[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / CodeGen / BackendUtil.cpp
blobb03d326dd0654805e6c80febeca7d63a134c24c6
1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "clang/CodeGen/BackendUtil.h"
10 #include "clang/Basic/CodeGenOptions.h"
11 #include "clang/Basic/Diagnostic.h"
12 #include "clang/Basic/LangOptions.h"
13 #include "clang/Basic/TargetOptions.h"
14 #include "clang/Frontend/FrontendDiagnostic.h"
15 #include "clang/Frontend/Utils.h"
16 #include "clang/Lex/HeaderSearchOptions.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Bitcode/BitcodeReader.h"
25 #include "llvm/Bitcode/BitcodeWriter.h"
26 #include "llvm/Bitcode/BitcodeWriterPass.h"
27 #include "llvm/CodeGen/RegAllocRegistry.h"
28 #include "llvm/CodeGen/SchedulerRegistry.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/ModuleSummaryIndex.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/Verifier.h"
37 #include "llvm/IRPrinter/IRPrintingPasses.h"
38 #include "llvm/LTO/LTOBackend.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/SubtargetFeature.h"
41 #include "llvm/MC/TargetRegistry.h"
42 #include "llvm/Object/OffloadBinary.h"
43 #include "llvm/Passes/PassBuilder.h"
44 #include "llvm/Passes/PassPlugin.h"
45 #include "llvm/Passes/StandardInstrumentations.h"
46 #include "llvm/Support/BuryPointer.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/MemoryBuffer.h"
49 #include "llvm/Support/PrettyStackTrace.h"
50 #include "llvm/Support/TimeProfiler.h"
51 #include "llvm/Support/Timer.h"
52 #include "llvm/Support/ToolOutputFile.h"
53 #include "llvm/Support/VirtualFileSystem.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
57 #include "llvm/TargetParser/Triple.h"
58 #include "llvm/Transforms/IPO/LowerTypeTests.h"
59 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
60 #include "llvm/Transforms/InstCombine/InstCombine.h"
61 #include "llvm/Transforms/Instrumentation.h"
62 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
63 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
64 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
65 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
66 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
67 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
68 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
69 #include "llvm/Transforms/Instrumentation/KCFI.h"
70 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
72 #include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h"
73 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
74 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
75 #include "llvm/Transforms/ObjCARC.h"
76 #include "llvm/Transforms/Scalar/EarlyCSE.h"
77 #include "llvm/Transforms/Scalar/GVN.h"
78 #include "llvm/Transforms/Scalar/JumpThreading.h"
79 #include "llvm/Transforms/Utils/Debugify.h"
80 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
81 #include "llvm/Transforms/Utils/ModuleUtils.h"
82 #include <memory>
83 #include <optional>
84 using namespace clang;
85 using namespace llvm;
87 #define HANDLE_EXTENSION(Ext) \
88 llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
89 #include "llvm/Support/Extension.def"
91 namespace llvm {
92 extern cl::opt<bool> DebugInfoCorrelate;
94 // Experiment to move sanitizers earlier.
95 static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP(
96 "sanitizer-early-opt-ep", cl::Optional,
97 cl::desc("Insert sanitizers on OptimizerEarlyEP."), cl::init(false));
100 namespace {
102 // Default filename used for profile generation.
103 std::string getDefaultProfileGenName() {
104 return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw";
107 class EmitAssemblyHelper {
108 DiagnosticsEngine &Diags;
109 const HeaderSearchOptions &HSOpts;
110 const CodeGenOptions &CodeGenOpts;
111 const clang::TargetOptions &TargetOpts;
112 const LangOptions &LangOpts;
113 Module *TheModule;
114 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS;
116 Timer CodeGenerationTime;
118 std::unique_ptr<raw_pwrite_stream> OS;
120 Triple TargetTriple;
122 TargetIRAnalysis getTargetIRAnalysis() const {
123 if (TM)
124 return TM->getTargetIRAnalysis();
126 return TargetIRAnalysis();
129 /// Generates the TargetMachine.
130 /// Leaves TM unchanged if it is unable to create the target machine.
131 /// Some of our clang tests specify triples which are not built
132 /// into clang. This is okay because these tests check the generated
133 /// IR, and they require DataLayout which depends on the triple.
134 /// In this case, we allow this method to fail and not report an error.
135 /// When MustCreateTM is used, we print an error if we are unable to load
136 /// the requested target.
137 void CreateTargetMachine(bool MustCreateTM);
139 /// Add passes necessary to emit assembly or LLVM IR.
141 /// \return True on success.
142 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
143 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
145 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
146 std::error_code EC;
147 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
148 llvm::sys::fs::OF_None);
149 if (EC) {
150 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
151 F.reset();
153 return F;
156 void
157 RunOptimizationPipeline(BackendAction Action,
158 std::unique_ptr<raw_pwrite_stream> &OS,
159 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS);
160 void RunCodegenPipeline(BackendAction Action,
161 std::unique_ptr<raw_pwrite_stream> &OS,
162 std::unique_ptr<llvm::ToolOutputFile> &DwoOS);
164 /// Check whether we should emit a module summary for regular LTO.
165 /// The module summary should be emitted by default for regular LTO
166 /// except for ld64 targets.
168 /// \return True if the module summary should be emitted.
