[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / AST / DeclCXX.cpp
blob3cf355714107c030bc5fcf267e1a0dcc51b66f39
1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
52 using namespace clang;
54 //===----------------------------------------------------------------------===//
55 // Decl Allocation/Deallocation Method Implementations
56 //===----------------------------------------------------------------------===//
58 void AccessSpecDecl::anchor() {}
60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
61 return new (C, ID) AccessSpecDecl(EmptyShell());
64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
65 ExternalASTSource *Source = C.getExternalSource();
66 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
67 assert(Source && "getFromExternalSource with no external source");
69 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
70 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
71 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
72 Impl.Decls.setLazy(false);
75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
76 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
77 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
78 Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
79 HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
80 HasPrivateFields(false), HasProtectedFields(false),
81 HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
82 HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false),
83 HasUninitializedReferenceMember(false), HasUninitializedFields(false),
84 HasInheritedConstructor(false), HasInheritedDefaultConstructor(false),
85 HasInheritedAssignment(false),
86 NeedOverloadResolutionForCopyConstructor(false),
87 NeedOverloadResolutionForMoveConstructor(false),
88 NeedOverloadResolutionForCopyAssignment(false),
89 NeedOverloadResolutionForMoveAssignment(false),
90 NeedOverloadResolutionForDestructor(false),
91 DefaultedCopyConstructorIsDeleted(false),
92 DefaultedMoveConstructorIsDeleted(false),
93 DefaultedCopyAssignmentIsDeleted(false),
94 DefaultedMoveAssignmentIsDeleted(false),
95 DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
96 HasTrivialSpecialMembersForCall(SMF_All),
97 DeclaredNonTrivialSpecialMembers(0),
98 DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
99 HasConstexprNonCopyMoveConstructor(false),
100 HasDefaultedDefaultConstructor(false),
101 DefaultedDefaultConstructorIsConstexpr(true),
102 HasConstexprDefaultConstructor(false),
103 DefaultedDestructorIsConstexpr(true),
104 HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
105 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
106 ImplicitCopyConstructorCanHaveConstParamForVBase(true),
107 ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
108 ImplicitCopyAssignmentHasConstParam(true),
109 HasDeclaredCopyConstructorWithConstParam(false),
110 HasDeclaredCopyAssignmentWithConstParam(false),
111 IsAnyDestructorNoReturn(false), IsLambda(false),
112 IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
113 HasODRHash(false), Definition(D) {}
115 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
116 return Bases.get(Definition->getASTContext().getExternalSource());
119 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
120 return VBases.get(Definition->getASTContext().getExternalSource());
123 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
124 DeclContext *DC, SourceLocation StartLoc,
125 SourceLocation IdLoc, IdentifierInfo *Id,
126 CXXRecordDecl *PrevDecl)
127 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
128 DefinitionData(PrevDecl ? PrevDecl->DefinitionData
129 : nullptr) {}
131 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
132 DeclContext *DC, SourceLocation StartLoc,
133 SourceLocation IdLoc, IdentifierInfo *Id,
134 CXXRecordDecl *PrevDecl,
135 bool DelayTypeCreation) {
136 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
137 PrevDecl);
138 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
140 // FIXME: DelayTypeCreation seems like such a hack
141 if (!DelayTypeCreation)
142 C.getTypeDeclType(R, PrevDecl);
143 return R;
146 CXXRecordDecl *
147 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
148 TypeSourceInfo *Info, SourceLocation Loc,
149 unsigned DependencyKind, bool IsGeneric,
150 LambdaCaptureDefault CaptureDefault) {
151 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
152 nullptr, nullptr);
153 R->setBeingDefined(true);
154 R->DefinitionData = new (C) struct LambdaDefinitionData(
155 R, Info, DependencyKind, IsGeneric, CaptureDefault);
156 R->setMayHaveOutOfDateDef(false);
157 R->setImplicit(true);
159 C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
160 return R;
163 CXXRecordDecl *
164 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
165 auto *R = new (C, ID) CXXRecordDecl(
166 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
167 nullptr, nullptr);
168 R->setMayHaveOutOfDateDef(false);
169 return R;
172 /// Determine whether a class has a repeated base class. This is intended for
173 /// use when determining if a class is standard-layout, so makes no attempt to
174 /// handle virtual bases.
175 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
176 llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
177 SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
178 while (!WorkList.empty()) {
179 const CXXRecordDecl *RD = WorkList.pop_back_val();
180 if (RD->getTypeForDecl()->isDependentType())
181 continue;
182 for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
183 if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
184 if (!SeenBaseTypes.insert(B).second)
185 return true;
186 WorkList.push_back(B);
190 return false;
193 void
194 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
195 unsigned NumBases) {
196 ASTContext &C = getASTContext();
198 if (!data().Bases.isOffset() && data().NumBases > 0)
199 C.Deallocate(data().getBases());
201 if (NumBases) {
202 if (!C.getLangOpts().CPlusPlus17) {
203 // C++ [dcl.init.aggr]p1:
204 // An aggregate is [...] a class with [...] no base classes [...].
205 data().Aggregate = false;
208 // C++ [class]p4:
209 // A POD-struct is an aggregate class...
210 data().PlainOldData = false;
213 // The set of seen virtual base types.
214 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
216 // The virtual bases of this class.
217 SmallVector<const CXXBaseSpecifier *, 8> VBases;
219 data().Bases = new(C) CXXBaseSpecifier [NumBases];
220 data().NumBases = NumBases;
221 for (unsigned i = 0; i < NumBases; ++i) {
222 data().getBases()[i] = *Bases[i];
223 // Keep track of inherited vbases for this base class.
224 const CXXBaseSpecifier *Base = Bases[i];
225 QualType BaseType = Base->getType();
226 // Skip dependent types; we can't do any checking on them now.
227 if (BaseType->isDependentType())
228 continue;
229 auto *BaseClassDecl =
230 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
232 // C++2a [class]p7:
233 // A standard-layout class is a class that:
234 // [...]
235 // -- has all non-static data members and bit-fields in the class and
236 // its base classes first declared in the same class
237 if (BaseClassDecl->data().HasBasesWithFields ||
238 !BaseClassDecl->field_empty()) {
239 if (data().HasBasesWithFields)
240 // Two bases have members or bit-fields: not standard-layout.
241 data().IsStandardLayout = false;
242 data().HasBasesWithFields = true;
245 // C++11 [class]p7:
246 // A standard-layout class is a class that:
247 // -- [...] has [...] at most one base class with non-static data
248 // members
249 if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
250 BaseClassDecl->hasDirectFields()) {
251 if (data().HasBasesWithNonStaticDataMembers)
252 data().IsCXX11StandardLayout = false;
253 data().HasBasesWithNonStaticDataMembers = true;
256 if (!BaseClassDecl->isEmpty()) {
257 // C++14 [meta.unary.prop]p4:
258 // T is a class type [...] with [...] no base class B for which
259 // is_empty<B>::value is false.
260 data().Empty = false;
263 // C++1z [dcl.init.agg]p1:
264 // An aggregate is a class with [...] no private or protected base classes
265 if (Base->getAccessSpecifier() != AS_public) {
266 data().Aggregate = false;
268 // C++20 [temp.param]p7:
269 // A structural type is [...] a literal class type with [...] all base
270 // classes [...] public
271 data().StructuralIfLiteral = false;
274 // C++ [class.virtual]p1:
275 // A class that declares or inherits a virtual function is called a
276 // polymorphic class.
277 if (BaseClassDecl->isPolymorphic()) {
278 data().Polymorphic = true;
280 // An aggregate is a class with [...] no virtual functions.
281 data().Aggregate = false;
284 // C++0x [class]p7:
285 // A standard-layout class is a class that: [...]
286 // -- has no non-standard-layout base classes
287 if (!BaseClassDecl->isStandardLayout())
288 data().IsStandardLayout = false;
289 if (!BaseClassDecl->isCXX11StandardLayout())
290 data().IsCXX11StandardLayout = false;
292 // Record if this base is the first non-literal field or base.
293 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
294 data().HasNonLiteralTypeFieldsOrBases = true;
296 // Now go through all virtual bases of this base and add them.
297 for (const auto &VBase : BaseClassDecl->vbases()) {
298 // Add this base if it's not already in the list.
299 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
300 VBases.push_back(&VBase);
302 // C++11 [class.copy]p8:
303 // The implicitly-declared copy constructor for a class X will have
304 // the form 'X::X(const X&)' if each [...] virtual base class B of X
305 // has a copy constructor whose first parameter is of type
306 // 'const B&' or 'const volatile B&' [...]
307 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
308 if (!VBaseDecl->hasCopyConstructorWithConstParam())
309 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
311 // C++1z [dcl.init.agg]p1:
312 // An aggregate is a class with [...] no virtual base classes
313 data().Aggregate = false;
317 if (Base->isVirtual()) {
318 // Add this base if it's not already in the list.
319 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
320 VBases.push_back(Base);
322 // C++14 [meta.unary.prop] is_empty:
323 // T is a class type, but not a union type, with ... no virtual base
324 // classes
325 data().Empty = false;
327 // C++1z [dcl.init.agg]p1:
328 // An aggregate is a class with [...] no virtual base classes
329 data().Aggregate = false;
331 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
332 // A [default constructor, copy/move constructor, or copy/move assignment
333 // operator for a class X] is trivial [...] if:
334 // -- class X has [...] no virtual base classes
335 data().HasTrivialSpecialMembers &= SMF_Destructor;
336 data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
338 // C++0x [class]p7:
339 // A standard-layout class is a class that: [...]
340 // -- has [...] no virtual base classes
341 data().IsStandardLayout = false;
342 data().IsCXX11StandardLayout = false;
344 // C++20 [dcl.constexpr]p3:
345 // In the definition of a constexpr function [...]
346 // -- if the function is a constructor or destructor,
347 // its class shall not have any virtual base classes
348 data().DefaultedDefaultConstructorIsConstexpr = false;
349 data().DefaultedDestructorIsConstexpr = false;
351 // C++1z [class.copy]p8:
352 // The implicitly-declared copy constructor for a class X will have
353 // the form 'X::X(const X&)' if each potentially constructed subobject
354 // has a copy constructor whose first parameter is of type
355 // 'const B&' or 'const volatile B&' [...]
356 if (!BaseClassDecl->hasCopyConstructorWithConstParam())
357 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
358 } else {
359 // C++ [class.ctor]p5:
360 // A default constructor is trivial [...] if:
361 // -- all the direct base classes of its class have trivial default
362 // constructors.
363 if (!BaseClassDecl->hasTrivialDefaultConstructor())
364 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
366 // C++0x [class.copy]p13:
367 // A copy/move constructor for class X is trivial if [...]
368 // [...]
369 // -- the constructor selected to copy/move each direct base class
370 // subobject is trivial, and
371 if (!BaseClassDecl->hasTrivialCopyConstructor())
372 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
374 if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
375 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
377 // If the base class doesn't have a simple move constructor, we'll eagerly
378 // declare it and perform overload resolution to determine which function
379 // it actually calls. If it does have a simple move constructor, this
380 // check is correct.
381 if (!BaseClassDecl->hasTrivialMoveConstructor())
382 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
384 if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
385 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
387 // C++0x [class.copy]p27:
388 // A copy/move assignment operator for class X is trivial if [...]
389 // [...]
390 // -- the assignment operator selected to copy/move each direct base
391 // class subobject is trivial, and
392 if (!BaseClassDecl->hasTrivialCopyAssignment())
393 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
394 // If the base class doesn't have a simple move assignment, we'll eagerly
395 // declare it and perform overload resolution to determine which function
396 // it actually calls. If it does have a simple move assignment, this
397 // check is correct.
398 if (!BaseClassDecl->hasTrivialMoveAssignment())
399 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
401 // C++11 [class.ctor]p6:
402 // If that user-written default constructor would satisfy the
403 // requirements of a constexpr constructor, the implicitly-defined
404 // default constructor is constexpr.
405 if (!BaseClassDecl->hasConstexprDefaultConstructor())
406 data().DefaultedDefaultConstructorIsConstexpr = false;
408 // C++1z [class.copy]p8:
409 // The implicitly-declared copy constructor for a class X will have
410 // the form 'X::X(const X&)' if each potentially constructed subobject
411 // has a copy constructor whose first parameter is of type
412 // 'const B&' or 'const volatile B&' [...]
413 if (!BaseClassDecl->hasCopyConstructorWithConstParam())
414 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
417 // C++ [class.ctor]p3:
418 // A destructor is trivial if all the direct base classes of its class
419 // have trivial destructors.
420 if (!BaseClassDecl->hasTrivialDestructor())
421 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
423 if (!BaseClassDecl->hasTrivialDestructorForCall())
424 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
426 if (!BaseClassDecl->hasIrrelevantDestructor())
427 data().HasIrrelevantDestructor = false;
429 if (BaseClassDecl->isAnyDestructorNoReturn())
430 data().IsAnyDestructorNoReturn = true;
432 // C++11 [class.copy]p18:
433 // The implicitly-declared copy assignment operator for a class X will
434 // have the form 'X& X::operator=(const X&)' if each direct base class B
435 // of X has a copy assignment operator whose parameter is of type 'const
436 // B&', 'const volatile B&', or 'B' [...]
437 if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
438 data().ImplicitCopyAssignmentHasConstParam = false;
440 // A class has an Objective-C object member if... or any of its bases
441 // has an Objective-C object member.
442 if (BaseClassDecl->hasObjectMember())
443 setHasObjectMember(true);
445 if (BaseClassDecl->hasVolatileMember())
446 setHasVolatileMember(true);
448 if (BaseClassDecl->getArgPassingRestrictions() ==
449 RecordDecl::APK_CanNeverPassInRegs)
450 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
452 // Keep track of the presence of mutable fields.
