1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
24 using namespace clang
;
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
33 /// class C : A, B { };
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo
{
40 /// Class - The class for this base info.
41 const CXXRecordDecl
*Class
;
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
46 /// Bases - Information about the base subobjects.
47 SmallVector
<BaseSubobjectInfo
*, 4> Bases
;
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo
*PrimaryVirtualBaseInfo
;
54 const BaseSubobjectInfo
*Derived
;
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout
{
61 ExternalLayout() : Size(0), Align(0) {}
63 /// Overall record size in bits.
66 /// Overall record alignment in bits.
69 /// Record field offsets in bits.
70 llvm::DenseMap
<const FieldDecl
*, uint64_t> FieldOffsets
;
72 /// Direct, non-virtual base offsets.
73 llvm::DenseMap
<const CXXRecordDecl
*, CharUnits
> BaseOffsets
;
75 /// Virtual base offsets.
76 llvm::DenseMap
<const CXXRecordDecl
*, CharUnits
> VirtualBaseOffsets
;
78 /// Get the offset of the given field. The external source must provide
79 /// entries for all fields in the record.
80 uint64_t getExternalFieldOffset(const FieldDecl
*FD
) {
81 assert(FieldOffsets
.count(FD
) &&
82 "Field does not have an external offset");
83 return FieldOffsets
[FD
];
86 bool getExternalNVBaseOffset(const CXXRecordDecl
*RD
, CharUnits
&BaseOffset
) {
87 auto Known
= BaseOffsets
.find(RD
);
88 if (Known
== BaseOffsets
.end())
90 BaseOffset
= Known
->second
;
94 bool getExternalVBaseOffset(const CXXRecordDecl
*RD
, CharUnits
&BaseOffset
) {
95 auto Known
= VirtualBaseOffsets
.find(RD
);
96 if (Known
== VirtualBaseOffsets
.end())
98 BaseOffset
= Known
->second
;
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap
{
106 const ASTContext
&Context
;
109 /// Class - The class whose empty entries we're keeping track of.
110 const CXXRecordDecl
*Class
;
112 /// EmptyClassOffsets - A map from offsets to empty record decls.
113 typedef llvm::TinyPtrVector
<const CXXRecordDecl
*> ClassVectorTy
;
114 typedef llvm::DenseMap
<CharUnits
, ClassVectorTy
> EmptyClassOffsetsMapTy
;
115 EmptyClassOffsetsMapTy EmptyClassOffsets
;
117 /// MaxEmptyClassOffset - The highest offset known to contain an empty
119 CharUnits MaxEmptyClassOffset
;
121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122 /// member subobject that is empty.
123 void ComputeEmptySubobjectSizes();
125 void AddSubobjectAtOffset(const CXXRecordDecl
*RD
, CharUnits Offset
);
127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo
*Info
,
128 CharUnits Offset
, bool PlacingEmptyBase
);
130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl
*RD
,
131 const CXXRecordDecl
*Class
, CharUnits Offset
,
132 bool PlacingOverlappingField
);
133 void UpdateEmptyFieldSubobjects(const FieldDecl
*FD
, CharUnits Offset
,
134 bool PlacingOverlappingField
);
136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137 /// subobjects beyond the given offset.
138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset
) const {
139 return Offset
<= MaxEmptyClassOffset
;
143 getFieldOffset(const ASTRecordLayout
&Layout
, unsigned FieldNo
) const {
144 uint64_t FieldOffset
= Layout
.getFieldOffset(FieldNo
);
145 assert(FieldOffset
% CharWidth
== 0 &&
146 "Field offset not at char boundary!");
148 return Context
.toCharUnitsFromBits(FieldOffset
);
152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl
*RD
,
153 CharUnits Offset
) const;
155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo
*Info
,
158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl
*RD
,
159 const CXXRecordDecl
*Class
,
160 CharUnits Offset
) const;
161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl
*FD
,
162 CharUnits Offset
) const;
165 /// This holds the size of the largest empty subobject (either a base
166 /// or a member). Will be zero if the record being built doesn't contain
167 /// any empty classes.
168 CharUnits SizeOfLargestEmptySubobject
;
170 EmptySubobjectMap(const ASTContext
&Context
, const CXXRecordDecl
*Class
)
171 : Context(Context
), CharWidth(Context
.getCharWidth()), Class(Class
) {
172 ComputeEmptySubobjectSizes();
175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176 /// at the given offset.
177 /// Returns false if placing the record will result in two components
178 /// (direct or indirect) of the same type having the same offset.
179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo
*Info
,
182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
184 bool CanPlaceFieldAtOffset(const FieldDecl
*FD
, CharUnits Offset
);
187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
189 for (const CXXBaseSpecifier
&Base
: Class
->bases()) {
190 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
193 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(BaseDecl
);
194 if (BaseDecl
->isEmpty()) {
195 // If the class decl is empty, get its size.
196 EmptySize
= Layout
.getSize();
198 // Otherwise, we get the largest empty subobject for the decl.
199 EmptySize
= Layout
.getSizeOfLargestEmptySubobject();
202 if (EmptySize
> SizeOfLargestEmptySubobject
)
203 SizeOfLargestEmptySubobject
= EmptySize
;
207 for (const FieldDecl
*FD
: Class
->fields()) {
208 const RecordType
*RT
=
209 Context
.getBaseElementType(FD
->getType())->getAs
<RecordType
>();
211 // We only care about record types.
216 const CXXRecordDecl
*MemberDecl
= RT
->getAsCXXRecordDecl();
217 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(MemberDecl
);
218 if (MemberDecl
->isEmpty()) {
219 // If the class decl is empty, get its size.
220 EmptySize
= Layout
.getSize();
222 // Otherwise, we get the largest empty subobject for the decl.
223 EmptySize
= Layout
.getSizeOfLargestEmptySubobject();
226 if (EmptySize
> SizeOfLargestEmptySubobject
)
227 SizeOfLargestEmptySubobject
= EmptySize
;
232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl
*RD
,
233 CharUnits Offset
) const {
234 // We only need to check empty bases.
238 EmptyClassOffsetsMapTy::const_iterator I
= EmptyClassOffsets
.find(Offset
);
239 if (I
== EmptyClassOffsets
.end())
242 const ClassVectorTy
&Classes
= I
->second
;
243 if (!llvm::is_contained(Classes
, RD
))
246 // There is already an empty class of the same type at this offset.
250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl
*RD
,
252 // We only care about empty bases.
256 // If we have empty structures inside a union, we can assign both
257 // the same offset. Just avoid pushing them twice in the list.
258 ClassVectorTy
&Classes
= EmptyClassOffsets
[Offset
];
259 if (llvm::is_contained(Classes
, RD
))
262 Classes
.push_back(RD
);
264 // Update the empty class offset.
265 if (Offset
> MaxEmptyClassOffset
)
266 MaxEmptyClassOffset
= Offset
;
270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo
*Info
,
272 // We don't have to keep looking past the maximum offset that's known to
273 // contain an empty class.
274 if (!AnyEmptySubobjectsBeyondOffset(Offset
))
277 if (!CanPlaceSubobjectAtOffset(Info
->Class
, Offset
))
280 // Traverse all non-virtual bases.
281 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(Info
->Class
);
282 for (const BaseSubobjectInfo
*Base
: Info
->Bases
) {
286 CharUnits BaseOffset
= Offset
+ Layout
.getBaseClassOffset(Base
->Class
);
288 if (!CanPlaceBaseSubobjectAtOffset(Base
, BaseOffset
))
292 if (Info
->PrimaryVirtualBaseInfo
) {
293 BaseSubobjectInfo
*PrimaryVirtualBaseInfo
= Info
->PrimaryVirtualBaseInfo
;
295 if (Info
== PrimaryVirtualBaseInfo
->Derived
) {
296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo
, Offset
))
301 // Traverse all member variables.
302 unsigned FieldNo
= 0;
303 for (CXXRecordDecl::field_iterator I
= Info
->Class
->field_begin(),
304 E
= Info
->Class
->field_end(); I
!= E
; ++I
, ++FieldNo
) {
308 CharUnits FieldOffset
= Offset
+ getFieldOffset(Layout
, FieldNo
);
309 if (!CanPlaceFieldSubobjectAtOffset(*I
, FieldOffset
))
316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo
*Info
,
318 bool PlacingEmptyBase
) {
319 if (!PlacingEmptyBase
&& Offset
>= SizeOfLargestEmptySubobject
) {
320 // We know that the only empty subobjects that can conflict with empty
321 // subobject of non-empty bases, are empty bases that can be placed at
322 // offset zero. Because of this, we only need to keep track of empty base
323 // subobjects with offsets less than the size of the largest empty
324 // subobject for our class.
328 AddSubobjectAtOffset(Info
->Class
, Offset
);
330 // Traverse all non-virtual bases.
331 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(Info
->Class
);
332 for (const BaseSubobjectInfo
*Base
: Info
->Bases
) {
336 CharUnits BaseOffset
= Offset
+ Layout
.getBaseClassOffset(Base
->Class
);
337 UpdateEmptyBaseSubobjects(Base
, BaseOffset
, PlacingEmptyBase
);
340 if (Info
->PrimaryVirtualBaseInfo
) {
341 BaseSubobjectInfo
*PrimaryVirtualBaseInfo
= Info
->PrimaryVirtualBaseInfo
;
343 if (Info
== PrimaryVirtualBaseInfo
->Derived
)
344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo
, Offset
,
348 // Traverse all member variables.
349 unsigned FieldNo
= 0;
350 for (CXXRecordDecl::field_iterator I
= Info
->Class
->field_begin(),
351 E
= Info
->Class
->field_end(); I
!= E
; ++I
, ++FieldNo
) {
355 CharUnits FieldOffset
= Offset
+ getFieldOffset(Layout
, FieldNo
);
356 UpdateEmptyFieldSubobjects(*I
, FieldOffset
, PlacingEmptyBase
);
360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo
*Info
,
362 // If we know this class doesn't have any empty subobjects we don't need to
364 if (SizeOfLargestEmptySubobject
.isZero())
367 if (!CanPlaceBaseSubobjectAtOffset(Info
, Offset
))
370 // We are able to place the base at this offset. Make sure to update the
371 // empty base subobject map.
372 UpdateEmptyBaseSubobjects(Info
, Offset
, Info
->Class
->isEmpty());
377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl
*RD
,
378 const CXXRecordDecl
*Class
,
379 CharUnits Offset
) const {
380 // We don't have to keep looking past the maximum offset that's known to
381 // contain an empty class.
382 if (!AnyEmptySubobjectsBeyondOffset(Offset
))
385 if (!CanPlaceSubobjectAtOffset(RD
, Offset
))
388 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
390 // Traverse all non-virtual bases.
391 for (const CXXBaseSpecifier
&Base
: RD
->bases()) {
392 if (Base
.isVirtual())
395 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
397 CharUnits BaseOffset
= Offset
+ Layout
.getBaseClassOffset(BaseDecl
);
398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl
, Class
, BaseOffset
))
403 // This is the most derived class, traverse virtual bases as well.
404 for (const CXXBaseSpecifier
&Base
: RD
->vbases()) {
405 const CXXRecordDecl
*VBaseDecl
= Base
.getType()->getAsCXXRecordDecl();
407 CharUnits VBaseOffset
= Offset
+ Layout
.getVBaseClassOffset(VBaseDecl
);
408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl
, Class
, VBaseOffset
))
413 // Traverse all member variables.
414 unsigned FieldNo
= 0;
415 for (CXXRecordDecl::field_iterator I
= RD
->field_begin(), E
= RD
->field_end();
416 I
!= E
; ++I
, ++FieldNo
) {
420 CharUnits FieldOffset
= Offset
+ getFieldOffset(Layout
, FieldNo
);
422 if (!CanPlaceFieldSubobjectAtOffset(*I
, FieldOffset
))
430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl
*FD
,
431 CharUnits Offset
) const {
432 // We don't have to keep looking past the maximum offset that's known to
433 // contain an empty class.
434 if (!AnyEmptySubobjectsBeyondOffset(Offset
))
437 QualType T
= FD
->getType();
438 if (const CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl())
439 return CanPlaceFieldSubobjectAtOffset(RD
, RD
, Offset
);
441 // If we have an array type we need to look at every element.
442 if (const ConstantArrayType
*AT
= Context
.getAsConstantArrayType(T
)) {
443 QualType ElemTy
= Context
.getBaseElementType(AT
);
444 const RecordType
*RT
= ElemTy
->getAs
<RecordType
>();
448 const CXXRecordDecl
*RD
= RT
->getAsCXXRecordDecl();
449 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
451 uint64_t NumElements
= Context
.getConstantArrayElementCount(AT
);
452 CharUnits ElementOffset
= Offset
;
453 for (uint64_t I
= 0; I
!= NumElements
; ++I
) {
454 // We don't have to keep looking past the maximum offset that's known to
455 // contain an empty class.
456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset
))
459 if (!CanPlaceFieldSubobjectAtOffset(RD
, RD
, ElementOffset
))
462 ElementOffset
+= Layout
.getSize();
470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl
*FD
,
472 if (!CanPlaceFieldSubobjectAtOffset(FD
, Offset
))
475 // We are able to place the member variable at this offset.
476 // Make sure to update the empty field subobject map.
477 UpdateEmptyFieldSubobjects(FD
, Offset
, FD
->hasAttr
<NoUniqueAddressAttr
>());
481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482 const CXXRecordDecl
*RD
, const CXXRecordDecl
*Class
, CharUnits Offset
,
483 bool PlacingOverlappingField
) {
484 // We know that the only empty subobjects that can conflict with empty
485 // field subobjects are subobjects of empty bases and potentially-overlapping
486 // fields that can be placed at offset zero. Because of this, we only need to
487 // keep track of empty field subobjects with offsets less than the size of
488 // the largest empty subobject for our class.
490 // (Proof: we will only consider placing a subobject at offset zero or at
491 // >= the current dsize. The only cases where the earlier subobject can be
492 // placed beyond the end of dsize is if it's an empty base or a
493 // potentially-overlapping field.)
494 if (!PlacingOverlappingField
&& Offset
>= SizeOfLargestEmptySubobject
)
497 AddSubobjectAtOffset(RD
, Offset
);
499 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
501 // Traverse all non-virtual bases.
502 for (const CXXBaseSpecifier
&Base
: RD
->bases()) {
503 if (Base
.isVirtual())
506 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
508 CharUnits BaseOffset
= Offset
+ Layout
.getBaseClassOffset(BaseDecl
);
509 UpdateEmptyFieldSubobjects(BaseDecl
, Class
, BaseOffset
,
510 PlacingOverlappingField
);
514 // This is the most derived class, traverse virtual bases as well.
515 for (const CXXBaseSpecifier
&Base
: RD
->vbases()) {
516 const CXXRecordDecl
*VBaseDecl
= Base
.getType()->getAsCXXRecordDecl();
518 CharUnits VBaseOffset
= Offset
+ Layout
.getVBaseClassOffset(VBaseDecl
);
519 UpdateEmptyFieldSubobjects(VBaseDecl
, Class
, VBaseOffset
,
520 PlacingOverlappingField
);
524 // Traverse all member variables.
525 unsigned FieldNo
= 0;
526 for (CXXRecordDecl::field_iterator I
= RD
->field_begin(), E
= RD
->field_end();
527 I
!= E
; ++I
, ++FieldNo
) {
531 CharUnits FieldOffset
= Offset
+ getFieldOffset(Layout
, FieldNo
);
533 UpdateEmptyFieldSubobjects(*I
, FieldOffset
, PlacingOverlappingField
);
537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538 const FieldDecl
*FD
, CharUnits Offset
, bool PlacingOverlappingField
) {
539 QualType T
= FD
->getType();
540 if (const CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl()) {
541 UpdateEmptyFieldSubobjects(RD
, RD
, Offset
, PlacingOverlappingField
);
545 // If we have an array type we need to update every element.
546 if (const ConstantArrayType
*AT
= Context
.getAsConstantArrayType(T
)) {
547 QualType ElemTy
= Context
.getBaseElementType(AT
);
548 const RecordType
*RT
= ElemTy
->getAs
<RecordType
>();
552 const CXXRecordDecl
*RD
= RT
->getAsCXXRecordDecl();
553 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
555 uint64_t NumElements
= Context
.getConstantArrayElementCount(AT
);
556 CharUnits ElementOffset
= Offset
;
558 for (uint64_t I
= 0; I
!= NumElements
; ++I
) {
559 // We know that the only empty subobjects that can conflict with empty
560 // field subobjects are subobjects of empty bases that can be placed at
561 // offset zero. Because of this, we only need to keep track of empty field
562 // subobjects with offsets less than the size of the largest empty
563 // subobject for our class.
564 if (!PlacingOverlappingField
&&
565 ElementOffset
>= SizeOfLargestEmptySubobject
)
568 UpdateEmptyFieldSubobjects(RD
, RD
, ElementOffset
,
569 PlacingOverlappingField
);
570 ElementOffset
+= Layout
.getSize();
575 typedef llvm::SmallPtrSet
<const CXXRecordDecl
*, 4> ClassSetTy
;
577 class ItaniumRecordLayoutBuilder
{
579 // FIXME: Remove this and make the appropriate fields public.
580 friend class clang::ASTContext
;
582 const ASTContext
&Context
;
584 EmptySubobjectMap
*EmptySubobjects
;
586 /// Size - The current size of the record layout.
589 /// Alignment - The current alignment of the record layout.
592 /// PreferredAlignment - The preferred alignment of the record layout.
593 CharUnits PreferredAlignment
;
595 /// The alignment if attribute packed is not used.
596 CharUnits UnpackedAlignment
;
598 /// \brief The maximum of the alignments of top-level members.
599 CharUnits UnadjustedAlignment
;
601 SmallVector
<uint64_t, 16> FieldOffsets
;
603 /// Whether the external AST source has provided a layout for this
605 unsigned UseExternalLayout
: 1;
607 /// Whether we need to infer alignment, even when we have an
608 /// externally-provided layout.
609 unsigned InferAlignment
: 1;
611 /// Packed - Whether the record is packed or not.
614 unsigned IsUnion
: 1;
616 unsigned IsMac68kAlign
: 1;
618 unsigned IsNaturalAlign
: 1;
620 unsigned IsMsStruct
: 1;
622 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623 /// this contains the number of bits in the last unit that can be used for
624 /// an adjacent bitfield if necessary. The unit in question is usually
625 /// a byte, but larger units are used if IsMsStruct.
626 unsigned char UnfilledBitsInLastUnit
;
628 /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629 /// storage unit of the previous field if it was a bitfield.
630 unsigned char LastBitfieldStorageUnitSize
;
632 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
634 CharUnits MaxFieldAlignment
;
636 /// DataSize - The data size of the record being laid out.