169 bool shouldEmitRegularLTOSummary() const {
170 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses &&
171 TargetTriple.getVendor() != llvm::Triple::Apple;
174 public:
175 EmitAssemblyHelper(DiagnosticsEngine &_Diags,
176 const HeaderSearchOptions &HeaderSearchOpts,
177 const CodeGenOptions &CGOpts,
178 const clang::TargetOptions &TOpts,
179 const LangOptions &LOpts, Module *M,
180 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
181 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
182 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), VFS(std::move(VFS)),
183 CodeGenerationTime("codegen", "Code Generation Time"),
184 TargetTriple(TheModule->getTargetTriple()) {}
186 ~EmitAssemblyHelper() {
187 if (CodeGenOpts.DisableFree)
188 BuryPointer(std::move(TM));
191 std::unique_ptr<TargetMachine> TM;
193 // Emit output using the new pass manager for the optimization pipeline.
194 void EmitAssembly(BackendAction Action,
195 std::unique_ptr<raw_pwrite_stream> OS);
199 static SanitizerCoverageOptions
200 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) {
201 SanitizerCoverageOptions Opts;
202 Opts.CoverageType =
203 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
204 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
205 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
206 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
207 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
208 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
209 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
210 Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
211 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
212 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
213 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
214 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
215 Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
216 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
217 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads;
218 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores;
219 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow;
220 return Opts;
223 static SanitizerBinaryMetadataOptions
224 getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) {
225 SanitizerBinaryMetadataOptions Opts;
226 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered;
227 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics;
228 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR;
229 return Opts;
232 // Check if ASan should use GC-friendly instrumentation for globals.
233 // First of all, there is no point if -fdata-sections is off (expect for MachO,
234 // where this is not a factor). Also, on ELF this feature requires an assembler
235 // extension that only works with -integrated-as at the moment.
236 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
237 if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
238 return false;
239 switch (T.getObjectFormat()) {
240 case Triple::MachO:
241 case Triple::COFF:
242 return true;
243 case Triple::ELF:
244 return !CGOpts.DisableIntegratedAS;
245 case Triple::GOFF:
246 llvm::report_fatal_error("ASan not implemented for GOFF");
247 case Triple::XCOFF:
248 llvm::report_fatal_error("ASan not implemented for XCOFF.");
249 case Triple::Wasm:
250 case Triple::DXContainer:
251 case Triple::SPIRV:
252 case Triple::UnknownObjectFormat:
253 break;
255 return false;
258 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
259 const CodeGenOptions &CodeGenOpts) {
260 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
262 switch (CodeGenOpts.getVecLib()) {
263 case CodeGenOptions::Accelerate:
264 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate,
265 TargetTriple);
266 break;
267 case CodeGenOptions::LIBMVEC:
268 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::LIBMVEC_X86,
269 TargetTriple);
270 break;
271 case CodeGenOptions::MASSV:
272 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV,
273 TargetTriple);
274 break;
275 case CodeGenOptions::SVML:
276 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML,
277 TargetTriple);
278 break;
279 case CodeGenOptions::SLEEF:
280 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SLEEFGNUABI,
281 TargetTriple);
282 break;
283 case CodeGenOptions::Darwin_libsystem_m:
284 TLII->addVectorizableFunctionsFromVecLib(
285 TargetLibraryInfoImpl::DarwinLibSystemM, TargetTriple);
286 break;
287 default:
288 break;
290 return TLII;
293 static std::optional<llvm::CodeModel::Model>
294 getCodeModel(const CodeGenOptions &CodeGenOpts) {
295 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
296 .Case("tiny", llvm::CodeModel::Tiny)
297 .Case("small", llvm::CodeModel::Small)
298 .Case("kernel", llvm::CodeModel::Kernel)
299 .Case("medium", llvm::CodeModel::Medium)
300 .Case("large", llvm::CodeModel::Large)
301 .Case("default", ~1u)
302 .Default(~0u);
303 assert(CodeModel != ~0u && "invalid code model!");
304 if (CodeModel == ~1u)
305 return std::nullopt;
306 return static_cast<llvm::CodeModel::Model>(CodeModel);
309 static CodeGenFileType getCodeGenFileType(BackendAction Action) {
310 if (Action == Backend_EmitObj)
311 return CGFT_ObjectFile;
312 else if (Action == Backend_EmitMCNull)
313 return CGFT_Null;
314 else {
315 assert(Action == Backend_EmitAssembly && "Invalid action!");
316 return CGFT_AssemblyFile;
320 static bool actionRequiresCodeGen(BackendAction Action) {
321 return Action != Backend_EmitNothing && Action != Backend_EmitBC &&
322 Action != Backend_EmitLL;
325 static bool initTargetOptions(DiagnosticsEngine &Diags,
326 llvm::TargetOptions &Options,
327 const CodeGenOptions &CodeGenOpts,
328 const clang::TargetOptions &TargetOpts,
329 const LangOptions &LangOpts,
330 const HeaderSearchOptions &HSOpts) {
331 switch (LangOpts.getThreadModel()) {
332 case LangOptions::ThreadModelKind::POSIX:
333 Options.ThreadModel = llvm::ThreadModel::POSIX;
334 break;
335 case LangOptions::ThreadModelKind::Single:
336 Options.ThreadModel = llvm::ThreadModel::Single;
337 break;
340 // Set float ABI type.
341 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
342 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
343 "Invalid Floating Point ABI!");
344 Options.FloatABIType =
345 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
346 .Case("soft", llvm::FloatABI::Soft)
347 .Case("softfp", llvm::FloatABI::Soft)
348 .Case("hard", llvm::FloatABI::Hard)
349 .Default(llvm::FloatABI::Default);
351 // Set FP fusion mode.