453 if (BaseClassDecl->hasMutableFields())
454 data().HasMutableFields = true;
456 if (BaseClassDecl->hasUninitializedReferenceMember())
457 data().HasUninitializedReferenceMember = true;
459 if (!BaseClassDecl->allowConstDefaultInit())
460 data().HasUninitializedFields = true;
462 addedClassSubobject(BaseClassDecl);
465 // C++2a [class]p7:
466 // A class S is a standard-layout class if it:
467 // -- has at most one base class subobject of any given type
469 // Note that we only need to check this for classes with more than one base
470 // class. If there's only one base class, and it's standard layout, then
471 // we know there are no repeated base classes.
472 if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
473 data().IsStandardLayout = false;
475 if (VBases.empty()) {
476 data().IsParsingBaseSpecifiers = false;
477 return;
480 // Create base specifier for any direct or indirect virtual bases.
481 data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
482 data().NumVBases = VBases.size();
483 for (int I = 0, E = VBases.size(); I != E; ++I) {
484 QualType Type = VBases[I]->getType();
485 if (!Type->isDependentType())
486 addedClassSubobject(Type->getAsCXXRecordDecl());
487 data().getVBases()[I] = *VBases[I];
490 data().IsParsingBaseSpecifiers = false;
493 unsigned CXXRecordDecl::getODRHash() const {
494 assert(hasDefinition() && "ODRHash only for records with definitions");
496 // Previously calculated hash is stored in DefinitionData.
497 if (DefinitionData->HasODRHash)
498 return DefinitionData->ODRHash;
500 // Only calculate hash on first call of getODRHash per record.
501 ODRHash Hash;
502 Hash.AddCXXRecordDecl(getDefinition());
503 DefinitionData->HasODRHash = true;
504 DefinitionData->ODRHash = Hash.CalculateHash();
506 return DefinitionData->ODRHash;
509 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
510 // C++11 [class.copy]p11:
511 // A defaulted copy/move constructor for a class X is defined as
512 // deleted if X has:
513 // -- a direct or virtual base class B that cannot be copied/moved [...]
514 // -- a non-static data member of class type M (or array thereof)
515 // that cannot be copied or moved [...]
516 if (!Subobj->hasSimpleCopyConstructor())
517 data().NeedOverloadResolutionForCopyConstructor = true;
518 if (!Subobj->hasSimpleMoveConstructor())
519 data().NeedOverloadResolutionForMoveConstructor = true;
521 // C++11 [class.copy]p23:
522 // A defaulted copy/move assignment operator for a class X is defined as
523 // deleted if X has:
524 // -- a direct or virtual base class B that cannot be copied/moved [...]
525 // -- a non-static data member of class type M (or array thereof)
526 // that cannot be copied or moved [...]
527 if (!Subobj->hasSimpleCopyAssignment())
528 data().NeedOverloadResolutionForCopyAssignment = true;
529 if (!Subobj->hasSimpleMoveAssignment())
530 data().NeedOverloadResolutionForMoveAssignment = true;
532 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
533 // A defaulted [ctor or dtor] for a class X is defined as
534 // deleted if X has:
535 // -- any direct or virtual base class [...] has a type with a destructor
536 // that is deleted or inaccessible from the defaulted [ctor or dtor].
537 // -- any non-static data member has a type with a destructor
538 // that is deleted or inaccessible from the defaulted [ctor or dtor].
539 if (!Subobj->hasSimpleDestructor()) {
540 data().NeedOverloadResolutionForCopyConstructor = true;
541 data().NeedOverloadResolutionForMoveConstructor = true;
542 data().NeedOverloadResolutionForDestructor = true;
545 // C++2a [dcl.constexpr]p4:
546 // The definition of a constexpr destructor [shall] satisfy the
547 // following requirement:
548 // -- for every subobject of class type or (possibly multi-dimensional)
549 // array thereof, that class type shall have a constexpr destructor
550 if (!Subobj->hasConstexprDestructor())
551 data().DefaultedDestructorIsConstexpr = false;
553 // C++20 [temp.param]p7:
554 // A structural type is [...] a literal class type [for which] the types
555 // of all base classes and non-static data members are structural types or
556 // (possibly multi-dimensional) array thereof
557 if (!Subobj->data().StructuralIfLiteral)
558 data().StructuralIfLiteral = false;
561 bool CXXRecordDecl::hasConstexprDestructor() const {
562 auto *Dtor = getDestructor();
563 return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
566 bool CXXRecordDecl::hasAnyDependentBases() const {
567 if (!isDependentContext())
568 return false;
570 return !forallBases([](const CXXRecordDecl *) { return true; });
573 bool CXXRecordDecl::isTriviallyCopyable() const {
574 // C++0x [class]p5:
575 // A trivially copyable class is a class that:
576 // -- has no non-trivial copy constructors,
577 if (hasNonTrivialCopyConstructor()) return false;
578 // -- has no non-trivial move constructors,
579 if (hasNonTrivialMoveConstructor()) return false;
580 // -- has no non-trivial copy assignment operators,
581 if (hasNonTrivialCopyAssignment()) return false;
582 // -- has no non-trivial move assignment operators, and
583 if (hasNonTrivialMoveAssignment()) return false;
584 // -- has a trivial destructor.
585 if (!hasTrivialDestructor()) return false;
587 return true;
590 void CXXRecordDecl::markedVirtualFunctionPure() {
591 // C++ [class.abstract]p2:
592 // A class is abstract if it has at least one pure virtual function.
593 data().Abstract = true;
596 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
597 ASTContext &Ctx, const CXXRecordDecl *XFirst) {
598 if (!getNumBases())
599 return false;
601 llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
602 llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
603 SmallVector<const CXXRecordDecl*, 8> WorkList;
605 // Visit a type that we have determined is an element of M(S).
606 auto Visit = [&](const CXXRecordDecl *RD) -> bool {
607 RD = RD->getCanonicalDecl();
609 // C++2a [class]p8:
610 // A class S is a standard-layout class if it [...] has no element of the
611 // set M(S) of types as a base class.
613 // If we find a subobject of an empty type, it might also be a base class,
614 // so we'll need to walk the base classes to check.
615 if (!RD->data().HasBasesWithFields) {
616 // Walk the bases the first time, stopping if we find the type. Build a
617 // set of them so we don't need to walk them again.
618 if (Bases.empty()) {
619 bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
620 Base = Base->getCanonicalDecl();
621 if (RD == Base)
622 return false;
623 Bases.insert(Base);
624 return true;
626 if (RDIsBase)
627 return true;
628 } else {
629 if (Bases.count(RD))
630 return true;
634 if (M.insert(RD).second)
635 WorkList.push_back(RD);
636 return false;
639 if (Visit(XFirst))
640 return true;
642 while (!WorkList.empty()) {
643 const CXXRecordDecl *X = WorkList.pop_back_val();
645 // FIXME: We don't check the bases of X. That matches the standard, but
646 // that sure looks like a wording bug.
648 // -- If X is a non-union class type with a non-static data member
649 // [recurse to each field] that is either of zero size or is the
650 // first non-static data member of X
651 // -- If X is a union type, [recurse to union members]
652 bool IsFirstField = true;
653 for (auto *FD : X->fields()) {
654 // FIXME: Should we really care about the type of the first non-static
655 // data member of a non-union if there are preceding unnamed bit-fields?
656 if (FD->isUnnamedBitfield())
657 continue;
659 if (!IsFirstField && !FD->isZeroSize(Ctx))
660 continue;
662 // -- If X is n array type, [visit the element type]
663 QualType T = Ctx.getBaseElementType(FD->getType());
664 if (auto *RD = T->getAsCXXRecordDecl())
665 if (Visit(RD))
666 return true;
668 if (!X->isUnion())
669 IsFirstField = false;
673 return false;
676 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
677 assert(isLambda() && "not a lambda");
679 // C++2a [expr.prim.lambda.capture]p11:
680 // The closure type associated with a lambda-expression has no default
681 // constructor if the lambda-expression has a lambda-capture and a
682 // defaulted default constructor otherwise. It has a deleted copy
683 // assignment operator if the lambda-expression has a lambda-capture and
684 // defaulted copy and move assignment operators otherwise.
686 // C++17 [expr.prim.lambda]p21:
687 // The closure type associated with a lambda-expression has no default
688 // constructor and a deleted copy assignment operator.
689 if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0)
690 return false;
691 return getASTContext().getLangOpts().CPlusPlus20;
694 void CXXRecordDecl::addedMember(Decl *D) {
695 if (!D->isImplicit() &&
696 !isa<FieldDecl>(D) &&
697 !isa<IndirectFieldDecl>(D) &&
698 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
699 cast<TagDecl>(D)->getTagKind() == TTK_Interface))
700 data().HasOnlyCMembers = false;
702 // Ignore friends and invalid declarations.
703 if (D->getFriendObjectKind() || D->isInvalidDecl())
704 return;
706 auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
707 if (FunTmpl)
708 D = FunTmpl->getTemplatedDecl();
710 // FIXME: Pass NamedDecl* to addedMember?
711 Decl *DUnderlying = D;
712 if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
713 DUnderlying = ND->getUnderlyingDecl();
714 if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
715 DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
718 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
719 if (Method->isVirtual()) {
720 // C++ [dcl.init.aggr]p1:
721 // An aggregate is an array or a class with [...] no virtual functions.
722 data().Aggregate = false;
724 // C++ [class]p4:
725 // A POD-struct is an aggregate class...
726 data().PlainOldData = false;
728 // C++14 [meta.unary.prop]p4:
729 // T is a class type [...] with [...] no virtual member functions...
730 data().Empty = false;
732 // C++ [class.virtual]p1:
733 // A class that declares or inherits a virtual function is called a
734 // polymorphic class.
735 data().Polymorphic = true;
737 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
738 // A [default constructor, copy/move constructor, or copy/move
739 // assignment operator for a class X] is trivial [...] if:
740 // -- class X has no virtual functions [...]
741 data().HasTrivialSpecialMembers &= SMF_Destructor;
742 data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
744 // C++0x [class]p7:
745 // A standard-layout class is a class that: [...]
746 // -- has no virtual functions
747 data().IsStandardLayout = false;
748 data().IsCXX11StandardLayout = false;
752 // Notify the listener if an implicit member was added after the definition
753 // was completed.
754 if (!isBeingDefined() && D->isImplicit())
755 if (ASTMutationListener *L = getASTMutationListener())
756 L->AddedCXXImplicitMember(data().Definition, D);
758 // The kind of special member this declaration is, if any.
759 unsigned SMKind = 0;
761 // Handle constructors.
762 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
763 if (Constructor->isInheritingConstructor()) {
764 // Ignore constructor shadow declarations. They are lazily created and
765 // so shouldn't affect any properties of the class.
766 } else {
767 if (!Constructor->isImplicit()) {
768 // Note that we have a user-declared constructor.
769 data().UserDeclaredConstructor = true;
771 const TargetInfo &TI = getASTContext().getTargetInfo();
772 if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) ||
773 !TI.areDefaultedSMFStillPOD(getLangOpts())) {
774 // C++ [class]p4:
775 // A POD-struct is an aggregate class [...]
776 // Since the POD bit is meant to be C++03 POD-ness, clear it even if
777 // the type is technically an aggregate in C++0x since it wouldn't be
778 // in 03.
779 data().PlainOldData = false;
783 if (Constructor->isDefaultConstructor()) {
784 SMKind |= SMF_DefaultConstructor;
786 if (Constructor->isUserProvided())
787 data().UserProvidedDefaultConstructor = true;
788 if (Constructor->isConstexpr())
789 data().HasConstexprDefaultConstructor = true;
790 if (Constructor->isDefaulted())
791 data().HasDefaultedDefaultConstructor = true;
794 if (!FunTmpl) {
795 unsigned Quals;
796 if (Constructor->isCopyConstructor(Quals)) {
797 SMKind |= SMF_CopyConstructor;
799 if (Quals & Qualifiers::Const)
800 data().HasDeclaredCopyConstructorWithConstParam = true;
801 } else if (Constructor->isMoveConstructor())
802 SMKind |= SMF_MoveConstructor;
805 // C++11 [dcl.init.aggr]p1: DR1518
806 // An aggregate is an array or a class with no user-provided [or]
807 // explicit [...] constructors
808 // C++20 [dcl.init.aggr]p1:
809 // An aggregate is an array or a class with no user-declared [...]
810 // constructors
811 if (getASTContext().getLangOpts().CPlusPlus20
812 ? !Constructor->isImplicit()
813 : (Constructor->isUserProvided() || Constructor->isExplicit()))
814 data().Aggregate = false;
818 // Handle constructors, including those inherited from base classes.
819 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
820 // Record if we see any constexpr constructors which are neither copy
821 // nor move constructors.
822 // C++1z [basic.types]p10:
823 // [...] has at least one constexpr constructor or constructor template
824 // (possibly inherited from a base class) that is not a copy or move
825 // constructor [...]
826 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
827 data().HasConstexprNonCopyMoveConstructor = true;
828 if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor())
829 data().HasInheritedDefaultConstructor = true;
832 // Handle member functions.
833 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
834 if (isa<CXXDestructorDecl>(D))
835 SMKind |= SMF_Destructor;
837 if (Method->isCopyAssignmentOperator()) {
838 SMKind |= SMF_CopyAssignment;
840 const auto *ParamTy =
841 Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
842 if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
843 data().HasDeclaredCopyAssignmentWithConstParam = true;
846 if (Method->isMoveAssignmentOperator())
847 SMKind |= SMF_MoveAssignment;
849 // Keep the list of conversion functions up-to-date.
