[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / CodeGen / CGDecl.cpp
bloba70997f5b27b837ffe36e2e973dabd3d01963401
1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40 #include <optional>
42 using namespace clang;
43 using namespace CodeGen;
45 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
46 "Clang max alignment greater than what LLVM supports?");
48 void CodeGenFunction::EmitDecl(const Decl &D) {
49 switch (D.getKind()) {
50 case Decl::BuiltinTemplate:
51 case Decl::TranslationUnit:
52 case Decl::ExternCContext:
53 case Decl::Namespace:
54 case Decl::UnresolvedUsingTypename:
55 case Decl::ClassTemplateSpecialization:
56 case Decl::ClassTemplatePartialSpecialization:
57 case Decl::VarTemplateSpecialization:
58 case Decl::VarTemplatePartialSpecialization:
59 case Decl::TemplateTypeParm:
60 case Decl::UnresolvedUsingValue:
61 case Decl::NonTypeTemplateParm:
62 case Decl::CXXDeductionGuide:
63 case Decl::CXXMethod:
64 case Decl::CXXConstructor:
65 case Decl::CXXDestructor:
66 case Decl::CXXConversion:
67 case Decl::Field:
68 case Decl::MSProperty:
69 case Decl::IndirectField:
70 case Decl::ObjCIvar:
71 case Decl::ObjCAtDefsField:
72 case Decl::ParmVar:
73 case Decl::ImplicitParam:
74 case Decl::ClassTemplate:
75 case Decl::VarTemplate:
76 case Decl::FunctionTemplate:
77 case Decl::TypeAliasTemplate:
78 case Decl::TemplateTemplateParm:
79 case Decl::ObjCMethod:
80 case Decl::ObjCCategory:
81 case Decl::ObjCProtocol:
82 case Decl::ObjCInterface:
83 case Decl::ObjCCategoryImpl:
84 case Decl::ObjCImplementation:
85 case Decl::ObjCProperty:
86 case Decl::ObjCCompatibleAlias:
87 case Decl::PragmaComment:
88 case Decl::PragmaDetectMismatch:
89 case Decl::AccessSpec:
90 case Decl::LinkageSpec:
91 case Decl::Export:
92 case Decl::ObjCPropertyImpl:
93 case Decl::FileScopeAsm:
94 case Decl::TopLevelStmt:
95 case Decl::Friend:
96 case Decl::FriendTemplate:
97 case Decl::Block:
98 case Decl::Captured:
99 case Decl::ClassScopeFunctionSpecialization:
100 case Decl::UsingShadow:
101 case Decl::ConstructorUsingShadow:
102 case Decl::ObjCTypeParam:
103 case Decl::Binding:
104 case Decl::UnresolvedUsingIfExists:
105 case Decl::HLSLBuffer:
106 llvm_unreachable("Declaration should not be in declstmts!");
107 case Decl::Record: // struct/union/class X;
108 case Decl::CXXRecord: // struct/union/class X; [C++]
109 if (CGDebugInfo *DI = getDebugInfo())
110 if (cast<RecordDecl>(D).getDefinition())
111 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
112 return;
113 case Decl::Enum: // enum X;
114 if (CGDebugInfo *DI = getDebugInfo())
115 if (cast<EnumDecl>(D).getDefinition())
116 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
117 return;
118 case Decl::Function: // void X();
119 case Decl::EnumConstant: // enum ? { X = ? }
120 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
121 case Decl::Label: // __label__ x;
122 case Decl::Import:
123 case Decl::MSGuid: // __declspec(uuid("..."))
124 case Decl::UnnamedGlobalConstant:
125 case Decl::TemplateParamObject:
126 case Decl::OMPThreadPrivate:
127 case Decl::OMPAllocate:
128 case Decl::OMPCapturedExpr:
129 case Decl::OMPRequires:
130 case Decl::Empty:
131 case Decl::Concept:
132 case Decl::ImplicitConceptSpecialization:
133 case Decl::LifetimeExtendedTemporary:
134 case Decl::RequiresExprBody:
135 // None of these decls require codegen support.
136 return;
138 case Decl::NamespaceAlias:
139 if (CGDebugInfo *DI = getDebugInfo())
140 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
141 return;
142 case Decl::Using: // using X; [C++]
143 if (CGDebugInfo *DI = getDebugInfo())
144 DI->EmitUsingDecl(cast<UsingDecl>(D));
145 return;
146 case Decl::UsingEnum: // using enum X; [C++]
147 if (CGDebugInfo *DI = getDebugInfo())
148 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D));
149 return;
150 case Decl::UsingPack:
151 for (auto *Using : cast<UsingPackDecl>(D).expansions())
152 EmitDecl(*Using);
153 return;
154 case Decl::UsingDirective: // using namespace X; [C++]
155 if (CGDebugInfo *DI = getDebugInfo())
156 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
157 return;
158 case Decl::Var:
159 case Decl::Decomposition: {
160 const VarDecl &VD = cast<VarDecl>(D);
161 assert(VD.isLocalVarDecl() &&
162 "Should not see file-scope variables inside a function!");
163 EmitVarDecl(VD);
164 if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
165 for (auto *B : DD->bindings())
166 if (auto *HD = B->getHoldingVar())
167 EmitVarDecl(*HD);
168 return;
171 case Decl::OMPDeclareReduction:
172 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
174 case Decl::OMPDeclareMapper:
175 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
177 case Decl::Typedef: // typedef int X;
178 case Decl::TypeAlias: { // using X = int; [C++0x]
179 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
180 if (CGDebugInfo *DI = getDebugInfo())
181 DI->EmitAndRetainType(Ty);
182 if (Ty->isVariablyModifiedType())
183 EmitVariablyModifiedType(Ty);
184 return;
189 /// EmitVarDecl - This method handles emission of any variable declaration
190 /// inside a function, including static vars etc.
191 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
192 if (D.hasExternalStorage())
193 // Don't emit it now, allow it to be emitted lazily on its first use.
194 return;
196 // Some function-scope variable does not have static storage but still
197 // needs to be emitted like a static variable, e.g. a function-scope
198 // variable in constant address space in OpenCL.
199 if (D.getStorageDuration() != SD_Automatic) {
200 // Static sampler variables translated to function calls.
201 if (D.getType()->isSamplerT())
202 return;
204 llvm::GlobalValue::LinkageTypes Linkage =
205 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
207 // FIXME: We need to force the emission/use of a guard variable for
208 // some variables even if we can constant-evaluate them because
209 // we can't guarantee every translation unit will constant-evaluate them.
211 return EmitStaticVarDecl(D, Linkage);
214 if (D.getType().getAddressSpace() == LangAS::opencl_local)
215 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
217 assert(D.hasLocalStorage());
218 return EmitAutoVarDecl(D);
221 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
222 if (CGM.getLangOpts().CPlusPlus)
223 return CGM.getMangledName(&D).str();
225 // If this isn't C++, we don't need a mangled name, just a pretty one.
226 assert(!D.isExternallyVisible() && "name shouldn't matter");
227 std::string ContextName;
228 const DeclContext *DC = D.getDeclContext();
229 if (auto *CD = dyn_cast<CapturedDecl>(DC))
230 DC = cast<DeclContext>(CD->getNonClosureContext());
231 if (const auto *FD = dyn_cast<FunctionDecl>(DC))
232 ContextName = std::string(CGM.getMangledName(FD));
233 else if (const auto *BD = dyn_cast<BlockDecl>(DC))
234 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
235 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
236 ContextName = OMD->getSelector().getAsString();
237 else
238 llvm_unreachable("Unknown context for static var decl");
240 ContextName += "." + D.getNameAsString();
241 return ContextName;
244 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
245 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
246 // In general, we don't always emit static var decls once before we reference
247 // them. It is possible to reference them before emitting the function that
248 // contains them, and it is possible to emit the containing function multiple
249 // times.
250 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
251 return ExistingGV;
253 QualType Ty = D.getType();
254 assert(Ty->isConstantSizeType() && "VLAs can't be static");
256 // Use the label if the variable is renamed with the asm-label extension.
257 std::string Name;
258 if (D.hasAttr<AsmLabelAttr>())
259 Name = std::string(getMangledName(&D));
260 else
261 Name = getStaticDeclName(*this, D);
263 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
264 LangAS AS = GetGlobalVarAddressSpace(&D);
265 unsigned TargetAS = getContext().getTargetAddressSpace(AS);
267 // OpenCL variables in local address space and CUDA shared
268 // variables cannot have an initializer.
269 llvm::Constant *Init = nullptr;
270 if (Ty.getAddressSpace() == LangAS::opencl_local ||
271 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
272 Init = llvm::UndefValue::get(LTy);
273 else
274 Init = EmitNullConstant(Ty);
276 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
277 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
278 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
279 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
281 if (supportsCOMDAT() && GV->isWeakForLinker())
282 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
284 if (D.getTLSKind())
285 setTLSMode(GV, D);
287 setGVProperties(GV, &D);
289 // Make sure the result is of the correct type.
290 LangAS ExpectedAS = Ty.getAddressSpace();
291 llvm::Constant *Addr = GV;
292 if (AS != ExpectedAS) {
293 Addr = getTargetCodeGenInfo().performAddrSpaceCast(
294 *this, GV, AS, ExpectedAS,
295 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
298 setStaticLocalDeclAddress(&D, Addr);
300 // Ensure that the static local gets initialized by making sure the parent
301 // function gets emitted eventually.
302 const Decl *DC = cast<Decl>(D.getDeclContext());
304 // We can't name blocks or captured statements directly, so try to emit their
305 // parents.
306 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
307 DC = DC->getNonClosureContext();
308 // FIXME: Ensure that global blocks get emitted.
309 if (!DC)
310 return Addr;
313 GlobalDecl GD;
314 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
315 GD = GlobalDecl(CD, Ctor_Base);
316 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
317 GD = GlobalDecl(DD, Dtor_Base);
318 else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
319 GD = GlobalDecl(FD);
320 else {
321 // Don't do anything for Obj-C method decls or global closures. We should
322 // never defer them.
323 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
325 if (GD.getDecl()) {
326 // Disable emission of the parent function for the OpenMP device codegen.
327 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
328 (void)GetAddrOfGlobal(GD);
331 return Addr;
334 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
335 /// global variable that has already been created for it. If the initializer
336 /// has a different type than GV does, this may free GV and return a different
337 /// one. Otherwise it just returns GV.
338 llvm::GlobalVariable *
339 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
340 llvm::GlobalVariable *GV) {
341 ConstantEmitter emitter(*this);
342 llvm::Constant *Init = emitter.tryEmitForInitializer(D);
344 // If constant emission failed, then this should be a C++ static
345 // initializer.