352 switch (LangOpts.getDefaultFPContractMode()) {
353 case LangOptions::FPM_Off:
354 // Preserve any contraction performed by the front-end. (Strict performs
355 // splitting of the muladd intrinsic in the backend.)
356 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
357 break;
358 case LangOptions::FPM_On:
359 case LangOptions::FPM_FastHonorPragmas:
360 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
361 break;
362 case LangOptions::FPM_Fast:
363 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
364 break;
367 Options.BinutilsVersion =
368 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion);
369 Options.UseInitArray = CodeGenOpts.UseInitArray;
370 Options.LowerGlobalDtorsViaCxaAtExit =
371 CodeGenOpts.RegisterGlobalDtorsWithAtExit;
372 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
373 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
374 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
376 // Set EABI version.
377 Options.EABIVersion = TargetOpts.EABIVersion;
379 if (LangOpts.hasSjLjExceptions())
380 Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
381 if (LangOpts.hasSEHExceptions())
382 Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
383 if (LangOpts.hasDWARFExceptions())
384 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
385 if (LangOpts.hasWasmExceptions())
386 Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
388 Options.NoInfsFPMath = LangOpts.NoHonorInfs;
389 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
390 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
391 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
392 LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
393 (LangOpts.getDefaultFPContractMode() ==
394 LangOptions::FPModeKind::FPM_Fast ||
395 LangOpts.getDefaultFPContractMode() ==
396 LangOptions::FPModeKind::FPM_FastHonorPragmas);
397 Options.ApproxFuncFPMath = LangOpts.ApproxFunc;
399 Options.BBSections =
400 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
401 .Case("all", llvm::BasicBlockSection::All)
402 .Case("labels", llvm::BasicBlockSection::Labels)
403 .StartsWith("list=", llvm::BasicBlockSection::List)
404 .Case("none", llvm::BasicBlockSection::None)
405 .Default(llvm::BasicBlockSection::None);
407 if (Options.BBSections == llvm::BasicBlockSection::List) {
408 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
409 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
410 if (!MBOrErr) {
411 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
412 << MBOrErr.getError().message();
413 return false;
415 Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
418 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
419 Options.FunctionSections = CodeGenOpts.FunctionSections;
420 Options.DataSections = CodeGenOpts.DataSections;
421 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility;
422 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
423 Options.UniqueBasicBlockSectionNames =
424 CodeGenOpts.UniqueBasicBlockSectionNames;
425 Options.TLSSize = CodeGenOpts.TLSSize;
426 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
427 Options.ExplicitEmulatedTLS = true;
428 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
429 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
430 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput;
431 Options.EmitAddrsig = CodeGenOpts.Addrsig;
432 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
433 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
434 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI;
435 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex;
436 Options.LoopAlignment = CodeGenOpts.LoopAlignment;
437 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf;
438 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug;
439 Options.Hotpatch = CodeGenOpts.HotPatch;
440 Options.JMCInstrument = CodeGenOpts.JMCInstrument;
442 switch (CodeGenOpts.getSwiftAsyncFramePointer()) {
443 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto:
444 Options.SwiftAsyncFramePointer =
445 SwiftAsyncFramePointerMode::DeploymentBased;
446 break;
448 case CodeGenOptions::SwiftAsyncFramePointerKind::Always:
449 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always;
450 break;
452 case CodeGenOptions::SwiftAsyncFramePointerKind::Never:
453 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never;
454 break;
457 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
458 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind();
459 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
460 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
461 Options.MCOptions.MCUseDwarfDirectory =
462 CodeGenOpts.NoDwarfDirectoryAsm
463 ? llvm::MCTargetOptions::DisableDwarfDirectory
464 : llvm::MCTargetOptions::EnableDwarfDirectory;
465 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
466 Options.MCOptions.MCIncrementalLinkerCompatible =
467 CodeGenOpts.IncrementalLinkerCompatible;
468 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
469 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
470 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
471 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64;
472 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
473 Options.MCOptions.ABIName = TargetOpts.ABI;
474 for (const auto &Entry : HSOpts.UserEntries)
475 if (!Entry.IsFramework &&
476 (Entry.Group == frontend::IncludeDirGroup::Quoted ||
477 Entry.Group == frontend::IncludeDirGroup::Angled ||
478 Entry.Group == frontend::IncludeDirGroup::System))
479 Options.MCOptions.IASSearchPaths.push_back(
480 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
481 Options.MCOptions.Argv0 = CodeGenOpts.Argv0;
482 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs;
483 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile;
484 Options.MisExpect = CodeGenOpts.MisExpect;
486 return true;
489 static std::optional<GCOVOptions>
490 getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) {
491 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
492 return std::nullopt;
493 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
494 // LLVM's -default-gcov-version flag is set to something invalid.
495 GCOVOptions Options;
496 Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
497 Options.EmitData = CodeGenOpts.EmitGcovArcs;
498 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
499 Options.NoRedZone = CodeGenOpts.DisableRedZone;
500 Options.Filter = CodeGenOpts.ProfileFilterFiles;
501 Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
502 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
503 return Options;
506 static std::optional<InstrProfOptions>
507 getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
508 const LangOptions &LangOpts) {
509 if (!CodeGenOpts.hasProfileClangInstr())
510 return std::nullopt;
511 InstrProfOptions Options;
512 Options.NoRedZone = CodeGenOpts.DisableRedZone;
513 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
514 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
515 return Options;
518 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
519 SmallVector<const char *, 16> BackendArgs;
520 BackendArgs.push_back("clang"); // Fake program name.
521 if (!CodeGenOpts.DebugPass.empty()) {
522 BackendArgs.push_back("-debug-pass");
523 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
525 if (!CodeGenOpts.LimitFloatPrecision.empty()) {
526 BackendArgs.push_back("-limit-float-precision");
527 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
529 // Check for the default "clang" invocation that won't set any cl::opt values.