850 if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
851 // FIXME: We use the 'unsafe' accessor for the access specifier here,
852 // because Sema may not have set it yet. That's really just a misdesign
853 // in Sema. However, LLDB *will* have set the access specifier correctly,
854 // and adds declarations after the class is technically completed,
855 // so completeDefinition()'s overriding of the access specifiers doesn't
856 // work.
857 AccessSpecifier AS = Conversion->getAccessUnsafe();
859 if (Conversion->getPrimaryTemplate()) {
860 // We don't record specializations.
861 } else {
862 ASTContext &Ctx = getASTContext();
863 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
864 NamedDecl *Primary =
865 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
866 if (Primary->getPreviousDecl())
867 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
868 Primary, AS);
869 else
870 Conversions.addDecl(Ctx, Primary, AS);
874 if (SMKind) {
875 // If this is the first declaration of a special member, we no longer have
876 // an implicit trivial special member.
877 data().HasTrivialSpecialMembers &=
878 data().DeclaredSpecialMembers | ~SMKind;
879 data().HasTrivialSpecialMembersForCall &=
880 data().DeclaredSpecialMembers | ~SMKind;
882 // Note when we have declared a declared special member, and suppress the
883 // implicit declaration of this special member.
884 data().DeclaredSpecialMembers |= SMKind;
885 if (!Method->isImplicit()) {
886 data().UserDeclaredSpecialMembers |= SMKind;
888 const TargetInfo &TI = getASTContext().getTargetInfo();
889 if ((!Method->isDeleted() && !Method->isDefaulted() &&
890 SMKind != SMF_MoveAssignment) ||
891 !TI.areDefaultedSMFStillPOD(getLangOpts())) {
892 // C++03 [class]p4:
893 // A POD-struct is an aggregate class that has [...] no user-defined
894 // copy assignment operator and no user-defined destructor.
896 // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
897 // aggregates could not have any constructors, clear it even for an
898 // explicitly defaulted or deleted constructor.
899 // type is technically an aggregate in C++0x since it wouldn't be in
900 // 03.
902 // Also, a user-declared move assignment operator makes a class
903 // non-POD. This is an extension in C++03.
904 data().PlainOldData = false;
907 // When instantiating a class, we delay updating the destructor and
908 // triviality properties of the class until selecting a destructor and
909 // computing the eligibility of its special member functions. This is
910 // because there might be function constraints that we need to evaluate
911 // and compare later in the instantiation.
912 if (!Method->isIneligibleOrNotSelected()) {
913 addedEligibleSpecialMemberFunction(Method, SMKind);
917 return;
920 // Handle non-static data members.
921 if (const auto *Field = dyn_cast<FieldDecl>(D)) {
922 ASTContext &Context = getASTContext();
924 // C++2a [class]p7:
925 // A standard-layout class is a class that:
926 // [...]
927 // -- has all non-static data members and bit-fields in the class and
928 // its base classes first declared in the same class
929 if (data().HasBasesWithFields)
930 data().IsStandardLayout = false;
932 // C++ [class.bit]p2:
933 // A declaration for a bit-field that omits the identifier declares an
934 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
935 // initialized.
936 if (Field->isUnnamedBitfield()) {
937 // C++ [meta.unary.prop]p4: [LWG2358]
938 // T is a class type [...] with [...] no unnamed bit-fields of non-zero
939 // length
940 if (data().Empty && !Field->isZeroLengthBitField(Context) &&
941 Context.getLangOpts().getClangABICompat() >
942 LangOptions::ClangABI::Ver6)
943 data().Empty = false;
944 return;
947 // C++11 [class]p7:
948 // A standard-layout class is a class that:
949 // -- either has no non-static data members in the most derived class
950 // [...] or has no base classes with non-static data members
951 if (data().HasBasesWithNonStaticDataMembers)
952 data().IsCXX11StandardLayout = false;
954 // C++ [dcl.init.aggr]p1:
955 // An aggregate is an array or a class (clause 9) with [...] no
956 // private or protected non-static data members (clause 11).
958 // A POD must be an aggregate.
959 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
960 data().Aggregate = false;
961 data().PlainOldData = false;
963 // C++20 [temp.param]p7:
964 // A structural type is [...] a literal class type [for which] all
965 // non-static data members are public
966 data().StructuralIfLiteral = false;
969 // Track whether this is the first field. We use this when checking
970 // whether the class is standard-layout below.
971 bool IsFirstField = !data().HasPrivateFields &&
972 !data().HasProtectedFields && !data().HasPublicFields;
974 // C++0x [class]p7:
975 // A standard-layout class is a class that:
976 // [...]
977 // -- has the same access control for all non-static data members,
978 switch (D->getAccess()) {
979 case AS_private: data().HasPrivateFields = true; break;
980 case AS_protected: data().HasProtectedFields = true; break;
981 case AS_public: data().HasPublicFields = true; break;
982 case AS_none: llvm_unreachable("Invalid access specifier");
984 if ((data().HasPrivateFields + data().HasProtectedFields +
985 data().HasPublicFields) > 1) {
986 data().IsStandardLayout = false;
987 data().IsCXX11StandardLayout = false;
990 // Keep track of the presence of mutable fields.
991 if (Field->isMutable()) {
992 data().HasMutableFields = true;
994 // C++20 [temp.param]p7:
995 // A structural type is [...] a literal class type [for which] all
996 // non-static data members are public
997 data().StructuralIfLiteral = false;
1000 // C++11 [class.union]p8, DR1460:
1001 // If X is a union, a non-static data member of X that is not an anonymous
1002 // union is a variant member of X.
1003 if (isUnion() && !Field->isAnonymousStructOrUnion())
1004 data().HasVariantMembers = true;
1006 // C++0x [class]p9:
1007 // A POD struct is a class that is both a trivial class and a
1008 // standard-layout class, and has no non-static data members of type
1009 // non-POD struct, non-POD union (or array of such types).
1011 // Automatic Reference Counting: the presence of a member of Objective-C pointer type
1012 // that does not explicitly have no lifetime makes the class a non-POD.
1013 QualType T = Context.getBaseElementType(Field->getType());
1014 if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
1015 if (T.hasNonTrivialObjCLifetime()) {
1016 // Objective-C Automatic Reference Counting:
1017 // If a class has a non-static data member of Objective-C pointer
1018 // type (or array thereof), it is a non-POD type and its
1019 // default constructor (if any), copy constructor, move constructor,
1020 // copy assignment operator, move assignment operator, and destructor are
1021 // non-trivial.
1022 setHasObjectMember(true);
1023 struct DefinitionData &Data = data();
1024 Data.PlainOldData = false;
1025 Data.HasTrivialSpecialMembers = 0;
1027 // __strong or __weak fields do not make special functions non-trivial
1028 // for the purpose of calls.
1029 Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1030 if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1031 data().HasTrivialSpecialMembersForCall = 0;
1033 // Structs with __weak fields should never be passed directly.
1034 if (LT == Qualifiers::OCL_Weak)
1035 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1037 Data.HasIrrelevantDestructor = false;
1039 if (isUnion()) {
1040 data().DefaultedCopyConstructorIsDeleted = true;
1041 data().DefaultedMoveConstructorIsDeleted = true;
1042 data().DefaultedCopyAssignmentIsDeleted = true;
1043 data().DefaultedMoveAssignmentIsDeleted = true;
1044 data().DefaultedDestructorIsDeleted = true;
1045 data().NeedOverloadResolutionForCopyConstructor = true;
1046 data().NeedOverloadResolutionForMoveConstructor = true;
1047 data().NeedOverloadResolutionForCopyAssignment = true;
1048 data().NeedOverloadResolutionForMoveAssignment = true;
1049 data().NeedOverloadResolutionForDestructor = true;
1051 } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1052 setHasObjectMember(true);
1054 } else if (!T.isCXX98PODType(Context))
1055 data().PlainOldData = false;
1057 if (T->isReferenceType()) {
1058 if (!Field->hasInClassInitializer())
1059 data().HasUninitializedReferenceMember = true;
1061 // C++0x [class]p7:
1062 // A standard-layout class is a class that:
1063 // -- has no non-static data members of type [...] reference,
1064 data().IsStandardLayout = false;
1065 data().IsCXX11StandardLayout = false;
1067 // C++1z [class.copy.ctor]p10:
1068 // A defaulted copy constructor for a class X is defined as deleted if X has:
1069 // -- a non-static data member of rvalue reference type
1070 if (T->isRValueReferenceType())
1071 data().DefaultedCopyConstructorIsDeleted = true;
1074 if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1075 if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1076 if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1077 data().HasUninitializedFields = true;
1078 } else {
1079 data().HasUninitializedFields = true;
1083 // Record if this field is the first non-literal or volatile field or base.
1084 if (!T->isLiteralType(Context) || T.isVolatileQualified())
1085 data().HasNonLiteralTypeFieldsOrBases = true;
1087 if (Field->hasInClassInitializer() ||
1088 (Field->isAnonymousStructOrUnion() &&
1089 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1090 data().HasInClassInitializer = true;
1092 // C++11 [class]p5:
1093 // A default constructor is trivial if [...] no non-static data member
1094 // of its class has a brace-or-equal-initializer.
1095 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1097 // C++11 [dcl.init.aggr]p1:
1098 // An aggregate is a [...] class with [...] no
1099 // brace-or-equal-initializers for non-static data members.
1101 // This rule was removed in C++14.
1102 if (!getASTContext().getLangOpts().CPlusPlus14)
1103 data().Aggregate = false;
1105 // C++11 [class]p10:
1106 // A POD struct is [...] a trivial class.
1107 data().PlainOldData = false;
1110 // C++11 [class.copy]p23:
1111 // A defaulted copy/move assignment operator for a class X is defined
1112 // as deleted if X has:
1113 // -- a non-static data member of reference type
1114 if (T->isReferenceType()) {
1115 data().DefaultedCopyAssignmentIsDeleted = true;
1116 data().DefaultedMoveAssignmentIsDeleted = true;
1119 // Bitfields of length 0 are also zero-sized, but we already bailed out for
1120 // those because they are always unnamed.
1121 bool IsZeroSize = Field->isZeroSize(Context);
1123 if (const auto *RecordTy = T->getAs<RecordType>()) {
1124 auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1125 if (FieldRec->getDefinition()) {
1126 addedClassSubobject(FieldRec);
1128 // We may need to perform overload resolution to determine whether a
1129 // field can be moved if it's const or volatile qualified.
1130 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1131 // We need to care about 'const' for the copy constructor because an
1132 // implicit copy constructor might be declared with a non-const
1133 // parameter.
1134 data().NeedOverloadResolutionForCopyConstructor = true;
1135 data().NeedOverloadResolutionForMoveConstructor = true;
1136 data().NeedOverloadResolutionForCopyAssignment = true;
1137 data().NeedOverloadResolutionForMoveAssignment = true;
1140 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1141 // A defaulted [special member] for a class X is defined as
1142 // deleted if:
1143 // -- X is a union-like class that has a variant member with a
1144 // non-trivial [corresponding special member]
1145 if (isUnion()) {
1146 if (FieldRec->hasNonTrivialCopyConstructor())
1147 data().DefaultedCopyConstructorIsDeleted = true;
1148 if (FieldRec->hasNonTrivialMoveConstructor())
1149 data().DefaultedMoveConstructorIsDeleted = true;
1150 if (FieldRec->hasNonTrivialCopyAssignment())
1151 data().DefaultedCopyAssignmentIsDeleted = true;
1152 if (FieldRec->hasNonTrivialMoveAssignment())
1153 data().DefaultedMoveAssignmentIsDeleted = true;
1154 if (FieldRec->hasNonTrivialDestructor())
1155 data().DefaultedDestructorIsDeleted = true;
1158 // For an anonymous union member, our overload resolution will perform
1159 // overload resolution for its members.
1160 if (Field->isAnonymousStructOrUnion()) {
1161 data().NeedOverloadResolutionForCopyConstructor |=
1162 FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1163 data().NeedOverloadResolutionForMoveConstructor |=
1164 FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1165 data().NeedOverloadResolutionForCopyAssignment |=
1166 FieldRec->data().NeedOverloadResolutionForCopyAssignment;
1167 data().NeedOverloadResolutionForMoveAssignment |=
1168 FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1169 data().NeedOverloadResolutionForDestructor |=
1170 FieldRec->data().NeedOverloadResolutionForDestructor;
1173 // C++0x [class.ctor]p5:
1174 // A default constructor is trivial [...] if:
1175 // -- for all the non-static data members of its class that are of
1176 // class type (or array thereof), each such class has a trivial
1177 // default constructor.
1178 if (!FieldRec->hasTrivialDefaultConstructor())
1179 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1181 // C++0x [class.copy]p13:
1182 // A copy/move constructor for class X is trivial if [...]
1183 // [...]
1184 // -- for each non-static data member of X that is of class type (or
1185 // an array thereof), the constructor selected to copy/move that
1186 // member is trivial;
1187 if (!FieldRec->hasTrivialCopyConstructor())
1188 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1190 if (!FieldRec->hasTrivialCopyConstructorForCall())
1191 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1193 // If the field doesn't have a simple move constructor, we'll eagerly
1194 // declare the move constructor for this class and we'll decide whether
1195 // it's trivial then.
1196 if (!FieldRec->hasTrivialMoveConstructor())
1197 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1199 if (!FieldRec->hasTrivialMoveConstructorForCall())
1200 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1202 // C++0x [class.copy]p27:
1203 // A copy/move assignment operator for class X is trivial if [...]
1204 // [...]
