1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Decl nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
42 using namespace clang
;
43 using namespace CodeGen
;
45 static_assert(clang::Sema::MaximumAlignment
<= llvm::Value::MaximumAlignment
,
46 "Clang max alignment greater than what LLVM supports?");
48 void CodeGenFunction::EmitDecl(const Decl
&D
) {
49 switch (D
.getKind()) {
50 case Decl::BuiltinTemplate
:
51 case Decl::TranslationUnit
:
52 case Decl::ExternCContext
:
54 case Decl::UnresolvedUsingTypename
:
55 case Decl::ClassTemplateSpecialization
:
56 case Decl::ClassTemplatePartialSpecialization
:
57 case Decl::VarTemplateSpecialization
:
58 case Decl::VarTemplatePartialSpecialization
:
59 case Decl::TemplateTypeParm
:
60 case Decl::UnresolvedUsingValue
:
61 case Decl::NonTypeTemplateParm
:
62 case Decl::CXXDeductionGuide
:
64 case Decl::CXXConstructor
:
65 case Decl::CXXDestructor
:
66 case Decl::CXXConversion
:
68 case Decl::MSProperty
:
69 case Decl::IndirectField
:
71 case Decl::ObjCAtDefsField
:
73 case Decl::ImplicitParam
:
74 case Decl::ClassTemplate
:
75 case Decl::VarTemplate
:
76 case Decl::FunctionTemplate
:
77 case Decl::TypeAliasTemplate
:
78 case Decl::TemplateTemplateParm
:
79 case Decl::ObjCMethod
:
80 case Decl::ObjCCategory
:
81 case Decl::ObjCProtocol
:
82 case Decl::ObjCInterface
:
83 case Decl::ObjCCategoryImpl
:
84 case Decl::ObjCImplementation
:
85 case Decl::ObjCProperty
:
86 case Decl::ObjCCompatibleAlias
:
87 case Decl::PragmaComment
:
88 case Decl::PragmaDetectMismatch
:
89 case Decl::AccessSpec
:
90 case Decl::LinkageSpec
:
92 case Decl::ObjCPropertyImpl
:
93 case Decl::FileScopeAsm
:
94 case Decl::TopLevelStmt
:
96 case Decl::FriendTemplate
:
99 case Decl::ClassScopeFunctionSpecialization
:
100 case Decl::UsingShadow
:
101 case Decl::ConstructorUsingShadow
:
102 case Decl::ObjCTypeParam
:
104 case Decl::UnresolvedUsingIfExists
:
105 case Decl::HLSLBuffer
:
106 llvm_unreachable("Declaration should not be in declstmts!");
107 case Decl::Record
: // struct/union/class X;
108 case Decl::CXXRecord
: // struct/union/class X; [C++]
109 if (CGDebugInfo
*DI
= getDebugInfo())
110 if (cast
<RecordDecl
>(D
).getDefinition())
111 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(&D
)));
113 case Decl::Enum
: // enum X;
114 if (CGDebugInfo
*DI
= getDebugInfo())
115 if (cast
<EnumDecl
>(D
).getDefinition())
116 DI
->EmitAndRetainType(getContext().getEnumType(cast
<EnumDecl
>(&D
)));
118 case Decl::Function
: // void X();
119 case Decl::EnumConstant
: // enum ? { X = ? }
120 case Decl::StaticAssert
: // static_assert(X, ""); [C++0x]
121 case Decl::Label
: // __label__ x;
123 case Decl::MSGuid
: // __declspec(uuid("..."))
124 case Decl::UnnamedGlobalConstant
:
125 case Decl::TemplateParamObject
:
126 case Decl::OMPThreadPrivate
:
127 case Decl::OMPAllocate
:
128 case Decl::OMPCapturedExpr
:
129 case Decl::OMPRequires
:
132 case Decl::ImplicitConceptSpecialization
:
133 case Decl::LifetimeExtendedTemporary
:
134 case Decl::RequiresExprBody
:
135 // None of these decls require codegen support.
138 case Decl::NamespaceAlias
:
139 if (CGDebugInfo
*DI
= getDebugInfo())
140 DI
->EmitNamespaceAlias(cast
<NamespaceAliasDecl
>(D
));
142 case Decl::Using
: // using X; [C++]
143 if (CGDebugInfo
*DI
= getDebugInfo())
144 DI
->EmitUsingDecl(cast
<UsingDecl
>(D
));
146 case Decl::UsingEnum
: // using enum X; [C++]
147 if (CGDebugInfo
*DI
= getDebugInfo())
148 DI
->EmitUsingEnumDecl(cast
<UsingEnumDecl
>(D
));
150 case Decl::UsingPack
:
151 for (auto *Using
: cast
<UsingPackDecl
>(D
).expansions())
154 case Decl::UsingDirective
: // using namespace X; [C++]
155 if (CGDebugInfo
*DI
= getDebugInfo())
156 DI
->EmitUsingDirective(cast
<UsingDirectiveDecl
>(D
));
159 case Decl::Decomposition
: {
160 const VarDecl
&VD
= cast
<VarDecl
>(D
);
161 assert(VD
.isLocalVarDecl() &&
162 "Should not see file-scope variables inside a function!");
164 if (auto *DD
= dyn_cast
<DecompositionDecl
>(&VD
))
165 for (auto *B
: DD
->bindings())
166 if (auto *HD
= B
->getHoldingVar())
171 case Decl::OMPDeclareReduction
:
172 return CGM
.EmitOMPDeclareReduction(cast
<OMPDeclareReductionDecl
>(&D
), this);
174 case Decl::OMPDeclareMapper
:
175 return CGM
.EmitOMPDeclareMapper(cast
<OMPDeclareMapperDecl
>(&D
), this);
177 case Decl::Typedef
: // typedef int X;
178 case Decl::TypeAlias
: { // using X = int; [C++0x]
179 QualType Ty
= cast
<TypedefNameDecl
>(D
).getUnderlyingType();
180 if (CGDebugInfo
*DI
= getDebugInfo())
181 DI
->EmitAndRetainType(Ty
);
182 if (Ty
->isVariablyModifiedType())
183 EmitVariablyModifiedType(Ty
);
189 /// EmitVarDecl - This method handles emission of any variable declaration
190 /// inside a function, including static vars etc.
191 void CodeGenFunction::EmitVarDecl(const VarDecl
&D
) {
192 if (D
.hasExternalStorage())
193 // Don't emit it now, allow it to be emitted lazily on its first use.
196 // Some function-scope variable does not have static storage but still
197 // needs to be emitted like a static variable, e.g. a function-scope
198 // variable in constant address space in OpenCL.
199 if (D
.getStorageDuration() != SD_Automatic
) {
200 // Static sampler variables translated to function calls.
201 if (D
.getType()->isSamplerT())
204 llvm::GlobalValue::LinkageTypes Linkage
=
205 CGM
.getLLVMLinkageVarDefinition(&D
, /*IsConstant=*/false);
207 // FIXME: We need to force the emission/use of a guard variable for
208 // some variables even if we can constant-evaluate them because
209 // we can't guarantee every translation unit will constant-evaluate them.
211 return EmitStaticVarDecl(D
, Linkage
);
214 if (D
.getType().getAddressSpace() == LangAS::opencl_local
)
215 return CGM
.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D
);
217 assert(D
.hasLocalStorage());
218 return EmitAutoVarDecl(D
);
221 static std::string
getStaticDeclName(CodeGenModule
&CGM
, const VarDecl
&D
) {
222 if (CGM
.getLangOpts().CPlusPlus
)
223 return CGM
.getMangledName(&D
).str();
225 // If this isn't C++, we don't need a mangled name, just a pretty one.
226 assert(!D
.isExternallyVisible() && "name shouldn't matter");
227 std::string ContextName
;
228 const DeclContext
*DC
= D
.getDeclContext();
229 if (auto *CD
= dyn_cast
<CapturedDecl
>(DC
))
230 DC
= cast
<DeclContext
>(CD
->getNonClosureContext());
231 if (const auto *FD
= dyn_cast
<FunctionDecl
>(DC
))
232 ContextName
= std::string(CGM
.getMangledName(FD
));
233 else if (const auto *BD
= dyn_cast
<BlockDecl
>(DC
))
234 ContextName
= std::string(CGM
.getBlockMangledName(GlobalDecl(), BD
));
235 else if (const auto *OMD
= dyn_cast
<ObjCMethodDecl
>(DC
))
236 ContextName
= OMD
->getSelector().getAsString();
238 llvm_unreachable("Unknown context for static var decl");
240 ContextName
+= "." + D
.getNameAsString();
244 llvm::Constant
*CodeGenModule::getOrCreateStaticVarDecl(
245 const VarDecl
&D
, llvm::GlobalValue::LinkageTypes Linkage
) {
246 // In general, we don't always emit static var decls once before we reference
247 // them. It is possible to reference them before emitting the function that
248 // contains them, and it is possible to emit the containing function multiple
250 if (llvm::Constant
*ExistingGV
= StaticLocalDeclMap
[&D
])
253 QualType Ty
= D
.getType();
254 assert(Ty
->isConstantSizeType() && "VLAs can't be static");
256 // Use the label if the variable is renamed with the asm-label extension.
258 if (D
.hasAttr
<AsmLabelAttr
>())
259 Name
= std::string(getMangledName(&D
));
261 Name
= getStaticDeclName(*this, D
);
263 llvm::Type
*LTy
= getTypes().ConvertTypeForMem(Ty
);
264 LangAS AS
= GetGlobalVarAddressSpace(&D
);
265 unsigned TargetAS
= getContext().getTargetAddressSpace(AS
);
267 // OpenCL variables in local address space and CUDA shared
268 // variables cannot have an initializer.
269 llvm::Constant
*Init
= nullptr;
270 if (Ty
.getAddressSpace() == LangAS::opencl_local
||
271 D
.hasAttr
<CUDASharedAttr
>() || D
.hasAttr
<LoaderUninitializedAttr
>())
272 Init
= llvm::UndefValue::get(LTy
);
274 Init
= EmitNullConstant(Ty
);
276 llvm::GlobalVariable
*GV
= new llvm::GlobalVariable(
277 getModule(), LTy
, Ty
.isConstant(getContext()), Linkage
, Init
, Name
,
278 nullptr, llvm::GlobalVariable::NotThreadLocal
, TargetAS
);
279 GV
->setAlignment(getContext().getDeclAlign(&D
).getAsAlign());
281 if (supportsCOMDAT() && GV
->isWeakForLinker())
282 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
287 setGVProperties(GV
, &D
);
289 // Make sure the result is of the correct type.
290 LangAS ExpectedAS
= Ty
.getAddressSpace();
291 llvm::Constant
*Addr
= GV
;
292 if (AS
!= ExpectedAS
) {
293 Addr
= getTargetCodeGenInfo().performAddrSpaceCast(
294 *this, GV
, AS
, ExpectedAS
,
295 LTy
->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS
)));
298 setStaticLocalDeclAddress(&D
, Addr
);
300 // Ensure that the static local gets initialized by making sure the parent
301 // function gets emitted eventually.
302 const Decl
*DC
= cast
<Decl
>(D
.getDeclContext());
304 // We can't name blocks or captured statements directly, so try to emit their
306 if (isa
<BlockDecl
>(DC
) || isa
<CapturedDecl
>(DC
)) {
307 DC
= DC
->getNonClosureContext();
308 // FIXME: Ensure that global blocks get emitted.
314 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(DC
))
315 GD
= GlobalDecl(CD
, Ctor_Base
);
316 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(DC
))
317 GD
= GlobalDecl(DD
, Dtor_Base
);
318 else if (const auto *FD
= dyn_cast
<FunctionDecl
>(DC
))
321 // Don't do anything for Obj-C method decls or global closures. We should
323 assert(isa
<ObjCMethodDecl
>(DC
) && "unexpected parent code decl");
326 // Disable emission of the parent function for the OpenMP device codegen.
327 CGOpenMPRuntime::DisableAutoDeclareTargetRAII
NoDeclTarget(*this);
328 (void)GetAddrOfGlobal(GD
);
334 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
335 /// global variable that has already been created for it. If the initializer
336 /// has a different type than GV does, this may free GV and return a different
337 /// one. Otherwise it just returns GV.
338 llvm::GlobalVariable
*
339 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl
&D
,
340 llvm::GlobalVariable
*GV
) {
341 ConstantEmitter
emitter(*this);
342 llvm::Constant
*Init
= emitter
.tryEmitForInitializer(D
);
344 // If constant emission failed, then this should be a C++ static
347 if (!getLangOpts().CPlusPlus
)
348 CGM
.ErrorUnsupported(D
.getInit(), "constant l-value expression");
349 else if (D
.hasFlexibleArrayInit(getContext()))
350 CGM
.ErrorUnsupported(D
.getInit(), "flexible array initializer");
351 else if (HaveInsertPoint()) {
352 // Since we have a static initializer, this global variable can't
354 GV
->setConstant(false);
356 EmitCXXGuardedInit(D
, GV
, /*PerformInit*/true);
362 CharUnits VarSize
= CGM
.getContext().getTypeSizeInChars(D
.getType()) +
363 D
.getFlexibleArrayInitChars(getContext());
364 CharUnits CstSize
= CharUnits::fromQuantity(
365 CGM
.getDataLayout().getTypeAllocSize(Init
->getType()));
366 assert(VarSize
== CstSize
&& "Emitted constant has unexpected size");
369 // The initializer may differ in type from the global. Rewrite
370 // the global to match the initializer. (We have to do this
371 // because some types, like unions, can't be completely represented
372 // in the LLVM type system.)
373 if (GV
->getValueType() != Init
->getType()) {
374 llvm::GlobalVariable
*OldGV
= GV
;
376 GV
= new llvm::GlobalVariable(
377 CGM
.getModule(), Init
->getType(), OldGV
->isConstant(),
378 OldGV
->getLinkage(), Init
, "",
379 /*InsertBefore*/ OldGV
, OldGV
->getThreadLocalMode(),
380 OldGV
->getType()->getPointerAddressSpace());
381 GV
->setVisibility(OldGV
->getVisibility());
382 GV
->setDSOLocal(OldGV
->isDSOLocal());
383 GV
->setComdat(OldGV
->getComdat());
385 // Steal the name of the old global
388 // Replace all uses of the old global with the new global
389 llvm::Constant
*NewPtrForOldDecl
=
390 llvm::ConstantExpr::getBitCast(GV
, OldGV
->getType());
391 OldGV
->replaceAllUsesWith(NewPtrForOldDecl
);
393 // Erase the old global, since it is no longer used.
