243 uptr pc = GET_CURRENT_PC();
2244 // Start the background thread for fork, but not for clone.
2245 // For fork we did this always and it's known to work (or user code has
2246 // adopted). But if we do this for the new clone interceptor some code
2247 // (sandbox2) fails. So model we used to do for years and don't start the
2248 // background thread after clone.
2249 ForkChildAfter(thr, pc, false);
2250 FdOnFork(thr, pc);
2251 auto *arg = static_cast<Arg *>(p);
2252 return arg->fn(arg->arg);
2254 ForkBefore(thr, pc);
2255 Arg arg_wrapper = {fn, arg};
2256 int pid = REAL(clone)(wrapper, stack, flags, &arg_wrapper, parent_tid, tls,
2257 child_tid);
2258 ForkParentAfter(thr, pc);
2259 return pid;
2261 #endif
2263 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2264 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2265 void *data);
2266 struct dl_iterate_phdr_data {
2267 ThreadState *thr;
2268 uptr pc;
2269 dl_iterate_phdr_cb_t cb;
2270 void *data;
2273 static bool IsAppNotRodata(uptr addr) {
2274 return IsAppMem(addr) && *MemToShadow(addr) != Shadow::kRodata;
2277 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2278 void *data) {
2279 dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2280 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2281 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2282 // inside of dynamic linker, so we "unpoison" it here in order to not
2283 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2284 // because some libc functions call __libc_dlopen.
2285 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2286 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2287 internal_strlen(info->dlpi_name));
2288 int res = cbdata->cb(info, size, cbdata->data);
2289 // Perform the check one more time in case info->dlpi_name was overwritten
2290 // by user callback.
2291 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2292 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2293 internal_strlen(info->dlpi_name));
2294 return res;
2297 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2298 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2299 dl_iterate_phdr_data cbdata;
2300 cbdata.thr = thr;
2301 cbdata.pc = pc;
2302 cbdata.cb = cb;
2303 cbdata.data = data;
2304 int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2305 return res;
2307 #endif
2309 static int OnExit(ThreadState *thr) {
2310 int status = Finalize(thr);
2311 FlushStreams();
2312 return status;
2315 struct TsanInterceptorContext {
2316 ThreadState *thr;
2317 const uptr pc;
2320 #if !SANITIZER_MAC
2321 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2322 __sanitizer_msghdr *msg) {
2323 int fds[64];
2324 int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2325 for (int i = 0; i < cnt; i++)
2326 FdEventCreate(thr, pc, fds[i]);
2328 #endif
2330 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2331 // Causes interceptor recursion (getaddrinfo() and fopen())
2332 #undef SANITIZER_INTERCEPT_GETADDRINFO
2333 // We define our own.
2334 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2335 #define NEED_TLS_GET_ADDR
2336 #endif
2337 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2338 #define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1
2339 #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2341 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2342 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
2343 INTERCEPT_FUNCTION_VER(name, ver)
2344 #define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \
2345 (INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name))
2347 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
2348 MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
2349 ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2350 true)
2352 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
2353 MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
2354 ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2355 false)
2357 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
2358 SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
2359 TsanInterceptorContext _ctx = {thr, pc}; \
2360 ctx = (void *)&_ctx; \
2361 (void)ctx;
2363 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2364 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2365 TsanInterceptorContext _ctx = {thr, pc}; \
2366 ctx = (void *)&_ctx; \
2367 (void)ctx;
2369 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2370 if (path) \
2371 Acquire(thr, pc, File2addr(path)); \
2372 if (file) { \
2373 int fd = fileno_unlocked(file); \
2374 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2377 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2378 if (file) { \
2379 int fd = fileno_unlocked(file); \
2380 FdClose(thr, pc, fd); \
2383 #define COMMON_INTERCEPTOR_DLOPEN(filename, flag) \
2384 ({ \
2385 CheckNoDeepBind(filename, flag); \
2386 ThreadIgnoreBegin(thr, 0); \
2387 void *res = REAL(dlopen)(filename, flag); \
2388 ThreadIgnoreEnd(thr); \
2389 res; \