1205 // -- for each non-static data member of X that is of class type (or
1206 // an array thereof), the assignment operator selected to
1207 // copy/move that member is trivial;
1208 if (!FieldRec->hasTrivialCopyAssignment())
1209 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1210 // If the field doesn't have a simple move assignment, we'll eagerly
1211 // declare the move assignment for this class and we'll decide whether
1212 // it's trivial then.
1213 if (!FieldRec->hasTrivialMoveAssignment())
1214 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1216 if (!FieldRec->hasTrivialDestructor())
1217 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1218 if (!FieldRec->hasTrivialDestructorForCall())
1219 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1220 if (!FieldRec->hasIrrelevantDestructor())
1221 data().HasIrrelevantDestructor = false;
1222 if (FieldRec->isAnyDestructorNoReturn())
1223 data().IsAnyDestructorNoReturn = true;
1224 if (FieldRec->hasObjectMember())
1225 setHasObjectMember(true);
1226 if (FieldRec->hasVolatileMember())
1227 setHasVolatileMember(true);
1228 if (FieldRec->getArgPassingRestrictions() ==
1229 RecordDecl::APK_CanNeverPassInRegs)
1230 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1232 // C++0x [class]p7:
1233 // A standard-layout class is a class that:
1234 // -- has no non-static data members of type non-standard-layout
1235 // class (or array of such types) [...]
1236 if (!FieldRec->isStandardLayout())
1237 data().IsStandardLayout = false;
1238 if (!FieldRec->isCXX11StandardLayout())
1239 data().IsCXX11StandardLayout = false;
1241 // C++2a [class]p7:
1242 // A standard-layout class is a class that:
1243 // [...]
1244 // -- has no element of the set M(S) of types as a base class.
1245 if (data().IsStandardLayout &&
1246 (isUnion() || IsFirstField || IsZeroSize) &&
1247 hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1248 data().IsStandardLayout = false;
1250 // C++11 [class]p7:
1251 // A standard-layout class is a class that:
1252 // -- has no base classes of the same type as the first non-static
1253 // data member
1254 if (data().IsCXX11StandardLayout && IsFirstField) {
1255 // FIXME: We should check all base classes here, not just direct
1256 // base classes.
1257 for (const auto &BI : bases()) {
1258 if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1259 data().IsCXX11StandardLayout = false;
1260 break;
1265 // Keep track of the presence of mutable fields.
1266 if (FieldRec->hasMutableFields())
1267 data().HasMutableFields = true;
1269 if (Field->isMutable()) {
1270 // Our copy constructor/assignment might call something other than
1271 // the subobject's copy constructor/assignment if it's mutable and of
1272 // class type.
1273 data().NeedOverloadResolutionForCopyConstructor = true;
1274 data().NeedOverloadResolutionForCopyAssignment = true;
1277 // C++11 [class.copy]p13:
1278 // If the implicitly-defined constructor would satisfy the
1279 // requirements of a constexpr constructor, the implicitly-defined
1280 // constructor is constexpr.
1281 // C++11 [dcl.constexpr]p4:
1282 // -- every constructor involved in initializing non-static data
1283 // members [...] shall be a constexpr constructor
1284 if (!Field->hasInClassInitializer() &&
1285 !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1286 // The standard requires any in-class initializer to be a constant
1287 // expression. We consider this to be a defect.
1288 data().DefaultedDefaultConstructorIsConstexpr = false;
1290 // C++11 [class.copy]p8:
1291 // The implicitly-declared copy constructor for a class X will have
1292 // the form 'X::X(const X&)' if each potentially constructed subobject
1293 // of a class type M (or array thereof) has a copy constructor whose
1294 // first parameter is of type 'const M&' or 'const volatile M&'.
1295 if (!FieldRec->hasCopyConstructorWithConstParam())
1296 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1298 // C++11 [class.copy]p18:
1299 // The implicitly-declared copy assignment oeprator for a class X will
1300 // have the form 'X& X::operator=(const X&)' if [...] for all the
1301 // non-static data members of X that are of a class type M (or array
1302 // thereof), each such class type has a copy assignment operator whose
1303 // parameter is of type 'const M&', 'const volatile M&' or 'M'.
1304 if (!FieldRec->hasCopyAssignmentWithConstParam())
1305 data().ImplicitCopyAssignmentHasConstParam = false;
1307 if (FieldRec->hasUninitializedReferenceMember() &&
1308 !Field->hasInClassInitializer())
1309 data().HasUninitializedReferenceMember = true;
1311 // C++11 [class.union]p8, DR1460:
1312 // a non-static data member of an anonymous union that is a member of
1313 // X is also a variant member of X.
1314 if (FieldRec->hasVariantMembers() &&
1315 Field->isAnonymousStructOrUnion())
1316 data().HasVariantMembers = true;
1318 } else {
1319 // Base element type of field is a non-class type.
1320 if (!T->isLiteralType(Context) ||
1321 (!Field->hasInClassInitializer() && !isUnion() &&
1322 !Context.getLangOpts().CPlusPlus20))
1323 data().DefaultedDefaultConstructorIsConstexpr = false;
1325 // C++11 [class.copy]p23:
1326 // A defaulted copy/move assignment operator for a class X is defined
1327 // as deleted if X has:
1328 // -- a non-static data member of const non-class type (or array
1329 // thereof)
1330 if (T.isConstQualified()) {
1331 data().DefaultedCopyAssignmentIsDeleted = true;
1332 data().DefaultedMoveAssignmentIsDeleted = true;
1335 // C++20 [temp.param]p7:
1336 // A structural type is [...] a literal class type [for which] the
1337 // types of all non-static data members are structural types or
1338 // (possibly multidimensional) array thereof
1339 // We deal with class types elsewhere.
1340 if (!T->isStructuralType())
1341 data().StructuralIfLiteral = false;
1344 // C++14 [meta.unary.prop]p4:
1345 // T is a class type [...] with [...] no non-static data members other
1346 // than subobjects of zero size
1347 if (data().Empty && !IsZeroSize)
1348 data().Empty = false;
1351 // Handle using declarations of conversion functions.
1352 if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1353 if (Shadow->getDeclName().getNameKind()
1354 == DeclarationName::CXXConversionFunctionName) {
1355 ASTContext &Ctx = getASTContext();
1356 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1360 if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1361 if (Using->getDeclName().getNameKind() ==
1362 DeclarationName::CXXConstructorName) {
1363 data().HasInheritedConstructor = true;
1364 // C++1z [dcl.init.aggr]p1:
1365 // An aggregate is [...] a class [...] with no inherited constructors
1366 data().Aggregate = false;
1369 if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1370 data().HasInheritedAssignment = true;
1374 void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) {
1375 DD->setIneligibleOrNotSelected(false);
1376 addedEligibleSpecialMemberFunction(DD, SMF_Destructor);
1379 void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD,
1380 unsigned SMKind) {
1381 // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is
1382 // a function template, but this needs CWG attention before we break ABI.
1383 // See https://github.com/llvm/llvm-project/issues/59206
1385 if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1386 if (DD->isUserProvided())
1387 data().HasIrrelevantDestructor = false;
1388 // If the destructor is explicitly defaulted and not trivial or not public
1389 // or if the destructor is deleted, we clear HasIrrelevantDestructor in
1390 // finishedDefaultedOrDeletedMember.
1392 // C++11 [class.dtor]p5:
1393 // A destructor is trivial if [...] the destructor is not virtual.
1394 if (DD->isVirtual()) {
1395 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1396 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1399 if (DD->isNoReturn())
1400 data().IsAnyDestructorNoReturn = true;
1403 if (!MD->isImplicit() && !MD->isUserProvided()) {
1404 // This method is user-declared but not user-provided. We can't work
1405 // out whether it's trivial yet (not until we get to the end of the
1406 // class). We'll handle this method in
1407 // finishedDefaultedOrDeletedMember.
1408 } else if (MD->isTrivial()) {
1409 data().HasTrivialSpecialMembers |= SMKind;
1410 data().HasTrivialSpecialMembersForCall |= SMKind;
1411 } else if (MD->isTrivialForCall()) {
1412 data().HasTrivialSpecialMembersForCall |= SMKind;
1413 data().DeclaredNonTrivialSpecialMembers |= SMKind;
1414 } else {
1415 data().DeclaredNonTrivialSpecialMembers |= SMKind;
1416 // If this is a user-provided function, do not set
1417 // DeclaredNonTrivialSpecialMembersForCall here since we don't know
1418 // yet whether the method would be considered non-trivial for the
1419 // purpose of calls (attribute "trivial_abi" can be dropped from the
1420 // class later, which can change the special method's triviality).
1421 if (!MD->isUserProvided())
1422 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1426 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1427 assert(!D->isImplicit() && !D->isUserProvided());
1429 // The kind of special member this declaration is, if any.
1430 unsigned SMKind = 0;
1432 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1433 if (Constructor->isDefaultConstructor()) {
1434 SMKind |= SMF_DefaultConstructor;
1435 if (Constructor->isConstexpr())
1436 data().HasConstexprDefaultConstructor = true;
1438 if (Constructor->isCopyConstructor())
1439 SMKind |= SMF_CopyConstructor;
1440 else if (Constructor->isMoveConstructor())
1441 SMKind |= SMF_MoveConstructor;
1442 else if (Constructor->isConstexpr())
1443 // We may now know that the constructor is constexpr.
1444 data().HasConstexprNonCopyMoveConstructor = true;
1445 } else if (isa<CXXDestructorDecl>(D)) {
1446 SMKind |= SMF_Destructor;
1447 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1448 data().HasIrrelevantDestructor = false;
1449 } else if (D->isCopyAssignmentOperator())
1450 SMKind |= SMF_CopyAssignment;
1451 else if (D->isMoveAssignmentOperator())
1452 SMKind |= SMF_MoveAssignment;
1454 // Update which trivial / non-trivial special members we have.
1455 // addedMember will have skipped this step for this member.
1456 if (!D->isIneligibleOrNotSelected()) {
1457 if (D->isTrivial())
1458 data().HasTrivialSpecialMembers |= SMKind;
1459 else
1460 data().DeclaredNonTrivialSpecialMembers |= SMKind;
1464 void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx,
1465 Capture *CaptureList) {
1466 Captures.push_back(CaptureList);
1467 if (Captures.size() == 2) {
1468 // The TinyPtrVector member now needs destruction.
1469 Ctx.addDestruction(&Captures);
1473 void CXXRecordDecl::setCaptures(ASTContext &Context,
1474 ArrayRef<LambdaCapture> Captures) {
1475 CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData();
1477 // Copy captures.
1478 Data.NumCaptures = Captures.size();
1479 Data.NumExplicitCaptures = 0;
1480 auto *ToCapture = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) *
1481 Captures.size());
1482 Data.AddCaptureList(Context, ToCapture);
1483 for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
1484 if (Captures[I].isExplicit())
1485 ++Data.NumExplicitCaptures;
1487 *ToCapture++ = Captures[I];
1490 if (!lambdaIsDefaultConstructibleAndAssignable())
1491 Data.DefaultedCopyAssignmentIsDeleted = true;
1494 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1495 unsigned SMKind = 0;
1497 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1498 if (Constructor->isCopyConstructor())
1499 SMKind = SMF_CopyConstructor;
1500 else if (Constructor->isMoveConstructor())
1501 SMKind = SMF_MoveConstructor;
1502 } else if (isa<CXXDestructorDecl>(D))
1503 SMKind = SMF_Destructor;
1505 if (D->isTrivialForCall())
1506 data().HasTrivialSpecialMembersForCall |= SMKind;
1507 else
1508 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1511 bool CXXRecordDecl::isCLike() const {
1512 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1513 !TemplateOrInstantiation.isNull())
1514 return false;
1515 if (!hasDefinition())
1516 return true;
1518 return isPOD() && data().HasOnlyCMembers;
1521 bool CXXRecordDecl::isGenericLambda() const {
1522 if (!isLambda()) return false;
1523 return getLambdaData().IsGenericLambda;
1526 #ifndef NDEBUG
1527 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1528 for (auto *D : R)
1529 if (!declaresSameEntity(D, R.front()))
1530 return false;
1531 return true;
1533 #endif
1535 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1536 if (!RD.isLambda()) return nullptr;
1537 DeclarationName Name =
1538 RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1539 DeclContext::lookup_result Calls = RD.lookup(Name);
1541 assert(!Calls.empty() && "Missing lambda call operator!");
1542 assert(allLookupResultsAreTheSame(Calls) &&
1543 "More than one lambda call operator!");
1544 return Calls.front();
1547 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1548 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1549 return dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1552 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1553 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1555 if (CallOp == nullptr)
1556 return nullptr;
1558 if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1559 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1561 return cast<CXXMethodDecl>(CallOp);
1564 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1565 CXXMethodDecl *CallOp = getLambdaCallOperator();
1566 CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv();
1567 return getLambdaStaticInvoker(CC);
1570 static DeclContext::lookup_result
1571 getLambdaStaticInvokers(const CXXRecordDecl &RD) {
1572 assert(RD.isLambda() && "Must be a lambda");
1573 DeclarationName Name =
1574 &RD.getASTContext().Idents.get(getLambdaStaticInvokerName());
1575 return RD.lookup(Name);
1578 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) {
1579 if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND))
1580 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1581 return cast<CXXMethodDecl>(ND);
1584 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const {
1585 if (!isLambda())
1586 return nullptr;
1587 DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this);
1589 for (NamedDecl *ND : Invoker) {
1590 const auto *FTy =
1591 cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>();
1592 if (FTy->getCallConv() == CC)
1593 return getInvokerAsMethod(ND);
1596 return nullptr;
1599 void CXXRecordDecl::getCaptureFields(
1600 llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1601 FieldDecl *&ThisCapture) const {
1602 Captures.clear();
1603 ThisCapture = nullptr;
1605 LambdaDefinitionData &Lambda = getLambdaData();
1606 for (const LambdaCapture *List : Lambda.Captures) {
1607 RecordDecl::field_iterator Field = field_begin();
1608 for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures;
1609 C != CEnd; ++C, ++Field) {
1610 if (C->capturesThis())
1611 ThisCapture = *Field;
1612 else if (C->capturesVariable())
1613 Captures[C->getCapturedVar()] = *Field;
1615 assert(Field == field_end());
1619 TemplateParameterList *
1620 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1621 if (!isGenericLambda()) return nullptr;
1622 CXXMethodDecl *CallOp = getLambdaCallOperator();
1623 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1624 return Tmpl->getTemplateParameters();
1625 return nullptr;
1628 ArrayRef<NamedDecl *>
1629 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1630 TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1631 if (!List)
1632 return {};
1634 assert(std::is_partitioned(List->begin(), List->end(),
1635 [](const NamedDecl *D) { return !D->isImplicit(); })
1636 && "Explicit template params should be ordered before implicit ones");
1638 const auto ExplicitEnd = llvm::partition_point(
1639 *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1640 return llvm::ArrayRef(List->begin(), ExplicitEnd);
1643 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1644 assert(isLambda() && "Not a lambda closure type!");
1645 ExternalASTSource *Source = getParentASTContext().getExternalSource();
1646 return getLambdaData().ContextDecl.get(Source);
1649 void CXXRecordDecl::setDeviceLambdaManglingNumber(unsigned Num) const {
1650 assert(isLambda() && "Not a lambda closure type!");
1651 if (Num)
1652 getASTContext().DeviceLambdaManglingNumbers[this] = Num;
1655 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const {
1656 assert(isLambda() && "Not a lambda closure type!");
1657 auto I = getASTContext().DeviceLambdaManglingNumbers.find(this);
1658 if (I != getASTContext().DeviceLambdaManglingNumbers.end())
1659 return I->second;
1660 return 0;
1663 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1664 QualType T =
1665 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1666 ->getConversionType();
1667 return Context.getCanonicalType(T);
1670 /// Collect the visible conversions of a base class.
