[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / AST / RecordLayoutBuilder.cpp
blob2f546398338c4c89a759e8980efa7755952b5b80
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
24 using namespace clang;
26 namespace {
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40 /// Class - The class for this base info.
41 const CXXRecordDecl *Class;
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44 bool IsVirtual;
46 /// Bases - Information about the base subobjects.
47 SmallVector<BaseSubobjectInfo*, 4> Bases;
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
53 // FIXME: Document.
54 const BaseSubobjectInfo *Derived;
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
61 ExternalLayout() : Size(0), Align(0) {}
63 /// Overall record size in bits.
64 uint64_t Size;
66 /// Overall record alignment in bits.
67 uint64_t Align;
69 /// Record field offsets in bits.
70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
72 /// Direct, non-virtual base offsets.
73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
75 /// Virtual base offsets.
76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
78 /// Get the offset of the given field. The external source must provide
79 /// entries for all fields in the record.
80 uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81 assert(FieldOffsets.count(FD) &&
82 "Field does not have an external offset");
83 return FieldOffsets[FD];
86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87 auto Known = BaseOffsets.find(RD);
88 if (Known == BaseOffsets.end())
89 return false;
90 BaseOffset = Known->second;
91 return true;
94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95 auto Known = VirtualBaseOffsets.find(RD);
96 if (Known == VirtualBaseOffsets.end())
97 return false;
98 BaseOffset = Known->second;
99 return true;
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106 const ASTContext &Context;
107 uint64_t CharWidth;
109 /// Class - The class whose empty entries we're keeping track of.
110 const CXXRecordDecl *Class;
112 /// EmptyClassOffsets - A map from offsets to empty record decls.
113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115 EmptyClassOffsetsMapTy EmptyClassOffsets;
117 /// MaxEmptyClassOffset - The highest offset known to contain an empty
118 /// base subobject.
119 CharUnits MaxEmptyClassOffset;
121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122 /// member subobject that is empty.
123 void ComputeEmptySubobjectSizes();
125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128 CharUnits Offset, bool PlacingEmptyBase);
130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131 const CXXRecordDecl *Class, CharUnits Offset,
132 bool PlacingOverlappingField);
133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134 bool PlacingOverlappingField);
136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137 /// subobjects beyond the given offset.
138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139 return Offset <= MaxEmptyClassOffset;
142 CharUnits
143 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145 assert(FieldOffset % CharWidth == 0 &&
146 "Field offset not at char boundary!");
148 return Context.toCharUnitsFromBits(FieldOffset);
151 protected:
152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153 CharUnits Offset) const;
155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156 CharUnits Offset);
158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159 const CXXRecordDecl *Class,
160 CharUnits Offset) const;
161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162 CharUnits Offset) const;
164 public:
165 /// This holds the size of the largest empty subobject (either a base
166 /// or a member). Will be zero if the record being built doesn't contain
167 /// any empty classes.
168 CharUnits SizeOfLargestEmptySubobject;
170 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172 ComputeEmptySubobjectSizes();
175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176 /// at the given offset.
177 /// Returns false if placing the record will result in two components
178 /// (direct or indirect) of the same type having the same offset.
179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180 CharUnits Offset);
182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183 /// offset.
184 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188 // Check the bases.
189 for (const CXXBaseSpecifier &Base : Class->bases()) {
190 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
192 CharUnits EmptySize;
193 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194 if (BaseDecl->isEmpty()) {
195 // If the class decl is empty, get its size.
196 EmptySize = Layout.getSize();
197 } else {
198 // Otherwise, we get the largest empty subobject for the decl.
199 EmptySize = Layout.getSizeOfLargestEmptySubobject();
202 if (EmptySize > SizeOfLargestEmptySubobject)
203 SizeOfLargestEmptySubobject = EmptySize;
206 // Check the fields.
207 for (const FieldDecl *FD : Class->fields()) {
208 const RecordType *RT =
209 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
211 // We only care about record types.
212 if (!RT)
213 continue;
215 CharUnits EmptySize;
216 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218 if (MemberDecl->isEmpty()) {
219 // If the class decl is empty, get its size.
220 EmptySize = Layout.getSize();
221 } else {
222 // Otherwise, we get the largest empty subobject for the decl.
223 EmptySize = Layout.getSizeOfLargestEmptySubobject();
226 if (EmptySize > SizeOfLargestEmptySubobject)
227 SizeOfLargestEmptySubobject = EmptySize;
231 bool
232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233 CharUnits Offset) const {
234 // We only need to check empty bases.
235 if (!RD->isEmpty())
236 return true;
238 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239 if (I == EmptyClassOffsets.end())
240 return true;
242 const ClassVectorTy &Classes = I->second;
243 if (!llvm::is_contained(Classes, RD))
244 return true;
246 // There is already an empty class of the same type at this offset.
247 return false;
250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251 CharUnits Offset) {
252 // We only care about empty bases.
253 if (!RD->isEmpty())
254 return;
256 // If we have empty structures inside a union, we can assign both
257 // the same offset. Just avoid pushing them twice in the list.
258 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259 if (llvm::is_contained(Classes, RD))
260 return;
262 Classes.push_back(RD);
264 // Update the empty class offset.
265 if (Offset > MaxEmptyClassOffset)
266 MaxEmptyClassOffset = Offset;
269 bool
270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271 CharUnits Offset) {
272 // We don't have to keep looking past the maximum offset that's known to
273 // contain an empty class.
274 if (!AnyEmptySubobjectsBeyondOffset(Offset))
275 return true;
277 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278 return false;
280 // Traverse all non-virtual bases.
281 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282 for (const BaseSubobjectInfo *Base : Info->Bases) {
283 if (Base->IsVirtual)
284 continue;
286 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
288 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289 return false;
292 if (Info->PrimaryVirtualBaseInfo) {
293 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
295 if (Info == PrimaryVirtualBaseInfo->Derived) {
296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297 return false;
301 // Traverse all member variables.
302 unsigned FieldNo = 0;
303 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305 if (I->isBitField())
306 continue;
308 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310 return false;
313 return true;
316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317 CharUnits Offset,
318 bool PlacingEmptyBase) {
319 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320 // We know that the only empty subobjects that can conflict with empty
321 // subobject of non-empty bases, are empty bases that can be placed at
322 // offset zero. Because of this, we only need to keep track of empty base
323 // subobjects with offsets less than the size of the largest empty
324 // subobject for our class.
325 return;
328 AddSubobjectAtOffset(Info->Class, Offset);
330 // Traverse all non-virtual bases.
331 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332 for (const BaseSubobjectInfo *Base : Info->Bases) {
333 if (Base->IsVirtual)
334 continue;
336 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
340 if (Info->PrimaryVirtualBaseInfo) {
341 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
343 if (Info == PrimaryVirtualBaseInfo->Derived)
344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345 PlacingEmptyBase);
348 // Traverse all member variables.
349 unsigned FieldNo = 0;
350 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352 if (I->isBitField())
353 continue;
355 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361 CharUnits Offset) {
362 // If we know this class doesn't have any empty subobjects we don't need to
363 // bother checking.
364 if (SizeOfLargestEmptySubobject.isZero())
365 return true;
367 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368 return false;
370 // We are able to place the base at this offset. Make sure to update the
371 // empty base subobject map.
372 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373 return true;
376 bool
377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378 const CXXRecordDecl *Class,
379 CharUnits Offset) const {
380 // We don't have to keep looking past the maximum offset that's known to
381 // contain an empty class.
382 if (!AnyEmptySubobjectsBeyondOffset(Offset))
383 return true;
385 if (!CanPlaceSubobjectAtOffset(RD, Offset))
386 return false;
388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
390 // Traverse all non-virtual bases.
391 for (const CXXBaseSpecifier &Base : RD->bases()) {
392 if (Base.isVirtual())
393 continue;
395 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
397 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399 return false;
402 if (RD == Class) {
403 // This is the most derived class, traverse virtual bases as well.
404 for (const CXXBaseSpecifier &Base : RD->vbases()) {
405 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
407 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409 return false;
413 // Traverse all member variables.
414 unsigned FieldNo = 0;
415 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416 I != E; ++I, ++FieldNo) {
417 if (I->isBitField())
418 continue;
420 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
422 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423 return false;
426 return true;
429 bool
430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431 CharUnits Offset) const {
432 // We don't have to keep looking past the maximum offset that's known to
433 // contain an empty class.
434 if (!AnyEmptySubobjectsBeyondOffset(Offset))
435 return true;
437 QualType T = FD->getType();
438 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
441 // If we have an array type we need to look at every element.
442 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443 QualType ElemTy = Context.getBaseElementType(AT);
444 const RecordType *RT = ElemTy->getAs<RecordType>();
445 if (!RT)
446 return true;
448 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
451 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452 CharUnits ElementOffset = Offset;
453 for (uint64_t I = 0; I != NumElements; ++I) {
454 // We don't have to keep looking past the maximum offset that's known to
455 // contain an empty class.
456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457 return true;
459 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460 return false;
462 ElementOffset += Layout.getSize();
466 return true;
469 bool
470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471 CharUnits Offset) {
472 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473 return false;
475 // We are able to place the member variable at this offset.
476 // Make sure to update the empty field subobject map.
477 UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478 return true;
481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482 const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483 bool PlacingOverlappingField) {
484 // We know that the only empty subobjects that can conflict with empty
485 // field subobjects are subobjects of empty bases and potentially-overlapping
486 // fields that can be placed at offset zero. Because of this, we only need to
487 // keep track of empty field subobjects with offsets less than the size of
488 // the largest empty subobject for our class.
490 // (Proof: we will only consider placing a subobject at offset zero or at
491 // >= the current dsize. The only cases where the earlier subobject can be
492 // placed beyond the end of dsize is if it's an empty base or a
493 // potentially-overlapping field.)
494 if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495 return;
497 AddSubobjectAtOffset(RD, Offset);
499 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
501 // Traverse all non-virtual bases.
502 for (const CXXBaseSpecifier &Base : RD->bases()) {
503 if (Base.isVirtual())
504 continue;
506 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
508 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510 PlacingOverlappingField);
513 if (RD == Class) {
514 // This is the most derived class, traverse virtual bases as well.
515 for (const CXXBaseSpecifier &Base : RD->vbases()) {
516 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
518 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520 PlacingOverlappingField);
524 // Traverse all member variables.
525 unsigned FieldNo = 0;
526 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527 I != E; ++I, ++FieldNo) {
528 if (I->isBitField())
529 continue;
531 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
533 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538 const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539 QualType T = FD->getType();
540 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541 UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542 return;
545 // If we have an array type we need to update every element.
546 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547 QualType ElemTy = Context.getBaseElementType(AT);
548 const RecordType *RT = ElemTy->getAs<RecordType>();
549 if (!RT)
550 return;
552 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
555 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556 CharUnits ElementOffset = Offset;
558 for (uint64_t I = 0; I != NumElements; ++I) {
559 // We know that the only empty subobjects that can conflict with empty
560 // field subobjects are subobjects of empty bases that can be placed at
561 // offset zero. Because of this, we only need to keep track of empty field
562 // subobjects with offsets less than the size of the largest empty
563 // subobject for our class.
564 if (!PlacingOverlappingField &&
565 ElementOffset >= SizeOfLargestEmptySubobject)
566 return;
568 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569 PlacingOverlappingField);
570 ElementOffset += Layout.getSize();
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
577 class ItaniumRecordLayoutBuilder {
578 protected:
579 // FIXME: Remove this and make the appropriate fields public.
580 friend class clang::ASTContext;
582 const ASTContext &Context;
584 EmptySubobjectMap *EmptySubobjects;
586 /// Size - The current size of the record layout.
587 uint64_t Size;
589 /// Alignment - The current alignment of the record layout.
590 CharUnits Alignment;
592 /// PreferredAlignment - The preferred alignment of the record layout.
593 CharUnits PreferredAlignment;
595 /// The alignment if attribute packed is not used.
596 CharUnits UnpackedAlignment;
598 /// \brief The maximum of the alignments of top-level members.
599 CharUnits UnadjustedAlignment;
601 SmallVector<uint64_t, 16> FieldOffsets;
603 /// Whether the external AST source has provided a layout for this
604 /// record.
605 unsigned UseExternalLayout : 1;
607 /// Whether we need to infer alignment, even when we have an
608 /// externally-provided layout.
609 unsigned InferAlignment : 1;
611 /// Packed - Whether the record is packed or not.
612 unsigned Packed : 1;
614 unsigned IsUnion : 1;
616 unsigned IsMac68kAlign : 1;
618 unsigned IsNaturalAlign : 1;
620 unsigned IsMsStruct : 1;
622 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623 /// this contains the number of bits in the last unit that can be used for
624 /// an adjacent bitfield if necessary. The unit in question is usually
625 /// a byte, but larger units are used if IsMsStruct.
626 unsigned char UnfilledBitsInLastUnit;
628 /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629 /// storage unit of the previous field if it was a bitfield.
630 unsigned char LastBitfieldStorageUnitSize;
632 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633 /// #pragma pack.
634 CharUnits MaxFieldAlignment;
636 /// DataSize - The data size of the record being laid out.
637 uint64_t DataSize;
639 CharUnits NonVirtualSize;
640 CharUnits NonVirtualAlignment;
641 CharUnits PreferredNVAlignment;
643 /// If we've laid out a field but not included its tail padding in Size yet,
644 /// this is the size up to the end of that field.
645 CharUnits PaddedFieldSize;
647 /// PrimaryBase - the primary base class (if one exists) of the class
648 /// we're laying out.
649 const CXXRecordDecl *PrimaryBase;
651 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652 /// out is virtual.
653 bool PrimaryBaseIsVirtual;
655 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656 /// pointer, as opposed to inheriting one from a primary base class.
657 bool HasOwnVFPtr;
659 /// the flag of field offset changing due to packed attribute.