346 if (!Init) {
347 if (!getLangOpts().CPlusPlus)
348 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
349 else if (D.hasFlexibleArrayInit(getContext()))
350 CGM.ErrorUnsupported(D.getInit(), "flexible array initializer");
351 else if (HaveInsertPoint()) {
352 // Since we have a static initializer, this global variable can't
353 // be constant.
354 GV->setConstant(false);
356 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
358 return GV;
361 #ifndef NDEBUG
362 CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) +
363 D.getFlexibleArrayInitChars(getContext());
364 CharUnits CstSize = CharUnits::fromQuantity(
365 CGM.getDataLayout().getTypeAllocSize(Init->getType()));
366 assert(VarSize == CstSize && "Emitted constant has unexpected size");
367 #endif
369 // The initializer may differ in type from the global. Rewrite
370 // the global to match the initializer. (We have to do this
371 // because some types, like unions, can't be completely represented
372 // in the LLVM type system.)
373 if (GV->getValueType() != Init->getType()) {
374 llvm::GlobalVariable *OldGV = GV;
376 GV = new llvm::GlobalVariable(
377 CGM.getModule(), Init->getType(), OldGV->isConstant(),
378 OldGV->getLinkage(), Init, "",
379 /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(),
380 OldGV->getType()->getPointerAddressSpace());
381 GV->setVisibility(OldGV->getVisibility());
382 GV->setDSOLocal(OldGV->isDSOLocal());
383 GV->setComdat(OldGV->getComdat());
385 // Steal the name of the old global
386 GV->takeName(OldGV);
388 // Replace all uses of the old global with the new global
389 llvm::Constant *NewPtrForOldDecl =
390 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
391 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
393 // Erase the old global, since it is no longer used.
394 OldGV->eraseFromParent();
397 GV->setConstant(CGM.isTypeConstant(D.getType(), true));
398 GV->setInitializer(Init);
400 emitter.finalize(GV);
402 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
403 HaveInsertPoint()) {
404 // We have a constant initializer, but a nontrivial destructor. We still
405 // need to perform a guarded "initialization" in order to register the
406 // destructor.
407 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
410 return GV;
413 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
414 llvm::GlobalValue::LinkageTypes Linkage) {
415 // Check to see if we already have a global variable for this
416 // declaration. This can happen when double-emitting function
417 // bodies, e.g. with complete and base constructors.
418 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
419 CharUnits alignment = getContext().getDeclAlign(&D);
421 // Store into LocalDeclMap before generating initializer to handle
422 // circular references.
423 llvm::Type *elemTy = ConvertTypeForMem(D.getType());
424 setAddrOfLocalVar(&D, Address(addr, elemTy, alignment));
426 // We can't have a VLA here, but we can have a pointer to a VLA,
427 // even though that doesn't really make any sense.
428 // Make sure to evaluate VLA bounds now so that we have them for later.
429 if (D.getType()->isVariablyModifiedType())
430 EmitVariablyModifiedType(D.getType());
432 // Save the type in case adding the initializer forces a type change.
433 llvm::Type *expectedType = addr->getType();
435 llvm::GlobalVariable *var =
436 cast<llvm::GlobalVariable>(addr->stripPointerCasts());
438 // CUDA's local and local static __shared__ variables should not
439 // have any non-empty initializers. This is ensured by Sema.
440 // Whatever initializer such variable may have when it gets here is
441 // a no-op and should not be emitted.
442 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
443 D.hasAttr<CUDASharedAttr>();
444 // If this value has an initializer, emit it.
445 if (D.getInit() && !isCudaSharedVar)
446 var = AddInitializerToStaticVarDecl(D, var);
448 var->setAlignment(alignment.getAsAlign());
450 if (D.hasAttr<AnnotateAttr>())
451 CGM.AddGlobalAnnotations(&D, var);
453 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
454 var->addAttribute("bss-section", SA->getName());
455 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
456 var->addAttribute("data-section", SA->getName());
457 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
458 var->addAttribute("rodata-section", SA->getName());
459 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
460 var->addAttribute("relro-section", SA->getName());
462 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
463 var->setSection(SA->getName());
465 if (D.hasAttr<RetainAttr>())
466 CGM.addUsedGlobal(var);
467 else if (D.hasAttr<UsedAttr>())
468 CGM.addUsedOrCompilerUsedGlobal(var);
470 // We may have to cast the constant because of the initializer
471 // mismatch above.
473 // FIXME: It is really dangerous to store this in the map; if anyone
474 // RAUW's the GV uses of this constant will be invalid.
475 llvm::Constant *castedAddr =
476 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
477 LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment);
478 CGM.setStaticLocalDeclAddress(&D, castedAddr);
480 CGM.getSanitizerMetadata()->reportGlobal(var, D);
482 // Emit global variable debug descriptor for static vars.
483 CGDebugInfo *DI = getDebugInfo();
484 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
485 DI->setLocation(D.getLocation());
486 DI->EmitGlobalVariable(var, &D);
490 namespace {
491 struct DestroyObject final : EHScopeStack::Cleanup {
492 DestroyObject(Address addr, QualType type,
493 CodeGenFunction::Destroyer *destroyer,
494 bool useEHCleanupForArray)
495 : addr(addr), type(type), destroyer(destroyer),
496 useEHCleanupForArray(useEHCleanupForArray) {}
498 Address addr;
499 QualType type;
500 CodeGenFunction::Destroyer *destroyer;
501 bool useEHCleanupForArray;
503 void Emit(CodeGenFunction &CGF, Flags flags) override {
504 // Don't use an EH cleanup recursively from an EH cleanup.
505 bool useEHCleanupForArray =
506 flags.isForNormalCleanup() && this->useEHCleanupForArray;
508 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
512 template <class Derived>
513 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
514 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
515 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
517 llvm::Value *NRVOFlag;
518 Address Loc;
519 QualType Ty;
521 void Emit(CodeGenFunction &CGF, Flags flags) override {
522 // Along the exceptions path we always execute the dtor.
523 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
525 llvm::BasicBlock *SkipDtorBB = nullptr;
526 if (NRVO) {
527 // If we exited via NRVO, we skip the destructor call.
528 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
529 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
530 llvm::Value *DidNRVO =
531 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
532 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
533 CGF.EmitBlock(RunDtorBB);
536 static_cast<Derived *>(this)->emitDestructorCall(CGF);
538 if (NRVO) CGF.EmitBlock(SkipDtorBB);
541 virtual ~DestroyNRVOVariable() = default;
544 struct DestroyNRVOVariableCXX final
545 : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
546 DestroyNRVOVariableCXX(Address addr, QualType type,
547 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
548 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
549 Dtor(Dtor) {}
551 const CXXDestructorDecl *Dtor;
553 void emitDestructorCall(CodeGenFunction &CGF) {
554 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
555 /*ForVirtualBase=*/false,
556 /*Delegating=*/false, Loc, Ty);
560 struct DestroyNRVOVariableC final
561 : DestroyNRVOVariable<DestroyNRVOVariableC> {
562 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
563 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
565 void emitDestructorCall(CodeGenFunction &CGF) {
566 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
570 struct CallStackRestore final : EHScopeStack::Cleanup {
571 Address Stack;
572 CallStackRestore(Address Stack) : Stack(Stack) {}
573 bool isRedundantBeforeReturn() override { return true; }
574 void Emit(CodeGenFunction &CGF, Flags flags) override {
575 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
576 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
577 CGF.Builder.CreateCall(F, V);
581 struct ExtendGCLifetime final : EHScopeStack::Cleanup {
582 const VarDecl &Var;
583 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
585 void Emit(CodeGenFunction &CGF, Flags flags) override {
586 // Compute the address of the local variable, in case it's a
587 // byref or something.
588 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
589 Var.getType(), VK_LValue, SourceLocation());
590 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
591 SourceLocation());
592 CGF.EmitExtendGCLifetime(value);
596 struct CallCleanupFunction final : EHScopeStack::Cleanup {
597 llvm::Constant *CleanupFn;
598 const CGFunctionInfo &FnInfo;
599 const VarDecl &Var;
601 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
602 const VarDecl *Var)
603 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
605 void Emit(CodeGenFunction &CGF, Flags flags) override {
606 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
607 Var.getType(), VK_LValue, SourceLocation());
608 // Compute the address of the local variable, in case it's a byref
609 // or something.
610 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
612 // In some cases, the type of the function argument will be different from
613 // the type of the pointer. An example of this is
614 // void f(void* arg);
615 // __attribute__((cleanup(f))) void *g;
617 // To fix this we insert a bitcast here.
618 QualType ArgTy = FnInfo.arg_begin()->type;
619 llvm::Value *Arg =
620 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
622 CallArgList Args;
623 Args.add(RValue::get(Arg),
624 CGF.getContext().getPointerType(Var.getType()));
625 auto Callee = CGCallee::forDirect(CleanupFn);
626 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
629 } // end anonymous namespace
631 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
632 /// variable with lifetime.
633 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
634 Address addr,
635 Qualifiers::ObjCLifetime lifetime) {
636 switch (lifetime) {
637 case Qualifiers::OCL_None:
638 llvm_unreachable("present but none");
640 case Qualifiers::OCL_ExplicitNone:
641 // nothing to do
642 break;
644 case Qualifiers::OCL_Strong: {
645 CodeGenFunction::Destroyer *destroyer =
646 (var.hasAttr<ObjCPreciseLifetimeAttr>()
647 ? CodeGenFunction::destroyARCStrongPrecise
648 : CodeGenFunction::destroyARCStrongImprecise);
650 CleanupKind cleanupKind = CGF.getARCCleanupKind();
651 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
652 cleanupKind & EHCleanup);
653 break;
655 case Qualifiers::OCL_Autoreleasing:
656 // nothing to do
657 break;
659 case Qualifiers::OCL_Weak:
660 // __weak objects always get EH cleanups; otherwise, exceptions
661 // could cause really nasty crashes instead of mere leaks.
662 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
663 CodeGenFunction::destroyARCWeak,
664 /*useEHCleanup*/ true);
665 break;
669 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
670 if (const Expr *e = dyn_cast<Expr>(s)) {
671 // Skip the most common kinds of expressions that make
672 // hierarchy-walking expensive.
673 s = e = e->IgnoreParenCasts();
675 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
676 return (ref->getDecl() == &var);
677 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
678 const BlockDecl *block = be->getBlockDecl();
679 for (const auto &I : block->captures()) {
680 if (I.getVariable() == &var)
681 return true;
686 for (const Stmt *SubStmt : s->children())
687 // SubStmt might be null; as in missing decl or conditional of an if-stmt.
