1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Expr nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCUDARuntime.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
48 using namespace clang
;
49 using namespace CodeGen
;
51 //===--------------------------------------------------------------------===//
52 // Miscellaneous Helper Methods
53 //===--------------------------------------------------------------------===//
55 llvm::Value
*CodeGenFunction::EmitCastToVoidPtr(llvm::Value
*value
) {
56 unsigned addressSpace
=
57 cast
<llvm::PointerType
>(value
->getType())->getAddressSpace();
59 llvm::PointerType
*destType
= Int8PtrTy
;
61 destType
= llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace
);
63 if (value
->getType() == destType
) return value
;
64 return Builder
.CreateBitCast(value
, destType
);
67 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
69 Address
CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type
*Ty
,
72 llvm::Value
*ArraySize
) {
73 auto Alloca
= CreateTempAlloca(Ty
, Name
, ArraySize
);
74 Alloca
->setAlignment(Align
.getAsAlign());
75 return Address(Alloca
, Ty
, Align
);
78 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
79 /// block. The alloca is casted to default address space if necessary.
80 Address
CodeGenFunction::CreateTempAlloca(llvm::Type
*Ty
, CharUnits Align
,
82 llvm::Value
*ArraySize
,
83 Address
*AllocaAddr
) {
84 auto Alloca
= CreateTempAllocaWithoutCast(Ty
, Align
, Name
, ArraySize
);
87 llvm::Value
*V
= Alloca
.getPointer();
88 // Alloca always returns a pointer in alloca address space, which may
89 // be different from the type defined by the language. For example,
90 // in C++ the auto variables are in the default address space. Therefore
91 // cast alloca to the default address space when necessary.
92 if (getASTAllocaAddressSpace() != LangAS::Default
) {
93 auto DestAddrSpace
= getContext().getTargetAddressSpace(LangAS::Default
);
94 llvm::IRBuilderBase::InsertPointGuard
IPG(Builder
);
95 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
96 // otherwise alloca is inserted at the current insertion point of the
99 Builder
.SetInsertPoint(getPostAllocaInsertPoint());
100 V
= getTargetHooks().performAddrSpaceCast(
101 *this, V
, getASTAllocaAddressSpace(), LangAS::Default
,
102 Ty
->getPointerTo(DestAddrSpace
), /*non-null*/ true);
105 return Address(V
, Ty
, Align
);
108 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
109 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
110 /// insertion point of the builder.
111 llvm::AllocaInst
*CodeGenFunction::CreateTempAlloca(llvm::Type
*Ty
,
113 llvm::Value
*ArraySize
) {
115 return Builder
.CreateAlloca(Ty
, ArraySize
, Name
);
116 return new llvm::AllocaInst(Ty
, CGM
.getDataLayout().getAllocaAddrSpace(),
117 ArraySize
, Name
, AllocaInsertPt
);
120 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
121 /// default alignment of the corresponding LLVM type, which is *not*
122 /// guaranteed to be related in any way to the expected alignment of
123 /// an AST type that might have been lowered to Ty.
124 Address
CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type
*Ty
,
127 CharUnits::fromQuantity(CGM
.getDataLayout().getPrefTypeAlign(Ty
));
128 return CreateTempAlloca(Ty
, Align
, Name
);
131 Address
CodeGenFunction::CreateIRTemp(QualType Ty
, const Twine
&Name
) {
132 CharUnits Align
= getContext().getTypeAlignInChars(Ty
);
133 return CreateTempAlloca(ConvertType(Ty
), Align
, Name
);
136 Address
CodeGenFunction::CreateMemTemp(QualType Ty
, const Twine
&Name
,
138 // FIXME: Should we prefer the preferred type alignment here?
139 return CreateMemTemp(Ty
, getContext().getTypeAlignInChars(Ty
), Name
, Alloca
);
142 Address
CodeGenFunction::CreateMemTemp(QualType Ty
, CharUnits Align
,
143 const Twine
&Name
, Address
*Alloca
) {
144 Address Result
= CreateTempAlloca(ConvertTypeForMem(Ty
), Align
, Name
,
145 /*ArraySize=*/nullptr, Alloca
);
147 if (Ty
->isConstantMatrixType()) {
148 auto *ArrayTy
= cast
<llvm::ArrayType
>(Result
.getElementType());
149 auto *VectorTy
= llvm::FixedVectorType::get(ArrayTy
->getElementType(),
150 ArrayTy
->getNumElements());
153 Builder
.CreateBitCast(Result
.getPointer(), VectorTy
->getPointerTo()),
154 VectorTy
, Result
.getAlignment());
159 Address
CodeGenFunction::CreateMemTempWithoutCast(QualType Ty
, CharUnits Align
,
161 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty
), Align
, Name
);
164 Address
CodeGenFunction::CreateMemTempWithoutCast(QualType Ty
,
166 return CreateMemTempWithoutCast(Ty
, getContext().getTypeAlignInChars(Ty
),
170 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
171 /// expression and compare the result against zero, returning an Int1Ty value.
172 llvm::Value
*CodeGenFunction::EvaluateExprAsBool(const Expr
*E
) {
173 PGO
.setCurrentStmt(E
);
174 if (const MemberPointerType
*MPT
= E
->getType()->getAs
<MemberPointerType
>()) {
175 llvm::Value
*MemPtr
= EmitScalarExpr(E
);
176 return CGM
.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr
, MPT
);
179 QualType BoolTy
= getContext().BoolTy
;
180 SourceLocation Loc
= E
->getExprLoc();
181 CGFPOptionsRAII
FPOptsRAII(*this, E
);
182 if (!E
->getType()->isAnyComplexType())
183 return EmitScalarConversion(EmitScalarExpr(E
), E
->getType(), BoolTy
, Loc
);
185 return EmitComplexToScalarConversion(EmitComplexExpr(E
), E
->getType(), BoolTy
,
189 /// EmitIgnoredExpr - Emit code to compute the specified expression,
190 /// ignoring the result.
191 void CodeGenFunction::EmitIgnoredExpr(const Expr
*E
) {
193 return (void)EmitAnyExpr(E
, AggValueSlot::ignored(), true);
195 // if this is a bitfield-resulting conditional operator, we can special case
196 // emit this. The normal 'EmitLValue' version of this is particularly
197 // difficult to codegen for, since creating a single "LValue" for two
198 // different sized arguments here is not particularly doable.
199 if (const auto *CondOp
= dyn_cast
<AbstractConditionalOperator
>(
200 E
->IgnoreParenNoopCasts(getContext()))) {
201 if (CondOp
->getObjectKind() == OK_BitField
)
202 return EmitIgnoredConditionalOperator(CondOp
);
205 // Just emit it as an l-value and drop the result.
209 /// EmitAnyExpr - Emit code to compute the specified expression which
210 /// can have any type. The result is returned as an RValue struct.
211 /// If this is an aggregate expression, AggSlot indicates where the
212 /// result should be returned.
213 RValue
CodeGenFunction::EmitAnyExpr(const Expr
*E
,
214 AggValueSlot aggSlot
,
216 switch (getEvaluationKind(E
->getType())) {
218 return RValue::get(EmitScalarExpr(E
, ignoreResult
));
220 return RValue::getComplex(EmitComplexExpr(E
, ignoreResult
, ignoreResult
));
222 if (!ignoreResult
&& aggSlot
.isIgnored())
223 aggSlot
= CreateAggTemp(E
->getType(), "agg-temp");
224 EmitAggExpr(E
, aggSlot
);
225 return aggSlot
.asRValue();
227 llvm_unreachable("bad evaluation kind");
230 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
231 /// always be accessible even if no aggregate location is provided.
232 RValue
CodeGenFunction::EmitAnyExprToTemp(const Expr
*E
) {
233 AggValueSlot AggSlot
= AggValueSlot::ignored();
235 if (hasAggregateEvaluationKind(E
->getType()))
236 AggSlot
= CreateAggTemp(E
->getType(), "agg.tmp");
237 return EmitAnyExpr(E
, AggSlot
);
240 /// EmitAnyExprToMem - Evaluate an expression into a given memory
242 void CodeGenFunction::EmitAnyExprToMem(const Expr
*E
,
246 // FIXME: This function should take an LValue as an argument.
247 switch (getEvaluationKind(E
->getType())) {
249 EmitComplexExprIntoLValue(E
, MakeAddrLValue(Location
, E
->getType()),
253 case TEK_Aggregate
: {
254 EmitAggExpr(E
, AggValueSlot::forAddr(Location
, Quals
,
255 AggValueSlot::IsDestructed_t(IsInit
),
256 AggValueSlot::DoesNotNeedGCBarriers
,
257 AggValueSlot::IsAliased_t(!IsInit
),
258 AggValueSlot::MayOverlap
));
263 RValue RV
= RValue::get(EmitScalarExpr(E
, /*Ignore*/ false));
264 LValue LV
= MakeAddrLValue(Location
, E
->getType());
265 EmitStoreThroughLValue(RV
, LV
);
269 llvm_unreachable("bad evaluation kind");
273 pushTemporaryCleanup(CodeGenFunction
&CGF
, const MaterializeTemporaryExpr
*M
,
274 const Expr
*E
, Address ReferenceTemporary
) {
275 // Objective-C++ ARC:
276 // If we are binding a reference to a temporary that has ownership, we
277 // need to perform retain/release operations on the temporary.
279 // FIXME: This should be looking at E, not M.
280 if (auto Lifetime
= M
->getType().getObjCLifetime()) {
282 case Qualifiers::OCL_None
:
283 case Qualifiers::OCL_ExplicitNone
:
284 // Carry on to normal cleanup handling.
287 case Qualifiers::OCL_Autoreleasing
:
288 // Nothing to do; cleaned up by an autorelease pool.
291 case Qualifiers::OCL_Strong
:
292 case Qualifiers::OCL_Weak
:
293 switch (StorageDuration Duration
= M
->getStorageDuration()) {
295 // Note: we intentionally do not register a cleanup to release
296 // the object on program termination.
300 // FIXME: We should probably register a cleanup in this case.
304 case SD_FullExpression
:
305 CodeGenFunction::Destroyer
*Destroy
;
306 CleanupKind CleanupKind
;
307 if (Lifetime
== Qualifiers::OCL_Strong
) {
308 const ValueDecl
*VD
= M
->getExtendingDecl();
310 VD
&& isa
<VarDecl
>(VD
) && VD
->hasAttr
<ObjCPreciseLifetimeAttr
>();
311 CleanupKind
= CGF
.getARCCleanupKind();
312 Destroy
= Precise
? &CodeGenFunction::destroyARCStrongPrecise
313 : &CodeGenFunction::destroyARCStrongImprecise
;
315 // __weak objects always get EH cleanups; otherwise, exceptions
316 // could cause really nasty crashes instead of mere leaks.