1672 /// \param Record a base class of the class we're considering
1673 /// \param InVirtual whether this base class is a virtual base (or a base
1674 /// of a virtual base)
1675 /// \param Access the access along the inheritance path to this base
1676 /// \param ParentHiddenTypes the conversions provided by the inheritors
1677 /// of this base
1678 /// \param Output the set to which to add conversions from non-virtual bases
1679 /// \param VOutput the set to which to add conversions from virtual bases
1680 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1681 /// virtual base along some inheritance path
1682 static void CollectVisibleConversions(
1683 ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
1684 AccessSpecifier Access,
1685 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1686 ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
1687 llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
1688 // The set of types which have conversions in this class or its
1689 // subclasses. As an optimization, we don't copy the derived set
1690 // unless it might change.
1691 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1692 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1694 // Collect the direct conversions and figure out which conversions
1695 // will be hidden in the subclasses.
1696 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1697 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1698 if (ConvI != ConvE) {
1699 HiddenTypesBuffer = ParentHiddenTypes;
1700 HiddenTypes = &HiddenTypesBuffer;
1702 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1703 CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1704 bool Hidden = ParentHiddenTypes.count(ConvType);
1705 if (!Hidden)
1706 HiddenTypesBuffer.insert(ConvType);
1708 // If this conversion is hidden and we're in a virtual base,
1709 // remember that it's hidden along some inheritance path.
1710 if (Hidden && InVirtual)
1711 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1713 // If this conversion isn't hidden, add it to the appropriate output.
1714 else if (!Hidden) {
1715 AccessSpecifier IAccess
1716 = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1718 if (InVirtual)
1719 VOutput.addDecl(I.getDecl(), IAccess);
1720 else
1721 Output.addDecl(Context, I.getDecl(), IAccess);
1726 // Collect information recursively from any base classes.
1727 for (const auto &I : Record->bases()) {
1728 const auto *RT = I.getType()->getAs<RecordType>();
1729 if (!RT) continue;
1731 AccessSpecifier BaseAccess
1732 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1733 bool BaseInVirtual = InVirtual || I.isVirtual();
1735 auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1736 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1737 *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1741 /// Collect the visible conversions of a class.
1743 /// This would be extremely straightforward if it weren't for virtual
1744 /// bases. It might be worth special-casing that, really.
1745 static void CollectVisibleConversions(ASTContext &Context,
1746 const CXXRecordDecl *Record,
1747 ASTUnresolvedSet &Output) {
1748 // The collection of all conversions in virtual bases that we've
1749 // found. These will be added to the output as long as they don't
1750 // appear in the hidden-conversions set.
1751 UnresolvedSet<8> VBaseCs;
1753 // The set of conversions in virtual bases that we've determined to
1754 // be hidden.
1755 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1757 // The set of types hidden by classes derived from this one.
1758 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1760 // Go ahead and collect the direct conversions and add them to the
1761 // hidden-types set.
1762 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1763 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1764 Output.append(Context, ConvI, ConvE);
1765 for (; ConvI != ConvE; ++ConvI)
1766 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1768 // Recursively collect conversions from base classes.
1769 for (const auto &I : Record->bases()) {
1770 const auto *RT = I.getType()->getAs<RecordType>();
1771 if (!RT) continue;
1773 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1774 I.isVirtual(), I.getAccessSpecifier(),
1775 HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1778 // Add any unhidden conversions provided by virtual bases.
1779 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1780 I != E; ++I) {
1781 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1782 Output.addDecl(Context, I.getDecl(), I.getAccess());
1786 /// getVisibleConversionFunctions - get all conversion functions visible
1787 /// in current class; including conversion function templates.
1788 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1789 CXXRecordDecl::getVisibleConversionFunctions() const {
1790 ASTContext &Ctx = getASTContext();
1792 ASTUnresolvedSet *Set;
1793 if (bases_begin() == bases_end()) {
1794 // If root class, all conversions are visible.
1795 Set = &data().Conversions.get(Ctx);
1796 } else {
1797 Set = &data().VisibleConversions.get(Ctx);
1798 // If visible conversion list is not evaluated, evaluate it.
1799 if (!data().ComputedVisibleConversions) {
1800 CollectVisibleConversions(Ctx, this, *Set);
1801 data().ComputedVisibleConversions = true;
1804 return llvm::make_range(Set->begin(), Set->end());
1807 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1808 // This operation is O(N) but extremely rare. Sema only uses it to
1809 // remove UsingShadowDecls in a class that were followed by a direct
1810 // declaration, e.g.:
1811 // class A : B {
1812 // using B::operator int;
1813 // operator int();
1814 // };
1815 // This is uncommon by itself and even more uncommon in conjunction
1816 // with sufficiently large numbers of directly-declared conversions
1817 // that asymptotic behavior matters.
1819 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1820 for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1821 if (Convs[I].getDecl() == ConvDecl) {
1822 Convs.erase(I);
1823 assert(!llvm::is_contained(Convs, ConvDecl) &&
1824 "conversion was found multiple times in unresolved set");
1825 return;
1829 llvm_unreachable("conversion not found in set!");
1832 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1833 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1834 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1836 return nullptr;
1839 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1840 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1843 void
1844 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1845 TemplateSpecializationKind TSK) {
1846 assert(TemplateOrInstantiation.isNull() &&
1847 "Previous template or instantiation?");
1848 assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1849 TemplateOrInstantiation
1850 = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1853 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1854 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1857 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1858 TemplateOrInstantiation = Template;
1861 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1862 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1863 return Spec->getSpecializationKind();
1865 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1866 return MSInfo->getTemplateSpecializationKind();
1868 return TSK_Undeclared;
1871 void
1872 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1873 if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1874 Spec->setSpecializationKind(TSK);
1875 return;
1878 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1879 MSInfo->setTemplateSpecializationKind(TSK);
1880 return;
1883 llvm_unreachable("Not a class template or member class specialization");
1886 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1887 auto GetDefinitionOrSelf =
1888 [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1889 if (auto *Def = D->getDefinition())
1890 return Def;
1891 return D;
1894 // If it's a class template specialization, find the template or partial
1895 // specialization from which it was instantiated.
1896 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1897 auto From = TD->getInstantiatedFrom();
1898 if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1899 while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1900 if (NewCTD->isMemberSpecialization())
1901 break;
1902 CTD = NewCTD;
1904 return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1906 if (auto *CTPSD =
1907 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1908 while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1909 if (NewCTPSD->isMemberSpecialization())
1910 break;
1911 CTPSD = NewCTPSD;
1913 return GetDefinitionOrSelf(CTPSD);
1917 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1918 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1919 const CXXRecordDecl *RD = this;
1920 while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1921 RD = NewRD;
1922 return GetDefinitionOrSelf(RD);
1926 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1927 "couldn't find pattern for class template instantiation");
1928 return nullptr;
1931 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1932 ASTContext &Context = getASTContext();
1933 QualType ClassType = Context.getTypeDeclType(this);
1935 DeclarationName Name
1936 = Context.DeclarationNames.getCXXDestructorName(
1937 Context.getCanonicalType(ClassType));
1939 DeclContext::lookup_result R = lookup(Name);
1941 // If a destructor was marked as not selected, we skip it. We don't always
1942 // have a selected destructor: dependent types, unnamed structs.
1943 for (auto *Decl : R) {
1944 auto* DD = dyn_cast<CXXDestructorDecl>(Decl);
1945 if (DD && !DD->isIneligibleOrNotSelected())
1946 return DD;
1948 return nullptr;
1951 static bool isDeclContextInNamespace(const DeclContext *DC) {
1952 while (!DC->isTranslationUnit()) {
1953 if (DC->isNamespace())
1954 return true;
1955 DC = DC->getParent();
1957 return false;
1960 bool CXXRecordDecl::isInterfaceLike() const {
1961 assert(hasDefinition() && "checking for interface-like without a definition");
1962 // All __interfaces are inheritently interface-like.
1963 if (isInterface())
1964 return true;
1966 // Interface-like types cannot have a user declared constructor, destructor,
1967 // friends, VBases, conversion functions, or fields. Additionally, lambdas
1968 // cannot be interface types.
1969 if (isLambda() || hasUserDeclaredConstructor() ||
1970 hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1971 getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1972 return false;
1974 // No interface-like type can have a method with a definition.
1975 for (const auto *const Method : methods())
1976 if (Method->isDefined() && !Method->isImplicit())
1977 return false;
1979 // Check "Special" types.
1980 const auto *Uuid = getAttr<UuidAttr>();
1981 // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1982 // extern C++ block directly in the TU. These are only valid if in one
1983 // of these two situations.
1984 if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1985 !isDeclContextInNamespace(getDeclContext()) &&
1986 ((getName() == "IUnknown" &&
1987 Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1988 (getName() == "IDispatch" &&
1989 Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1990 if (getNumBases() > 0)
1991 return false;
1992 return true;
1995 // FIXME: Any access specifiers is supposed to make this no longer interface
1996 // like.
1998 // If this isn't a 'special' type, it must have a single interface-like base.
1999 if (getNumBases() != 1)
2000 return false;
2002 const auto BaseSpec = *bases_begin();
2003 if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
2004 return false;
2005 const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
2006 if (Base->isInterface() || !Base->isInterfaceLike())
2007 return false;
2008 return true;
2011 void CXXRecordDecl::completeDefinition() {
2012 completeDefinition(nullptr);
2015 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
2016 RecordDecl::completeDefinition();
2018 // If the class may be abstract (but hasn't been marked as such), check for
2019 // any pure final overriders.
2020 if (mayBeAbstract()) {
2021 CXXFinalOverriderMap MyFinalOverriders;
2022 if (!FinalOverriders) {
2023 getFinalOverriders(MyFinalOverriders);
2024 FinalOverriders = &MyFinalOverriders;
2027 bool Done = false;
2028 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
2029 MEnd = FinalOverriders->end();
2030 M != MEnd && !Done; ++M) {
2031 for (OverridingMethods::iterator SO = M->second.begin(),
2032 SOEnd = M->second.end();
2033 SO != SOEnd && !Done; ++SO) {
2034 assert(SO->second.size() > 0 &&
2035 "All virtual functions have overriding virtual functions");
2037 // C++ [class.abstract]p4:
2038 // A class is abstract if it contains or inherits at least one
2039 // pure virtual function for which the final overrider is pure
2040 // virtual.
2041 if (SO->second.front().Method->isPure()) {
2042 data().Abstract = true;
2043 Done = true;
2044 break;
2050 // Set access bits correctly on the directly-declared conversions.