688 if (SubStmt && isAccessedBy(var, SubStmt))
689 return true;
691 return false;
694 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
695 if (!decl) return false;
696 if (!isa<VarDecl>(decl)) return false;
697 const VarDecl *var = cast<VarDecl>(decl);
698 return isAccessedBy(*var, e);
701 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
702 const LValue &destLV, const Expr *init) {
703 bool needsCast = false;
705 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
706 switch (castExpr->getCastKind()) {
707 // Look through casts that don't require representation changes.
708 case CK_NoOp:
709 case CK_BitCast:
710 case CK_BlockPointerToObjCPointerCast:
711 needsCast = true;
712 break;
714 // If we find an l-value to r-value cast from a __weak variable,
715 // emit this operation as a copy or move.
716 case CK_LValueToRValue: {
717 const Expr *srcExpr = castExpr->getSubExpr();
718 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
719 return false;
721 // Emit the source l-value.
722 LValue srcLV = CGF.EmitLValue(srcExpr);
724 // Handle a formal type change to avoid asserting.
725 auto srcAddr = srcLV.getAddress(CGF);
726 if (needsCast) {
727 srcAddr = CGF.Builder.CreateElementBitCast(
728 srcAddr, destLV.getAddress(CGF).getElementType());
731 // If it was an l-value, use objc_copyWeak.
732 if (srcExpr->isLValue()) {
733 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
734 } else {
735 assert(srcExpr->isXValue());
736 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
738 return true;
741 // Stop at anything else.
742 default:
743 return false;
746 init = castExpr->getSubExpr();
748 return false;
751 static void drillIntoBlockVariable(CodeGenFunction &CGF,
752 LValue &lvalue,
753 const VarDecl *var) {
754 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
757 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
758 SourceLocation Loc) {
759 if (!SanOpts.has(SanitizerKind::NullabilityAssign))
760 return;
762 auto Nullability = LHS.getType()->getNullability();
763 if (!Nullability || *Nullability != NullabilityKind::NonNull)
764 return;
766 // Check if the right hand side of the assignment is nonnull, if the left
767 // hand side must be nonnull.
768 SanitizerScope SanScope(this);
769 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
770 llvm::Constant *StaticData[] = {
771 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
772 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
773 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
774 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
775 SanitizerHandler::TypeMismatch, StaticData, RHS);
778 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
779 LValue lvalue, bool capturedByInit) {
780 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
781 if (!lifetime) {
782 llvm::Value *value = EmitScalarExpr(init);
783 if (capturedByInit)
784 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
785 EmitNullabilityCheck(lvalue, value, init->getExprLoc());
786 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
787 return;
790 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
791 init = DIE->getExpr();
793 // If we're emitting a value with lifetime, we have to do the
794 // initialization *before* we leave the cleanup scopes.
795 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) {
796 CodeGenFunction::RunCleanupsScope Scope(*this);
797 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit);
800 // We have to maintain the illusion that the variable is
801 // zero-initialized. If the variable might be accessed in its
802 // initializer, zero-initialize before running the initializer, then
803 // actually perform the initialization with an assign.
804 bool accessedByInit = false;
805 if (lifetime != Qualifiers::OCL_ExplicitNone)
806 accessedByInit = (capturedByInit || isAccessedBy(D, init));
807 if (accessedByInit) {
808 LValue tempLV = lvalue;
809 // Drill down to the __block object if necessary.
810 if (capturedByInit) {
811 // We can use a simple GEP for this because it can't have been
812 // moved yet.
813 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
814 cast<VarDecl>(D),
815 /*follow*/ false));
818 auto ty =
819 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
820 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
822 // If __weak, we want to use a barrier under certain conditions.
823 if (lifetime == Qualifiers::OCL_Weak)
824 EmitARCInitWeak(tempLV.getAddress(*this), zero);
826 // Otherwise just do a simple store.
827 else
828 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
831 // Emit the initializer.
832 llvm::Value *value = nullptr;
834 switch (lifetime) {
835 case Qualifiers::OCL_None:
836 llvm_unreachable("present but none");
838 case Qualifiers::OCL_Strong: {
839 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
840 value = EmitARCRetainScalarExpr(init);
841 break;
843 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
844 // that we omit the retain, and causes non-autoreleased return values to be
845 // immediately released.
846 [[fallthrough]];
849 case Qualifiers::OCL_ExplicitNone:
850 value = EmitARCUnsafeUnretainedScalarExpr(init);
851 break;
853 case Qualifiers::OCL_Weak: {
854 // If it's not accessed by the initializer, try to emit the
855 // initialization with a copy or move.
856 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
857 return;
860 // No way to optimize a producing initializer into this. It's not
861 // worth optimizing for, because the value will immediately
862 // disappear in the common case.
863 value = EmitScalarExpr(init);
865 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
866 if (accessedByInit)
867 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
868 else
869 EmitARCInitWeak(lvalue.getAddress(*this), value);
870 return;
873 case Qualifiers::OCL_Autoreleasing:
874 value = EmitARCRetainAutoreleaseScalarExpr(init);
875 break;
878 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
880 EmitNullabilityCheck(lvalue, value, init->getExprLoc());
882 // If the variable might have been accessed by its initializer, we
883 // might have to initialize with a barrier. We have to do this for
884 // both __weak and __strong, but __weak got filtered out above.
885 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
886 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
887 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
888 EmitARCRelease(oldValue, ARCImpreciseLifetime);
889 return;
892 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
895 /// Decide whether we can emit the non-zero parts of the specified initializer
896 /// with equal or fewer than NumStores scalar stores.
897 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
898 unsigned &NumStores) {
899 // Zero and Undef never requires any extra stores.
900 if (isa<llvm::ConstantAggregateZero>(Init) ||
901 isa<llvm::ConstantPointerNull>(Init) ||
902 isa<llvm::UndefValue>(Init))
903 return true;
904 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
905 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
906 isa<llvm::ConstantExpr>(Init))
907 return Init->isNullValue() || NumStores--;
909 // See if we can emit each element.
910 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
911 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
912 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
913 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
914 return false;
916 return true;
919 if (llvm::ConstantDataSequential *CDS =
920 dyn_cast<llvm::ConstantDataSequential>(Init)) {
921 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
922 llvm::Constant *Elt = CDS->getElementAsConstant(i);
923 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
924 return false;
926 return true;
929 // Anything else is hard and scary.
930 return false;
933 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
934 /// the scalar stores that would be required.
935 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
936 llvm::Constant *Init, Address Loc,
937 bool isVolatile, CGBuilderTy &Builder,
938 bool IsAutoInit) {
939 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
940 "called emitStoresForInitAfterBZero for zero or undef value.");
942 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
943 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
944 isa<llvm::ConstantExpr>(Init)) {
945 auto *I = Builder.CreateStore(Init, Loc, isVolatile);
946 if (IsAutoInit)
947 I->addAnnotationMetadata("auto-init");
948 return;
951 if (llvm::ConstantDataSequential *CDS =
952 dyn_cast<llvm::ConstantDataSequential>(Init)) {
953 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
954 llvm::Constant *Elt = CDS->getElementAsConstant(i);
956 // If necessary, get a pointer to the element and emit it.
957 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
958 emitStoresForInitAfterBZero(
959 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
960 Builder, IsAutoInit);
962 return;
965 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
966 "Unknown value type!");
968 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
969 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
971 // If necessary, get a pointer to the element and emit it.
972 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
973 emitStoresForInitAfterBZero(CGM, Elt,
974 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
975 isVolatile, Builder, IsAutoInit);
979 /// Decide whether we should use bzero plus some stores to initialize a local
980 /// variable instead of using a memcpy from a constant global. It is beneficial
981 /// to use bzero if the global is all zeros, or mostly zeros and large.
982 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
983 uint64_t GlobalSize) {
984 // If a global is all zeros, always use a bzero.
985 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
987 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
988 // do it if it will require 6 or fewer scalar stores.
989 // TODO: Should budget depends on the size? Avoiding a large global warrants
990 // plopping in more stores.
991 unsigned StoreBudget = 6;
992 uint64_t SizeLimit = 32;
994 return GlobalSize > SizeLimit &&
995 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
998 /// Decide whether we should use memset to initialize a local variable instead
999 /// of using a memcpy from a constant global. Assumes we've already decided to
1000 /// not user bzero.
1001 /// FIXME We could be more clever, as we are for bzero above, and generate
1002 /// memset followed by stores. It's unclear that's worth the effort.
1003 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
1004 uint64_t GlobalSize,
1005 const llvm::DataLayout &DL) {
1006 uint64_t SizeLimit = 32;
1007 if (GlobalSize <= SizeLimit)
1008 return nullptr;
1009 return llvm::isBytewiseValue(Init, DL);
1012 /// Decide whether we want to split a constant structure or array store into a
1013 /// sequence of its fields' stores. This may cost us code size and compilation
1014 /// speed, but plays better with store optimizations.
1015 static bool shouldSplitConstantStore(CodeGenModule &CGM,
1016 uint64_t GlobalByteSize) {
1017 // Don't break things that occupy more than one cacheline.
1018 uint64_t ByteSizeLimit = 64;
1019 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1020 return false;
1021 if (GlobalByteSize <= ByteSizeLimit)
1022 return true;
1023 return false;
1026 enum class IsPattern { No, Yes };
1028 /// Generate a constant filled with either a pattern or zeroes.
1029 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1030 llvm::Type *Ty) {
1031 if (isPattern == IsPattern::Yes)
1032 return initializationPatternFor(CGM, Ty);
1033 else
1034 return llvm::Constant::getNullValue(Ty);
1037 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1038 llvm::Constant *constant);
1040 /// Helper function for constWithPadding() to deal with padding in structures.
1041 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1042 IsPattern isPattern,
1043 llvm::StructType *STy,
1044 llvm::Constant *constant) {
1045 const llvm::DataLayout &DL = CGM.getDataLayout();
1046 const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1047 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1048 unsigned SizeSoFar = 0;
1049 SmallVector<llvm::Constant *, 8> Values;
1050 bool NestedIntact = true;
1051 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1052 unsigned CurOff = Layout->getElementOffset(i);
1053 if (SizeSoFar < CurOff) {
1054 assert(!STy->isPacked());
1055 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1056 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1058 llvm::Constant *CurOp;
1059 if (constant->isZeroValue())
1060 CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1061 else
1062 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1063 auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1064 if (CurOp != NewOp)
1065 NestedIntact = false;
1066 Values.push_back(NewOp);
1067 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1069 unsigned TotalSize = Layout->getSizeInBytes();
1070 if (SizeSoFar < TotalSize) {
1071 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1072 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1074 if (NestedIntact && Values.size() == STy->getNumElements())
1075 return constant;
1076 return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1079 /// Replace all padding bytes in a given constant with either a pattern byte or
1080 /// 0x00.