2392 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2393 libignore()->OnLibraryLoaded(filename)
2395 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2396 libignore()->OnLibraryUnloaded()
2398 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2399 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2401 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2402 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2404 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2405 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2407 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2408 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2410 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2411 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2413 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2414 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2416 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2417 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2419 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2420 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2422 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2423 if (pthread_equal(pthread_self(), reinterpret_cast<void *>(thread))) \
2424 COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name); \
2425 else \
2426 __tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name)
2428 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2430 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2431 OnExit(((TsanInterceptorContext *) ctx)->thr)
2433 #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
2434 MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
2435 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2437 #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
2438 MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
2439 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2441 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2442 MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2443 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2445 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2446 MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2447 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2449 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
2450 MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
2451 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2453 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
2454 off) \
2455 do { \
2456 return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2457 off); \
2458 } while (false)
2460 #if !SANITIZER_MAC
2461 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2462 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2463 ((TsanInterceptorContext *)ctx)->pc, msg)
2464 #endif
2466 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2467 if (TsanThread *t = GetCurrentThread()) { \
2468 *begin = t->tls_begin(); \
2469 *end = t->tls_end(); \
2470 } else { \
2471 *begin = *end = 0; \
2474 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2475 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2477 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2478 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2480 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2482 static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2483 __sanitizer_sigaction *old);
2484 static __sanitizer_sighandler_ptr signal_impl(int sig,
2485 __sanitizer_sighandler_ptr h);
2487 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2488 { return sigaction_impl(signo, act, oldact); }
2490 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2491 { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2493 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
2495 int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2496 __sanitizer_sigaction *old) {
2497 // Note: if we call REAL(sigaction) directly for any reason without proxying
2498 // the signal handler through sighandler, very bad things will happen.
2499 // The handler will run synchronously and corrupt tsan per-thread state.
2500 SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2501 if (sig <= 0 || sig >= kSigCount) {
2502 errno = errno_EINVAL;
2503 return -1;
2505 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2506 __sanitizer_sigaction old_stored;
2507 if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
2508 __sanitizer_sigaction newact;
2509 if (act) {
2510 // Copy act into sigactions[sig].
2511 // Can't use struct copy, because compiler can emit call to memcpy.
2512 // Can't use internal_memcpy, because it copies byte-by-byte,
2513 // and signal handler reads the handler concurrently. It it can read
2514 // some bytes from old value and some bytes from new value.
2515 // Use volatile to prevent insertion of memcpy.
2516 sigactions[sig].handler =
2517 *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2518 sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2519 internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2520 sizeof(sigactions[sig].sa_mask));