530 // Skip trying to parse the command line invocation to avoid the issues
531 // described below.
532 if (BackendArgs.size() == 1)
533 return;
534 BackendArgs.push_back(nullptr);
535 // FIXME: The command line parser below is not thread-safe and shares a global
536 // state, so this call might crash or overwrite the options of another Clang
537 // instance in the same process.
538 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
539 BackendArgs.data());
542 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
543 // Create the TargetMachine for generating code.
544 std::string Error;
545 std::string Triple = TheModule->getTargetTriple();
546 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
547 if (!TheTarget) {
548 if (MustCreateTM)
549 Diags.Report(diag::err_fe_unable_to_create_target) << Error;
550 return;
553 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
554 std::string FeaturesStr =
555 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
556 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
557 std::optional<CodeGenOpt::Level> OptLevelOrNone =
558 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel);
559 assert(OptLevelOrNone && "Invalid optimization level!");
560 CodeGenOpt::Level OptLevel = *OptLevelOrNone;
562 llvm::TargetOptions Options;
563 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts,
564 HSOpts))
565 return;
566 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
567 Options, RM, CM, OptLevel));
570 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
571 BackendAction Action,
572 raw_pwrite_stream &OS,
573 raw_pwrite_stream *DwoOS) {
574 // Add LibraryInfo.
575 std::unique_ptr<TargetLibraryInfoImpl> TLII(
576 createTLII(TargetTriple, CodeGenOpts));
577 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
579 // Normal mode, emit a .s or .o file by running the code generator. Note,
580 // this also adds codegenerator level optimization passes.
581 CodeGenFileType CGFT = getCodeGenFileType(Action);
583 // Add ObjC ARC final-cleanup optimizations. This is done as part of the
584 // "codegen" passes so that it isn't run multiple times when there is
585 // inlining happening.
586 if (CodeGenOpts.OptimizationLevel > 0)
587 CodeGenPasses.add(createObjCARCContractPass());
589 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
590 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
591 Diags.Report(diag::err_fe_unable_to_interface_with_target);
592 return false;
595 return true;
598 static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
599 switch (Opts.OptimizationLevel) {
600 default:
601 llvm_unreachable("Invalid optimization level!");
603 case 0:
604 return OptimizationLevel::O0;
606 case 1:
607 return OptimizationLevel::O1;
609 case 2:
610 switch (Opts.OptimizeSize) {
611 default:
612 llvm_unreachable("Invalid optimization level for size!");
614 case 0:
615 return OptimizationLevel::O2;
617 case 1:
618 return OptimizationLevel::Os;
620 case 2:
621 return OptimizationLevel::Oz;
624 case 3:
625 return OptimizationLevel::O3;
629 static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts,
630 PassBuilder &PB) {
631 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass.
632 if (TargetTriple.getArch() == llvm::Triple::x86_64 ||
633 TargetTriple.isAArch64(64))
634 return;
636 // Ensure we lower KCFI operand bundles with -O0.
637 PB.registerOptimizerLastEPCallback(
638 [&](ModulePassManager &MPM, OptimizationLevel Level) {
639 if (Level == OptimizationLevel::O0 &&
640 LangOpts.Sanitize.has(SanitizerKind::KCFI))
641 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass()));
644 // When optimizations are requested, run KCIFPass after InstCombine to
645 // avoid unnecessary checks.
646 PB.registerPeepholeEPCallback(
647 [&](FunctionPassManager &FPM, OptimizationLevel Level) {
648 if (Level != OptimizationLevel::O0 &&
649 LangOpts.Sanitize.has(SanitizerKind::KCFI))
650 FPM.addPass(KCFIPass());
654 static void addSanitizers(const Triple &TargetTriple,
655 const CodeGenOptions &CodeGenOpts,
656 const LangOptions &LangOpts, PassBuilder &PB) {
657 auto SanitizersCallback = [&](ModulePassManager &MPM,
658 OptimizationLevel Level) {
659 if (CodeGenOpts.hasSanitizeCoverage()) {
660 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
661 MPM.addPass(SanitizerCoveragePass(
662 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
663 CodeGenOpts.SanitizeCoverageIgnorelistFiles));
666 if (CodeGenOpts.hasSanitizeBinaryMetadata()) {
667 MPM.addPass(SanitizerBinaryMetadataPass(
668 getSanitizerBinaryMetadataOptions(CodeGenOpts),
669 CodeGenOpts.SanitizeMetadataIgnorelistFiles));
672 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) {
673 if (LangOpts.Sanitize.has(Mask)) {
674 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
675 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
677 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel,
678 CodeGenOpts.SanitizeMemoryParamRetval);
679 MPM.addPass(MemorySanitizerPass(options));
680 if (Level != OptimizationLevel::O0) {
681 // MemorySanitizer inserts complex instrumentation that mostly follows
682 // the logic of the original code, but operates on "shadow" values. It
683 // can benefit from re-running some general purpose optimization
684 // passes.