639 CharUnits NonVirtualSize
;
640 CharUnits NonVirtualAlignment
;
641 CharUnits PreferredNVAlignment
;
643 /// If we've laid out a field but not included its tail padding in Size yet,
644 /// this is the size up to the end of that field.
645 CharUnits PaddedFieldSize
;
647 /// PrimaryBase - the primary base class (if one exists) of the class
648 /// we're laying out.
649 const CXXRecordDecl
*PrimaryBase
;
651 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
653 bool PrimaryBaseIsVirtual
;
655 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656 /// pointer, as opposed to inheriting one from a primary base class.
659 /// the flag of field offset changing due to packed attribute.
662 /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663 /// When there are OverlappingEmptyFields existing in the aggregate, the
664 /// flag shows if the following first non-empty or empty-but-non-overlapping
665 /// field has been handled, if any.
666 bool HandledFirstNonOverlappingEmptyField
;
668 typedef llvm::DenseMap
<const CXXRecordDecl
*, CharUnits
> BaseOffsetsMapTy
;
670 /// Bases - base classes and their offsets in the record.
671 BaseOffsetsMapTy Bases
;
673 // VBases - virtual base classes and their offsets in the record.
674 ASTRecordLayout::VBaseOffsetsMapTy VBases
;
676 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677 /// primary base classes for some other direct or indirect base class.
678 CXXIndirectPrimaryBaseSet IndirectPrimaryBases
;
680 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681 /// inheritance graph order. Used for determining the primary base class.
682 const CXXRecordDecl
*FirstNearlyEmptyVBase
;
684 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685 /// avoid visiting virtual bases more than once.
686 llvm::SmallPtrSet
<const CXXRecordDecl
*, 4> VisitedVirtualBases
;
688 /// Valid if UseExternalLayout is true.
689 ExternalLayout External
;
691 ItaniumRecordLayoutBuilder(const ASTContext
&Context
,
692 EmptySubobjectMap
*EmptySubobjects
)
693 : Context(Context
), EmptySubobjects(EmptySubobjects
), Size(0),
694 Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695 UnpackedAlignment(CharUnits::One()),
696 UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697 InferAlignment(false), Packed(false), IsUnion(false),
698 IsMac68kAlign(false),
699 IsNaturalAlign(!Context
.getTargetInfo().getTriple().isOSAIX()),
700 IsMsStruct(false), UnfilledBitsInLastUnit(0),
701 LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702 DataSize(0), NonVirtualSize(CharUnits::Zero()),
703 NonVirtualAlignment(CharUnits::One()),
704 PreferredNVAlignment(CharUnits::One()),
705 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707 HandledFirstNonOverlappingEmptyField(false),
708 FirstNearlyEmptyVBase(nullptr) {}
710 void Layout(const RecordDecl
*D
);
711 void Layout(const CXXRecordDecl
*D
);
712 void Layout(const ObjCInterfaceDecl
*D
);
714 void LayoutFields(const RecordDecl
*D
);
715 void LayoutField(const FieldDecl
*D
, bool InsertExtraPadding
);
716 void LayoutWideBitField(uint64_t FieldSize
, uint64_t StorageUnitSize
,
717 bool FieldPacked
, const FieldDecl
*D
);
718 void LayoutBitField(const FieldDecl
*D
);
720 TargetCXXABI
getCXXABI() const {
721 return Context
.getTargetInfo().getCXXABI();
724 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725 llvm::SpecificBumpPtrAllocator
<BaseSubobjectInfo
> BaseSubobjectInfoAllocator
;
727 typedef llvm::DenseMap
<const CXXRecordDecl
*, BaseSubobjectInfo
*>
728 BaseSubobjectInfoMapTy
;
730 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731 /// of the class we're laying out to their base subobject info.
732 BaseSubobjectInfoMapTy VirtualBaseInfo
;
734 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735 /// class we're laying out to their base subobject info.
736 BaseSubobjectInfoMapTy NonVirtualBaseInfo
;
738 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739 /// bases of the given class.
740 void ComputeBaseSubobjectInfo(const CXXRecordDecl
*RD
);
742 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743 /// single class and all of its base classes.
744 BaseSubobjectInfo
*ComputeBaseSubobjectInfo(const CXXRecordDecl
*RD
,
746 BaseSubobjectInfo
*Derived
);
748 /// DeterminePrimaryBase - Determine the primary base of the given class.
749 void DeterminePrimaryBase(const CXXRecordDecl
*RD
);
751 void SelectPrimaryVBase(const CXXRecordDecl
*RD
);
753 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign
);
755 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757 void LayoutNonVirtualBases(const CXXRecordDecl
*RD
);
759 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760 void LayoutNonVirtualBase(const BaseSubobjectInfo
*Base
);
762 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo
*Info
,
765 /// LayoutVirtualBases - Lays out all the virtual bases.
766 void LayoutVirtualBases(const CXXRecordDecl
*RD
,
767 const CXXRecordDecl
*MostDerivedClass
);
769 /// LayoutVirtualBase - Lays out a single virtual base.
770 void LayoutVirtualBase(const BaseSubobjectInfo
*Base
);
772 /// LayoutBase - Will lay out a base and return the offset where it was
773 /// placed, in chars.
774 CharUnits
LayoutBase(const BaseSubobjectInfo
*Base
);
776 /// InitializeLayout - Initialize record layout for the given record decl.
777 void InitializeLayout(const Decl
*D
);
779 /// FinishLayout - Finalize record layout. Adjust record size based on the
781 void FinishLayout(const NamedDecl
*D
);
783 void UpdateAlignment(CharUnits NewAlignment
, CharUnits UnpackedNewAlignment
,
784 CharUnits PreferredAlignment
);
785 void UpdateAlignment(CharUnits NewAlignment
, CharUnits UnpackedNewAlignment
) {
786 UpdateAlignment(NewAlignment
, UnpackedNewAlignment
, NewAlignment
);
788 void UpdateAlignment(CharUnits NewAlignment
) {
789 UpdateAlignment(NewAlignment
, NewAlignment
, NewAlignment
);
792 /// Retrieve the externally-supplied field offset for the given
795 /// \param Field The field whose offset is being queried.
796 /// \param ComputedOffset The offset that we've computed for this field.
797 uint64_t updateExternalFieldOffset(const FieldDecl
*Field
,
798 uint64_t ComputedOffset
);
800 void CheckFieldPadding(uint64_t Offset
, uint64_t UnpaddedOffset
,
801 uint64_t UnpackedOffset
, unsigned UnpackedAlign
,
802 bool isPacked
, const FieldDecl
*D
);
804 DiagnosticBuilder
Diag(SourceLocation Loc
, unsigned DiagID
);
806 CharUnits
getSize() const {
807 assert(Size
% Context
.getCharWidth() == 0);
808 return Context
.toCharUnitsFromBits(Size
);
810 uint64_t getSizeInBits() const { return Size
; }
812 void setSize(CharUnits NewSize
) { Size
= Context
.toBits(NewSize
); }
813 void setSize(uint64_t NewSize
) { Size
= NewSize
; }
815 CharUnits
getAligment() const { return Alignment
; }
817 CharUnits
getDataSize() const {
818 assert(DataSize
% Context
.getCharWidth() == 0);
819 return Context
.toCharUnitsFromBits(DataSize
);
821 uint64_t getDataSizeInBits() const { return DataSize
; }
823 void setDataSize(CharUnits NewSize
) { DataSize
= Context
.toBits(NewSize
); }
824 void setDataSize(uint64_t NewSize
) { DataSize
= NewSize
; }
826 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder
&) = delete;
827 void operator=(const ItaniumRecordLayoutBuilder
&) = delete;
829 } // end anonymous namespace
831 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl
*RD
) {
832 for (const auto &I
: RD
->bases()) {
833 assert(!I
.getType()->isDependentType() &&
834 "Cannot layout class with dependent bases.");
836 const CXXRecordDecl
*Base
= I
.getType()->getAsCXXRecordDecl();
838 // Check if this is a nearly empty virtual base.
839 if (I
.isVirtual() && Context
.isNearlyEmpty(Base
)) {
840 // If it's not an indirect primary base, then we've found our primary
842 if (!IndirectPrimaryBases
.count(Base
)) {
844 PrimaryBaseIsVirtual
= true;
848 // Is this the first nearly empty virtual base?
849 if (!FirstNearlyEmptyVBase
)
850 FirstNearlyEmptyVBase
= Base
;
853 SelectPrimaryVBase(Base
);
859 /// DeterminePrimaryBase - Determine the primary base of the given class.
860 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl
*RD
) {
861 // If the class isn't dynamic, it won't have a primary base.
862 if (!RD
->isDynamicClass())
865 // Compute all the primary virtual bases for all of our direct and
866 // indirect bases, and record all their primary virtual base classes.
867 RD
->getIndirectPrimaryBases(IndirectPrimaryBases
);
869 // If the record has a dynamic base class, attempt to choose a primary base
870 // class. It is the first (in direct base class order) non-virtual dynamic
871 // base class, if one exists.
872 for (const auto &I
: RD
->bases()) {
873 // Ignore virtual bases.
877 const CXXRecordDecl
*Base
= I
.getType()->getAsCXXRecordDecl();
879 if (Base
->isDynamicClass()) {
882 PrimaryBaseIsVirtual
= false;
887 // Under the Itanium ABI, if there is no non-virtual primary base class,
888 // try to compute the primary virtual base. The primary virtual base is
889 // the first nearly empty virtual base that is not an indirect primary
890 // virtual base class, if one exists.
891 if (RD
->getNumVBases() != 0) {
892 SelectPrimaryVBase(RD
);
897 // Otherwise, it is the first indirect primary base class, if one exists.
898 if (FirstNearlyEmptyVBase
) {
899 PrimaryBase
= FirstNearlyEmptyVBase
;
900 PrimaryBaseIsVirtual
= true;
904 assert(!PrimaryBase
&& "Should not get here with a primary base!");
907 BaseSubobjectInfo
*ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908 const CXXRecordDecl
*RD
, bool IsVirtual
, BaseSubobjectInfo
*Derived
) {
909 BaseSubobjectInfo
*Info
;
912 // Check if we already have info about this virtual base.
913 BaseSubobjectInfo
*&InfoSlot
= VirtualBaseInfo
[RD
];
915 assert(InfoSlot
->Class
== RD
&& "Wrong class for virtual base info!");
919 // We don't, create it.
920 InfoSlot
= new (BaseSubobjectInfoAllocator
.Allocate()) BaseSubobjectInfo
;
923 Info
= new (BaseSubobjectInfoAllocator
.Allocate()) BaseSubobjectInfo
;
927 Info
->IsVirtual
= IsVirtual
;
928 Info
->Derived
= nullptr;
929 Info
->PrimaryVirtualBaseInfo
= nullptr;
931 const CXXRecordDecl
*PrimaryVirtualBase
= nullptr;
932 BaseSubobjectInfo
*PrimaryVirtualBaseInfo
= nullptr;
934 // Check if this base has a primary virtual base.
935 if (RD
->getNumVBases()) {
936 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
937 if (Layout
.isPrimaryBaseVirtual()) {
938 // This base does have a primary virtual base.
939 PrimaryVirtualBase
= Layout
.getPrimaryBase();
940 assert(PrimaryVirtualBase
&& "Didn't have a primary virtual base!");
942 // Now check if we have base subobject info about this primary base.
943 PrimaryVirtualBaseInfo
= VirtualBaseInfo
.lookup(PrimaryVirtualBase
);
945 if (PrimaryVirtualBaseInfo
) {
946 if (PrimaryVirtualBaseInfo
->Derived
) {
947 // We did have info about this primary base, and it turns out that it
948 // has already been claimed as a primary virtual base for another
950 PrimaryVirtualBase
= nullptr;
952 // We can claim this base as our primary base.
953 Info
->PrimaryVirtualBaseInfo
= PrimaryVirtualBaseInfo
;
954 PrimaryVirtualBaseInfo
->Derived
= Info
;
960 // Now go through all direct bases.
961 for (const auto &I
: RD
->bases()) {
962 bool IsVirtual
= I
.isVirtual();
964 const CXXRecordDecl
*BaseDecl
= I
.getType()->getAsCXXRecordDecl();
966 Info
->Bases
.push_back(ComputeBaseSubobjectInfo(BaseDecl
, IsVirtual
, Info
));
969 if (PrimaryVirtualBase
&& !PrimaryVirtualBaseInfo
) {
970 // Traversing the bases must have created the base info for our primary
972 PrimaryVirtualBaseInfo
= VirtualBaseInfo
.lookup(PrimaryVirtualBase
);
973 assert(PrimaryVirtualBaseInfo
&&
974 "Did not create a primary virtual base!");
976 // Claim the primary virtual base as our primary virtual base.
977 Info
->PrimaryVirtualBaseInfo
= PrimaryVirtualBaseInfo
;
978 PrimaryVirtualBaseInfo
->Derived
= Info
;
984 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985 const CXXRecordDecl
*RD
) {
986 for (const auto &I
: RD
->bases()) {
987 bool IsVirtual
= I
.isVirtual();
989 const CXXRecordDecl
*BaseDecl
= I
.getType()->getAsCXXRecordDecl();
991 // Compute the base subobject info for this base.
992 BaseSubobjectInfo
*Info
= ComputeBaseSubobjectInfo(BaseDecl
, IsVirtual
,
996 // ComputeBaseInfo has already added this base for us.
997 assert(VirtualBaseInfo
.count(BaseDecl
) &&
998 "Did not add virtual base!");
1000 // Add the base info to the map of non-virtual bases.
1001 assert(!NonVirtualBaseInfo
.count(BaseDecl
) &&
1002 "Non-virtual base already exists!");
1003 NonVirtualBaseInfo
.insert(std::make_pair(BaseDecl
, Info
));
1008 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009 CharUnits UnpackedBaseAlign
) {
1010 CharUnits BaseAlign
= Packed
? CharUnits::One() : UnpackedBaseAlign
;
1012 // The maximum field alignment overrides base align.
1013 if (!MaxFieldAlignment
.isZero()) {
1014 BaseAlign
= std::min(BaseAlign
, MaxFieldAlignment
);
1015 UnpackedBaseAlign
= std::min(UnpackedBaseAlign
, MaxFieldAlignment
);
1018 // Round up the current record size to pointer alignment.
1019 setSize(getSize().alignTo(BaseAlign
));
1021 // Update the alignment.
1022 UpdateAlignment(BaseAlign
, UnpackedBaseAlign
, BaseAlign
);
1025 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026 const CXXRecordDecl
*RD
) {
1027 // Then, determine the primary base class.
1028 DeterminePrimaryBase(RD
);
1030 // Compute base subobject info.
1031 ComputeBaseSubobjectInfo(RD
);
1033 // If we have a primary base class, lay it out.
1035 if (PrimaryBaseIsVirtual
) {
1036 // If the primary virtual base was a primary virtual base of some other
1037 // base class we'll have to steal it.
1038 BaseSubobjectInfo
*PrimaryBaseInfo
= VirtualBaseInfo
.lookup(PrimaryBase
);
1039 PrimaryBaseInfo
->Derived
= nullptr;
1041 // We have a virtual primary base, insert it as an indirect primary base.
1042 IndirectPrimaryBases
.insert(PrimaryBase
);
1044 assert(!VisitedVirtualBases
.count(PrimaryBase
) &&
1045 "vbase already visited!");
1046 VisitedVirtualBases
.insert(PrimaryBase
);
1048 LayoutVirtualBase(PrimaryBaseInfo
);
1050 BaseSubobjectInfo
*PrimaryBaseInfo
=
1051 NonVirtualBaseInfo
.lookup(PrimaryBase
);
1052 assert(PrimaryBaseInfo
&&
1053 "Did not find base info for non-virtual primary base!");
1055 LayoutNonVirtualBase(PrimaryBaseInfo
);
1058 // If this class needs a vtable/vf-table and didn't get one from a
1059 // primary base, add it in now.
1060 } else if (RD
->isDynamicClass()) {
1061 assert(DataSize
== 0 && "Vtable pointer must be at offset zero!");
1062 CharUnits PtrWidth
= Context
.toCharUnitsFromBits(
1063 Context
.getTargetInfo().getPointerWidth(LangAS::Default
));
1064 CharUnits PtrAlign
= Context
.toCharUnitsFromBits(
1065 Context
.getTargetInfo().getPointerAlign(LangAS::Default
));
1066 EnsureVTablePointerAlignment(PtrAlign
);
1069 assert(!IsUnion
&& "Unions cannot be dynamic classes.");
1070 HandledFirstNonOverlappingEmptyField
= true;
1072 setSize(getSize() + PtrWidth
);
1073 setDataSize(getSize());
1076 // Now lay out the non-virtual bases.
1077 for (const auto &I
: RD
->bases()) {
1079 // Ignore virtual bases.
1083 const CXXRecordDecl
*BaseDecl
= I
.getType()->getAsCXXRecordDecl();
1085 // Skip the primary base, because we've already laid it out. The
1086 // !PrimaryBaseIsVirtual check is required because we might have a
1087 // non-virtual base of the same type as a primary virtual base.
1088 if (BaseDecl
== PrimaryBase
&& !PrimaryBaseIsVirtual
)
1091 // Lay out the base.
1092 BaseSubobjectInfo
*BaseInfo
= NonVirtualBaseInfo
.lookup(BaseDecl
);
1093 assert(BaseInfo
&& "Did not find base info for non-virtual base!");
1095 LayoutNonVirtualBase(BaseInfo
);
1099 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100 const BaseSubobjectInfo
*Base
) {
1102 CharUnits Offset
= LayoutBase(Base
);
1104 // Add its base class offset.
1105 assert(!Bases
.count(Base
->Class
) && "base offset already exists!");
1106 Bases
.insert(std::make_pair(Base
->Class
, Offset
));
1108 AddPrimaryVirtualBaseOffsets(Base
, Offset
);
1111 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112 const BaseSubobjectInfo
*Info
, CharUnits Offset
) {
1113 // This base isn't interesting, it has no virtual bases.
1114 if (!Info
->Class
->getNumVBases())
1117 // First, check if we have a virtual primary base to add offsets for.
1118 if (Info
->PrimaryVirtualBaseInfo
) {
1119 assert(Info
->PrimaryVirtualBaseInfo
->IsVirtual
&&
1120 "Primary virtual base is not virtual!");
1121 if (Info
->PrimaryVirtualBaseInfo
->Derived
== Info
) {
1123 assert(!VBases
.count(Info
->PrimaryVirtualBaseInfo
->Class
) &&
1124 "primary vbase offset already exists!");
1125 VBases
.insert(std::make_pair(Info
->PrimaryVirtualBaseInfo
->Class
,
1126 ASTRecordLayout::VBaseInfo(Offset
, false)));
1128 // Traverse the primary virtual base.
1129 AddPrimaryVirtualBaseOffsets(Info
->PrimaryVirtualBaseInfo
, Offset
);
1133 // Now go through all direct non-virtual bases.