2051 for (conversion_iterator I = conversion_begin(), E = conversion_end();
2052 I != E; ++I)
2053 I.setAccess((*I)->getAccess());
2056 bool CXXRecordDecl::mayBeAbstract() const {
2057 if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
2058 isDependentContext())
2059 return false;
2061 for (const auto &B : bases()) {
2062 const auto *BaseDecl =
2063 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
2064 if (BaseDecl->isAbstract())
2065 return true;
2068 return false;
2071 bool CXXRecordDecl::isEffectivelyFinal() const {
2072 auto *Def = getDefinition();
2073 if (!Def)
2074 return false;
2075 if (Def->hasAttr<FinalAttr>())
2076 return true;
2077 if (const auto *Dtor = Def->getDestructor())
2078 if (Dtor->hasAttr<FinalAttr>())
2079 return true;
2080 return false;
2083 void CXXDeductionGuideDecl::anchor() {}
2085 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
2086 if ((getKind() != Other.getKind() ||
2087 getKind() == ExplicitSpecKind::Unresolved)) {
2088 if (getKind() == ExplicitSpecKind::Unresolved &&
2089 Other.getKind() == ExplicitSpecKind::Unresolved) {
2090 ODRHash SelfHash, OtherHash;
2091 SelfHash.AddStmt(getExpr());
2092 OtherHash.AddStmt(Other.getExpr());
2093 return SelfHash.CalculateHash() == OtherHash.CalculateHash();
2094 } else
2095 return false;
2097 return true;
2100 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
2101 switch (Function->getDeclKind()) {
2102 case Decl::Kind::CXXConstructor:
2103 return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
2104 case Decl::Kind::CXXConversion:
2105 return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
2106 case Decl::Kind::CXXDeductionGuide:
2107 return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
2108 default:
2109 return {};
2113 CXXDeductionGuideDecl *
2114 CXXDeductionGuideDecl::Create(ASTContext &C, DeclContext *DC,
2115 SourceLocation StartLoc, ExplicitSpecifier ES,
2116 const DeclarationNameInfo &NameInfo, QualType T,
2117 TypeSourceInfo *TInfo, SourceLocation EndLocation,
2118 CXXConstructorDecl *Ctor) {
2119 return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
2120 TInfo, EndLocation, Ctor);
2123 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
2124 unsigned ID) {
2125 return new (C, ID) CXXDeductionGuideDecl(
2126 C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
2127 QualType(), nullptr, SourceLocation(), nullptr);
2130 RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
2131 ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
2132 return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
2135 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
2136 unsigned ID) {
2137 return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
2140 void CXXMethodDecl::anchor() {}
2142 bool CXXMethodDecl::isStatic() const {
2143 const CXXMethodDecl *MD = getCanonicalDecl();
2145 if (MD->getStorageClass() == SC_Static)
2146 return true;
2148 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
2149 return isStaticOverloadedOperator(OOK);
2152 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
2153 const CXXMethodDecl *BaseMD) {
2154 for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
2155 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
2156 return true;
2157 if (recursivelyOverrides(MD, BaseMD))
2158 return true;
2160 return false;
2163 CXXMethodDecl *
2164 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2165 bool MayBeBase) {
2166 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
2167 return this;
2169 // Lookup doesn't work for destructors, so handle them separately.
2170 if (isa<CXXDestructorDecl>(this)) {
2171 CXXMethodDecl *MD = RD->getDestructor();
2172 if (MD) {
2173 if (recursivelyOverrides(MD, this))
2174 return MD;
2175 if (MayBeBase && recursivelyOverrides(this, MD))
2176 return MD;
2178 return nullptr;
2181 for (auto *ND : RD->lookup(getDeclName())) {
2182 auto *MD = dyn_cast<CXXMethodDecl>(ND);
2183 if (!MD)
2184 continue;
2185 if (recursivelyOverrides(MD, this))
2186 return MD;
2187 if (MayBeBase && recursivelyOverrides(this, MD))
2188 return MD;
2191 return nullptr;
2194 CXXMethodDecl *
2195 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2196 bool MayBeBase) {
2197 if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2198 return MD;
2200 llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders;
2201 auto AddFinalOverrider = [&](CXXMethodDecl *D) {
2202 // If this function is overridden by a candidate final overrider, it is not
2203 // a final overrider.
2204 for (CXXMethodDecl *OtherD : FinalOverriders) {
2205 if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D))
2206 return;
2209 // Other candidate final overriders might be overridden by this function.
2210 llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) {
2211 return recursivelyOverrides(D, OtherD);
2214 FinalOverriders.push_back(D);
2217 for (const auto &I : RD->bases()) {
2218 const RecordType *RT = I.getType()->getAs<RecordType>();
2219 if (!RT)
2220 continue;
2221 const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2222 if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base))
2223 AddFinalOverrider(D);
2226 return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr;
2229 CXXMethodDecl *
2230 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2231 const DeclarationNameInfo &NameInfo, QualType T,
2232 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
2233 bool isInline, ConstexprSpecKind ConstexprKind,
2234 SourceLocation EndLocation,
2235 Expr *TrailingRequiresClause) {
2236 return new (C, RD) CXXMethodDecl(
2237 CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2238 isInline, ConstexprKind, EndLocation, TrailingRequiresClause);
2241 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2242 return new (C, ID) CXXMethodDecl(
2243 CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
2244 QualType(), nullptr, SC_None, false, false,
2245 ConstexprSpecKind::Unspecified, SourceLocation(), nullptr);
2248 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2249 bool IsAppleKext) {
2250 assert(isVirtual() && "this method is expected to be virtual");
2252 // When building with -fapple-kext, all calls must go through the vtable since
2253 // the kernel linker can do runtime patching of vtables.
2254 if (IsAppleKext)
2255 return nullptr;
2257 // If the member function is marked 'final', we know that it can't be
2258 // overridden and can therefore devirtualize it unless it's pure virtual.
2259 if (hasAttr<FinalAttr>())
2260 return isPure() ? nullptr : this;
2262 // If Base is unknown, we cannot devirtualize.
2263 if (!Base)
2264 return nullptr;
2266 // If the base expression (after skipping derived-to-base conversions) is a
2267 // class prvalue, then we can devirtualize.
2268 Base = Base->getBestDynamicClassTypeExpr();
2269 if (Base->isPRValue() && Base->getType()->isRecordType())
2270 return this;
2272 // If we don't even know what we would call, we can't devirtualize.
2273 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2274 if (!BestDynamicDecl)
2275 return nullptr;
2277 // There may be a method corresponding to MD in a derived class.
2278 CXXMethodDecl *DevirtualizedMethod =
2279 getCorrespondingMethodInClass(BestDynamicDecl);
2281 // If there final overrider in the dynamic type is ambiguous, we can't
2282 // devirtualize this call.
2283 if (!DevirtualizedMethod)
2284 return nullptr;
2286 // If that method is pure virtual, we can't devirtualize. If this code is
2287 // reached, the result would be UB, not a direct call to the derived class
2288 // function, and we can't assume the derived class function is defined.
2289 if (DevirtualizedMethod->isPure())
2290 return nullptr;
2292 // If that method is marked final, we can devirtualize it.
2293 if (DevirtualizedMethod->hasAttr<FinalAttr>())
2294 return DevirtualizedMethod;
2296 // Similarly, if the class itself or its destructor is marked 'final',
2297 // the class can't be derived from and we can therefore devirtualize the
2298 // member function call.
2299 if (BestDynamicDecl->isEffectivelyFinal())
2300 return DevirtualizedMethod;
2302 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2303 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2304 if (VD->getType()->isRecordType())
2305 // This is a record decl. We know the type and can devirtualize it.
2306 return DevirtualizedMethod;
2308 return nullptr;
2311 // We can devirtualize calls on an object accessed by a class member access
2312 // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2313 // a derived class object constructed in the same location.
2314 if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2315 const ValueDecl *VD = ME->getMemberDecl();
2316 return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2319 // Likewise for calls on an object accessed by a (non-reference) pointer to
2320 // member access.
2321 if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2322 if (BO->isPtrMemOp()) {
2323 auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2324 if (MPT->getPointeeType()->isRecordType())
2325 return DevirtualizedMethod;
2329 // We can't devirtualize the call.
2330 return nullptr;
2333 bool CXXMethodDecl::isUsualDeallocationFunction(
2334 SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2335 assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2336 if (getOverloadedOperator() != OO_Delete &&
2337 getOverloadedOperator() != OO_Array_Delete)
2338 return false;
2340 // C++ [basic.stc.dynamic.deallocation]p2:
2341 // A template instance is never a usual deallocation function,
2342 // regardless of its signature.
2343 if (getPrimaryTemplate())
2344 return false;
2346 // C++ [basic.stc.dynamic.deallocation]p2:
2347 // If a class T has a member deallocation function named operator delete
2348 // with exactly one parameter, then that function is a usual (non-placement)
2349 // deallocation function. [...]
2350 if (getNumParams() == 1)
2351 return true;
2352 unsigned UsualParams = 1;
2354 // C++ P0722:
2355 // A destroying operator delete is a usual deallocation function if
2356 // removing the std::destroying_delete_t parameter and changing the
2357 // first parameter type from T* to void* results in the signature of
2358 // a usual deallocation function.
2359 if (isDestroyingOperatorDelete())
2360 ++UsualParams;
2362 // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2363 // [...] If class T does not declare such an operator delete but does
2364 // declare a member deallocation function named operator delete with
2365 // exactly two parameters, the second of which has type std::size_t (18.1),
2366 // then this function is a usual deallocation function.
2368 // C++17 says a usual deallocation function is one with the signature
2369 // (void* [, size_t] [, std::align_val_t] [, ...])
2370 // and all such functions are usual deallocation functions. It's not clear
2371 // that allowing varargs functions was intentional.
2372 ASTContext &Context = getASTContext();
2373 if (UsualParams < getNumParams() &&
2374 Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2375 Context.getSizeType()))
2376 ++UsualParams;
2378 if (UsualParams < getNumParams() &&
2379 getParamDecl(UsualParams)->getType()->isAlignValT())
2380 ++UsualParams;
2382 if (UsualParams != getNumParams())
2383 return false;
2385 // In C++17 onwards, all potential usual deallocation functions are actual
2386 // usual deallocation functions. Honor this behavior when post-C++14
2387 // deallocation functions are offered as extensions too.
2388 // FIXME(EricWF): Destroying Delete should be a language option. How do we
2389 // handle when destroying delete is used prior to C++17?
2390 if (Context.getLangOpts().CPlusPlus17 ||
2391 Context.getLangOpts().AlignedAllocation ||
2392 isDestroyingOperatorDelete())
2393 return true;
2395 // This function is a usual deallocation function if there are no
2396 // single-parameter deallocation functions of the same kind.
2397 DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2398 bool Result = true;
2399 for (const auto *D : R) {
2400 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2401 if (FD->getNumParams() == 1) {
2402 PreventedBy.push_back(FD);
2403 Result = false;
2407 return Result;
2410 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2411 // C++0x [class.copy]p17:
2412 // A user-declared copy assignment operator X::operator= is a non-static
2413 // non-template member function of class X with exactly one parameter of
2414 // type X, X&, const X&, volatile X& or const volatile X&.
2415 if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2416 /*non-static*/ isStatic() ||
2417 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2418 getNumParams() != 1)
2419 return false;
2421 QualType ParamType = getParamDecl(0)->getType();
2422 if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2423 ParamType = Ref->getPointeeType();
2425 ASTContext &Context = getASTContext();
2426 QualType ClassType
2427 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2428 return Context.hasSameUnqualifiedType(ClassType, ParamType);
2431 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2432 // C++0x [class.copy]p19:
2433 // A user-declared move assignment operator X::operator= is a non-static
2434 // non-template member function of class X with exactly one parameter of type
2435 // X&&, const X&&, volatile X&&, or const volatile X&&.
2436 if (getOverloadedOperator() != OO_Equal || isStatic() ||
2437 getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2438 getNumParams() != 1)
2439 return false;
2441 QualType ParamType = getParamDecl(0)->getType();
2442 if (!ParamType->isRValueReferenceType())
2443 return false;
2444 ParamType = ParamType->getPointeeType();
2446 ASTContext &Context = getASTContext();
2447 QualType ClassType
2448 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2449 return Context.hasSameUnqualifiedType(ClassType, ParamType);
2452 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2453 assert(MD->isCanonicalDecl() && "Method is not canonical!");
2454 assert(!MD->getParent()->isDependentContext() &&
2455 "Can't add an overridden method to a class template!");
2456 assert(MD->isVirtual() && "Method is not virtual!");
2458 getASTContext().addOverriddenMethod(this, MD);
2461 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2462 if (isa<CXXConstructorDecl>(this)) return nullptr;
2463 return getASTContext().overridden_methods_begin(this);
2466 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2467 if (isa<CXXConstructorDecl>(this)) return nullptr;
2468 return getASTContext().overridden_methods_end(this);
2471 unsigned CXXMethodDecl::size_overridden_methods() const {
2472 if (isa<CXXConstructorDecl>(this)) return 0;
2473 return getASTContext().overridden_methods_size(this);
2476 CXXMethodDecl::overridden_method_range
2477 CXXMethodDecl::overridden_methods() const {
2478 if (isa<CXXConstructorDecl>(this))
2479 return overridden_method_range(nullptr, nullptr);
2480 return getASTContext().overridden_methods(this);
2483 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2484 const CXXRecordDecl *Decl) {
2485 QualType ClassTy = C.getTypeDeclType(Decl);
2486 return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2489 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2490 const CXXRecordDecl *Decl) {
2491 ASTContext &C = Decl->getASTContext();
2492 QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2493 return C.getPointerType(ObjectTy);
2496 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT,
2497 const CXXRecordDecl *Decl) {
2498 ASTContext &C = Decl->getASTContext();
2499 return ::getThisObjectType(C, FPT, Decl);
2502 QualType CXXMethodDecl::getThisType() const {
2503 // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2504 // If the member function is declared const, the type of this is const X*,
2505 // if the member function is declared volatile, the type of this is
2506 // volatile X*, and if the member function is declared const volatile,
2507 // the type of this is const volatile X*.
2508 assert(isInstance() && "No 'this' for static methods!");
2509 return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(),
2510 getParent());
2513 QualType CXXMethodDecl::getThisObjectType() const {
2514 // Ditto getThisType.
2515 assert(isInstance() && "No 'this' for static methods!");
2516 return CXXMethodDecl::getThisObjectType(
2517 getType()->castAs<FunctionProtoType>(), getParent());
2520 bool CXXMethodDecl::hasInlineBody() const {
2521 // If this function is a template instantiation, look at the template from
2522 // which it was instantiated.