394 OldGV
->eraseFromParent();
397 GV
->setConstant(CGM
.isTypeConstant(D
.getType(), true));
398 GV
->setInitializer(Init
);
400 emitter
.finalize(GV
);
402 if (D
.needsDestruction(getContext()) == QualType::DK_cxx_destructor
&&
404 // We have a constant initializer, but a nontrivial destructor. We still
405 // need to perform a guarded "initialization" in order to register the
407 EmitCXXGuardedInit(D
, GV
, /*PerformInit*/false);
413 void CodeGenFunction::EmitStaticVarDecl(const VarDecl
&D
,
414 llvm::GlobalValue::LinkageTypes Linkage
) {
415 // Check to see if we already have a global variable for this
416 // declaration. This can happen when double-emitting function
417 // bodies, e.g. with complete and base constructors.
418 llvm::Constant
*addr
= CGM
.getOrCreateStaticVarDecl(D
, Linkage
);
419 CharUnits alignment
= getContext().getDeclAlign(&D
);
421 // Store into LocalDeclMap before generating initializer to handle
422 // circular references.
423 llvm::Type
*elemTy
= ConvertTypeForMem(D
.getType());
424 setAddrOfLocalVar(&D
, Address(addr
, elemTy
, alignment
));
426 // We can't have a VLA here, but we can have a pointer to a VLA,
427 // even though that doesn't really make any sense.
428 // Make sure to evaluate VLA bounds now so that we have them for later.
429 if (D
.getType()->isVariablyModifiedType())
430 EmitVariablyModifiedType(D
.getType());
432 // Save the type in case adding the initializer forces a type change.
433 llvm::Type
*expectedType
= addr
->getType();
435 llvm::GlobalVariable
*var
=
436 cast
<llvm::GlobalVariable
>(addr
->stripPointerCasts());
438 // CUDA's local and local static __shared__ variables should not
439 // have any non-empty initializers. This is ensured by Sema.
440 // Whatever initializer such variable may have when it gets here is
441 // a no-op and should not be emitted.
442 bool isCudaSharedVar
= getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
&&
443 D
.hasAttr
<CUDASharedAttr
>();
444 // If this value has an initializer, emit it.
445 if (D
.getInit() && !isCudaSharedVar
)
446 var
= AddInitializerToStaticVarDecl(D
, var
);
448 var
->setAlignment(alignment
.getAsAlign());
450 if (D
.hasAttr
<AnnotateAttr
>())
451 CGM
.AddGlobalAnnotations(&D
, var
);
453 if (auto *SA
= D
.getAttr
<PragmaClangBSSSectionAttr
>())
454 var
->addAttribute("bss-section", SA
->getName());
455 if (auto *SA
= D
.getAttr
<PragmaClangDataSectionAttr
>())
456 var
->addAttribute("data-section", SA
->getName());
457 if (auto *SA
= D
.getAttr
<PragmaClangRodataSectionAttr
>())
458 var
->addAttribute("rodata-section", SA
->getName());
459 if (auto *SA
= D
.getAttr
<PragmaClangRelroSectionAttr
>())
460 var
->addAttribute("relro-section", SA
->getName());
462 if (const SectionAttr
*SA
= D
.getAttr
<SectionAttr
>())
463 var
->setSection(SA
->getName());
465 if (D
.hasAttr
<RetainAttr
>())
466 CGM
.addUsedGlobal(var
);
467 else if (D
.hasAttr
<UsedAttr
>())
468 CGM
.addUsedOrCompilerUsedGlobal(var
);
470 // We may have to cast the constant because of the initializer
473 // FIXME: It is really dangerous to store this in the map; if anyone
474 // RAUW's the GV uses of this constant will be invalid.
475 llvm::Constant
*castedAddr
=
476 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var
, expectedType
);
477 LocalDeclMap
.find(&D
)->second
= Address(castedAddr
, elemTy
, alignment
);
478 CGM
.setStaticLocalDeclAddress(&D
, castedAddr
);
480 CGM
.getSanitizerMetadata()->reportGlobal(var
, D
);
482 // Emit global variable debug descriptor for static vars.
483 CGDebugInfo
*DI
= getDebugInfo();
484 if (DI
&& CGM
.getCodeGenOpts().hasReducedDebugInfo()) {
485 DI
->setLocation(D
.getLocation());
486 DI
->EmitGlobalVariable(var
, &D
);
491 struct DestroyObject final
: EHScopeStack::Cleanup
{
492 DestroyObject(Address addr
, QualType type
,
493 CodeGenFunction::Destroyer
*destroyer
,
494 bool useEHCleanupForArray
)
495 : addr(addr
), type(type
), destroyer(destroyer
),
496 useEHCleanupForArray(useEHCleanupForArray
) {}
500 CodeGenFunction::Destroyer
*destroyer
;
501 bool useEHCleanupForArray
;
503 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
504 // Don't use an EH cleanup recursively from an EH cleanup.
505 bool useEHCleanupForArray
=
506 flags
.isForNormalCleanup() && this->useEHCleanupForArray
;
508 CGF
.emitDestroy(addr
, type
, destroyer
, useEHCleanupForArray
);
512 template <class Derived
>
513 struct DestroyNRVOVariable
: EHScopeStack::Cleanup
{
514 DestroyNRVOVariable(Address addr
, QualType type
, llvm::Value
*NRVOFlag
)
515 : NRVOFlag(NRVOFlag
), Loc(addr
), Ty(type
) {}
517 llvm::Value
*NRVOFlag
;
521 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
522 // Along the exceptions path we always execute the dtor.
523 bool NRVO
= flags
.isForNormalCleanup() && NRVOFlag
;
525 llvm::BasicBlock
*SkipDtorBB
= nullptr;
527 // If we exited via NRVO, we skip the destructor call.
528 llvm::BasicBlock
*RunDtorBB
= CGF
.createBasicBlock("nrvo.unused");
529 SkipDtorBB
= CGF
.createBasicBlock("nrvo.skipdtor");
530 llvm::Value
*DidNRVO
=
531 CGF
.Builder
.CreateFlagLoad(NRVOFlag
, "nrvo.val");
532 CGF
.Builder
.CreateCondBr(DidNRVO
, SkipDtorBB
, RunDtorBB
);
533 CGF
.EmitBlock(RunDtorBB
);
536 static_cast<Derived
*>(this)->emitDestructorCall(CGF
);
538 if (NRVO
) CGF
.EmitBlock(SkipDtorBB
);
541 virtual ~DestroyNRVOVariable() = default;
544 struct DestroyNRVOVariableCXX final
545 : DestroyNRVOVariable
<DestroyNRVOVariableCXX
> {
546 DestroyNRVOVariableCXX(Address addr
, QualType type
,
547 const CXXDestructorDecl
*Dtor
, llvm::Value
*NRVOFlag
)
548 : DestroyNRVOVariable
<DestroyNRVOVariableCXX
>(addr
, type
, NRVOFlag
),
551 const CXXDestructorDecl
*Dtor
;
553 void emitDestructorCall(CodeGenFunction
&CGF
) {
554 CGF
.EmitCXXDestructorCall(Dtor
, Dtor_Complete
,
555 /*ForVirtualBase=*/false,
556 /*Delegating=*/false, Loc
, Ty
);
560 struct DestroyNRVOVariableC final
561 : DestroyNRVOVariable
<DestroyNRVOVariableC
> {
562 DestroyNRVOVariableC(Address addr
, llvm::Value
*NRVOFlag
, QualType Ty
)
563 : DestroyNRVOVariable
<DestroyNRVOVariableC
>(addr
, Ty
, NRVOFlag
) {}
565 void emitDestructorCall(CodeGenFunction
&CGF
) {
566 CGF
.destroyNonTrivialCStruct(CGF
, Loc
, Ty
);
570 struct CallStackRestore final
: EHScopeStack::Cleanup
{
572 CallStackRestore(Address Stack
) : Stack(Stack
) {}
573 bool isRedundantBeforeReturn() override
{ return true; }
574 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
575 llvm::Value
*V
= CGF
.Builder
.CreateLoad(Stack
);
576 llvm::Function
*F
= CGF
.CGM
.getIntrinsic(llvm::Intrinsic::stackrestore
);
577 CGF
.Builder
.CreateCall(F
, V
);
581 struct ExtendGCLifetime final
: EHScopeStack::Cleanup
{
583 ExtendGCLifetime(const VarDecl
*var
) : Var(*var
) {}
585 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
586 // Compute the address of the local variable, in case it's a
587 // byref or something.
588 DeclRefExpr
DRE(CGF
.getContext(), const_cast<VarDecl
*>(&Var
), false,
589 Var
.getType(), VK_LValue
, SourceLocation());
590 llvm::Value
*value
= CGF
.EmitLoadOfScalar(CGF
.EmitDeclRefLValue(&DRE
),
592 CGF
.EmitExtendGCLifetime(value
);
596 struct CallCleanupFunction final
: EHScopeStack::Cleanup
{
597 llvm::Constant
*CleanupFn
;
598 const CGFunctionInfo
&FnInfo
;
601 CallCleanupFunction(llvm::Constant
*CleanupFn
, const CGFunctionInfo
*Info
,
603 : CleanupFn(CleanupFn
), FnInfo(*Info
), Var(*Var
) {}
605 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
606 DeclRefExpr
DRE(CGF
.getContext(), const_cast<VarDecl
*>(&Var
), false,
607 Var
.getType(), VK_LValue
, SourceLocation());
608 // Compute the address of the local variable, in case it's a byref
610 llvm::Value
*Addr
= CGF
.EmitDeclRefLValue(&DRE
).getPointer(CGF
);
612 // In some cases, the type of the function argument will be different from
613 // the type of the pointer. An example of this is
614 // void f(void* arg);
615 // __attribute__((cleanup(f))) void *g;
617 // To fix this we insert a bitcast here.
618 QualType ArgTy
= FnInfo
.arg_begin()->type
;
620 CGF
.Builder
.CreateBitCast(Addr
, CGF
.ConvertType(ArgTy
));
623 Args
.add(RValue::get(Arg
),
624 CGF
.getContext().getPointerType(Var
.getType()));
625 auto Callee
= CGCallee::forDirect(CleanupFn
);
626 CGF
.EmitCall(FnInfo
, Callee
, ReturnValueSlot(), Args
);
629 } // end anonymous namespace
631 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
632 /// variable with lifetime.
633 static void EmitAutoVarWithLifetime(CodeGenFunction
&CGF
, const VarDecl
&var
,
635 Qualifiers::ObjCLifetime lifetime
) {
637 case Qualifiers::OCL_None
:
638 llvm_unreachable("present but none");
640 case Qualifiers::OCL_ExplicitNone
:
644 case Qualifiers::OCL_Strong
: {
645 CodeGenFunction::Destroyer
*destroyer
=
646 (var
.hasAttr
<ObjCPreciseLifetimeAttr
>()
647 ? CodeGenFunction::destroyARCStrongPrecise
648 : CodeGenFunction::destroyARCStrongImprecise
);
650 CleanupKind cleanupKind
= CGF
.getARCCleanupKind();
651 CGF
.pushDestroy(cleanupKind
, addr
, var
.getType(), destroyer
,
652 cleanupKind
& EHCleanup
);
655 case Qualifiers::OCL_Autoreleasing
:
659 case Qualifiers::OCL_Weak
:
660 // __weak objects always get EH cleanups; otherwise, exceptions
661 // could cause really nasty crashes instead of mere leaks.
662 CGF
.pushDestroy(NormalAndEHCleanup
, addr
, var
.getType(),
663 CodeGenFunction::destroyARCWeak
,
664 /*useEHCleanup*/ true);
669 static bool isAccessedBy(const VarDecl
&var
, const Stmt
*s
) {
670 if (const Expr
*e
= dyn_cast
<Expr
>(s
)) {
671 // Skip the most common kinds of expressions that make
672 // hierarchy-walking expensive.
673 s
= e
= e
->IgnoreParenCasts();
675 if (const DeclRefExpr
*ref
= dyn_cast
<DeclRefExpr
>(e
))
676 return (ref
->getDecl() == &var
);
677 if (const BlockExpr
*be
= dyn_cast
<BlockExpr
>(e
)) {
678 const BlockDecl
*block
= be
->getBlockDecl();
679 for (const auto &I
: block
->captures()) {
680 if (I
.getVariable() == &var
)
686 for (const Stmt
*SubStmt
: s
->children())
687 // SubStmt might be null; as in missing decl or conditional of an if-stmt.
688 if (SubStmt
&& isAccessedBy(var
, SubStmt
))
694 static bool isAccessedBy(const ValueDecl
*decl
, const Expr
*e
) {
695 if (!decl
) return false;
696 if (!isa
<VarDecl
>(decl
)) return false;
697 const VarDecl
*var
= cast
<VarDecl
>(decl
);
698 return isAccessedBy(*var
, e
);
701 static bool tryEmitARCCopyWeakInit(CodeGenFunction
&CGF
,
702 const LValue
&destLV
, const Expr
*init
) {
703 bool needsCast
= false;
705 while (auto castExpr
= dyn_cast
<CastExpr
>(init
->IgnoreParens())) {
706 switch (castExpr
->getCastKind()) {
707 // Look through casts that don't require representation changes.
710 case CK_BlockPointerToObjCPointerCast
:
714 // If we find an l-value to r-value cast from a __weak variable,
715 // emit this operation as a copy or move.
716 case CK_LValueToRValue
: {
717 const Expr
*srcExpr
= castExpr
->getSubExpr();
718 if (srcExpr
->getType().getObjCLifetime() != Qualifiers::OCL_Weak
)
721 // Emit the source l-value.
722 LValue srcLV
= CGF
.EmitLValue(srcExpr
);
724 // Handle a formal type change to avoid asserting.
725 auto srcAddr
= srcLV
.getAddress(CGF
);
727 srcAddr
= CGF
.Builder
.CreateElementBitCast(
728 srcAddr
, destLV
.getAddress(CGF
).getElementType());
731 // If it was an l-value, use objc_copyWeak.
732 if (srcExpr
->isLValue()) {
733 CGF
.EmitARCCopyWeak(destLV
.getAddress(CGF
), srcAddr
);
735 assert(srcExpr
->isXValue());
736 CGF
.EmitARCMoveWeak(destLV
.getAddress(CGF
), srcAddr
);
741 // Stop at anything else.
746 init
= castExpr
->getSubExpr();
751 static void drillIntoBlockVariable(CodeGenFunction
&CGF
,
753 const VarDecl
*var
) {
754 lvalue
.setAddress(CGF
.emitBlockByrefAddress(lvalue
.getAddress(CGF
), var
));
757 void CodeGenFunction::EmitNullabilityCheck(LValue LHS
, llvm::Value
*RHS
,
758 SourceLocation Loc
) {
759 if (!SanOpts
.has(SanitizerKind::NullabilityAssign
))
762 auto Nullability
= LHS
.getType()->getNullability();
763 if (!Nullability
|| *Nullability
!= NullabilityKind::NonNull
)
766 // Check if the right hand side of the assignment is nonnull, if the left
767 // hand side must be nonnull.