1134 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(Info
->Class
);
1135 for (const BaseSubobjectInfo
*Base
: Info
->Bases
) {
1136 if (Base
->IsVirtual
)
1139 CharUnits BaseOffset
= Offset
+ Layout
.getBaseClassOffset(Base
->Class
);
1140 AddPrimaryVirtualBaseOffsets(Base
, BaseOffset
);
1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145 const CXXRecordDecl
*RD
, const CXXRecordDecl
*MostDerivedClass
) {
1146 const CXXRecordDecl
*PrimaryBase
;
1147 bool PrimaryBaseIsVirtual
;
1149 if (MostDerivedClass
== RD
) {
1150 PrimaryBase
= this->PrimaryBase
;
1151 PrimaryBaseIsVirtual
= this->PrimaryBaseIsVirtual
;
1153 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
1154 PrimaryBase
= Layout
.getPrimaryBase();
1155 PrimaryBaseIsVirtual
= Layout
.isPrimaryBaseVirtual();
1158 for (const CXXBaseSpecifier
&Base
: RD
->bases()) {
1159 assert(!Base
.getType()->isDependentType() &&
1160 "Cannot layout class with dependent bases.");
1162 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
1164 if (Base
.isVirtual()) {
1165 if (PrimaryBase
!= BaseDecl
|| !PrimaryBaseIsVirtual
) {
1166 bool IndirectPrimaryBase
= IndirectPrimaryBases
.count(BaseDecl
);
1168 // Only lay out the virtual base if it's not an indirect primary base.
1169 if (!IndirectPrimaryBase
) {
1170 // Only visit virtual bases once.
1171 if (!VisitedVirtualBases
.insert(BaseDecl
).second
)
1174 const BaseSubobjectInfo
*BaseInfo
= VirtualBaseInfo
.lookup(BaseDecl
);
1175 assert(BaseInfo
&& "Did not find virtual base info!");
1176 LayoutVirtualBase(BaseInfo
);
1181 if (!BaseDecl
->getNumVBases()) {
1182 // This base isn't interesting since it doesn't have any virtual bases.
1186 LayoutVirtualBases(BaseDecl
, MostDerivedClass
);
1190 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191 const BaseSubobjectInfo
*Base
) {
1192 assert(!Base
->Derived
&& "Trying to lay out a primary virtual base!");
1195 CharUnits Offset
= LayoutBase(Base
);
1197 // Add its base class offset.
1198 assert(!VBases
.count(Base
->Class
) && "vbase offset already exists!");
1199 VBases
.insert(std::make_pair(Base
->Class
,
1200 ASTRecordLayout::VBaseInfo(Offset
, false)));
1202 AddPrimaryVirtualBaseOffsets(Base
, Offset
);
1206 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo
*Base
) {
1207 assert(!IsUnion
&& "Unions cannot have base classes.");
1209 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(Base
->Class
);
1212 // Query the external layout to see if it provides an offset.
1213 bool HasExternalLayout
= false;
1214 if (UseExternalLayout
) {
1215 if (Base
->IsVirtual
)
1216 HasExternalLayout
= External
.getExternalVBaseOffset(Base
->Class
, Offset
);
1218 HasExternalLayout
= External
.getExternalNVBaseOffset(Base
->Class
, Offset
);
1221 auto getBaseOrPreferredBaseAlignFromUnpacked
= [&](CharUnits UnpackedAlign
) {
1222 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223 // Per GCC's documentation, it only applies to non-static data members.
1224 return (Packed
&& ((Context
.getLangOpts().getClangABICompat() <=
1225 LangOptions::ClangABI::Ver6
) ||
1226 Context
.getTargetInfo().getTriple().isPS() ||
1227 Context
.getTargetInfo().getTriple().isOSAIX()))
1232 CharUnits UnpackedBaseAlign
= Layout
.getNonVirtualAlignment();
1233 CharUnits UnpackedPreferredBaseAlign
= Layout
.getPreferredNVAlignment();
1234 CharUnits BaseAlign
=
1235 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign
);
1236 CharUnits PreferredBaseAlign
=
1237 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign
);
1239 const bool DefaultsToAIXPowerAlignment
=
1240 Context
.getTargetInfo().defaultsToAIXPowerAlignment();
1241 if (DefaultsToAIXPowerAlignment
) {
1242 // AIX `power` alignment does not apply the preferred alignment for
1243 // non-union classes if the source of the alignment (the current base in
1244 // this context) follows introduction of the first subobject with
1245 // exclusively allocated space or zero-extent array.
1246 if (!Base
->Class
->isEmpty() && !HandledFirstNonOverlappingEmptyField
) {
1247 // By handling a base class that is not empty, we're handling the
1248 // "first (inherited) member".
1249 HandledFirstNonOverlappingEmptyField
= true;
1250 } else if (!IsNaturalAlign
) {
1251 UnpackedPreferredBaseAlign
= UnpackedBaseAlign
;
1252 PreferredBaseAlign
= BaseAlign
;
1256 CharUnits UnpackedAlignTo
= !DefaultsToAIXPowerAlignment
1258 : UnpackedPreferredBaseAlign
;
1259 // If we have an empty base class, try to place it at offset 0.
1260 if (Base
->Class
->isEmpty() &&
1261 (!HasExternalLayout
|| Offset
== CharUnits::Zero()) &&
1262 EmptySubobjects
->CanPlaceBaseAtOffset(Base
, CharUnits::Zero())) {
1263 setSize(std::max(getSize(), Layout
.getSize()));
1264 // On PS4/PS5, don't update the alignment, to preserve compatibility.
1265 if (!Context
.getTargetInfo().getTriple().isPS())
1266 UpdateAlignment(BaseAlign
, UnpackedAlignTo
, PreferredBaseAlign
);
1268 return CharUnits::Zero();
1271 // The maximum field alignment overrides the base align/(AIX-only) preferred
1273 if (!MaxFieldAlignment
.isZero()) {
1274 BaseAlign
= std::min(BaseAlign
, MaxFieldAlignment
);
1275 PreferredBaseAlign
= std::min(PreferredBaseAlign
, MaxFieldAlignment
);
1276 UnpackedAlignTo
= std::min(UnpackedAlignTo
, MaxFieldAlignment
);
1280 !DefaultsToAIXPowerAlignment
? BaseAlign
: PreferredBaseAlign
;
1281 if (!HasExternalLayout
) {
1282 // Round up the current record size to the base's alignment boundary.
1283 Offset
= getDataSize().alignTo(AlignTo
);
1285 // Try to place the base.
1286 while (!EmptySubobjects
->CanPlaceBaseAtOffset(Base
, Offset
))
1289 bool Allowed
= EmptySubobjects
->CanPlaceBaseAtOffset(Base
, Offset
);
1291 assert(Allowed
&& "Base subobject externally placed at overlapping offset");
1293 if (InferAlignment
&& Offset
< getDataSize().alignTo(AlignTo
)) {
1294 // The externally-supplied base offset is before the base offset we
1295 // computed. Assume that the structure is packed.
1296 Alignment
= CharUnits::One();
1297 InferAlignment
= false;
1301 if (!Base
->Class
->isEmpty()) {
1302 // Update the data size.
1303 setDataSize(Offset
+ Layout
.getNonVirtualSize());
1305 setSize(std::max(getSize(), getDataSize()));
1307 setSize(std::max(getSize(), Offset
+ Layout
.getSize()));
1309 // Remember max struct/class alignment.
1310 UpdateAlignment(BaseAlign
, UnpackedAlignTo
, PreferredBaseAlign
);
1315 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl
*D
) {
1316 if (const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(D
)) {
1317 IsUnion
= RD
->isUnion();
1318 IsMsStruct
= RD
->isMsStruct(Context
);
1321 Packed
= D
->hasAttr
<PackedAttr
>();
1323 // Honor the default struct packing maximum alignment flag.
1324 if (unsigned DefaultMaxFieldAlignment
= Context
.getLangOpts().PackStruct
) {
1325 MaxFieldAlignment
= CharUnits::fromQuantity(DefaultMaxFieldAlignment
);
1328 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1329 // and forces all structures to have 2-byte alignment. The IBM docs on it
1330 // allude to additional (more complicated) semantics, especially with regard
1331 // to bit-fields, but gcc appears not to follow that.
1332 if (D
->hasAttr
<AlignMac68kAttr
>()) {
1334 !D
->hasAttr
<AlignNaturalAttr
>() &&
1335 "Having both mac68k and natural alignment on a decl is not allowed.");
1336 IsMac68kAlign
= true;
1337 MaxFieldAlignment
= CharUnits::fromQuantity(2);
1338 Alignment
= CharUnits::fromQuantity(2);
1339 PreferredAlignment
= CharUnits::fromQuantity(2);
1341 if (D
->hasAttr
<AlignNaturalAttr
>())
1342 IsNaturalAlign
= true;
1344 if (const MaxFieldAlignmentAttr
*MFAA
= D
->getAttr
<MaxFieldAlignmentAttr
>())
1345 MaxFieldAlignment
= Context
.toCharUnitsFromBits(MFAA
->getAlignment());
1347 if (unsigned MaxAlign
= D
->getMaxAlignment())
1348 UpdateAlignment(Context
.toCharUnitsFromBits(MaxAlign
));
1351 HandledFirstNonOverlappingEmptyField
=
1352 !Context
.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign
;
1354 // If there is an external AST source, ask it for the various offsets.
1355 if (const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(D
))
1356 if (ExternalASTSource
*Source
= Context
.getExternalSource()) {
1357 UseExternalLayout
= Source
->layoutRecordType(
1358 RD
, External
.Size
, External
.Align
, External
.FieldOffsets
,
1359 External
.BaseOffsets
, External
.VirtualBaseOffsets
);
1361 // Update based on external alignment.
1362 if (UseExternalLayout
) {
1363 if (External
.Align
> 0) {
1364 Alignment
= Context
.toCharUnitsFromBits(External
.Align
);
1365 PreferredAlignment
= Context
.toCharUnitsFromBits(External
.Align
);
1367 // The external source didn't have alignment information; infer it.
1368 InferAlignment
= true;
1374 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl
*D
) {
1375 InitializeLayout(D
);
1378 // Finally, round the size of the total struct up to the alignment of the
1383 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl
*RD
) {
1384 InitializeLayout(RD
);
1386 // Lay out the vtable and the non-virtual bases.
1387 LayoutNonVirtualBases(RD
);
1391 NonVirtualSize
= Context
.toCharUnitsFromBits(
1392 llvm::alignTo(getSizeInBits(), Context
.getTargetInfo().getCharAlign()));
1393 NonVirtualAlignment
= Alignment
;
1394 PreferredNVAlignment
= PreferredAlignment
;
1396 // Lay out the virtual bases and add the primary virtual base offsets.
1397 LayoutVirtualBases(RD
, RD
);
1399 // Finally, round the size of the total struct up to the alignment
1400 // of the struct itself.
1404 // Check that we have base offsets for all bases.
1405 for (const CXXBaseSpecifier
&Base
: RD
->bases()) {
1406 if (Base
.isVirtual())
1409 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
1411 assert(Bases
.count(BaseDecl
) && "Did not find base offset!");
1414 // And all virtual bases.
1415 for (const CXXBaseSpecifier
&Base
: RD
->vbases()) {
1416 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
1418 assert(VBases
.count(BaseDecl
) && "Did not find base offset!");
1423 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl
*D
) {
1424 if (ObjCInterfaceDecl
*SD
= D
->getSuperClass()) {
1425 const ASTRecordLayout
&SL
= Context
.getASTObjCInterfaceLayout(SD
);
1427 UpdateAlignment(SL
.getAlignment());
1429 // We start laying out ivars not at the end of the superclass
1430 // structure, but at the next byte following the last field.
1431 setDataSize(SL
.getDataSize());
1432 setSize(getDataSize());
1435 InitializeLayout(D
);
1436 // Layout each ivar sequentially.
1437 for (const ObjCIvarDecl
*IVD
= D
->all_declared_ivar_begin(); IVD
;
1438 IVD
= IVD
->getNextIvar())
1439 LayoutField(IVD
, false);
1441 // Finally, round the size of the total struct up to the alignment of the
1446 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl
*D
) {
1447 // Layout each field, for now, just sequentially, respecting alignment. In
1448 // the future, this will need to be tweakable by targets.
1449 bool InsertExtraPadding
= D
->mayInsertExtraPadding(/*EmitRemark=*/true);
1450 bool HasFlexibleArrayMember
= D
->hasFlexibleArrayMember();
1451 for (auto I
= D
->field_begin(), End
= D
->field_end(); I
!= End
; ++I
) {
1455 InsertExtraPadding
&& (Next
!= End
|| !HasFlexibleArrayMember
));
1459 // Rounds the specified size to have it a multiple of the char size.
1461 roundUpSizeToCharAlignment(uint64_t Size
,
1462 const ASTContext
&Context
) {
1463 uint64_t CharAlignment
= Context
.getTargetInfo().getCharAlign();
1464 return llvm::alignTo(Size
, CharAlignment
);
1467 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize
,
1468 uint64_t StorageUnitSize
,
1470 const FieldDecl
*D
) {
1471 assert(Context
.getLangOpts().CPlusPlus
&&
1472 "Can only have wide bit-fields in C++!");
1474 // Itanium C++ ABI 2.4:
1475 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1476 // sizeof(T')*8 <= n.
1478 QualType IntegralPODTypes
[] = {
1479 Context
.UnsignedCharTy
, Context
.UnsignedShortTy
, Context
.UnsignedIntTy
,
1480 Context
.UnsignedLongTy
, Context
.UnsignedLongLongTy
1484 for (const QualType
&QT
: IntegralPODTypes
) {
1485 uint64_t Size
= Context
.getTypeSize(QT
);
1487 if (Size
> FieldSize
)
1492 assert(!Type
.isNull() && "Did not find a type!");
1494 CharUnits TypeAlign
= Context
.getTypeAlignInChars(Type
);
1496 // We're not going to use any of the unfilled bits in the last byte.
1497 UnfilledBitsInLastUnit
= 0;
1498 LastBitfieldStorageUnitSize
= 0;
1500 uint64_t FieldOffset
;
1501 uint64_t UnpaddedFieldOffset
= getDataSizeInBits() - UnfilledBitsInLastUnit
;
1504 uint64_t RoundedFieldSize
= roundUpSizeToCharAlignment(FieldSize
,
1506 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize
));
1509 // The bitfield is allocated starting at the next offset aligned
1510 // appropriately for T', with length n bits.
1511 FieldOffset
= llvm::alignTo(getDataSizeInBits(), Context
.toBits(TypeAlign
));
1513 uint64_t NewSizeInBits
= FieldOffset
+ FieldSize
;
1516 llvm::alignTo(NewSizeInBits
, Context
.getTargetInfo().getCharAlign()));
1517 UnfilledBitsInLastUnit
= getDataSizeInBits() - NewSizeInBits
;
1520 // Place this field at the current location.
1521 FieldOffsets
.push_back(FieldOffset
);
1523 CheckFieldPadding(FieldOffset
, UnpaddedFieldOffset
, FieldOffset
,
1524 Context
.toBits(TypeAlign
), FieldPacked
, D
);
1527 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1529 // Remember max struct/class alignment.
1530 UpdateAlignment(TypeAlign
);
1533 static bool isAIXLayout(const ASTContext
&Context
) {
1534 return Context
.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX
;
1537 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl
*D
) {
1538 bool FieldPacked
= Packed
|| D
->hasAttr
<PackedAttr
>();
1539 uint64_t FieldSize
= D
->getBitWidthValue(Context
);
1540 TypeInfo FieldInfo
= Context
.getTypeInfo(D
->getType());
1541 uint64_t StorageUnitSize
= FieldInfo
.Width
;
1542 unsigned FieldAlign
= FieldInfo
.Align
;
1543 bool AlignIsRequired
= FieldInfo
.isAlignRequired();
1545 // UnfilledBitsInLastUnit is the difference between the end of the
1546 // last allocated bitfield (i.e. the first bit offset available for
1547 // bitfields) and the end of the current data size in bits (i.e. the
1548 // first bit offset available for non-bitfields). The current data
1549 // size in bits is always a multiple of the char size; additionally,
1550 // for ms_struct records it's also a multiple of the
1551 // LastBitfieldStorageUnitSize (if set).
1553 // The struct-layout algorithm is dictated by the platform ABI,
1554 // which in principle could use almost any rules it likes. In
1555 // practice, UNIXy targets tend to inherit the algorithm described
1556 // in the System V generic ABI. The basic bitfield layout rule in
1557 // System V is to place bitfields at the next available bit offset
1558 // where the entire bitfield would fit in an aligned storage unit of
1559 // the declared type; it's okay if an earlier or later non-bitfield
1560 // is allocated in the same storage unit. However, some targets
1561 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1562 // require this storage unit to be aligned, and therefore always put
1563 // the bitfield at the next available bit offset.
1565 // ms_struct basically requests a complete replacement of the
1566 // platform ABI's struct-layout algorithm, with the high-level goal
1567 // of duplicating MSVC's layout. For non-bitfields, this follows
1568 // the standard algorithm. The basic bitfield layout rule is to
1569 // allocate an entire unit of the bitfield's declared type
1570 // (e.g. 'unsigned long'), then parcel it up among successive
1571 // bitfields whose declared types have the same size, making a new
1572 // unit as soon as the last can no longer store the whole value.
1573 // Since it completely replaces the platform ABI's algorithm,
1574 // settings like !useBitFieldTypeAlignment() do not apply.
1576 // A zero-width bitfield forces the use of a new storage unit for
1577 // later bitfields. In general, this occurs by rounding up the
1578 // current size of the struct as if the algorithm were about to
1579 // place a non-bitfield of the field's formal type. Usually this
1580 // does not change the alignment of the struct itself, but it does
1581 // on some targets (those that useZeroLengthBitfieldAlignment(),
1582 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1583 // ignored unless they follow a non-zero-width bitfield.
1585 // A field alignment restriction (e.g. from #pragma pack) or
1586 // specification (e.g. from __attribute__((aligned))) changes the
1587 // formal alignment of the field. For System V, this alters the
1588 // required alignment of the notional storage unit that must contain
1589 // the bitfield. For ms_struct, this only affects the placement of
1590 // new storage units. In both cases, the effect of #pragma pack is
1591 // ignored on zero-width bitfields.
1593 // On System V, a packed field (e.g. from #pragma pack or
1594 // __attribute__((packed))) always uses the next available bit
1597 // In an ms_struct struct, the alignment of a fundamental type is
1598 // always equal to its size. This is necessary in order to mimic
1599 // the i386 alignment rules on targets which might not fully align
1600 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1602 // First, some simple bookkeeping to perform for ms_struct structs.
1604 // The field alignment for integer types is always the size.
1605 FieldAlign
= StorageUnitSize
;
1607 // If the previous field was not a bitfield, or was a bitfield
1608 // with a different storage unit size, or if this field doesn't fit into
1609 // the current storage unit, we're done with that storage unit.