317 CleanupKind
= NormalAndEHCleanup
;
318 Destroy
= &CodeGenFunction::destroyARCWeak
;
320 if (Duration
== SD_FullExpression
)
321 CGF
.pushDestroy(CleanupKind
, ReferenceTemporary
,
322 M
->getType(), *Destroy
,
323 CleanupKind
& EHCleanup
);
325 CGF
.pushLifetimeExtendedDestroy(CleanupKind
, ReferenceTemporary
,
327 *Destroy
, CleanupKind
& EHCleanup
);
331 llvm_unreachable("temporary cannot have dynamic storage duration");
333 llvm_unreachable("unknown storage duration");
337 CXXDestructorDecl
*ReferenceTemporaryDtor
= nullptr;
338 if (const RecordType
*RT
=
339 E
->getType()->getBaseElementTypeUnsafe()->getAs
<RecordType
>()) {
340 // Get the destructor for the reference temporary.
341 auto *ClassDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
342 if (!ClassDecl
->hasTrivialDestructor())
343 ReferenceTemporaryDtor
= ClassDecl
->getDestructor();
346 if (!ReferenceTemporaryDtor
)
349 // Call the destructor for the temporary.
350 switch (M
->getStorageDuration()) {
353 llvm::FunctionCallee CleanupFn
;
354 llvm::Constant
*CleanupArg
;
355 if (E
->getType()->isArrayType()) {
356 CleanupFn
= CodeGenFunction(CGF
.CGM
).generateDestroyHelper(
357 ReferenceTemporary
, E
->getType(),
358 CodeGenFunction::destroyCXXObject
, CGF
.getLangOpts().Exceptions
,
359 dyn_cast_or_null
<VarDecl
>(M
->getExtendingDecl()));
360 CleanupArg
= llvm::Constant::getNullValue(CGF
.Int8PtrTy
);
362 CleanupFn
= CGF
.CGM
.getAddrAndTypeOfCXXStructor(
363 GlobalDecl(ReferenceTemporaryDtor
, Dtor_Complete
));
364 CleanupArg
= cast
<llvm::Constant
>(ReferenceTemporary
.getPointer());
366 CGF
.CGM
.getCXXABI().registerGlobalDtor(
367 CGF
, *cast
<VarDecl
>(M
->getExtendingDecl()), CleanupFn
, CleanupArg
);
371 case SD_FullExpression
:
372 CGF
.pushDestroy(NormalAndEHCleanup
, ReferenceTemporary
, E
->getType(),
373 CodeGenFunction::destroyCXXObject
,
374 CGF
.getLangOpts().Exceptions
);
378 CGF
.pushLifetimeExtendedDestroy(NormalAndEHCleanup
,
379 ReferenceTemporary
, E
->getType(),
380 CodeGenFunction::destroyCXXObject
,
381 CGF
.getLangOpts().Exceptions
);
385 llvm_unreachable("temporary cannot have dynamic storage duration");
389 static Address
createReferenceTemporary(CodeGenFunction
&CGF
,
390 const MaterializeTemporaryExpr
*M
,
392 Address
*Alloca
= nullptr) {
393 auto &TCG
= CGF
.getTargetHooks();
394 switch (M
->getStorageDuration()) {
395 case SD_FullExpression
:
397 // If we have a constant temporary array or record try to promote it into a
398 // constant global under the same rules a normal constant would've been
399 // promoted. This is easier on the optimizer and generally emits fewer
401 QualType Ty
= Inner
->getType();
402 if (CGF
.CGM
.getCodeGenOpts().MergeAllConstants
&&
403 (Ty
->isArrayType() || Ty
->isRecordType()) &&
404 CGF
.CGM
.isTypeConstant(Ty
, true))
405 if (auto Init
= ConstantEmitter(CGF
).tryEmitAbstract(Inner
, Ty
)) {
406 auto AS
= CGF
.CGM
.GetGlobalConstantAddressSpace();
407 auto *GV
= new llvm::GlobalVariable(
408 CGF
.CGM
.getModule(), Init
->getType(), /*isConstant=*/true,
409 llvm::GlobalValue::PrivateLinkage
, Init
, ".ref.tmp", nullptr,
410 llvm::GlobalValue::NotThreadLocal
,
411 CGF
.getContext().getTargetAddressSpace(AS
));
412 CharUnits alignment
= CGF
.getContext().getTypeAlignInChars(Ty
);
413 GV
->setAlignment(alignment
.getAsAlign());
414 llvm::Constant
*C
= GV
;
415 if (AS
!= LangAS::Default
)
416 C
= TCG
.performAddrSpaceCast(
417 CGF
.CGM
, GV
, AS
, LangAS::Default
,
418 GV
->getValueType()->getPointerTo(
419 CGF
.getContext().getTargetAddressSpace(LangAS::Default
)));
420 // FIXME: Should we put the new global into a COMDAT?
421 return Address(C
, GV
->getValueType(), alignment
);
423 return CGF
.CreateMemTemp(Ty
, "ref.tmp", Alloca
);
427 return CGF
.CGM
.GetAddrOfGlobalTemporary(M
, Inner
);
430 llvm_unreachable("temporary can't have dynamic storage duration");
432 llvm_unreachable("unknown storage duration");
435 /// Helper method to check if the underlying ABI is AAPCS
436 static bool isAAPCS(const TargetInfo
&TargetInfo
) {
437 return TargetInfo
.getABI().startswith("aapcs");
440 LValue
CodeGenFunction::
441 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr
*M
) {
442 const Expr
*E
= M
->getSubExpr();
444 assert((!M
->getExtendingDecl() || !isa
<VarDecl
>(M
->getExtendingDecl()) ||
445 !cast
<VarDecl
>(M
->getExtendingDecl())->isARCPseudoStrong()) &&
446 "Reference should never be pseudo-strong!");
448 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
449 // as that will cause the lifetime adjustment to be lost for ARC
450 auto ownership
= M
->getType().getObjCLifetime();
451 if (ownership
!= Qualifiers::OCL_None
&&
452 ownership
!= Qualifiers::OCL_ExplicitNone
) {
453 Address Object
= createReferenceTemporary(*this, M
, E
);
454 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(Object
.getPointer())) {
455 llvm::Type
*Ty
= ConvertTypeForMem(E
->getType());
456 Object
= Address(llvm::ConstantExpr::getBitCast(
457 Var
, Ty
->getPointerTo(Object
.getAddressSpace())),
458 Ty
, Object
.getAlignment());
460 // createReferenceTemporary will promote the temporary to a global with a
461 // constant initializer if it can. It can only do this to a value of
462 // ARC-manageable type if the value is global and therefore "immune" to
463 // ref-counting operations. Therefore we have no need to emit either a
464 // dynamic initialization or a cleanup and we can just return the address
466 if (Var
->hasInitializer())
467 return MakeAddrLValue(Object
, M
->getType(), AlignmentSource::Decl
);
469 Var
->setInitializer(CGM
.EmitNullConstant(E
->getType()));
471 LValue RefTempDst
= MakeAddrLValue(Object
, M
->getType(),
472 AlignmentSource::Decl
);
474 switch (getEvaluationKind(E
->getType())) {
475 default: llvm_unreachable("expected scalar or aggregate expression");
477 EmitScalarInit(E
, M
->getExtendingDecl(), RefTempDst
, false);
479 case TEK_Aggregate
: {
480 EmitAggExpr(E
, AggValueSlot::forAddr(Object
,
481 E
->getType().getQualifiers(),
482 AggValueSlot::IsDestructed
,
483 AggValueSlot::DoesNotNeedGCBarriers
,
484 AggValueSlot::IsNotAliased
,
485 AggValueSlot::DoesNotOverlap
));
490 pushTemporaryCleanup(*this, M
, E
, Object
);
494 SmallVector
<const Expr
*, 2> CommaLHSs
;
495 SmallVector
<SubobjectAdjustment
, 2> Adjustments
;
496 E
= E
->skipRValueSubobjectAdjustments(CommaLHSs
, Adjustments
);
498 for (const auto &Ignored
: CommaLHSs
)
499 EmitIgnoredExpr(Ignored
);
501 if (const auto *opaque
= dyn_cast
<OpaqueValueExpr
>(E
)) {
502 if (opaque
->getType()->isRecordType()) {
503 assert(Adjustments
.empty());
504 return EmitOpaqueValueLValue(opaque
);
508 // Create and initialize the reference temporary.
509 Address Alloca
= Address::invalid();
510 Address Object
= createReferenceTemporary(*this, M
, E
, &Alloca
);
511 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(
512 Object
.getPointer()->stripPointerCasts())) {
513 llvm::Type
*TemporaryType
= ConvertTypeForMem(E
->getType());
514 Object
= Address(llvm::ConstantExpr::getBitCast(
515 cast
<llvm::Constant
>(Object
.getPointer()),
516 TemporaryType
->getPointerTo()),
518 Object
.getAlignment());
519 // If the temporary is a global and has a constant initializer or is a
520 // constant temporary that we promoted to a global, we may have already
522 if (!Var
->hasInitializer()) {
523 Var
->setInitializer(CGM
.EmitNullConstant(E
->getType()));
524 EmitAnyExprToMem(E
, Object
, Qualifiers(), /*IsInit*/true);
527 switch (M
->getStorageDuration()) {
529 if (auto *Size
= EmitLifetimeStart(
530 CGM
.getDataLayout().getTypeAllocSize(Alloca
.getElementType()),
531 Alloca
.getPointer())) {
532 pushCleanupAfterFullExpr
<CallLifetimeEnd
>(NormalEHLifetimeMarker
,
537 case SD_FullExpression
: {
538 if (!ShouldEmitLifetimeMarkers
)
541 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
542 // marker. Instead, start the lifetime of a conditional temporary earlier
543 // so that it's unconditional. Don't do this with sanitizers which need
544 // more precise lifetime marks.