685 MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
686 FunctionPassManager FPM;
687 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
688 FPM.addPass(InstCombinePass());
689 FPM.addPass(JumpThreadingPass());
690 FPM.addPass(GVNPass());
691 FPM.addPass(InstCombinePass());
692 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
696 MSanPass(SanitizerKind::Memory, false);
697 MSanPass(SanitizerKind::KernelMemory, true);
699 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
700 MPM.addPass(ModuleThreadSanitizerPass());
701 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
704 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
705 if (LangOpts.Sanitize.has(Mask)) {
706 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
707 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
708 llvm::AsanDtorKind DestructorKind =
709 CodeGenOpts.getSanitizeAddressDtor();
710 AddressSanitizerOptions Opts;
711 Opts.CompileKernel = CompileKernel;
712 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask);
713 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
714 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn();
715 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator,
716 DestructorKind));
719 ASanPass(SanitizerKind::Address, false);
720 ASanPass(SanitizerKind::KernelAddress, true);
722 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
723 if (LangOpts.Sanitize.has(Mask)) {
724 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
725 MPM.addPass(HWAddressSanitizerPass(
726 {CompileKernel, Recover,
727 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0}));
730 HWASanPass(SanitizerKind::HWAddress, false);
731 HWASanPass(SanitizerKind::KernelHWAddress, true);
733 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
734 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles));
737 if (ClSanitizeOnOptimizerEarlyEP) {
738 PB.registerOptimizerEarlyEPCallback(
739 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level) {
740 ModulePassManager NewMPM;
741 SanitizersCallback(NewMPM, Level);
742 if (!NewMPM.isEmpty()) {
743 // Sanitizers can abandon<GlobalsAA>.
744 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
745 MPM.addPass(std::move(NewMPM));
748 } else {
749 // LastEP does not need GlobalsAA.
750 PB.registerOptimizerLastEPCallback(SanitizersCallback);
754 void EmitAssemblyHelper::RunOptimizationPipeline(
755 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
756 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) {
757 std::optional<PGOOptions> PGOOpt;
759 if (CodeGenOpts.hasProfileIRInstr())
760 // -fprofile-generate.
761 PGOOpt = PGOOptions(
762 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName()
763 : CodeGenOpts.InstrProfileOutput,
764 "", "", nullptr, PGOOptions::IRInstr, PGOOptions::NoCSAction,
765 CodeGenOpts.DebugInfoForProfiling);
766 else if (CodeGenOpts.hasProfileIRUse()) {
767 // -fprofile-use.
768 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
769 : PGOOptions::NoCSAction;
770 PGOOpt =
771 PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
772 CodeGenOpts.ProfileRemappingFile, VFS, PGOOptions::IRUse,
773 CSAction, CodeGenOpts.DebugInfoForProfiling);
774 } else if (!CodeGenOpts.SampleProfileFile.empty())
775 // -fprofile-sample-use
776 PGOOpt = PGOOptions(
777 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
778 VFS, PGOOptions::SampleUse, PGOOptions::NoCSAction,
779 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
780 else if (CodeGenOpts.PseudoProbeForProfiling)
781 // -fpseudo-probe-for-profiling
782 PGOOpt = PGOOptions("", "", "", nullptr, PGOOptions::NoAction,
783 PGOOptions::NoCSAction,
784 CodeGenOpts.DebugInfoForProfiling, true);
785 else if (CodeGenOpts.DebugInfoForProfiling)
786 // -fdebug-info-for-profiling
787 PGOOpt = PGOOptions("", "", "", nullptr, PGOOptions::NoAction,
788 PGOOptions::NoCSAction, true);
790 // Check to see if we want to generate a CS profile.
791 if (CodeGenOpts.hasProfileCSIRInstr()) {
792 assert(!CodeGenOpts.hasProfileCSIRUse() &&
793 "Cannot have both CSProfileUse pass and CSProfileGen pass at "
794 "the same time");
795 if (PGOOpt) {
796 assert(PGOOpt->Action != PGOOptions::IRInstr &&
797 PGOOpt->Action != PGOOptions::SampleUse &&
798 "Cannot run CSProfileGen pass with ProfileGen or SampleUse "
799 " pass");
800 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
801 ? getDefaultProfileGenName()
802 : CodeGenOpts.InstrProfileOutput;
803 PGOOpt->CSAction = PGOOptions::CSIRInstr;
804 } else
805 PGOOpt =
806 PGOOptions("",
807 CodeGenOpts.InstrProfileOutput.empty()
808 ? getDefaultProfileGenName()
809 : CodeGenOpts.InstrProfileOutput,
810 "", nullptr, PGOOptions::NoAction, PGOOptions::CSIRInstr,
811 CodeGenOpts.DebugInfoForProfiling);
813 if (TM)
814 TM->setPGOOption(PGOOpt);
816 PipelineTuningOptions PTO;
817 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
818 // For historical reasons, loop interleaving is set to mirror setting for loop
819 // unrolling.
820 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
821 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
822 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
823 PTO.MergeFunctions = CodeGenOpts.MergeFunctions;
824 // Only enable CGProfilePass when using integrated assembler, since
825 // non-integrated assemblers don't recognize .cgprofile section.