660 bool HasPackedField;
662 /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663 /// When there are OverlappingEmptyFields existing in the aggregate, the
664 /// flag shows if the following first non-empty or empty-but-non-overlapping
665 /// field has been handled, if any.
666 bool HandledFirstNonOverlappingEmptyField;
668 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
670 /// Bases - base classes and their offsets in the record.
671 BaseOffsetsMapTy Bases;
673 // VBases - virtual base classes and their offsets in the record.
674 ASTRecordLayout::VBaseOffsetsMapTy VBases;
676 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677 /// primary base classes for some other direct or indirect base class.
678 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
680 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681 /// inheritance graph order. Used for determining the primary base class.
682 const CXXRecordDecl *FirstNearlyEmptyVBase;
684 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685 /// avoid visiting virtual bases more than once.
686 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
688 /// Valid if UseExternalLayout is true.
689 ExternalLayout External;
691 ItaniumRecordLayoutBuilder(const ASTContext &Context,
692 EmptySubobjectMap *EmptySubobjects)
693 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694 Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695 UnpackedAlignment(CharUnits::One()),
696 UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697 InferAlignment(false), Packed(false), IsUnion(false),
698 IsMac68kAlign(false),
699 IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700 IsMsStruct(false), UnfilledBitsInLastUnit(0),
701 LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702 DataSize(0), NonVirtualSize(CharUnits::Zero()),
703 NonVirtualAlignment(CharUnits::One()),
704 PreferredNVAlignment(CharUnits::One()),
705 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707 HandledFirstNonOverlappingEmptyField(false),
708 FirstNearlyEmptyVBase(nullptr) {}
710 void Layout(const RecordDecl *D);
711 void Layout(const CXXRecordDecl *D);
712 void Layout(const ObjCInterfaceDecl *D);
714 void LayoutFields(const RecordDecl *D);
715 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716 void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717 bool FieldPacked, const FieldDecl *D);
718 void LayoutBitField(const FieldDecl *D);
720 TargetCXXABI getCXXABI() const {
721 return Context.getTargetInfo().getCXXABI();
724 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
727 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728 BaseSubobjectInfoMapTy;
730 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731 /// of the class we're laying out to their base subobject info.
732 BaseSubobjectInfoMapTy VirtualBaseInfo;
734 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735 /// class we're laying out to their base subobject info.
736 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
738 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739 /// bases of the given class.
740 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
742 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743 /// single class and all of its base classes.
744 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745 bool IsVirtual,
746 BaseSubobjectInfo *Derived);
748 /// DeterminePrimaryBase - Determine the primary base of the given class.
749 void DeterminePrimaryBase(const CXXRecordDecl *RD);
751 void SelectPrimaryVBase(const CXXRecordDecl *RD);
753 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
755 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
759 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
762 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763 CharUnits Offset);
765 /// LayoutVirtualBases - Lays out all the virtual bases.
766 void LayoutVirtualBases(const CXXRecordDecl *RD,
767 const CXXRecordDecl *MostDerivedClass);
769 /// LayoutVirtualBase - Lays out a single virtual base.
770 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
772 /// LayoutBase - Will lay out a base and return the offset where it was
773 /// placed, in chars.
774 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
776 /// InitializeLayout - Initialize record layout for the given record decl.
777 void InitializeLayout(const Decl *D);
779 /// FinishLayout - Finalize record layout. Adjust record size based on the
780 /// alignment.
781 void FinishLayout(const NamedDecl *D);
783 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784 CharUnits PreferredAlignment);
785 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786 UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
788 void UpdateAlignment(CharUnits NewAlignment) {
789 UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
792 /// Retrieve the externally-supplied field offset for the given
793 /// field.
795 /// \param Field The field whose offset is being queried.
796 /// \param ComputedOffset The offset that we've computed for this field.
797 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798 uint64_t ComputedOffset);
800 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801 uint64_t UnpackedOffset, unsigned UnpackedAlign,
802 bool isPacked, const FieldDecl *D);
804 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
806 CharUnits getSize() const {
807 assert(Size % Context.getCharWidth() == 0);
808 return Context.toCharUnitsFromBits(Size);
810 uint64_t getSizeInBits() const { return Size; }
812 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
813 void setSize(uint64_t NewSize) { Size = NewSize; }
815 CharUnits getAligment() const { return Alignment; }
817 CharUnits getDataSize() const {
818 assert(DataSize % Context.getCharWidth() == 0);
819 return Context.toCharUnitsFromBits(DataSize);
821 uint64_t getDataSizeInBits() const { return DataSize; }
823 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
824 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
826 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827 void operator=(const ItaniumRecordLayoutBuilder &) = delete;
829 } // end anonymous namespace
831 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832 for (const auto &I : RD->bases()) {
833 assert(!I.getType()->isDependentType() &&
834 "Cannot layout class with dependent bases.");
836 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
838 // Check if this is a nearly empty virtual base.
839 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840 // If it's not an indirect primary base, then we've found our primary
841 // base.
842 if (!IndirectPrimaryBases.count(Base)) {
843 PrimaryBase = Base;
844 PrimaryBaseIsVirtual = true;
845 return;
848 // Is this the first nearly empty virtual base?
849 if (!FirstNearlyEmptyVBase)
850 FirstNearlyEmptyVBase = Base;
853 SelectPrimaryVBase(Base);
854 if (PrimaryBase)
855 return;
859 /// DeterminePrimaryBase - Determine the primary base of the given class.
860 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861 // If the class isn't dynamic, it won't have a primary base.
862 if (!RD->isDynamicClass())
863 return;
865 // Compute all the primary virtual bases for all of our direct and
866 // indirect bases, and record all their primary virtual base classes.
867 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
869 // If the record has a dynamic base class, attempt to choose a primary base
870 // class. It is the first (in direct base class order) non-virtual dynamic
871 // base class, if one exists.
872 for (const auto &I : RD->bases()) {
873 // Ignore virtual bases.
874 if (I.isVirtual())
875 continue;
877 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
879 if (Base->isDynamicClass()) {
880 // We found it.
881 PrimaryBase = Base;
882 PrimaryBaseIsVirtual = false;
883 return;
887 // Under the Itanium ABI, if there is no non-virtual primary base class,
888 // try to compute the primary virtual base. The primary virtual base is
889 // the first nearly empty virtual base that is not an indirect primary
890 // virtual base class, if one exists.
891 if (RD->getNumVBases() != 0) {
892 SelectPrimaryVBase(RD);
893 if (PrimaryBase)
894 return;
897 // Otherwise, it is the first indirect primary base class, if one exists.
898 if (FirstNearlyEmptyVBase) {
899 PrimaryBase = FirstNearlyEmptyVBase;
900 PrimaryBaseIsVirtual = true;
901 return;
904 assert(!PrimaryBase && "Should not get here with a primary base!");
907 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909 BaseSubobjectInfo *Info;
911 if (IsVirtual) {
912 // Check if we already have info about this virtual base.
913 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914 if (InfoSlot) {
915 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
916 return InfoSlot;
919 // We don't, create it.
920 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921 Info = InfoSlot;
922 } else {
923 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
926 Info->Class = RD;
927 Info->IsVirtual = IsVirtual;
928 Info->Derived = nullptr;
929 Info->PrimaryVirtualBaseInfo = nullptr;
931 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
934 // Check if this base has a primary virtual base.
935 if (RD->getNumVBases()) {
936 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937 if (Layout.isPrimaryBaseVirtual()) {
938 // This base does have a primary virtual base.
939 PrimaryVirtualBase = Layout.getPrimaryBase();
940 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
942 // Now check if we have base subobject info about this primary base.
943 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
945 if (PrimaryVirtualBaseInfo) {
946 if (PrimaryVirtualBaseInfo->Derived) {
947 // We did have info about this primary base, and it turns out that it
948 // has already been claimed as a primary virtual base for another
949 // base.
950 PrimaryVirtualBase = nullptr;
951 } else {
952 // We can claim this base as our primary base.
953 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954 PrimaryVirtualBaseInfo->Derived = Info;
960 // Now go through all direct bases.
961 for (const auto &I : RD->bases()) {
962 bool IsVirtual = I.isVirtual();
964 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
966 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
969 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970 // Traversing the bases must have created the base info for our primary
971 // virtual base.
972 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973 assert(PrimaryVirtualBaseInfo &&
974 "Did not create a primary virtual base!");
976 // Claim the primary virtual base as our primary virtual base.
977 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978 PrimaryVirtualBaseInfo->Derived = Info;
981 return Info;
984 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985 const CXXRecordDecl *RD) {
986 for (const auto &I : RD->bases()) {
987 bool IsVirtual = I.isVirtual();
989 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
991 // Compute the base subobject info for this base.
992 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993 nullptr);
995 if (IsVirtual) {
996 // ComputeBaseInfo has already added this base for us.
997 assert(VirtualBaseInfo.count(BaseDecl) &&
998 "Did not add virtual base!");
999 } else {
1000 // Add the base info to the map of non-virtual bases.
1001 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1002 "Non-virtual base already exists!");
1003 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1008 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009 CharUnits UnpackedBaseAlign) {
1010 CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1012 // The maximum field alignment overrides base align.
1013 if (!MaxFieldAlignment.isZero()) {
1014 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1018 // Round up the current record size to pointer alignment.
1019 setSize(getSize().alignTo(BaseAlign));
1021 // Update the alignment.
1022 UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1025 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026 const CXXRecordDecl *RD) {
1027 // Then, determine the primary base class.
1028 DeterminePrimaryBase(RD);
1030 // Compute base subobject info.
1031 ComputeBaseSubobjectInfo(RD);
1033 // If we have a primary base class, lay it out.
1034 if (PrimaryBase) {
1035 if (PrimaryBaseIsVirtual) {
1036 // If the primary virtual base was a primary virtual base of some other
1037 // base class we'll have to steal it.
1038 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039 PrimaryBaseInfo->Derived = nullptr;
1041 // We have a virtual primary base, insert it as an indirect primary base.
1042 IndirectPrimaryBases.insert(PrimaryBase);
1044 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1045 "vbase already visited!");
1046 VisitedVirtualBases.insert(PrimaryBase);
1048 LayoutVirtualBase(PrimaryBaseInfo);
1049 } else {
1050 BaseSubobjectInfo *PrimaryBaseInfo =
1051 NonVirtualBaseInfo.lookup(PrimaryBase);
1052 assert(PrimaryBaseInfo &&
1053 "Did not find base info for non-virtual primary base!");
1055 LayoutNonVirtualBase(PrimaryBaseInfo);
1058 // If this class needs a vtable/vf-table and didn't get one from a
1059 // primary base, add it in now.
1060 } else if (RD->isDynamicClass()) {
1061 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1062 CharUnits PtrWidth = Context.toCharUnitsFromBits(
1063 Context.getTargetInfo().getPointerWidth(LangAS::Default));
1064 CharUnits PtrAlign = Context.toCharUnitsFromBits(
1065 Context.getTargetInfo().getPointerAlign(LangAS::Default));
1066 EnsureVTablePointerAlignment(PtrAlign);
1067 HasOwnVFPtr = true;
1069 assert(!IsUnion && "Unions cannot be dynamic classes.");
1070 HandledFirstNonOverlappingEmptyField = true;
1072 setSize(getSize() + PtrWidth);
1073 setDataSize(getSize());
1076 // Now lay out the non-virtual bases.
1077 for (const auto &I : RD->bases()) {
1079 // Ignore virtual bases.
1080 if (I.isVirtual())
1081 continue;
1083 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1085 // Skip the primary base, because we've already laid it out. The
1086 // !PrimaryBaseIsVirtual check is required because we might have a
1087 // non-virtual base of the same type as a primary virtual base.
1088 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089 continue;
1091 // Lay out the base.
1092 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093 assert(BaseInfo && "Did not find base info for non-virtual base!");
1095 LayoutNonVirtualBase(BaseInfo);
1099 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100 const BaseSubobjectInfo *Base) {
1101 // Layout the base.
1102 CharUnits Offset = LayoutBase(Base);
1104 // Add its base class offset.
1105 assert(!Bases.count(Base->Class) && "base offset already exists!");
1106 Bases.insert(std::make_pair(Base->Class, Offset));
1108 AddPrimaryVirtualBaseOffsets(Base, Offset);
1111 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112 const BaseSubobjectInfo *Info, CharUnits Offset) {
1113 // This base isn't interesting, it has no virtual bases.
1114 if (!Info->Class->getNumVBases())
1115 return;
1117 // First, check if we have a virtual primary base to add offsets for.
1118 if (Info->PrimaryVirtualBaseInfo) {
1119 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1120 "Primary virtual base is not virtual!");
1121 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122 // Add the offset.
1123 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1124 "primary vbase offset already exists!");
1125 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126 ASTRecordLayout::VBaseInfo(Offset, false)));
1128 // Traverse the primary virtual base.
1129 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1133 // Now go through all direct non-virtual bases.
1134 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135 for (const BaseSubobjectInfo *Base : Info->Bases) {
1136 if (Base->IsVirtual)
1137 continue;
1139 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146 const CXXRecordDecl *PrimaryBase;
1147 bool PrimaryBaseIsVirtual;
1149 if (MostDerivedClass == RD) {
1150 PrimaryBase = this->PrimaryBase;
1151 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152 } else {
1153 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154 PrimaryBase = Layout.getPrimaryBase();
1155 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1158 for (const CXXBaseSpecifier &Base : RD->bases()) {
1159 assert(!Base.getType()->isDependentType() &&
1160 "Cannot layout class with dependent bases.");
1162 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1164 if (Base.isVirtual()) {
1165 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1166 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1168 // Only lay out the virtual base if it's not an indirect primary base.
1169 if (!IndirectPrimaryBase) {
1170 // Only visit virtual bases once.
1171 if (!VisitedVirtualBases.insert(BaseDecl).second)
1172 continue;
1174 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175 assert(BaseInfo && "Did not find virtual base info!");
1176 LayoutVirtualBase(BaseInfo);
1181 if (!BaseDecl->getNumVBases()) {
1182 // This base isn't interesting since it doesn't have any virtual bases.