768 SanitizerScope
SanScope(this);
769 llvm::Value
*IsNotNull
= Builder
.CreateIsNotNull(RHS
);
770 llvm::Constant
*StaticData
[] = {
771 EmitCheckSourceLocation(Loc
), EmitCheckTypeDescriptor(LHS
.getType()),
772 llvm::ConstantInt::get(Int8Ty
, 0), // The LogAlignment info is unused.
773 llvm::ConstantInt::get(Int8Ty
, TCK_NonnullAssign
)};
774 EmitCheck({{IsNotNull
, SanitizerKind::NullabilityAssign
}},
775 SanitizerHandler::TypeMismatch
, StaticData
, RHS
);
778 void CodeGenFunction::EmitScalarInit(const Expr
*init
, const ValueDecl
*D
,
779 LValue lvalue
, bool capturedByInit
) {
780 Qualifiers::ObjCLifetime lifetime
= lvalue
.getObjCLifetime();
782 llvm::Value
*value
= EmitScalarExpr(init
);
784 drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
785 EmitNullabilityCheck(lvalue
, value
, init
->getExprLoc());
786 EmitStoreThroughLValue(RValue::get(value
), lvalue
, true);
790 if (const CXXDefaultInitExpr
*DIE
= dyn_cast
<CXXDefaultInitExpr
>(init
))
791 init
= DIE
->getExpr();
793 // If we're emitting a value with lifetime, we have to do the
794 // initialization *before* we leave the cleanup scopes.
795 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(init
)) {
796 CodeGenFunction::RunCleanupsScope
Scope(*this);
797 return EmitScalarInit(EWC
->getSubExpr(), D
, lvalue
, capturedByInit
);
800 // We have to maintain the illusion that the variable is
801 // zero-initialized. If the variable might be accessed in its
802 // initializer, zero-initialize before running the initializer, then
803 // actually perform the initialization with an assign.
804 bool accessedByInit
= false;
805 if (lifetime
!= Qualifiers::OCL_ExplicitNone
)
806 accessedByInit
= (capturedByInit
|| isAccessedBy(D
, init
));
807 if (accessedByInit
) {
808 LValue tempLV
= lvalue
;
809 // Drill down to the __block object if necessary.
810 if (capturedByInit
) {
811 // We can use a simple GEP for this because it can't have been
813 tempLV
.setAddress(emitBlockByrefAddress(tempLV
.getAddress(*this),
819 cast
<llvm::PointerType
>(tempLV
.getAddress(*this).getElementType());
820 llvm::Value
*zero
= CGM
.getNullPointer(ty
, tempLV
.getType());
822 // If __weak, we want to use a barrier under certain conditions.
823 if (lifetime
== Qualifiers::OCL_Weak
)
824 EmitARCInitWeak(tempLV
.getAddress(*this), zero
);
826 // Otherwise just do a simple store.
828 EmitStoreOfScalar(zero
, tempLV
, /* isInitialization */ true);
831 // Emit the initializer.
832 llvm::Value
*value
= nullptr;
835 case Qualifiers::OCL_None
:
836 llvm_unreachable("present but none");
838 case Qualifiers::OCL_Strong
: {
839 if (!D
|| !isa
<VarDecl
>(D
) || !cast
<VarDecl
>(D
)->isARCPseudoStrong()) {
840 value
= EmitARCRetainScalarExpr(init
);
843 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
844 // that we omit the retain, and causes non-autoreleased return values to be
845 // immediately released.
849 case Qualifiers::OCL_ExplicitNone
:
850 value
= EmitARCUnsafeUnretainedScalarExpr(init
);
853 case Qualifiers::OCL_Weak
: {
854 // If it's not accessed by the initializer, try to emit the
855 // initialization with a copy or move.
856 if (!accessedByInit
&& tryEmitARCCopyWeakInit(*this, lvalue
, init
)) {
860 // No way to optimize a producing initializer into this. It's not
861 // worth optimizing for, because the value will immediately
862 // disappear in the common case.
863 value
= EmitScalarExpr(init
);
865 if (capturedByInit
) drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
867 EmitARCStoreWeak(lvalue
.getAddress(*this), value
, /*ignored*/ true);
869 EmitARCInitWeak(lvalue
.getAddress(*this), value
);
873 case Qualifiers::OCL_Autoreleasing
:
874 value
= EmitARCRetainAutoreleaseScalarExpr(init
);
878 if (capturedByInit
) drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
880 EmitNullabilityCheck(lvalue
, value
, init
->getExprLoc());
882 // If the variable might have been accessed by its initializer, we
883 // might have to initialize with a barrier. We have to do this for
884 // both __weak and __strong, but __weak got filtered out above.
885 if (accessedByInit
&& lifetime
== Qualifiers::OCL_Strong
) {
886 llvm::Value
*oldValue
= EmitLoadOfScalar(lvalue
, init
->getExprLoc());
887 EmitStoreOfScalar(value
, lvalue
, /* isInitialization */ true);
888 EmitARCRelease(oldValue
, ARCImpreciseLifetime
);
892 EmitStoreOfScalar(value
, lvalue
, /* isInitialization */ true);
895 /// Decide whether we can emit the non-zero parts of the specified initializer
896 /// with equal or fewer than NumStores scalar stores.
897 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant
*Init
,
898 unsigned &NumStores
) {
899 // Zero and Undef never requires any extra stores.
900 if (isa
<llvm::ConstantAggregateZero
>(Init
) ||
901 isa
<llvm::ConstantPointerNull
>(Init
) ||
902 isa
<llvm::UndefValue
>(Init
))
904 if (isa
<llvm::ConstantInt
>(Init
) || isa
<llvm::ConstantFP
>(Init
) ||
905 isa
<llvm::ConstantVector
>(Init
) || isa
<llvm::BlockAddress
>(Init
) ||
906 isa
<llvm::ConstantExpr
>(Init
))
907 return Init
->isNullValue() || NumStores
--;
909 // See if we can emit each element.
910 if (isa
<llvm::ConstantArray
>(Init
) || isa
<llvm::ConstantStruct
>(Init
)) {
911 for (unsigned i
= 0, e
= Init
->getNumOperands(); i
!= e
; ++i
) {
912 llvm::Constant
*Elt
= cast
<llvm::Constant
>(Init
->getOperand(i
));
913 if (!canEmitInitWithFewStoresAfterBZero(Elt
, NumStores
))
919 if (llvm::ConstantDataSequential
*CDS
=
920 dyn_cast
<llvm::ConstantDataSequential
>(Init
)) {
921 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
922 llvm::Constant
*Elt
= CDS
->getElementAsConstant(i
);
923 if (!canEmitInitWithFewStoresAfterBZero(Elt
, NumStores
))
929 // Anything else is hard and scary.
933 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
934 /// the scalar stores that would be required.
935 static void emitStoresForInitAfterBZero(CodeGenModule
&CGM
,
936 llvm::Constant
*Init
, Address Loc
,
937 bool isVolatile
, CGBuilderTy
&Builder
,
939 assert(!Init
->isNullValue() && !isa
<llvm::UndefValue
>(Init
) &&
940 "called emitStoresForInitAfterBZero for zero or undef value.");
942 if (isa
<llvm::ConstantInt
>(Init
) || isa
<llvm::ConstantFP
>(Init
) ||
943 isa
<llvm::ConstantVector
>(Init
) || isa
<llvm::BlockAddress
>(Init
) ||
944 isa
<llvm::ConstantExpr
>(Init
)) {
945 auto *I
= Builder
.CreateStore(Init
, Loc
, isVolatile
);
947 I
->addAnnotationMetadata("auto-init");
951 if (llvm::ConstantDataSequential
*CDS
=
952 dyn_cast
<llvm::ConstantDataSequential
>(Init
)) {
953 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
954 llvm::Constant
*Elt
= CDS
->getElementAsConstant(i
);
956 // If necessary, get a pointer to the element and emit it.
957 if (!Elt
->isNullValue() && !isa
<llvm::UndefValue
>(Elt
))
958 emitStoresForInitAfterBZero(
959 CGM
, Elt
, Builder
.CreateConstInBoundsGEP2_32(Loc
, 0, i
), isVolatile
,
960 Builder
, IsAutoInit
);
965 assert((isa
<llvm::ConstantStruct
>(Init
) || isa
<llvm::ConstantArray
>(Init
)) &&
966 "Unknown value type!");
968 for (unsigned i
= 0, e
= Init
->getNumOperands(); i
!= e
; ++i
) {
969 llvm::Constant
*Elt
= cast
<llvm::Constant
>(Init
->getOperand(i
));
971 // If necessary, get a pointer to the element and emit it.
972 if (!Elt
->isNullValue() && !isa
<llvm::UndefValue
>(Elt
))
973 emitStoresForInitAfterBZero(CGM
, Elt
,
974 Builder
.CreateConstInBoundsGEP2_32(Loc
, 0, i
),
975 isVolatile
, Builder
, IsAutoInit
);
979 /// Decide whether we should use bzero plus some stores to initialize a local
980 /// variable instead of using a memcpy from a constant global. It is beneficial
981 /// to use bzero if the global is all zeros, or mostly zeros and large.
982 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant
*Init
,
983 uint64_t GlobalSize
) {
984 // If a global is all zeros, always use a bzero.
985 if (isa
<llvm::ConstantAggregateZero
>(Init
)) return true;
987 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
988 // do it if it will require 6 or fewer scalar stores.
989 // TODO: Should budget depends on the size? Avoiding a large global warrants
990 // plopping in more stores.
991 unsigned StoreBudget
= 6;
992 uint64_t SizeLimit
= 32;
994 return GlobalSize
> SizeLimit
&&
995 canEmitInitWithFewStoresAfterBZero(Init
, StoreBudget
);
998 /// Decide whether we should use memset to initialize a local variable instead
999 /// of using a memcpy from a constant global. Assumes we've already decided to
1001 /// FIXME We could be more clever, as we are for bzero above, and generate
1002 /// memset followed by stores. It's unclear that's worth the effort.
1003 static llvm::Value
*shouldUseMemSetToInitialize(llvm::Constant
*Init
,
1004 uint64_t GlobalSize
,
1005 const llvm::DataLayout
&DL
) {
1006 uint64_t SizeLimit
= 32;
1007 if (GlobalSize
<= SizeLimit
)
1009 return llvm::isBytewiseValue(Init
, DL
);
1012 /// Decide whether we want to split a constant structure or array store into a
1013 /// sequence of its fields' stores. This may cost us code size and compilation
1014 /// speed, but plays better with store optimizations.
1015 static bool shouldSplitConstantStore(CodeGenModule
&CGM
,
1016 uint64_t GlobalByteSize
) {
1017 // Don't break things that occupy more than one cacheline.
1018 uint64_t ByteSizeLimit
= 64;
1019 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
1021 if (GlobalByteSize
<= ByteSizeLimit
)
1026 enum class IsPattern
{ No
, Yes
};
1028 /// Generate a constant filled with either a pattern or zeroes.
1029 static llvm::Constant
*patternOrZeroFor(CodeGenModule
&CGM
, IsPattern isPattern
,
1031 if (isPattern
== IsPattern::Yes
)
1032 return initializationPatternFor(CGM
, Ty
);
1034 return llvm::Constant::getNullValue(Ty
);
1037 static llvm::Constant
*constWithPadding(CodeGenModule
&CGM
, IsPattern isPattern
,
1038 llvm::Constant
*constant
);
1040 /// Helper function for constWithPadding() to deal with padding in structures.
1041 static llvm::Constant
*constStructWithPadding(CodeGenModule
&CGM
,
1042 IsPattern isPattern
,
1043 llvm::StructType
*STy
,
1044 llvm::Constant
*constant
) {
1045 const llvm::DataLayout
&DL
= CGM
.getDataLayout();
1046 const llvm::StructLayout
*Layout
= DL
.getStructLayout(STy
);
1047 llvm::Type
*Int8Ty
= llvm::IntegerType::getInt8Ty(CGM
.getLLVMContext());
1048 unsigned SizeSoFar
= 0;
1049 SmallVector
<llvm::Constant
*, 8> Values
;
1050 bool NestedIntact
= true;
1051 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; i
++) {
1052 unsigned CurOff
= Layout
->getElementOffset(i
);
1053 if (SizeSoFar
< CurOff
) {
1054 assert(!STy
->isPacked());
1055 auto *PadTy
= llvm::ArrayType::get(Int8Ty
, CurOff
- SizeSoFar
);
1056 Values
.push_back(patternOrZeroFor(CGM
, isPattern
, PadTy
));
1058 llvm::Constant
*CurOp
;
1059 if (constant
->isZeroValue())
1060 CurOp
= llvm::Constant::getNullValue(STy
->getElementType(i
));
1062 CurOp
= cast
<llvm::Constant
>(constant
->getAggregateElement(i
));
1063 auto *NewOp
= constWithPadding(CGM
, isPattern
, CurOp
);
1065 NestedIntact
= false;
1066 Values
.push_back(NewOp
);
1067 SizeSoFar
= CurOff
+ DL
.getTypeAllocSize(CurOp
->getType());
1069 unsigned TotalSize
= Layout
->getSizeInBytes();
1070 if (SizeSoFar
< TotalSize
) {
1071 auto *PadTy
= llvm::ArrayType::get(Int8Ty
, TotalSize
- SizeSoFar
);
1072 Values
.push_back(patternOrZeroFor(CGM
, isPattern
, PadTy
));
1074 if (NestedIntact
&& Values
.size() == STy
->getNumElements())
1076 return llvm::ConstantStruct::getAnon(Values
, STy
->isPacked());
1079 /// Replace all padding bytes in a given constant with either a pattern byte or
1081 static llvm::Constant
*constWithPadding(CodeGenModule
&CGM
, IsPattern isPattern
,
1082 llvm::Constant
*constant
) {
1083 llvm::Type
*OrigTy
= constant
->getType();
1084 if (const auto STy
= dyn_cast
<llvm::StructType
>(OrigTy
))
1085 return constStructWithPadding(CGM
, isPattern
, STy
, constant
);
1086 if (auto *ArrayTy
= dyn_cast
<llvm::ArrayType
>(OrigTy
)) {
1087 llvm::SmallVector
<llvm::Constant
*, 8> Values
;
1088 uint64_t Size
= ArrayTy
->getNumElements();
1091 llvm::Type
*ElemTy
= ArrayTy
->getElementType();
1092 bool ZeroInitializer
= constant
->isNullValue();
1093 llvm::Constant
*OpValue
, *PaddedOp
;
1094 if (ZeroInitializer
) {
1095 OpValue
= llvm::Constant::getNullValue(ElemTy
);
1096 PaddedOp
= constWithPadding(CGM
, isPattern
, OpValue
);
1098 for (unsigned Op
= 0; Op
!= Size
; ++Op
) {
1099 if (!ZeroInitializer
) {
1100 OpValue
= constant
->getAggregateElement(Op
);
1101 PaddedOp
= constWithPadding(CGM
, isPattern
, OpValue
);
1103 Values
.push_back(PaddedOp
);
1105 auto *NewElemTy
= Values
[0]->getType();
1106 if (NewElemTy
== ElemTy
)
1108 auto *NewArrayTy
= llvm::ArrayType::get(NewElemTy
, Size
);
1109 return llvm::ConstantArray::get(NewArrayTy
, Values
);
1111 // FIXME: Add handling for tail padding in vectors. Vectors don't
1112 // have padding between or inside elements, but the total amount of
1113 // data can be less than the allocated size.