1610 if (LastBitfieldStorageUnitSize
!= StorageUnitSize
||
1611 UnfilledBitsInLastUnit
< FieldSize
) {
1612 // Also, ignore zero-length bitfields after non-bitfields.
1613 if (!LastBitfieldStorageUnitSize
&& !FieldSize
)
1616 UnfilledBitsInLastUnit
= 0;
1617 LastBitfieldStorageUnitSize
= 0;
1621 if (isAIXLayout(Context
)) {
1622 if (StorageUnitSize
< Context
.getTypeSize(Context
.UnsignedIntTy
)) {
1623 // On AIX, [bool, char, short] bitfields have the same alignment
1625 StorageUnitSize
= Context
.getTypeSize(Context
.UnsignedIntTy
);
1626 } else if (StorageUnitSize
> Context
.getTypeSize(Context
.UnsignedIntTy
) &&
1627 Context
.getTargetInfo().getTriple().isArch32Bit() &&
1629 // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1630 // long long bitfield has length no greater than 32 bits.
1631 StorageUnitSize
= 32;
1633 if (!AlignIsRequired
)
1637 if (FieldAlign
< StorageUnitSize
) {
1638 // The bitfield alignment should always be greater than or equal to
1639 // bitcontainer size.
1640 FieldAlign
= StorageUnitSize
;
1644 // If the field is wider than its declared type, it follows
1645 // different rules in all cases, except on AIX.
1646 // On AIX, wide bitfield follows the same rules as normal bitfield.
1647 if (FieldSize
> StorageUnitSize
&& !isAIXLayout(Context
)) {
1648 LayoutWideBitField(FieldSize
, StorageUnitSize
, FieldPacked
, D
);
1652 // Compute the next available bit offset.
1653 uint64_t FieldOffset
=
1654 IsUnion
? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit
);
1656 // Handle targets that don't honor bitfield type alignment.
1657 if (!IsMsStruct
&& !Context
.getTargetInfo().useBitFieldTypeAlignment()) {
1658 // Some such targets do honor it on zero-width bitfields.
1659 if (FieldSize
== 0 &&
1660 Context
.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1661 // Some targets don't honor leading zero-width bitfield.
1662 if (!IsUnion
&& FieldOffset
== 0 &&
1663 !Context
.getTargetInfo().useLeadingZeroLengthBitfield())
1666 // The alignment to round up to is the max of the field's natural
1667 // alignment and a target-specific fixed value (sometimes zero).
1668 unsigned ZeroLengthBitfieldBoundary
=
1669 Context
.getTargetInfo().getZeroLengthBitfieldBoundary();
1670 FieldAlign
= std::max(FieldAlign
, ZeroLengthBitfieldBoundary
);
1672 // If that doesn't apply, just ignore the field alignment.
1678 // Remember the alignment we would have used if the field were not packed.
1679 unsigned UnpackedFieldAlign
= FieldAlign
;
1681 // Ignore the field alignment if the field is packed unless it has zero-size.
1682 if (!IsMsStruct
&& FieldPacked
&& FieldSize
!= 0)
1685 // But, if there's an 'aligned' attribute on the field, honor that.
1686 unsigned ExplicitFieldAlign
= D
->getMaxAlignment();
1687 if (ExplicitFieldAlign
) {
1688 FieldAlign
= std::max(FieldAlign
, ExplicitFieldAlign
);
1689 UnpackedFieldAlign
= std::max(UnpackedFieldAlign
, ExplicitFieldAlign
);
1692 // But, if there's a #pragma pack in play, that takes precedent over
1693 // even the 'aligned' attribute, for non-zero-width bitfields.
1694 unsigned MaxFieldAlignmentInBits
= Context
.toBits(MaxFieldAlignment
);
1695 if (!MaxFieldAlignment
.isZero() && FieldSize
) {
1696 UnpackedFieldAlign
= std::min(UnpackedFieldAlign
, MaxFieldAlignmentInBits
);
1698 FieldAlign
= UnpackedFieldAlign
;
1700 FieldAlign
= std::min(FieldAlign
, MaxFieldAlignmentInBits
);
1703 // But, ms_struct just ignores all of that in unions, even explicit
1704 // alignment attributes.
1705 if (IsMsStruct
&& IsUnion
) {
1706 FieldAlign
= UnpackedFieldAlign
= 1;
1709 // For purposes of diagnostics, we're going to simultaneously
1710 // compute the field offsets that we would have used if we weren't
1711 // adding any alignment padding or if the field weren't packed.
1712 uint64_t UnpaddedFieldOffset
= FieldOffset
;
1713 uint64_t UnpackedFieldOffset
= FieldOffset
;
1715 // Check if we need to add padding to fit the bitfield within an
1716 // allocation unit with the right size and alignment. The rules are
1717 // somewhat different here for ms_struct structs.
1719 // If it's not a zero-width bitfield, and we can fit the bitfield
1720 // into the active storage unit (and we haven't already decided to
1721 // start a new storage unit), just do so, regardless of any other
1722 // other consideration. Otherwise, round up to the right alignment.
1723 if (FieldSize
== 0 || FieldSize
> UnfilledBitsInLastUnit
) {
1724 FieldOffset
= llvm::alignTo(FieldOffset
, FieldAlign
);
1725 UnpackedFieldOffset
=
1726 llvm::alignTo(UnpackedFieldOffset
, UnpackedFieldAlign
);
1727 UnfilledBitsInLastUnit
= 0;
1731 // #pragma pack, with any value, suppresses the insertion of padding.
1732 bool AllowPadding
= MaxFieldAlignment
.isZero();
1734 // Compute the real offset.
1735 if (FieldSize
== 0 ||
1737 (FieldOffset
& (FieldAlign
- 1)) + FieldSize
> StorageUnitSize
)) {
1738 FieldOffset
= llvm::alignTo(FieldOffset
, FieldAlign
);
1739 } else if (ExplicitFieldAlign
&&
1740 (MaxFieldAlignmentInBits
== 0 ||
1741 ExplicitFieldAlign
<= MaxFieldAlignmentInBits
) &&
1742 Context
.getTargetInfo().useExplicitBitFieldAlignment()) {
1743 // TODO: figure it out what needs to be done on targets that don't honor
1744 // bit-field type alignment like ARM APCS ABI.
1745 FieldOffset
= llvm::alignTo(FieldOffset
, ExplicitFieldAlign
);
1748 // Repeat the computation for diagnostic purposes.
1749 if (FieldSize
== 0 ||
1751 (UnpackedFieldOffset
& (UnpackedFieldAlign
- 1)) + FieldSize
>
1753 UnpackedFieldOffset
=
1754 llvm::alignTo(UnpackedFieldOffset
, UnpackedFieldAlign
);
1755 else if (ExplicitFieldAlign
&&
1756 (MaxFieldAlignmentInBits
== 0 ||
1757 ExplicitFieldAlign
<= MaxFieldAlignmentInBits
) &&
1758 Context
.getTargetInfo().useExplicitBitFieldAlignment())
1759 UnpackedFieldOffset
=
1760 llvm::alignTo(UnpackedFieldOffset
, ExplicitFieldAlign
);
1763 // If we're using external layout, give the external layout a chance
1764 // to override this information.
1765 if (UseExternalLayout
)
1766 FieldOffset
= updateExternalFieldOffset(D
, FieldOffset
);
1768 // Okay, place the bitfield at the calculated offset.
1769 FieldOffsets
.push_back(FieldOffset
);
1773 // Anonymous members don't affect the overall record alignment,
1774 // except on targets where they do.
1776 !Context
.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1777 !D
->getIdentifier())
1778 FieldAlign
= UnpackedFieldAlign
= 1;
1780 // On AIX, zero-width bitfields pad out to the natural alignment boundary,
1781 // but do not increase the alignment greater than the MaxFieldAlignment, or 1
1783 if (isAIXLayout(Context
) && !FieldSize
) {
1786 if (!MaxFieldAlignment
.isZero()) {
1787 UnpackedFieldAlign
=
1788 std::min(UnpackedFieldAlign
, MaxFieldAlignmentInBits
);
1789 FieldAlign
= std::min(FieldAlign
, MaxFieldAlignmentInBits
);
1793 // Diagnose differences in layout due to padding or packing.
1794 if (!UseExternalLayout
)
1795 CheckFieldPadding(FieldOffset
, UnpaddedFieldOffset
, UnpackedFieldOffset
,
1796 UnpackedFieldAlign
, FieldPacked
, D
);
1798 // Update DataSize to include the last byte containing (part of) the bitfield.
1800 // For unions, this is just a max operation, as usual.
1802 // For ms_struct, allocate the entire storage unit --- unless this
1803 // is a zero-width bitfield, in which case just use a size of 1.
1804 uint64_t RoundedFieldSize
;
1806 RoundedFieldSize
= (FieldSize
? StorageUnitSize
1807 : Context
.getTargetInfo().getCharWidth());
1809 // Otherwise, allocate just the number of bytes required to store
1812 RoundedFieldSize
= roundUpSizeToCharAlignment(FieldSize
, Context
);
1814 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize
));
1816 // For non-zero-width bitfields in ms_struct structs, allocate a new
1817 // storage unit if necessary.
1818 } else if (IsMsStruct
&& FieldSize
) {
1819 // We should have cleared UnfilledBitsInLastUnit in every case
1820 // where we changed storage units.
1821 if (!UnfilledBitsInLastUnit
) {
1822 setDataSize(FieldOffset
+ StorageUnitSize
);
1823 UnfilledBitsInLastUnit
= StorageUnitSize
;
1825 UnfilledBitsInLastUnit
-= FieldSize
;
1826 LastBitfieldStorageUnitSize
= StorageUnitSize
;
1828 // Otherwise, bump the data size up to include the bitfield,
1829 // including padding up to char alignment, and then remember how
1830 // bits we didn't use.
1832 uint64_t NewSizeInBits
= FieldOffset
+ FieldSize
;
1833 uint64_t CharAlignment
= Context
.getTargetInfo().getCharAlign();
1834 setDataSize(llvm::alignTo(NewSizeInBits
, CharAlignment
));
1835 UnfilledBitsInLastUnit
= getDataSizeInBits() - NewSizeInBits
;
1837 // The only time we can get here for an ms_struct is if this is a
1838 // zero-width bitfield, which doesn't count as anything for the
1839 // purposes of unfilled bits.
1840 LastBitfieldStorageUnitSize
= 0;
1844 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1846 // Remember max struct/class alignment.
1847 UnadjustedAlignment
=
1848 std::max(UnadjustedAlignment
, Context
.toCharUnitsFromBits(FieldAlign
));
1849 UpdateAlignment(Context
.toCharUnitsFromBits(FieldAlign
),
1850 Context
.toCharUnitsFromBits(UnpackedFieldAlign
));
1853 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl
*D
,
1854 bool InsertExtraPadding
) {
1855 auto *FieldClass
= D
->getType()->getAsCXXRecordDecl();
1856 bool PotentiallyOverlapping
= D
->hasAttr
<NoUniqueAddressAttr
>() && FieldClass
;
1857 bool IsOverlappingEmptyField
=
1858 PotentiallyOverlapping
&& FieldClass
->isEmpty();
1860 CharUnits FieldOffset
=
1861 (IsUnion
|| IsOverlappingEmptyField
) ? CharUnits::Zero() : getDataSize();
1863 const bool DefaultsToAIXPowerAlignment
=
1864 Context
.getTargetInfo().defaultsToAIXPowerAlignment();
1865 bool FoundFirstNonOverlappingEmptyFieldForAIX
= false;
1866 if (DefaultsToAIXPowerAlignment
&& !HandledFirstNonOverlappingEmptyField
) {
1867 assert(FieldOffset
== CharUnits::Zero() &&
1868 "The first non-overlapping empty field should have been handled.");
1870 if (!IsOverlappingEmptyField
) {
1871 FoundFirstNonOverlappingEmptyFieldForAIX
= true;
1873 // We're going to handle the "first member" based on
1874 // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1875 // invocation of this function; record it as handled for future
1876 // invocations (except for unions, because the current field does not
1877 // represent all "firsts").
1878 HandledFirstNonOverlappingEmptyField
= !IsUnion
;
1882 if (D
->isBitField()) {
1887 uint64_t UnpaddedFieldOffset
= getDataSizeInBits() - UnfilledBitsInLastUnit
;
1888 // Reset the unfilled bits.
1889 UnfilledBitsInLastUnit
= 0;
1890 LastBitfieldStorageUnitSize
= 0;
1892 llvm::Triple Target
= Context
.getTargetInfo().getTriple();
1894 AlignRequirementKind AlignRequirement
= AlignRequirementKind::None
;
1895 CharUnits FieldSize
;
1896 CharUnits FieldAlign
;
1897 // The amount of this class's dsize occupied by the field.
1898 // This is equal to FieldSize unless we're permitted to pack
1899 // into the field's tail padding.
1900 CharUnits EffectiveFieldSize
;
1902 auto setDeclInfo
= [&](bool IsIncompleteArrayType
) {
1903 auto TI
= Context
.getTypeInfoInChars(D
->getType());
1904 FieldAlign
= TI
.Align
;
1905 // Flexible array members don't have any size, but they have to be
1906 // aligned appropriately for their element type.
1907 EffectiveFieldSize
= FieldSize
=
1908 IsIncompleteArrayType
? CharUnits::Zero() : TI
.Width
;
1909 AlignRequirement
= TI
.AlignRequirement
;
1912 if (D
->getType()->isIncompleteArrayType()) {
1913 setDeclInfo(true /* IsIncompleteArrayType */);
1915 setDeclInfo(false /* IsIncompleteArrayType */);
1917 // A potentially-overlapping field occupies its dsize or nvsize, whichever
1919 if (PotentiallyOverlapping
) {
1920 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(FieldClass
);
1921 EffectiveFieldSize
=
1922 std::max(Layout
.getNonVirtualSize(), Layout
.getDataSize());
1926 // If MS bitfield layout is required, figure out what type is being
1927 // laid out and align the field to the width of that type.
1929 // Resolve all typedefs down to their base type and round up the field
1930 // alignment if necessary.
1931 QualType T
= Context
.getBaseElementType(D
->getType());
1932 if (const BuiltinType
*BTy
= T
->getAs
<BuiltinType
>()) {
1933 CharUnits TypeSize
= Context
.getTypeSizeInChars(BTy
);
1935 if (!llvm::isPowerOf2_64(TypeSize
.getQuantity())) {
1937 !Context
.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1938 "Non PowerOf2 size in MSVC mode");
1939 // Base types with sizes that aren't a power of two don't work
1940 // with the layout rules for MS structs. This isn't an issue in
1941 // MSVC itself since there are no such base data types there.
1942 // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1943 // Any structs involving that data type obviously can't be ABI
1944 // compatible with MSVC regardless of how it is laid out.
1946 // Since ms_struct can be mass enabled (via a pragma or via the
1947 // -mms-bitfields command line parameter), this can trigger for
1948 // structs that don't actually need MSVC compatibility, so we
1949 // need to be able to sidestep the ms_struct layout for these types.
1951 // Since the combination of -mms-bitfields together with structs
1952 // like max_align_t (which contains a long double) for mingw is
1953 // quite common (and GCC handles it silently), just handle it
1954 // silently there. For other targets that have ms_struct enabled
1955 // (most probably via a pragma or attribute), trigger a diagnostic
1956 // that defaults to an error.
1957 if (!Context
.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1958 Diag(D
->getLocation(), diag::warn_npot_ms_struct
);
1960 if (TypeSize
> FieldAlign
&&
1961 llvm::isPowerOf2_64(TypeSize
.getQuantity()))
1962 FieldAlign
= TypeSize
;
1967 bool FieldPacked
= (Packed
&& (!FieldClass
|| FieldClass
->isPOD() ||
1968 FieldClass
->hasAttr
<PackedAttr
>() ||
1969 Context
.getLangOpts().getClangABICompat() <=
1970 LangOptions::ClangABI::Ver15
||
1971 Target
.isPS() || Target
.isOSDarwin() ||
1972 Target
.isOSAIX())) ||
1973 D
->hasAttr
<PackedAttr
>();
1975 // When used as part of a typedef, or together with a 'packed' attribute, the
1976 // 'aligned' attribute can be used to decrease alignment. In that case, it
1977 // overrides any computed alignment we have, and there is no need to upgrade
1979 auto alignedAttrCanDecreaseAIXAlignment
= [AlignRequirement
, FieldPacked
] {
1980 // Enum alignment sources can be safely ignored here, because this only
1981 // helps decide whether we need the AIX alignment upgrade, which only
1982 // applies to floating-point types.
1983 return AlignRequirement
== AlignRequirementKind::RequiredByTypedef
||
1984 (AlignRequirement
== AlignRequirementKind::RequiredByRecord
&&
1988 // The AIX `power` alignment rules apply the natural alignment of the
1989 // "first member" if it is of a floating-point data type (or is an aggregate
1990 // whose recursively "first" member or element is such a type). The alignment
1991 // associated with these types for subsequent members use an alignment value
1992 // where the floating-point data type is considered to have 4-byte alignment.
1994 // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1995 // and zero-width bit-fields count as prior members; members of empty class
1996 // types marked `no_unique_address` are not considered to be prior members.
1997 CharUnits PreferredAlign
= FieldAlign
;
1998 if (DefaultsToAIXPowerAlignment
&& !alignedAttrCanDecreaseAIXAlignment() &&
1999 (FoundFirstNonOverlappingEmptyFieldForAIX
|| IsNaturalAlign
)) {
2000 auto performBuiltinTypeAlignmentUpgrade
= [&](const BuiltinType
*BTy
) {
2001 if (BTy
->getKind() == BuiltinType::Double
||
2002 BTy
->getKind() == BuiltinType::LongDouble
) {
2003 assert(PreferredAlign
== CharUnits::fromQuantity(4) &&
2004 "No need to upgrade the alignment value.");
2005 PreferredAlign
= CharUnits::fromQuantity(8);
2009 const Type
*BaseTy
= D
->getType()->getBaseElementTypeUnsafe();
2010 if (const ComplexType
*CTy
= BaseTy
->getAs
<ComplexType
>()) {
2011 performBuiltinTypeAlignmentUpgrade(
2012 CTy
->getElementType()->castAs
<BuiltinType
>());
2013 } else if (const BuiltinType
*BTy
= BaseTy
->getAs
<BuiltinType
>()) {
2014 performBuiltinTypeAlignmentUpgrade(BTy
);
2015 } else if (const RecordType
*RT
= BaseTy
->getAs
<RecordType
>()) {
2016 const RecordDecl
*RD
= RT
->getDecl();
2017 assert(RD
&& "Expected non-null RecordDecl.");
2018 const ASTRecordLayout
&FieldRecord
= Context
.getASTRecordLayout(RD
);
2019 PreferredAlign
= FieldRecord
.getPreferredAlignment();
2023 // The align if the field is not packed. This is to check if the attribute
2024 // was unnecessary (-Wpacked).