1183 continue;
1186 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1190 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191 const BaseSubobjectInfo *Base) {
1192 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1194 // Layout the base.
1195 CharUnits Offset = LayoutBase(Base);
1197 // Add its base class offset.
1198 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1199 VBases.insert(std::make_pair(Base->Class,
1200 ASTRecordLayout::VBaseInfo(Offset, false)));
1202 AddPrimaryVirtualBaseOffsets(Base, Offset);
1205 CharUnits
1206 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207 assert(!IsUnion && "Unions cannot have base classes.");
1209 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210 CharUnits Offset;
1212 // Query the external layout to see if it provides an offset.
1213 bool HasExternalLayout = false;
1214 if (UseExternalLayout) {
1215 if (Base->IsVirtual)
1216 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217 else
1218 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1221 auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223 // Per GCC's documentation, it only applies to non-static data members.
1224 return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225 LangOptions::ClangABI::Ver6) ||
1226 Context.getTargetInfo().getTriple().isPS() ||
1227 Context.getTargetInfo().getTriple().isOSAIX()))
1228 ? CharUnits::One()
1229 : UnpackedAlign;
1232 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233 CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234 CharUnits BaseAlign =
1235 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236 CharUnits PreferredBaseAlign =
1237 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1239 const bool DefaultsToAIXPowerAlignment =
1240 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241 if (DefaultsToAIXPowerAlignment) {
1242 // AIX `power` alignment does not apply the preferred alignment for
1243 // non-union classes if the source of the alignment (the current base in
1244 // this context) follows introduction of the first subobject with
1245 // exclusively allocated space or zero-extent array.
1246 if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247 // By handling a base class that is not empty, we're handling the
1248 // "first (inherited) member".
1249 HandledFirstNonOverlappingEmptyField = true;
1250 } else if (!IsNaturalAlign) {
1251 UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252 PreferredBaseAlign = BaseAlign;
1256 CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257 ? UnpackedBaseAlign
1258 : UnpackedPreferredBaseAlign;
1259 // If we have an empty base class, try to place it at offset 0.
1260 if (Base->Class->isEmpty() &&
1261 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263 setSize(std::max(getSize(), Layout.getSize()));
1264 // On PS4/PS5, don't update the alignment, to preserve compatibility.
1265 if (!Context.getTargetInfo().getTriple().isPS())
1266 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1268 return CharUnits::Zero();
1271 // The maximum field alignment overrides the base align/(AIX-only) preferred
1272 // base align.
1273 if (!MaxFieldAlignment.isZero()) {
1274 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1275 PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1276 UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1279 CharUnits AlignTo =
1280 !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1281 if (!HasExternalLayout) {
1282 // Round up the current record size to the base's alignment boundary.
1283 Offset = getDataSize().alignTo(AlignTo);
1285 // Try to place the base.
1286 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1287 Offset += AlignTo;
1288 } else {
1289 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1290 (void)Allowed;
1291 assert(Allowed && "Base subobject externally placed at overlapping offset");
1293 if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1294 // The externally-supplied base offset is before the base offset we
1295 // computed. Assume that the structure is packed.
1296 Alignment = CharUnits::One();
1297 InferAlignment = false;
1301 if (!Base->Class->isEmpty()) {
1302 // Update the data size.
1303 setDataSize(Offset + Layout.getNonVirtualSize());
1305 setSize(std::max(getSize(), getDataSize()));
1306 } else
1307 setSize(std::max(getSize(), Offset + Layout.getSize()));
1309 // Remember max struct/class alignment.
1310 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1312 return Offset;
1315 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1316 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1317 IsUnion = RD->isUnion();
1318 IsMsStruct = RD->isMsStruct(Context);
1321 Packed = D->hasAttr<PackedAttr>();
1323 // Honor the default struct packing maximum alignment flag.
1324 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1325 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1328 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1329 // and forces all structures to have 2-byte alignment. The IBM docs on it
1330 // allude to additional (more complicated) semantics, especially with regard
1331 // to bit-fields, but gcc appears not to follow that.
1332 if (D->hasAttr<AlignMac68kAttr>()) {
1333 assert(
1334 !D->hasAttr<AlignNaturalAttr>() &&
1335 "Having both mac68k and natural alignment on a decl is not allowed.");
1336 IsMac68kAlign = true;
1337 MaxFieldAlignment = CharUnits::fromQuantity(2);
1338 Alignment = CharUnits::fromQuantity(2);
1339 PreferredAlignment = CharUnits::fromQuantity(2);
1340 } else {
1341 if (D->hasAttr<AlignNaturalAttr>())
1342 IsNaturalAlign = true;
1344 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1345 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1347 if (unsigned MaxAlign = D->getMaxAlignment())
1348 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1351 HandledFirstNonOverlappingEmptyField =
1352 !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1354 // If there is an external AST source, ask it for the various offsets.
1355 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1356 if (ExternalASTSource *Source = Context.getExternalSource()) {
1357 UseExternalLayout = Source->layoutRecordType(
1358 RD, External.Size, External.Align, External.FieldOffsets,
1359 External.BaseOffsets, External.VirtualBaseOffsets);
1361 // Update based on external alignment.
1362 if (UseExternalLayout) {
1363 if (External.Align > 0) {
1364 Alignment = Context.toCharUnitsFromBits(External.Align);
1365 PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1366 } else {
1367 // The external source didn't have alignment information; infer it.
1368 InferAlignment = true;
1374 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1375 InitializeLayout(D);
1376 LayoutFields(D);
1378 // Finally, round the size of the total struct up to the alignment of the
1379 // struct itself.
1380 FinishLayout(D);
1383 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1384 InitializeLayout(RD);
1386 // Lay out the vtable and the non-virtual bases.
1387 LayoutNonVirtualBases(RD);
1389 LayoutFields(RD);
1391 NonVirtualSize = Context.toCharUnitsFromBits(
1392 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1393 NonVirtualAlignment = Alignment;
1394 PreferredNVAlignment = PreferredAlignment;
1396 // Lay out the virtual bases and add the primary virtual base offsets.
1397 LayoutVirtualBases(RD, RD);
1399 // Finally, round the size of the total struct up to the alignment
1400 // of the struct itself.
1401 FinishLayout(RD);
1403 #ifndef NDEBUG
1404 // Check that we have base offsets for all bases.
1405 for (const CXXBaseSpecifier &Base : RD->bases()) {
1406 if (Base.isVirtual())
1407 continue;
1409 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1411 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1414 // And all virtual bases.
1415 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1416 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1418 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1420 #endif
1423 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1424 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1425 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1427 UpdateAlignment(SL.getAlignment());
1429 // We start laying out ivars not at the end of the superclass
1430 // structure, but at the next byte following the last field.
1431 setDataSize(SL.getDataSize());
1432 setSize(getDataSize());
1435 InitializeLayout(D);
1436 // Layout each ivar sequentially.
1437 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1438 IVD = IVD->getNextIvar())
1439 LayoutField(IVD, false);
1441 // Finally, round the size of the total struct up to the alignment of the
1442 // struct itself.
1443 FinishLayout(D);
1446 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1447 // Layout each field, for now, just sequentially, respecting alignment. In
1448 // the future, this will need to be tweakable by targets.
1449 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1450 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1451 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1452 auto Next(I);
1453 ++Next;
1454 LayoutField(*I,
1455 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1459 // Rounds the specified size to have it a multiple of the char size.
1460 static uint64_t
1461 roundUpSizeToCharAlignment(uint64_t Size,
1462 const ASTContext &Context) {
1463 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1464 return llvm::alignTo(Size, CharAlignment);
1467 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1468 uint64_t StorageUnitSize,
1469 bool FieldPacked,
1470 const FieldDecl *D) {
1471 assert(Context.getLangOpts().CPlusPlus &&
1472 "Can only have wide bit-fields in C++!");
1474 // Itanium C++ ABI 2.4:
1475 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1476 // sizeof(T')*8 <= n.
1478 QualType IntegralPODTypes[] = {
1479 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1480 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1483 QualType Type;
1484 for (const QualType &QT : IntegralPODTypes) {
1485 uint64_t Size = Context.getTypeSize(QT);
1487 if (Size > FieldSize)
1488 break;
1490 Type = QT;
1492 assert(!Type.isNull() && "Did not find a type!");
1494 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1496 // We're not going to use any of the unfilled bits in the last byte.
1497 UnfilledBitsInLastUnit = 0;
1498 LastBitfieldStorageUnitSize = 0;
1500 uint64_t FieldOffset;
1501 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1503 if (IsUnion) {
1504 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1505 Context);
1506 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1507 FieldOffset = 0;
1508 } else {
1509 // The bitfield is allocated starting at the next offset aligned
1510 // appropriately for T', with length n bits.
1511 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1513 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1515 setDataSize(
1516 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1517 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1520 // Place this field at the current location.
1521 FieldOffsets.push_back(FieldOffset);
1523 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1524 Context.toBits(TypeAlign), FieldPacked, D);
1526 // Update the size.
1527 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1529 // Remember max struct/class alignment.
1530 UpdateAlignment(TypeAlign);
1533 static bool isAIXLayout(const ASTContext &Context) {
1534 return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1537 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1538 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1539 uint64_t FieldSize = D->getBitWidthValue(Context);
1540 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1541 uint64_t StorageUnitSize = FieldInfo.Width;
1542 unsigned FieldAlign = FieldInfo.Align;
1543 bool AlignIsRequired = FieldInfo.isAlignRequired();
1545 // UnfilledBitsInLastUnit is the difference between the end of the
1546 // last allocated bitfield (i.e. the first bit offset available for
1547 // bitfields) and the end of the current data size in bits (i.e. the
1548 // first bit offset available for non-bitfields). The current data
1549 // size in bits is always a multiple of the char size; additionally,
1550 // for ms_struct records it's also a multiple of the
1551 // LastBitfieldStorageUnitSize (if set).
1553 // The struct-layout algorithm is dictated by the platform ABI,
1554 // which in principle could use almost any rules it likes. In
1555 // practice, UNIXy targets tend to inherit the algorithm described
1556 // in the System V generic ABI. The basic bitfield layout rule in
1557 // System V is to place bitfields at the next available bit offset
1558 // where the entire bitfield would fit in an aligned storage unit of
1559 // the declared type; it's okay if an earlier or later non-bitfield
1560 // is allocated in the same storage unit. However, some targets
1561 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1562 // require this storage unit to be aligned, and therefore always put
1563 // the bitfield at the next available bit offset.
1565 // ms_struct basically requests a complete replacement of the
1566 // platform ABI's struct-layout algorithm, with the high-level goal
1567 // of duplicating MSVC's layout. For non-bitfields, this follows
1568 // the standard algorithm. The basic bitfield layout rule is to
1569 // allocate an entire unit of the bitfield's declared type
1570 // (e.g. 'unsigned long'), then parcel it up among successive
1571 // bitfields whose declared types have the same size, making a new
1572 // unit as soon as the last can no longer store the whole value.
1573 // Since it completely replaces the platform ABI's algorithm,
1574 // settings like !useBitFieldTypeAlignment() do not apply.
1576 // A zero-width bitfield forces the use of a new storage unit for
1577 // later bitfields. In general, this occurs by rounding up the
1578 // current size of the struct as if the algorithm were about to
1579 // place a non-bitfield of the field's formal type. Usually this
1580 // does not change the alignment of the struct itself, but it does
1581 // on some targets (those that useZeroLengthBitfieldAlignment(),
1582 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1583 // ignored unless they follow a non-zero-width bitfield.
1585 // A field alignment restriction (e.g. from #pragma pack) or
1586 // specification (e.g. from __attribute__((aligned))) changes the
1587 // formal alignment of the field. For System V, this alters the
1588 // required alignment of the notional storage unit that must contain
1589 // the bitfield. For ms_struct, this only affects the placement of
1590 // new storage units. In both cases, the effect of #pragma pack is
1591 // ignored on zero-width bitfields.
1593 // On System V, a packed field (e.g. from #pragma pack or
1594 // __attribute__((packed))) always uses the next available bit
1595 // offset.
1597 // In an ms_struct struct, the alignment of a fundamental type is
1598 // always equal to its size. This is necessary in order to mimic
1599 // the i386 alignment rules on targets which might not fully align
1600 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1602 // First, some simple bookkeeping to perform for ms_struct structs.
1603 if (IsMsStruct) {
1604 // The field alignment for integer types is always the size.
1605 FieldAlign = StorageUnitSize;
1607 // If the previous field was not a bitfield, or was a bitfield
1608 // with a different storage unit size, or if this field doesn't fit into
1609 // the current storage unit, we're done with that storage unit.
1610 if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1611 UnfilledBitsInLastUnit < FieldSize) {
1612 // Also, ignore zero-length bitfields after non-bitfields.
1613 if (!LastBitfieldStorageUnitSize && !FieldSize)
1614 FieldAlign = 1;
1616 UnfilledBitsInLastUnit = 0;
1617 LastBitfieldStorageUnitSize = 0;
1621 if (isAIXLayout(Context)) {
1622 if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1623 // On AIX, [bool, char, short] bitfields have the same alignment
1624 // as [unsigned].
1625 StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1626 } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1627 Context.getTargetInfo().getTriple().isArch32Bit() &&
1628 FieldSize <= 32) {
1629 // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1630 // long long bitfield has length no greater than 32 bits.
1631 StorageUnitSize = 32;
1633 if (!AlignIsRequired)
1634 FieldAlign = 32;
1637 if (FieldAlign < StorageUnitSize) {
1638 // The bitfield alignment should always be greater than or equal to
1639 // bitcontainer size.
1640 FieldAlign = StorageUnitSize;
1644 // If the field is wider than its declared type, it follows
1645 // different rules in all cases, except on AIX.