545 ConditionalEvaluation
*OldConditional
= nullptr;
546 CGBuilderTy::InsertPoint OldIP
;
547 if (isInConditionalBranch() && !E
->getType().isDestructedType() &&
548 !SanOpts
.has(SanitizerKind::HWAddress
) &&
549 !SanOpts
.has(SanitizerKind::Memory
) &&
550 !CGM
.getCodeGenOpts().SanitizeAddressUseAfterScope
) {
551 OldConditional
= OutermostConditional
;
552 OutermostConditional
= nullptr;
554 OldIP
= Builder
.saveIP();
555 llvm::BasicBlock
*Block
= OldConditional
->getStartingBlock();
556 Builder
.restoreIP(CGBuilderTy::InsertPoint(
557 Block
, llvm::BasicBlock::iterator(Block
->back())));
560 if (auto *Size
= EmitLifetimeStart(
561 CGM
.getDataLayout().getTypeAllocSize(Alloca
.getElementType()),
562 Alloca
.getPointer())) {
563 pushFullExprCleanup
<CallLifetimeEnd
>(NormalEHLifetimeMarker
, Alloca
,
567 if (OldConditional
) {
568 OutermostConditional
= OldConditional
;
569 Builder
.restoreIP(OldIP
);
577 EmitAnyExprToMem(E
, Object
, Qualifiers(), /*IsInit*/true);
579 pushTemporaryCleanup(*this, M
, E
, Object
);
581 // Perform derived-to-base casts and/or field accesses, to get from the
582 // temporary object we created (and, potentially, for which we extended
583 // the lifetime) to the subobject we're binding the reference to.
584 for (SubobjectAdjustment
&Adjustment
: llvm::reverse(Adjustments
)) {
585 switch (Adjustment
.Kind
) {
586 case SubobjectAdjustment::DerivedToBaseAdjustment
:
588 GetAddressOfBaseClass(Object
, Adjustment
.DerivedToBase
.DerivedClass
,
589 Adjustment
.DerivedToBase
.BasePath
->path_begin(),
590 Adjustment
.DerivedToBase
.BasePath
->path_end(),
591 /*NullCheckValue=*/ false, E
->getExprLoc());
594 case SubobjectAdjustment::FieldAdjustment
: {
595 LValue LV
= MakeAddrLValue(Object
, E
->getType(), AlignmentSource::Decl
);
596 LV
= EmitLValueForField(LV
, Adjustment
.Field
);
597 assert(LV
.isSimple() &&
598 "materialized temporary field is not a simple lvalue");
599 Object
= LV
.getAddress(*this);
603 case SubobjectAdjustment::MemberPointerAdjustment
: {
604 llvm::Value
*Ptr
= EmitScalarExpr(Adjustment
.Ptr
.RHS
);
605 Object
= EmitCXXMemberDataPointerAddress(E
, Object
, Ptr
,
612 return MakeAddrLValue(Object
, M
->getType(), AlignmentSource::Decl
);
616 CodeGenFunction::EmitReferenceBindingToExpr(const Expr
*E
) {
617 // Emit the expression as an lvalue.
618 LValue LV
= EmitLValue(E
);
619 assert(LV
.isSimple());
620 llvm::Value
*Value
= LV
.getPointer(*this);
622 if (sanitizePerformTypeCheck() && !E
->getType()->isFunctionType()) {
623 // C++11 [dcl.ref]p5 (as amended by core issue 453):
624 // If a glvalue to which a reference is directly bound designates neither
625 // an existing object or function of an appropriate type nor a region of
626 // storage of suitable size and alignment to contain an object of the
627 // reference's type, the behavior is undefined.
628 QualType Ty
= E
->getType();
629 EmitTypeCheck(TCK_ReferenceBinding
, E
->getExprLoc(), Value
, Ty
);
632 return RValue::get(Value
);
636 /// getAccessedFieldNo - Given an encoded value and a result number, return the
637 /// input field number being accessed.
638 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx
,
639 const llvm::Constant
*Elts
) {
640 return cast
<llvm::ConstantInt
>(Elts
->getAggregateElement(Idx
))
644 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
645 static llvm::Value
*emitHash16Bytes(CGBuilderTy
&Builder
, llvm::Value
*Low
,
647 llvm::Value
*KMul
= Builder
.getInt64(0x9ddfea08eb382d69ULL
);
648 llvm::Value
*K47
= Builder
.getInt64(47);
649 llvm::Value
*A0
= Builder
.CreateMul(Builder
.CreateXor(Low
, High
), KMul
);
650 llvm::Value
*A1
= Builder
.CreateXor(Builder
.CreateLShr(A0
, K47
), A0
);
651 llvm::Value
*B0
= Builder
.CreateMul(Builder
.CreateXor(High
, A1
), KMul
);
652 llvm::Value
*B1
= Builder
.CreateXor(Builder
.CreateLShr(B0
, K47
), B0
);
653 return Builder
.CreateMul(B1
, KMul
);
656 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK
) {
657 return TCK
== TCK_DowncastPointer
|| TCK
== TCK_Upcast
||
658 TCK
== TCK_UpcastToVirtualBase
|| TCK
== TCK_DynamicOperation
;
661 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK
, QualType Ty
) {
662 CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
663 return (RD
&& RD
->hasDefinition() && RD
->isDynamicClass()) &&
664 (TCK
== TCK_MemberAccess
|| TCK
== TCK_MemberCall
||
665 TCK
== TCK_DowncastPointer
|| TCK
== TCK_DowncastReference
||
666 TCK
== TCK_UpcastToVirtualBase
|| TCK
== TCK_DynamicOperation
);
669 bool CodeGenFunction::sanitizePerformTypeCheck() const {
670 return SanOpts
.has(SanitizerKind::Null
) ||
671 SanOpts
.has(SanitizerKind::Alignment
) ||
672 SanOpts
.has(SanitizerKind::ObjectSize
) ||
673 SanOpts
.has(SanitizerKind::Vptr
);
676 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK
, SourceLocation Loc
,
677 llvm::Value
*Ptr
, QualType Ty
,
679 SanitizerSet SkippedChecks
,
680 llvm::Value
*ArraySize
) {
681 if (!sanitizePerformTypeCheck())
684 // Don't check pointers outside the default address space. The null check
685 // isn't correct, the object-size check isn't supported by LLVM, and we can't
686 // communicate the addresses to the runtime handler for the vptr check.
687 if (Ptr
->getType()->getPointerAddressSpace())
690 // Don't check pointers to volatile data. The behavior here is implementation-
692 if (Ty
.isVolatileQualified())
695 SanitizerScope
SanScope(this);
697 SmallVector
<std::pair
<llvm::Value
*, SanitizerMask
>, 3> Checks
;
698 llvm::BasicBlock
*Done
= nullptr;
700 // Quickly determine whether we have a pointer to an alloca. It's possible
701 // to skip null checks, and some alignment checks, for these pointers. This
702 // can reduce compile-time significantly.
703 auto PtrToAlloca
= dyn_cast
<llvm::AllocaInst
>(Ptr
->stripPointerCasts());
705 llvm::Value
*True
= llvm::ConstantInt::getTrue(getLLVMContext());
706 llvm::Value
*IsNonNull
= nullptr;
707 bool IsGuaranteedNonNull
=
708 SkippedChecks
.has(SanitizerKind::Null
) || PtrToAlloca
;
709 bool AllowNullPointers
= isNullPointerAllowed(TCK
);
710 if ((SanOpts
.has(SanitizerKind::Null
) || AllowNullPointers
) &&
711 !IsGuaranteedNonNull
) {
712 // The glvalue must not be an empty glvalue.
713 IsNonNull
= Builder
.CreateIsNotNull(Ptr
);
715 // The IR builder can constant-fold the null check if the pointer points to
717 IsGuaranteedNonNull
= IsNonNull
== True
;
719 // Skip the null check if the pointer is known to be non-null.
720 if (!IsGuaranteedNonNull
) {
721 if (AllowNullPointers
) {
722 // When performing pointer casts, it's OK if the value is null.
723 // Skip the remaining checks in that case.
724 Done
= createBasicBlock("null");
725 llvm::BasicBlock
*Rest
= createBasicBlock("not.null");
726 Builder
.CreateCondBr(IsNonNull
, Rest
, Done
);
729 Checks
.push_back(std::make_pair(IsNonNull
, SanitizerKind::Null
));
734 if (SanOpts
.has(SanitizerKind::ObjectSize
) &&
735 !SkippedChecks
.has(SanitizerKind::ObjectSize
) &&
736 !Ty
->isIncompleteType()) {
737 uint64_t TySize
= CGM
.getMinimumObjectSize(Ty
).getQuantity();
738 llvm::Value
*Size
= llvm::ConstantInt::get(IntPtrTy
, TySize
);
740 Size
= Builder
.CreateMul(Size
, ArraySize
);
742 // Degenerate case: new X[0] does not need an objectsize check.
743 llvm::Constant
*ConstantSize
= dyn_cast
<llvm::Constant
>(Size
);
744 if (!ConstantSize
|| !ConstantSize
->isNullValue()) {
745 // The glvalue must refer to a large enough storage region.
746 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
748 // FIXME: Get object address space
749 llvm::Type
*Tys
[2] = { IntPtrTy
, Int8PtrTy
};
750 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::objectsize
, Tys
);
751 llvm::Value
*Min
= Builder
.getFalse();
752 llvm::Value
*NullIsUnknown
= Builder
.getFalse();
753 llvm::Value
*Dynamic
= Builder
.getFalse();
754 llvm::Value
*CastAddr
= Builder
.CreateBitCast(Ptr
, Int8PtrTy
);
755 llvm::Value
*LargeEnough
= Builder
.CreateICmpUGE(
756 Builder
.CreateCall(F
, {CastAddr
, Min
, NullIsUnknown
, Dynamic
}), Size
);
757 Checks
.push_back(std::make_pair(LargeEnough
, SanitizerKind::ObjectSize
));
761 llvm::MaybeAlign AlignVal
;
762 llvm::Value
*PtrAsInt
= nullptr;
764 if (SanOpts
.has(SanitizerKind::Alignment
) &&
765 !SkippedChecks
.has(SanitizerKind::Alignment
)) {
766 AlignVal
= Alignment
.getAsMaybeAlign();
767 if (!Ty
->isIncompleteType() && !AlignVal
)
768 AlignVal
= CGM
.getNaturalTypeAlignment(Ty
, nullptr, nullptr,
769 /*ForPointeeType=*/true)
772 // The glvalue must be suitably aligned.
773 if (AlignVal
&& *AlignVal
> llvm::Align(1) &&
774 (!PtrToAlloca
|| PtrToAlloca
->getAlign() < *AlignVal
)) {
775 PtrAsInt
= Builder
.CreatePtrToInt(Ptr
, IntPtrTy
);
776 llvm::Value
*Align
= Builder
.CreateAnd(
777 PtrAsInt
, llvm::ConstantInt::get(IntPtrTy
, AlignVal
->value() - 1));
778 llvm::Value
*Aligned
=
779 Builder
.CreateICmpEQ(Align
, llvm::ConstantInt::get(IntPtrTy
, 0));
781 Checks
.push_back(std::make_pair(Aligned
, SanitizerKind::Alignment
));
785 if (Checks
.size() > 0) {
786 llvm::Constant
*StaticData
[] = {
787 EmitCheckSourceLocation(Loc
), EmitCheckTypeDescriptor(Ty
),
788 llvm::ConstantInt::get(Int8Ty
, AlignVal
? llvm::Log2(*AlignVal
) : 1),
789 llvm::ConstantInt::get(Int8Ty
, TCK
)};
790 EmitCheck(Checks
, SanitizerHandler::TypeMismatch
, StaticData
,
791 PtrAsInt
? PtrAsInt
: Ptr
);
794 // If possible, check that the vptr indicates that there is a subobject of
795 // type Ty at offset zero within this object.