1117 Address
CodeGenModule::createUnnamedGlobalFrom(const VarDecl
&D
,
1118 llvm::Constant
*Constant
,
1120 auto FunctionName
= [&](const DeclContext
*DC
) -> std::string
{
1121 if (const auto *FD
= dyn_cast
<FunctionDecl
>(DC
)) {
1122 if (const auto *CC
= dyn_cast
<CXXConstructorDecl
>(FD
))
1123 return CC
->getNameAsString();
1124 if (const auto *CD
= dyn_cast
<CXXDestructorDecl
>(FD
))
1125 return CD
->getNameAsString();
1126 return std::string(getMangledName(FD
));
1127 } else if (const auto *OM
= dyn_cast
<ObjCMethodDecl
>(DC
)) {
1128 return OM
->getNameAsString();
1129 } else if (isa
<BlockDecl
>(DC
)) {
1131 } else if (isa
<CapturedDecl
>(DC
)) {
1132 return "<captured>";
1134 llvm_unreachable("expected a function or method");
1138 // Form a simple per-variable cache of these values in case we find we
1139 // want to reuse them.
1140 llvm::GlobalVariable
*&CacheEntry
= InitializerConstants
[&D
];
1141 if (!CacheEntry
|| CacheEntry
->getInitializer() != Constant
) {
1142 auto *Ty
= Constant
->getType();
1143 bool isConstant
= true;
1144 llvm::GlobalVariable
*InsertBefore
= nullptr;
1146 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace());
1148 if (D
.hasGlobalStorage())
1149 Name
= getMangledName(&D
).str() + ".const";
1150 else if (const DeclContext
*DC
= D
.getParentFunctionOrMethod())
1151 Name
= ("__const." + FunctionName(DC
) + "." + D
.getName()).str();
1153 llvm_unreachable("local variable has no parent function or method");
1154 llvm::GlobalVariable
*GV
= new llvm::GlobalVariable(
1155 getModule(), Ty
, isConstant
, llvm::GlobalValue::PrivateLinkage
,
1156 Constant
, Name
, InsertBefore
, llvm::GlobalValue::NotThreadLocal
, AS
);
1157 GV
->setAlignment(Align
.getAsAlign());
1158 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
1160 } else if (CacheEntry
->getAlignment() < uint64_t(Align
.getQuantity())) {
1161 CacheEntry
->setAlignment(Align
.getAsAlign());
1164 return Address(CacheEntry
, CacheEntry
->getValueType(), Align
);
1167 static Address
createUnnamedGlobalForMemcpyFrom(CodeGenModule
&CGM
,
1169 CGBuilderTy
&Builder
,
1170 llvm::Constant
*Constant
,
1172 Address SrcPtr
= CGM
.createUnnamedGlobalFrom(D
, Constant
, Align
);
1173 return Builder
.CreateElementBitCast(SrcPtr
, CGM
.Int8Ty
);
1176 static void emitStoresForConstant(CodeGenModule
&CGM
, const VarDecl
&D
,
1177 Address Loc
, bool isVolatile
,
1178 CGBuilderTy
&Builder
,
1179 llvm::Constant
*constant
, bool IsAutoInit
) {
1180 auto *Ty
= constant
->getType();
1181 uint64_t ConstantSize
= CGM
.getDataLayout().getTypeAllocSize(Ty
);
1185 bool canDoSingleStore
= Ty
->isIntOrIntVectorTy() ||
1186 Ty
->isPtrOrPtrVectorTy() || Ty
->isFPOrFPVectorTy();
1187 if (canDoSingleStore
) {
1188 auto *I
= Builder
.CreateStore(constant
, Loc
, isVolatile
);
1190 I
->addAnnotationMetadata("auto-init");
1194 auto *SizeVal
= llvm::ConstantInt::get(CGM
.IntPtrTy
, ConstantSize
);
1196 // If the initializer is all or mostly the same, codegen with bzero / memset
1197 // then do a few stores afterward.
1198 if (shouldUseBZeroPlusStoresToInitialize(constant
, ConstantSize
)) {
1199 auto *I
= Builder
.CreateMemSet(Loc
, llvm::ConstantInt::get(CGM
.Int8Ty
, 0),
1200 SizeVal
, isVolatile
);
1202 I
->addAnnotationMetadata("auto-init");
1204 bool valueAlreadyCorrect
=
1205 constant
->isNullValue() || isa
<llvm::UndefValue
>(constant
);
1206 if (!valueAlreadyCorrect
) {
1207 Loc
= Builder
.CreateElementBitCast(Loc
, Ty
);
1208 emitStoresForInitAfterBZero(CGM
, constant
, Loc
, isVolatile
, Builder
,
1214 // If the initializer is a repeated byte pattern, use memset.
1215 llvm::Value
*Pattern
=
1216 shouldUseMemSetToInitialize(constant
, ConstantSize
, CGM
.getDataLayout());
1218 uint64_t Value
= 0x00;
1219 if (!isa
<llvm::UndefValue
>(Pattern
)) {
1220 const llvm::APInt
&AP
= cast
<llvm::ConstantInt
>(Pattern
)->getValue();
1221 assert(AP
.getBitWidth() <= 8);
1222 Value
= AP
.getLimitedValue();
1224 auto *I
= Builder
.CreateMemSet(
1225 Loc
, llvm::ConstantInt::get(CGM
.Int8Ty
, Value
), SizeVal
, isVolatile
);
1227 I
->addAnnotationMetadata("auto-init");
1231 // If the initializer is small, use a handful of stores.
1232 if (shouldSplitConstantStore(CGM
, ConstantSize
)) {
1233 if (auto *STy
= dyn_cast
<llvm::StructType
>(Ty
)) {
1234 // FIXME: handle the case when STy != Loc.getElementType().
1235 if (STy
== Loc
.getElementType()) {
1236 for (unsigned i
= 0; i
!= constant
->getNumOperands(); i
++) {
1237 Address EltPtr
= Builder
.CreateStructGEP(Loc
, i
);
1238 emitStoresForConstant(
1239 CGM
, D
, EltPtr
, isVolatile
, Builder
,
1240 cast
<llvm::Constant
>(Builder
.CreateExtractValue(constant
, i
)),
1245 } else if (auto *ATy
= dyn_cast
<llvm::ArrayType
>(Ty
)) {
1246 // FIXME: handle the case when ATy != Loc.getElementType().
1247 if (ATy
== Loc
.getElementType()) {
1248 for (unsigned i
= 0; i
!= ATy
->getNumElements(); i
++) {
1249 Address EltPtr
= Builder
.CreateConstArrayGEP(Loc
, i
);
1250 emitStoresForConstant(
1251 CGM
, D
, EltPtr
, isVolatile
, Builder
,
1252 cast
<llvm::Constant
>(Builder
.CreateExtractValue(constant
, i
)),
1260 // Copy from a global.
1262 Builder
.CreateMemCpy(Loc
,
1263 createUnnamedGlobalForMemcpyFrom(
1264 CGM
, D
, Builder
, constant
, Loc
.getAlignment()),
1265 SizeVal
, isVolatile
);
1267 I
->addAnnotationMetadata("auto-init");
1270 static void emitStoresForZeroInit(CodeGenModule
&CGM
, const VarDecl
&D
,
1271 Address Loc
, bool isVolatile
,
1272 CGBuilderTy
&Builder
) {
1273 llvm::Type
*ElTy
= Loc
.getElementType();
1274 llvm::Constant
*constant
=
1275 constWithPadding(CGM
, IsPattern::No
, llvm::Constant::getNullValue(ElTy
));
1276 emitStoresForConstant(CGM
, D
, Loc
, isVolatile
, Builder
, constant
,
1277 /*IsAutoInit=*/true);
1280 static void emitStoresForPatternInit(CodeGenModule
&CGM
, const VarDecl
&D
,
1281 Address Loc
, bool isVolatile
,
1282 CGBuilderTy
&Builder
) {
1283 llvm::Type
*ElTy
= Loc
.getElementType();
1284 llvm::Constant
*constant
= constWithPadding(
1285 CGM
, IsPattern::Yes
, initializationPatternFor(CGM
, ElTy
));
1286 assert(!isa
<llvm::UndefValue
>(constant
));
1287 emitStoresForConstant(CGM
, D
, Loc
, isVolatile
, Builder
, constant
,
1288 /*IsAutoInit=*/true);
1291 static bool containsUndef(llvm::Constant
*constant
) {
1292 auto *Ty
= constant
->getType();
1293 if (isa
<llvm::UndefValue
>(constant
))
1295 if (Ty
->isStructTy() || Ty
->isArrayTy() || Ty
->isVectorTy())
1296 for (llvm::Use
&Op
: constant
->operands())
1297 if (containsUndef(cast
<llvm::Constant
>(Op
)))
1302 static llvm::Constant
*replaceUndef(CodeGenModule
&CGM
, IsPattern isPattern
,
1303 llvm::Constant
*constant
) {
1304 auto *Ty
= constant
->getType();
1305 if (isa
<llvm::UndefValue
>(constant
))
1306 return patternOrZeroFor(CGM
, isPattern
, Ty
);
1307 if (!(Ty
->isStructTy() || Ty
->isArrayTy() || Ty
->isVectorTy()))
1309 if (!containsUndef(constant
))
1311 llvm::SmallVector
<llvm::Constant
*, 8> Values(constant
->getNumOperands());
1312 for (unsigned Op
= 0, NumOp
= constant
->getNumOperands(); Op
!= NumOp
; ++Op
) {
1313 auto *OpValue
= cast
<llvm::Constant
>(constant
->getOperand(Op
));
1314 Values
[Op
] = replaceUndef(CGM
, isPattern
, OpValue
);
1316 if (Ty
->isStructTy())
1317 return llvm::ConstantStruct::get(cast
<llvm::StructType
>(Ty
), Values
);
1318 if (Ty
->isArrayTy())
1319 return llvm::ConstantArray::get(cast
<llvm::ArrayType
>(Ty
), Values
);
1320 assert(Ty
->isVectorTy());
1321 return llvm::ConstantVector::get(Values
);
1324 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1325 /// variable declaration with auto, register, or no storage class specifier.
1326 /// These turn into simple stack objects, or GlobalValues depending on target.
1327 void CodeGenFunction::EmitAutoVarDecl(const VarDecl
&D
) {
1328 AutoVarEmission emission
= EmitAutoVarAlloca(D
);
1329 EmitAutoVarInit(emission
);
1330 EmitAutoVarCleanups(emission
);
1333 /// Emit a lifetime.begin marker if some criteria are satisfied.
1334 /// \return a pointer to the temporary size Value if a marker was emitted, null
1336 llvm::Value
*CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size
,
1337 llvm::Value
*Addr
) {
1338 if (!ShouldEmitLifetimeMarkers
)
1341 assert(Addr
->getType()->getPointerAddressSpace() ==
1342 CGM
.getDataLayout().getAllocaAddrSpace() &&
1343 "Pointer should be in alloca address space");
1344 llvm::Value
*SizeV
= llvm::ConstantInt::get(
1345 Int64Ty
, Size
.isScalable() ? -1 : Size
.getFixedValue());
1346 Addr
= Builder
.CreateBitCast(Addr
, AllocaInt8PtrTy
);
1348 Builder
.CreateCall(CGM
.getLLVMLifetimeStartFn(), {SizeV
, Addr
});
1349 C
->setDoesNotThrow();
1353 void CodeGenFunction::EmitLifetimeEnd(llvm::Value
*Size
, llvm::Value
*Addr
) {
1354 assert(Addr
->getType()->getPointerAddressSpace() ==
1355 CGM
.getDataLayout().getAllocaAddrSpace() &&
1356 "Pointer should be in alloca address space");
1357 Addr
= Builder
.CreateBitCast(Addr
, AllocaInt8PtrTy
);
1359 Builder
.CreateCall(CGM
.getLLVMLifetimeEndFn(), {Size
, Addr
});
1360 C
->setDoesNotThrow();
1363 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1364 CGDebugInfo
*DI
, const VarDecl
&D
, bool EmitDebugInfo
) {
1365 // For each dimension stores its QualType and corresponding
1366 // size-expression Value.
1367 SmallVector
<CodeGenFunction::VlaSizePair
, 4> Dimensions
;
1368 SmallVector
<IdentifierInfo
*, 4> VLAExprNames
;
1370 // Break down the array into individual dimensions.
1371 QualType Type1D
= D
.getType();
1372 while (getContext().getAsVariableArrayType(Type1D
)) {
1373 auto VlaSize
= getVLAElements1D(Type1D
);
1374 if (auto *C
= dyn_cast
<llvm::ConstantInt
>(VlaSize
.NumElts
))
1375 Dimensions
.emplace_back(C
, Type1D
.getUnqualifiedType());
1377 // Generate a locally unique name for the size expression.
1378 Twine Name
= Twine("__vla_expr") + Twine(VLAExprCounter
++);
1379 SmallString
<12> Buffer
;
1380 StringRef NameRef
= Name
.toStringRef(Buffer
);
1381 auto &Ident
= getContext().Idents
.getOwn(NameRef
);
1382 VLAExprNames
.push_back(&Ident
);
1384 CreateDefaultAlignTempAlloca(VlaSize
.NumElts
->getType(), NameRef
);
1385 Builder
.CreateStore(VlaSize
.NumElts
, SizeExprAddr
);
1386 Dimensions
.emplace_back(SizeExprAddr
.getPointer(),
1387 Type1D
.getUnqualifiedType());
1389 Type1D
= VlaSize
.Type
;
1395 // Register each dimension's size-expression with a DILocalVariable,
1396 // so that it can be used by CGDebugInfo when instantiating a DISubrange
1397 // to describe this array.