1646 // On AIX, wide bitfield follows the same rules as normal bitfield.
1647 if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1648 LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1649 return;
1652 // Compute the next available bit offset.
1653 uint64_t FieldOffset =
1654 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1656 // Handle targets that don't honor bitfield type alignment.
1657 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1658 // Some such targets do honor it on zero-width bitfields.
1659 if (FieldSize == 0 &&
1660 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1661 // Some targets don't honor leading zero-width bitfield.
1662 if (!IsUnion && FieldOffset == 0 &&
1663 !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1664 FieldAlign = 1;
1665 else {
1666 // The alignment to round up to is the max of the field's natural
1667 // alignment and a target-specific fixed value (sometimes zero).
1668 unsigned ZeroLengthBitfieldBoundary =
1669 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1670 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1672 // If that doesn't apply, just ignore the field alignment.
1673 } else {
1674 FieldAlign = 1;
1678 // Remember the alignment we would have used if the field were not packed.
1679 unsigned UnpackedFieldAlign = FieldAlign;
1681 // Ignore the field alignment if the field is packed unless it has zero-size.
1682 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1683 FieldAlign = 1;
1685 // But, if there's an 'aligned' attribute on the field, honor that.
1686 unsigned ExplicitFieldAlign = D->getMaxAlignment();
1687 if (ExplicitFieldAlign) {
1688 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1689 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1692 // But, if there's a #pragma pack in play, that takes precedent over
1693 // even the 'aligned' attribute, for non-zero-width bitfields.
1694 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1695 if (!MaxFieldAlignment.isZero() && FieldSize) {
1696 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1697 if (FieldPacked)
1698 FieldAlign = UnpackedFieldAlign;
1699 else
1700 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1703 // But, ms_struct just ignores all of that in unions, even explicit
1704 // alignment attributes.
1705 if (IsMsStruct && IsUnion) {
1706 FieldAlign = UnpackedFieldAlign = 1;
1709 // For purposes of diagnostics, we're going to simultaneously
1710 // compute the field offsets that we would have used if we weren't
1711 // adding any alignment padding or if the field weren't packed.
1712 uint64_t UnpaddedFieldOffset = FieldOffset;
1713 uint64_t UnpackedFieldOffset = FieldOffset;
1715 // Check if we need to add padding to fit the bitfield within an
1716 // allocation unit with the right size and alignment. The rules are
1717 // somewhat different here for ms_struct structs.
1718 if (IsMsStruct) {
1719 // If it's not a zero-width bitfield, and we can fit the bitfield
1720 // into the active storage unit (and we haven't already decided to
1721 // start a new storage unit), just do so, regardless of any other
1722 // other consideration. Otherwise, round up to the right alignment.
1723 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1724 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1725 UnpackedFieldOffset =
1726 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1727 UnfilledBitsInLastUnit = 0;
1730 } else {
1731 // #pragma pack, with any value, suppresses the insertion of padding.
1732 bool AllowPadding = MaxFieldAlignment.isZero();
1734 // Compute the real offset.
1735 if (FieldSize == 0 ||
1736 (AllowPadding &&
1737 (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1738 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1739 } else if (ExplicitFieldAlign &&
1740 (MaxFieldAlignmentInBits == 0 ||
1741 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1742 Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1743 // TODO: figure it out what needs to be done on targets that don't honor
1744 // bit-field type alignment like ARM APCS ABI.
1745 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1748 // Repeat the computation for diagnostic purposes.
1749 if (FieldSize == 0 ||
1750 (AllowPadding &&
1751 (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1752 StorageUnitSize))
1753 UnpackedFieldOffset =
1754 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1755 else if (ExplicitFieldAlign &&
1756 (MaxFieldAlignmentInBits == 0 ||
1757 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1758 Context.getTargetInfo().useExplicitBitFieldAlignment())
1759 UnpackedFieldOffset =
1760 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1763 // If we're using external layout, give the external layout a chance
1764 // to override this information.
1765 if (UseExternalLayout)
1766 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1768 // Okay, place the bitfield at the calculated offset.
1769 FieldOffsets.push_back(FieldOffset);
1771 // Bookkeeping:
1773 // Anonymous members don't affect the overall record alignment,
1774 // except on targets where they do.
1775 if (!IsMsStruct &&
1776 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1777 !D->getIdentifier())
1778 FieldAlign = UnpackedFieldAlign = 1;
1780 // On AIX, zero-width bitfields pad out to the natural alignment boundary,
1781 // but do not increase the alignment greater than the MaxFieldAlignment, or 1
1782 // if packed.
1783 if (isAIXLayout(Context) && !FieldSize) {
1784 if (FieldPacked)
1785 FieldAlign = 1;
1786 if (!MaxFieldAlignment.isZero()) {
1787 UnpackedFieldAlign =
1788 std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1789 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1793 // Diagnose differences in layout due to padding or packing.
1794 if (!UseExternalLayout)
1795 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1796 UnpackedFieldAlign, FieldPacked, D);
1798 // Update DataSize to include the last byte containing (part of) the bitfield.
1800 // For unions, this is just a max operation, as usual.
1801 if (IsUnion) {
1802 // For ms_struct, allocate the entire storage unit --- unless this
1803 // is a zero-width bitfield, in which case just use a size of 1.
1804 uint64_t RoundedFieldSize;
1805 if (IsMsStruct) {
1806 RoundedFieldSize = (FieldSize ? StorageUnitSize
1807 : Context.getTargetInfo().getCharWidth());
1809 // Otherwise, allocate just the number of bytes required to store
1810 // the bitfield.
1811 } else {
1812 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1814 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1816 // For non-zero-width bitfields in ms_struct structs, allocate a new
1817 // storage unit if necessary.
1818 } else if (IsMsStruct && FieldSize) {
1819 // We should have cleared UnfilledBitsInLastUnit in every case
1820 // where we changed storage units.
1821 if (!UnfilledBitsInLastUnit) {
1822 setDataSize(FieldOffset + StorageUnitSize);
1823 UnfilledBitsInLastUnit = StorageUnitSize;
1825 UnfilledBitsInLastUnit -= FieldSize;
1826 LastBitfieldStorageUnitSize = StorageUnitSize;
1828 // Otherwise, bump the data size up to include the bitfield,
1829 // including padding up to char alignment, and then remember how
1830 // bits we didn't use.
1831 } else {
1832 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1833 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1834 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1835 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1837 // The only time we can get here for an ms_struct is if this is a
1838 // zero-width bitfield, which doesn't count as anything for the
1839 // purposes of unfilled bits.
1840 LastBitfieldStorageUnitSize = 0;
1843 // Update the size.
1844 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1846 // Remember max struct/class alignment.
1847 UnadjustedAlignment =
1848 std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1849 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1850 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1853 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1854 bool InsertExtraPadding) {
1855 auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1856 bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1857 bool IsOverlappingEmptyField =
1858 PotentiallyOverlapping && FieldClass->isEmpty();
1860 CharUnits FieldOffset =
1861 (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1863 const bool DefaultsToAIXPowerAlignment =
1864 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1865 bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1866 if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1867 assert(FieldOffset == CharUnits::Zero() &&
1868 "The first non-overlapping empty field should have been handled.");
1870 if (!IsOverlappingEmptyField) {
1871 FoundFirstNonOverlappingEmptyFieldForAIX = true;
1873 // We're going to handle the "first member" based on
1874 // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1875 // invocation of this function; record it as handled for future
1876 // invocations (except for unions, because the current field does not
1877 // represent all "firsts").
1878 HandledFirstNonOverlappingEmptyField = !IsUnion;
1882 if (D->isBitField()) {
1883 LayoutBitField(D);
1884 return;
1887 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1888 // Reset the unfilled bits.
1889 UnfilledBitsInLastUnit = 0;
1890 LastBitfieldStorageUnitSize = 0;
1892 llvm::Triple Target = Context.getTargetInfo().getTriple();
1894 AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1895 CharUnits FieldSize;
1896 CharUnits FieldAlign;
1897 // The amount of this class's dsize occupied by the field.
1898 // This is equal to FieldSize unless we're permitted to pack
1899 // into the field's tail padding.
1900 CharUnits EffectiveFieldSize;
1902 auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1903 auto TI = Context.getTypeInfoInChars(D->getType());
1904 FieldAlign = TI.Align;
1905 // Flexible array members don't have any size, but they have to be
1906 // aligned appropriately for their element type.
1907 EffectiveFieldSize = FieldSize =
1908 IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1909 AlignRequirement = TI.AlignRequirement;
1912 if (D->getType()->isIncompleteArrayType()) {
1913 setDeclInfo(true /* IsIncompleteArrayType */);
1914 } else {
1915 setDeclInfo(false /* IsIncompleteArrayType */);
1917 // A potentially-overlapping field occupies its dsize or nvsize, whichever
1918 // is larger.
1919 if (PotentiallyOverlapping) {
1920 const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1921 EffectiveFieldSize =
1922 std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1925 if (IsMsStruct) {
1926 // If MS bitfield layout is required, figure out what type is being
1927 // laid out and align the field to the width of that type.
1929 // Resolve all typedefs down to their base type and round up the field
1930 // alignment if necessary.
1931 QualType T = Context.getBaseElementType(D->getType());
1932 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1933 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1935 if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1936 assert(
1937 !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1938 "Non PowerOf2 size in MSVC mode");
1939 // Base types with sizes that aren't a power of two don't work
1940 // with the layout rules for MS structs. This isn't an issue in
1941 // MSVC itself since there are no such base data types there.
1942 // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1943 // Any structs involving that data type obviously can't be ABI
1944 // compatible with MSVC regardless of how it is laid out.
1946 // Since ms_struct can be mass enabled (via a pragma or via the
1947 // -mms-bitfields command line parameter), this can trigger for
1948 // structs that don't actually need MSVC compatibility, so we
1949 // need to be able to sidestep the ms_struct layout for these types.
1951 // Since the combination of -mms-bitfields together with structs
1952 // like max_align_t (which contains a long double) for mingw is
1953 // quite common (and GCC handles it silently), just handle it
1954 // silently there. For other targets that have ms_struct enabled
1955 // (most probably via a pragma or attribute), trigger a diagnostic
1956 // that defaults to an error.
1957 if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1958 Diag(D->getLocation(), diag::warn_npot_ms_struct);
1960 if (TypeSize > FieldAlign &&
1961 llvm::isPowerOf2_64(TypeSize.getQuantity()))
1962 FieldAlign = TypeSize;
1967 bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() ||
1968 FieldClass->hasAttr<PackedAttr>() ||
1969 Context.getLangOpts().getClangABICompat() <=
1970 LangOptions::ClangABI::Ver15 ||
1971 Target.isPS() || Target.isOSDarwin() ||
1972 Target.isOSAIX())) ||
1973 D->hasAttr<PackedAttr>();
1975 // When used as part of a typedef, or together with a 'packed' attribute, the
1976 // 'aligned' attribute can be used to decrease alignment. In that case, it
1977 // overrides any computed alignment we have, and there is no need to upgrade
1978 // the alignment.
1979 auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] {
1980 // Enum alignment sources can be safely ignored here, because this only
1981 // helps decide whether we need the AIX alignment upgrade, which only
1982 // applies to floating-point types.
1983 return AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
1984 (AlignRequirement == AlignRequirementKind::RequiredByRecord &&
1985 FieldPacked);
1988 // The AIX `power` alignment rules apply the natural alignment of the
1989 // "first member" if it is of a floating-point data type (or is an aggregate
1990 // whose recursively "first" member or element is such a type). The alignment
1991 // associated with these types for subsequent members use an alignment value
1992 // where the floating-point data type is considered to have 4-byte alignment.
1994 // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1995 // and zero-width bit-fields count as prior members; members of empty class
1996 // types marked `no_unique_address` are not considered to be prior members.
1997 CharUnits PreferredAlign = FieldAlign;
1998 if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() &&
1999 (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
2000 auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
2001 if (BTy->getKind() == BuiltinType::Double ||
2002 BTy->getKind() == BuiltinType::LongDouble) {
2003 assert(PreferredAlign == CharUnits::fromQuantity(4) &&
2004 "No need to upgrade the alignment value.");
2005 PreferredAlign = CharUnits::fromQuantity(8);
2009 const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe();
2010 if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) {
2011 performBuiltinTypeAlignmentUpgrade(
2012 CTy->getElementType()->castAs<BuiltinType>());
2013 } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) {
2014 performBuiltinTypeAlignmentUpgrade(BTy);
2015 } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2016 const RecordDecl *RD = RT->getDecl();
2017 assert(RD && "Expected non-null RecordDecl.");
2018 const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
2019 PreferredAlign = FieldRecord.getPreferredAlignment();
2023 // The align if the field is not packed. This is to check if the attribute
2024 // was unnecessary (-Wpacked).
2025 CharUnits UnpackedFieldAlign = FieldAlign;
2026 CharUnits PackedFieldAlign = CharUnits::One();
2027 CharUnits UnpackedFieldOffset = FieldOffset;
2028 CharUnits OriginalFieldAlign = UnpackedFieldAlign;
2030 CharUnits MaxAlignmentInChars =
2031 Context.toCharUnitsFromBits(D->getMaxAlignment());
2032 PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars);
2033 PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2034 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2036 // The maximum field alignment overrides the aligned attribute.
2037 if (!MaxFieldAlignment.isZero()) {
2038 PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment);
2039 PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2040 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2044 if (!FieldPacked)
2045 FieldAlign = UnpackedFieldAlign;
2046 if (DefaultsToAIXPowerAlignment)
2047 UnpackedFieldAlign = PreferredAlign;
2048 if (FieldPacked) {
2049 PreferredAlign = PackedFieldAlign;
2050 FieldAlign = PackedFieldAlign;
2053 CharUnits AlignTo =
2054 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2055 // Round up the current record size to the field's alignment boundary.