797 // C++11 [basic.life]p5,6:
798 // [For storage which does not refer to an object within its lifetime]
799 // The program has undefined behavior if:
800 // -- the [pointer or glvalue] is used to access a non-static data member
801 // or call a non-static member function
802 if (SanOpts
.has(SanitizerKind::Vptr
) &&
803 !SkippedChecks
.has(SanitizerKind::Vptr
) && isVptrCheckRequired(TCK
, Ty
)) {
804 // Ensure that the pointer is non-null before loading it. If there is no
805 // compile-time guarantee, reuse the run-time null check or emit a new one.
806 if (!IsGuaranteedNonNull
) {
808 IsNonNull
= Builder
.CreateIsNotNull(Ptr
);
810 Done
= createBasicBlock("vptr.null");
811 llvm::BasicBlock
*VptrNotNull
= createBasicBlock("vptr.not.null");
812 Builder
.CreateCondBr(IsNonNull
, VptrNotNull
, Done
);
813 EmitBlock(VptrNotNull
);
816 // Compute a hash of the mangled name of the type.
818 // FIXME: This is not guaranteed to be deterministic! Move to a
819 // fingerprinting mechanism once LLVM provides one. For the time
820 // being the implementation happens to be deterministic.
821 SmallString
<64> MangledName
;
822 llvm::raw_svector_ostream
Out(MangledName
);
823 CGM
.getCXXABI().getMangleContext().mangleCXXRTTI(Ty
.getUnqualifiedType(),
826 // Contained in NoSanitizeList based on the mangled type.
827 if (!CGM
.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr
,
829 llvm::hash_code TypeHash
= hash_value(Out
.str());
831 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
832 llvm::Value
*Low
= llvm::ConstantInt::get(Int64Ty
, TypeHash
);
833 llvm::Type
*VPtrTy
= llvm::PointerType::get(IntPtrTy
, 0);
834 Address
VPtrAddr(Builder
.CreateBitCast(Ptr
, VPtrTy
), IntPtrTy
,
836 llvm::Value
*VPtrVal
= Builder
.CreateLoad(VPtrAddr
);
837 llvm::Value
*High
= Builder
.CreateZExt(VPtrVal
, Int64Ty
);
839 llvm::Value
*Hash
= emitHash16Bytes(Builder
, Low
, High
);
840 Hash
= Builder
.CreateTrunc(Hash
, IntPtrTy
);
842 // Look the hash up in our cache.
843 const int CacheSize
= 128;
844 llvm::Type
*HashTable
= llvm::ArrayType::get(IntPtrTy
, CacheSize
);
845 llvm::Value
*Cache
= CGM
.CreateRuntimeVariable(HashTable
,
846 "__ubsan_vptr_type_cache");
847 llvm::Value
*Slot
= Builder
.CreateAnd(Hash
,
848 llvm::ConstantInt::get(IntPtrTy
,
850 llvm::Value
*Indices
[] = { Builder
.getInt32(0), Slot
};
851 llvm::Value
*CacheVal
= Builder
.CreateAlignedLoad(
852 IntPtrTy
, Builder
.CreateInBoundsGEP(HashTable
, Cache
, Indices
),
855 // If the hash isn't in the cache, call a runtime handler to perform the
856 // hard work of checking whether the vptr is for an object of the right
857 // type. This will either fill in the cache and return, or produce a
859 llvm::Value
*EqualHash
= Builder
.CreateICmpEQ(CacheVal
, Hash
);
860 llvm::Constant
*StaticData
[] = {
861 EmitCheckSourceLocation(Loc
),
862 EmitCheckTypeDescriptor(Ty
),
863 CGM
.GetAddrOfRTTIDescriptor(Ty
.getUnqualifiedType()),
864 llvm::ConstantInt::get(Int8Ty
, TCK
)
866 llvm::Value
*DynamicData
[] = { Ptr
, Hash
};
867 EmitCheck(std::make_pair(EqualHash
, SanitizerKind::Vptr
),
868 SanitizerHandler::DynamicTypeCacheMiss
, StaticData
,
874 Builder
.CreateBr(Done
);
879 llvm::Value
*CodeGenFunction::LoadPassedObjectSize(const Expr
*E
,
881 ASTContext
&C
= getContext();
882 uint64_t EltSize
= C
.getTypeSizeInChars(EltTy
).getQuantity();
886 auto *ArrayDeclRef
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts());
890 auto *ParamDecl
= dyn_cast
<ParmVarDecl
>(ArrayDeclRef
->getDecl());
894 auto *POSAttr
= ParamDecl
->getAttr
<PassObjectSizeAttr
>();
898 // Don't load the size if it's a lower bound.
899 int POSType
= POSAttr
->getType();
900 if (POSType
!= 0 && POSType
!= 1)
903 // Find the implicit size parameter.
904 auto PassedSizeIt
= SizeArguments
.find(ParamDecl
);
905 if (PassedSizeIt
== SizeArguments
.end())
908 const ImplicitParamDecl
*PassedSizeDecl
= PassedSizeIt
->second
;
909 assert(LocalDeclMap
.count(PassedSizeDecl
) && "Passed size not loadable");
910 Address AddrOfSize
= LocalDeclMap
.find(PassedSizeDecl
)->second
;
911 llvm::Value
*SizeInBytes
= EmitLoadOfScalar(AddrOfSize
, /*Volatile=*/false,
912 C
.getSizeType(), E
->getExprLoc());
913 llvm::Value
*SizeOfElement
=
914 llvm::ConstantInt::get(SizeInBytes
->getType(), EltSize
);
915 return Builder
.CreateUDiv(SizeInBytes
, SizeOfElement
);
918 /// If Base is known to point to the start of an array, return the length of
919 /// that array. Return 0 if the length cannot be determined.
920 static llvm::Value
*getArrayIndexingBound(CodeGenFunction
&CGF
,
922 QualType
&IndexedType
,
923 LangOptions::StrictFlexArraysLevelKind
924 StrictFlexArraysLevel
) {
925 // For the vector indexing extension, the bound is the number of elements.
926 if (const VectorType
*VT
= Base
->getType()->getAs
<VectorType
>()) {
927 IndexedType
= Base
->getType();
928 return CGF
.Builder
.getInt32(VT
->getNumElements());
931 Base
= Base
->IgnoreParens();
933 if (const auto *CE
= dyn_cast
<CastExpr
>(Base
)) {
934 if (CE
->getCastKind() == CK_ArrayToPointerDecay
&&
935 !CE
->getSubExpr()->isFlexibleArrayMemberLike(CGF
.getContext(),
936 StrictFlexArraysLevel
)) {
937 IndexedType
= CE
->getSubExpr()->getType();
938 const ArrayType
*AT
= IndexedType
->castAsArrayTypeUnsafe();
939 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(AT
))
940 return CGF
.Builder
.getInt(CAT
->getSize());
941 else if (const auto *VAT
= dyn_cast
<VariableArrayType
>(AT
))
942 return CGF
.getVLASize(VAT
).NumElts
;
943 // Ignore pass_object_size here. It's not applicable on decayed pointers.
947 QualType EltTy
{Base
->getType()->getPointeeOrArrayElementType(), 0};
948 if (llvm::Value
*POS
= CGF
.LoadPassedObjectSize(Base
, EltTy
)) {
949 IndexedType
= Base
->getType();
956 void CodeGenFunction::EmitBoundsCheck(const Expr
*E
, const Expr
*Base
,
957 llvm::Value
*Index
, QualType IndexType
,
959 assert(SanOpts
.has(SanitizerKind::ArrayBounds
) &&
960 "should not be called unless adding bounds checks");
961 SanitizerScope
SanScope(this);
963 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel
=
964 getLangOpts().getStrictFlexArraysLevel();
966 QualType IndexedType
;
968 getArrayIndexingBound(*this, Base
, IndexedType
, StrictFlexArraysLevel
);
972 bool IndexSigned
= IndexType
->isSignedIntegerOrEnumerationType();
973 llvm::Value
*IndexVal
= Builder
.CreateIntCast(Index
, SizeTy
, IndexSigned
);
974 llvm::Value
*BoundVal
= Builder
.CreateIntCast(Bound
, SizeTy
, false);
976 llvm::Constant
*StaticData
[] = {
977 EmitCheckSourceLocation(E
->getExprLoc()),
978 EmitCheckTypeDescriptor(IndexedType
),
979 EmitCheckTypeDescriptor(IndexType
)
981 llvm::Value
*Check
= Accessed
? Builder
.CreateICmpULT(IndexVal
, BoundVal
)
982 : Builder
.CreateICmpULE(IndexVal
, BoundVal
);
983 EmitCheck(std::make_pair(Check
, SanitizerKind::ArrayBounds
),
984 SanitizerHandler::OutOfBounds
, StaticData
, Index
);
988 CodeGenFunction::ComplexPairTy
CodeGenFunction::
989 EmitComplexPrePostIncDec(const UnaryOperator
*E
, LValue LV
,
990 bool isInc
, bool isPre
) {
991 ComplexPairTy InVal
= EmitLoadOfComplex(LV
, E
->getExprLoc());
993 llvm::Value
*NextVal
;
994 if (isa
<llvm::IntegerType
>(InVal
.first
->getType())) {
995 uint64_t AmountVal
= isInc
? 1 : -1;
996 NextVal
= llvm::ConstantInt::get(InVal
.first
->getType(), AmountVal
, true);
998 // Add the inc/dec to the real part.
999 NextVal
= Builder
.CreateAdd(InVal
.first
, NextVal
, isInc
? "inc" : "dec");
1001 QualType ElemTy
= E
->getType()->castAs
<ComplexType
>()->getElementType();
1002 llvm::APFloat
FVal(getContext().getFloatTypeSemantics(ElemTy
), 1);
1005 NextVal
= llvm::ConstantFP::get(getLLVMContext(), FVal
);
1007 // Add the inc/dec to the real part.
1008 NextVal
= Builder
.CreateFAdd(InVal
.first
, NextVal
, isInc
? "inc" : "dec");
1011 ComplexPairTy
IncVal(NextVal
, InVal
.second
);
1013 // Store the updated result through the lvalue.