2025 CharUnits UnpackedFieldAlign
= FieldAlign
;
2026 CharUnits PackedFieldAlign
= CharUnits::One();
2027 CharUnits UnpackedFieldOffset
= FieldOffset
;
2028 CharUnits OriginalFieldAlign
= UnpackedFieldAlign
;
2030 CharUnits MaxAlignmentInChars
=
2031 Context
.toCharUnitsFromBits(D
->getMaxAlignment());
2032 PackedFieldAlign
= std::max(PackedFieldAlign
, MaxAlignmentInChars
);
2033 PreferredAlign
= std::max(PreferredAlign
, MaxAlignmentInChars
);
2034 UnpackedFieldAlign
= std::max(UnpackedFieldAlign
, MaxAlignmentInChars
);
2036 // The maximum field alignment overrides the aligned attribute.
2037 if (!MaxFieldAlignment
.isZero()) {
2038 PackedFieldAlign
= std::min(PackedFieldAlign
, MaxFieldAlignment
);
2039 PreferredAlign
= std::min(PreferredAlign
, MaxFieldAlignment
);
2040 UnpackedFieldAlign
= std::min(UnpackedFieldAlign
, MaxFieldAlignment
);
2045 FieldAlign
= UnpackedFieldAlign
;
2046 if (DefaultsToAIXPowerAlignment
)
2047 UnpackedFieldAlign
= PreferredAlign
;
2049 PreferredAlign
= PackedFieldAlign
;
2050 FieldAlign
= PackedFieldAlign
;
2054 !DefaultsToAIXPowerAlignment
? FieldAlign
: PreferredAlign
;
2055 // Round up the current record size to the field's alignment boundary.
2056 FieldOffset
= FieldOffset
.alignTo(AlignTo
);
2057 UnpackedFieldOffset
= UnpackedFieldOffset
.alignTo(UnpackedFieldAlign
);
2059 if (UseExternalLayout
) {
2060 FieldOffset
= Context
.toCharUnitsFromBits(
2061 updateExternalFieldOffset(D
, Context
.toBits(FieldOffset
)));
2063 if (!IsUnion
&& EmptySubobjects
) {
2064 // Record the fact that we're placing a field at this offset.
2065 bool Allowed
= EmptySubobjects
->CanPlaceFieldAtOffset(D
, FieldOffset
);
2067 assert(Allowed
&& "Externally-placed field cannot be placed here");
2070 if (!IsUnion
&& EmptySubobjects
) {
2071 // Check if we can place the field at this offset.
2072 while (!EmptySubobjects
->CanPlaceFieldAtOffset(D
, FieldOffset
)) {
2073 // We couldn't place the field at the offset. Try again at a new offset.
2074 // We try offset 0 (for an empty field) and then dsize(C) onwards.
2075 if (FieldOffset
== CharUnits::Zero() &&
2076 getDataSize() != CharUnits::Zero())
2077 FieldOffset
= getDataSize().alignTo(AlignTo
);
2079 FieldOffset
+= AlignTo
;
2084 // Place this field at the current location.
2085 FieldOffsets
.push_back(Context
.toBits(FieldOffset
));
2087 if (!UseExternalLayout
)
2088 CheckFieldPadding(Context
.toBits(FieldOffset
), UnpaddedFieldOffset
,
2089 Context
.toBits(UnpackedFieldOffset
),
2090 Context
.toBits(UnpackedFieldAlign
), FieldPacked
, D
);
2092 if (InsertExtraPadding
) {
2093 CharUnits ASanAlignment
= CharUnits::fromQuantity(8);
2094 CharUnits ExtraSizeForAsan
= ASanAlignment
;
2095 if (FieldSize
% ASanAlignment
)
2097 ASanAlignment
- CharUnits::fromQuantity(FieldSize
% ASanAlignment
);
2098 EffectiveFieldSize
= FieldSize
= FieldSize
+ ExtraSizeForAsan
;
2101 // Reserve space for this field.
2102 if (!IsOverlappingEmptyField
) {
2103 uint64_t EffectiveFieldSizeInBits
= Context
.toBits(EffectiveFieldSize
);
2105 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits
));
2107 setDataSize(FieldOffset
+ EffectiveFieldSize
);
2109 PaddedFieldSize
= std::max(PaddedFieldSize
, FieldOffset
+ FieldSize
);
2110 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2112 setSize(std::max(getSizeInBits(),
2113 (uint64_t)Context
.toBits(FieldOffset
+ FieldSize
)));
2116 // Remember max struct/class ABI-specified alignment.
2117 UnadjustedAlignment
= std::max(UnadjustedAlignment
, FieldAlign
);
2118 UpdateAlignment(FieldAlign
, UnpackedFieldAlign
, PreferredAlign
);
2120 // For checking the alignment of inner fields against
2121 // the alignment of its parent record.
2122 if (const RecordDecl
*RD
= D
->getParent()) {
2123 // Check if packed attribute or pragma pack is present.
2124 if (RD
->hasAttr
<PackedAttr
>() || !MaxFieldAlignment
.isZero())
2125 if (FieldAlign
< OriginalFieldAlign
)
2126 if (D
->getType()->isRecordType()) {
2127 // If the offset is a multiple of the alignment of
2128 // the type, raise the warning.
2129 // TODO: Takes no account the alignment of the outer struct
2130 if (FieldOffset
% OriginalFieldAlign
!= 0)
2131 Diag(D
->getLocation(), diag::warn_unaligned_access
)
2132 << Context
.getTypeDeclType(RD
) << D
->getName() << D
->getType();
2136 if (Packed
&& !FieldPacked
&& PackedFieldAlign
< FieldAlign
)
2137 Diag(D
->getLocation(), diag::warn_unpacked_field
) << D
;
2140 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl
*D
) {
2141 // In C++, records cannot be of size 0.
2142 if (Context
.getLangOpts().CPlusPlus
&& getSizeInBits() == 0) {
2143 if (const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(D
)) {
2144 // Compatibility with gcc requires a class (pod or non-pod)
2145 // which is not empty but of size 0; such as having fields of
2146 // array of zero-length, remains of Size 0
2148 setSize(CharUnits::One());
2151 setSize(CharUnits::One());
2154 // If we have any remaining field tail padding, include that in the overall
2156 setSize(std::max(getSizeInBits(), (uint64_t)Context
.toBits(PaddedFieldSize
)));
2158 // Finally, round the size of the record up to the alignment of the
2160 uint64_t UnpaddedSize
= getSizeInBits() - UnfilledBitsInLastUnit
;
2161 uint64_t UnpackedSizeInBits
=
2162 llvm::alignTo(getSizeInBits(), Context
.toBits(UnpackedAlignment
));
2164 uint64_t RoundedSize
= llvm::alignTo(
2166 Context
.toBits(!Context
.getTargetInfo().defaultsToAIXPowerAlignment()
2168 : PreferredAlignment
));
2170 if (UseExternalLayout
) {
2171 // If we're inferring alignment, and the external size is smaller than
2172 // our size after we've rounded up to alignment, conservatively set the
2174 if (InferAlignment
&& External
.Size
< RoundedSize
) {
2175 Alignment
= CharUnits::One();
2176 PreferredAlignment
= CharUnits::One();
2177 InferAlignment
= false;
2179 setSize(External
.Size
);
2183 // Set the size to the final size.
2184 setSize(RoundedSize
);
2186 unsigned CharBitNum
= Context
.getTargetInfo().getCharWidth();
2187 if (const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(D
)) {
2188 // Warn if padding was introduced to the struct/class/union.
2189 if (getSizeInBits() > UnpaddedSize
) {
2190 unsigned PadSize
= getSizeInBits() - UnpaddedSize
;
2192 if (PadSize
% CharBitNum
== 0) {
2193 PadSize
= PadSize
/ CharBitNum
;
2196 Diag(RD
->getLocation(), diag::warn_padded_struct_size
)
2197 << Context
.getTypeDeclType(RD
)
2199 << (InBits
? 1 : 0); // (byte|bit)
2202 // Warn if we packed it unnecessarily, when the unpacked alignment is not
2203 // greater than the one after packing, the size in bits doesn't change and
2204 // the offset of each field is identical.
2205 if (Packed
&& UnpackedAlignment
<= Alignment
&&
2206 UnpackedSizeInBits
== getSizeInBits() && !HasPackedField
)
2207 Diag(D
->getLocation(), diag::warn_unnecessary_packed
)
2208 << Context
.getTypeDeclType(RD
);
2212 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2213 CharUnits NewAlignment
, CharUnits UnpackedNewAlignment
,
2214 CharUnits PreferredNewAlignment
) {
2215 // The alignment is not modified when using 'mac68k' alignment or when
2216 // we have an externally-supplied layout that also provides overall alignment.
2217 if (IsMac68kAlign
|| (UseExternalLayout
&& !InferAlignment
))
2220 if (NewAlignment
> Alignment
) {
2221 assert(llvm::isPowerOf2_64(NewAlignment
.getQuantity()) &&
2222 "Alignment not a power of 2");
2223 Alignment
= NewAlignment
;
2226 if (UnpackedNewAlignment
> UnpackedAlignment
) {
2227 assert(llvm::isPowerOf2_64(UnpackedNewAlignment
.getQuantity()) &&
2228 "Alignment not a power of 2");
2229 UnpackedAlignment
= UnpackedNewAlignment
;
2232 if (PreferredNewAlignment
> PreferredAlignment
) {
2233 assert(llvm::isPowerOf2_64(PreferredNewAlignment
.getQuantity()) &&
2234 "Alignment not a power of 2");
2235 PreferredAlignment
= PreferredNewAlignment
;
2240 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl
*Field
,
2241 uint64_t ComputedOffset
) {
2242 uint64_t ExternalFieldOffset
= External
.getExternalFieldOffset(Field
);
2244 if (InferAlignment
&& ExternalFieldOffset
< ComputedOffset
) {
2245 // The externally-supplied field offset is before the field offset we
2246 // computed. Assume that the structure is packed.
2247 Alignment
= CharUnits::One();
2248 PreferredAlignment
= CharUnits::One();
2249 InferAlignment
= false;
2252 // Use the externally-supplied field offset.
2253 return ExternalFieldOffset
;
2256 /// Get diagnostic %select index for tag kind for
2257 /// field padding diagnostic message.
2258 /// WARNING: Indexes apply to particular diagnostics only!
2260 /// \returns diagnostic %select index.
2261 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag
) {
2263 case TTK_Struct
: return 0;
2264 case TTK_Interface
: return 1;
2265 case TTK_Class
: return 2;
2266 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2270 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2271 uint64_t Offset
, uint64_t UnpaddedOffset
, uint64_t UnpackedOffset
,
2272 unsigned UnpackedAlign
, bool isPacked
, const FieldDecl
*D
) {
2273 // We let objc ivars without warning, objc interfaces generally are not used
2274 // for padding tricks.
2275 if (isa
<ObjCIvarDecl
>(D
))
2278 // Don't warn about structs created without a SourceLocation. This can
2279 // be done by clients of the AST, such as codegen.
2280 if (D
->getLocation().isInvalid())
2283 unsigned CharBitNum
= Context
.getTargetInfo().getCharWidth();
2285 // Warn if padding was introduced to the struct/class.
2286 if (!IsUnion
&& Offset
> UnpaddedOffset
) {
2287 unsigned PadSize
= Offset
- UnpaddedOffset
;
2289 if (PadSize
% CharBitNum
== 0) {
2290 PadSize
= PadSize
/ CharBitNum
;
2293 if (D
->getIdentifier())
2294 Diag(D
->getLocation(), diag::warn_padded_struct_field
)
2295 << getPaddingDiagFromTagKind(D
->getParent()->getTagKind())
2296 << Context
.getTypeDeclType(D
->getParent())
2298 << (InBits
? 1 : 0) // (byte|bit)
2299 << D
->getIdentifier();
2301 Diag(D
->getLocation(), diag::warn_padded_struct_anon_field
)
2302 << getPaddingDiagFromTagKind(D
->getParent()->getTagKind())
2303 << Context
.getTypeDeclType(D
->getParent())
2305 << (InBits
? 1 : 0); // (byte|bit)
2307 if (isPacked
&& Offset
!= UnpackedOffset
) {
2308 HasPackedField
= true;
2312 static const CXXMethodDecl
*computeKeyFunction(ASTContext
&Context
,
2313 const CXXRecordDecl
*RD
) {
2314 // If a class isn't polymorphic it doesn't have a key function.
2315 if (!RD
->isPolymorphic())
2318 // A class that is not externally visible doesn't have a key function. (Or
2319 // at least, there's no point to assigning a key function to such a class;
2320 // this doesn't affect the ABI.)
2321 if (!RD
->isExternallyVisible())
2324 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2325 // Same behavior as GCC.
2326 TemplateSpecializationKind TSK
= RD
->getTemplateSpecializationKind();
2327 if (TSK
== TSK_ImplicitInstantiation
||
2328 TSK
== TSK_ExplicitInstantiationDeclaration
||
2329 TSK
== TSK_ExplicitInstantiationDefinition
)
2332 bool allowInlineFunctions
=
2333 Context
.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2335 for (const CXXMethodDecl
*MD
: RD
->methods()) {
2336 if (!MD
->isVirtual())
2342 // Ignore implicit member functions, they are always marked as inline, but
2343 // they don't have a body until they're defined.
2344 if (MD
->isImplicit())
2347 if (MD
->isInlineSpecified() || MD
->isConstexpr())
2350 if (MD
->hasInlineBody())
2353 // Ignore inline deleted or defaulted functions.
2354 if (!MD
->isUserProvided())
2357 // In certain ABIs, ignore functions with out-of-line inline definitions.
2358 if (!allowInlineFunctions
) {
2359 const FunctionDecl
*Def
;
2360 if (MD
->hasBody(Def
) && Def
->isInlineSpecified())
2364 if (Context
.getLangOpts().CUDA
) {
2365 // While compiler may see key method in this TU, during CUDA
2366 // compilation we should ignore methods that are not accessible
2367 // on this side of compilation.
2368 if (Context
.getLangOpts().CUDAIsDevice
) {
2369 // In device mode ignore methods without __device__ attribute.
2370 if (!MD
->hasAttr
<CUDADeviceAttr
>())
2373 // In host mode ignore __device__-only methods.
2374 if (!MD
->hasAttr
<CUDAHostAttr
>() && MD
->hasAttr
<CUDADeviceAttr
>())
2379 // If the key function is dllimport but the class isn't, then the class has
2380 // no key function. The DLL that exports the key function won't export the
2381 // vtable in this case.
2382 if (MD
->hasAttr
<DLLImportAttr
>() && !RD
->hasAttr
<DLLImportAttr
>() &&
2383 !Context
.getTargetInfo().hasPS4DLLImportExport())
2393 DiagnosticBuilder
ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc
,
2395 return Context
.getDiagnostics().Report(Loc
, DiagID
);
2398 /// Does the target C++ ABI require us to skip over the tail-padding
2399 /// of the given class (considering it as a base class) when allocating
2401 static bool mustSkipTailPadding(TargetCXXABI ABI
, const CXXRecordDecl
*RD
) {
2402 switch (ABI
.getTailPaddingUseRules()) {
2403 case TargetCXXABI::AlwaysUseTailPadding
:
2406 case TargetCXXABI::UseTailPaddingUnlessPOD03
:
2407 // FIXME: To the extent that this is meant to cover the Itanium ABI
2408 // rules, we should implement the restrictions about over-sized
2411 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2412 // In general, a type is considered a POD for the purposes of
2413 // layout if it is a POD type (in the sense of ISO C++
2414 // [basic.types]). However, a POD-struct or POD-union (in the
2415 // sense of ISO C++ [class]) with a bitfield member whose
2416 // declared width is wider than the declared type of the
2417 // bitfield is not a POD for the purpose of layout. Similarly,
2418 // an array type is not a POD for the purpose of layout if the
2419 // element type of the array is not a POD for the purpose of
2422 // Where references to the ISO C++ are made in this paragraph,
2423 // the Technical Corrigendum 1 version of the standard is
2427 case TargetCXXABI::UseTailPaddingUnlessPOD11
:
2428 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2429 // but with a lot of abstraction penalty stripped off. This does
2430 // assume that these properties are set correctly even in C++98
2431 // mode; fortunately, that is true because we want to assign
2432 // consistently semantics to the type-traits intrinsics (or at
2433 // least as many of them as possible).
2434 return RD
->isTrivial() && RD
->isCXX11StandardLayout();
2437 llvm_unreachable("bad tail-padding use kind");
2440 static bool isMsLayout(const ASTContext
&Context
) {
2441 return Context
.getTargetInfo().getCXXABI().isMicrosoft();
2444 // This section contains an implementation of struct layout that is, up to the
2445 // included tests, compatible with cl.exe (2013). The layout produced is
2446 // significantly different than those produced by the Itanium ABI. Here we note
2447 // the most important differences.
2449 // * The alignment of bitfields in unions is ignored when computing the
2450 // alignment of the union.
2451 // * The existence of zero-width bitfield that occurs after anything other than
2452 // a non-zero length bitfield is ignored.
2453 // * There is no explicit primary base for the purposes of layout. All bases
2454 // with vfptrs are laid out first, followed by all bases without vfptrs.
2455 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2456 // function pointer) and a vbptr (virtual base pointer). They can each be
2457 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2458 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2459 // placed after the lexicographically last non-virtual base. This placement
2460 // is always before fields but can be in the middle of the non-virtual bases
2461 // due to the two-pass layout scheme for non-virtual-bases.
2462 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2463 // the virtual base and is used in conjunction with virtual overrides during
2464 // construction and destruction. This is always a 4 byte value and is used as
2465 // an alternative to constructor vtables.
2466 // * vtordisps are allocated in a block of memory with size and alignment equal
2467 // to the alignment of the completed structure (before applying __declspec(
2468 // align())). The vtordisp always occur at the end of the allocation block,
2469 // immediately prior to the virtual base.
2470 // * vfptrs are injected after all bases and fields have been laid out. In
2471 // order to guarantee proper alignment of all fields, the vfptr injection
2472 // pushes all bases and fields back by the alignment imposed by those bases
2473 // and fields. This can potentially add a significant amount of padding.
2474 // vfptrs are always injected at offset 0.
2475 // * vbptrs are injected after all bases and fields have been laid out. In
2476 // order to guarantee proper alignment of all fields, the vfptr injection
2477 // pushes all bases and fields back by the alignment imposed by those bases
2478 // and fields. This can potentially add a significant amount of padding.
2479 // vbptrs are injected immediately after the last non-virtual base as
2480 // lexicographically ordered in the code. If this site isn't pointer aligned
2481 // the vbptr is placed at the next properly aligned location. Enough padding
2482 // is added to guarantee a fit.