2056 FieldOffset = FieldOffset.alignTo(AlignTo);
2057 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2059 if (UseExternalLayout) {
2060 FieldOffset = Context.toCharUnitsFromBits(
2061 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2063 if (!IsUnion && EmptySubobjects) {
2064 // Record the fact that we're placing a field at this offset.
2065 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2066 (void)Allowed;
2067 assert(Allowed && "Externally-placed field cannot be placed here");
2069 } else {
2070 if (!IsUnion && EmptySubobjects) {
2071 // Check if we can place the field at this offset.
2072 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2073 // We couldn't place the field at the offset. Try again at a new offset.
2074 // We try offset 0 (for an empty field) and then dsize(C) onwards.
2075 if (FieldOffset == CharUnits::Zero() &&
2076 getDataSize() != CharUnits::Zero())
2077 FieldOffset = getDataSize().alignTo(AlignTo);
2078 else
2079 FieldOffset += AlignTo;
2084 // Place this field at the current location.
2085 FieldOffsets.push_back(Context.toBits(FieldOffset));
2087 if (!UseExternalLayout)
2088 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2089 Context.toBits(UnpackedFieldOffset),
2090 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2092 if (InsertExtraPadding) {
2093 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2094 CharUnits ExtraSizeForAsan = ASanAlignment;
2095 if (FieldSize % ASanAlignment)
2096 ExtraSizeForAsan +=
2097 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2098 EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2101 // Reserve space for this field.
2102 if (!IsOverlappingEmptyField) {
2103 uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2104 if (IsUnion)
2105 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2106 else
2107 setDataSize(FieldOffset + EffectiveFieldSize);
2109 PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2110 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2111 } else {
2112 setSize(std::max(getSizeInBits(),
2113 (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2116 // Remember max struct/class ABI-specified alignment.
2117 UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2118 UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2120 // For checking the alignment of inner fields against
2121 // the alignment of its parent record.
2122 if (const RecordDecl *RD = D->getParent()) {
2123 // Check if packed attribute or pragma pack is present.
2124 if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero())
2125 if (FieldAlign < OriginalFieldAlign)
2126 if (D->getType()->isRecordType()) {
2127 // If the offset is a multiple of the alignment of
2128 // the type, raise the warning.
2129 // TODO: Takes no account the alignment of the outer struct
2130 if (FieldOffset % OriginalFieldAlign != 0)
2131 Diag(D->getLocation(), diag::warn_unaligned_access)
2132 << Context.getTypeDeclType(RD) << D->getName() << D->getType();
2136 if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign)
2137 Diag(D->getLocation(), diag::warn_unpacked_field) << D;
2140 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2141 // In C++, records cannot be of size 0.
2142 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2143 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2144 // Compatibility with gcc requires a class (pod or non-pod)
2145 // which is not empty but of size 0; such as having fields of
2146 // array of zero-length, remains of Size 0
2147 if (RD->isEmpty())
2148 setSize(CharUnits::One());
2150 else
2151 setSize(CharUnits::One());
2154 // If we have any remaining field tail padding, include that in the overall
2155 // size.
2156 setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2158 // Finally, round the size of the record up to the alignment of the
2159 // record itself.
2160 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2161 uint64_t UnpackedSizeInBits =
2162 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2164 uint64_t RoundedSize = llvm::alignTo(
2165 getSizeInBits(),
2166 Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2167 ? Alignment
2168 : PreferredAlignment));
2170 if (UseExternalLayout) {
2171 // If we're inferring alignment, and the external size is smaller than
2172 // our size after we've rounded up to alignment, conservatively set the
2173 // alignment to 1.
2174 if (InferAlignment && External.Size < RoundedSize) {
2175 Alignment = CharUnits::One();
2176 PreferredAlignment = CharUnits::One();
2177 InferAlignment = false;
2179 setSize(External.Size);
2180 return;
2183 // Set the size to the final size.
2184 setSize(RoundedSize);
2186 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2187 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2188 // Warn if padding was introduced to the struct/class/union.
2189 if (getSizeInBits() > UnpaddedSize) {
2190 unsigned PadSize = getSizeInBits() - UnpaddedSize;
2191 bool InBits = true;
2192 if (PadSize % CharBitNum == 0) {
2193 PadSize = PadSize / CharBitNum;
2194 InBits = false;
2196 Diag(RD->getLocation(), diag::warn_padded_struct_size)
2197 << Context.getTypeDeclType(RD)
2198 << PadSize
2199 << (InBits ? 1 : 0); // (byte|bit)
2202 // Warn if we packed it unnecessarily, when the unpacked alignment is not
2203 // greater than the one after packing, the size in bits doesn't change and
2204 // the offset of each field is identical.
2205 if (Packed && UnpackedAlignment <= Alignment &&
2206 UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2207 Diag(D->getLocation(), diag::warn_unnecessary_packed)
2208 << Context.getTypeDeclType(RD);
2212 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2213 CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2214 CharUnits PreferredNewAlignment) {
2215 // The alignment is not modified when using 'mac68k' alignment or when
2216 // we have an externally-supplied layout that also provides overall alignment.
2217 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2218 return;
2220 if (NewAlignment > Alignment) {
2221 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2222 "Alignment not a power of 2");
2223 Alignment = NewAlignment;
2226 if (UnpackedNewAlignment > UnpackedAlignment) {
2227 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2228 "Alignment not a power of 2");
2229 UnpackedAlignment = UnpackedNewAlignment;
2232 if (PreferredNewAlignment > PreferredAlignment) {
2233 assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2234 "Alignment not a power of 2");
2235 PreferredAlignment = PreferredNewAlignment;
2239 uint64_t
2240 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2241 uint64_t ComputedOffset) {
2242 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2244 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2245 // The externally-supplied field offset is before the field offset we
2246 // computed. Assume that the structure is packed.
2247 Alignment = CharUnits::One();
2248 PreferredAlignment = CharUnits::One();
2249 InferAlignment = false;
2252 // Use the externally-supplied field offset.
2253 return ExternalFieldOffset;
2256 /// Get diagnostic %select index for tag kind for
2257 /// field padding diagnostic message.
2258 /// WARNING: Indexes apply to particular diagnostics only!
2260 /// \returns diagnostic %select index.
2261 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2262 switch (Tag) {
2263 case TTK_Struct: return 0;
2264 case TTK_Interface: return 1;
2265 case TTK_Class: return 2;
2266 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2270 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2271 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2272 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2273 // We let objc ivars without warning, objc interfaces generally are not used
2274 // for padding tricks.
2275 if (isa<ObjCIvarDecl>(D))
2276 return;
2278 // Don't warn about structs created without a SourceLocation. This can
2279 // be done by clients of the AST, such as codegen.
2280 if (D->getLocation().isInvalid())
2281 return;
2283 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2285 // Warn if padding was introduced to the struct/class.
2286 if (!IsUnion && Offset > UnpaddedOffset) {
2287 unsigned PadSize = Offset - UnpaddedOffset;
2288 bool InBits = true;
2289 if (PadSize % CharBitNum == 0) {
2290 PadSize = PadSize / CharBitNum;
2291 InBits = false;
2293 if (D->getIdentifier())
2294 Diag(D->getLocation(), diag::warn_padded_struct_field)
2295 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2296 << Context.getTypeDeclType(D->getParent())
2297 << PadSize
2298 << (InBits ? 1 : 0) // (byte|bit)
2299 << D->getIdentifier();
2300 else
2301 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2302 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2303 << Context.getTypeDeclType(D->getParent())
2304 << PadSize
2305 << (InBits ? 1 : 0); // (byte|bit)
2307 if (isPacked && Offset != UnpackedOffset) {
2308 HasPackedField = true;
2312 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2313 const CXXRecordDecl *RD) {
2314 // If a class isn't polymorphic it doesn't have a key function.
2315 if (!RD->isPolymorphic())
2316 return nullptr;
2318 // A class that is not externally visible doesn't have a key function. (Or
2319 // at least, there's no point to assigning a key function to such a class;
2320 // this doesn't affect the ABI.)
2321 if (!RD->isExternallyVisible())
2322 return nullptr;
2324 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2325 // Same behavior as GCC.
2326 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2327 if (TSK == TSK_ImplicitInstantiation ||
2328 TSK == TSK_ExplicitInstantiationDeclaration ||
2329 TSK == TSK_ExplicitInstantiationDefinition)
2330 return nullptr;
2332 bool allowInlineFunctions =
2333 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2335 for (const CXXMethodDecl *MD : RD->methods()) {
2336 if (!MD->isVirtual())
2337 continue;
2339 if (MD->isPure())
2340 continue;
2342 // Ignore implicit member functions, they are always marked as inline, but
2343 // they don't have a body until they're defined.
2344 if (MD->isImplicit())
2345 continue;
2347 if (MD->isInlineSpecified() || MD->isConstexpr())
2348 continue;
2350 if (MD->hasInlineBody())
2351 continue;
2353 // Ignore inline deleted or defaulted functions.
2354 if (!MD->isUserProvided())
2355 continue;
2357 // In certain ABIs, ignore functions with out-of-line inline definitions.
2358 if (!allowInlineFunctions) {
2359 const FunctionDecl *Def;
2360 if (MD->hasBody(Def) && Def->isInlineSpecified())
2361 continue;
2364 if (Context.getLangOpts().CUDA) {
2365 // While compiler may see key method in this TU, during CUDA
2366 // compilation we should ignore methods that are not accessible
2367 // on this side of compilation.
2368 if (Context.getLangOpts().CUDAIsDevice) {
2369 // In device mode ignore methods without __device__ attribute.
2370 if (!MD->hasAttr<CUDADeviceAttr>())
2371 continue;
2372 } else {
2373 // In host mode ignore __device__-only methods.
2374 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2375 continue;
2379 // If the key function is dllimport but the class isn't, then the class has
2380 // no key function. The DLL that exports the key function won't export the
2381 // vtable in this case.
2382 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2383 !Context.getTargetInfo().hasPS4DLLImportExport())
2384 return nullptr;
2386 // We found it.
2387 return MD;
2390 return nullptr;
2393 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2394 unsigned DiagID) {
2395 return Context.getDiagnostics().Report(Loc, DiagID);
2398 /// Does the target C++ ABI require us to skip over the tail-padding
2399 /// of the given class (considering it as a base class) when allocating
2400 /// objects?
2401 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2402 switch (ABI.getTailPaddingUseRules()) {
2403 case TargetCXXABI::AlwaysUseTailPadding:
2404 return false;
2406 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2407 // FIXME: To the extent that this is meant to cover the Itanium ABI
2408 // rules, we should implement the restrictions about over-sized
2409 // bitfields:
2411 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2412 // In general, a type is considered a POD for the purposes of
2413 // layout if it is a POD type (in the sense of ISO C++
2414 // [basic.types]). However, a POD-struct or POD-union (in the
2415 // sense of ISO C++ [class]) with a bitfield member whose
2416 // declared width is wider than the declared type of the
2417 // bitfield is not a POD for the purpose of layout. Similarly,
2418 // an array type is not a POD for the purpose of layout if the
2419 // element type of the array is not a POD for the purpose of
2420 // layout.
2422 // Where references to the ISO C++ are made in this paragraph,
2423 // the Technical Corrigendum 1 version of the standard is
2424 // intended.
2425 return RD->isPOD();
2427 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2428 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2429 // but with a lot of abstraction penalty stripped off. This does
2430 // assume that these properties are set correctly even in C++98
2431 // mode; fortunately, that is true because we want to assign
2432 // consistently semantics to the type-traits intrinsics (or at
2433 // least as many of them as possible).
2434 return RD->isTrivial() && RD->isCXX11StandardLayout();
2437 llvm_unreachable("bad tail-padding use kind");
2440 static bool isMsLayout(const ASTContext &Context) {
2441 return Context.getTargetInfo().getCXXABI().isMicrosoft();
2444 // This section contains an implementation of struct layout that is, up to the
2445 // included tests, compatible with cl.exe (2013). The layout produced is
2446 // significantly different than those produced by the Itanium ABI. Here we note
2447 // the most important differences.
2449 // * The alignment of bitfields in unions is ignored when computing the
2450 // alignment of the union.
2451 // * The existence of zero-width bitfield that occurs after anything other than
2452 // a non-zero length bitfield is ignored.
2453 // * There is no explicit primary base for the purposes of layout. All bases
2454 // with vfptrs are laid out first, followed by all bases without vfptrs.
2455 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2456 // function pointer) and a vbptr (virtual base pointer). They can each be
2457 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2458 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2459 // placed after the lexicographically last non-virtual base. This placement
2460 // is always before fields but can be in the middle of the non-virtual bases
2461 // due to the two-pass layout scheme for non-virtual-bases.
2462 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2463 // the virtual base and is used in conjunction with virtual overrides during
2464 // construction and destruction. This is always a 4 byte value and is used as
2465 // an alternative to constructor vtables.
2466 // * vtordisps are allocated in a block of memory with size and alignment equal
2467 // to the alignment of the completed structure (before applying __declspec(
2468 // align())). The vtordisp always occur at the end of the allocation block,
2469 // immediately prior to the virtual base.
2470 // * vfptrs are injected after all bases and fields have been laid out. In
2471 // order to guarantee proper alignment of all fields, the vfptr injection
2472 // pushes all bases and fields back by the alignment imposed by those bases
2473 // and fields. This can potentially add a significant amount of padding.
2474 // vfptrs are always injected at offset 0.
2475 // * vbptrs are injected after all bases and fields have been laid out. In
2476 // order to guarantee proper alignment of all fields, the vfptr injection
2477 // pushes all bases and fields back by the alignment imposed by those bases
2478 // and fields. This can potentially add a significant amount of padding.
2479 // vbptrs are injected immediately after the last non-virtual base as
2480 // lexicographically ordered in the code. If this site isn't pointer aligned
2481 // the vbptr is placed at the next properly aligned location. Enough padding
2482 // is added to guarantee a fit.