1014 EmitStoreOfComplex(IncVal
, LV
, /*init*/ false);
1015 if (getLangOpts().OpenMP
)
1016 CGM
.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1019 // If this is a postinc, return the value read from memory, otherwise use the
1021 return isPre
? IncVal
: InVal
;
1024 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr
*E
,
1025 CodeGenFunction
*CGF
) {
1026 // Bind VLAs in the cast type.
1027 if (CGF
&& E
->getType()->isVariablyModifiedType())
1028 CGF
->EmitVariablyModifiedType(E
->getType());
1030 if (CGDebugInfo
*DI
= getModuleDebugInfo())
1031 DI
->EmitExplicitCastType(E
->getType());
1034 //===----------------------------------------------------------------------===//
1035 // LValue Expression Emission
1036 //===----------------------------------------------------------------------===//
1038 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1039 /// derive a more accurate bound on the alignment of the pointer.
1040 Address
CodeGenFunction::EmitPointerWithAlignment(const Expr
*E
,
1041 LValueBaseInfo
*BaseInfo
,
1042 TBAAAccessInfo
*TBAAInfo
) {
1043 // We allow this with ObjC object pointers because of fragile ABIs.
1044 assert(E
->getType()->isPointerType() ||
1045 E
->getType()->isObjCObjectPointerType());
1046 E
= E
->IgnoreParens();
1049 if (const CastExpr
*CE
= dyn_cast
<CastExpr
>(E
)) {
1050 if (const auto *ECE
= dyn_cast
<ExplicitCastExpr
>(CE
))
1051 CGM
.EmitExplicitCastExprType(ECE
, this);
1053 switch (CE
->getCastKind()) {
1054 // Non-converting casts (but not C's implicit conversion from void*).
1057 case CK_AddressSpaceConversion
:
1058 if (auto PtrTy
= CE
->getSubExpr()->getType()->getAs
<PointerType
>()) {
1059 if (PtrTy
->getPointeeType()->isVoidType())
1062 LValueBaseInfo InnerBaseInfo
;
1063 TBAAAccessInfo InnerTBAAInfo
;
1064 Address Addr
= EmitPointerWithAlignment(CE
->getSubExpr(),
1067 if (BaseInfo
) *BaseInfo
= InnerBaseInfo
;
1068 if (TBAAInfo
) *TBAAInfo
= InnerTBAAInfo
;
1070 if (isa
<ExplicitCastExpr
>(CE
)) {
1071 LValueBaseInfo TargetTypeBaseInfo
;
1072 TBAAAccessInfo TargetTypeTBAAInfo
;
1073 CharUnits Align
= CGM
.getNaturalPointeeTypeAlignment(
1074 E
->getType(), &TargetTypeBaseInfo
, &TargetTypeTBAAInfo
);
1076 *TBAAInfo
= CGM
.mergeTBAAInfoForCast(*TBAAInfo
,
1077 TargetTypeTBAAInfo
);
1078 // If the source l-value is opaque, honor the alignment of the
1080 if (InnerBaseInfo
.getAlignmentSource() != AlignmentSource::Decl
) {
1082 BaseInfo
->mergeForCast(TargetTypeBaseInfo
);
1083 Addr
= Address(Addr
.getPointer(), Addr
.getElementType(), Align
);
1087 if (SanOpts
.has(SanitizerKind::CFIUnrelatedCast
) &&
1088 CE
->getCastKind() == CK_BitCast
) {
1089 if (auto PT
= E
->getType()->getAs
<PointerType
>())
1090 EmitVTablePtrCheckForCast(PT
->getPointeeType(), Addr
,
1092 CodeGenFunction::CFITCK_UnrelatedCast
,
1096 llvm::Type
*ElemTy
= ConvertTypeForMem(E
->getType()->getPointeeType());
1097 Addr
= Builder
.CreateElementBitCast(Addr
, ElemTy
);
1098 if (CE
->getCastKind() == CK_AddressSpaceConversion
)
1099 Addr
= Builder
.CreateAddrSpaceCast(Addr
, ConvertType(E
->getType()));
1104 // Array-to-pointer decay.
1105 case CK_ArrayToPointerDecay
:
1106 return EmitArrayToPointerDecay(CE
->getSubExpr(), BaseInfo
, TBAAInfo
);
1108 // Derived-to-base conversions.
1109 case CK_UncheckedDerivedToBase
:
1110 case CK_DerivedToBase
: {
1111 // TODO: Support accesses to members of base classes in TBAA. For now, we
1112 // conservatively pretend that the complete object is of the base class
1115 *TBAAInfo
= CGM
.getTBAAAccessInfo(E
->getType());
1116 Address Addr
= EmitPointerWithAlignment(CE
->getSubExpr(), BaseInfo
);
1117 auto Derived
= CE
->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1118 return GetAddressOfBaseClass(Addr
, Derived
,
1119 CE
->path_begin(), CE
->path_end(),
1120 ShouldNullCheckClassCastValue(CE
),
1124 // TODO: Is there any reason to treat base-to-derived conversions
1132 if (const UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(E
)) {
1133 if (UO
->getOpcode() == UO_AddrOf
) {
1134 LValue LV
= EmitLValue(UO
->getSubExpr());
1135 if (BaseInfo
) *BaseInfo
= LV
.getBaseInfo();
1136 if (TBAAInfo
) *TBAAInfo
= LV
.getTBAAInfo();
1137 return LV
.getAddress(*this);
1141 // std::addressof and variants.
1142 if (auto *Call
= dyn_cast
<CallExpr
>(E
)) {
1143 switch (Call
->getBuiltinCallee()) {
1146 case Builtin::BIaddressof
:
1147 case Builtin::BI__addressof
:
1148 case Builtin::BI__builtin_addressof
: {
1149 LValue LV
= EmitLValue(Call
->getArg(0));
1150 if (BaseInfo
) *BaseInfo
= LV
.getBaseInfo();
1151 if (TBAAInfo
) *TBAAInfo
= LV
.getTBAAInfo();
1152 return LV
.getAddress(*this);
1157 // TODO: conditional operators, comma.
1159 // Otherwise, use the alignment of the type.
1161 CGM
.getNaturalPointeeTypeAlignment(E
->getType(), BaseInfo
, TBAAInfo
);
1162 llvm::Type
*ElemTy
= ConvertTypeForMem(E
->getType()->getPointeeType());
1163 return Address(EmitScalarExpr(E
), ElemTy
, Align
);
1166 llvm::Value
*CodeGenFunction::EmitNonNullRValueCheck(RValue RV
, QualType T
) {
1167 llvm::Value
*V
= RV
.getScalarVal();
1168 if (auto MPT
= T
->getAs
<MemberPointerType
>())
1169 return CGM
.getCXXABI().EmitMemberPointerIsNotNull(*this, V
, MPT
);
1170 return Builder
.CreateICmpNE(V
, llvm::Constant::getNullValue(V
->getType()));
1173 RValue
CodeGenFunction::GetUndefRValue(QualType Ty
) {
1174 if (Ty
->isVoidType())
1175 return RValue::get(nullptr);
1177 switch (getEvaluationKind(Ty
)) {
1180 ConvertType(Ty
->castAs
<ComplexType
>()->getElementType());
1181 llvm::Value
*U
= llvm::UndefValue::get(EltTy
);
1182 return RValue::getComplex(std::make_pair(U
, U
));
1185 // If this is a use of an undefined aggregate type, the aggregate must have an
1186 // identifiable address. Just because the contents of the value are undefined
1187 // doesn't mean that the address can't be taken and compared.
1188 case TEK_Aggregate
: {
1189 Address DestPtr
= CreateMemTemp(Ty
, "undef.agg.tmp");
1190 return RValue::getAggregate(DestPtr
);
1194 return RValue::get(llvm::UndefValue::get(ConvertType(Ty
)));
1196 llvm_unreachable("bad evaluation kind");
1199 RValue
CodeGenFunction::EmitUnsupportedRValue(const Expr
*E
,
1201 ErrorUnsupported(E
, Name
);
1202 return GetUndefRValue(E
->getType());
1205 LValue
CodeGenFunction::EmitUnsupportedLValue(const Expr
*E
,
1207 ErrorUnsupported(E
, Name
);
1208 llvm::Type
*ElTy
= ConvertType(E
->getType());
1209 llvm::Type
*Ty
= llvm::PointerType::getUnqual(ElTy
);
1210 return MakeAddrLValue(
1211 Address(llvm::UndefValue::get(Ty
), ElTy
, CharUnits::One()), E
->getType());
1214 bool CodeGenFunction::IsWrappedCXXThis(const Expr
*Obj
) {
1215 const Expr
*Base
= Obj
;
1216 while (!isa
<CXXThisExpr
>(Base
)) {
1217 // The result of a dynamic_cast can be null.
1218 if (isa
<CXXDynamicCastExpr
>(Base
))
1221 if (const auto *CE
= dyn_cast
<CastExpr
>(Base
)) {
1222 Base
= CE
->getSubExpr();
1223 } else if (const auto *PE
= dyn_cast
<ParenExpr
>(Base
)) {
1224 Base
= PE
->getSubExpr();
1225 } else if (const auto *UO
= dyn_cast
<UnaryOperator
>(Base
)) {
1226 if (UO
->getOpcode() == UO_Extension
)
1227 Base
= UO
->getSubExpr();
1237 LValue
CodeGenFunction::EmitCheckedLValue(const Expr
*E
, TypeCheckKind TCK
) {
1239 if (SanOpts
.has(SanitizerKind::ArrayBounds
) && isa
<ArraySubscriptExpr
>(E
))
1240 LV
= EmitArraySubscriptExpr(cast
<ArraySubscriptExpr
>(E
), /*Accessed*/true);
1243 if (!isa
<DeclRefExpr
>(E
) && !LV
.isBitField() && LV
.isSimple()) {
1244 SanitizerSet SkippedChecks
;
1245 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
)) {
1246 bool IsBaseCXXThis
= IsWrappedCXXThis(ME
->getBase());
1248 SkippedChecks
.set(SanitizerKind::Alignment
, true);
1249 if (IsBaseCXXThis
|| isa
<DeclRefExpr
>(ME
->getBase()))
1250 SkippedChecks
.set(SanitizerKind::Null
, true);
1252 EmitTypeCheck(TCK
, E
->getExprLoc(), LV
.getPointer(*this), E
->getType(),
1253 LV
.getAlignment(), SkippedChecks
);
1258 /// EmitLValue - Emit code to compute a designator that specifies the location
1259 /// of the expression.
1261 /// This can return one of two things: a simple address or a bitfield reference.
1262 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1263 /// an LLVM pointer type.