2523 const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2524 if (!CheckFn)
2525 CheckFn = this;
2527 const FunctionDecl *fn;
2528 return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2529 (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2532 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2533 const CXXRecordDecl *P = getParent();
2534 return P->isLambda() && getDeclName().isIdentifier() &&
2535 getName() == getLambdaStaticInvokerName();
2538 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2539 TypeSourceInfo *TInfo, bool IsVirtual,
2540 SourceLocation L, Expr *Init,
2541 SourceLocation R,
2542 SourceLocation EllipsisLoc)
2543 : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc),
2544 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2545 IsWritten(false), SourceOrder(0) {}
2547 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2548 SourceLocation MemberLoc,
2549 SourceLocation L, Expr *Init,
2550 SourceLocation R)
2551 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2552 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2553 IsWritten(false), SourceOrder(0) {}
2555 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2556 IndirectFieldDecl *Member,
2557 SourceLocation MemberLoc,
2558 SourceLocation L, Expr *Init,
2559 SourceLocation R)
2560 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2561 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2562 IsWritten(false), SourceOrder(0) {}
2564 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2565 TypeSourceInfo *TInfo,
2566 SourceLocation L, Expr *Init,
2567 SourceLocation R)
2568 : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2569 IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2571 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2572 return Context.getAllocator()
2573 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2576 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2577 if (isBaseInitializer())
2578 return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2579 else
2580 return {};
2583 const Type *CXXCtorInitializer::getBaseClass() const {
2584 if (isBaseInitializer())
2585 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2586 else
2587 return nullptr;
2590 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2591 if (isInClassMemberInitializer())
2592 return getAnyMember()->getLocation();
2594 if (isAnyMemberInitializer())
2595 return getMemberLocation();
2597 if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2598 return TSInfo->getTypeLoc().getBeginLoc();
2600 return {};
2603 SourceRange CXXCtorInitializer::getSourceRange() const {
2604 if (isInClassMemberInitializer()) {
2605 FieldDecl *D = getAnyMember();
2606 if (Expr *I = D->getInClassInitializer())
2607 return I->getSourceRange();
2608 return {};
2611 return SourceRange(getSourceLocation(), getRParenLoc());
2614 CXXConstructorDecl::CXXConstructorDecl(
2615 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2616 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2617 ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2618 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2619 InheritedConstructor Inherited, Expr *TrailingRequiresClause)
2620 : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2621 SC_None, UsesFPIntrin, isInline, ConstexprKind,
2622 SourceLocation(), TrailingRequiresClause) {
2623 setNumCtorInitializers(0);
2624 setInheritingConstructor(static_cast<bool>(Inherited));
2625 setImplicit(isImplicitlyDeclared);
2626 CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2627 if (Inherited)
2628 *getTrailingObjects<InheritedConstructor>() = Inherited;
2629 setExplicitSpecifier(ES);
2632 void CXXConstructorDecl::anchor() {}
2634 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2635 unsigned ID,
2636 uint64_t AllocKind) {
2637 bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2638 bool isInheritingConstructor =
2639 static_cast<bool>(AllocKind & TAKInheritsConstructor);
2640 unsigned Extra =
2641 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2642 isInheritingConstructor, hasTrailingExplicit);
2643 auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2644 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2645 ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified,
2646 InheritedConstructor(), nullptr);
2647 Result->setInheritingConstructor(isInheritingConstructor);
2648 Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2649 hasTrailingExplicit;
2650 Result->setExplicitSpecifier(ExplicitSpecifier());
2651 return Result;
2654 CXXConstructorDecl *CXXConstructorDecl::Create(
2655 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2656 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2657 ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2658 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2659 InheritedConstructor Inherited, Expr *TrailingRequiresClause) {
2660 assert(NameInfo.getName().getNameKind()
2661 == DeclarationName::CXXConstructorName &&
2662 "Name must refer to a constructor");
2663 unsigned Extra =
2664 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2665 Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2666 return new (C, RD, Extra) CXXConstructorDecl(
2667 C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline,
2668 isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause);
2671 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2672 return CtorInitializers.get(getASTContext().getExternalSource());
2675 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2676 assert(isDelegatingConstructor() && "Not a delegating constructor!");
2677 Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2678 if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2679 return Construct->getConstructor();
2681 return nullptr;
2684 bool CXXConstructorDecl::isDefaultConstructor() const {
2685 // C++ [class.default.ctor]p1:
2686 // A default constructor for a class X is a constructor of class X for
2687 // which each parameter that is not a function parameter pack has a default
2688 // argument (including the case of a constructor with no parameters)
2689 return getMinRequiredArguments() == 0;
2692 bool
2693 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2694 return isCopyOrMoveConstructor(TypeQuals) &&
2695 getParamDecl(0)->getType()->isLValueReferenceType();
2698 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2699 return isCopyOrMoveConstructor(TypeQuals) &&
2700 getParamDecl(0)->getType()->isRValueReferenceType();
2703 /// Determine whether this is a copy or move constructor.
2704 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2705 // C++ [class.copy]p2:
2706 // A non-template constructor for class X is a copy constructor
2707 // if its first parameter is of type X&, const X&, volatile X& or
2708 // const volatile X&, and either there are no other parameters
2709 // or else all other parameters have default arguments (8.3.6).
2710 // C++0x [class.copy]p3:
2711 // A non-template constructor for class X is a move constructor if its
2712 // first parameter is of type X&&, const X&&, volatile X&&, or
2713 // const volatile X&&, and either there are no other parameters or else
2714 // all other parameters have default arguments.
2715 if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
2716 getDescribedFunctionTemplate() != nullptr)
2717 return false;
2719 const ParmVarDecl *Param = getParamDecl(0);
2721 // Do we have a reference type?
2722 const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2723 if (!ParamRefType)
2724 return false;
2726 // Is it a reference to our class type?
2727 ASTContext &Context = getASTContext();
2729 CanQualType PointeeType
2730 = Context.getCanonicalType(ParamRefType->getPointeeType());
2731 CanQualType ClassTy
2732 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2733 if (PointeeType.getUnqualifiedType() != ClassTy)
2734 return false;
2736 // FIXME: other qualifiers?
2738 // We have a copy or move constructor.
2739 TypeQuals = PointeeType.getCVRQualifiers();
2740 return true;
2743 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2744 // C++ [class.conv.ctor]p1:
2745 // A constructor declared without the function-specifier explicit
2746 // that can be called with a single parameter specifies a
2747 // conversion from the type of its first parameter to the type of
2748 // its class. Such a constructor is called a converting
2749 // constructor.
2750 if (isExplicit() && !AllowExplicit)
2751 return false;
2753 // FIXME: This has nothing to do with the definition of converting
2754 // constructor, but is convenient for how we use this function in overload
2755 // resolution.
2756 return getNumParams() == 0
2757 ? getType()->castAs<FunctionProtoType>()->isVariadic()
2758 : getMinRequiredArguments() <= 1;
2761 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2762 if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
2763 return false;
2765 const ParmVarDecl *Param = getParamDecl(0);
2767 ASTContext &Context = getASTContext();
2768 CanQualType ParamType = Context.getCanonicalType(Param->getType());
2770 // Is it the same as our class type?
2771 CanQualType ClassTy
2772 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2773 if (ParamType.getUnqualifiedType() != ClassTy)
2774 return false;
2776 return true;
2779 void CXXDestructorDecl::anchor() {}
2781 CXXDestructorDecl *
2782 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2783 return new (C, ID) CXXDestructorDecl(
2784 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2785 false, false, false, ConstexprSpecKind::Unspecified, nullptr);
2788 CXXDestructorDecl *CXXDestructorDecl::Create(
2789 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2790 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2791 bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2792 ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) {
2793 assert(NameInfo.getName().getNameKind()
2794 == DeclarationName::CXXDestructorName &&
2795 "Name must refer to a destructor");
2796 return new (C, RD) CXXDestructorDecl(
2797 C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline,
2798 isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause);
2801 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2802 auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2803 if (OD && !First->OperatorDelete) {
2804 First->OperatorDelete = OD;
2805 First->OperatorDeleteThisArg = ThisArg;
2806 if (auto *L = getASTMutationListener())
2807 L->ResolvedOperatorDelete(First, OD, ThisArg);
2811 void CXXConversionDecl::anchor() {}
2813 CXXConversionDecl *
2814 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2815 return new (C, ID) CXXConversionDecl(
2816 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2817 false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
2818 SourceLocation(), nullptr);
2821 CXXConversionDecl *CXXConversionDecl::Create(
2822 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2823 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2824 bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2825 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2826 Expr *TrailingRequiresClause) {
2827 assert(NameInfo.getName().getNameKind()
2828 == DeclarationName::CXXConversionFunctionName &&
2829 "Name must refer to a conversion function");
2830 return new (C, RD) CXXConversionDecl(
2831 C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES,
2832 ConstexprKind, EndLocation, TrailingRequiresClause);
2835 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2836 return isImplicit() && getParent()->isLambda() &&
2837 getConversionType()->isBlockPointerType();
2840 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2841 SourceLocation LangLoc, LanguageIDs lang,
2842 bool HasBraces)
2843 : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2844 ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2845 setLanguage(lang);
2846 LinkageSpecDeclBits.HasBraces = HasBraces;
2849 void LinkageSpecDecl::anchor() {}
2851 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2852 DeclContext *DC,
2853 SourceLocation ExternLoc,
2854 SourceLocation LangLoc,
2855 LanguageIDs Lang,
2856 bool HasBraces) {
2857 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2860 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2861 unsigned ID) {
2862 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2863 SourceLocation(), lang_c, false);
2866 void UsingDirectiveDecl::anchor() {}
2868 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2869 SourceLocation L,
2870 SourceLocation NamespaceLoc,
2871 NestedNameSpecifierLoc QualifierLoc,
2872 SourceLocation IdentLoc,
2873 NamedDecl *Used,
2874 DeclContext *CommonAncestor) {
2875 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2876 Used = NS->getOriginalNamespace();
2877 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2878 IdentLoc, Used, CommonAncestor);
2881 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2882 unsigned ID) {
2883 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2884 SourceLocation(),
2885 NestedNameSpecifierLoc(),
2886 SourceLocation(), nullptr, nullptr);
2889 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2890 if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2891 return NA->getNamespace();
2892 return cast_or_null<NamespaceDecl>(NominatedNamespace);
2895 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2896 SourceLocation StartLoc, SourceLocation IdLoc,
2897 IdentifierInfo *Id, NamespaceDecl *PrevDecl,
2898 bool Nested)
2899 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2900 redeclarable_base(C), LocStart(StartLoc) {
2901 unsigned Flags = 0;
2902 if (Inline)
2903 Flags |= F_Inline;
2904 if (Nested)
2905 Flags |= F_Nested;
2906 AnonOrFirstNamespaceAndFlags = {nullptr, Flags};
2907 setPreviousDecl(PrevDecl);
2909 if (PrevDecl)
2910 AnonOrFirstNamespaceAndFlags.setPointer(PrevDecl->getOriginalNamespace());
2913 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2914 bool Inline, SourceLocation StartLoc,
2915 SourceLocation IdLoc, IdentifierInfo *Id,
2916 NamespaceDecl *PrevDecl, bool Nested) {
2917 return new (C, DC)
2918 NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested);
2921 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2922 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2923 SourceLocation(), nullptr, nullptr, false);
2926 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2927 if (isFirstDecl())
2928 return this;
2930 return AnonOrFirstNamespaceAndFlags.getPointer();
2933 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2934 if (isFirstDecl())
2935 return this;
2937 return AnonOrFirstNamespaceAndFlags.getPointer();
2940 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2942 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2943 return getNextRedeclaration();
2946 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2947 return getPreviousDecl();
2950 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2951 return getMostRecentDecl();
2954 void NamespaceAliasDecl::anchor() {}
2956 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2957 return getNextRedeclaration();
2960 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2961 return getPreviousDecl();
2964 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2965 return getMostRecentDecl();
2968 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2969 SourceLocation UsingLoc,
2970 SourceLocation AliasLoc,
2971 IdentifierInfo *Alias,
2972 NestedNameSpecifierLoc QualifierLoc,
2973 SourceLocation IdentLoc,
2974 NamedDecl *Namespace) {
2975 // FIXME: Preserve the aliased namespace as written.
2976 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2977 Namespace = NS->getOriginalNamespace();
2978 return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2979 QualifierLoc, IdentLoc, Namespace);
2982 NamespaceAliasDecl *
2983 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2984 return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2985 SourceLocation(), nullptr,
2986 NestedNameSpecifierLoc(),
2987 SourceLocation(), nullptr);
2990 void LifetimeExtendedTemporaryDecl::anchor() {}
2992 /// Retrieve the storage duration for the materialized temporary.
2993 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
2994 const ValueDecl *ExtendingDecl = getExtendingDecl();
2995 if (!ExtendingDecl)
2996 return SD_FullExpression;
2997 // FIXME: This is not necessarily correct for a temporary materialized
2998 // within a default initializer.
2999 if (isa<FieldDecl>(ExtendingDecl))
3000 return SD_Automatic;
3001 // FIXME: This only works because storage class specifiers are not allowed
3002 // on decomposition declarations.