2483 // * The last zero sized non-virtual base can be placed at the end of the
2484 // struct (potentially aliasing another object), or may alias with the first
2485 // field, even if they are of the same type.
2486 // * The last zero size virtual base may be placed at the end of the struct
2487 // potentially aliasing another object.
2488 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2489 // between bases or vbases with specific properties. The criteria for
2490 // additional padding between two bases is that the first base is zero sized
2491 // or ends with a zero sized subobject and the second base is zero sized or
2492 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2493 // layout of the so the leading base is not always the first one declared).
2494 // This rule does take into account fields that are not records, so padding
2495 // will occur even if the last field is, e.g. an int. The padding added for
2496 // bases is 1 byte. The padding added between vbases depends on the alignment
2497 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2498 // * There is no concept of non-virtual alignment, non-virtual alignment and
2499 // alignment are always identical.
2500 // * There is a distinction between alignment and required alignment.
2501 // __declspec(align) changes the required alignment of a struct. This
2502 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2503 // record inherits required alignment from all of its fields and bases.
2504 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2505 // alignment instead of its required alignment. This is the only known way
2506 // to make the alignment of a struct bigger than 8. Interestingly enough
2507 // this alignment is also immune to the effects of #pragma pack and can be
2508 // used to create structures with large alignment under #pragma pack.
2509 // However, because it does not impact required alignment, such a structure,
2510 // when used as a field or base, will not be aligned if #pragma pack is
2511 // still active at the time of use.
2513 // Known incompatibilities:
2514 // * all: #pragma pack between fields in a record
2515 // * 2010 and back: If the last field in a record is a bitfield, every object
2516 // laid out after the record will have extra padding inserted before it. The
2517 // extra padding will have size equal to the size of the storage class of the
2518 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2519 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2521 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2522 // greater due to __declspec(align()) then a second layout phase occurs after
2523 // The locations of the vf and vb pointers are known. This layout phase
2524 // suffers from the "last field is a bitfield" bug in 2010 and results in
2525 // _every_ field getting padding put in front of it, potentially including the
2526 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2527 // anything tries to read the vftbl. The second layout phase also treats
2528 // bitfields as separate entities and gives them each storage rather than
2529 // packing them. Additionally, because this phase appears to perform a
2530 // (an unstable) sort on the members before laying them out and because merged
2531 // bitfields have the same address, the bitfields end up in whatever order
2532 // the sort left them in, a behavior we could never hope to replicate.
2535 struct MicrosoftRecordLayoutBuilder
{
2536 struct ElementInfo
{
2538 CharUnits Alignment
;
2540 typedef llvm::DenseMap
<const CXXRecordDecl
*, CharUnits
> BaseOffsetsMapTy
;
2541 MicrosoftRecordLayoutBuilder(const ASTContext
&Context
) : Context(Context
) {}
2543 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder
&) = delete;
2544 void operator=(const MicrosoftRecordLayoutBuilder
&) = delete;
2546 void layout(const RecordDecl
*RD
);
2547 void cxxLayout(const CXXRecordDecl
*RD
);
2548 /// Initializes size and alignment and honors some flags.
2549 void initializeLayout(const RecordDecl
*RD
);
2550 /// Initialized C++ layout, compute alignment and virtual alignment and
2551 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2553 void initializeCXXLayout(const CXXRecordDecl
*RD
);
2554 void layoutNonVirtualBases(const CXXRecordDecl
*RD
);
2555 void layoutNonVirtualBase(const CXXRecordDecl
*RD
,
2556 const CXXRecordDecl
*BaseDecl
,
2557 const ASTRecordLayout
&BaseLayout
,
2558 const ASTRecordLayout
*&PreviousBaseLayout
);
2559 void injectVFPtr(const CXXRecordDecl
*RD
);
2560 void injectVBPtr(const CXXRecordDecl
*RD
);
2561 /// Lays out the fields of the record. Also rounds size up to
2563 void layoutFields(const RecordDecl
*RD
);
2564 void layoutField(const FieldDecl
*FD
);
2565 void layoutBitField(const FieldDecl
*FD
);
2566 /// Lays out a single zero-width bit-field in the record and handles
2567 /// special cases associated with zero-width bit-fields.
2568 void layoutZeroWidthBitField(const FieldDecl
*FD
);
2569 void layoutVirtualBases(const CXXRecordDecl
*RD
);
2570 void finalizeLayout(const RecordDecl
*RD
);
2571 /// Gets the size and alignment of a base taking pragma pack and
2572 /// __declspec(align) into account.
2573 ElementInfo
getAdjustedElementInfo(const ASTRecordLayout
&Layout
);
2574 /// Gets the size and alignment of a field taking pragma pack and
2575 /// __declspec(align) into account. It also updates RequiredAlignment as a
2576 /// side effect because it is most convenient to do so here.
2577 ElementInfo
getAdjustedElementInfo(const FieldDecl
*FD
);
2578 /// Places a field at an offset in CharUnits.
2579 void placeFieldAtOffset(CharUnits FieldOffset
) {
2580 FieldOffsets
.push_back(Context
.toBits(FieldOffset
));
2582 /// Places a bitfield at a bit offset.
2583 void placeFieldAtBitOffset(uint64_t FieldOffset
) {
2584 FieldOffsets
.push_back(FieldOffset
);
2586 /// Compute the set of virtual bases for which vtordisps are required.
2587 void computeVtorDispSet(
2588 llvm::SmallPtrSetImpl
<const CXXRecordDecl
*> &HasVtorDispSet
,
2589 const CXXRecordDecl
*RD
) const;
2590 const ASTContext
&Context
;
2591 /// The size of the record being laid out.
2593 /// The non-virtual size of the record layout.
2594 CharUnits NonVirtualSize
;
2595 /// The data size of the record layout.
2597 /// The current alignment of the record layout.
2598 CharUnits Alignment
;
2599 /// The maximum allowed field alignment. This is set by #pragma pack.
2600 CharUnits MaxFieldAlignment
;
2601 /// The alignment that this record must obey. This is imposed by
2602 /// __declspec(align()) on the record itself or one of its fields or bases.
2603 CharUnits RequiredAlignment
;
2604 /// The size of the allocation of the currently active bitfield.
2605 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2607 CharUnits CurrentBitfieldSize
;
2608 /// Offset to the virtual base table pointer (if one exists).
2609 CharUnits VBPtrOffset
;
2610 /// Minimum record size possible.
2611 CharUnits MinEmptyStructSize
;
2612 /// The size and alignment info of a pointer.
2613 ElementInfo PointerInfo
;
2614 /// The primary base class (if one exists).
2615 const CXXRecordDecl
*PrimaryBase
;
2616 /// The class we share our vb-pointer with.
2617 const CXXRecordDecl
*SharedVBPtrBase
;
2618 /// The collection of field offsets.
2619 SmallVector
<uint64_t, 16> FieldOffsets
;
2620 /// Base classes and their offsets in the record.
2621 BaseOffsetsMapTy Bases
;
2622 /// virtual base classes and their offsets in the record.
2623 ASTRecordLayout::VBaseOffsetsMapTy VBases
;
2624 /// The number of remaining bits in our last bitfield allocation.
2625 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2627 unsigned RemainingBitsInField
;
2629 /// True if the last field laid out was a bitfield and was not 0
2631 bool LastFieldIsNonZeroWidthBitfield
: 1;
2632 /// True if the class has its own vftable pointer.
2633 bool HasOwnVFPtr
: 1;
2634 /// True if the class has a vbtable pointer.
2636 /// True if the last sub-object within the type is zero sized or the
2637 /// object itself is zero sized. This *does not* count members that are not
2638 /// records. Only used for MS-ABI.
2639 bool EndsWithZeroSizedObject
: 1;
2640 /// True if this class is zero sized or first base is zero sized or
2641 /// has this property. Only used for MS-ABI.
2642 bool LeadsWithZeroSizedBase
: 1;
2644 /// True if the external AST source provided a layout for this record.
2645 bool UseExternalLayout
: 1;
2647 /// The layout provided by the external AST source. Only active if
2648 /// UseExternalLayout is true.
2649 ExternalLayout External
;
2653 MicrosoftRecordLayoutBuilder::ElementInfo
2654 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2655 const ASTRecordLayout
&Layout
) {
2657 Info
.Alignment
= Layout
.getAlignment();
2658 // Respect pragma pack.
2659 if (!MaxFieldAlignment
.isZero())
2660 Info
.Alignment
= std::min(Info
.Alignment
, MaxFieldAlignment
);
2661 // Track zero-sized subobjects here where it's already available.
2662 EndsWithZeroSizedObject
= Layout
.endsWithZeroSizedObject();
2663 // Respect required alignment, this is necessary because we may have adjusted
2664 // the alignment in the case of pragma pack. Note that the required alignment
2665 // doesn't actually apply to the struct alignment at this point.
2666 Alignment
= std::max(Alignment
, Info
.Alignment
);
2667 RequiredAlignment
= std::max(RequiredAlignment
, Layout
.getRequiredAlignment());
2668 Info
.Alignment
= std::max(Info
.Alignment
, Layout
.getRequiredAlignment());
2669 Info
.Size
= Layout
.getNonVirtualSize();
2673 MicrosoftRecordLayoutBuilder::ElementInfo
2674 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2675 const FieldDecl
*FD
) {
2676 // Get the alignment of the field type's natural alignment, ignore any
2677 // alignment attributes.
2679 Context
.getTypeInfoInChars(FD
->getType()->getUnqualifiedDesugaredType());
2680 ElementInfo Info
{TInfo
.Width
, TInfo
.Align
};
2681 // Respect align attributes on the field.
2682 CharUnits FieldRequiredAlignment
=
2683 Context
.toCharUnitsFromBits(FD
->getMaxAlignment());
2684 // Respect align attributes on the type.
2685 if (Context
.isAlignmentRequired(FD
->getType()))
2686 FieldRequiredAlignment
= std::max(
2687 Context
.getTypeAlignInChars(FD
->getType()), FieldRequiredAlignment
);
2688 // Respect attributes applied to subobjects of the field.
2689 if (FD
->isBitField())
2690 // For some reason __declspec align impacts alignment rather than required
2691 // alignment when it is applied to bitfields.
2692 Info
.Alignment
= std::max(Info
.Alignment
, FieldRequiredAlignment
);
2695 FD
->getType()->getBaseElementTypeUnsafe()->getAs
<RecordType
>()) {
2696 auto const &Layout
= Context
.getASTRecordLayout(RT
->getDecl());
2697 EndsWithZeroSizedObject
= Layout
.endsWithZeroSizedObject();
2698 FieldRequiredAlignment
= std::max(FieldRequiredAlignment
,
2699 Layout
.getRequiredAlignment());
2701 // Capture required alignment as a side-effect.
2702 RequiredAlignment
= std::max(RequiredAlignment
, FieldRequiredAlignment
);
2704 // Respect pragma pack, attribute pack and declspec align
2705 if (!MaxFieldAlignment
.isZero())
2706 Info
.Alignment
= std::min(Info
.Alignment
, MaxFieldAlignment
);
2707 if (FD
->hasAttr
<PackedAttr
>())
2708 Info
.Alignment
= CharUnits::One();
2709 Info
.Alignment
= std::max(Info
.Alignment
, FieldRequiredAlignment
);
2713 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl
*RD
) {
2714 // For C record layout, zero-sized records always have size 4.
2715 MinEmptyStructSize
= CharUnits::fromQuantity(4);
2716 initializeLayout(RD
);
2718 DataSize
= Size
= Size
.alignTo(Alignment
);
2719 RequiredAlignment
= std::max(
2720 RequiredAlignment
, Context
.toCharUnitsFromBits(RD
->getMaxAlignment()));
2724 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl
*RD
) {
2725 // The C++ standard says that empty structs have size 1.
2726 MinEmptyStructSize
= CharUnits::One();
2727 initializeLayout(RD
);
2728 initializeCXXLayout(RD
);
2729 layoutNonVirtualBases(RD
);
2733 if (HasOwnVFPtr
|| (HasVBPtr
&& !SharedVBPtrBase
))
2734 Alignment
= std::max(Alignment
, PointerInfo
.Alignment
);
2735 auto RoundingAlignment
= Alignment
;
2736 if (!MaxFieldAlignment
.isZero())
2737 RoundingAlignment
= std::min(RoundingAlignment
, MaxFieldAlignment
);
2738 if (!UseExternalLayout
)
2739 Size
= Size
.alignTo(RoundingAlignment
);
2740 NonVirtualSize
= Size
;
2741 RequiredAlignment
= std::max(
2742 RequiredAlignment
, Context
.toCharUnitsFromBits(RD
->getMaxAlignment()));
2743 layoutVirtualBases(RD
);
2747 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl
*RD
) {
2748 IsUnion
= RD
->isUnion();
2749 Size
= CharUnits::Zero();
2750 Alignment
= CharUnits::One();
2751 // In 64-bit mode we always perform an alignment step after laying out vbases.
2752 // In 32-bit mode we do not. The check to see if we need to perform alignment
2753 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2754 RequiredAlignment
= Context
.getTargetInfo().getTriple().isArch64Bit()
2756 : CharUnits::Zero();
2757 // Compute the maximum field alignment.
2758 MaxFieldAlignment
= CharUnits::Zero();
2759 // Honor the default struct packing maximum alignment flag.
2760 if (unsigned DefaultMaxFieldAlignment
= Context
.getLangOpts().PackStruct
)
2761 MaxFieldAlignment
= CharUnits::fromQuantity(DefaultMaxFieldAlignment
);
2762 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2763 // than the pointer size.
2764 if (const MaxFieldAlignmentAttr
*MFAA
= RD
->getAttr
<MaxFieldAlignmentAttr
>()){
2765 unsigned PackedAlignment
= MFAA
->getAlignment();
2766 if (PackedAlignment
<=
2767 Context
.getTargetInfo().getPointerWidth(LangAS::Default
))
2768 MaxFieldAlignment
= Context
.toCharUnitsFromBits(PackedAlignment
);
2770 // Packed attribute forces max field alignment to be 1.
2771 if (RD
->hasAttr
<PackedAttr
>())
2772 MaxFieldAlignment
= CharUnits::One();
2774 // Try to respect the external layout if present.
2775 UseExternalLayout
= false;
2776 if (ExternalASTSource
*Source
= Context
.getExternalSource())
2777 UseExternalLayout
= Source
->layoutRecordType(
2778 RD
, External
.Size
, External
.Align
, External
.FieldOffsets
,
2779 External
.BaseOffsets
, External
.VirtualBaseOffsets
);
2783 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl
*RD
) {
2784 EndsWithZeroSizedObject
= false;
2785 LeadsWithZeroSizedBase
= false;
2786 HasOwnVFPtr
= false;
2788 PrimaryBase
= nullptr;
2789 SharedVBPtrBase
= nullptr;
2790 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2792 PointerInfo
.Size
= Context
.toCharUnitsFromBits(
2793 Context
.getTargetInfo().getPointerWidth(LangAS::Default
));
2794 PointerInfo
.Alignment
= Context
.toCharUnitsFromBits(
2795 Context
.getTargetInfo().getPointerAlign(LangAS::Default
));
2796 // Respect pragma pack.
2797 if (!MaxFieldAlignment
.isZero())
2798 PointerInfo
.Alignment
= std::min(PointerInfo
.Alignment
, MaxFieldAlignment
);
2802 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl
*RD
) {
2803 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2804 // out any bases that do not contain vfptrs. We implement this as two passes
2805 // over the bases. This approach guarantees that the primary base is laid out
2806 // first. We use these passes to calculate some additional aggregated
2807 // information about the bases, such as required alignment and the presence of
2808 // zero sized members.
2809 const ASTRecordLayout
*PreviousBaseLayout
= nullptr;
2810 bool HasPolymorphicBaseClass
= false;
2811 // Iterate through the bases and lay out the non-virtual ones.
2812 for (const CXXBaseSpecifier
&Base
: RD
->bases()) {
2813 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
2814 HasPolymorphicBaseClass
|= BaseDecl
->isPolymorphic();
2815 const ASTRecordLayout
&BaseLayout
= Context
.getASTRecordLayout(BaseDecl
);
2816 // Mark and skip virtual bases.
2817 if (Base
.isVirtual()) {
2821 // Check for a base to share a VBPtr with.
2822 if (!SharedVBPtrBase
&& BaseLayout
.hasVBPtr()) {
2823 SharedVBPtrBase
= BaseDecl
;
2826 // Only lay out bases with extendable VFPtrs on the first pass.
2827 if (!BaseLayout
.hasExtendableVFPtr())
2829 // If we don't have a primary base, this one qualifies.
2831 PrimaryBase
= BaseDecl
;
2832 LeadsWithZeroSizedBase
= BaseLayout
.leadsWithZeroSizedBase();
2834 // Lay out the base.
2835 layoutNonVirtualBase(RD
, BaseDecl
, BaseLayout
, PreviousBaseLayout
);
2837 // Figure out if we need a fresh VFPtr for this class.
2838 if (RD
->isPolymorphic()) {
2839 if (!HasPolymorphicBaseClass
)
2840 // This class introduces polymorphism, so we need a vftable to store the
2841 // RTTI information.
2843 else if (!PrimaryBase
) {
2844 // We have a polymorphic base class but can't extend its vftable. Add a
2845 // new vfptr if we would use any vftable slots.
2846 for (CXXMethodDecl
*M
: RD
->methods()) {
2847 if (MicrosoftVTableContext::hasVtableSlot(M
) &&
2848 M
->size_overridden_methods() == 0) {
2855 // If we don't have a primary base then we have a leading object that could
2856 // itself lead with a zero-sized object, something we track.
2857 bool CheckLeadingLayout
= !PrimaryBase
;
2858 // Iterate through the bases and lay out the non-virtual ones.
2859 for (const CXXBaseSpecifier
&Base
: RD
->bases()) {
2860 if (Base
.isVirtual())
2862 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
2863 const ASTRecordLayout
&BaseLayout
= Context
.getASTRecordLayout(BaseDecl
);
2864 // Only lay out bases without extendable VFPtrs on the second pass.
2865 if (BaseLayout
.hasExtendableVFPtr()) {
2866 VBPtrOffset
= Bases
[BaseDecl
] + BaseLayout
.getNonVirtualSize();
2869 // If this is the first layout, check to see if it leads with a zero sized
2870 // object. If it does, so do we.
2871 if (CheckLeadingLayout
) {
2872 CheckLeadingLayout
= false;
2873 LeadsWithZeroSizedBase
= BaseLayout
.leadsWithZeroSizedBase();
2875 // Lay out the base.
2876 layoutNonVirtualBase(RD
, BaseDecl
, BaseLayout
, PreviousBaseLayout
);
2877 VBPtrOffset
= Bases
[BaseDecl
] + BaseLayout
.getNonVirtualSize();
2879 // Set our VBPtroffset if we know it at this point.