1398 unsigned NameIdx
= 0;
1399 for (auto &VlaSize
: Dimensions
) {
1401 if (auto *C
= dyn_cast
<llvm::ConstantInt
>(VlaSize
.NumElts
))
1402 MD
= llvm::ConstantAsMetadata::get(C
);
1404 // Create an artificial VarDecl to generate debug info for.
1405 IdentifierInfo
*NameIdent
= VLAExprNames
[NameIdx
++];
1406 assert(cast
<llvm::PointerType
>(VlaSize
.NumElts
->getType())
1407 ->isOpaqueOrPointeeTypeMatches(SizeTy
) &&
1408 "Number of VLA elements must be SizeTy");
1409 auto QT
= getContext().getIntTypeForBitwidth(
1410 SizeTy
->getScalarSizeInBits(), false);
1411 auto *ArtificialDecl
= VarDecl::Create(
1412 getContext(), const_cast<DeclContext
*>(D
.getDeclContext()),
1413 D
.getLocation(), D
.getLocation(), NameIdent
, QT
,
1414 getContext().CreateTypeSourceInfo(QT
), SC_Auto
);
1415 ArtificialDecl
->setImplicit();
1417 MD
= DI
->EmitDeclareOfAutoVariable(ArtificialDecl
, VlaSize
.NumElts
,
1420 assert(MD
&& "No Size expression debug node created");
1421 DI
->registerVLASizeExpression(VlaSize
.Type
, MD
);
1425 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1426 /// local variable. Does not emit initialization or destruction.
1427 CodeGenFunction::AutoVarEmission
1428 CodeGenFunction::EmitAutoVarAlloca(const VarDecl
&D
) {
1429 QualType Ty
= D
.getType();
1431 Ty
.getAddressSpace() == LangAS::Default
||
1432 (Ty
.getAddressSpace() == LangAS::opencl_private
&& getLangOpts().OpenCL
));
1434 AutoVarEmission
emission(D
);
1436 bool isEscapingByRef
= D
.isEscapingByref();
1437 emission
.IsEscapingByRef
= isEscapingByRef
;
1439 CharUnits alignment
= getContext().getDeclAlign(&D
);
1441 // If the type is variably-modified, emit all the VLA sizes for it.
1442 if (Ty
->isVariablyModifiedType())
1443 EmitVariablyModifiedType(Ty
);
1445 auto *DI
= getDebugInfo();
1446 bool EmitDebugInfo
= DI
&& CGM
.getCodeGenOpts().hasReducedDebugInfo();
1448 Address address
= Address::invalid();
1449 Address AllocaAddr
= Address::invalid();
1450 Address OpenMPLocalAddr
= Address::invalid();
1451 if (CGM
.getLangOpts().OpenMPIRBuilder
)
1452 OpenMPLocalAddr
= OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D
);
1455 getLangOpts().OpenMP
1456 ? CGM
.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D
)
1457 : Address::invalid();
1459 bool NRVO
= getLangOpts().ElideConstructors
&& D
.isNRVOVariable();
1461 if (getLangOpts().OpenMP
&& OpenMPLocalAddr
.isValid()) {
1462 address
= OpenMPLocalAddr
;
1463 AllocaAddr
= OpenMPLocalAddr
;
1464 } else if (Ty
->isConstantSizeType()) {
1465 // If this value is an array or struct with a statically determinable
1466 // constant initializer, there are optimizations we can do.
1468 // TODO: We should constant-evaluate the initializer of any variable,
1469 // as long as it is initialized by a constant expression. Currently,
1470 // isConstantInitializer produces wrong answers for structs with
1471 // reference or bitfield members, and a few other cases, and checking
1472 // for POD-ness protects us from some of these.
1473 if (D
.getInit() && (Ty
->isArrayType() || Ty
->isRecordType()) &&
1475 ((Ty
.isPODType(getContext()) ||
1476 getContext().getBaseElementType(Ty
)->isObjCObjectPointerType()) &&
1477 D
.getInit()->isConstantInitializer(getContext(), false)))) {
1479 // If the variable's a const type, and it's neither an NRVO
1480 // candidate nor a __block variable and has no mutable members,
1481 // emit it as a global instead.
1482 // Exception is if a variable is located in non-constant address space
1484 if ((!getLangOpts().OpenCL
||
1485 Ty
.getAddressSpace() == LangAS::opencl_constant
) &&
1486 (CGM
.getCodeGenOpts().MergeAllConstants
&& !NRVO
&&
1487 !isEscapingByRef
&& CGM
.isTypeConstant(Ty
, true))) {
1488 EmitStaticVarDecl(D
, llvm::GlobalValue::InternalLinkage
);
1490 // Signal this condition to later callbacks.
1491 emission
.Addr
= Address::invalid();
1492 assert(emission
.wasEmittedAsGlobal());
1496 // Otherwise, tell the initialization code that we're in this case.
1497 emission
.IsConstantAggregate
= true;
1500 // A normal fixed sized variable becomes an alloca in the entry block,
1502 // - it's an NRVO variable.
1503 // - we are compiling OpenMP and it's an OpenMP local variable.
1505 // The named return value optimization: allocate this variable in the
1506 // return slot, so that we can elide the copy when returning this
1507 // variable (C++0x [class.copy]p34).
1508 address
= ReturnValue
;
1509 AllocaAddr
= ReturnValue
;
1511 if (const RecordType
*RecordTy
= Ty
->getAs
<RecordType
>()) {
1512 const auto *RD
= RecordTy
->getDecl();
1513 const auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
);
1514 if ((CXXRD
&& !CXXRD
->hasTrivialDestructor()) ||
1515 RD
->isNonTrivialToPrimitiveDestroy()) {
1516 // Create a flag that is used to indicate when the NRVO was applied
1517 // to this variable. Set it to zero to indicate that NRVO was not
1519 llvm::Value
*Zero
= Builder
.getFalse();
1521 CreateTempAlloca(Zero
->getType(), CharUnits::One(), "nrvo",
1522 /*ArraySize=*/nullptr, &AllocaAddr
);
1523 EnsureInsertPoint();
1524 Builder
.CreateStore(Zero
, NRVOFlag
);
1526 // Record the NRVO flag for this variable.
1527 NRVOFlags
[&D
] = NRVOFlag
.getPointer();
1528 emission
.NRVOFlag
= NRVOFlag
.getPointer();
1532 CharUnits allocaAlignment
;
1533 llvm::Type
*allocaTy
;
1534 if (isEscapingByRef
) {
1535 auto &byrefInfo
= getBlockByrefInfo(&D
);
1536 allocaTy
= byrefInfo
.Type
;
1537 allocaAlignment
= byrefInfo
.ByrefAlignment
;
1539 allocaTy
= ConvertTypeForMem(Ty
);
1540 allocaAlignment
= alignment
;
1543 // Create the alloca. Note that we set the name separately from
1544 // building the instruction so that it's there even in no-asserts
1546 address
= CreateTempAlloca(allocaTy
, allocaAlignment
, D
.getName(),
1547 /*ArraySize=*/nullptr, &AllocaAddr
);
1549 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1550 // the catch parameter starts in the catchpad instruction, and we can't
1551 // insert code in those basic blocks.
1552 bool IsMSCatchParam
=
1553 D
.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1555 // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1556 // if we don't have a valid insertion point (?).
1557 if (HaveInsertPoint() && !IsMSCatchParam
) {
1558 // If there's a jump into the lifetime of this variable, its lifetime
1559 // gets broken up into several regions in IR, which requires more work
1560 // to handle correctly. For now, just omit the intrinsics; this is a
1561 // rare case, and it's better to just be conservatively correct.
1564 // We have to do this in all language modes if there's a jump past the
1565 // declaration. We also have to do it in C if there's a jump to an
1566 // earlier point in the current block because non-VLA lifetimes begin as
1567 // soon as the containing block is entered, not when its variables
1568 // actually come into scope; suppressing the lifetime annotations
1569 // completely in this case is unnecessarily pessimistic, but again, this
1571 if (!Bypasses
.IsBypassed(&D
) &&
1572 !(!getLangOpts().CPlusPlus
&& hasLabelBeenSeenInCurrentScope())) {
1573 llvm::TypeSize Size
= CGM
.getDataLayout().getTypeAllocSize(allocaTy
);
1574 emission
.SizeForLifetimeMarkers
=
1575 EmitLifetimeStart(Size
, AllocaAddr
.getPointer());
1578 assert(!emission
.useLifetimeMarkers());
1582 EnsureInsertPoint();
1584 if (!DidCallStackSave
) {
1587 CreateTempAlloca(Int8PtrTy
, getPointerAlign(), "saved_stack");
1589 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::stacksave
);
1590 llvm::Value
*V
= Builder
.CreateCall(F
);
1591 Builder
.CreateStore(V
, Stack
);
1593 DidCallStackSave
= true;
1595 // Push a cleanup block and restore the stack there.
1596 // FIXME: in general circumstances, this should be an EH cleanup.
1597 pushStackRestore(NormalCleanup
, Stack
);
1600 auto VlaSize
= getVLASize(Ty
);
1601 llvm::Type
*llvmTy
= ConvertTypeForMem(VlaSize
.Type
);
1603 // Allocate memory for the array.
1604 address
= CreateTempAlloca(llvmTy
, alignment
, "vla", VlaSize
.NumElts
,
1607 // If we have debug info enabled, properly describe the VLA dimensions for
1608 // this type by registering the vla size expression for each of the
1610 EmitAndRegisterVariableArrayDimensions(DI
, D
, EmitDebugInfo
);
1613 setAddrOfLocalVar(&D
, address
);
1614 emission
.Addr
= address
;
1615 emission
.AllocaAddr
= AllocaAddr
;
1617 // Emit debug info for local var declaration.
1618 if (EmitDebugInfo
&& HaveInsertPoint()) {
1619 Address DebugAddr
= address
;
1620 bool UsePointerValue
= NRVO
&& ReturnValuePointer
.isValid();
1621 DI
->setLocation(D
.getLocation());
1623 // If NRVO, use a pointer to the return address.
1624 if (UsePointerValue
) {
1625 DebugAddr
= ReturnValuePointer
;
1626 AllocaAddr
= ReturnValuePointer
;
1628 (void)DI
->EmitDeclareOfAutoVariable(&D
, AllocaAddr
.getPointer(), Builder
,
1632 if (D
.hasAttr
<AnnotateAttr
>() && HaveInsertPoint())
1633 EmitVarAnnotations(&D
, address
.getPointer());
1635 // Make sure we call @llvm.lifetime.end.
1636 if (emission
.useLifetimeMarkers())
1637 EHStack
.pushCleanup
<CallLifetimeEnd
>(NormalEHLifetimeMarker
,
1638 emission
.getOriginalAllocatedAddress(),
1639 emission
.getSizeForLifetimeMarkers());
1644 static bool isCapturedBy(const VarDecl
&, const Expr
*);
1646 /// Determines whether the given __block variable is potentially
1647 /// captured by the given statement.
1648 static bool isCapturedBy(const VarDecl
&Var
, const Stmt
*S
) {
1649 if (const Expr
*E
= dyn_cast
<Expr
>(S
))
1650 return isCapturedBy(Var
, E
);
1651 for (const Stmt
*SubStmt
: S
->children())
1652 if (isCapturedBy(Var
, SubStmt
))
1657 /// Determines whether the given __block variable is potentially
1658 /// captured by the given expression.
1659 static bool isCapturedBy(const VarDecl
&Var
, const Expr
*E
) {
1660 // Skip the most common kinds of expressions that make
1661 // hierarchy-walking expensive.
1662 E
= E
->IgnoreParenCasts();
1664 if (const BlockExpr
*BE
= dyn_cast
<BlockExpr
>(E
)) {
1665 const BlockDecl
*Block
= BE
->getBlockDecl();
1666 for (const auto &I
: Block
->captures()) {
1667 if (I
.getVariable() == &Var
)
1671 // No need to walk into the subexpressions.
1675 if (const StmtExpr
*SE
= dyn_cast
<StmtExpr
>(E
)) {
1676 const CompoundStmt
*CS
= SE
->getSubStmt();
1677 for (const auto *BI
: CS
->body())
1678 if (const auto *BIE
= dyn_cast
<Expr
>(BI
)) {
1679 if (isCapturedBy(Var
, BIE
))
1682 else if (const auto *DS
= dyn_cast
<DeclStmt
>(BI
)) {
1683 // special case declarations
1684 for (const auto *I
: DS
->decls()) {
1685 if (const auto *VD
= dyn_cast
<VarDecl
>((I
))) {
1686 const Expr
*Init
= VD
->getInit();
1687 if (Init
&& isCapturedBy(Var
, Init
))
1693 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1694 // Later, provide code to poke into statements for capture analysis.
1699 for (const Stmt
*SubStmt
: E
->children())
1700 if (isCapturedBy(Var
, SubStmt
))
1706 /// Determine whether the given initializer is trivial in the sense
1707 /// that it requires no code to be generated.
1708 bool CodeGenFunction::isTrivialInitializer(const Expr
*Init
) {
1712 if (const CXXConstructExpr
*Construct
= dyn_cast
<CXXConstructExpr
>(Init
))
1713 if (CXXConstructorDecl
*Constructor
= Construct
->getConstructor())
1714 if (Constructor
->isTrivial() &&
1715 Constructor
->isDefaultConstructor() &&
1716 !Construct
->requiresZeroInitialization())
1722 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type
,
1725 auto trivialAutoVarInit
= getContext().getLangOpts().getTrivialAutoVarInit();
1726 CharUnits Size
= getContext().getTypeSizeInChars(type
);
1727 bool isVolatile
= type
.isVolatileQualified();
1728 if (!Size
.isZero()) {
1729 switch (trivialAutoVarInit
) {
1730 case LangOptions::TrivialAutoVarInitKind::Uninitialized
:
1731 llvm_unreachable("Uninitialized handled by caller");
1732 case LangOptions::TrivialAutoVarInitKind::Zero
:
1733 if (CGM
.stopAutoInit())
1735 emitStoresForZeroInit(CGM
, D
, Loc
, isVolatile
, Builder
);
1737 case LangOptions::TrivialAutoVarInitKind::Pattern
:
1738 if (CGM
.stopAutoInit())
1740 emitStoresForPatternInit(CGM
, D
, Loc
, isVolatile
, Builder
);
1746 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1747 // them, so emit a memcpy with the VLA size to initialize each element.
1748 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1749 // will catch that code, but there exists code which generates zero-sized
1750 // VLAs. Be nice and initialize whatever they requested.