1265 /// If this returns a bitfield reference, nothing about the pointee type of the
1266 /// LLVM value is known: For example, it may not be a pointer to an integer.
1268 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1269 /// this method guarantees that the returned pointer type will point to an LLVM
1270 /// type of the same size of the lvalue's type. If the lvalue has a variable
1271 /// length type, this is not possible.
1273 LValue
CodeGenFunction::EmitLValue(const Expr
*E
) {
1274 ApplyDebugLocation
DL(*this, E
);
1275 switch (E
->getStmtClass()) {
1276 default: return EmitUnsupportedLValue(E
, "l-value expression");
1278 case Expr::ObjCPropertyRefExprClass
:
1279 llvm_unreachable("cannot emit a property reference directly");
1281 case Expr::ObjCSelectorExprClass
:
1282 return EmitObjCSelectorLValue(cast
<ObjCSelectorExpr
>(E
));
1283 case Expr::ObjCIsaExprClass
:
1284 return EmitObjCIsaExpr(cast
<ObjCIsaExpr
>(E
));
1285 case Expr::BinaryOperatorClass
:
1286 return EmitBinaryOperatorLValue(cast
<BinaryOperator
>(E
));
1287 case Expr::CompoundAssignOperatorClass
: {
1288 QualType Ty
= E
->getType();
1289 if (const AtomicType
*AT
= Ty
->getAs
<AtomicType
>())
1290 Ty
= AT
->getValueType();
1291 if (!Ty
->isAnyComplexType())
1292 return EmitCompoundAssignmentLValue(cast
<CompoundAssignOperator
>(E
));
1293 return EmitComplexCompoundAssignmentLValue(cast
<CompoundAssignOperator
>(E
));
1295 case Expr::CallExprClass
:
1296 case Expr::CXXMemberCallExprClass
:
1297 case Expr::CXXOperatorCallExprClass
:
1298 case Expr::UserDefinedLiteralClass
:
1299 return EmitCallExprLValue(cast
<CallExpr
>(E
));
1300 case Expr::CXXRewrittenBinaryOperatorClass
:
1301 return EmitLValue(cast
<CXXRewrittenBinaryOperator
>(E
)->getSemanticForm());
1302 case Expr::VAArgExprClass
:
1303 return EmitVAArgExprLValue(cast
<VAArgExpr
>(E
));
1304 case Expr::DeclRefExprClass
:
1305 return EmitDeclRefLValue(cast
<DeclRefExpr
>(E
));
1306 case Expr::ConstantExprClass
: {
1307 const ConstantExpr
*CE
= cast
<ConstantExpr
>(E
);
1308 if (llvm::Value
*Result
= ConstantEmitter(*this).tryEmitConstantExpr(CE
)) {
1309 QualType RetType
= cast
<CallExpr
>(CE
->getSubExpr()->IgnoreImplicit())
1310 ->getCallReturnType(getContext())
1312 return MakeNaturalAlignAddrLValue(Result
, RetType
);
1314 return EmitLValue(cast
<ConstantExpr
>(E
)->getSubExpr());
1316 case Expr::ParenExprClass
:
1317 return EmitLValue(cast
<ParenExpr
>(E
)->getSubExpr());
1318 case Expr::GenericSelectionExprClass
:
1319 return EmitLValue(cast
<GenericSelectionExpr
>(E
)->getResultExpr());
1320 case Expr::PredefinedExprClass
:
1321 return EmitPredefinedLValue(cast
<PredefinedExpr
>(E
));
1322 case Expr::StringLiteralClass
:
1323 return EmitStringLiteralLValue(cast
<StringLiteral
>(E
));
1324 case Expr::ObjCEncodeExprClass
:
1325 return EmitObjCEncodeExprLValue(cast
<ObjCEncodeExpr
>(E
));
1326 case Expr::PseudoObjectExprClass
:
1327 return EmitPseudoObjectLValue(cast
<PseudoObjectExpr
>(E
));
1328 case Expr::InitListExprClass
:
1329 return EmitInitListLValue(cast
<InitListExpr
>(E
));
1330 case Expr::CXXTemporaryObjectExprClass
:
1331 case Expr::CXXConstructExprClass
:
1332 return EmitCXXConstructLValue(cast
<CXXConstructExpr
>(E
));
1333 case Expr::CXXBindTemporaryExprClass
:
1334 return EmitCXXBindTemporaryLValue(cast
<CXXBindTemporaryExpr
>(E
));
1335 case Expr::CXXUuidofExprClass
:
1336 return EmitCXXUuidofLValue(cast
<CXXUuidofExpr
>(E
));
1337 case Expr::LambdaExprClass
:
1338 return EmitAggExprToLValue(E
);
1340 case Expr::ExprWithCleanupsClass
: {
1341 const auto *cleanups
= cast
<ExprWithCleanups
>(E
);
1342 RunCleanupsScope
Scope(*this);
1343 LValue LV
= EmitLValue(cleanups
->getSubExpr());
1344 if (LV
.isSimple()) {
1345 // Defend against branches out of gnu statement expressions surrounded by
1347 Address Addr
= LV
.getAddress(*this);
1348 llvm::Value
*V
= Addr
.getPointer();
1349 Scope
.ForceCleanup({&V
});
1350 return LValue::MakeAddr(Addr
.withPointer(V
), LV
.getType(), getContext(),
1351 LV
.getBaseInfo(), LV
.getTBAAInfo());
1353 // FIXME: Is it possible to create an ExprWithCleanups that produces a
1354 // bitfield lvalue or some other non-simple lvalue?
1358 case Expr::CXXDefaultArgExprClass
: {
1359 auto *DAE
= cast
<CXXDefaultArgExpr
>(E
);
1360 CXXDefaultArgExprScope
Scope(*this, DAE
);
1361 return EmitLValue(DAE
->getExpr());
1363 case Expr::CXXDefaultInitExprClass
: {
1364 auto *DIE
= cast
<CXXDefaultInitExpr
>(E
);
1365 CXXDefaultInitExprScope
Scope(*this, DIE
);
1366 return EmitLValue(DIE
->getExpr());
1368 case Expr::CXXTypeidExprClass
:
1369 return EmitCXXTypeidLValue(cast
<CXXTypeidExpr
>(E
));
1371 case Expr::ObjCMessageExprClass
:
1372 return EmitObjCMessageExprLValue(cast
<ObjCMessageExpr
>(E
));
1373 case Expr::ObjCIvarRefExprClass
:
1374 return EmitObjCIvarRefLValue(cast
<ObjCIvarRefExpr
>(E
));
1375 case Expr::StmtExprClass
:
1376 return EmitStmtExprLValue(cast
<StmtExpr
>(E
));
1377 case Expr::UnaryOperatorClass
:
1378 return EmitUnaryOpLValue(cast
<UnaryOperator
>(E
));
1379 case Expr::ArraySubscriptExprClass
:
1380 return EmitArraySubscriptExpr(cast
<ArraySubscriptExpr
>(E
));
1381 case Expr::MatrixSubscriptExprClass
:
1382 return EmitMatrixSubscriptExpr(cast
<MatrixSubscriptExpr
>(E
));
1383 case Expr::OMPArraySectionExprClass
:
1384 return EmitOMPArraySectionExpr(cast
<OMPArraySectionExpr
>(E
));
1385 case Expr::ExtVectorElementExprClass
:
1386 return EmitExtVectorElementExpr(cast
<ExtVectorElementExpr
>(E
));
1387 case Expr::CXXThisExprClass
:
1388 return MakeAddrLValue(LoadCXXThisAddress(), E
->getType());
1389 case Expr::MemberExprClass
:
1390 return EmitMemberExpr(cast
<MemberExpr
>(E
));
1391 case Expr::CompoundLiteralExprClass
:
1392 return EmitCompoundLiteralLValue(cast
<CompoundLiteralExpr
>(E
));
1393 case Expr::ConditionalOperatorClass
:
1394 return EmitConditionalOperatorLValue(cast
<ConditionalOperator
>(E
));
1395 case Expr::BinaryConditionalOperatorClass
:
1396 return EmitConditionalOperatorLValue(cast
<BinaryConditionalOperator
>(E
));
1397 case Expr::ChooseExprClass
:
1398 return EmitLValue(cast
<ChooseExpr
>(E
)->getChosenSubExpr());
1399 case Expr::OpaqueValueExprClass
:
1400 return EmitOpaqueValueLValue(cast
<OpaqueValueExpr
>(E
));
1401 case Expr::SubstNonTypeTemplateParmExprClass
:
1402 return EmitLValue(cast
<SubstNonTypeTemplateParmExpr
>(E
)->getReplacement());
1403 case Expr::ImplicitCastExprClass
:
1404 case Expr::CStyleCastExprClass
:
1405 case Expr::CXXFunctionalCastExprClass
:
1406 case Expr::CXXStaticCastExprClass
:
1407 case Expr::CXXDynamicCastExprClass
:
1408 case Expr::CXXReinterpretCastExprClass
:
1409 case Expr::CXXConstCastExprClass
:
1410 case Expr::CXXAddrspaceCastExprClass
:
1411 case Expr::ObjCBridgedCastExprClass
:
1412 return EmitCastLValue(cast
<CastExpr
>(E
));
1414 case Expr::MaterializeTemporaryExprClass
:
1415 return EmitMaterializeTemporaryExpr(cast
<MaterializeTemporaryExpr
>(E
));
1417 case Expr::CoawaitExprClass
:
1418 return EmitCoawaitLValue(cast
<CoawaitExpr
>(E
));
1419 case Expr::CoyieldExprClass
:
1420 return EmitCoyieldLValue(cast
<CoyieldExpr
>(E
));
1424 /// Given an object of the given canonical type, can we safely copy a
1425 /// value out of it based on its initializer?
1426 static bool isConstantEmittableObjectType(QualType type
) {
1427 assert(type
.isCanonical());
1428 assert(!type
->isReferenceType());
1430 // Must be const-qualified but non-volatile.
1431 Qualifiers qs
= type
.getLocalQualifiers();
1432 if (!qs
.hasConst() || qs
.hasVolatile()) return false;
1434 // Otherwise, all object types satisfy this except C++ classes with
1435 // mutable subobjects or non-trivial copy/destroy behavior.
1436 if (const auto *RT
= dyn_cast
<RecordType
>(type
))
1437 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl()))
1438 if (RD
->hasMutableFields() || !RD
->isTrivial())
1444 /// Can we constant-emit a load of a reference to a variable of the
1445 /// given type? This is different from predicates like
1446 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1447 /// in situations that don't necessarily satisfy the language's rules
1448 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
1449 /// to do this with const float variables even if those variables
1450 /// aren't marked 'constexpr'.