1081 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1082 llvm::Constant *constant) {
1083 llvm::Type *OrigTy = constant->getType();
1084 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1085 return constStructWithPadding(CGM, isPattern, STy, constant);
1086 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1087 llvm::SmallVector<llvm::Constant *, 8> Values;
1088 uint64_t Size = ArrayTy->getNumElements();
1089 if (!Size)
1090 return constant;
1091 llvm::Type *ElemTy = ArrayTy->getElementType();
1092 bool ZeroInitializer = constant->isNullValue();
1093 llvm::Constant *OpValue, *PaddedOp;
1094 if (ZeroInitializer) {
1095 OpValue = llvm::Constant::getNullValue(ElemTy);
1096 PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1098 for (unsigned Op = 0; Op != Size; ++Op) {
1099 if (!ZeroInitializer) {
1100 OpValue = constant->getAggregateElement(Op);
1101 PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1103 Values.push_back(PaddedOp);
1105 auto *NewElemTy = Values[0]->getType();
1106 if (NewElemTy == ElemTy)
1107 return constant;
1108 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1109 return llvm::ConstantArray::get(NewArrayTy, Values);
1111 // FIXME: Add handling for tail padding in vectors. Vectors don't
1112 // have padding between or inside elements, but the total amount of
1113 // data can be less than the allocated size.
1114 return constant;
1117 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1118 llvm::Constant *Constant,
1119 CharUnits Align) {
1120 auto FunctionName = [&](const DeclContext *DC) -> std::string {
1121 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1122 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1123 return CC->getNameAsString();
1124 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1125 return CD->getNameAsString();
1126 return std::string(getMangledName(FD));
1127 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1128 return OM->getNameAsString();
1129 } else if (isa<BlockDecl>(DC)) {
1130 return "<block>";
1131 } else if (isa<CapturedDecl>(DC)) {
1132 return "<captured>";
1133 } else {
1134 llvm_unreachable("expected a function or method");
1138 // Form a simple per-variable cache of these values in case we find we
1139 // want to reuse them.
1140 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1141 if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1142 auto *Ty = Constant->getType();
1143 bool isConstant = true;
1144 llvm::GlobalVariable *InsertBefore = nullptr;
1145 unsigned AS =
1146 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace());
1147 std::string Name;
1148 if (D.hasGlobalStorage())
1149 Name = getMangledName(&D).str() + ".const";
1150 else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1151 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1152 else
1153 llvm_unreachable("local variable has no parent function or method");
1154 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1155 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1156 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1157 GV->setAlignment(Align.getAsAlign());
1158 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1159 CacheEntry = GV;
1160 } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) {
1161 CacheEntry->setAlignment(Align.getAsAlign());
1164 return Address(CacheEntry, CacheEntry->getValueType(), Align);
1167 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1168 const VarDecl &D,
1169 CGBuilderTy &Builder,
1170 llvm::Constant *Constant,
1171 CharUnits Align) {
1172 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1173 return Builder.CreateElementBitCast(SrcPtr, CGM.Int8Ty);
1176 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1177 Address Loc, bool isVolatile,
1178 CGBuilderTy &Builder,
1179 llvm::Constant *constant, bool IsAutoInit) {
1180 auto *Ty = constant->getType();
1181 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1182 if (!ConstantSize)
1183 return;
1185 bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1186 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1187 if (canDoSingleStore) {
1188 auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1189 if (IsAutoInit)
1190 I->addAnnotationMetadata("auto-init");
1191 return;
1194 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1196 // If the initializer is all or mostly the same, codegen with bzero / memset
1197 // then do a few stores afterward.
1198 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1199 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1200 SizeVal, isVolatile);
1201 if (IsAutoInit)
1202 I->addAnnotationMetadata("auto-init");
1204 bool valueAlreadyCorrect =
1205 constant->isNullValue() || isa<llvm::UndefValue>(constant);
1206 if (!valueAlreadyCorrect) {
1207 Loc = Builder.CreateElementBitCast(Loc, Ty);
1208 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1209 IsAutoInit);
1211 return;
1214 // If the initializer is a repeated byte pattern, use memset.
1215 llvm::Value *Pattern =
1216 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1217 if (Pattern) {
1218 uint64_t Value = 0x00;
1219 if (!isa<llvm::UndefValue>(Pattern)) {
1220 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1221 assert(AP.getBitWidth() <= 8);
1222 Value = AP.getLimitedValue();
1224 auto *I = Builder.CreateMemSet(
1225 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1226 if (IsAutoInit)
1227 I->addAnnotationMetadata("auto-init");
1228 return;
1231 // If the initializer is small, use a handful of stores.
1232 if (shouldSplitConstantStore(CGM, ConstantSize)) {
1233 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1234 // FIXME: handle the case when STy != Loc.getElementType().
1235 if (STy == Loc.getElementType()) {
1236 for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1237 Address EltPtr = Builder.CreateStructGEP(Loc, i);
1238 emitStoresForConstant(
1239 CGM, D, EltPtr, isVolatile, Builder,
1240 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1241 IsAutoInit);
1243 return;
1245 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1246 // FIXME: handle the case when ATy != Loc.getElementType().
1247 if (ATy == Loc.getElementType()) {
1248 for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1249 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1250 emitStoresForConstant(
1251 CGM, D, EltPtr, isVolatile, Builder,
1252 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1253 IsAutoInit);
1255 return;
1260 // Copy from a global.
1261 auto *I =
1262 Builder.CreateMemCpy(Loc,
1263 createUnnamedGlobalForMemcpyFrom(
1264 CGM, D, Builder, constant, Loc.getAlignment()),
1265 SizeVal, isVolatile);
1266 if (IsAutoInit)
1267 I->addAnnotationMetadata("auto-init");
1270 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1271 Address Loc, bool isVolatile,
1272 CGBuilderTy &Builder) {
1273 llvm::Type *ElTy = Loc.getElementType();
1274 llvm::Constant *constant =
1275 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1276 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1277 /*IsAutoInit=*/true);
1280 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1281 Address Loc, bool isVolatile,
1282 CGBuilderTy &Builder) {
1283 llvm::Type *ElTy = Loc.getElementType();
1284 llvm::Constant *constant = constWithPadding(
1285 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1286 assert(!isa<llvm::UndefValue>(constant));
1287 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1288 /*IsAutoInit=*/true);
1291 static bool containsUndef(llvm::Constant *constant) {
1292 auto *Ty = constant->getType();
1293 if (isa<llvm::UndefValue>(constant))
1294 return true;
1295 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1296 for (llvm::Use &Op : constant->operands())
1297 if (containsUndef(cast<llvm::Constant>(Op)))
1298 return true;
1299 return false;
1302 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1303 llvm::Constant *constant) {
1304 auto *Ty = constant->getType();
1305 if (isa<llvm::UndefValue>(constant))
1306 return patternOrZeroFor(CGM, isPattern, Ty);
1307 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1308 return constant;
1309 if (!containsUndef(constant))
1310 return constant;
1311 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1312 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1313 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1314 Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1316 if (Ty->isStructTy())
1317 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1318 if (Ty->isArrayTy())
1319 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1320 assert(Ty->isVectorTy());
1321 return llvm::ConstantVector::get(Values);
1324 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1325 /// variable declaration with auto, register, or no storage class specifier.
1326 /// These turn into simple stack objects, or GlobalValues depending on target.
1327 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1328 AutoVarEmission emission = EmitAutoVarAlloca(D);
1329 EmitAutoVarInit(emission);
1330 EmitAutoVarCleanups(emission);
1333 /// Emit a lifetime.begin marker if some criteria are satisfied.
1334 /// \return a pointer to the temporary size Value if a marker was emitted, null
1335 /// otherwise
1336 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size,
1337 llvm::Value *Addr) {
1338 if (!ShouldEmitLifetimeMarkers)
1339 return nullptr;
1341 assert(Addr->getType()->getPointerAddressSpace() ==
1342 CGM.getDataLayout().getAllocaAddrSpace() &&
1343 "Pointer should be in alloca address space");
1344 llvm::Value *SizeV = llvm::ConstantInt::get(
1345 Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue());
1346 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1347 llvm::CallInst *C =
1348 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1349 C->setDoesNotThrow();
1350 return SizeV;
1353 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1354 assert(Addr->getType()->getPointerAddressSpace() ==
1355 CGM.getDataLayout().getAllocaAddrSpace() &&
1356 "Pointer should be in alloca address space");
1357 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1358 llvm::CallInst *C =
1359 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1360 C->setDoesNotThrow();
1363 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1364 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1365 // For each dimension stores its QualType and corresponding
1366 // size-expression Value.
1367 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1368 SmallVector<IdentifierInfo *, 4> VLAExprNames;
1370 // Break down the array into individual dimensions.
1371 QualType Type1D = D.getType();
1372 while (getContext().getAsVariableArrayType(Type1D)) {
1373 auto VlaSize = getVLAElements1D(Type1D);
1374 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1375 Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1376 else {
1377 // Generate a locally unique name for the size expression.
1378 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1379 SmallString<12> Buffer;
1380 StringRef NameRef = Name.toStringRef(Buffer);
1381 auto &Ident = getContext().Idents.getOwn(NameRef);
1382 VLAExprNames.push_back(&Ident);
1383 auto SizeExprAddr =
1384 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1385 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1386 Dimensions.emplace_back(SizeExprAddr.getPointer(),
1387 Type1D.getUnqualifiedType());
1389 Type1D = VlaSize.Type;
1392 if (!EmitDebugInfo)
1393 return;
1395 // Register each dimension's size-expression with a DILocalVariable,
1396 // so that it can be used by CGDebugInfo when instantiating a DISubrange
1397 // to describe this array.
1398 unsigned NameIdx = 0;
1399 for (auto &VlaSize : Dimensions) {
1400 llvm::Metadata *MD;
1401 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1402 MD = llvm::ConstantAsMetadata::get(C);
1403 else {
1404 // Create an artificial VarDecl to generate debug info for.
1405 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1406 assert(cast<llvm::PointerType>(VlaSize.NumElts->getType())
1407 ->isOpaqueOrPointeeTypeMatches(SizeTy) &&
1408 "Number of VLA elements must be SizeTy");
1409 auto QT = getContext().getIntTypeForBitwidth(
1410 SizeTy->getScalarSizeInBits(), false);
1411 auto *ArtificialDecl = VarDecl::Create(
1412 getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1413 D.getLocation(), D.getLocation(), NameIdent, QT,
1414 getContext().CreateTypeSourceInfo(QT), SC_Auto);
1415 ArtificialDecl->setImplicit();
1417 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1418 Builder);
1420 assert(MD && "No Size expression debug node created");
1421 DI->registerVLASizeExpression(VlaSize.Type, MD);
1425 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1426 /// local variable. Does not emit initialization or destruction.