2521 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
2522 sigactions[sig].sa_restorer = act->sa_restorer;
2523 #endif
2524 internal_memcpy(&newact, act, sizeof(newact));
2525 internal_sigfillset(&newact.sa_mask);
2526 if ((act->sa_flags & SA_SIGINFO) ||
2527 ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl)) {
2528 newact.sa_flags |= SA_SIGINFO;
2529 newact.sigaction = sighandler;
2531 ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2532 act = &newact;
2534 int res = REAL(sigaction)(sig, act, old);
2535 if (res == 0 && old && old->sigaction == sighandler)
2536 internal_memcpy(old, &old_stored, sizeof(*old));
2537 return res;
2540 static __sanitizer_sighandler_ptr signal_impl(int sig,
2541 __sanitizer_sighandler_ptr h) {
2542 __sanitizer_sigaction act;
2543 act.handler = h;
2544 internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
2545 act.sa_flags = 0;
2546 __sanitizer_sigaction old;
2547 int res = sigaction_symname(sig, &act, &old);
2548 if (res) return (__sanitizer_sighandler_ptr)sig_err;
2549 return old.handler;
2552 #define TSAN_SYSCALL() \
2553 ThreadState *thr = cur_thread(); \
2554 if (thr->ignore_interceptors) \
2555 return; \
2556 ScopedSyscall scoped_syscall(thr)
2558 struct ScopedSyscall {
2559 ThreadState *thr;
2561 explicit ScopedSyscall(ThreadState *thr) : thr(thr) { LazyInitialize(thr); }
2563 ~ScopedSyscall() {
2564 ProcessPendingSignals(thr);
2568 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
2569 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2570 TSAN_SYSCALL();
2571 MemoryAccessRange(thr, pc, p, s, write);
2574 static USED void syscall_acquire(uptr pc, uptr addr) {
2575 TSAN_SYSCALL();
2576 Acquire(thr, pc, addr);
2577 DPrintf("syscall_acquire(0x%zx))\n", addr);
2580 static USED void syscall_release(uptr pc, uptr addr) {
2581 TSAN_SYSCALL();
2582 DPrintf("syscall_release(0x%zx)\n", addr);
2583 Release(thr, pc, addr);
2586 static void syscall_fd_close(uptr pc, int fd) {
2587 auto *thr = cur_thread();
2588 FdClose(thr, pc, fd);
2591 static USED void syscall_fd_acquire(uptr pc, int fd) {
2592 TSAN_SYSCALL();
2593 FdAcquire(thr, pc, fd);
2594 DPrintf("syscall_fd_acquire(%d)\n", fd);
2597 static USED void syscall_fd_release(uptr pc, int fd) {
2598 TSAN_SYSCALL();
2599 DPrintf("syscall_fd_release(%d)\n", fd);
2600 FdRelease(thr, pc, fd);
2603 static void syscall_pre_fork(uptr pc) { ForkBefore(cur_thread(), pc); }
2605 static void syscall_post_fork(uptr pc, int pid) {
2606 ThreadState *thr = cur_thread();
2607 if (pid == 0) {
2608 // child
2609 ForkChildAfter(thr, pc, true);
2610 FdOnFork(thr, pc);
2611 } else if (pid > 0) {
2612 // parent
2613 ForkParentAfter(thr, pc);
2614 } else {
2615 // error
2616 ForkParentAfter(thr, pc);
2619 #endif
2621 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2622 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2624 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2625 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2627 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2628 do { \
2629 (void)(p); \
2630 (void)(s); \
2631 } while (false)
2633 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2634 do { \
2635 (void)(p); \
2636 (void)(s); \
2637 } while (false)
2639 #define COMMON_SYSCALL_ACQUIRE(addr) \
2640 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2642 #define COMMON_SYSCALL_RELEASE(addr) \
2643 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2645 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2647 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2649 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2651 #define COMMON_SYSCALL_PRE_FORK() \
2652 syscall_pre_fork(GET_CALLER_PC())
2654 #define COMMON_SYSCALL_POST_FORK(res) \
2655 syscall_post_fork(GET_CALLER_PC(), res)
2657 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2658 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2660 #ifdef NEED_TLS_GET_ADDR
2662 static void handle_tls_addr(void *arg, void *res) {
2663 ThreadState *thr = cur_thread();
2664 if (!thr)
2665 return;
2666 DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
2667 thr->tls_addr + thr->tls_size);
2668 if (!dtv)
2669 return;
2670 // New DTLS block has been allocated.
2671 MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2674 #if !SANITIZER_S390
2675 // Define own interceptor instead of sanitizer_common's for three reasons:
2676 // 1. It must not process pending signals.
2677 // Signal handlers may contain MOVDQA instruction (see below).
2678 // 2. It must be as simple as possible to not contain MOVDQA.
2679 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2680 // is empty for tsan (meant only for msan).
2681 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2682 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2683 // So the interceptor must work with mis-aligned stack, in particular, does not
2684 // execute MOVDQA with stack addresses.