1451 enum ConstantEmissionKind
{
1453 CEK_AsReferenceOnly
,
1454 CEK_AsValueOrReference
,
1457 static ConstantEmissionKind
checkVarTypeForConstantEmission(QualType type
) {
1458 type
= type
.getCanonicalType();
1459 if (const auto *ref
= dyn_cast
<ReferenceType
>(type
)) {
1460 if (isConstantEmittableObjectType(ref
->getPointeeType()))
1461 return CEK_AsValueOrReference
;
1462 return CEK_AsReferenceOnly
;
1464 if (isConstantEmittableObjectType(type
))
1465 return CEK_AsValueOnly
;
1469 /// Try to emit a reference to the given value without producing it as
1470 /// an l-value. This is just an optimization, but it avoids us needing
1471 /// to emit global copies of variables if they're named without triggering
1472 /// a formal use in a context where we can't emit a direct reference to them,
1473 /// for instance if a block or lambda or a member of a local class uses a
1474 /// const int variable or constexpr variable from an enclosing function.
1475 CodeGenFunction::ConstantEmission
1476 CodeGenFunction::tryEmitAsConstant(DeclRefExpr
*refExpr
) {
1477 ValueDecl
*value
= refExpr
->getDecl();
1479 // The value needs to be an enum constant or a constant variable.
1480 ConstantEmissionKind CEK
;
1481 if (isa
<ParmVarDecl
>(value
)) {
1483 } else if (auto *var
= dyn_cast
<VarDecl
>(value
)) {
1484 CEK
= checkVarTypeForConstantEmission(var
->getType());
1485 } else if (isa
<EnumConstantDecl
>(value
)) {
1486 CEK
= CEK_AsValueOnly
;
1490 if (CEK
== CEK_None
) return ConstantEmission();
1492 Expr::EvalResult result
;
1493 bool resultIsReference
;
1494 QualType resultType
;
1496 // It's best to evaluate all the way as an r-value if that's permitted.
1497 if (CEK
!= CEK_AsReferenceOnly
&&
1498 refExpr
->EvaluateAsRValue(result
, getContext())) {
1499 resultIsReference
= false;
1500 resultType
= refExpr
->getType();
1502 // Otherwise, try to evaluate as an l-value.
1503 } else if (CEK
!= CEK_AsValueOnly
&&
1504 refExpr
->EvaluateAsLValue(result
, getContext())) {
1505 resultIsReference
= true;
1506 resultType
= value
->getType();
1510 return ConstantEmission();
1513 // In any case, if the initializer has side-effects, abandon ship.
1514 if (result
.HasSideEffects
)
1515 return ConstantEmission();
1517 // In CUDA/HIP device compilation, a lambda may capture a reference variable
1518 // referencing a global host variable by copy. In this case the lambda should
1519 // make a copy of the value of the global host variable. The DRE of the
1520 // captured reference variable cannot be emitted as load from the host
1521 // global variable as compile time constant, since the host variable is not
1522 // accessible on device. The DRE of the captured reference variable has to be
1523 // loaded from captures.
1524 if (CGM
.getLangOpts().CUDAIsDevice
&& result
.Val
.isLValue() &&
1525 refExpr
->refersToEnclosingVariableOrCapture()) {
1526 auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(CurCodeDecl
);
1527 if (MD
&& MD
->getParent()->isLambda() &&
1528 MD
->getOverloadedOperator() == OO_Call
) {
1529 const APValue::LValueBase
&base
= result
.Val
.getLValueBase();
1530 if (const ValueDecl
*D
= base
.dyn_cast
<const ValueDecl
*>()) {
1531 if (const VarDecl
*VD
= dyn_cast
<const VarDecl
>(D
)) {
1532 if (!VD
->hasAttr
<CUDADeviceAttr
>()) {
1533 return ConstantEmission();
1540 // Emit as a constant.
1541 auto C
= ConstantEmitter(*this).emitAbstract(refExpr
->getLocation(),
1542 result
.Val
, resultType
);
1544 // Make sure we emit a debug reference to the global variable.
1545 // This should probably fire even for
1546 if (isa
<VarDecl
>(value
)) {
1547 if (!getContext().DeclMustBeEmitted(cast
<VarDecl
>(value
)))
1548 EmitDeclRefExprDbgValue(refExpr
, result
.Val
);
1550 assert(isa
<EnumConstantDecl
>(value
));
1551 EmitDeclRefExprDbgValue(refExpr
, result
.Val
);
1554 // If we emitted a reference constant, we need to dereference that.
1555 if (resultIsReference
)
1556 return ConstantEmission::forReference(C
);
1558 return ConstantEmission::forValue(C
);
1561 static DeclRefExpr
*tryToConvertMemberExprToDeclRefExpr(CodeGenFunction
&CGF
,
1562 const MemberExpr
*ME
) {
1563 if (auto *VD
= dyn_cast
<VarDecl
>(ME
->getMemberDecl())) {
1564 // Try to emit static variable member expressions as DREs.
1565 return DeclRefExpr::Create(
1566 CGF
.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD
,
1567 /*RefersToEnclosingVariableOrCapture=*/false, ME
->getExprLoc(),
1568 ME
->getType(), ME
->getValueKind(), nullptr, nullptr, ME
->isNonOdrUse());
1573 CodeGenFunction::ConstantEmission
1574 CodeGenFunction::tryEmitAsConstant(const MemberExpr
*ME
) {
1575 if (DeclRefExpr
*DRE
= tryToConvertMemberExprToDeclRefExpr(*this, ME
))
1576 return tryEmitAsConstant(DRE
);
1577 return ConstantEmission();
1580 llvm::Value
*CodeGenFunction::emitScalarConstant(
1581 const CodeGenFunction::ConstantEmission
&Constant
, Expr
*E
) {
1582 assert(Constant
&& "not a constant");
1583 if (Constant
.isReference())
1584 return EmitLoadOfLValue(Constant
.getReferenceLValue(*this, E
),
1587 return Constant
.getValue();
1590 llvm::Value
*CodeGenFunction::EmitLoadOfScalar(LValue lvalue
,
1591 SourceLocation Loc
) {
1592 return EmitLoadOfScalar(lvalue
.getAddress(*this), lvalue
.isVolatile(),
1593 lvalue
.getType(), Loc
, lvalue
.getBaseInfo(),
1594 lvalue
.getTBAAInfo(), lvalue
.isNontemporal());
1597 static bool hasBooleanRepresentation(QualType Ty
) {
1598 if (Ty
->isBooleanType())
1601 if (const EnumType
*ET
= Ty
->getAs
<EnumType
>())
1602 return ET
->getDecl()->getIntegerType()->isBooleanType();
1604 if (const AtomicType
*AT
= Ty
->getAs
<AtomicType
>())
1605 return hasBooleanRepresentation(AT
->getValueType());
1610 static bool getRangeForType(CodeGenFunction
&CGF
, QualType Ty
,
1611 llvm::APInt
&Min
, llvm::APInt
&End
,
1612 bool StrictEnums
, bool IsBool
) {
1613 const EnumType
*ET
= Ty
->getAs
<EnumType
>();
1614 bool IsRegularCPlusPlusEnum
= CGF
.getLangOpts().CPlusPlus
&& StrictEnums
&&
1615 ET
&& !ET
->getDecl()->isFixed();
1616 if (!IsBool
&& !IsRegularCPlusPlusEnum
)
1620 Min
= llvm::APInt(CGF
.getContext().getTypeSize(Ty
), 0);
1621 End
= llvm::APInt(CGF
.getContext().getTypeSize(Ty
), 2);
1623 const EnumDecl
*ED
= ET
->getDecl();
1624 ED
->getValueRange(End
, Min
);
1629 llvm::MDNode
*CodeGenFunction::getRangeForLoadFromType(QualType Ty
) {
1630 llvm::APInt Min
, End
;
1631 if (!getRangeForType(*this, Ty
, Min
, End
, CGM
.getCodeGenOpts().StrictEnums
,
1632 hasBooleanRepresentation(Ty
)))
1635 llvm::MDBuilder
MDHelper(getLLVMContext());
1636 return MDHelper
.createRange(Min
, End
);
1639 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value
*Value
, QualType Ty
,
1640 SourceLocation Loc
) {
1641 bool HasBoolCheck
= SanOpts
.has(SanitizerKind::Bool
);
1642 bool HasEnumCheck
= SanOpts
.has(SanitizerKind::Enum
);
1643 if (!HasBoolCheck
&& !HasEnumCheck
)
1646 bool IsBool
= hasBooleanRepresentation(Ty
) ||
1647 NSAPI(CGM
.getContext()).isObjCBOOLType(Ty
);
1648 bool NeedsBoolCheck
= HasBoolCheck
&& IsBool
;
1649 bool NeedsEnumCheck
= HasEnumCheck
&& Ty
->getAs
<EnumType
>();
1650 if (!NeedsBoolCheck
&& !NeedsEnumCheck
)
1653 // Single-bit booleans don't need to be checked. Special-case this to avoid
1654 // a bit width mismatch when handling bitfield values. This is handled by
1655 // EmitFromMemory for the non-bitfield case.
1657 cast
<llvm::IntegerType
>(Value
->getType())->getBitWidth() == 1)
1660 llvm::APInt Min
, End
;
1661 if (!getRangeForType(*this, Ty
, Min
, End
, /*StrictEnums=*/true, IsBool
))
1664 auto &Ctx
= getLLVMContext();
1665 SanitizerScope
SanScope(this);
1669 Check
= Builder
.CreateICmpULE(Value
, llvm::ConstantInt::get(Ctx
, End
));
1671 llvm::Value
*Upper
=
1672 Builder
.CreateICmpSLE(Value
, llvm::ConstantInt::get(Ctx
, End
));
1673 llvm::Value
*Lower
=
1674 Builder
.CreateICmpSGE(Value
, llvm::ConstantInt::get(Ctx
, Min
));
1675 Check
= Builder
.CreateAnd(Upper
, Lower
);
1677 llvm::Constant
*StaticArgs
[] = {EmitCheckSourceLocation(Loc
),
1678 EmitCheckTypeDescriptor(Ty
)};
1679 SanitizerMask Kind
=
1680 NeedsEnumCheck
? SanitizerKind::Enum
: SanitizerKind::Bool
;
1681 EmitCheck(std::make_pair(Check
, Kind
), SanitizerHandler::LoadInvalidValue
,
1682 StaticArgs
, EmitCheckValue(Value
));
1686 llvm::Value
*CodeGenFunction::EmitLoadOfScalar(Address Addr
, bool Volatile
,
1689 LValueBaseInfo BaseInfo
,
1690 TBAAAccessInfo TBAAInfo
,
1691 bool isNontemporal
) {
1692 if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
.getPointer()))
1693 if (GV
->isThreadLocal())
1694 Addr
= Addr
.withPointer(Builder
.CreateThreadLocalAddress(GV
));
1696 if (const auto *ClangVecTy
= Ty
->getAs
<VectorType
>()) {
1697 // Boolean vectors use `iN` as storage type.