1427 CodeGenFunction::AutoVarEmission
1428 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1429 QualType Ty = D.getType();
1430 assert(
1431 Ty.getAddressSpace() == LangAS::Default ||
1432 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1434 AutoVarEmission emission(D);
1436 bool isEscapingByRef = D.isEscapingByref();
1437 emission.IsEscapingByRef = isEscapingByRef;
1439 CharUnits alignment = getContext().getDeclAlign(&D);
1441 // If the type is variably-modified, emit all the VLA sizes for it.
1442 if (Ty->isVariablyModifiedType())
1443 EmitVariablyModifiedType(Ty);
1445 auto *DI = getDebugInfo();
1446 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1448 Address address = Address::invalid();
1449 Address AllocaAddr = Address::invalid();
1450 Address OpenMPLocalAddr = Address::invalid();
1451 if (CGM.getLangOpts().OpenMPIRBuilder)
1452 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1453 else
1454 OpenMPLocalAddr =
1455 getLangOpts().OpenMP
1456 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1457 : Address::invalid();
1459 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1461 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1462 address = OpenMPLocalAddr;
1463 AllocaAddr = OpenMPLocalAddr;
1464 } else if (Ty->isConstantSizeType()) {
1465 // If this value is an array or struct with a statically determinable
1466 // constant initializer, there are optimizations we can do.
1468 // TODO: We should constant-evaluate the initializer of any variable,
1469 // as long as it is initialized by a constant expression. Currently,
1470 // isConstantInitializer produces wrong answers for structs with
1471 // reference or bitfield members, and a few other cases, and checking
1472 // for POD-ness protects us from some of these.
1473 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1474 (D.isConstexpr() ||
1475 ((Ty.isPODType(getContext()) ||
1476 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1477 D.getInit()->isConstantInitializer(getContext(), false)))) {
1479 // If the variable's a const type, and it's neither an NRVO
1480 // candidate nor a __block variable and has no mutable members,
1481 // emit it as a global instead.
1482 // Exception is if a variable is located in non-constant address space
1483 // in OpenCL.
1484 if ((!getLangOpts().OpenCL ||
1485 Ty.getAddressSpace() == LangAS::opencl_constant) &&
1486 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1487 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1488 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1490 // Signal this condition to later callbacks.
1491 emission.Addr = Address::invalid();
1492 assert(emission.wasEmittedAsGlobal());
1493 return emission;
1496 // Otherwise, tell the initialization code that we're in this case.
1497 emission.IsConstantAggregate = true;
1500 // A normal fixed sized variable becomes an alloca in the entry block,
1501 // unless:
1502 // - it's an NRVO variable.
1503 // - we are compiling OpenMP and it's an OpenMP local variable.
1504 if (NRVO) {
1505 // The named return value optimization: allocate this variable in the
1506 // return slot, so that we can elide the copy when returning this
1507 // variable (C++0x [class.copy]p34).
1508 address = ReturnValue;
1509 AllocaAddr = ReturnValue;
1511 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1512 const auto *RD = RecordTy->getDecl();
1513 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1514 if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1515 RD->isNonTrivialToPrimitiveDestroy()) {
1516 // Create a flag that is used to indicate when the NRVO was applied
1517 // to this variable. Set it to zero to indicate that NRVO was not
1518 // applied.
1519 llvm::Value *Zero = Builder.getFalse();
1520 Address NRVOFlag =
1521 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo",
1522 /*ArraySize=*/nullptr, &AllocaAddr);
1523 EnsureInsertPoint();
1524 Builder.CreateStore(Zero, NRVOFlag);
1526 // Record the NRVO flag for this variable.
1527 NRVOFlags[&D] = NRVOFlag.getPointer();
1528 emission.NRVOFlag = NRVOFlag.getPointer();
1531 } else {
1532 CharUnits allocaAlignment;
1533 llvm::Type *allocaTy;
1534 if (isEscapingByRef) {
1535 auto &byrefInfo = getBlockByrefInfo(&D);
1536 allocaTy = byrefInfo.Type;
1537 allocaAlignment = byrefInfo.ByrefAlignment;
1538 } else {
1539 allocaTy = ConvertTypeForMem(Ty);
1540 allocaAlignment = alignment;
1543 // Create the alloca. Note that we set the name separately from
1544 // building the instruction so that it's there even in no-asserts
1545 // builds.
1546 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1547 /*ArraySize=*/nullptr, &AllocaAddr);
1549 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1550 // the catch parameter starts in the catchpad instruction, and we can't
1551 // insert code in those basic blocks.
1552 bool IsMSCatchParam =
1553 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1555 // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1556 // if we don't have a valid insertion point (?).
1557 if (HaveInsertPoint() && !IsMSCatchParam) {
1558 // If there's a jump into the lifetime of this variable, its lifetime
1559 // gets broken up into several regions in IR, which requires more work
1560 // to handle correctly. For now, just omit the intrinsics; this is a
1561 // rare case, and it's better to just be conservatively correct.
1562 // PR28267.
1564 // We have to do this in all language modes if there's a jump past the
1565 // declaration. We also have to do it in C if there's a jump to an
1566 // earlier point in the current block because non-VLA lifetimes begin as
1567 // soon as the containing block is entered, not when its variables
1568 // actually come into scope; suppressing the lifetime annotations
1569 // completely in this case is unnecessarily pessimistic, but again, this
1570 // is rare.
1571 if (!Bypasses.IsBypassed(&D) &&
1572 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1573 llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1574 emission.SizeForLifetimeMarkers =
1575 EmitLifetimeStart(Size, AllocaAddr.getPointer());
1577 } else {
1578 assert(!emission.useLifetimeMarkers());
1581 } else {
1582 EnsureInsertPoint();
1584 if (!DidCallStackSave) {
1585 // Save the stack.
1586 Address Stack =
1587 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1589 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1590 llvm::Value *V = Builder.CreateCall(F);
1591 Builder.CreateStore(V, Stack);
1593 DidCallStackSave = true;
1595 // Push a cleanup block and restore the stack there.
1596 // FIXME: in general circumstances, this should be an EH cleanup.
1597 pushStackRestore(NormalCleanup, Stack);
1600 auto VlaSize = getVLASize(Ty);
1601 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1603 // Allocate memory for the array.
1604 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1605 &AllocaAddr);
1607 // If we have debug info enabled, properly describe the VLA dimensions for
1608 // this type by registering the vla size expression for each of the
1609 // dimensions.
1610 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1613 setAddrOfLocalVar(&D, address);
1614 emission.Addr = address;
1615 emission.AllocaAddr = AllocaAddr;
1617 // Emit debug info for local var declaration.
1618 if (EmitDebugInfo && HaveInsertPoint()) {
1619 Address DebugAddr = address;
1620 bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1621 DI->setLocation(D.getLocation());
1623 // If NRVO, use a pointer to the return address.
1624 if (UsePointerValue) {
1625 DebugAddr = ReturnValuePointer;
1626 AllocaAddr = ReturnValuePointer;
1628 (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder,
1629 UsePointerValue);
1632 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1633 EmitVarAnnotations(&D, address.getPointer());
1635 // Make sure we call @llvm.lifetime.end.
1636 if (emission.useLifetimeMarkers())
1637 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1638 emission.getOriginalAllocatedAddress(),
1639 emission.getSizeForLifetimeMarkers());
1641 return emission;
1644 static bool isCapturedBy(const VarDecl &, const Expr *);
1646 /// Determines whether the given __block variable is potentially
1647 /// captured by the given statement.
1648 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1649 if (const Expr *E = dyn_cast<Expr>(S))
1650 return isCapturedBy(Var, E);
1651 for (const Stmt *SubStmt : S->children())
1652 if (isCapturedBy(Var, SubStmt))
1653 return true;
1654 return false;
1657 /// Determines whether the given __block variable is potentially
1658 /// captured by the given expression.
1659 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1660 // Skip the most common kinds of expressions that make
1661 // hierarchy-walking expensive.
1662 E = E->IgnoreParenCasts();
1664 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1665 const BlockDecl *Block = BE->getBlockDecl();
1666 for (const auto &I : Block->captures()) {
1667 if (I.getVariable() == &Var)
1668 return true;
1671 // No need to walk into the subexpressions.
1672 return false;
1675 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1676 const CompoundStmt *CS = SE->getSubStmt();
1677 for (const auto *BI : CS->body())
1678 if (const auto *BIE = dyn_cast<Expr>(BI)) {
1679 if (isCapturedBy(Var, BIE))
1680 return true;
1682 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1683 // special case declarations
1684 for (const auto *I : DS->decls()) {
1685 if (const auto *VD = dyn_cast<VarDecl>((I))) {
1686 const Expr *Init = VD->getInit();
1687 if (Init && isCapturedBy(Var, Init))
1688 return true;
1692 else
1693 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1694 // Later, provide code to poke into statements for capture analysis.
1695 return true;
1696 return false;
1699 for (const Stmt *SubStmt : E->children())
1700 if (isCapturedBy(Var, SubStmt))
1701 return true;
1703 return false;
1706 /// Determine whether the given initializer is trivial in the sense
1707 /// that it requires no code to be generated.
1708 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1709 if (!Init)
1710 return true;
1712 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1713 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1714 if (Constructor->isTrivial() &&
1715 Constructor->isDefaultConstructor() &&
1716 !Construct->requiresZeroInitialization())
1717 return true;
1719 return false;
1722 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1723 const VarDecl &D,
1724 Address Loc) {
1725 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1726 CharUnits Size = getContext().getTypeSizeInChars(type);
1727 bool isVolatile = type.isVolatileQualified();
1728 if (!Size.isZero()) {
1729 switch (trivialAutoVarInit) {
1730 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1731 llvm_unreachable("Uninitialized handled by caller");
1732 case LangOptions::TrivialAutoVarInitKind::Zero:
1733 if (CGM.stopAutoInit())
1734 return;
1735 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1736 break;
1737 case LangOptions::TrivialAutoVarInitKind::Pattern:
1738 if (CGM.stopAutoInit())
1739 return;
1740 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1741 break;
1743 return;
1746 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1747 // them, so emit a memcpy with the VLA size to initialize each element.
1748 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1749 // will catch that code, but there exists code which generates zero-sized
1750 // VLAs. Be nice and initialize whatever they requested.