2685 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2686 void *res = REAL(__tls_get_addr)(arg);
2687 handle_tls_addr(arg, res);
2688 return res;
2690 #else // SANITIZER_S390
2691 TSAN_INTERCEPTOR(uptr, __tls_get_addr_internal, void *arg) {
2692 uptr res = __tls_get_offset_wrapper(arg, REAL(__tls_get_offset));
2693 char *tp = static_cast<char *>(__builtin_thread_pointer());
2694 handle_tls_addr(arg, res + tp);
2695 return res;
2697 #endif
2698 #endif
2700 #if SANITIZER_NETBSD
2701 TSAN_INTERCEPTOR(void, _lwp_exit) {
2702 SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2703 DestroyThreadState();
2704 REAL(_lwp_exit)();
2706 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2707 #else
2708 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2709 #endif
2711 #if SANITIZER_FREEBSD
2712 TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2713 SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2714 DestroyThreadState();
2715 REAL(thr_exit(state));
2717 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2718 #else
2719 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
2720 #endif
2722 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_init, void *c, void *a)
2723 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_destroy, void *c)
2724 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_signal, void *c)
2725 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_broadcast, void *c)
2726 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_wait, void *c, void *m)
2727 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_init, void *m, void *a)
2728 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_destroy, void *m)
2729 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_lock, void *m)
2730 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_trylock, void *m)
2731 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_unlock, void *m)
2732 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_init, void *l, void *a)
2733 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_destroy, void *l)
2734 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_rdlock, void *l)
2735 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_tryrdlock, void *l)
2736 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_wrlock, void *l)
2737 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_trywrlock, void *l)
2738 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_unlock, void *l)
2739 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, once, void *o, void (*i)())
2740 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, sigmask, int f, void *n, void *o)
2742 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2743 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2744 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2745 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2746 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2747 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2748 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2749 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2750 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2751 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2752 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2753 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2754 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2755 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2756 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2757 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2758 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
2759 void *c)
2761 namespace __tsan {
2763 static void finalize(void *arg) {
2764 ThreadState *thr = cur_thread();
2765 int status = Finalize(thr);
2766 // Make sure the output is not lost.
2767 FlushStreams();
2768 if (status)
2769 Die();
2772 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2773 static void unreachable() {
2774 Report("FATAL: ThreadSanitizer: unreachable called\n");
2775 Die();
2777 #endif
2779 // Define default implementation since interception of libdispatch is optional.
2780 SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}
2782 void InitializeInterceptors() {
2783 #if !SANITIZER_MAC
2784 // We need to setup it early, because functions like dlsym() can call it.
2785 REAL(memset) = internal_memset;
2786 REAL(memcpy) = internal_memcpy;
2787 #endif
2789 new(interceptor_ctx()) InterceptorContext();
2791 InitializeCommonInterceptors();
2792 InitializeSignalInterceptors();
2793 InitializeLibdispatchInterceptors();
2795 #if !SANITIZER_MAC
2796 // We can not use TSAN_INTERCEPT to get setjmp addr,
2797 // because it does &setjmp and setjmp is not present in some versions of libc.
2798 using __interception::InterceptFunction;