826 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
828 LoopAnalysisManager LAM;
829 FunctionAnalysisManager FAM;
830 CGSCCAnalysisManager CGAM;
831 ModuleAnalysisManager MAM;
833 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure";
834 PassInstrumentationCallbacks PIC;
835 PrintPassOptions PrintPassOpts;
836 PrintPassOpts.Indent = DebugPassStructure;
837 PrintPassOpts.SkipAnalyses = DebugPassStructure;
838 StandardInstrumentations SI(
839 TheModule->getContext(),
840 (CodeGenOpts.DebugPassManager || DebugPassStructure),
841 /*VerifyEach*/ false, PrintPassOpts);
842 SI.registerCallbacks(PIC, &FAM);
843 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
845 if (CodeGenOpts.EnableAssignmentTracking) {
846 PB.registerPipelineStartEPCallback(
847 [&](ModulePassManager &MPM, OptimizationLevel Level) {
848 MPM.addPass(AssignmentTrackingPass());
852 // Enable verify-debuginfo-preserve-each for new PM.
853 DebugifyEachInstrumentation Debugify;
854 DebugInfoPerPass DebugInfoBeforePass;
855 if (CodeGenOpts.EnableDIPreservationVerify) {
856 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
857 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass);
859 if (!CodeGenOpts.DIBugsReportFilePath.empty())
860 Debugify.setOrigDIVerifyBugsReportFilePath(
861 CodeGenOpts.DIBugsReportFilePath);
862 Debugify.registerCallbacks(PIC);
864 // Attempt to load pass plugins and register their callbacks with PB.
865 for (auto &PluginFN : CodeGenOpts.PassPlugins) {
866 auto PassPlugin = PassPlugin::Load(PluginFN);
867 if (PassPlugin) {
868 PassPlugin->registerPassBuilderCallbacks(PB);
869 } else {
870 Diags.Report(diag::err_fe_unable_to_load_plugin)
871 << PluginFN << toString(PassPlugin.takeError());
874 #define HANDLE_EXTENSION(Ext) \
875 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
876 #include "llvm/Support/Extension.def"
878 // Register the target library analysis directly and give it a customized
879 // preset TLI.
880 std::unique_ptr<TargetLibraryInfoImpl> TLII(
881 createTLII(TargetTriple, CodeGenOpts));
882 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
884 // Register all the basic analyses with the managers.
885 PB.registerModuleAnalyses(MAM);
886 PB.registerCGSCCAnalyses(CGAM);
887 PB.registerFunctionAnalyses(FAM);
888 PB.registerLoopAnalyses(LAM);
889 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
891 ModulePassManager MPM;
893 if (!CodeGenOpts.DisableLLVMPasses) {
894 // Map our optimization levels into one of the distinct levels used to
895 // configure the pipeline.
896 OptimizationLevel Level = mapToLevel(CodeGenOpts);
898 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
899 bool IsLTO = CodeGenOpts.PrepareForLTO;
901 if (LangOpts.ObjCAutoRefCount) {
902 PB.registerPipelineStartEPCallback(
903 [](ModulePassManager &MPM, OptimizationLevel Level) {
904 if (Level != OptimizationLevel::O0)
905 MPM.addPass(
906 createModuleToFunctionPassAdaptor(ObjCARCExpandPass()));
908 PB.registerPipelineEarlySimplificationEPCallback(
909 [](ModulePassManager &MPM, OptimizationLevel Level) {
910 if (Level != OptimizationLevel::O0)
911 MPM.addPass(ObjCARCAPElimPass());
913 PB.registerScalarOptimizerLateEPCallback(
914 [](FunctionPassManager &FPM, OptimizationLevel Level) {
915 if (Level != OptimizationLevel::O0)
916 FPM.addPass(ObjCARCOptPass());
920 // If we reached here with a non-empty index file name, then the index
921 // file was empty and we are not performing ThinLTO backend compilation
922 // (used in testing in a distributed build environment).
923 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty();
924 // If so drop any the type test assume sequences inserted for whole program
925 // vtables so that codegen doesn't complain.
926 if (IsThinLTOPostLink)
927 PB.registerPipelineStartEPCallback(
928 [](ModulePassManager &MPM, OptimizationLevel Level) {
929 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr,
930 /*ImportSummary=*/nullptr,
931 /*DropTypeTests=*/true));
934 if (CodeGenOpts.InstrumentFunctions ||
935 CodeGenOpts.InstrumentFunctionEntryBare ||
936 CodeGenOpts.InstrumentFunctionsAfterInlining ||
937 CodeGenOpts.InstrumentForProfiling) {
938 PB.registerPipelineStartEPCallback(
939 [](ModulePassManager &MPM, OptimizationLevel Level) {
940 MPM.addPass(createModuleToFunctionPassAdaptor(
941 EntryExitInstrumenterPass(/*PostInlining=*/false)));
943 PB.registerOptimizerLastEPCallback(
944 [](ModulePassManager &MPM, OptimizationLevel Level) {
945 MPM.addPass(createModuleToFunctionPassAdaptor(
946 EntryExitInstrumenterPass(/*PostInlining=*/true)));
950 // Register callbacks to schedule sanitizer passes at the appropriate part
951 // of the pipeline.
952 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
953 PB.registerScalarOptimizerLateEPCallback(
954 [](FunctionPassManager &FPM, OptimizationLevel Level) {
955 FPM.addPass(BoundsCheckingPass());
958 // Don't add sanitizers if we are here from ThinLTO PostLink. That already
959 // done on PreLink stage.