1751 const auto *VlaType = getContext().getAsVariableArrayType(type);
1752 if (!VlaType)
1753 return;
1754 auto VlaSize = getVLASize(VlaType);
1755 auto SizeVal = VlaSize.NumElts;
1756 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1757 switch (trivialAutoVarInit) {
1758 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1759 llvm_unreachable("Uninitialized handled by caller");
1761 case LangOptions::TrivialAutoVarInitKind::Zero: {
1762 if (CGM.stopAutoInit())
1763 return;
1764 if (!EltSize.isOne())
1765 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1766 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1767 SizeVal, isVolatile);
1768 I->addAnnotationMetadata("auto-init");
1769 break;
1772 case LangOptions::TrivialAutoVarInitKind::Pattern: {
1773 if (CGM.stopAutoInit())
1774 return;
1775 llvm::Type *ElTy = Loc.getElementType();
1776 llvm::Constant *Constant = constWithPadding(
1777 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1778 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1779 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1780 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1781 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1782 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1783 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1784 "vla.iszerosized");
1785 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1786 EmitBlock(SetupBB);
1787 if (!EltSize.isOne())
1788 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1789 llvm::Value *BaseSizeInChars =
1790 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1791 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1792 llvm::Value *End = Builder.CreateInBoundsGEP(
1793 Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end");
1794 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1795 EmitBlock(LoopBB);
1796 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1797 Cur->addIncoming(Begin.getPointer(), OriginBB);
1798 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1799 auto *I =
1800 Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign),
1801 createUnnamedGlobalForMemcpyFrom(
1802 CGM, D, Builder, Constant, ConstantAlign),
1803 BaseSizeInChars, isVolatile);
1804 I->addAnnotationMetadata("auto-init");
1805 llvm::Value *Next =
1806 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1807 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1808 Builder.CreateCondBr(Done, ContBB, LoopBB);
1809 Cur->addIncoming(Next, LoopBB);
1810 EmitBlock(ContBB);
1811 } break;
1815 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1816 assert(emission.Variable && "emission was not valid!");
1818 // If this was emitted as a global constant, we're done.
1819 if (emission.wasEmittedAsGlobal()) return;
1821 const VarDecl &D = *emission.Variable;
1822 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1823 QualType type = D.getType();
1825 // If this local has an initializer, emit it now.
1826 const Expr *Init = D.getInit();
1828 // If we are at an unreachable point, we don't need to emit the initializer
1829 // unless it contains a label.
1830 if (!HaveInsertPoint()) {
1831 if (!Init || !ContainsLabel(Init)) return;
1832 EnsureInsertPoint();
1835 // Initialize the structure of a __block variable.
1836 if (emission.IsEscapingByRef)
1837 emitByrefStructureInit(emission);
1839 // Initialize the variable here if it doesn't have a initializer and it is a
1840 // C struct that is non-trivial to initialize or an array containing such a
1841 // struct.
1842 if (!Init &&
1843 type.isNonTrivialToPrimitiveDefaultInitialize() ==
1844 QualType::PDIK_Struct) {
1845 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1846 if (emission.IsEscapingByRef)
1847 drillIntoBlockVariable(*this, Dst, &D);
1848 defaultInitNonTrivialCStructVar(Dst);
1849 return;
1852 // Check whether this is a byref variable that's potentially
1853 // captured and moved by its own initializer. If so, we'll need to
1854 // emit the initializer first, then copy into the variable.
1855 bool capturedByInit =
1856 Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1858 bool locIsByrefHeader = !capturedByInit;
1859 const Address Loc =
1860 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1862 // Note: constexpr already initializes everything correctly.
1863 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1864 (D.isConstexpr()
1865 ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1866 : (D.getAttr<UninitializedAttr>()
1867 ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1868 : getContext().getLangOpts().getTrivialAutoVarInit()));
1870 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1871 if (trivialAutoVarInit ==
1872 LangOptions::TrivialAutoVarInitKind::Uninitialized)
1873 return;
1875 // Only initialize a __block's storage: we always initialize the header.
1876 if (emission.IsEscapingByRef && !locIsByrefHeader)
1877 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1879 return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1882 if (isTrivialInitializer(Init))
1883 return initializeWhatIsTechnicallyUninitialized(Loc);
1885 llvm::Constant *constant = nullptr;
1886 if (emission.IsConstantAggregate ||
1887 D.mightBeUsableInConstantExpressions(getContext())) {
1888 assert(!capturedByInit && "constant init contains a capturing block?");
1889 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1890 if (constant && !constant->isZeroValue() &&
1891 (trivialAutoVarInit !=
1892 LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1893 IsPattern isPattern =
1894 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1895 ? IsPattern::Yes
1896 : IsPattern::No;
1897 // C guarantees that brace-init with fewer initializers than members in
1898 // the aggregate will initialize the rest of the aggregate as-if it were
1899 // static initialization. In turn static initialization guarantees that
1900 // padding is initialized to zero bits. We could instead pattern-init if D
1901 // has any ImplicitValueInitExpr, but that seems to be unintuitive
1902 // behavior.
1903 constant = constWithPadding(CGM, IsPattern::No,
1904 replaceUndef(CGM, isPattern, constant));
1908 if (!constant) {
1909 initializeWhatIsTechnicallyUninitialized(Loc);
1910 LValue lv = MakeAddrLValue(Loc, type);
1911 lv.setNonGC(true);
1912 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1915 if (!emission.IsConstantAggregate) {
1916 // For simple scalar/complex initialization, store the value directly.
1917 LValue lv = MakeAddrLValue(Loc, type);
1918 lv.setNonGC(true);
1919 return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1922 emitStoresForConstant(CGM, D, Builder.CreateElementBitCast(Loc, CGM.Int8Ty),
1923 type.isVolatileQualified(), Builder, constant,
1924 /*IsAutoInit=*/false);
1927 /// Emit an expression as an initializer for an object (variable, field, etc.)
1928 /// at the given location. The expression is not necessarily the normal
1929 /// initializer for the object, and the address is not necessarily
1930 /// its normal location.
1932 /// \param init the initializing expression
1933 /// \param D the object to act as if we're initializing
1934 /// \param lvalue the lvalue to initialize
1935 /// \param capturedByInit true if \p D is a __block variable
1936 /// whose address is potentially changed by the initializer
1937 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1938 LValue lvalue, bool capturedByInit) {
1939 QualType type = D->getType();
1941 if (type->isReferenceType()) {
1942 RValue rvalue = EmitReferenceBindingToExpr(init);
1943 if (capturedByInit)
1944 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1945 EmitStoreThroughLValue(rvalue, lvalue, true);
1946 return;
1948 switch (getEvaluationKind(type)) {
1949 case TEK_Scalar:
1950 EmitScalarInit(init, D, lvalue, capturedByInit);
1951 return;
1952 case TEK_Complex: {
1953 ComplexPairTy complex = EmitComplexExpr(init);
1954 if (capturedByInit)
1955 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1956 EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1957 return;
1959 case TEK_Aggregate:
1960 if (type->isAtomicType()) {
1961 EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1962 } else {
1963 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1964 if (isa<VarDecl>(D))
1965 Overlap = AggValueSlot::DoesNotOverlap;
1966 else if (auto *FD = dyn_cast<FieldDecl>(D))
1967 Overlap = getOverlapForFieldInit(FD);
1968 // TODO: how can we delay here if D is captured by its initializer?
1969 EmitAggExpr(init, AggValueSlot::forLValue(
1970 lvalue, *this, AggValueSlot::IsDestructed,
1971 AggValueSlot::DoesNotNeedGCBarriers,
1972 AggValueSlot::IsNotAliased, Overlap));
1974 return;
1976 llvm_unreachable("bad evaluation kind");
1979 /// Enter a destroy cleanup for the given local variable.
1980 void CodeGenFunction::emitAutoVarTypeCleanup(
1981 const CodeGenFunction::AutoVarEmission &emission,
1982 QualType::DestructionKind dtorKind) {
1983 assert(dtorKind != QualType::DK_none);
1985 // Note that for __block variables, we want to destroy the
1986 // original stack object, not the possibly forwarded object.
1987 Address addr = emission.getObjectAddress(*this);
1989 const VarDecl *var = emission.Variable;
1990 QualType type = var->getType();
1992 CleanupKind cleanupKind = NormalAndEHCleanup;
1993 CodeGenFunction::Destroyer *destroyer = nullptr;
1995 switch (dtorKind) {
1996 case QualType::DK_none:
1997 llvm_unreachable("no cleanup for trivially-destructible variable");
1999 case QualType::DK_cxx_destructor:
2000 // If there's an NRVO flag on the emission, we need a different
2001 // cleanup.
2002 if (emission.NRVOFlag) {
2003 assert(!type->isArrayType());
2004 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
2005 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
2006 emission.NRVOFlag);
2007 return;
2009 break;
2011 case QualType::DK_objc_strong_lifetime:
2012 // Suppress cleanups for pseudo-strong variables.
2013 if (var->isARCPseudoStrong()) return;
2015 // Otherwise, consider whether to use an EH cleanup or not.
2016 cleanupKind = getARCCleanupKind();
2018 // Use the imprecise destroyer by default.
2019 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
2020 destroyer = CodeGenFunction::destroyARCStrongImprecise;
2021 break;
2023 case QualType::DK_objc_weak_lifetime:
2024 break;
2026 case QualType::DK_nontrivial_c_struct:
2027 destroyer = CodeGenFunction::destroyNonTrivialCStruct;
2028 if (emission.NRVOFlag) {
2029 assert(!type->isArrayType());
2030 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2031 emission.NRVOFlag, type);
2032 return;
2034 break;
2037 // If we haven't chosen a more specific destroyer, use the default.
2038 if (!destroyer) destroyer = getDestroyer(dtorKind);
2040 // Use an EH cleanup in array destructors iff the destructor itself
2041 // is being pushed as an EH cleanup.
2042 bool useEHCleanup = (cleanupKind & EHCleanup);
2043 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2044 useEHCleanup);
2047 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2048 assert(emission.Variable && "emission was not valid!");
2050 // If this was emitted as a global constant, we're done.
2051 if (emission.wasEmittedAsGlobal()) return;
2053 // If we don't have an insertion point, we're done. Sema prevents
2054 // us from jumping into any of these scopes anyway.
2055 if (!HaveInsertPoint()) return;
2057 const VarDecl &D = *emission.Variable;
2059 // Check the type for a cleanup.
2060 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2061 emitAutoVarTypeCleanup(emission, dtorKind);
2063 // In GC mode, honor objc_precise_lifetime.
2064 if (getLangOpts().getGC() != LangOptions::NonGC &&
2065 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2066 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2069 // Handle the cleanup attribute.
2070 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2071 const FunctionDecl *FD = CA->getFunctionDecl();
2073 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2074 assert(F && "Could not find function!");
2076 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2077 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2080 // If this is a block variable, call _Block_object_destroy
2081 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2082 // mode.