2483 // * The last zero sized non-virtual base can be placed at the end of the
2484 // struct (potentially aliasing another object), or may alias with the first
2485 // field, even if they are of the same type.
2486 // * The last zero size virtual base may be placed at the end of the struct
2487 // potentially aliasing another object.
2488 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2489 // between bases or vbases with specific properties. The criteria for
2490 // additional padding between two bases is that the first base is zero sized
2491 // or ends with a zero sized subobject and the second base is zero sized or
2492 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2493 // layout of the so the leading base is not always the first one declared).
2494 // This rule does take into account fields that are not records, so padding
2495 // will occur even if the last field is, e.g. an int. The padding added for
2496 // bases is 1 byte. The padding added between vbases depends on the alignment
2497 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2498 // * There is no concept of non-virtual alignment, non-virtual alignment and
2499 // alignment are always identical.
2500 // * There is a distinction between alignment and required alignment.
2501 // __declspec(align) changes the required alignment of a struct. This
2502 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2503 // record inherits required alignment from all of its fields and bases.
2504 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2505 // alignment instead of its required alignment. This is the only known way
2506 // to make the alignment of a struct bigger than 8. Interestingly enough
2507 // this alignment is also immune to the effects of #pragma pack and can be
2508 // used to create structures with large alignment under #pragma pack.
2509 // However, because it does not impact required alignment, such a structure,
2510 // when used as a field or base, will not be aligned if #pragma pack is
2511 // still active at the time of use.
2513 // Known incompatibilities:
2514 // * all: #pragma pack between fields in a record
2515 // * 2010 and back: If the last field in a record is a bitfield, every object
2516 // laid out after the record will have extra padding inserted before it. The
2517 // extra padding will have size equal to the size of the storage class of the
2518 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2519 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2520 // sized bitfield.
2521 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2522 // greater due to __declspec(align()) then a second layout phase occurs after
2523 // The locations of the vf and vb pointers are known. This layout phase
2524 // suffers from the "last field is a bitfield" bug in 2010 and results in
2525 // _every_ field getting padding put in front of it, potentially including the
2526 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2527 // anything tries to read the vftbl. The second layout phase also treats
2528 // bitfields as separate entities and gives them each storage rather than
2529 // packing them. Additionally, because this phase appears to perform a
2530 // (an unstable) sort on the members before laying them out and because merged
2531 // bitfields have the same address, the bitfields end up in whatever order
2532 // the sort left them in, a behavior we could never hope to replicate.
2534 namespace {
2535 struct MicrosoftRecordLayoutBuilder {
2536 struct ElementInfo {
2537 CharUnits Size;
2538 CharUnits Alignment;
2540 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2541 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2542 private:
2543 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2544 void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2545 public:
2546 void layout(const RecordDecl *RD);
2547 void cxxLayout(const CXXRecordDecl *RD);
2548 /// Initializes size and alignment and honors some flags.
2549 void initializeLayout(const RecordDecl *RD);
2550 /// Initialized C++ layout, compute alignment and virtual alignment and
2551 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2552 /// laid out.
2553 void initializeCXXLayout(const CXXRecordDecl *RD);
2554 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2555 void layoutNonVirtualBase(const CXXRecordDecl *RD,
2556 const CXXRecordDecl *BaseDecl,
2557 const ASTRecordLayout &BaseLayout,
2558 const ASTRecordLayout *&PreviousBaseLayout);
2559 void injectVFPtr(const CXXRecordDecl *RD);
2560 void injectVBPtr(const CXXRecordDecl *RD);
2561 /// Lays out the fields of the record. Also rounds size up to
2562 /// alignment.
2563 void layoutFields(const RecordDecl *RD);
2564 void layoutField(const FieldDecl *FD);
2565 void layoutBitField(const FieldDecl *FD);
2566 /// Lays out a single zero-width bit-field in the record and handles
2567 /// special cases associated with zero-width bit-fields.
2568 void layoutZeroWidthBitField(const FieldDecl *FD);
2569 void layoutVirtualBases(const CXXRecordDecl *RD);
2570 void finalizeLayout(const RecordDecl *RD);
2571 /// Gets the size and alignment of a base taking pragma pack and
2572 /// __declspec(align) into account.
2573 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2574 /// Gets the size and alignment of a field taking pragma pack and
2575 /// __declspec(align) into account. It also updates RequiredAlignment as a
2576 /// side effect because it is most convenient to do so here.
2577 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2578 /// Places a field at an offset in CharUnits.
2579 void placeFieldAtOffset(CharUnits FieldOffset) {
2580 FieldOffsets.push_back(Context.toBits(FieldOffset));
2582 /// Places a bitfield at a bit offset.
2583 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2584 FieldOffsets.push_back(FieldOffset);
2586 /// Compute the set of virtual bases for which vtordisps are required.
2587 void computeVtorDispSet(
2588 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2589 const CXXRecordDecl *RD) const;
2590 const ASTContext &Context;
2591 /// The size of the record being laid out.
2592 CharUnits Size;
2593 /// The non-virtual size of the record layout.
2594 CharUnits NonVirtualSize;
2595 /// The data size of the record layout.
2596 CharUnits DataSize;
2597 /// The current alignment of the record layout.
2598 CharUnits Alignment;
2599 /// The maximum allowed field alignment. This is set by #pragma pack.
2600 CharUnits MaxFieldAlignment;
2601 /// The alignment that this record must obey. This is imposed by
2602 /// __declspec(align()) on the record itself or one of its fields or bases.
2603 CharUnits RequiredAlignment;
2604 /// The size of the allocation of the currently active bitfield.
2605 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2606 /// is true.
2607 CharUnits CurrentBitfieldSize;
2608 /// Offset to the virtual base table pointer (if one exists).
2609 CharUnits VBPtrOffset;
2610 /// Minimum record size possible.
2611 CharUnits MinEmptyStructSize;
2612 /// The size and alignment info of a pointer.
2613 ElementInfo PointerInfo;
2614 /// The primary base class (if one exists).
2615 const CXXRecordDecl *PrimaryBase;
2616 /// The class we share our vb-pointer with.
2617 const CXXRecordDecl *SharedVBPtrBase;
2618 /// The collection of field offsets.
2619 SmallVector<uint64_t, 16> FieldOffsets;
2620 /// Base classes and their offsets in the record.
2621 BaseOffsetsMapTy Bases;
2622 /// virtual base classes and their offsets in the record.
2623 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2624 /// The number of remaining bits in our last bitfield allocation.
2625 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2626 /// true.
2627 unsigned RemainingBitsInField;
2628 bool IsUnion : 1;
2629 /// True if the last field laid out was a bitfield and was not 0
2630 /// width.
2631 bool LastFieldIsNonZeroWidthBitfield : 1;
2632 /// True if the class has its own vftable pointer.
2633 bool HasOwnVFPtr : 1;
2634 /// True if the class has a vbtable pointer.
2635 bool HasVBPtr : 1;
2636 /// True if the last sub-object within the type is zero sized or the
2637 /// object itself is zero sized. This *does not* count members that are not
2638 /// records. Only used for MS-ABI.
2639 bool EndsWithZeroSizedObject : 1;
2640 /// True if this class is zero sized or first base is zero sized or
2641 /// has this property. Only used for MS-ABI.
2642 bool LeadsWithZeroSizedBase : 1;
2644 /// True if the external AST source provided a layout for this record.
2645 bool UseExternalLayout : 1;
2647 /// The layout provided by the external AST source. Only active if
2648 /// UseExternalLayout is true.
2649 ExternalLayout External;
2651 } // namespace
2653 MicrosoftRecordLayoutBuilder::ElementInfo
2654 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2655 const ASTRecordLayout &Layout) {
2656 ElementInfo Info;
2657 Info.Alignment = Layout.getAlignment();
2658 // Respect pragma pack.
2659 if (!MaxFieldAlignment.isZero())
2660 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2661 // Track zero-sized subobjects here where it's already available.
2662 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2663 // Respect required alignment, this is necessary because we may have adjusted
2664 // the alignment in the case of pragma pack. Note that the required alignment
2665 // doesn't actually apply to the struct alignment at this point.
2666 Alignment = std::max(Alignment, Info.Alignment);
2667 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2668 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2669 Info.Size = Layout.getNonVirtualSize();
2670 return Info;
2673 MicrosoftRecordLayoutBuilder::ElementInfo
2674 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2675 const FieldDecl *FD) {
2676 // Get the alignment of the field type's natural alignment, ignore any
2677 // alignment attributes.
2678 auto TInfo =
2679 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2680 ElementInfo Info{TInfo.Width, TInfo.Align};
2681 // Respect align attributes on the field.
2682 CharUnits FieldRequiredAlignment =
2683 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2684 // Respect align attributes on the type.
2685 if (Context.isAlignmentRequired(FD->getType()))
2686 FieldRequiredAlignment = std::max(
2687 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2688 // Respect attributes applied to subobjects of the field.
2689 if (FD->isBitField())
2690 // For some reason __declspec align impacts alignment rather than required
2691 // alignment when it is applied to bitfields.
2692 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2693 else {
2694 if (auto RT =
2695 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2696 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2697 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2698 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2699 Layout.getRequiredAlignment());
2701 // Capture required alignment as a side-effect.
2702 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2704 // Respect pragma pack, attribute pack and declspec align
2705 if (!MaxFieldAlignment.isZero())
2706 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2707 if (FD->hasAttr<PackedAttr>())
2708 Info.Alignment = CharUnits::One();
2709 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2710 return Info;
2713 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2714 // For C record layout, zero-sized records always have size 4.
2715 MinEmptyStructSize = CharUnits::fromQuantity(4);
2716 initializeLayout(RD);
2717 layoutFields(RD);
2718 DataSize = Size = Size.alignTo(Alignment);
2719 RequiredAlignment = std::max(
2720 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2721 finalizeLayout(RD);
2724 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2725 // The C++ standard says that empty structs have size 1.
2726 MinEmptyStructSize = CharUnits::One();
2727 initializeLayout(RD);
2728 initializeCXXLayout(RD);
2729 layoutNonVirtualBases(RD);
2730 layoutFields(RD);
2731 injectVBPtr(RD);
2732 injectVFPtr(RD);
2733 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2734 Alignment = std::max(Alignment, PointerInfo.Alignment);
2735 auto RoundingAlignment = Alignment;
2736 if (!MaxFieldAlignment.isZero())
2737 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2738 if (!UseExternalLayout)
2739 Size = Size.alignTo(RoundingAlignment);
2740 NonVirtualSize = Size;
2741 RequiredAlignment = std::max(
2742 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2743 layoutVirtualBases(RD);
2744 finalizeLayout(RD);
2747 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2748 IsUnion = RD->isUnion();
2749 Size = CharUnits::Zero();
2750 Alignment = CharUnits::One();
2751 // In 64-bit mode we always perform an alignment step after laying out vbases.
2752 // In 32-bit mode we do not. The check to see if we need to perform alignment
2753 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2754 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2755 ? CharUnits::One()
2756 : CharUnits::Zero();
2757 // Compute the maximum field alignment.
2758 MaxFieldAlignment = CharUnits::Zero();
2759 // Honor the default struct packing maximum alignment flag.
2760 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2761 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2762 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2763 // than the pointer size.
2764 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2765 unsigned PackedAlignment = MFAA->getAlignment();
2766 if (PackedAlignment <=
2767 Context.getTargetInfo().getPointerWidth(LangAS::Default))
2768 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2770 // Packed attribute forces max field alignment to be 1.
2771 if (RD->hasAttr<PackedAttr>())
2772 MaxFieldAlignment = CharUnits::One();
2774 // Try to respect the external layout if present.
2775 UseExternalLayout = false;
2776 if (ExternalASTSource *Source = Context.getExternalSource())
2777 UseExternalLayout = Source->layoutRecordType(
2778 RD, External.Size, External.Align, External.FieldOffsets,
2779 External.BaseOffsets, External.VirtualBaseOffsets);
2782 void
2783 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2784 EndsWithZeroSizedObject = false;
2785 LeadsWithZeroSizedBase = false;
2786 HasOwnVFPtr = false;
2787 HasVBPtr = false;
2788 PrimaryBase = nullptr;
2789 SharedVBPtrBase = nullptr;
2790 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2791 // injection.
2792 PointerInfo.Size = Context.toCharUnitsFromBits(
2793 Context.getTargetInfo().getPointerWidth(LangAS::Default));
2794 PointerInfo.Alignment = Context.toCharUnitsFromBits(
2795 Context.getTargetInfo().getPointerAlign(LangAS::Default));
2796 // Respect pragma pack.
2797 if (!MaxFieldAlignment.isZero())
2798 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2801 void
2802 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2803 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2804 // out any bases that do not contain vfptrs. We implement this as two passes
2805 // over the bases. This approach guarantees that the primary base is laid out
2806 // first. We use these passes to calculate some additional aggregated
2807 // information about the bases, such as required alignment and the presence of
2808 // zero sized members.
2809 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2810 bool HasPolymorphicBaseClass = false;
2811 // Iterate through the bases and lay out the non-virtual ones.
2812 for (const CXXBaseSpecifier &Base : RD->bases()) {
2813 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2814 HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2815 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2816 // Mark and skip virtual bases.
2817 if (Base.isVirtual()) {
2818 HasVBPtr = true;
2819 continue;
2821 // Check for a base to share a VBPtr with.
2822 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2823 SharedVBPtrBase = BaseDecl;
2824 HasVBPtr = true;
2826 // Only lay out bases with extendable VFPtrs on the first pass.
2827 if (!BaseLayout.hasExtendableVFPtr())
2828 continue;
2829 // If we don't have a primary base, this one qualifies.
2830 if (!PrimaryBase) {
2831 PrimaryBase = BaseDecl;
2832 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2834 // Lay out the base.
2835 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2837 // Figure out if we need a fresh VFPtr for this class.