3003 if (isa<BindingDecl>(ExtendingDecl))
3004 return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
3005 : SD_Static;
3006 return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3009 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
3010 assert(getStorageDuration() == SD_Static &&
3011 "don't need to cache the computed value for this temporary");
3012 if (MayCreate && !Value) {
3013 Value = (new (getASTContext()) APValue);
3014 getASTContext().addDestruction(Value);
3016 assert(Value && "may not be null");
3017 return Value;
3020 void UsingShadowDecl::anchor() {}
3022 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
3023 SourceLocation Loc, DeclarationName Name,
3024 BaseUsingDecl *Introducer, NamedDecl *Target)
3025 : NamedDecl(K, DC, Loc, Name), redeclarable_base(C),
3026 UsingOrNextShadow(Introducer) {
3027 if (Target) {
3028 assert(!isa<UsingShadowDecl>(Target));
3029 setTargetDecl(Target);
3031 setImplicit();
3034 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
3035 : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
3036 redeclarable_base(C) {}
3038 UsingShadowDecl *
3039 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3040 return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
3043 BaseUsingDecl *UsingShadowDecl::getIntroducer() const {
3044 const UsingShadowDecl *Shadow = this;
3045 while (const auto *NextShadow =
3046 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
3047 Shadow = NextShadow;
3048 return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow);
3051 void ConstructorUsingShadowDecl::anchor() {}
3053 ConstructorUsingShadowDecl *
3054 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
3055 SourceLocation Loc, UsingDecl *Using,
3056 NamedDecl *Target, bool IsVirtual) {
3057 return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
3058 IsVirtual);
3061 ConstructorUsingShadowDecl *
3062 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3063 return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
3066 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
3067 return getIntroducer()->getQualifier()->getAsRecordDecl();
3070 void BaseUsingDecl::anchor() {}
3072 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) {
3073 assert(!llvm::is_contained(shadows(), S) && "declaration already in set");
3074 assert(S->getIntroducer() == this);
3076 if (FirstUsingShadow.getPointer())
3077 S->UsingOrNextShadow = FirstUsingShadow.getPointer();
3078 FirstUsingShadow.setPointer(S);
3081 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) {
3082 assert(llvm::is_contained(shadows(), S) && "declaration not in set");
3083 assert(S->getIntroducer() == this);
3085 // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
3087 if (FirstUsingShadow.getPointer() == S) {
3088 FirstUsingShadow.setPointer(
3089 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
3090 S->UsingOrNextShadow = this;
3091 return;
3094 UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
3095 while (Prev->UsingOrNextShadow != S)
3096 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
3097 Prev->UsingOrNextShadow = S->UsingOrNextShadow;
3098 S->UsingOrNextShadow = this;
3101 void UsingDecl::anchor() {}
3103 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
3104 NestedNameSpecifierLoc QualifierLoc,
3105 const DeclarationNameInfo &NameInfo,
3106 bool HasTypename) {
3107 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
3110 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3111 return new (C, ID) UsingDecl(nullptr, SourceLocation(),
3112 NestedNameSpecifierLoc(), DeclarationNameInfo(),
3113 false);
3116 SourceRange UsingDecl::getSourceRange() const {
3117 SourceLocation Begin = isAccessDeclaration()
3118 ? getQualifierLoc().getBeginLoc() : UsingLocation;
3119 return SourceRange(Begin, getNameInfo().getEndLoc());
3122 void UsingEnumDecl::anchor() {}
3124 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC,
3125 SourceLocation UL,
3126 SourceLocation EL,
3127 SourceLocation NL,
3128 TypeSourceInfo *EnumType) {
3129 assert(isa<EnumDecl>(EnumType->getType()->getAsTagDecl()));
3130 return new (C, DC)
3131 UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType);
3134 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3135 return new (C, ID)
3136 UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(),
3137 SourceLocation(), SourceLocation(), nullptr);
3140 SourceRange UsingEnumDecl::getSourceRange() const {
3141 return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc());
3144 void UsingPackDecl::anchor() {}
3146 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
3147 NamedDecl *InstantiatedFrom,
3148 ArrayRef<NamedDecl *> UsingDecls) {
3149 size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
3150 return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
3153 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3154 unsigned NumExpansions) {
3155 size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
3156 auto *Result =
3157 new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, std::nullopt);
3158 Result->NumExpansions = NumExpansions;
3159 auto *Trail = Result->getTrailingObjects<NamedDecl *>();
3160 for (unsigned I = 0; I != NumExpansions; ++I)
3161 new (Trail + I) NamedDecl*(nullptr);
3162 return Result;
3165 void UnresolvedUsingValueDecl::anchor() {}
3167 UnresolvedUsingValueDecl *
3168 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
3169 SourceLocation UsingLoc,
3170 NestedNameSpecifierLoc QualifierLoc,
3171 const DeclarationNameInfo &NameInfo,
3172 SourceLocation EllipsisLoc) {
3173 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
3174 QualifierLoc, NameInfo,
3175 EllipsisLoc);
3178 UnresolvedUsingValueDecl *
3179 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3180 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
3181 SourceLocation(),
3182 NestedNameSpecifierLoc(),
3183 DeclarationNameInfo(),
3184 SourceLocation());
3187 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
3188 SourceLocation Begin = isAccessDeclaration()
3189 ? getQualifierLoc().getBeginLoc() : UsingLocation;
3190 return SourceRange(Begin, getNameInfo().getEndLoc());
3193 void UnresolvedUsingTypenameDecl::anchor() {}
3195 UnresolvedUsingTypenameDecl *
3196 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
3197 SourceLocation UsingLoc,
3198 SourceLocation TypenameLoc,
3199 NestedNameSpecifierLoc QualifierLoc,
3200 SourceLocation TargetNameLoc,
3201 DeclarationName TargetName,
3202 SourceLocation EllipsisLoc) {
3203 return new (C, DC) UnresolvedUsingTypenameDecl(
3204 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
3205 TargetName.getAsIdentifierInfo(), EllipsisLoc);
3208 UnresolvedUsingTypenameDecl *
3209 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3210 return new (C, ID) UnresolvedUsingTypenameDecl(
3211 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3212 SourceLocation(), nullptr, SourceLocation());
3215 UnresolvedUsingIfExistsDecl *
3216 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC,
3217 SourceLocation Loc, DeclarationName Name) {
3218 return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name);
3221 UnresolvedUsingIfExistsDecl *
3222 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) {
3223 return new (Ctx, ID)
3224 UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName());
3227 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC,
3228 SourceLocation Loc,
3229 DeclarationName Name)
3230 : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {}
3232 void UnresolvedUsingIfExistsDecl::anchor() {}
3234 void StaticAssertDecl::anchor() {}
3236 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
3237 SourceLocation StaticAssertLoc,
3238 Expr *AssertExpr,
3239 StringLiteral *Message,
3240 SourceLocation RParenLoc,
3241 bool Failed) {
3242 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
3243 RParenLoc, Failed);
3246 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
3247 unsigned ID) {
3248 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3249 nullptr, SourceLocation(), false);
3252 VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() {
3253 assert((isa<VarDecl, BindingDecl>(this)) &&
3254 "expected a VarDecl or a BindingDecl");
3255 if (auto *Var = llvm::dyn_cast<VarDecl>(this))
3256 return Var;
3257 if (auto *BD = llvm::dyn_cast<BindingDecl>(this))
3258 return llvm::dyn_cast<VarDecl>(BD->getDecomposedDecl());
3259 return nullptr;
3262 void BindingDecl::anchor() {}
3264 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
3265 SourceLocation IdLoc, IdentifierInfo *Id) {
3266 return new (C, DC) BindingDecl(DC, IdLoc, Id);
3269 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3270 return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
3273 VarDecl *BindingDecl::getHoldingVar() const {
3274 Expr *B = getBinding();
3275 if (!B)
3276 return nullptr;
3277 auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3278 if (!DRE)
3279 return nullptr;
3281 auto *VD = cast<VarDecl>(DRE->getDecl());
3282 assert(VD->isImplicit() && "holding var for binding decl not implicit");
3283 return VD;
3286 void DecompositionDecl::anchor() {}
3288 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3289 SourceLocation StartLoc,
3290 SourceLocation LSquareLoc,
3291 QualType T, TypeSourceInfo *TInfo,
3292 StorageClass SC,
3293 ArrayRef<BindingDecl *> Bindings) {
3294 size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3295 return new (C, DC, Extra)
3296 DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3299 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3300 unsigned ID,
3301 unsigned NumBindings) {
3302 size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3303 auto *Result = new (C, ID, Extra)
3304 DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3305 QualType(), nullptr, StorageClass(), std::nullopt);
3306 // Set up and clean out the bindings array.
3307 Result->NumBindings = NumBindings;
3308 auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3309 for (unsigned I = 0; I != NumBindings; ++I)
3310 new (Trail + I) BindingDecl*(nullptr);
3311 return Result;
3314 void DecompositionDecl::printName(llvm::raw_ostream &OS,
3315 const PrintingPolicy &Policy) const {
3316 OS << '[';
3317 bool Comma = false;
3318 for (const auto *B : bindings()) {
3319 if (Comma)
3320 OS << ", ";
3321 B->printName(OS, Policy);
3322 Comma = true;
3324 OS << ']';
3327 void MSPropertyDecl::anchor() {}
3329 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3330 SourceLocation L, DeclarationName N,
3331 QualType T, TypeSourceInfo *TInfo,
3332 SourceLocation StartL,
3333 IdentifierInfo *Getter,
3334 IdentifierInfo *Setter) {
3335 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3338 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3339 unsigned ID) {
3340 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3341 DeclarationName(), QualType(), nullptr,
3342 SourceLocation(), nullptr, nullptr);
3345 void MSGuidDecl::anchor() {}
3347 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P)
3348 : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T),
3349 PartVal(P) {}
3351 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) {
3352 DeclContext *DC = C.getTranslationUnitDecl();
3353 return new (C, DC) MSGuidDecl(DC, T, P);
3356 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3357 return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts());
3360 void MSGuidDecl::printName(llvm::raw_ostream &OS,
3361 const PrintingPolicy &) const {
3362 OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-",
3363 PartVal.Part1, PartVal.Part2, PartVal.Part3);
3364 unsigned I = 0;
3365 for (uint8_t Byte : PartVal.Part4And5) {
3366 OS << llvm::format("%02" PRIx8, Byte);
3367 if (++I == 2)
3368 OS << '-';
3370 OS << '}';
3373 /// Determine if T is a valid 'struct _GUID' of the shape that we expect.
3374 static bool isValidStructGUID(ASTContext &Ctx, QualType T) {
3375 // FIXME: We only need to check this once, not once each time we compute a
3376 // GUID APValue.
3377 using MatcherRef = llvm::function_ref<bool(QualType)>;
3379 auto IsInt = [&Ctx](unsigned N) {
3380 return [&Ctx, N](QualType T) {
3381 return T->isUnsignedIntegerOrEnumerationType() &&
3382 Ctx.getIntWidth(T) == N;
3386 auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) {
3387 return [&Ctx, Elem, N](QualType T) {
3388 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T);
3389 return CAT && CAT->getSize() == N && Elem(CAT->getElementType());
3393 auto IsStruct = [](std::initializer_list<MatcherRef> Fields) {
3394 return [Fields](QualType T) {
3395 const RecordDecl *RD = T->getAsRecordDecl();
3396 if (!RD || RD->isUnion())
3397 return false;
3398 RD = RD->getDefinition();
3399 if (!RD)
3400 return false;
3401 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3402 if (CXXRD->getNumBases())
3403 return false;
3404 auto MatcherIt = Fields.begin();
3405 for (const FieldDecl *FD : RD->fields()) {
3406 if (FD->isUnnamedBitfield()) continue;
3407 if (FD->isBitField() || MatcherIt == Fields.end() ||
3408 !(*MatcherIt)(FD->getType()))
3409 return false;
3410 ++MatcherIt;
3412 return MatcherIt == Fields.end();
3416 // We expect an {i32, i16, i16, [8 x i8]}.
3417 return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T);
3420 APValue &MSGuidDecl::getAsAPValue() const {
3421 if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
3422 using llvm::APInt;
3423 using llvm::APSInt;
3424 APVal = APValue(APValue::UninitStruct(), 0, 4);
3425 APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true));
3426 APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true));
3427 APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true));
3428 APValue &Arr = APVal.getStructField(3) =
3429 APValue(APValue::UninitArray(), 8, 8);
3430 for (unsigned I = 0; I != 8; ++I) {
3431 Arr.getArrayInitializedElt(I) =
3432 APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true));
3434 // Register this APValue to be destroyed if necessary. (Note that the
3435 // MSGuidDecl destructor is never run.)
3436 getASTContext().addDestruction(&APVal);
3439 return APVal;
3442 void UnnamedGlobalConstantDecl::anchor() {}
3444 UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C,
3445 DeclContext *DC,
3446 QualType Ty,
3447 const APValue &Val)
3448 : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(),
3449 DeclarationName(), Ty),
3450 Value(Val) {
3451 // Cleanup the embedded APValue if required (note that our destructor is never
3452 // run)
3453 if (Value.needsCleanup())
3454 C.addDestruction(&Value);
3457 UnnamedGlobalConstantDecl *
3458 UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T,
3459 const APValue &Value) {
3460 DeclContext *DC = C.getTranslationUnitDecl();
3461 return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value);
3464 UnnamedGlobalConstantDecl *
3465 UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3466 return new (C, ID)
3467 UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue());
3470 void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS,
3471 const PrintingPolicy &) const {
3472 OS << "unnamed-global-constant";
3475 static const char *getAccessName(AccessSpecifier AS) {
3476 switch (AS) {
3477 case AS_none:
3478 llvm_unreachable("Invalid access specifier!");
3479 case AS_public:
3480 return "public";
3481 case AS_private:
3482 return "private";
3483 case AS_protected:
3484 return "protected";
3486 llvm_unreachable("Invalid access specifier!");
3489 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
3490 AccessSpecifier AS) {
3491 return DB << getAccessName(AS);