2083 if (emission.IsEscapingByRef &&
2084 CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2085 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2086 if (emission.Variable->getType().isObjCGCWeak())
2087 Flags |= BLOCK_FIELD_IS_WEAK;
2088 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2089 /*LoadBlockVarAddr*/ false,
2090 cxxDestructorCanThrow(emission.Variable->getType()));
2094 CodeGenFunction::Destroyer *
2095 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2096 switch (kind) {
2097 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2098 case QualType::DK_cxx_destructor:
2099 return destroyCXXObject;
2100 case QualType::DK_objc_strong_lifetime:
2101 return destroyARCStrongPrecise;
2102 case QualType::DK_objc_weak_lifetime:
2103 return destroyARCWeak;
2104 case QualType::DK_nontrivial_c_struct:
2105 return destroyNonTrivialCStruct;
2107 llvm_unreachable("Unknown DestructionKind");
2110 /// pushEHDestroy - Push the standard destructor for the given type as
2111 /// an EH-only cleanup.
2112 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2113 Address addr, QualType type) {
2114 assert(dtorKind && "cannot push destructor for trivial type");
2115 assert(needsEHCleanup(dtorKind));
2117 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2120 /// pushDestroy - Push the standard destructor for the given type as
2121 /// at least a normal cleanup.
2122 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2123 Address addr, QualType type) {
2124 assert(dtorKind && "cannot push destructor for trivial type");
2126 CleanupKind cleanupKind = getCleanupKind(dtorKind);
2127 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2128 cleanupKind & EHCleanup);
2131 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2132 QualType type, Destroyer *destroyer,
2133 bool useEHCleanupForArray) {
2134 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2135 destroyer, useEHCleanupForArray);
2138 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2139 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2142 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2143 Address addr, QualType type,
2144 Destroyer *destroyer,
2145 bool useEHCleanupForArray) {
2146 // If we're not in a conditional branch, we don't need to bother generating a
2147 // conditional cleanup.
2148 if (!isInConditionalBranch()) {
2149 // Push an EH-only cleanup for the object now.
2150 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2151 // around in case a temporary's destructor throws an exception.
2152 if (cleanupKind & EHCleanup)
2153 EHStack.pushCleanup<DestroyObject>(
2154 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2155 destroyer, useEHCleanupForArray);
2157 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2158 cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2161 // Otherwise, we should only destroy the object if it's been initialized.
2162 // Re-use the active flag and saved address across both the EH and end of
2163 // scope cleanups.
2165 using SavedType = typename DominatingValue<Address>::saved_type;
2166 using ConditionalCleanupType =
2167 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2168 Destroyer *, bool>;
2170 Address ActiveFlag = createCleanupActiveFlag();
2171 SavedType SavedAddr = saveValueInCond(addr);
2173 if (cleanupKind & EHCleanup) {
2174 EHStack.pushCleanup<ConditionalCleanupType>(
2175 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2176 destroyer, useEHCleanupForArray);
2177 initFullExprCleanupWithFlag(ActiveFlag);
2180 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2181 cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2182 useEHCleanupForArray);
2185 /// emitDestroy - Immediately perform the destruction of the given
2186 /// object.
2188 /// \param addr - the address of the object; a type*
2189 /// \param type - the type of the object; if an array type, all
2190 /// objects are destroyed in reverse order
2191 /// \param destroyer - the function to call to destroy individual
2192 /// elements
2193 /// \param useEHCleanupForArray - whether an EH cleanup should be
2194 /// used when destroying array elements, in case one of the
2195 /// destructions throws an exception
2196 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2197 Destroyer *destroyer,
2198 bool useEHCleanupForArray) {
2199 const ArrayType *arrayType = getContext().getAsArrayType(type);
2200 if (!arrayType)
2201 return destroyer(*this, addr, type);
2203 llvm::Value *length = emitArrayLength(arrayType, type, addr);
2205 CharUnits elementAlign =
2206 addr.getAlignment()
2207 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2209 // Normally we have to check whether the array is zero-length.
2210 bool checkZeroLength = true;
2212 // But if the array length is constant, we can suppress that.
2213 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2214 // ...and if it's constant zero, we can just skip the entire thing.
2215 if (constLength->isZero()) return;
2216 checkZeroLength = false;
2219 llvm::Value *begin = addr.getPointer();
2220 llvm::Value *end =
2221 Builder.CreateInBoundsGEP(addr.getElementType(), begin, length);
2222 emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2223 checkZeroLength, useEHCleanupForArray);
2226 /// emitArrayDestroy - Destroys all the elements of the given array,
2227 /// beginning from last to first. The array cannot be zero-length.
2229 /// \param begin - a type* denoting the first element of the array
2230 /// \param end - a type* denoting one past the end of the array
2231 /// \param elementType - the element type of the array
2232 /// \param destroyer - the function to call to destroy elements
2233 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2234 /// the remaining elements in case the destruction of a single
2235 /// element throws
2236 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2237 llvm::Value *end,
2238 QualType elementType,
2239 CharUnits elementAlign,
2240 Destroyer *destroyer,
2241 bool checkZeroLength,
2242 bool useEHCleanup) {
2243 assert(!elementType->isArrayType());
2245 // The basic structure here is a do-while loop, because we don't
2246 // need to check for the zero-element case.
2247 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2248 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2250 if (checkZeroLength) {
2251 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2252 "arraydestroy.isempty");
2253 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2256 // Enter the loop body, making that address the current address.
2257 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2258 EmitBlock(bodyBB);
2259 llvm::PHINode *elementPast =
2260 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2261 elementPast->addIncoming(end, entryBB);
2263 // Shift the address back by one element.
2264 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2265 llvm::Type *llvmElementType = ConvertTypeForMem(elementType);
2266 llvm::Value *element = Builder.CreateInBoundsGEP(
2267 llvmElementType, elementPast, negativeOne, "arraydestroy.element");
2269 if (useEHCleanup)
2270 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2271 destroyer);
2273 // Perform the actual destruction there.
2274 destroyer(*this, Address(element, llvmElementType, elementAlign),
2275 elementType);
2277 if (useEHCleanup)
2278 PopCleanupBlock();
2280 // Check whether we've reached the end.
2281 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2282 Builder.CreateCondBr(done, doneBB, bodyBB);
2283 elementPast->addIncoming(element, Builder.GetInsertBlock());
2285 // Done.
2286 EmitBlock(doneBB);
2289 /// Perform partial array destruction as if in an EH cleanup. Unlike
2290 /// emitArrayDestroy, the element type here may still be an array type.
2291 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2292 llvm::Value *begin, llvm::Value *end,
2293 QualType type, CharUnits elementAlign,
2294 CodeGenFunction::Destroyer *destroyer) {
2295 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2297 // If the element type is itself an array, drill down.
2298 unsigned arrayDepth = 0;
2299 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2300 // VLAs don't require a GEP index to walk into.
2301 if (!isa<VariableArrayType>(arrayType))
2302 arrayDepth++;
2303 type = arrayType->getElementType();
2306 if (arrayDepth) {
2307 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2309 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2310 begin = CGF.Builder.CreateInBoundsGEP(
2311 elemTy, begin, gepIndices, "pad.arraybegin");
2312 end = CGF.Builder.CreateInBoundsGEP(
2313 elemTy, end, gepIndices, "pad.arrayend");
2316 // Destroy the array. We don't ever need an EH cleanup because we
2317 // assume that we're in an EH cleanup ourselves, so a throwing
2318 // destructor causes an immediate terminate.
2319 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2320 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2323 namespace {
2324 /// RegularPartialArrayDestroy - a cleanup which performs a partial
2325 /// array destroy where the end pointer is regularly determined and
2326 /// does not need to be loaded from a local.
2327 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2328 llvm::Value *ArrayBegin;
2329 llvm::Value *ArrayEnd;
2330 QualType ElementType;
2331 CodeGenFunction::Destroyer *Destroyer;
2332 CharUnits ElementAlign;
2333 public:
2334 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2335 QualType elementType, CharUnits elementAlign,
2336 CodeGenFunction::Destroyer *destroyer)
2337 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2338 ElementType(elementType), Destroyer(destroyer),
2339 ElementAlign(elementAlign) {}
2341 void Emit(CodeGenFunction &CGF, Flags flags) override {
2342 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2343 ElementType, ElementAlign, Destroyer);
2347 /// IrregularPartialArrayDestroy - a cleanup which performs a
2348 /// partial array destroy where the end pointer is irregularly
2349 /// determined and must be loaded from a local.
2350 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2351 llvm::Value *ArrayBegin;
2352 Address ArrayEndPointer;
2353 QualType ElementType;
2354 CodeGenFunction::Destroyer *Destroyer;
2355 CharUnits ElementAlign;
2356 public:
2357 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2358 Address arrayEndPointer,
2359 QualType elementType,
2360 CharUnits elementAlign,
2361 CodeGenFunction::Destroyer *destroyer)
2362 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2363 ElementType(elementType), Destroyer(destroyer),
2364 ElementAlign(elementAlign) {}
2366 void Emit(CodeGenFunction &CGF, Flags flags) override {
2367 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2368 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2369 ElementType, ElementAlign, Destroyer);
2372 } // end anonymous namespace
2374 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2375 /// already-constructed elements of the given array. The cleanup
2376 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2378 /// \param elementType - the immediate element type of the array;
2379 /// possibly still an array type
2380 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2381 Address arrayEndPointer,
2382 QualType elementType,
2383 CharUnits elementAlign,
2384 Destroyer *destroyer) {
2385 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2386 arrayBegin, arrayEndPointer,
2387 elementType, elementAlign,
2388 destroyer);
2391 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2392 /// already-constructed elements of the given array. The cleanup
2393 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2395 /// \param elementType - the immediate element type of the array;
2396 /// possibly still an array type
2397 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2398 llvm::Value *arrayEnd,
2399 QualType elementType,
2400 CharUnits elementAlign,
2401 Destroyer *destroyer) {
2402 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2403 arrayBegin, arrayEnd,
2404 elementType, elementAlign,
2405 destroyer);
2408 /// Lazily declare the @llvm.lifetime.start intrinsic.
2409 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2410 if (LifetimeStartFn)
2411 return LifetimeStartFn;
2412 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2413 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2414 return LifetimeStartFn;
2417 /// Lazily declare the @llvm.lifetime.end intrinsic.
2418 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2419 if (LifetimeEndFn)
2420 return LifetimeEndFn;
2421 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2422 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2423 return LifetimeEndFn;
2426 namespace {
2427 /// A cleanup to perform a release of an object at the end of a
2428 /// function. This is used to balance out the incoming +1 of a
2429 /// ns_consumed argument when we can't reasonably do that just by
2430 /// not doing the initial retain for a __block argument.
2431 struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2432 ConsumeARCParameter(llvm::Value *param,
2433 ARCPreciseLifetime_t precise)
2434 : Param(param), Precise(precise) {}
2436 llvm::Value *Param;
2437 ARCPreciseLifetime_t Precise;
2439 void Emit(CodeGenFunction &CGF, Flags flags) override {
2440 CGF.EmitARCRelease(Param, Precise);
2443 } // end anonymous namespace
2445 /// Emit an alloca (or GlobalValue depending on target)
2446 /// for the specified parameter and set up LocalDeclMap.