2799 InterceptFunction(TSAN_STRING_SETJMP, (uptr*)&REAL(setjmp_symname), 0, 0);
2800 InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2801 InterceptFunction(TSAN_STRING_SIGSETJMP, (uptr*)&REAL(sigsetjmp_symname), 0,
2803 #if !SANITIZER_NETBSD
2804 InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2805 #endif
2806 #endif
2808 TSAN_INTERCEPT(longjmp_symname);
2809 TSAN_INTERCEPT(siglongjmp_symname);
2810 #if SANITIZER_NETBSD
2811 TSAN_INTERCEPT(_longjmp);
2812 #endif
2814 TSAN_INTERCEPT(malloc);
2815 TSAN_INTERCEPT(__libc_memalign);
2816 TSAN_INTERCEPT(calloc);
2817 TSAN_INTERCEPT(realloc);
2818 TSAN_INTERCEPT(reallocarray);
2819 TSAN_INTERCEPT(free);
2820 TSAN_INTERCEPT(cfree);
2821 TSAN_INTERCEPT(munmap);
2822 TSAN_MAYBE_INTERCEPT_MEMALIGN;
2823 TSAN_INTERCEPT(valloc);
2824 TSAN_MAYBE_INTERCEPT_PVALLOC;
2825 TSAN_INTERCEPT(posix_memalign);
2827 TSAN_INTERCEPT(strcpy);
2828 TSAN_INTERCEPT(strncpy);
2829 TSAN_INTERCEPT(strdup);
2831 TSAN_INTERCEPT(pthread_create);
2832 TSAN_INTERCEPT(pthread_join);
2833 TSAN_INTERCEPT(pthread_detach);
2834 TSAN_INTERCEPT(pthread_exit);
2835 #if SANITIZER_LINUX
2836 TSAN_INTERCEPT(pthread_tryjoin_np);
2837 TSAN_INTERCEPT(pthread_timedjoin_np);
2838 #endif
2840 TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2841 TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2842 TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2843 TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2844 TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2845 TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2847 TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT;
2849 TSAN_INTERCEPT(pthread_mutex_init);
2850 TSAN_INTERCEPT(pthread_mutex_destroy);
2851 TSAN_INTERCEPT(pthread_mutex_trylock);
2852 TSAN_INTERCEPT(pthread_mutex_timedlock);
2854 TSAN_INTERCEPT(pthread_spin_init);
2855 TSAN_INTERCEPT(pthread_spin_destroy);
2856 TSAN_INTERCEPT(pthread_spin_lock);
2857 TSAN_INTERCEPT(pthread_spin_trylock);
2858 TSAN_INTERCEPT(pthread_spin_unlock);
2860 TSAN_INTERCEPT(pthread_rwlock_init);
2861 TSAN_INTERCEPT(pthread_rwlock_destroy);
2862 TSAN_INTERCEPT(pthread_rwlock_rdlock);
2863 TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2864 TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2865 TSAN_INTERCEPT(pthread_rwlock_wrlock);
2866 TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2867 TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2868 TSAN_INTERCEPT(pthread_rwlock_unlock);
2870 TSAN_INTERCEPT(pthread_barrier_init);
2871 TSAN_INTERCEPT(pthread_barrier_destroy);
2872 TSAN_INTERCEPT(pthread_barrier_wait);
2874 TSAN_INTERCEPT(pthread_once);
2876 TSAN_INTERCEPT(fstat);
2877 TSAN_MAYBE_INTERCEPT___FXSTAT;
2878 TSAN_MAYBE_INTERCEPT_FSTAT64;
2879 TSAN_MAYBE_INTERCEPT___FXSTAT64;
2880 TSAN_INTERCEPT(open);
2881 TSAN_MAYBE_INTERCEPT_OPEN64;
2882 TSAN_INTERCEPT(creat);
2883 TSAN_MAYBE_INTERCEPT_CREAT64;
2884 TSAN_INTERCEPT(dup);
2885 TSAN_INTERCEPT(dup2);
2886 TSAN_INTERCEPT(dup3);
2887 TSAN_MAYBE_INTERCEPT_EVENTFD;
2888 TSAN_MAYBE_INTERCEPT_SIGNALFD;
2889 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2890 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2891 TSAN_INTERCEPT(socket);
2892 TSAN_INTERCEPT(socketpair);
2893 TSAN_INTERCEPT(connect);
2894 TSAN_INTERCEPT(bind);
2895 TSAN_INTERCEPT(listen);
2896 TSAN_MAYBE_INTERCEPT_EPOLL;
2897 TSAN_INTERCEPT(close);
2898 TSAN_MAYBE_INTERCEPT___CLOSE;
2899 TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2900 TSAN_INTERCEPT(pipe);
2901 TSAN_INTERCEPT(pipe2);
2903 TSAN_INTERCEPT(unlink);
2904 TSAN_INTERCEPT(tmpfile);
2905 TSAN_MAYBE_INTERCEPT_TMPFILE64;
2906 TSAN_INTERCEPT(abort);
2907 TSAN_INTERCEPT(rmdir);
2908 TSAN_INTERCEPT(closedir);
2910 TSAN_INTERCEPT(sigsuspend);
2911 TSAN_INTERCEPT(sigblock);
2912 TSAN_INTERCEPT(sigsetmask);
2913 TSAN_INTERCEPT(pthread_sigmask);
2914 TSAN_INTERCEPT(raise);
2915 TSAN_INTERCEPT(kill);
2916 TSAN_INTERCEPT(pthread_kill);
2917 TSAN_INTERCEPT(sleep);
2918 TSAN_INTERCEPT(usleep);
2919 TSAN_INTERCEPT(nanosleep);
2920 TSAN_INTERCEPT(pause);
2921 TSAN_INTERCEPT(gettimeofday);
2922 TSAN_INTERCEPT(getaddrinfo);
2924 TSAN_INTERCEPT(fork);
2925 TSAN_INTERCEPT(vfork);
2926 #if SANITIZER_LINUX
2927 TSAN_INTERCEPT(clone);
2928 #endif
2929 #if !SANITIZER_ANDROID
2930 TSAN_INTERCEPT(dl_iterate_phdr);
2931 #endif
2932 TSAN_MAYBE_INTERCEPT_ON_EXIT;
2933 TSAN_INTERCEPT(__cxa_atexit);
2934 TSAN_INTERCEPT(_exit);
2936 #ifdef NEED_TLS_GET_ADDR
2937 #if !SANITIZER_S390
2938 TSAN_INTERCEPT(__tls_get_addr);
2939 #else
2940 TSAN_INTERCEPT(__tls_get_addr_internal);
2941 TSAN_INTERCEPT(__tls_get_offset);
2942 #endif
2943 #endif
2945 TSAN_MAYBE_INTERCEPT__LWP_EXIT;
2946 TSAN_MAYBE_INTERCEPT_THR_EXIT;
2948 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2949 // Need to setup it, because interceptors check that the function is resolved.