2881 VBPtrOffset
= CharUnits::fromQuantity(-1);
2882 else if (SharedVBPtrBase
) {
2883 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(SharedVBPtrBase
);
2884 VBPtrOffset
= Bases
[SharedVBPtrBase
] + Layout
.getVBPtrOffset();
2888 static bool recordUsesEBO(const RecordDecl
*RD
) {
2889 if (!isa
<CXXRecordDecl
>(RD
))
2891 if (RD
->hasAttr
<EmptyBasesAttr
>())
2893 if (auto *LVA
= RD
->getAttr
<LayoutVersionAttr
>())
2894 // TODO: Double check with the next version of MSVC.
2895 if (LVA
->getVersion() <= LangOptions::MSVC2015
)
2897 // TODO: Some later version of MSVC will change the default behavior of the
2898 // compiler to enable EBO by default. When this happens, we will need an
2899 // additional isCompatibleWithMSVC check.
2903 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2904 const CXXRecordDecl
*RD
,
2905 const CXXRecordDecl
*BaseDecl
,
2906 const ASTRecordLayout
&BaseLayout
,
2907 const ASTRecordLayout
*&PreviousBaseLayout
) {
2908 // Insert padding between two bases if the left first one is zero sized or
2909 // contains a zero sized subobject and the right is zero sized or one leads
2910 // with a zero sized base.
2911 bool MDCUsesEBO
= recordUsesEBO(RD
);
2912 if (PreviousBaseLayout
&& PreviousBaseLayout
->endsWithZeroSizedObject() &&
2913 BaseLayout
.leadsWithZeroSizedBase() && !MDCUsesEBO
)
2915 ElementInfo Info
= getAdjustedElementInfo(BaseLayout
);
2916 CharUnits BaseOffset
;
2918 // Respect the external AST source base offset, if present.
2919 bool FoundBase
= false;
2920 if (UseExternalLayout
) {
2921 FoundBase
= External
.getExternalNVBaseOffset(BaseDecl
, BaseOffset
);
2923 assert(BaseOffset
>= Size
&& "base offset already allocated");
2929 if (MDCUsesEBO
&& BaseDecl
->isEmpty()) {
2930 assert(BaseLayout
.getNonVirtualSize() == CharUnits::Zero());
2931 BaseOffset
= CharUnits::Zero();
2933 // Otherwise, lay the base out at the end of the MDC.
2934 BaseOffset
= Size
= Size
.alignTo(Info
.Alignment
);
2937 Bases
.insert(std::make_pair(BaseDecl
, BaseOffset
));
2938 Size
+= BaseLayout
.getNonVirtualSize();
2939 PreviousBaseLayout
= &BaseLayout
;
2942 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl
*RD
) {
2943 LastFieldIsNonZeroWidthBitfield
= false;
2944 for (const FieldDecl
*Field
: RD
->fields())
2948 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl
*FD
) {
2949 if (FD
->isBitField()) {
2953 LastFieldIsNonZeroWidthBitfield
= false;
2954 ElementInfo Info
= getAdjustedElementInfo(FD
);
2955 Alignment
= std::max(Alignment
, Info
.Alignment
);
2956 CharUnits FieldOffset
;
2957 if (UseExternalLayout
)
2959 Context
.toCharUnitsFromBits(External
.getExternalFieldOffset(FD
));
2961 FieldOffset
= CharUnits::Zero();
2963 FieldOffset
= Size
.alignTo(Info
.Alignment
);
2964 placeFieldAtOffset(FieldOffset
);
2965 Size
= std::max(Size
, FieldOffset
+ Info
.Size
);
2968 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl
*FD
) {
2969 unsigned Width
= FD
->getBitWidthValue(Context
);
2971 layoutZeroWidthBitField(FD
);
2974 ElementInfo Info
= getAdjustedElementInfo(FD
);
2975 // Clamp the bitfield to a containable size for the sake of being able
2976 // to lay them out. Sema will throw an error.
2977 if (Width
> Context
.toBits(Info
.Size
))
2978 Width
= Context
.toBits(Info
.Size
);
2979 // Check to see if this bitfield fits into an existing allocation. Note:
2980 // MSVC refuses to pack bitfields of formal types with different sizes
2981 // into the same allocation.
2982 if (!UseExternalLayout
&& !IsUnion
&& LastFieldIsNonZeroWidthBitfield
&&
2983 CurrentBitfieldSize
== Info
.Size
&& Width
<= RemainingBitsInField
) {
2984 placeFieldAtBitOffset(Context
.toBits(Size
) - RemainingBitsInField
);
2985 RemainingBitsInField
-= Width
;
2988 LastFieldIsNonZeroWidthBitfield
= true;
2989 CurrentBitfieldSize
= Info
.Size
;
2990 if (UseExternalLayout
) {
2991 auto FieldBitOffset
= External
.getExternalFieldOffset(FD
);
2992 placeFieldAtBitOffset(FieldBitOffset
);
2993 auto NewSize
= Context
.toCharUnitsFromBits(
2994 llvm::alignDown(FieldBitOffset
, Context
.toBits(Info
.Alignment
)) +
2995 Context
.toBits(Info
.Size
));
2996 Size
= std::max(Size
, NewSize
);
2997 Alignment
= std::max(Alignment
, Info
.Alignment
);
2998 } else if (IsUnion
) {
2999 placeFieldAtOffset(CharUnits::Zero());
3000 Size
= std::max(Size
, Info
.Size
);
3001 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3003 // Allocate a new block of memory and place the bitfield in it.
3004 CharUnits FieldOffset
= Size
.alignTo(Info
.Alignment
);
3005 placeFieldAtOffset(FieldOffset
);
3006 Size
= FieldOffset
+ Info
.Size
;
3007 Alignment
= std::max(Alignment
, Info
.Alignment
);
3008 RemainingBitsInField
= Context
.toBits(Info
.Size
) - Width
;
3013 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl
*FD
) {
3014 // Zero-width bitfields are ignored unless they follow a non-zero-width
3016 if (!LastFieldIsNonZeroWidthBitfield
) {
3017 placeFieldAtOffset(IsUnion
? CharUnits::Zero() : Size
);
3018 // TODO: Add a Sema warning that MS ignores alignment for zero
3019 // sized bitfields that occur after zero-size bitfields or non-bitfields.
3022 LastFieldIsNonZeroWidthBitfield
= false;
3023 ElementInfo Info
= getAdjustedElementInfo(FD
);
3025 placeFieldAtOffset(CharUnits::Zero());
3026 Size
= std::max(Size
, Info
.Size
);
3027 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3029 // Round up the current record size to the field's alignment boundary.
3030 CharUnits FieldOffset
= Size
.alignTo(Info
.Alignment
);
3031 placeFieldAtOffset(FieldOffset
);
3033 Alignment
= std::max(Alignment
, Info
.Alignment
);
3037 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl
*RD
) {
3038 if (!HasVBPtr
|| SharedVBPtrBase
)
3040 // Inject the VBPointer at the injection site.
3041 CharUnits InjectionSite
= VBPtrOffset
;
3042 // But before we do, make sure it's properly aligned.
3043 VBPtrOffset
= VBPtrOffset
.alignTo(PointerInfo
.Alignment
);
3044 // Determine where the first field should be laid out after the vbptr.
3045 CharUnits FieldStart
= VBPtrOffset
+ PointerInfo
.Size
;
3046 // Shift everything after the vbptr down, unless we're using an external
3048 if (UseExternalLayout
) {
3049 // It is possible that there were no fields or bases located after vbptr,
3050 // so the size was not adjusted before.
3051 if (Size
< FieldStart
)
3055 // Make sure that the amount we push the fields back by is a multiple of the
3057 CharUnits Offset
= (FieldStart
- InjectionSite
)
3058 .alignTo(std::max(RequiredAlignment
, Alignment
));
3060 for (uint64_t &FieldOffset
: FieldOffsets
)
3061 FieldOffset
+= Context
.toBits(Offset
);
3062 for (BaseOffsetsMapTy::value_type
&Base
: Bases
)
3063 if (Base
.second
>= InjectionSite
)
3064 Base
.second
+= Offset
;
3067 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl
*RD
) {
3070 // Make sure that the amount we push the struct back by is a multiple of the
3073 PointerInfo
.Size
.alignTo(std::max(RequiredAlignment
, Alignment
));
3074 // Push back the vbptr, but increase the size of the object and push back
3075 // regular fields by the offset only if not using external record layout.
3077 VBPtrOffset
+= Offset
;
3079 if (UseExternalLayout
) {
3080 // The class may have size 0 and a vfptr (e.g. it's an interface class). The
3081 // size was not correctly set before in this case.
3089 // If we're using an external layout, the fields offsets have already
3090 // accounted for this adjustment.
3091 for (uint64_t &FieldOffset
: FieldOffsets
)
3092 FieldOffset
+= Context
.toBits(Offset
);
3093 for (BaseOffsetsMapTy::value_type
&Base
: Bases
)
3094 Base
.second
+= Offset
;
3097 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl
*RD
) {
3100 // Vtordisps are always 4 bytes (even in 64-bit mode)
3101 CharUnits VtorDispSize
= CharUnits::fromQuantity(4);
3102 CharUnits VtorDispAlignment
= VtorDispSize
;
3103 // vtordisps respect pragma pack.
3104 if (!MaxFieldAlignment
.isZero())
3105 VtorDispAlignment
= std::min(VtorDispAlignment
, MaxFieldAlignment
);
3106 // The alignment of the vtordisp is at least the required alignment of the
3107 // entire record. This requirement may be present to support vtordisp
3109 for (const CXXBaseSpecifier
&VBase
: RD
->vbases()) {
3110 const CXXRecordDecl
*BaseDecl
= VBase
.getType()->getAsCXXRecordDecl();
3111 const ASTRecordLayout
&BaseLayout
= Context
.getASTRecordLayout(BaseDecl
);
3113 std::max(RequiredAlignment
, BaseLayout
.getRequiredAlignment());
3115 VtorDispAlignment
= std::max(VtorDispAlignment
, RequiredAlignment
);
3116 // Compute the vtordisp set.
3117 llvm::SmallPtrSet
<const CXXRecordDecl
*, 2> HasVtorDispSet
;
3118 computeVtorDispSet(HasVtorDispSet
, RD
);
3119 // Iterate through the virtual bases and lay them out.
3120 const ASTRecordLayout
*PreviousBaseLayout
= nullptr;
3121 for (const CXXBaseSpecifier
&VBase
: RD
->vbases()) {
3122 const CXXRecordDecl
*BaseDecl
= VBase
.getType()->getAsCXXRecordDecl();
3123 const ASTRecordLayout
&BaseLayout
= Context
.getASTRecordLayout(BaseDecl
);
3124 bool HasVtordisp
= HasVtorDispSet
.contains(BaseDecl
);
3125 // Insert padding between two bases if the left first one is zero sized or
3126 // contains a zero sized subobject and the right is zero sized or one leads
3127 // with a zero sized base. The padding between virtual bases is 4
3128 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3129 // the required alignment, we don't know why.
3130 if ((PreviousBaseLayout
&& PreviousBaseLayout
->endsWithZeroSizedObject() &&
3131 BaseLayout
.leadsWithZeroSizedBase() && !recordUsesEBO(RD
)) ||
3133 Size
= Size
.alignTo(VtorDispAlignment
) + VtorDispSize
;
3134 Alignment
= std::max(VtorDispAlignment
, Alignment
);
3136 // Insert the virtual base.
3137 ElementInfo Info
= getAdjustedElementInfo(BaseLayout
);
3138 CharUnits BaseOffset
;
3140 // Respect the external AST source base offset, if present.
3141 if (UseExternalLayout
) {
3142 if (!External
.getExternalVBaseOffset(BaseDecl
, BaseOffset
))
3145 BaseOffset
= Size
.alignTo(Info
.Alignment
);
3147 assert(BaseOffset
>= Size
&& "base offset already allocated");
3149 VBases
.insert(std::make_pair(BaseDecl
,
3150 ASTRecordLayout::VBaseInfo(BaseOffset
, HasVtordisp
)));
3151 Size
= BaseOffset
+ BaseLayout
.getNonVirtualSize();
3152 PreviousBaseLayout
= &BaseLayout
;
3156 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl
*RD
) {
3157 // Respect required alignment. Note that in 32-bit mode Required alignment
3158 // may be 0 and cause size not to be updated.
3160 if (!RequiredAlignment
.isZero()) {
3161 Alignment
= std::max(Alignment
, RequiredAlignment
);
3162 auto RoundingAlignment
= Alignment
;
3163 if (!MaxFieldAlignment
.isZero())
3164 RoundingAlignment
= std::min(RoundingAlignment
, MaxFieldAlignment
);
3165 RoundingAlignment
= std::max(RoundingAlignment
, RequiredAlignment
);
3166 Size
= Size
.alignTo(RoundingAlignment
);
3168 if (Size
.isZero()) {
3169 if (!recordUsesEBO(RD
) || !cast
<CXXRecordDecl
>(RD
)->isEmpty()) {
3170 EndsWithZeroSizedObject
= true;
3171 LeadsWithZeroSizedBase
= true;
3173 // Zero-sized structures have size equal to their alignment if a
3174 // __declspec(align) came into play.
3175 if (RequiredAlignment
>= MinEmptyStructSize
)
3178 Size
= MinEmptyStructSize
;
3181 if (UseExternalLayout
) {
3182 Size
= Context
.toCharUnitsFromBits(External
.Size
);
3184 Alignment
= Context
.toCharUnitsFromBits(External
.Align
);
3188 // Recursively walks the non-virtual bases of a class and determines if any of
3189 // them are in the bases with overridden methods set.
3191 RequiresVtordisp(const llvm::SmallPtrSetImpl
<const CXXRecordDecl
*> &
3192 BasesWithOverriddenMethods
,
3193 const CXXRecordDecl
*RD
) {
3194 if (BasesWithOverriddenMethods
.count(RD
))
3196 // If any of a virtual bases non-virtual bases (recursively) requires a
3197 // vtordisp than so does this virtual base.
3198 for (const CXXBaseSpecifier
&Base
: RD
->bases())
3199 if (!Base
.isVirtual() &&
3200 RequiresVtordisp(BasesWithOverriddenMethods
,
3201 Base
.getType()->getAsCXXRecordDecl()))
3206 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3207 llvm::SmallPtrSetImpl
<const CXXRecordDecl
*> &HasVtordispSet
,
3208 const CXXRecordDecl
*RD
) const {
3209 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3211 if (RD
->getMSVtorDispMode() == MSVtorDispMode::ForVFTable
) {
3212 for (const CXXBaseSpecifier
&Base
: RD
->vbases()) {
3213 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
3214 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(BaseDecl
);
3215 if (Layout
.hasExtendableVFPtr())
3216 HasVtordispSet
.insert(BaseDecl
);
3221 // If any of our bases need a vtordisp for this type, so do we. Check our
3222 // direct bases for vtordisp requirements.
3223 for (const CXXBaseSpecifier
&Base
: RD
->bases()) {
3224 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
3225 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(BaseDecl
);
3226 for (const auto &bi
: Layout
.getVBaseOffsetsMap())
3227 if (bi
.second
.hasVtorDisp())
3228 HasVtordispSet
.insert(bi
.first
);
3230 // We don't introduce any additional vtordisps if either:
3231 // * A user declared constructor or destructor aren't declared.
3232 // * #pragma vtordisp(0) or the /vd0 flag are in use.
3233 if ((!RD
->hasUserDeclaredConstructor() && !RD
->hasUserDeclaredDestructor()) ||
3234 RD
->getMSVtorDispMode() == MSVtorDispMode::Never
)
3236 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3237 // possible for a partially constructed object with virtual base overrides to
3238 // escape a non-trivial constructor.
3239 assert(RD
->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride
);
3240 // Compute a set of base classes which define methods we override. A virtual
3241 // base in this set will require a vtordisp. A virtual base that transitively
3242 // contains one of these bases as a non-virtual base will also require a
3244 llvm::SmallPtrSet
<const CXXMethodDecl
*, 8> Work
;
3245 llvm::SmallPtrSet
<const CXXRecordDecl
*, 2> BasesWithOverriddenMethods
;
3246 // Seed the working set with our non-destructor, non-pure virtual methods.
3247 for (const CXXMethodDecl
*MD
: RD
->methods())
3248 if (MicrosoftVTableContext::hasVtableSlot(MD
) &&
3249 !isa
<CXXDestructorDecl
>(MD
) && !MD
->isPure())
3251 while (!Work
.empty()) {
3252 const CXXMethodDecl
*MD
= *Work
.begin();
3253 auto MethodRange
= MD
->overridden_methods();
3254 // If a virtual method has no-overrides it lives in its parent's vtable.
3255 if (MethodRange
.begin() == MethodRange
.end())
3256 BasesWithOverriddenMethods
.insert(MD
->getParent());
3258 Work
.insert(MethodRange
.begin(), MethodRange
.end());
3259 // We've finished processing this element, remove it from the working set.
3262 // For each of our virtual bases, check if it is in the set of overridden
3263 // bases or if it transitively contains a non-virtual base that is.
3264 for (const CXXBaseSpecifier
&Base
: RD
->vbases()) {
3265 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
3266 if (!HasVtordispSet
.count(BaseDecl
) &&
3267 RequiresVtordisp(BasesWithOverriddenMethods
, BaseDecl
))
3268 HasVtordispSet
.insert(BaseDecl
);
3272 /// getASTRecordLayout - Get or compute information about the layout of the
3273 /// specified record (struct/union/class), which indicates its size and field
3274 /// position information.
3275 const ASTRecordLayout
&
3276 ASTContext::getASTRecordLayout(const RecordDecl
*D
) const {
3277 // These asserts test different things. A record has a definition
3278 // as soon as we begin to parse the definition. That definition is
3279 // not a complete definition (which is what isDefinition() tests)
3280 // until we *finish* parsing the definition.
3282 if (D
->hasExternalLexicalStorage() && !D
->getDefinition())
3283 getExternalSource()->CompleteType(const_cast<RecordDecl
*>(D
));
3284 // Complete the redecl chain (if necessary).
3285 (void)D
->getMostRecentDecl();
3287 D
= D
->getDefinition();
3288 assert(D
&& "Cannot get layout of forward declarations!");
3289 assert(!D
->isInvalidDecl() && "Cannot get layout of invalid decl!");
3290 assert(D
->isCompleteDefinition() && "Cannot layout type before complete!");
3292 // Look up this layout, if already laid out, return what we have.