2447 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2448 unsigned ArgNo) {
2449 bool NoDebugInfo = false;
2450 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2451 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2452 "Invalid argument to EmitParmDecl");
2454 Arg.getAnyValue()->setName(D.getName());
2456 QualType Ty = D.getType();
2458 // Use better IR generation for certain implicit parameters.
2459 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2460 // The only implicit argument a block has is its literal.
2461 // This may be passed as an inalloca'ed value on Windows x86.
2462 if (BlockInfo) {
2463 llvm::Value *V = Arg.isIndirect()
2464 ? Builder.CreateLoad(Arg.getIndirectAddress())
2465 : Arg.getDirectValue();
2466 setBlockContextParameter(IPD, ArgNo, V);
2467 return;
2469 // Suppressing debug info for ThreadPrivateVar parameters, else it hides
2470 // debug info of TLS variables.
2471 NoDebugInfo =
2472 (IPD->getParameterKind() == ImplicitParamDecl::ThreadPrivateVar);
2475 Address DeclPtr = Address::invalid();
2476 Address AllocaPtr = Address::invalid();
2477 bool DoStore = false;
2478 bool IsScalar = hasScalarEvaluationKind(Ty);
2479 bool UseIndirectDebugAddress = false;
2481 // If we already have a pointer to the argument, reuse the input pointer.
2482 if (Arg.isIndirect()) {
2483 // If we have a prettier pointer type at this point, bitcast to that.
2484 DeclPtr = Arg.getIndirectAddress();
2485 DeclPtr = Builder.CreateElementBitCast(DeclPtr, ConvertTypeForMem(Ty),
2486 D.getName());
2487 // Indirect argument is in alloca address space, which may be different
2488 // from the default address space.
2489 auto AllocaAS = CGM.getASTAllocaAddressSpace();
2490 auto *V = DeclPtr.getPointer();
2491 AllocaPtr = DeclPtr;
2493 // For truly ABI indirect arguments -- those that are not `byval` -- store
2494 // the address of the argument on the stack to preserve debug information.
2495 ABIArgInfo ArgInfo = CurFnInfo->arguments()[ArgNo - 1].info;
2496 if (ArgInfo.isIndirect())
2497 UseIndirectDebugAddress = !ArgInfo.getIndirectByVal();
2498 if (UseIndirectDebugAddress) {
2499 auto PtrTy = getContext().getPointerType(Ty);
2500 AllocaPtr = CreateMemTemp(PtrTy, getContext().getTypeAlignInChars(PtrTy),
2501 D.getName() + ".indirect_addr");
2502 EmitStoreOfScalar(V, AllocaPtr, /* Volatile */ false, PtrTy);
2505 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2506 auto DestLangAS =
2507 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2508 if (SrcLangAS != DestLangAS) {
2509 assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2510 CGM.getDataLayout().getAllocaAddrSpace());
2511 auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2512 auto *T = DeclPtr.getElementType()->getPointerTo(DestAS);
2513 DeclPtr = DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast(
2514 *this, V, SrcLangAS, DestLangAS, T, true));
2517 // Push a destructor cleanup for this parameter if the ABI requires it.
2518 // Don't push a cleanup in a thunk for a method that will also emit a
2519 // cleanup.
2520 if (Ty->isRecordType() && !CurFuncIsThunk &&
2521 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2522 if (QualType::DestructionKind DtorKind =
2523 D.needsDestruction(getContext())) {
2524 assert((DtorKind == QualType::DK_cxx_destructor ||
2525 DtorKind == QualType::DK_nontrivial_c_struct) &&
2526 "unexpected destructor type");
2527 pushDestroy(DtorKind, DeclPtr, Ty);
2528 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2529 EHStack.stable_begin();
2532 } else {
2533 // Check if the parameter address is controlled by OpenMP runtime.
2534 Address OpenMPLocalAddr =
2535 getLangOpts().OpenMP
2536 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2537 : Address::invalid();
2538 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2539 DeclPtr = OpenMPLocalAddr;
2540 AllocaPtr = DeclPtr;
2541 } else {
2542 // Otherwise, create a temporary to hold the value.
2543 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2544 D.getName() + ".addr", &AllocaPtr);
2546 DoStore = true;
2549 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2551 LValue lv = MakeAddrLValue(DeclPtr, Ty);
2552 if (IsScalar) {
2553 Qualifiers qs = Ty.getQualifiers();
2554 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2555 // We honor __attribute__((ns_consumed)) for types with lifetime.
2556 // For __strong, it's handled by just skipping the initial retain;
2557 // otherwise we have to balance out the initial +1 with an extra
2558 // cleanup to do the release at the end of the function.
2559 bool isConsumed = D.hasAttr<NSConsumedAttr>();
2561 // If a parameter is pseudo-strong then we can omit the implicit retain.
2562 if (D.isARCPseudoStrong()) {
2563 assert(lt == Qualifiers::OCL_Strong &&
2564 "pseudo-strong variable isn't strong?");
2565 assert(qs.hasConst() && "pseudo-strong variable should be const!");
2566 lt = Qualifiers::OCL_ExplicitNone;
2569 // Load objects passed indirectly.
2570 if (Arg.isIndirect() && !ArgVal)
2571 ArgVal = Builder.CreateLoad(DeclPtr);
2573 if (lt == Qualifiers::OCL_Strong) {
2574 if (!isConsumed) {
2575 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2576 // use objc_storeStrong(&dest, value) for retaining the
2577 // object. But first, store a null into 'dest' because
2578 // objc_storeStrong attempts to release its old value.
2579 llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2580 EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2581 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2582 DoStore = false;
2584 else
2585 // Don't use objc_retainBlock for block pointers, because we
2586 // don't want to Block_copy something just because we got it
2587 // as a parameter.
2588 ArgVal = EmitARCRetainNonBlock(ArgVal);
2590 } else {
2591 // Push the cleanup for a consumed parameter.
2592 if (isConsumed) {
2593 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2594 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2595 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2596 precise);
2599 if (lt == Qualifiers::OCL_Weak) {
2600 EmitARCInitWeak(DeclPtr, ArgVal);
2601 DoStore = false; // The weak init is a store, no need to do two.
2605 // Enter the cleanup scope.
2606 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2610 // Store the initial value into the alloca.
2611 if (DoStore)
2612 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2614 setAddrOfLocalVar(&D, DeclPtr);
2616 // Emit debug info for param declarations in non-thunk functions.
2617 if (CGDebugInfo *DI = getDebugInfo()) {
2618 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk &&
2619 !NoDebugInfo) {
2620 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable(
2621 &D, AllocaPtr.getPointer(), ArgNo, Builder, UseIndirectDebugAddress);
2622 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D))
2623 DI->getParamDbgMappings().insert({Var, DILocalVar});
2627 if (D.hasAttr<AnnotateAttr>())
2628 EmitVarAnnotations(&D, DeclPtr.getPointer());
2630 // We can only check return value nullability if all arguments to the
2631 // function satisfy their nullability preconditions. This makes it necessary
2632 // to emit null checks for args in the function body itself.
2633 if (requiresReturnValueNullabilityCheck()) {
2634 auto Nullability = Ty->getNullability();
2635 if (Nullability && *Nullability == NullabilityKind::NonNull) {
2636 SanitizerScope SanScope(this);
2637 RetValNullabilityPrecondition =
2638 Builder.CreateAnd(RetValNullabilityPrecondition,
2639 Builder.CreateIsNotNull(Arg.getAnyValue()));
2644 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2645 CodeGenFunction *CGF) {
2646 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2647 return;
2648 getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2651 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2652 CodeGenFunction *CGF) {
2653 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2654 (!LangOpts.EmitAllDecls && !D->isUsed()))
2655 return;
2656 getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2659 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2660 getOpenMPRuntime().processRequiresDirective(D);
2663 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) {
2664 for (const Expr *E : D->varlists()) {
2665 const auto *DE = cast<DeclRefExpr>(E);
2666 const auto *VD = cast<VarDecl>(DE->getDecl());
2668 // Skip all but globals.
2669 if (!VD->hasGlobalStorage())
2670 continue;
2672 // Check if the global has been materialized yet or not. If not, we are done
2673 // as any later generation will utilize the OMPAllocateDeclAttr. However, if
2674 // we already emitted the global we might have done so before the
2675 // OMPAllocateDeclAttr was attached, leading to the wrong address space
2676 // (potentially). While not pretty, common practise is to remove the old IR
2677 // global and generate a new one, so we do that here too. Uses are replaced
2678 // properly.
2679 StringRef MangledName = getMangledName(VD);
2680 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2681 if (!Entry)
2682 continue;
2684 // We can also keep the existing global if the address space is what we
2685 // expect it to be, if not, it is replaced.
2686 QualType ASTTy = VD->getType();
2687 clang::LangAS GVAS = GetGlobalVarAddressSpace(VD);
2688 auto TargetAS = getContext().getTargetAddressSpace(GVAS);
2689 if (Entry->getType()->getAddressSpace() == TargetAS)
2690 continue;
2692 // Make a new global with the correct type / address space.
2693 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
2694 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS);
2696 // Replace all uses of the old global with a cast. Since we mutate the type
2697 // in place we neeed an intermediate that takes the spot of the old entry
2698 // until we can create the cast.
2699 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable(
2700 getModule(), Entry->getValueType(), false,
2701 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr,
2702 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace());
2703 Entry->replaceAllUsesWith(DummyGV);
2705 Entry->mutateType(PTy);
2706 llvm::Constant *NewPtrForOldDecl =
2707 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2708 Entry, DummyGV->getType());
2710 // Now we have a casted version of the changed global, the dummy can be
2711 // replaced and deleted.
2712 DummyGV->replaceAllUsesWith(NewPtrForOldDecl);
2713 DummyGV->eraseFromParent();
2717 std::optional<CharUnits>
2718 CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) {
2719 if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) {
2720 if (Expr *Alignment = AA->getAlignment()) {
2721 unsigned UserAlign =
2722 Alignment->EvaluateKnownConstInt(getContext()).getExtValue();
2723 CharUnits NaturalAlign =
2724 getNaturalTypeAlignment(VD->getType().getNonReferenceType());
2726 // OpenMP5.1 pg 185 lines 7-10
2727 // Each item in the align modifier list must be aligned to the maximum
2728 // of the specified alignment and the type's natural alignment.
2729 return CharUnits::fromQuantity(
2730 std::max<unsigned>(UserAlign, NaturalAlign.getQuantity()));
2733 return std::nullopt;