2950 // But atexit is emitted directly into the module, so can't be resolved.
2951 REAL(atexit) = (int(*)(void(*)()))unreachable;
2952 #endif
2954 if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2955 Printf("ThreadSanitizer: failed to setup atexit callback\n");
2956 Die();
2958 if (pthread_atfork(atfork_prepare, atfork_parent, atfork_child)) {
2959 Printf("ThreadSanitizer: failed to setup atfork callbacks\n");
2960 Die();
2963 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
2964 if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
2965 Printf("ThreadSanitizer: failed to create thread key\n");
2966 Die();
2968 #endif
2970 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_init);
2971 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_destroy);
2972 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_signal);
2973 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_broadcast);
2974 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_wait);
2975 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_init);
2976 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_destroy);
2977 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_lock);
2978 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_trylock);
2979 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_unlock);
2980 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_init);
2981 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_destroy);
2982 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_rdlock);
2983 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_tryrdlock);
2984 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_wrlock);
2985 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_trywrlock);
2986 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_unlock);
2987 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(once);
2988 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(sigmask);
2990 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
2991 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
2992 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
2993 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
2994 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
2995 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
2996 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
2997 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
2998 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
2999 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
3000 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
3001 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
3002 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
3003 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
3004 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
3005 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
3006 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
3008 FdInit();
3011 } // namespace __tsan
3013 // Invisible barrier for tests.
3014 // There were several unsuccessful iterations for this functionality:
3015 // 1. Initially it was implemented in user code using
3016 // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
3017 // MacOS. Futexes are linux-specific for this matter.
3018 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
3019 // "as-if synchronized via sleep" messages in reports which failed some
3020 // output tests.
3021 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
3022 // visible events, which lead to "failed to restore stack trace" failures.
3023 // Note that no_sanitize_thread attribute does not turn off atomic interception
3024 // so attaching it to the function defined in user code does not help.
3025 // That's why we now have what we have.
3026 constexpr u32 kBarrierThreadBits = 10;
3027 constexpr u32 kBarrierThreads = 1 << kBarrierThreadBits;
3029 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_init(
3030 atomic_uint32_t *barrier, u32 num_threads) {
3031 if (num_threads >= kBarrierThreads) {
3032 Printf("barrier_init: count is too large (%d)\n", num_threads);
3033 Die();
3035 // kBarrierThreadBits lsb is thread count,
3036 // the remaining are count of entered threads.
3037 atomic_store(barrier, num_threads, memory_order_relaxed);
3040 static u32 barrier_epoch(u32 value) {
3041 return (value >> kBarrierThreadBits) / (value & (kBarrierThreads - 1));
3044 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_wait(
3045 atomic_uint32_t *barrier) {
3046 u32 old = atomic_fetch_add(barrier, kBarrierThreads, memory_order_relaxed);
3047 u32 old_epoch = barrier_epoch(old);
3048 if (barrier_epoch(old + kBarrierThreads) != old_epoch) {
3049 FutexWake(barrier, (1 << 30));
3050 return;
3052 for (;;) {
3053 u32 cur = atomic_load(barrier, memory_order_relaxed);
3054 if (barrier_epoch(cur) != old_epoch)
3055 return;
3056 FutexWait(barrier, cur);