1751 const auto *VlaType
= getContext().getAsVariableArrayType(type
);
1754 auto VlaSize
= getVLASize(VlaType
);
1755 auto SizeVal
= VlaSize
.NumElts
;
1756 CharUnits EltSize
= getContext().getTypeSizeInChars(VlaSize
.Type
);
1757 switch (trivialAutoVarInit
) {
1758 case LangOptions::TrivialAutoVarInitKind::Uninitialized
:
1759 llvm_unreachable("Uninitialized handled by caller");
1761 case LangOptions::TrivialAutoVarInitKind::Zero
: {
1762 if (CGM
.stopAutoInit())
1764 if (!EltSize
.isOne())
1765 SizeVal
= Builder
.CreateNUWMul(SizeVal
, CGM
.getSize(EltSize
));
1766 auto *I
= Builder
.CreateMemSet(Loc
, llvm::ConstantInt::get(Int8Ty
, 0),
1767 SizeVal
, isVolatile
);
1768 I
->addAnnotationMetadata("auto-init");
1772 case LangOptions::TrivialAutoVarInitKind::Pattern
: {
1773 if (CGM
.stopAutoInit())
1775 llvm::Type
*ElTy
= Loc
.getElementType();
1776 llvm::Constant
*Constant
= constWithPadding(
1777 CGM
, IsPattern::Yes
, initializationPatternFor(CGM
, ElTy
));
1778 CharUnits ConstantAlign
= getContext().getTypeAlignInChars(VlaSize
.Type
);
1779 llvm::BasicBlock
*SetupBB
= createBasicBlock("vla-setup.loop");
1780 llvm::BasicBlock
*LoopBB
= createBasicBlock("vla-init.loop");
1781 llvm::BasicBlock
*ContBB
= createBasicBlock("vla-init.cont");
1782 llvm::Value
*IsZeroSizedVLA
= Builder
.CreateICmpEQ(
1783 SizeVal
, llvm::ConstantInt::get(SizeVal
->getType(), 0),
1785 Builder
.CreateCondBr(IsZeroSizedVLA
, ContBB
, SetupBB
);
1787 if (!EltSize
.isOne())
1788 SizeVal
= Builder
.CreateNUWMul(SizeVal
, CGM
.getSize(EltSize
));
1789 llvm::Value
*BaseSizeInChars
=
1790 llvm::ConstantInt::get(IntPtrTy
, EltSize
.getQuantity());
1791 Address Begin
= Builder
.CreateElementBitCast(Loc
, Int8Ty
, "vla.begin");
1792 llvm::Value
*End
= Builder
.CreateInBoundsGEP(
1793 Begin
.getElementType(), Begin
.getPointer(), SizeVal
, "vla.end");
1794 llvm::BasicBlock
*OriginBB
= Builder
.GetInsertBlock();
1796 llvm::PHINode
*Cur
= Builder
.CreatePHI(Begin
.getType(), 2, "vla.cur");
1797 Cur
->addIncoming(Begin
.getPointer(), OriginBB
);
1798 CharUnits CurAlign
= Loc
.getAlignment().alignmentOfArrayElement(EltSize
);
1800 Builder
.CreateMemCpy(Address(Cur
, Int8Ty
, CurAlign
),
1801 createUnnamedGlobalForMemcpyFrom(
1802 CGM
, D
, Builder
, Constant
, ConstantAlign
),
1803 BaseSizeInChars
, isVolatile
);
1804 I
->addAnnotationMetadata("auto-init");
1806 Builder
.CreateInBoundsGEP(Int8Ty
, Cur
, BaseSizeInChars
, "vla.next");
1807 llvm::Value
*Done
= Builder
.CreateICmpEQ(Next
, End
, "vla-init.isdone");
1808 Builder
.CreateCondBr(Done
, ContBB
, LoopBB
);
1809 Cur
->addIncoming(Next
, LoopBB
);
1815 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission
&emission
) {
1816 assert(emission
.Variable
&& "emission was not valid!");
1818 // If this was emitted as a global constant, we're done.
1819 if (emission
.wasEmittedAsGlobal()) return;
1821 const VarDecl
&D
= *emission
.Variable
;
1822 auto DL
= ApplyDebugLocation::CreateDefaultArtificial(*this, D
.getLocation());
1823 QualType type
= D
.getType();
1825 // If this local has an initializer, emit it now.
1826 const Expr
*Init
= D
.getInit();
1828 // If we are at an unreachable point, we don't need to emit the initializer
1829 // unless it contains a label.
1830 if (!HaveInsertPoint()) {
1831 if (!Init
|| !ContainsLabel(Init
)) return;
1832 EnsureInsertPoint();
1835 // Initialize the structure of a __block variable.
1836 if (emission
.IsEscapingByRef
)
1837 emitByrefStructureInit(emission
);
1839 // Initialize the variable here if it doesn't have a initializer and it is a
1840 // C struct that is non-trivial to initialize or an array containing such a
1843 type
.isNonTrivialToPrimitiveDefaultInitialize() ==
1844 QualType::PDIK_Struct
) {
1845 LValue Dst
= MakeAddrLValue(emission
.getAllocatedAddress(), type
);
1846 if (emission
.IsEscapingByRef
)
1847 drillIntoBlockVariable(*this, Dst
, &D
);
1848 defaultInitNonTrivialCStructVar(Dst
);
1852 // Check whether this is a byref variable that's potentially
1853 // captured and moved by its own initializer. If so, we'll need to
1854 // emit the initializer first, then copy into the variable.
1855 bool capturedByInit
=
1856 Init
&& emission
.IsEscapingByRef
&& isCapturedBy(D
, Init
);
1858 bool locIsByrefHeader
= !capturedByInit
;
1860 locIsByrefHeader
? emission
.getObjectAddress(*this) : emission
.Addr
;
1862 // Note: constexpr already initializes everything correctly.
1863 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit
=
1865 ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1866 : (D
.getAttr
<UninitializedAttr
>()
1867 ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1868 : getContext().getLangOpts().getTrivialAutoVarInit()));
1870 auto initializeWhatIsTechnicallyUninitialized
= [&](Address Loc
) {
1871 if (trivialAutoVarInit
==
1872 LangOptions::TrivialAutoVarInitKind::Uninitialized
)
1875 // Only initialize a __block's storage: we always initialize the header.
1876 if (emission
.IsEscapingByRef
&& !locIsByrefHeader
)
1877 Loc
= emitBlockByrefAddress(Loc
, &D
, /*follow=*/false);
1879 return emitZeroOrPatternForAutoVarInit(type
, D
, Loc
);
1882 if (isTrivialInitializer(Init
))
1883 return initializeWhatIsTechnicallyUninitialized(Loc
);
1885 llvm::Constant
*constant
= nullptr;
1886 if (emission
.IsConstantAggregate
||
1887 D
.mightBeUsableInConstantExpressions(getContext())) {
1888 assert(!capturedByInit
&& "constant init contains a capturing block?");
1889 constant
= ConstantEmitter(*this).tryEmitAbstractForInitializer(D
);
1890 if (constant
&& !constant
->isZeroValue() &&
1891 (trivialAutoVarInit
!=
1892 LangOptions::TrivialAutoVarInitKind::Uninitialized
)) {
1893 IsPattern isPattern
=
1894 (trivialAutoVarInit
== LangOptions::TrivialAutoVarInitKind::Pattern
)
1897 // C guarantees that brace-init with fewer initializers than members in
1898 // the aggregate will initialize the rest of the aggregate as-if it were
1899 // static initialization. In turn static initialization guarantees that
1900 // padding is initialized to zero bits. We could instead pattern-init if D
1901 // has any ImplicitValueInitExpr, but that seems to be unintuitive
1903 constant
= constWithPadding(CGM
, IsPattern::No
,
1904 replaceUndef(CGM
, isPattern
, constant
));
1909 initializeWhatIsTechnicallyUninitialized(Loc
);
1910 LValue lv
= MakeAddrLValue(Loc
, type
);
1912 return EmitExprAsInit(Init
, &D
, lv
, capturedByInit
);
1915 if (!emission
.IsConstantAggregate
) {
1916 // For simple scalar/complex initialization, store the value directly.
1917 LValue lv
= MakeAddrLValue(Loc
, type
);
1919 return EmitStoreThroughLValue(RValue::get(constant
), lv
, true);
1922 emitStoresForConstant(CGM
, D
, Builder
.CreateElementBitCast(Loc
, CGM
.Int8Ty
),
1923 type
.isVolatileQualified(), Builder
, constant
,
1924 /*IsAutoInit=*/false);
1927 /// Emit an expression as an initializer for an object (variable, field, etc.)
1928 /// at the given location. The expression is not necessarily the normal
1929 /// initializer for the object, and the address is not necessarily
1930 /// its normal location.
1932 /// \param init the initializing expression
1933 /// \param D the object to act as if we're initializing
1934 /// \param lvalue the lvalue to initialize
1935 /// \param capturedByInit true if \p D is a __block variable
1936 /// whose address is potentially changed by the initializer
1937 void CodeGenFunction::EmitExprAsInit(const Expr
*init
, const ValueDecl
*D
,
1938 LValue lvalue
, bool capturedByInit
) {
1939 QualType type
= D
->getType();
1941 if (type
->isReferenceType()) {
1942 RValue rvalue
= EmitReferenceBindingToExpr(init
);
1944 drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
1945 EmitStoreThroughLValue(rvalue
, lvalue
, true);
1948 switch (getEvaluationKind(type
)) {
1950 EmitScalarInit(init
, D
, lvalue
, capturedByInit
);
1953 ComplexPairTy
complex = EmitComplexExpr(init
);
1955 drillIntoBlockVariable(*this, lvalue
, cast
<VarDecl
>(D
));
1956 EmitStoreOfComplex(complex, lvalue
, /*init*/ true);
1960 if (type
->isAtomicType()) {
1961 EmitAtomicInit(const_cast<Expr
*>(init
), lvalue
);
1963 AggValueSlot::Overlap_t Overlap
= AggValueSlot::MayOverlap
;
1964 if (isa
<VarDecl
>(D
))
1965 Overlap
= AggValueSlot::DoesNotOverlap
;
1966 else if (auto *FD
= dyn_cast
<FieldDecl
>(D
))
1967 Overlap
= getOverlapForFieldInit(FD
);
1968 // TODO: how can we delay here if D is captured by its initializer?
1969 EmitAggExpr(init
, AggValueSlot::forLValue(
1970 lvalue
, *this, AggValueSlot::IsDestructed
,
1971 AggValueSlot::DoesNotNeedGCBarriers
,
1972 AggValueSlot::IsNotAliased
, Overlap
));
1976 llvm_unreachable("bad evaluation kind");
1979 /// Enter a destroy cleanup for the given local variable.
1980 void CodeGenFunction::emitAutoVarTypeCleanup(
1981 const CodeGenFunction::AutoVarEmission
&emission
,
1982 QualType::DestructionKind dtorKind
) {
1983 assert(dtorKind
!= QualType::DK_none
);
1985 // Note that for __block variables, we want to destroy the
1986 // original stack object, not the possibly forwarded object.
1987 Address addr
= emission
.getObjectAddress(*this);
1989 const VarDecl
*var
= emission
.Variable
;
1990 QualType type
= var
->getType();
1992 CleanupKind cleanupKind
= NormalAndEHCleanup
;
1993 CodeGenFunction::Destroyer
*destroyer
= nullptr;
1996 case QualType::DK_none
:
1997 llvm_unreachable("no cleanup for trivially-destructible variable");
1999 case QualType::DK_cxx_destructor
:
2000 // If there's an NRVO flag on the emission, we need a different
2002 if (emission
.NRVOFlag
) {
2003 assert(!type
->isArrayType());
2004 CXXDestructorDecl
*dtor
= type
->getAsCXXRecordDecl()->getDestructor();
2005 EHStack
.pushCleanup
<DestroyNRVOVariableCXX
>(cleanupKind
, addr
, type
, dtor
,
2011 case QualType::DK_objc_strong_lifetime
:
2012 // Suppress cleanups for pseudo-strong variables.
2013 if (var
->isARCPseudoStrong()) return;
2015 // Otherwise, consider whether to use an EH cleanup or not.
2016 cleanupKind
= getARCCleanupKind();
2018 // Use the imprecise destroyer by default.
2019 if (!var
->hasAttr
<ObjCPreciseLifetimeAttr
>())
2020 destroyer
= CodeGenFunction::destroyARCStrongImprecise
;
2023 case QualType::DK_objc_weak_lifetime
:
2026 case QualType::DK_nontrivial_c_struct
:
2027 destroyer
= CodeGenFunction::destroyNonTrivialCStruct
;
2028 if (emission
.NRVOFlag
) {
2029 assert(!type
->isArrayType());
2030 EHStack
.pushCleanup
<DestroyNRVOVariableC
>(cleanupKind
, addr
,
2031 emission
.NRVOFlag
, type
);
2037 // If we haven't chosen a more specific destroyer, use the default.
2038 if (!destroyer
) destroyer
= getDestroyer(dtorKind
);
2040 // Use an EH cleanup in array destructors iff the destructor itself
2041 // is being pushed as an EH cleanup.
2042 bool useEHCleanup
= (cleanupKind
& EHCleanup
);
2043 EHStack
.pushCleanup
<DestroyObject
>(cleanupKind
, addr
, type
, destroyer
,
2047 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission
&emission
) {
2048 assert(emission
.Variable
&& "emission was not valid!");
2050 // If this was emitted as a global constant, we're done.
2051 if (emission
.wasEmittedAsGlobal()) return;
2053 // If we don't have an insertion point, we're done. Sema prevents
2054 // us from jumping into any of these scopes anyway.
2055 if (!HaveInsertPoint()) return;
2057 const VarDecl
&D
= *emission
.Variable
;
2059 // Check the type for a cleanup.
2060 if (QualType::DestructionKind dtorKind
= D
.needsDestruction(getContext()))
2061 emitAutoVarTypeCleanup(emission
, dtorKind
);
2063 // In GC mode, honor objc_precise_lifetime.
2064 if (getLangOpts().getGC() != LangOptions::NonGC
&&
2065 D
.hasAttr
<ObjCPreciseLifetimeAttr
>()) {
2066 EHStack
.pushCleanup
<ExtendGCLifetime
>(NormalCleanup
, &D
);
2069 // Handle the cleanup attribute.