2838 if (RD->isPolymorphic()) {
2839 if (!HasPolymorphicBaseClass)
2840 // This class introduces polymorphism, so we need a vftable to store the
2841 // RTTI information.
2842 HasOwnVFPtr = true;
2843 else if (!PrimaryBase) {
2844 // We have a polymorphic base class but can't extend its vftable. Add a
2845 // new vfptr if we would use any vftable slots.
2846 for (CXXMethodDecl *M : RD->methods()) {
2847 if (MicrosoftVTableContext::hasVtableSlot(M) &&
2848 M->size_overridden_methods() == 0) {
2849 HasOwnVFPtr = true;
2850 break;
2855 // If we don't have a primary base then we have a leading object that could
2856 // itself lead with a zero-sized object, something we track.
2857 bool CheckLeadingLayout = !PrimaryBase;
2858 // Iterate through the bases and lay out the non-virtual ones.
2859 for (const CXXBaseSpecifier &Base : RD->bases()) {
2860 if (Base.isVirtual())
2861 continue;
2862 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2863 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2864 // Only lay out bases without extendable VFPtrs on the second pass.
2865 if (BaseLayout.hasExtendableVFPtr()) {
2866 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2867 continue;
2869 // If this is the first layout, check to see if it leads with a zero sized
2870 // object. If it does, so do we.
2871 if (CheckLeadingLayout) {
2872 CheckLeadingLayout = false;
2873 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2875 // Lay out the base.
2876 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2877 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2879 // Set our VBPtroffset if we know it at this point.
2880 if (!HasVBPtr)
2881 VBPtrOffset = CharUnits::fromQuantity(-1);
2882 else if (SharedVBPtrBase) {
2883 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2884 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2888 static bool recordUsesEBO(const RecordDecl *RD) {
2889 if (!isa<CXXRecordDecl>(RD))
2890 return false;
2891 if (RD->hasAttr<EmptyBasesAttr>())
2892 return true;
2893 if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2894 // TODO: Double check with the next version of MSVC.
2895 if (LVA->getVersion() <= LangOptions::MSVC2015)
2896 return false;
2897 // TODO: Some later version of MSVC will change the default behavior of the
2898 // compiler to enable EBO by default. When this happens, we will need an
2899 // additional isCompatibleWithMSVC check.
2900 return false;
2903 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2904 const CXXRecordDecl *RD,
2905 const CXXRecordDecl *BaseDecl,
2906 const ASTRecordLayout &BaseLayout,
2907 const ASTRecordLayout *&PreviousBaseLayout) {
2908 // Insert padding between two bases if the left first one is zero sized or
2909 // contains a zero sized subobject and the right is zero sized or one leads
2910 // with a zero sized base.
2911 bool MDCUsesEBO = recordUsesEBO(RD);
2912 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2913 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2914 Size++;
2915 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2916 CharUnits BaseOffset;
2918 // Respect the external AST source base offset, if present.
2919 bool FoundBase = false;
2920 if (UseExternalLayout) {
2921 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2922 if (FoundBase) {
2923 assert(BaseOffset >= Size && "base offset already allocated");
2924 Size = BaseOffset;
2928 if (!FoundBase) {
2929 if (MDCUsesEBO && BaseDecl->isEmpty()) {
2930 assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2931 BaseOffset = CharUnits::Zero();
2932 } else {
2933 // Otherwise, lay the base out at the end of the MDC.
2934 BaseOffset = Size = Size.alignTo(Info.Alignment);
2937 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2938 Size += BaseLayout.getNonVirtualSize();
2939 PreviousBaseLayout = &BaseLayout;
2942 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2943 LastFieldIsNonZeroWidthBitfield = false;
2944 for (const FieldDecl *Field : RD->fields())
2945 layoutField(Field);
2948 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2949 if (FD->isBitField()) {
2950 layoutBitField(FD);
2951 return;
2953 LastFieldIsNonZeroWidthBitfield = false;
2954 ElementInfo Info = getAdjustedElementInfo(FD);
2955 Alignment = std::max(Alignment, Info.Alignment);
2956 CharUnits FieldOffset;
2957 if (UseExternalLayout)
2958 FieldOffset =
2959 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2960 else if (IsUnion)
2961 FieldOffset = CharUnits::Zero();
2962 else
2963 FieldOffset = Size.alignTo(Info.Alignment);
2964 placeFieldAtOffset(FieldOffset);
2965 Size = std::max(Size, FieldOffset + Info.Size);
2968 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2969 unsigned Width = FD->getBitWidthValue(Context);
2970 if (Width == 0) {
2971 layoutZeroWidthBitField(FD);
2972 return;
2974 ElementInfo Info = getAdjustedElementInfo(FD);
2975 // Clamp the bitfield to a containable size for the sake of being able
2976 // to lay them out. Sema will throw an error.
2977 if (Width > Context.toBits(Info.Size))
2978 Width = Context.toBits(Info.Size);
2979 // Check to see if this bitfield fits into an existing allocation. Note:
2980 // MSVC refuses to pack bitfields of formal types with different sizes
2981 // into the same allocation.
2982 if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2983 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2984 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2985 RemainingBitsInField -= Width;
2986 return;
2988 LastFieldIsNonZeroWidthBitfield = true;
2989 CurrentBitfieldSize = Info.Size;
2990 if (UseExternalLayout) {
2991 auto FieldBitOffset = External.getExternalFieldOffset(FD);
2992 placeFieldAtBitOffset(FieldBitOffset);
2993 auto NewSize = Context.toCharUnitsFromBits(
2994 llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2995 Context.toBits(Info.Size));
2996 Size = std::max(Size, NewSize);
2997 Alignment = std::max(Alignment, Info.Alignment);
2998 } else if (IsUnion) {
2999 placeFieldAtOffset(CharUnits::Zero());
3000 Size = std::max(Size, Info.Size);
3001 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3002 } else {
3003 // Allocate a new block of memory and place the bitfield in it.
3004 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3005 placeFieldAtOffset(FieldOffset);
3006 Size = FieldOffset + Info.Size;
3007 Alignment = std::max(Alignment, Info.Alignment);
3008 RemainingBitsInField = Context.toBits(Info.Size) - Width;
3012 void
3013 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
3014 // Zero-width bitfields are ignored unless they follow a non-zero-width
3015 // bitfield.
3016 if (!LastFieldIsNonZeroWidthBitfield) {
3017 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
3018 // TODO: Add a Sema warning that MS ignores alignment for zero
3019 // sized bitfields that occur after zero-size bitfields or non-bitfields.
3020 return;
3022 LastFieldIsNonZeroWidthBitfield = false;
3023 ElementInfo Info = getAdjustedElementInfo(FD);
3024 if (IsUnion) {
3025 placeFieldAtOffset(CharUnits::Zero());
3026 Size = std::max(Size, Info.Size);
3027 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3028 } else {
3029 // Round up the current record size to the field's alignment boundary.
3030 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3031 placeFieldAtOffset(FieldOffset);
3032 Size = FieldOffset;
3033 Alignment = std::max(Alignment, Info.Alignment);
3037 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
3038 if (!HasVBPtr || SharedVBPtrBase)
3039 return;
3040 // Inject the VBPointer at the injection site.
3041 CharUnits InjectionSite = VBPtrOffset;
3042 // But before we do, make sure it's properly aligned.
3043 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
3044 // Determine where the first field should be laid out after the vbptr.
3045 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
3046 // Shift everything after the vbptr down, unless we're using an external
3047 // layout.
3048 if (UseExternalLayout) {
3049 // It is possible that there were no fields or bases located after vbptr,
3050 // so the size was not adjusted before.
3051 if (Size < FieldStart)
3052 Size = FieldStart;
3053 return;
3055 // Make sure that the amount we push the fields back by is a multiple of the
3056 // alignment.
3057 CharUnits Offset = (FieldStart - InjectionSite)
3058 .alignTo(std::max(RequiredAlignment, Alignment));
3059 Size += Offset;
3060 for (uint64_t &FieldOffset : FieldOffsets)
3061 FieldOffset += Context.toBits(Offset);
3062 for (BaseOffsetsMapTy::value_type &Base : Bases)
3063 if (Base.second >= InjectionSite)
3064 Base.second += Offset;
3067 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3068 if (!HasOwnVFPtr)
3069 return;
3070 // Make sure that the amount we push the struct back by is a multiple of the
3071 // alignment.
3072 CharUnits Offset =
3073 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3074 // Push back the vbptr, but increase the size of the object and push back
3075 // regular fields by the offset only if not using external record layout.
3076 if (HasVBPtr)
3077 VBPtrOffset += Offset;
3079 if (UseExternalLayout) {
3080 // The class may have size 0 and a vfptr (e.g. it's an interface class). The
3081 // size was not correctly set before in this case.
3082 if (Size.isZero())
3083 Size += Offset;
3084 return;
3087 Size += Offset;
3089 // If we're using an external layout, the fields offsets have already
3090 // accounted for this adjustment.
3091 for (uint64_t &FieldOffset : FieldOffsets)
3092 FieldOffset += Context.toBits(Offset);
3093 for (BaseOffsetsMapTy::value_type &Base : Bases)
3094 Base.second += Offset;
3097 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3098 if (!HasVBPtr)
3099 return;
3100 // Vtordisps are always 4 bytes (even in 64-bit mode)
3101 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3102 CharUnits VtorDispAlignment = VtorDispSize;
3103 // vtordisps respect pragma pack.
3104 if (!MaxFieldAlignment.isZero())
3105 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3106 // The alignment of the vtordisp is at least the required alignment of the
3107 // entire record. This requirement may be present to support vtordisp
3108 // injection.
3109 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3110 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3111 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3112 RequiredAlignment =
3113 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3115 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3116 // Compute the vtordisp set.
3117 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3118 computeVtorDispSet(HasVtorDispSet, RD);
3119 // Iterate through the virtual bases and lay them out.
3120 const ASTRecordLayout *PreviousBaseLayout = nullptr;
3121 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3122 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3123 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3124 bool HasVtordisp = HasVtorDispSet.contains(BaseDecl);
3125 // Insert padding between two bases if the left first one is zero sized or
3126 // contains a zero sized subobject and the right is zero sized or one leads
3127 // with a zero sized base. The padding between virtual bases is 4
3128 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3129 // the required alignment, we don't know why.
3130 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3131 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3132 HasVtordisp) {
3133 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3134 Alignment = std::max(VtorDispAlignment, Alignment);
3136 // Insert the virtual base.
3137 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3138 CharUnits BaseOffset;
3140 // Respect the external AST source base offset, if present.
3141 if (UseExternalLayout) {
3142 if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3143 BaseOffset = Size;
3144 } else
3145 BaseOffset = Size.alignTo(Info.Alignment);
3147 assert(BaseOffset >= Size && "base offset already allocated");
3149 VBases.insert(std::make_pair(BaseDecl,
3150 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3151 Size = BaseOffset + BaseLayout.getNonVirtualSize();
3152 PreviousBaseLayout = &BaseLayout;
3156 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3157 // Respect required alignment. Note that in 32-bit mode Required alignment
3158 // may be 0 and cause size not to be updated.
3159 DataSize = Size;
3160 if (!RequiredAlignment.isZero()) {
3161 Alignment = std::max(Alignment, RequiredAlignment);
3162 auto RoundingAlignment = Alignment;
3163 if (!MaxFieldAlignment.isZero())
3164 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3165 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3166 Size = Size.alignTo(RoundingAlignment);
3168 if (Size.isZero()) {
3169 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3170 EndsWithZeroSizedObject = true;
3171 LeadsWithZeroSizedBase = true;
3173 // Zero-sized structures have size equal to their alignment if a
3174 // __declspec(align) came into play.
3175 if (RequiredAlignment >= MinEmptyStructSize)
3176 Size = Alignment;
3177 else
3178 Size = MinEmptyStructSize;
3181 if (UseExternalLayout) {
3182 Size = Context.toCharUnitsFromBits(External.Size);
3183 if (External.Align)
3184 Alignment = Context.toCharUnitsFromBits(External.Align);
3188 // Recursively walks the non-virtual bases of a class and determines if any of
3189 // them are in the bases with overridden methods set.
3190 static bool
3191 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3192 BasesWithOverriddenMethods,
3193 const CXXRecordDecl *RD) {
3194 if (BasesWithOverriddenMethods.count(RD))
3195 return true;
3196 // If any of a virtual bases non-virtual bases (recursively) requires a
3197 // vtordisp than so does this virtual base.
3198 for (const CXXBaseSpecifier &Base : RD->bases())
3199 if (!Base.isVirtual() &&
3200 RequiresVtordisp(BasesWithOverriddenMethods,
3201 Base.getType()->getAsCXXRecordDecl()))
3202 return true;
3203 return false;
3206 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3207 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3208 const CXXRecordDecl *RD) const {
3209 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3210 // vftables.
3211 if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3212 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3213 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3214 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3215 if (Layout.hasExtendableVFPtr())
3216 HasVtordispSet.insert(BaseDecl);
3218 return;
3221 // If any of our bases need a vtordisp for this type, so do we. Check our
3222 // direct bases for vtordisp requirements.
3223 for (const CXXBaseSpecifier &Base : RD->bases()) {
3224 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3225 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3226 for (const auto &bi : Layout.getVBaseOffsetsMap())
3227 if (bi.second.hasVtorDisp())
3228 HasVtordispSet.insert(bi.first);
3230 // We don't introduce any additional vtordisps if either:
3231 // * A user declared constructor or destructor aren't declared.
3232 // * #pragma vtordisp(0) or the /vd0 flag are in use.
3233 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3234 RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3235 return;
3236 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3237 // possible for a partially constructed object with virtual base overrides to
3238 // escape a non-trivial constructor.
3239 assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3240 // Compute a set of base classes which define methods we override. A virtual
3241 // base in this set will require a vtordisp. A virtual base that transitively
3242 // contains one of these bases as a non-virtual base will also require a
3243 // vtordisp.