960 if (!IsThinLTOPostLink) {
961 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB);
962 addKCFIPass(TargetTriple, LangOpts, PB);
965 if (std::optional<GCOVOptions> Options =
966 getGCOVOptions(CodeGenOpts, LangOpts))
967 PB.registerPipelineStartEPCallback(
968 [Options](ModulePassManager &MPM, OptimizationLevel Level) {
969 MPM.addPass(GCOVProfilerPass(*Options));
971 if (std::optional<InstrProfOptions> Options =
972 getInstrProfOptions(CodeGenOpts, LangOpts))
973 PB.registerPipelineStartEPCallback(
974 [Options](ModulePassManager &MPM, OptimizationLevel Level) {
975 MPM.addPass(InstrProfiling(*Options, false));
978 if (CodeGenOpts.OptimizationLevel == 0) {
979 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO);
980 } else if (IsThinLTO) {
981 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level);
982 } else if (IsLTO) {
983 MPM = PB.buildLTOPreLinkDefaultPipeline(Level);
984 } else {
985 MPM = PB.buildPerModuleDefaultPipeline(Level);
988 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
989 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
990 MPM.addPass(ModuleMemProfilerPass());
994 // Add a verifier pass if requested. We don't have to do this if the action
995 // requires code generation because there will already be a verifier pass in
996 // the code-generation pipeline.
997 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule)
998 MPM.addPass(VerifierPass());
1000 if (Action == Backend_EmitBC || Action == Backend_EmitLL) {
1001 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1002 if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
1003 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1004 CodeGenOpts.EnableSplitLTOUnit);
1005 if (Action == Backend_EmitBC) {
1006 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1007 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1008 if (!ThinLinkOS)
1009 return;
1011 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
1012 : nullptr));
1013 } else {
1014 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1015 /*EmitLTOSummary=*/true));
1018 } else {
1019 // Emit a module summary by default for Regular LTO except for ld64
1020 // targets
1021 bool EmitLTOSummary = shouldEmitRegularLTOSummary();
1022 if (EmitLTOSummary) {
1023 if (!TheModule->getModuleFlag("ThinLTO"))
1024 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
1025 if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
1026 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1027 uint32_t(1));
1029 if (Action == Backend_EmitBC)
1030 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
1031 EmitLTOSummary));
1032 else
1033 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1034 EmitLTOSummary));
1038 // Now that we have all of the passes ready, run them.
1040 PrettyStackTraceString CrashInfo("Optimizer");
1041 llvm::TimeTraceScope TimeScope("Optimizer");
1042 MPM.run(*TheModule, MAM);
1046 void EmitAssemblyHelper::RunCodegenPipeline(
1047 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
1048 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) {
1049 // We still use the legacy PM to run the codegen pipeline since the new PM
1050 // does not work with the codegen pipeline.
1051 // FIXME: make the new PM work with the codegen pipeline.
1052 legacy::PassManager CodeGenPasses;
1054 // Append any output we need to the pass manager.
1055 switch (Action) {
1056 case Backend_EmitAssembly:
1057 case Backend_EmitMCNull:
1058 case Backend_EmitObj:
1059 CodeGenPasses.add(
1060 createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1061 if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1062 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
1063 if (!DwoOS)
1064 return;
1066 if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1067 DwoOS ? &DwoOS->os() : nullptr))
1068 // FIXME: Should we handle this error differently?
1069 return;
1070 break;
1071 default:
1072 return;
1076 PrettyStackTraceString CrashInfo("Code generation");
1077 llvm::TimeTraceScope TimeScope("CodeGenPasses");
1078 CodeGenPasses.run(*TheModule);
1082 void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
1083 std::unique_ptr<raw_pwrite_stream> OS) {
1084 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr);
1085 setCommandLineOpts(CodeGenOpts);
1087 bool RequiresCodeGen = actionRequiresCodeGen(Action);
1088 CreateTargetMachine(RequiresCodeGen);
1090 if (RequiresCodeGen && !TM)
1091 return;
1092 if (TM)
1093 TheModule->setDataLayout(TM->createDataLayout());
1095 // Before executing passes, print the final values of the LLVM options.
1096 cl::PrintOptionValues();
1098 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1099 RunOptimizationPipeline(Action, OS, ThinLinkOS);
1100 RunCodegenPipeline(Action, OS, DwoOS);
1102 if (ThinLinkOS)
1103 ThinLinkOS->keep();
1104 if (DwoOS)
1105 DwoOS->keep();
1108 static void runThinLTOBackend(
1109 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M,
1110 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts,
1111 const clang::TargetOptions &TOpts, const LangOptions &LOpts,
1112 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile,
1113 std::string ProfileRemapping, BackendAction Action) {
1114 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1115 ModuleToDefinedGVSummaries;
1116 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1118 setCommandLineOpts(CGOpts);
1120 // We can simply import the values mentioned in the combined index, since
1121 // we should only invoke this using the individual indexes written out
1122 // via a WriteIndexesThinBackend.
1123 FunctionImporter::ImportMapTy ImportList;
1124 if (!lto::initImportList(*M, *CombinedIndex, ImportList))
1125 return;
1127 auto AddStream = [&](size_t Task, const Twine &ModuleName) {
1128 return std::make_unique<CachedFileStream>(std::move(OS),
1129 CGOpts.ObjectFilenameForDebug);
1131 lto::Config Conf;
1132 if (CGOpts.SaveTempsFilePrefix != "") {
1133 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1134 /* UseInputModulePath */ false)) {
1135 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1136 errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1137 << '\n';
1141 Conf.CPU = TOpts.CPU;
1142 Conf.CodeModel = getCodeModel(CGOpts);
1143 Conf.MAttrs = TOpts.Features;
1144 Conf.RelocModel = CGOpts.RelocationModel;
1145 std::optional<CodeGenOpt::Level> OptLevelOrNone =
1146 CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
1147 assert(OptLevelOrNone && "Invalid optimization level!");
1148 Conf.CGOptLevel = *OptLevelOrNone;
1149 Conf.OptLevel = CGOpts.OptimizationLevel;
1150 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1151 Conf.SampleProfile = std::move(SampleProfile);
1152 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
1153 // For historical reasons, loop interleaving is set to mirror setting for loop
1154 // unrolling.