2070 if (const CleanupAttr
*CA
= D
.getAttr
<CleanupAttr
>()) {
2071 const FunctionDecl
*FD
= CA
->getFunctionDecl();
2073 llvm::Constant
*F
= CGM
.GetAddrOfFunction(FD
);
2074 assert(F
&& "Could not find function!");
2076 const CGFunctionInfo
&Info
= CGM
.getTypes().arrangeFunctionDeclaration(FD
);
2077 EHStack
.pushCleanup
<CallCleanupFunction
>(NormalAndEHCleanup
, F
, &Info
, &D
);
2080 // If this is a block variable, call _Block_object_destroy
2081 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2083 if (emission
.IsEscapingByRef
&&
2084 CGM
.getLangOpts().getGC() != LangOptions::GCOnly
) {
2085 BlockFieldFlags Flags
= BLOCK_FIELD_IS_BYREF
;
2086 if (emission
.Variable
->getType().isObjCGCWeak())
2087 Flags
|= BLOCK_FIELD_IS_WEAK
;
2088 enterByrefCleanup(NormalAndEHCleanup
, emission
.Addr
, Flags
,
2089 /*LoadBlockVarAddr*/ false,
2090 cxxDestructorCanThrow(emission
.Variable
->getType()));
2094 CodeGenFunction::Destroyer
*
2095 CodeGenFunction::getDestroyer(QualType::DestructionKind kind
) {
2097 case QualType::DK_none
: llvm_unreachable("no destroyer for trivial dtor");
2098 case QualType::DK_cxx_destructor
:
2099 return destroyCXXObject
;
2100 case QualType::DK_objc_strong_lifetime
:
2101 return destroyARCStrongPrecise
;
2102 case QualType::DK_objc_weak_lifetime
:
2103 return destroyARCWeak
;
2104 case QualType::DK_nontrivial_c_struct
:
2105 return destroyNonTrivialCStruct
;
2107 llvm_unreachable("Unknown DestructionKind");
2110 /// pushEHDestroy - Push the standard destructor for the given type as
2111 /// an EH-only cleanup.
2112 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind
,
2113 Address addr
, QualType type
) {
2114 assert(dtorKind
&& "cannot push destructor for trivial type");
2115 assert(needsEHCleanup(dtorKind
));
2117 pushDestroy(EHCleanup
, addr
, type
, getDestroyer(dtorKind
), true);
2120 /// pushDestroy - Push the standard destructor for the given type as
2121 /// at least a normal cleanup.
2122 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind
,
2123 Address addr
, QualType type
) {
2124 assert(dtorKind
&& "cannot push destructor for trivial type");
2126 CleanupKind cleanupKind
= getCleanupKind(dtorKind
);
2127 pushDestroy(cleanupKind
, addr
, type
, getDestroyer(dtorKind
),
2128 cleanupKind
& EHCleanup
);
2131 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind
, Address addr
,
2132 QualType type
, Destroyer
*destroyer
,
2133 bool useEHCleanupForArray
) {
2134 pushFullExprCleanup
<DestroyObject
>(cleanupKind
, addr
, type
,
2135 destroyer
, useEHCleanupForArray
);
2138 void CodeGenFunction::pushStackRestore(CleanupKind Kind
, Address SPMem
) {
2139 EHStack
.pushCleanup
<CallStackRestore
>(Kind
, SPMem
);
2142 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind
,
2143 Address addr
, QualType type
,
2144 Destroyer
*destroyer
,
2145 bool useEHCleanupForArray
) {
2146 // If we're not in a conditional branch, we don't need to bother generating a
2147 // conditional cleanup.
2148 if (!isInConditionalBranch()) {
2149 // Push an EH-only cleanup for the object now.
2150 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2151 // around in case a temporary's destructor throws an exception.
2152 if (cleanupKind
& EHCleanup
)
2153 EHStack
.pushCleanup
<DestroyObject
>(
2154 static_cast<CleanupKind
>(cleanupKind
& ~NormalCleanup
), addr
, type
,
2155 destroyer
, useEHCleanupForArray
);
2157 return pushCleanupAfterFullExprWithActiveFlag
<DestroyObject
>(
2158 cleanupKind
, Address::invalid(), addr
, type
, destroyer
, useEHCleanupForArray
);
2161 // Otherwise, we should only destroy the object if it's been initialized.
2162 // Re-use the active flag and saved address across both the EH and end of
2165 using SavedType
= typename DominatingValue
<Address
>::saved_type
;
2166 using ConditionalCleanupType
=
2167 EHScopeStack::ConditionalCleanup
<DestroyObject
, Address
, QualType
,
2170 Address ActiveFlag
= createCleanupActiveFlag();
2171 SavedType SavedAddr
= saveValueInCond(addr
);
2173 if (cleanupKind
& EHCleanup
) {
2174 EHStack
.pushCleanup
<ConditionalCleanupType
>(
2175 static_cast<CleanupKind
>(cleanupKind
& ~NormalCleanup
), SavedAddr
, type
,
2176 destroyer
, useEHCleanupForArray
);
2177 initFullExprCleanupWithFlag(ActiveFlag
);
2180 pushCleanupAfterFullExprWithActiveFlag
<ConditionalCleanupType
>(
2181 cleanupKind
, ActiveFlag
, SavedAddr
, type
, destroyer
,
2182 useEHCleanupForArray
);
2185 /// emitDestroy - Immediately perform the destruction of the given
2188 /// \param addr - the address of the object; a type*
2189 /// \param type - the type of the object; if an array type, all
2190 /// objects are destroyed in reverse order
2191 /// \param destroyer - the function to call to destroy individual
2193 /// \param useEHCleanupForArray - whether an EH cleanup should be
2194 /// used when destroying array elements, in case one of the
2195 /// destructions throws an exception
2196 void CodeGenFunction::emitDestroy(Address addr
, QualType type
,
2197 Destroyer
*destroyer
,
2198 bool useEHCleanupForArray
) {
2199 const ArrayType
*arrayType
= getContext().getAsArrayType(type
);
2201 return destroyer(*this, addr
, type
);
2203 llvm::Value
*length
= emitArrayLength(arrayType
, type
, addr
);
2205 CharUnits elementAlign
=
2207 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type
));
2209 // Normally we have to check whether the array is zero-length.
2210 bool checkZeroLength
= true;
2212 // But if the array length is constant, we can suppress that.
2213 if (llvm::ConstantInt
*constLength
= dyn_cast
<llvm::ConstantInt
>(length
)) {
2214 // ...and if it's constant zero, we can just skip the entire thing.
2215 if (constLength
->isZero()) return;
2216 checkZeroLength
= false;
2219 llvm::Value
*begin
= addr
.getPointer();
2221 Builder
.CreateInBoundsGEP(addr
.getElementType(), begin
, length
);
2222 emitArrayDestroy(begin
, end
, type
, elementAlign
, destroyer
,
2223 checkZeroLength
, useEHCleanupForArray
);
2226 /// emitArrayDestroy - Destroys all the elements of the given array,
2227 /// beginning from last to first. The array cannot be zero-length.
2229 /// \param begin - a type* denoting the first element of the array
2230 /// \param end - a type* denoting one past the end of the array
2231 /// \param elementType - the element type of the array
2232 /// \param destroyer - the function to call to destroy elements
2233 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2234 /// the remaining elements in case the destruction of a single
2236 void CodeGenFunction::emitArrayDestroy(llvm::Value
*begin
,
2238 QualType elementType
,
2239 CharUnits elementAlign
,
2240 Destroyer
*destroyer
,
2241 bool checkZeroLength
,
2242 bool useEHCleanup
) {
2243 assert(!elementType
->isArrayType());
2245 // The basic structure here is a do-while loop, because we don't
2246 // need to check for the zero-element case.
2247 llvm::BasicBlock
*bodyBB
= createBasicBlock("arraydestroy.body");
2248 llvm::BasicBlock
*doneBB
= createBasicBlock("arraydestroy.done");
2250 if (checkZeroLength
) {
2251 llvm::Value
*isEmpty
= Builder
.CreateICmpEQ(begin
, end
,
2252 "arraydestroy.isempty");
2253 Builder
.CreateCondBr(isEmpty
, doneBB
, bodyBB
);
2256 // Enter the loop body, making that address the current address.
2257 llvm::BasicBlock
*entryBB
= Builder
.GetInsertBlock();
2259 llvm::PHINode
*elementPast
=
2260 Builder
.CreatePHI(begin
->getType(), 2, "arraydestroy.elementPast");
2261 elementPast
->addIncoming(end
, entryBB
);
2263 // Shift the address back by one element.
2264 llvm::Value
*negativeOne
= llvm::ConstantInt::get(SizeTy
, -1, true);
2265 llvm::Type
*llvmElementType
= ConvertTypeForMem(elementType
);
2266 llvm::Value
*element
= Builder
.CreateInBoundsGEP(
2267 llvmElementType
, elementPast
, negativeOne
, "arraydestroy.element");
2270 pushRegularPartialArrayCleanup(begin
, element
, elementType
, elementAlign
,
2273 // Perform the actual destruction there.
2274 destroyer(*this, Address(element
, llvmElementType
, elementAlign
),
2280 // Check whether we've reached the end.
2281 llvm::Value
*done
= Builder
.CreateICmpEQ(element
, begin
, "arraydestroy.done");
2282 Builder
.CreateCondBr(done
, doneBB
, bodyBB
);
2283 elementPast
->addIncoming(element
, Builder
.GetInsertBlock());
2289 /// Perform partial array destruction as if in an EH cleanup. Unlike
2290 /// emitArrayDestroy, the element type here may still be an array type.
2291 static void emitPartialArrayDestroy(CodeGenFunction
&CGF
,
2292 llvm::Value
*begin
, llvm::Value
*end
,
2293 QualType type
, CharUnits elementAlign
,
2294 CodeGenFunction::Destroyer
*destroyer
) {
2295 llvm::Type
*elemTy
= CGF
.ConvertTypeForMem(type
);
2297 // If the element type is itself an array, drill down.
2298 unsigned arrayDepth
= 0;
2299 while (const ArrayType
*arrayType
= CGF
.getContext().getAsArrayType(type
)) {
2300 // VLAs don't require a GEP index to walk into.
2301 if (!isa
<VariableArrayType
>(arrayType
))
2303 type
= arrayType
->getElementType();
2307 llvm::Value
*zero
= llvm::ConstantInt::get(CGF
.SizeTy
, 0);
2309 SmallVector
<llvm::Value
*,4> gepIndices(arrayDepth
+1, zero
);
2310 begin
= CGF
.Builder
.CreateInBoundsGEP(
2311 elemTy
, begin
, gepIndices
, "pad.arraybegin");
2312 end
= CGF
.Builder
.CreateInBoundsGEP(
2313 elemTy
, end
, gepIndices
, "pad.arrayend");
2316 // Destroy the array. We don't ever need an EH cleanup because we
2317 // assume that we're in an EH cleanup ourselves, so a throwing
2318 // destructor causes an immediate terminate.
2319 CGF
.emitArrayDestroy(begin
, end
, type
, elementAlign
, destroyer
,
2320 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2324 /// RegularPartialArrayDestroy - a cleanup which performs a partial
2325 /// array destroy where the end pointer is regularly determined and
2326 /// does not need to be loaded from a local.
2327 class RegularPartialArrayDestroy final
: public EHScopeStack::Cleanup
{
2328 llvm::Value
*ArrayBegin
;
2329 llvm::Value
*ArrayEnd
;
2330 QualType ElementType
;
2331 CodeGenFunction::Destroyer
*Destroyer
;
2332 CharUnits ElementAlign
;
2334 RegularPartialArrayDestroy(llvm::Value
*arrayBegin
, llvm::Value
*arrayEnd
,
2335 QualType elementType
, CharUnits elementAlign
,
2336 CodeGenFunction::Destroyer
*destroyer
)
2337 : ArrayBegin(arrayBegin
), ArrayEnd(arrayEnd
),
2338 ElementType(elementType
), Destroyer(destroyer
),
2339 ElementAlign(elementAlign
) {}
2341 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2342 emitPartialArrayDestroy(CGF
, ArrayBegin
, ArrayEnd
,
2343 ElementType
, ElementAlign
, Destroyer
);
2347 /// IrregularPartialArrayDestroy - a cleanup which performs a
2348 /// partial array destroy where the end pointer is irregularly
2349 /// determined and must be loaded from a local.
2350 class IrregularPartialArrayDestroy final
: public EHScopeStack::Cleanup
{
2351 llvm::Value
*ArrayBegin
;
2352 Address ArrayEndPointer
;
2353 QualType ElementType
;
2354 CodeGenFunction::Destroyer
*Destroyer
;
2355 CharUnits ElementAlign
;
2357 IrregularPartialArrayDestroy(llvm::Value
*arrayBegin
,
2358 Address arrayEndPointer
,
2359 QualType elementType
,
2360 CharUnits elementAlign
,
2361 CodeGenFunction::Destroyer
*destroyer
)
2362 : ArrayBegin(arrayBegin
), ArrayEndPointer(arrayEndPointer
),
2363 ElementType(elementType
), Destroyer(destroyer
),
2364 ElementAlign(elementAlign
) {}
2366 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2367 llvm::Value
*arrayEnd
= CGF
.Builder
.CreateLoad(ArrayEndPointer
);
2368 emitPartialArrayDestroy(CGF
, ArrayBegin
, arrayEnd
,
2369 ElementType
, ElementAlign
, Destroyer
);
2372 } // end anonymous namespace
2374 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2375 /// already-constructed elements of the given array. The cleanup
2376 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2378 /// \param elementType - the immediate element type of the array;
2379 /// possibly still an array type
2380 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value
*arrayBegin
,
2381 Address arrayEndPointer
,
2382 QualType elementType
,
2383 CharUnits elementAlign
,
2384 Destroyer
*destroyer
) {
2385 pushFullExprCleanup
<IrregularPartialArrayDestroy
>(EHCleanup
,
2386 arrayBegin
, arrayEndPointer
,
2387 elementType
, elementAlign
,
2391 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2392 /// already-constructed elements of the given array. The cleanup
2393 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2395 /// \param elementType - the immediate element type of the array;
2396 /// possibly still an array type
2397 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value
*arrayBegin
,
2398 llvm::Value
*arrayEnd
,
2399 QualType elementType
,
2400 CharUnits elementAlign
,
2401 Destroyer
*destroyer
) {
2402 pushFullExprCleanup
<RegularPartialArrayDestroy
>(EHCleanup
,
2403 arrayBegin
, arrayEnd
,
2404 elementType
, elementAlign
,
2408 /// Lazily declare the @llvm.lifetime.start intrinsic.
2409 llvm::Function
*CodeGenModule::getLLVMLifetimeStartFn() {
2410 if (LifetimeStartFn
)
2411 return LifetimeStartFn
;
2412 LifetimeStartFn
= llvm::Intrinsic::getDeclaration(&getModule(),
2413 llvm::Intrinsic::lifetime_start
, AllocaInt8PtrTy
);
2414 return LifetimeStartFn
;
2417 /// Lazily declare the @llvm.lifetime.end intrinsic.