3293 // Note that we can't save a reference to the entry because this function
3295 const ASTRecordLayout
*Entry
= ASTRecordLayouts
[D
];
3296 if (Entry
) return *Entry
;
3298 const ASTRecordLayout
*NewEntry
= nullptr;
3300 if (isMsLayout(*this)) {
3301 MicrosoftRecordLayoutBuilder
Builder(*this);
3302 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(D
)) {
3303 Builder
.cxxLayout(RD
);
3304 NewEntry
= new (*this) ASTRecordLayout(
3305 *this, Builder
.Size
, Builder
.Alignment
, Builder
.Alignment
,
3306 Builder
.Alignment
, Builder
.RequiredAlignment
, Builder
.HasOwnVFPtr
,
3307 Builder
.HasOwnVFPtr
|| Builder
.PrimaryBase
, Builder
.VBPtrOffset
,
3308 Builder
.DataSize
, Builder
.FieldOffsets
, Builder
.NonVirtualSize
,
3309 Builder
.Alignment
, Builder
.Alignment
, CharUnits::Zero(),
3310 Builder
.PrimaryBase
, false, Builder
.SharedVBPtrBase
,
3311 Builder
.EndsWithZeroSizedObject
, Builder
.LeadsWithZeroSizedBase
,
3312 Builder
.Bases
, Builder
.VBases
);
3315 NewEntry
= new (*this) ASTRecordLayout(
3316 *this, Builder
.Size
, Builder
.Alignment
, Builder
.Alignment
,
3317 Builder
.Alignment
, Builder
.RequiredAlignment
, Builder
.Size
,
3318 Builder
.FieldOffsets
);
3321 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(D
)) {
3322 EmptySubobjectMap
EmptySubobjects(*this, RD
);
3323 ItaniumRecordLayoutBuilder
Builder(*this, &EmptySubobjects
);
3326 // In certain situations, we are allowed to lay out objects in the
3327 // tail-padding of base classes. This is ABI-dependent.
3328 // FIXME: this should be stored in the record layout.
3329 bool skipTailPadding
=
3330 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD
);
3332 // FIXME: This should be done in FinalizeLayout.
3333 CharUnits DataSize
=
3334 skipTailPadding
? Builder
.getSize() : Builder
.getDataSize();
3335 CharUnits NonVirtualSize
=
3336 skipTailPadding
? DataSize
: Builder
.NonVirtualSize
;
3337 NewEntry
= new (*this) ASTRecordLayout(
3338 *this, Builder
.getSize(), Builder
.Alignment
,
3339 Builder
.PreferredAlignment
, Builder
.UnadjustedAlignment
,
3340 /*RequiredAlignment : used by MS-ABI)*/
3341 Builder
.Alignment
, Builder
.HasOwnVFPtr
, RD
->isDynamicClass(),
3342 CharUnits::fromQuantity(-1), DataSize
, Builder
.FieldOffsets
,
3343 NonVirtualSize
, Builder
.NonVirtualAlignment
,
3344 Builder
.PreferredNVAlignment
,
3345 EmptySubobjects
.SizeOfLargestEmptySubobject
, Builder
.PrimaryBase
,
3346 Builder
.PrimaryBaseIsVirtual
, nullptr, false, false, Builder
.Bases
,
3349 ItaniumRecordLayoutBuilder
Builder(*this, /*EmptySubobjects=*/nullptr);
3352 NewEntry
= new (*this) ASTRecordLayout(
3353 *this, Builder
.getSize(), Builder
.Alignment
,
3354 Builder
.PreferredAlignment
, Builder
.UnadjustedAlignment
,
3355 /*RequiredAlignment : used by MS-ABI)*/
3356 Builder
.Alignment
, Builder
.getSize(), Builder
.FieldOffsets
);
3360 ASTRecordLayouts
[D
] = NewEntry
;
3362 if (getLangOpts().DumpRecordLayouts
) {
3363 llvm::outs() << "\n*** Dumping AST Record Layout\n";
3364 DumpRecordLayout(D
, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple
);
3370 const CXXMethodDecl
*ASTContext::getCurrentKeyFunction(const CXXRecordDecl
*RD
) {
3371 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3374 assert(RD
->getDefinition() && "Cannot get key function for forward decl!");
3375 RD
= RD
->getDefinition();
3378 // 1) computing the key function might trigger deserialization, which might
3379 // invalidate iterators into KeyFunctions
3380 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
3381 // invalidate the LazyDeclPtr within the map itself
3382 LazyDeclPtr Entry
= KeyFunctions
[RD
];
3383 const Decl
*Result
=
3384 Entry
? Entry
.get(getExternalSource()) : computeKeyFunction(*this, RD
);
3386 // Store it back if it changed.
3387 if (Entry
.isOffset() || Entry
.isValid() != bool(Result
))
3388 KeyFunctions
[RD
] = const_cast<Decl
*>(Result
);
3390 return cast_or_null
<CXXMethodDecl
>(Result
);
3393 void ASTContext::setNonKeyFunction(const CXXMethodDecl
*Method
) {
3394 assert(Method
== Method
->getFirstDecl() &&
3395 "not working with method declaration from class definition");
3397 // Look up the cache entry. Since we're working with the first
3398 // declaration, its parent must be the class definition, which is
3399 // the correct key for the KeyFunctions hash.
3400 const auto &Map
= KeyFunctions
;
3401 auto I
= Map
.find(Method
->getParent());
3403 // If it's not cached, there's nothing to do.
3404 if (I
== Map
.end()) return;
3406 // If it is cached, check whether it's the target method, and if so,
3407 // remove it from the cache. Note, the call to 'get' might invalidate
3408 // the iterator and the LazyDeclPtr object within the map.
3409 LazyDeclPtr Ptr
= I
->second
;
3410 if (Ptr
.get(getExternalSource()) == Method
) {
3411 // FIXME: remember that we did this for module / chained PCH state?
3412 KeyFunctions
.erase(Method
->getParent());
3416 static uint64_t getFieldOffset(const ASTContext
&C
, const FieldDecl
*FD
) {
3417 const ASTRecordLayout
&Layout
= C
.getASTRecordLayout(FD
->getParent());
3418 return Layout
.getFieldOffset(FD
->getFieldIndex());
3421 uint64_t ASTContext::getFieldOffset(const ValueDecl
*VD
) const {
3422 uint64_t OffsetInBits
;
3423 if (const FieldDecl
*FD
= dyn_cast
<FieldDecl
>(VD
)) {
3424 OffsetInBits
= ::getFieldOffset(*this, FD
);
3426 const IndirectFieldDecl
*IFD
= cast
<IndirectFieldDecl
>(VD
);
3429 for (const NamedDecl
*ND
: IFD
->chain())
3430 OffsetInBits
+= ::getFieldOffset(*this, cast
<FieldDecl
>(ND
));
3433 return OffsetInBits
;
3436 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl
*OID
,
3437 const ObjCImplementationDecl
*ID
,
3438 const ObjCIvarDecl
*Ivar
) const {
3439 Ivar
= Ivar
->getCanonicalDecl();
3440 const ObjCInterfaceDecl
*Container
= Ivar
->getContainingInterface();
3442 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3443 // in here; it should never be necessary because that should be the lexical
3444 // decl context for the ivar.
3446 // If we know have an implementation (and the ivar is in it) then
3447 // look up in the implementation layout.
3448 const ASTRecordLayout
*RL
;
3449 if (ID
&& declaresSameEntity(ID
->getClassInterface(), Container
))
3450 RL
= &getASTObjCImplementationLayout(ID
);
3452 RL
= &getASTObjCInterfaceLayout(Container
);
3454 // Compute field index.
3456 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3457 // implemented. This should be fixed to get the information from the layout
3461 for (const ObjCIvarDecl
*IVD
= Container
->all_declared_ivar_begin();
3462 IVD
; IVD
= IVD
->getNextIvar()) {
3467 assert(Index
< RL
->getFieldCount() && "Ivar is not inside record layout!");
3469 return RL
->getFieldOffset(Index
);
3472 /// getObjCLayout - Get or compute information about the layout of the
3473 /// given interface.
3475 /// \param Impl - If given, also include the layout of the interface's
3476 /// implementation. This may differ by including synthesized ivars.
3477 const ASTRecordLayout
&
3478 ASTContext::getObjCLayout(const ObjCInterfaceDecl
*D
,
3479 const ObjCImplementationDecl
*Impl
) const {
3480 // Retrieve the definition
3481 if (D
->hasExternalLexicalStorage() && !D
->getDefinition())
3482 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl
*>(D
));
3483 D
= D
->getDefinition();
3484 assert(D
&& !D
->isInvalidDecl() && D
->isThisDeclarationADefinition() &&
3485 "Invalid interface decl!");
3487 // Look up this layout, if already laid out, return what we have.
3488 const ObjCContainerDecl
*Key
=
3489 Impl
? (const ObjCContainerDecl
*) Impl
: (const ObjCContainerDecl
*) D
;
3490 if (const ASTRecordLayout
*Entry
= ObjCLayouts
[Key
])
3493 // Add in synthesized ivar count if laying out an implementation.
3495 unsigned SynthCount
= CountNonClassIvars(D
);
3496 // If there aren't any synthesized ivars then reuse the interface
3497 // entry. Note we can't cache this because we simply free all
3498 // entries later; however we shouldn't look up implementations
3500 if (SynthCount
== 0)
3501 return getObjCLayout(D
, nullptr);
3504 ItaniumRecordLayoutBuilder
Builder(*this, /*EmptySubobjects=*/nullptr);
3507 const ASTRecordLayout
*NewEntry
= new (*this) ASTRecordLayout(
3508 *this, Builder
.getSize(), Builder
.Alignment
, Builder
.PreferredAlignment
,
3509 Builder
.UnadjustedAlignment
,
3510 /*RequiredAlignment : used by MS-ABI)*/
3511 Builder
.Alignment
, Builder
.getDataSize(), Builder
.FieldOffsets
);
3513 ObjCLayouts
[Key
] = NewEntry
;
3518 static void PrintOffset(raw_ostream
&OS
,
3519 CharUnits Offset
, unsigned IndentLevel
) {
3520 OS
<< llvm::format("%10" PRId64
" | ", (int64_t)Offset
.getQuantity());
3521 OS
.indent(IndentLevel
* 2);
3524 static void PrintBitFieldOffset(raw_ostream
&OS
, CharUnits Offset
,
3525 unsigned Begin
, unsigned Width
,
3526 unsigned IndentLevel
) {
3527 llvm::SmallString
<10> Buffer
;
3529 llvm::raw_svector_ostream
BufferOS(Buffer
);
3530 BufferOS
<< Offset
.getQuantity() << ':';
3534 BufferOS
<< Begin
<< '-' << (Begin
+ Width
- 1);
3538 OS
<< llvm::right_justify(Buffer
, 10) << " | ";
3539 OS
.indent(IndentLevel
* 2);
3542 static void PrintIndentNoOffset(raw_ostream
&OS
, unsigned IndentLevel
) {
3544 OS
.indent(IndentLevel
* 2);
3547 static void DumpRecordLayout(raw_ostream
&OS
, const RecordDecl
*RD
,
3548 const ASTContext
&C
,
3550 unsigned IndentLevel
,
3551 const char* Description
,
3553 bool IncludeVirtualBases
) {
3554 const ASTRecordLayout
&Layout
= C
.getASTRecordLayout(RD
);
3555 auto CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
);
3557 PrintOffset(OS
, Offset
, IndentLevel
);
3558 OS
<< C
.getTypeDeclType(const_cast<RecordDecl
*>(RD
));
3560 OS
<< ' ' << Description
;
3561 if (CXXRD
&& CXXRD
->isEmpty())
3569 const CXXRecordDecl
*PrimaryBase
= Layout
.getPrimaryBase();
3570 bool HasOwnVFPtr
= Layout
.hasOwnVFPtr();
3571 bool HasOwnVBPtr
= Layout
.hasOwnVBPtr();
3574 if (CXXRD
->isDynamicClass() && !PrimaryBase
&& !isMsLayout(C
)) {
3575 PrintOffset(OS
, Offset
, IndentLevel
);
3576 OS
<< '(' << *RD
<< " vtable pointer)\n";
3577 } else if (HasOwnVFPtr
) {
3578 PrintOffset(OS
, Offset
, IndentLevel
);
3579 // vfptr (for Microsoft C++ ABI)
3580 OS
<< '(' << *RD
<< " vftable pointer)\n";
3584 SmallVector
<const CXXRecordDecl
*, 4> Bases
;
3585 for (const CXXBaseSpecifier
&Base
: CXXRD
->bases()) {
3586 assert(!Base
.getType()->isDependentType() &&
3587 "Cannot layout class with dependent bases.");
3588 if (!Base
.isVirtual())
3589 Bases
.push_back(Base
.getType()->getAsCXXRecordDecl());
3592 // Sort nvbases by offset.
3594 Bases
, [&](const CXXRecordDecl
*L
, const CXXRecordDecl
*R
) {
3595 return Layout
.getBaseClassOffset(L
) < Layout
.getBaseClassOffset(R
);
3598 // Dump (non-virtual) bases
3599 for (const CXXRecordDecl
*Base
: Bases
) {
3600 CharUnits BaseOffset
= Offset
+ Layout
.getBaseClassOffset(Base
);
3601 DumpRecordLayout(OS
, Base
, C
, BaseOffset
, IndentLevel
,
3602 Base
== PrimaryBase
? "(primary base)" : "(base)",
3603 /*PrintSizeInfo=*/false,
3604 /*IncludeVirtualBases=*/false);
3607 // vbptr (for Microsoft C++ ABI)
3609 PrintOffset(OS
, Offset
+ Layout
.getVBPtrOffset(), IndentLevel
);
3610 OS
<< '(' << *RD
<< " vbtable pointer)\n";
3615 uint64_t FieldNo
= 0;
3616 for (RecordDecl::field_iterator I
= RD
->field_begin(),
3617 E
= RD
->field_end(); I
!= E
; ++I
, ++FieldNo
) {
3618 const FieldDecl
&Field
= **I
;
3619 uint64_t LocalFieldOffsetInBits
= Layout
.getFieldOffset(FieldNo
);
3620 CharUnits FieldOffset
=
3621 Offset
+ C
.toCharUnitsFromBits(LocalFieldOffsetInBits
);
3623 // Recursively dump fields of record type.
3624 if (auto RT
= Field
.getType()->getAs
<RecordType
>()) {
3625 DumpRecordLayout(OS
, RT
->getDecl(), C
, FieldOffset
, IndentLevel
,
3626 Field
.getName().data(),
3627 /*PrintSizeInfo=*/false,
3628 /*IncludeVirtualBases=*/true);
3632 if (Field
.isBitField()) {
3633 uint64_t LocalFieldByteOffsetInBits
= C
.toBits(FieldOffset
- Offset
);
3634 unsigned Begin
= LocalFieldOffsetInBits
- LocalFieldByteOffsetInBits
;
3635 unsigned Width
= Field
.getBitWidthValue(C
);
3636 PrintBitFieldOffset(OS
, FieldOffset
, Begin
, Width
, IndentLevel
);
3638 PrintOffset(OS
, FieldOffset
, IndentLevel
);
3640 const QualType
&FieldType
= C
.getLangOpts().DumpRecordLayoutsCanonical
3641 ? Field
.getType().getCanonicalType()
3643 OS
<< FieldType
<< ' ' << Field
<< '\n';
3646 // Dump virtual bases.
3647 if (CXXRD
&& IncludeVirtualBases
) {
3648 const ASTRecordLayout::VBaseOffsetsMapTy
&VtorDisps
=
3649 Layout
.getVBaseOffsetsMap();
3651 for (const CXXBaseSpecifier
&Base
: CXXRD
->vbases()) {
3652 assert(Base
.isVirtual() && "Found non-virtual class!");
3653 const CXXRecordDecl
*VBase
= Base
.getType()->getAsCXXRecordDecl();
3655 CharUnits VBaseOffset
= Offset
+ Layout
.getVBaseClassOffset(VBase
);
3657 if (VtorDisps
.find(VBase
)->second
.hasVtorDisp()) {
3658 PrintOffset(OS
, VBaseOffset
- CharUnits::fromQuantity(4), IndentLevel
);
3659 OS
<< "(vtordisp for vbase " << *VBase
<< ")\n";
3662 DumpRecordLayout(OS
, VBase
, C
, VBaseOffset
, IndentLevel
,
3663 VBase
== Layout
.getPrimaryBase() ?
3664 "(primary virtual base)" : "(virtual base)",
3665 /*PrintSizeInfo=*/false,
3666 /*IncludeVirtualBases=*/false);
3670 if (!PrintSizeInfo
) return;
3672 PrintIndentNoOffset(OS
, IndentLevel
- 1);
3673 OS
<< "[sizeof=" << Layout
.getSize().getQuantity();
3674 if (CXXRD
&& !isMsLayout(C
))
3675 OS
<< ", dsize=" << Layout
.getDataSize().getQuantity();
3676 OS
<< ", align=" << Layout
.getAlignment().getQuantity();
3677 if (C
.getTargetInfo().defaultsToAIXPowerAlignment())
3678 OS
<< ", preferredalign=" << Layout
.getPreferredAlignment().getQuantity();
3682 PrintIndentNoOffset(OS
, IndentLevel
- 1);
3683 OS
<< " nvsize=" << Layout
.getNonVirtualSize().getQuantity();
3684 OS
<< ", nvalign=" << Layout
.getNonVirtualAlignment().getQuantity();
3685 if (C
.getTargetInfo().defaultsToAIXPowerAlignment())
3686 OS
<< ", preferrednvalign="
3687 << Layout
.getPreferredNVAlignment().getQuantity();
3692 void ASTContext::DumpRecordLayout(const RecordDecl
*RD
, raw_ostream
&OS
,
3693 bool Simple
) const {
3695 ::DumpRecordLayout(OS
, RD
, *this, CharUnits(), 0, nullptr,
3696 /*PrintSizeInfo*/ true,
3697 /*IncludeVirtualBases=*/true);
3701 // The "simple" format is designed to be parsed by the
3702 // layout-override testing code. There shouldn't be any external
3703 // uses of this format --- when LLDB overrides a layout, it sets up
3704 // the data structures directly --- so feel free to adjust this as
3705 // you like as long as you also update the rudimentary parser for it
3708 const ASTRecordLayout
&Info
= getASTRecordLayout(RD
);
3709 OS
<< "Type: " << getTypeDeclType(RD
) << "\n";
3711 OS
<< "<ASTRecordLayout\n";
3712 OS
<< " Size:" << toBits(Info
.getSize()) << "\n";
3713 if (!isMsLayout(*this))
3714 OS
<< " DataSize:" << toBits(Info
.getDataSize()) << "\n";
3715 OS
<< " Alignment:" << toBits(Info
.getAlignment()) << "\n";
3716 if (Target
->defaultsToAIXPowerAlignment())
3717 OS
<< " PreferredAlignment:" << toBits(Info
.getPreferredAlignment())
3719 OS
<< " FieldOffsets: [";
3720 for (unsigned i
= 0, e
= Info
.getFieldCount(); i
!= e
; ++i
) {
3723 OS
<< Info
.getFieldOffset(i
);