1155 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
1156 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
1157 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
1158 // Only enable CGProfilePass when using integrated assembler, since
1159 // non-integrated assemblers don't recognize .cgprofile section.
1160 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
1162 // Context sensitive profile.
1163 if (CGOpts.hasProfileCSIRInstr()) {
1164 Conf.RunCSIRInstr = true;
1165 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
1166 } else if (CGOpts.hasProfileCSIRUse()) {
1167 Conf.RunCSIRInstr = false;
1168 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
1171 Conf.ProfileRemapping = std::move(ProfileRemapping);
1172 Conf.DebugPassManager = CGOpts.DebugPassManager;
1173 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1174 Conf.RemarksFilename = CGOpts.OptRecordFile;
1175 Conf.RemarksPasses = CGOpts.OptRecordPasses;
1176 Conf.RemarksFormat = CGOpts.OptRecordFormat;
1177 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
1178 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
1179 switch (Action) {
1180 case Backend_EmitNothing:
1181 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1182 return false;
1184 break;
1185 case Backend_EmitLL:
1186 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1187 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1188 return false;
1190 break;
1191 case Backend_EmitBC:
1192 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1193 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1194 return false;
1196 break;
1197 default:
1198 Conf.CGFileType = getCodeGenFileType(Action);
1199 break;
1201 if (Error E =
1202 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1203 ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
1204 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) {
1205 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1206 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1211 void clang::EmitBackendOutput(DiagnosticsEngine &Diags,
1212 const HeaderSearchOptions &HeaderOpts,
1213 const CodeGenOptions &CGOpts,
1214 const clang::TargetOptions &TOpts,
1215 const LangOptions &LOpts, StringRef TDesc,
1216 Module *M, BackendAction Action,
1217 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
1218 std::unique_ptr<raw_pwrite_stream> OS) {
1220 llvm::TimeTraceScope TimeScope("Backend");
1222 std::unique_ptr<llvm::Module> EmptyModule;
1223 if (!CGOpts.ThinLTOIndexFile.empty()) {
1224 // If we are performing a ThinLTO importing compile, load the function index
1225 // into memory and pass it into runThinLTOBackend, which will run the
1226 // function importer and invoke LTO passes.
1227 std::unique_ptr<ModuleSummaryIndex> CombinedIndex;
1228 if (Error E = llvm::getModuleSummaryIndexForFile(
1229 CGOpts.ThinLTOIndexFile,
1230 /*IgnoreEmptyThinLTOIndexFile*/ true)
1231 .moveInto(CombinedIndex)) {
1232 logAllUnhandledErrors(std::move(E), errs(),
1233 "Error loading index file '" +
1234 CGOpts.ThinLTOIndexFile + "': ");
1235 return;
1238 // A null CombinedIndex means we should skip ThinLTO compilation
1239 // (LLVM will optionally ignore empty index files, returning null instead
1240 // of an error).
1241 if (CombinedIndex) {
1242 if (!CombinedIndex->skipModuleByDistributedBackend()) {
1243 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts,
1244 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile,
1245 CGOpts.ProfileRemappingFile, Action);
1246 return;
1248 // Distributed indexing detected that nothing from the module is needed
1249 // for the final linking. So we can skip the compilation. We sill need to
1250 // output an empty object file to make sure that a linker does not fail
1251 // trying to read it. Also for some features, like CFI, we must skip
1252 // the compilation as CombinedIndex does not contain all required
1253 // information.
1254 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
1255 EmptyModule->setTargetTriple(M->getTargetTriple());
1256 M = EmptyModule.get();
1260 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M, VFS);
1261 AsmHelper.EmitAssembly(Action, std::move(OS));
1263 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1264 // DataLayout.
1265 if (AsmHelper.TM) {
1266 std::string DLDesc = M->getDataLayout().getStringRepresentation();
1267 if (DLDesc != TDesc) {
1268 unsigned DiagID = Diags.getCustomDiagID(
1269 DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1270 "expected target description '%1'");
1271 Diags.Report(DiagID) << DLDesc << TDesc;
1276 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1277 // __LLVM,__bitcode section.
1278 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1279 llvm::MemoryBufferRef Buf) {
1280 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1281 return;
1282 llvm::embedBitcodeInModule(
1283 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
1284 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
1285 CGOpts.CmdArgs);
1288 void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts,
1289 DiagnosticsEngine &Diags) {
1290 if (CGOpts.OffloadObjects.empty())
1291 return;
1293 for (StringRef OffloadObject : CGOpts.OffloadObjects) {
1294 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr =
1295 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject);
1296 if (std::error_code EC = ObjectOrErr.getError()) {
1297 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1298 "could not open '%0' for embedding");
1299 Diags.Report(DiagID) << OffloadObject;
1300 return;
1303 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading",
1304 Align(object::OffloadBinary::getAlignment()));