2418 llvm::Function
*CodeGenModule::getLLVMLifetimeEndFn() {
2420 return LifetimeEndFn
;
2421 LifetimeEndFn
= llvm::Intrinsic::getDeclaration(&getModule(),
2422 llvm::Intrinsic::lifetime_end
, AllocaInt8PtrTy
);
2423 return LifetimeEndFn
;
2427 /// A cleanup to perform a release of an object at the end of a
2428 /// function. This is used to balance out the incoming +1 of a
2429 /// ns_consumed argument when we can't reasonably do that just by
2430 /// not doing the initial retain for a __block argument.
2431 struct ConsumeARCParameter final
: EHScopeStack::Cleanup
{
2432 ConsumeARCParameter(llvm::Value
*param
,
2433 ARCPreciseLifetime_t precise
)
2434 : Param(param
), Precise(precise
) {}
2437 ARCPreciseLifetime_t Precise
;
2439 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2440 CGF
.EmitARCRelease(Param
, Precise
);
2443 } // end anonymous namespace
2445 /// Emit an alloca (or GlobalValue depending on target)
2446 /// for the specified parameter and set up LocalDeclMap.
2447 void CodeGenFunction::EmitParmDecl(const VarDecl
&D
, ParamValue Arg
,
2449 bool NoDebugInfo
= false;
2450 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2451 assert((isa
<ParmVarDecl
>(D
) || isa
<ImplicitParamDecl
>(D
)) &&
2452 "Invalid argument to EmitParmDecl");
2454 Arg
.getAnyValue()->setName(D
.getName());
2456 QualType Ty
= D
.getType();
2458 // Use better IR generation for certain implicit parameters.
2459 if (auto IPD
= dyn_cast
<ImplicitParamDecl
>(&D
)) {
2460 // The only implicit argument a block has is its literal.
2461 // This may be passed as an inalloca'ed value on Windows x86.
2463 llvm::Value
*V
= Arg
.isIndirect()
2464 ? Builder
.CreateLoad(Arg
.getIndirectAddress())
2465 : Arg
.getDirectValue();
2466 setBlockContextParameter(IPD
, ArgNo
, V
);
2469 // Suppressing debug info for ThreadPrivateVar parameters, else it hides
2470 // debug info of TLS variables.
2472 (IPD
->getParameterKind() == ImplicitParamDecl::ThreadPrivateVar
);
2475 Address DeclPtr
= Address::invalid();
2476 Address AllocaPtr
= Address::invalid();
2477 bool DoStore
= false;
2478 bool IsScalar
= hasScalarEvaluationKind(Ty
);
2479 bool UseIndirectDebugAddress
= false;
2481 // If we already have a pointer to the argument, reuse the input pointer.
2482 if (Arg
.isIndirect()) {
2483 // If we have a prettier pointer type at this point, bitcast to that.
2484 DeclPtr
= Arg
.getIndirectAddress();
2485 DeclPtr
= Builder
.CreateElementBitCast(DeclPtr
, ConvertTypeForMem(Ty
),
2487 // Indirect argument is in alloca address space, which may be different
2488 // from the default address space.
2489 auto AllocaAS
= CGM
.getASTAllocaAddressSpace();
2490 auto *V
= DeclPtr
.getPointer();
2491 AllocaPtr
= DeclPtr
;
2493 // For truly ABI indirect arguments -- those that are not `byval` -- store
2494 // the address of the argument on the stack to preserve debug information.
2495 ABIArgInfo ArgInfo
= CurFnInfo
->arguments()[ArgNo
- 1].info
;
2496 if (ArgInfo
.isIndirect())
2497 UseIndirectDebugAddress
= !ArgInfo
.getIndirectByVal();
2498 if (UseIndirectDebugAddress
) {
2499 auto PtrTy
= getContext().getPointerType(Ty
);
2500 AllocaPtr
= CreateMemTemp(PtrTy
, getContext().getTypeAlignInChars(PtrTy
),
2501 D
.getName() + ".indirect_addr");
2502 EmitStoreOfScalar(V
, AllocaPtr
, /* Volatile */ false, PtrTy
);
2505 auto SrcLangAS
= getLangOpts().OpenCL
? LangAS::opencl_private
: AllocaAS
;
2507 getLangOpts().OpenCL
? LangAS::opencl_private
: LangAS::Default
;
2508 if (SrcLangAS
!= DestLangAS
) {
2509 assert(getContext().getTargetAddressSpace(SrcLangAS
) ==
2510 CGM
.getDataLayout().getAllocaAddrSpace());
2511 auto DestAS
= getContext().getTargetAddressSpace(DestLangAS
);
2512 auto *T
= DeclPtr
.getElementType()->getPointerTo(DestAS
);
2513 DeclPtr
= DeclPtr
.withPointer(getTargetHooks().performAddrSpaceCast(
2514 *this, V
, SrcLangAS
, DestLangAS
, T
, true));
2517 // Push a destructor cleanup for this parameter if the ABI requires it.
2518 // Don't push a cleanup in a thunk for a method that will also emit a
2520 if (Ty
->isRecordType() && !CurFuncIsThunk
&&
2521 Ty
->castAs
<RecordType
>()->getDecl()->isParamDestroyedInCallee()) {
2522 if (QualType::DestructionKind DtorKind
=
2523 D
.needsDestruction(getContext())) {
2524 assert((DtorKind
== QualType::DK_cxx_destructor
||
2525 DtorKind
== QualType::DK_nontrivial_c_struct
) &&
2526 "unexpected destructor type");
2527 pushDestroy(DtorKind
, DeclPtr
, Ty
);
2528 CalleeDestructedParamCleanups
[cast
<ParmVarDecl
>(&D
)] =
2529 EHStack
.stable_begin();
2533 // Check if the parameter address is controlled by OpenMP runtime.
2534 Address OpenMPLocalAddr
=
2535 getLangOpts().OpenMP
2536 ? CGM
.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D
)
2537 : Address::invalid();
2538 if (getLangOpts().OpenMP
&& OpenMPLocalAddr
.isValid()) {
2539 DeclPtr
= OpenMPLocalAddr
;
2540 AllocaPtr
= DeclPtr
;
2542 // Otherwise, create a temporary to hold the value.
2543 DeclPtr
= CreateMemTemp(Ty
, getContext().getDeclAlign(&D
),
2544 D
.getName() + ".addr", &AllocaPtr
);
2549 llvm::Value
*ArgVal
= (DoStore
? Arg
.getDirectValue() : nullptr);
2551 LValue lv
= MakeAddrLValue(DeclPtr
, Ty
);
2553 Qualifiers qs
= Ty
.getQualifiers();
2554 if (Qualifiers::ObjCLifetime lt
= qs
.getObjCLifetime()) {
2555 // We honor __attribute__((ns_consumed)) for types with lifetime.
2556 // For __strong, it's handled by just skipping the initial retain;
2557 // otherwise we have to balance out the initial +1 with an extra
2558 // cleanup to do the release at the end of the function.
2559 bool isConsumed
= D
.hasAttr
<NSConsumedAttr
>();
2561 // If a parameter is pseudo-strong then we can omit the implicit retain.
2562 if (D
.isARCPseudoStrong()) {
2563 assert(lt
== Qualifiers::OCL_Strong
&&
2564 "pseudo-strong variable isn't strong?");
2565 assert(qs
.hasConst() && "pseudo-strong variable should be const!");
2566 lt
= Qualifiers::OCL_ExplicitNone
;
2569 // Load objects passed indirectly.
2570 if (Arg
.isIndirect() && !ArgVal
)
2571 ArgVal
= Builder
.CreateLoad(DeclPtr
);
2573 if (lt
== Qualifiers::OCL_Strong
) {
2575 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2576 // use objc_storeStrong(&dest, value) for retaining the
2577 // object. But first, store a null into 'dest' because
2578 // objc_storeStrong attempts to release its old value.
2579 llvm::Value
*Null
= CGM
.EmitNullConstant(D
.getType());
2580 EmitStoreOfScalar(Null
, lv
, /* isInitialization */ true);
2581 EmitARCStoreStrongCall(lv
.getAddress(*this), ArgVal
, true);
2585 // Don't use objc_retainBlock for block pointers, because we
2586 // don't want to Block_copy something just because we got it
2588 ArgVal
= EmitARCRetainNonBlock(ArgVal
);
2591 // Push the cleanup for a consumed parameter.
2593 ARCPreciseLifetime_t precise
= (D
.hasAttr
<ObjCPreciseLifetimeAttr
>()
2594 ? ARCPreciseLifetime
: ARCImpreciseLifetime
);
2595 EHStack
.pushCleanup
<ConsumeARCParameter
>(getARCCleanupKind(), ArgVal
,
2599 if (lt
== Qualifiers::OCL_Weak
) {
2600 EmitARCInitWeak(DeclPtr
, ArgVal
);
2601 DoStore
= false; // The weak init is a store, no need to do two.
2605 // Enter the cleanup scope.
2606 EmitAutoVarWithLifetime(*this, D
, DeclPtr
, lt
);
2610 // Store the initial value into the alloca.
2612 EmitStoreOfScalar(ArgVal
, lv
, /* isInitialization */ true);
2614 setAddrOfLocalVar(&D
, DeclPtr
);
2616 // Emit debug info for param declarations in non-thunk functions.
2617 if (CGDebugInfo
*DI
= getDebugInfo()) {
2618 if (CGM
.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk
&&
2620 llvm::DILocalVariable
*DILocalVar
= DI
->EmitDeclareOfArgVariable(
2621 &D
, AllocaPtr
.getPointer(), ArgNo
, Builder
, UseIndirectDebugAddress
);
2622 if (const auto *Var
= dyn_cast_or_null
<ParmVarDecl
>(&D
))
2623 DI
->getParamDbgMappings().insert({Var
, DILocalVar
});
2627 if (D
.hasAttr
<AnnotateAttr
>())
2628 EmitVarAnnotations(&D
, DeclPtr
.getPointer());
2630 // We can only check return value nullability if all arguments to the
2631 // function satisfy their nullability preconditions. This makes it necessary
2632 // to emit null checks for args in the function body itself.
2633 if (requiresReturnValueNullabilityCheck()) {
2634 auto Nullability
= Ty
->getNullability();
2635 if (Nullability
&& *Nullability
== NullabilityKind::NonNull
) {
2636 SanitizerScope
SanScope(this);
2637 RetValNullabilityPrecondition
=
2638 Builder
.CreateAnd(RetValNullabilityPrecondition
,
2639 Builder
.CreateIsNotNull(Arg
.getAnyValue()));
2644 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl
*D
,
2645 CodeGenFunction
*CGF
) {
2646 if (!LangOpts
.OpenMP
|| (!LangOpts
.EmitAllDecls
&& !D
->isUsed()))
2648 getOpenMPRuntime().emitUserDefinedReduction(CGF
, D
);
2651 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl
*D
,
2652 CodeGenFunction
*CGF
) {
2653 if (!LangOpts
.OpenMP
|| LangOpts
.OpenMPSimd
||
2654 (!LangOpts
.EmitAllDecls
&& !D
->isUsed()))
2656 getOpenMPRuntime().emitUserDefinedMapper(D
, CGF
);
2659 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl
*D
) {
2660 getOpenMPRuntime().processRequiresDirective(D
);
2663 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl
*D
) {
2664 for (const Expr
*E
: D
->varlists()) {
2665 const auto *DE
= cast
<DeclRefExpr
>(E
);
2666 const auto *VD
= cast
<VarDecl
>(DE
->getDecl());
2668 // Skip all but globals.
2669 if (!VD
->hasGlobalStorage())
2672 // Check if the global has been materialized yet or not. If not, we are done
2673 // as any later generation will utilize the OMPAllocateDeclAttr. However, if
2674 // we already emitted the global we might have done so before the
2675 // OMPAllocateDeclAttr was attached, leading to the wrong address space
2676 // (potentially). While not pretty, common practise is to remove the old IR
2677 // global and generate a new one, so we do that here too. Uses are replaced
2679 StringRef MangledName
= getMangledName(VD
);
2680 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
2684 // We can also keep the existing global if the address space is what we
2685 // expect it to be, if not, it is replaced.
2686 QualType ASTTy
= VD
->getType();
2687 clang::LangAS GVAS
= GetGlobalVarAddressSpace(VD
);
2688 auto TargetAS
= getContext().getTargetAddressSpace(GVAS
);
2689 if (Entry
->getType()->getAddressSpace() == TargetAS
)
2692 // Make a new global with the correct type / address space.
2693 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(ASTTy
);
2694 llvm::PointerType
*PTy
= llvm::PointerType::get(Ty
, TargetAS
);
2696 // Replace all uses of the old global with a cast. Since we mutate the type
2697 // in place we neeed an intermediate that takes the spot of the old entry
2698 // until we can create the cast.
2699 llvm::GlobalVariable
*DummyGV
= new llvm::GlobalVariable(
2700 getModule(), Entry
->getValueType(), false,
2701 llvm::GlobalValue::CommonLinkage
, nullptr, "dummy", nullptr,
2702 llvm::GlobalVariable::NotThreadLocal
, Entry
->getAddressSpace());
2703 Entry
->replaceAllUsesWith(DummyGV
);
2705 Entry
->mutateType(PTy
);
2706 llvm::Constant
*NewPtrForOldDecl
=
2707 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2708 Entry
, DummyGV
->getType());
2710 // Now we have a casted version of the changed global, the dummy can be
2711 // replaced and deleted.
2712 DummyGV
->replaceAllUsesWith(NewPtrForOldDecl
);
2713 DummyGV
->eraseFromParent();
2717 std::optional
<CharUnits
>
2718 CodeGenModule::getOMPAllocateAlignment(const VarDecl
*VD
) {
2719 if (const auto *AA
= VD
->getAttr
<OMPAllocateDeclAttr
>()) {
2720 if (Expr
*Alignment
= AA
->getAlignment()) {
2721 unsigned UserAlign
=
2722 Alignment
->EvaluateKnownConstInt(getContext()).getExtValue();
2723 CharUnits NaturalAlign
=
2724 getNaturalTypeAlignment(VD
->getType().getNonReferenceType());
2726 // OpenMP5.1 pg 185 lines 7-10
2727 // Each item in the align modifier list must be aligned to the maximum
2728 // of the specified alignment and the type's natural alignment.
2729 return CharUnits::fromQuantity(
2730 std::max
<unsigned>(UserAlign
, NaturalAlign
.getQuantity()));
2733 return std::nullopt
;