3244 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3245 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3246 // Seed the working set with our non-destructor, non-pure virtual methods.
3247 for (const CXXMethodDecl *MD : RD->methods())
3248 if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3249 !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3250 Work.insert(MD);
3251 while (!Work.empty()) {
3252 const CXXMethodDecl *MD = *Work.begin();
3253 auto MethodRange = MD->overridden_methods();
3254 // If a virtual method has no-overrides it lives in its parent's vtable.
3255 if (MethodRange.begin() == MethodRange.end())
3256 BasesWithOverriddenMethods.insert(MD->getParent());
3257 else
3258 Work.insert(MethodRange.begin(), MethodRange.end());
3259 // We've finished processing this element, remove it from the working set.
3260 Work.erase(MD);
3262 // For each of our virtual bases, check if it is in the set of overridden
3263 // bases or if it transitively contains a non-virtual base that is.
3264 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3265 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3266 if (!HasVtordispSet.count(BaseDecl) &&
3267 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3268 HasVtordispSet.insert(BaseDecl);
3272 /// getASTRecordLayout - Get or compute information about the layout of the
3273 /// specified record (struct/union/class), which indicates its size and field
3274 /// position information.
3275 const ASTRecordLayout &
3276 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3277 // These asserts test different things. A record has a definition
3278 // as soon as we begin to parse the definition. That definition is
3279 // not a complete definition (which is what isDefinition() tests)
3280 // until we *finish* parsing the definition.
3282 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3283 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3284 // Complete the redecl chain (if necessary).
3285 (void)D->getMostRecentDecl();
3287 D = D->getDefinition();
3288 assert(D && "Cannot get layout of forward declarations!");
3289 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3290 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3292 // Look up this layout, if already laid out, return what we have.
3293 // Note that we can't save a reference to the entry because this function
3294 // is recursive.
3295 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3296 if (Entry) return *Entry;
3298 const ASTRecordLayout *NewEntry = nullptr;
3300 if (isMsLayout(*this)) {
3301 MicrosoftRecordLayoutBuilder Builder(*this);
3302 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3303 Builder.cxxLayout(RD);
3304 NewEntry = new (*this) ASTRecordLayout(
3305 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3306 Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3307 Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3308 Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3309 Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3310 Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3311 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3312 Builder.Bases, Builder.VBases);
3313 } else {
3314 Builder.layout(D);
3315 NewEntry = new (*this) ASTRecordLayout(
3316 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3317 Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3318 Builder.FieldOffsets);
3320 } else {
3321 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3322 EmptySubobjectMap EmptySubobjects(*this, RD);
3323 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3324 Builder.Layout(RD);
3326 // In certain situations, we are allowed to lay out objects in the
3327 // tail-padding of base classes. This is ABI-dependent.
3328 // FIXME: this should be stored in the record layout.
3329 bool skipTailPadding =
3330 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3332 // FIXME: This should be done in FinalizeLayout.
3333 CharUnits DataSize =
3334 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3335 CharUnits NonVirtualSize =
3336 skipTailPadding ? DataSize : Builder.NonVirtualSize;
3337 NewEntry = new (*this) ASTRecordLayout(
3338 *this, Builder.getSize(), Builder.Alignment,
3339 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3340 /*RequiredAlignment : used by MS-ABI)*/
3341 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3342 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3343 NonVirtualSize, Builder.NonVirtualAlignment,
3344 Builder.PreferredNVAlignment,
3345 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3346 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3347 Builder.VBases);
3348 } else {
3349 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3350 Builder.Layout(D);
3352 NewEntry = new (*this) ASTRecordLayout(
3353 *this, Builder.getSize(), Builder.Alignment,
3354 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3355 /*RequiredAlignment : used by MS-ABI)*/
3356 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3360 ASTRecordLayouts[D] = NewEntry;
3362 if (getLangOpts().DumpRecordLayouts) {
3363 llvm::outs() << "\n*** Dumping AST Record Layout\n";
3364 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3367 return *NewEntry;
3370 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3371 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3372 return nullptr;
3374 assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3375 RD = RD->getDefinition();
3377 // Beware:
3378 // 1) computing the key function might trigger deserialization, which might
3379 // invalidate iterators into KeyFunctions
3380 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
3381 // invalidate the LazyDeclPtr within the map itself
3382 LazyDeclPtr Entry = KeyFunctions[RD];
3383 const Decl *Result =
3384 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3386 // Store it back if it changed.
3387 if (Entry.isOffset() || Entry.isValid() != bool(Result))
3388 KeyFunctions[RD] = const_cast<Decl*>(Result);
3390 return cast_or_null<CXXMethodDecl>(Result);
3393 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3394 assert(Method == Method->getFirstDecl() &&
3395 "not working with method declaration from class definition");
3397 // Look up the cache entry. Since we're working with the first
3398 // declaration, its parent must be the class definition, which is
3399 // the correct key for the KeyFunctions hash.
3400 const auto &Map = KeyFunctions;
3401 auto I = Map.find(Method->getParent());
3403 // If it's not cached, there's nothing to do.
3404 if (I == Map.end()) return;
3406 // If it is cached, check whether it's the target method, and if so,
3407 // remove it from the cache. Note, the call to 'get' might invalidate
3408 // the iterator and the LazyDeclPtr object within the map.
3409 LazyDeclPtr Ptr = I->second;
3410 if (Ptr.get(getExternalSource()) == Method) {
3411 // FIXME: remember that we did this for module / chained PCH state?
3412 KeyFunctions.erase(Method->getParent());
3416 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3417 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3418 return Layout.getFieldOffset(FD->getFieldIndex());
3421 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3422 uint64_t OffsetInBits;
3423 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3424 OffsetInBits = ::getFieldOffset(*this, FD);
3425 } else {
3426 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3428 OffsetInBits = 0;
3429 for (const NamedDecl *ND : IFD->chain())
3430 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3433 return OffsetInBits;
3436 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3437 const ObjCImplementationDecl *ID,
3438 const ObjCIvarDecl *Ivar) const {
3439 Ivar = Ivar->getCanonicalDecl();
3440 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3442 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3443 // in here; it should never be necessary because that should be the lexical
3444 // decl context for the ivar.
3446 // If we know have an implementation (and the ivar is in it) then
3447 // look up in the implementation layout.
3448 const ASTRecordLayout *RL;
3449 if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3450 RL = &getASTObjCImplementationLayout(ID);
3451 else
3452 RL = &getASTObjCInterfaceLayout(Container);
3454 // Compute field index.
3456 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3457 // implemented. This should be fixed to get the information from the layout
3458 // directly.
3459 unsigned Index = 0;
3461 for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3462 IVD; IVD = IVD->getNextIvar()) {
3463 if (Ivar == IVD)
3464 break;
3465 ++Index;
3467 assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3469 return RL->getFieldOffset(Index);
3472 /// getObjCLayout - Get or compute information about the layout of the
3473 /// given interface.
3475 /// \param Impl - If given, also include the layout of the interface's
3476 /// implementation. This may differ by including synthesized ivars.
3477 const ASTRecordLayout &
3478 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3479 const ObjCImplementationDecl *Impl) const {
3480 // Retrieve the definition
3481 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3482 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3483 D = D->getDefinition();
3484 assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3485 "Invalid interface decl!");
3487 // Look up this layout, if already laid out, return what we have.
3488 const ObjCContainerDecl *Key =
3489 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3490 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3491 return *Entry;
3493 // Add in synthesized ivar count if laying out an implementation.
3494 if (Impl) {
3495 unsigned SynthCount = CountNonClassIvars(D);
3496 // If there aren't any synthesized ivars then reuse the interface
3497 // entry. Note we can't cache this because we simply free all
3498 // entries later; however we shouldn't look up implementations
3499 // frequently.
3500 if (SynthCount == 0)
3501 return getObjCLayout(D, nullptr);
3504 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3505 Builder.Layout(D);
3507 const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3508 *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3509 Builder.UnadjustedAlignment,
3510 /*RequiredAlignment : used by MS-ABI)*/
3511 Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3513 ObjCLayouts[Key] = NewEntry;
3515 return *NewEntry;
3518 static void PrintOffset(raw_ostream &OS,
3519 CharUnits Offset, unsigned IndentLevel) {
3520 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3521 OS.indent(IndentLevel * 2);
3524 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3525 unsigned Begin, unsigned Width,
3526 unsigned IndentLevel) {
3527 llvm::SmallString<10> Buffer;
3529 llvm::raw_svector_ostream BufferOS(Buffer);
3530 BufferOS << Offset.getQuantity() << ':';
3531 if (Width == 0) {
3532 BufferOS << '-';
3533 } else {
3534 BufferOS << Begin << '-' << (Begin + Width - 1);
3538 OS << llvm::right_justify(Buffer, 10) << " | ";
3539 OS.indent(IndentLevel * 2);
3542 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3543 OS << " | ";
3544 OS.indent(IndentLevel * 2);
3547 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3548 const ASTContext &C,
3549 CharUnits Offset,
3550 unsigned IndentLevel,
3551 const char* Description,
3552 bool PrintSizeInfo,
3553 bool IncludeVirtualBases) {
3554 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3555 auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3557 PrintOffset(OS, Offset, IndentLevel);
3558 OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD));
3559 if (Description)
3560 OS << ' ' << Description;
3561 if (CXXRD && CXXRD->isEmpty())
3562 OS << " (empty)";
3563 OS << '\n';
3565 IndentLevel++;
3567 // Dump bases.
3568 if (CXXRD) {
3569 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3570 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3571 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3573 // Vtable pointer.
3574 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3575 PrintOffset(OS, Offset, IndentLevel);
3576 OS << '(' << *RD << " vtable pointer)\n";
3577 } else if (HasOwnVFPtr) {
3578 PrintOffset(OS, Offset, IndentLevel);
3579 // vfptr (for Microsoft C++ ABI)
3580 OS << '(' << *RD << " vftable pointer)\n";
3583 // Collect nvbases.
3584 SmallVector<const CXXRecordDecl *, 4> Bases;
3585 for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3586 assert(!Base.getType()->isDependentType() &&
3587 "Cannot layout class with dependent bases.");
3588 if (!Base.isVirtual())
3589 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3592 // Sort nvbases by offset.
3593 llvm::stable_sort(
3594 Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3595 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3598 // Dump (non-virtual) bases
3599 for (const CXXRecordDecl *Base : Bases) {
3600 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3601 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3602 Base == PrimaryBase ? "(primary base)" : "(base)",
3603 /*PrintSizeInfo=*/false,
3604 /*IncludeVirtualBases=*/false);
3607 // vbptr (for Microsoft C++ ABI)
3608 if (HasOwnVBPtr) {
3609 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3610 OS << '(' << *RD << " vbtable pointer)\n";
3614 // Dump fields.
3615 uint64_t FieldNo = 0;
3616 for (RecordDecl::field_iterator I = RD->field_begin(),
3617 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3618 const FieldDecl &Field = **I;
3619 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3620 CharUnits FieldOffset =
3621 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3623 // Recursively dump fields of record type.
3624 if (auto RT = Field.getType()->getAs<RecordType>()) {
3625 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3626 Field.getName().data(),
3627 /*PrintSizeInfo=*/false,
3628 /*IncludeVirtualBases=*/true);
3629 continue;
3632 if (Field.isBitField()) {
3633 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3634 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3635 unsigned Width = Field.getBitWidthValue(C);
3636 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3637 } else {
3638 PrintOffset(OS, FieldOffset, IndentLevel);
3640 const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical
3641 ? Field.getType().getCanonicalType()
3642 : Field.getType();
3643 OS << FieldType << ' ' << Field << '\n';
3646 // Dump virtual bases.
3647 if (CXXRD && IncludeVirtualBases) {
3648 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3649 Layout.getVBaseOffsetsMap();
3651 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3652 assert(Base.isVirtual() && "Found non-virtual class!");
3653 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3655 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3657 if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3658 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3659 OS << "(vtordisp for vbase " << *VBase << ")\n";
3662 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3663 VBase == Layout.getPrimaryBase() ?
3664 "(primary virtual base)" : "(virtual base)",
3665 /*PrintSizeInfo=*/false,
3666 /*IncludeVirtualBases=*/false);
3670 if (!PrintSizeInfo) return;
3672 PrintIndentNoOffset(OS, IndentLevel - 1);
3673 OS << "[sizeof=" << Layout.getSize().getQuantity();
3674 if (CXXRD && !isMsLayout(C))
3675 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3676 OS << ", align=" << Layout.getAlignment().getQuantity();
3677 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3678 OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3680 if (CXXRD) {
3681 OS << ",\n";
3682 PrintIndentNoOffset(OS, IndentLevel - 1);
3683 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3684 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3685 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3686 OS << ", preferrednvalign="
3687 << Layout.getPreferredNVAlignment().getQuantity();
3689 OS << "]\n";
3692 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3693 bool Simple) const {
3694 if (!Simple) {
3695 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3696 /*PrintSizeInfo*/ true,
3697 /*IncludeVirtualBases=*/true);
3698 return;
3701 // The "simple" format is designed to be parsed by the
3702 // layout-override testing code. There shouldn't be any external
3703 // uses of this format --- when LLDB overrides a layout, it sets up
3704 // the data structures directly --- so feel free to adjust this as
3705 // you like as long as you also update the rudimentary parser for it
3706 // in libFrontend.
3708 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3709 OS << "Type: " << getTypeDeclType(RD) << "\n";
3710 OS << "\nLayout: ";
3711 OS << "<ASTRecordLayout\n";
3712 OS << " Size:" << toBits(Info.getSize()) << "\n";
3713 if (!isMsLayout(*this))
3714 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3715 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3716 if (Target->defaultsToAIXPowerAlignment())
3717 OS << " PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3718 << "\n";
3719 OS << " FieldOffsets: [";
3720 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3721 if (i)
3722 OS << ", ";
3723 OS << Info.getFieldOffset(i);
3725 OS << "]>\n";