1698 if (ClangVecTy
->isExtVectorBoolType()) {
1699 llvm::Type
*ValTy
= ConvertType(Ty
);
1700 unsigned ValNumElems
=
1701 cast
<llvm::FixedVectorType
>(ValTy
)->getNumElements();
1702 // Load the `iP` storage object (P is the padded vector size).
1703 auto *RawIntV
= Builder
.CreateLoad(Addr
, Volatile
, "load_bits");
1704 const auto *RawIntTy
= RawIntV
->getType();
1705 assert(RawIntTy
->isIntegerTy() && "compressed iN storage for bitvectors");
1706 // Bitcast iP --> <P x i1>.
1707 auto *PaddedVecTy
= llvm::FixedVectorType::get(
1708 Builder
.getInt1Ty(), RawIntTy
->getPrimitiveSizeInBits());
1709 llvm::Value
*V
= Builder
.CreateBitCast(RawIntV
, PaddedVecTy
);
1710 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1711 V
= emitBoolVecConversion(V
, ValNumElems
, "extractvec");
1713 return EmitFromMemory(V
, Ty
);
1716 // Handle vectors of size 3 like size 4 for better performance.
1717 const llvm::Type
*EltTy
= Addr
.getElementType();
1718 const auto *VTy
= cast
<llvm::FixedVectorType
>(EltTy
);
1720 if (!CGM
.getCodeGenOpts().PreserveVec3Type
&& VTy
->getNumElements() == 3) {
1722 // Bitcast to vec4 type.
1723 llvm::VectorType
*vec4Ty
=
1724 llvm::FixedVectorType::get(VTy
->getElementType(), 4);
1725 Address Cast
= Builder
.CreateElementBitCast(Addr
, vec4Ty
, "castToVec4");
1727 llvm::Value
*V
= Builder
.CreateLoad(Cast
, Volatile
, "loadVec4");
1729 // Shuffle vector to get vec3.
1730 V
= Builder
.CreateShuffleVector(V
, ArrayRef
<int>{0, 1, 2}, "extractVec");
1731 return EmitFromMemory(V
, Ty
);
1735 // Atomic operations have to be done on integral types.
1736 LValue AtomicLValue
=
1737 LValue::MakeAddr(Addr
, Ty
, getContext(), BaseInfo
, TBAAInfo
);
1738 if (Ty
->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue
)) {
1739 return EmitAtomicLoad(AtomicLValue
, Loc
).getScalarVal();
1742 llvm::LoadInst
*Load
= Builder
.CreateLoad(Addr
, Volatile
);
1743 if (isNontemporal
) {
1744 llvm::MDNode
*Node
= llvm::MDNode::get(
1745 Load
->getContext(), llvm::ConstantAsMetadata::get(Builder
.getInt32(1)));
1746 Load
->setMetadata(CGM
.getModule().getMDKindID("nontemporal"), Node
);
1749 CGM
.DecorateInstructionWithTBAA(Load
, TBAAInfo
);
1751 if (EmitScalarRangeCheck(Load
, Ty
, Loc
)) {
1752 // In order to prevent the optimizer from throwing away the check, don't
1753 // attach range metadata to the load.
1754 } else if (CGM
.getCodeGenOpts().OptimizationLevel
> 0)
1755 if (llvm::MDNode
*RangeInfo
= getRangeForLoadFromType(Ty
)) {
1756 Load
->setMetadata(llvm::LLVMContext::MD_range
, RangeInfo
);
1757 Load
->setMetadata(llvm::LLVMContext::MD_noundef
,
1758 llvm::MDNode::get(getLLVMContext(), std::nullopt
));
1761 return EmitFromMemory(Load
, Ty
);
1764 llvm::Value
*CodeGenFunction::EmitToMemory(llvm::Value
*Value
, QualType Ty
) {
1765 // Bool has a different representation in memory than in registers.
1766 if (hasBooleanRepresentation(Ty
)) {
1767 // This should really always be an i1, but sometimes it's already
1768 // an i8, and it's awkward to track those cases down.
1769 if (Value
->getType()->isIntegerTy(1))
1770 return Builder
.CreateZExt(Value
, ConvertTypeForMem(Ty
), "frombool");
1771 assert(Value
->getType()->isIntegerTy(getContext().getTypeSize(Ty
)) &&
1772 "wrong value rep of bool");
1778 llvm::Value
*CodeGenFunction::EmitFromMemory(llvm::Value
*Value
, QualType Ty
) {
1779 // Bool has a different representation in memory than in registers.
1780 if (hasBooleanRepresentation(Ty
)) {
1781 assert(Value
->getType()->isIntegerTy(getContext().getTypeSize(Ty
)) &&
1782 "wrong value rep of bool");
1783 return Builder
.CreateTrunc(Value
, Builder
.getInt1Ty(), "tobool");
1785 if (Ty
->isExtVectorBoolType()) {
1786 const auto *RawIntTy
= Value
->getType();
1787 // Bitcast iP --> <P x i1>.
1788 auto *PaddedVecTy
= llvm::FixedVectorType::get(
1789 Builder
.getInt1Ty(), RawIntTy
->getPrimitiveSizeInBits());
1790 auto *V
= Builder
.CreateBitCast(Value
, PaddedVecTy
);
1791 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1792 llvm::Type
*ValTy
= ConvertType(Ty
);
1793 unsigned ValNumElems
= cast
<llvm::FixedVectorType
>(ValTy
)->getNumElements();
1794 return emitBoolVecConversion(V
, ValNumElems
, "extractvec");
1800 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1801 // MatrixType), if it points to a array (the memory type of MatrixType).
1802 static Address
MaybeConvertMatrixAddress(Address Addr
, CodeGenFunction
&CGF
,
1803 bool IsVector
= true) {
1804 auto *ArrayTy
= dyn_cast
<llvm::ArrayType
>(Addr
.getElementType());
1805 if (ArrayTy
&& IsVector
) {
1806 auto *VectorTy
= llvm::FixedVectorType::get(ArrayTy
->getElementType(),
1807 ArrayTy
->getNumElements());
1809 return Address(CGF
.Builder
.CreateElementBitCast(Addr
, VectorTy
));
1811 auto *VectorTy
= dyn_cast
<llvm::VectorType
>(Addr
.getElementType());
1812 if (VectorTy
&& !IsVector
) {
1813 auto *ArrayTy
= llvm::ArrayType::get(
1814 VectorTy
->getElementType(),
1815 cast
<llvm::FixedVectorType
>(VectorTy
)->getNumElements());
1817 return Address(CGF
.Builder
.CreateElementBitCast(Addr
, ArrayTy
));
1823 // Emit a store of a matrix LValue. This may require casting the original
1824 // pointer to memory address (ArrayType) to a pointer to the value type
1826 static void EmitStoreOfMatrixScalar(llvm::Value
*value
, LValue lvalue
,
1827 bool isInit
, CodeGenFunction
&CGF
) {
1828 Address Addr
= MaybeConvertMatrixAddress(lvalue
.getAddress(CGF
), CGF
,
1829 value
->getType()->isVectorTy());
1830 CGF
.EmitStoreOfScalar(value
, Addr
, lvalue
.isVolatile(), lvalue
.getType(),
1831 lvalue
.getBaseInfo(), lvalue
.getTBAAInfo(), isInit
,
1832 lvalue
.isNontemporal());
1835 void CodeGenFunction::EmitStoreOfScalar(llvm::Value
*Value
, Address Addr
,
1836 bool Volatile
, QualType Ty
,
1837 LValueBaseInfo BaseInfo
,
1838 TBAAAccessInfo TBAAInfo
,
1839 bool isInit
, bool isNontemporal
) {
1840 if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
.getPointer()))
1841 if (GV
->isThreadLocal())
1842 Addr
= Addr
.withPointer(Builder
.CreateThreadLocalAddress(GV
));
1844 llvm::Type
*SrcTy
= Value
->getType();
1845 if (const auto *ClangVecTy
= Ty
->getAs
<VectorType
>()) {
1846 auto *VecTy
= dyn_cast
<llvm::FixedVectorType
>(SrcTy
);
1847 if (VecTy
&& ClangVecTy
->isExtVectorBoolType()) {
1848 auto *MemIntTy
= cast
<llvm::IntegerType
>(Addr
.getElementType());
1849 // Expand to the memory bit width.
1850 unsigned MemNumElems
= MemIntTy
->getPrimitiveSizeInBits();
1851 // <N x i1> --> <P x i1>.
1852 Value
= emitBoolVecConversion(Value
, MemNumElems
, "insertvec");
1854 Value
= Builder
.CreateBitCast(Value
, MemIntTy
);
1855 } else if (!CGM
.getCodeGenOpts().PreserveVec3Type
) {
1856 // Handle vec3 special.
1857 if (VecTy
&& cast
<llvm::FixedVectorType
>(VecTy
)->getNumElements() == 3) {
1858 // Our source is a vec3, do a shuffle vector to make it a vec4.
1859 Value
= Builder
.CreateShuffleVector(Value
, ArrayRef
<int>{0, 1, 2, -1},
1861 SrcTy
= llvm::FixedVectorType::get(VecTy
->getElementType(), 4);
1863 if (Addr
.getElementType() != SrcTy
) {
1864 Addr
= Builder
.CreateElementBitCast(Addr
, SrcTy
, "storetmp");
1869 Value
= EmitToMemory(Value
, Ty
);
1871 LValue AtomicLValue
=
1872 LValue::MakeAddr(Addr
, Ty
, getContext(), BaseInfo
, TBAAInfo
);
1873 if (Ty
->isAtomicType() ||
1874 (!isInit
&& LValueIsSuitableForInlineAtomic(AtomicLValue
))) {
1875 EmitAtomicStore(RValue::get(Value
), AtomicLValue
, isInit
);
1879 llvm::StoreInst
*Store
= Builder
.CreateStore(Value
, Addr
, Volatile
);
1880 if (isNontemporal
) {
1881 llvm::MDNode
*Node
=
1882 llvm::MDNode::get(Store
->getContext(),
1883 llvm::ConstantAsMetadata::get(Builder
.getInt32(1)));
1884 Store
->setMetadata(CGM
.getModule().getMDKindID("nontemporal"), Node
);
1887 CGM
.DecorateInstructionWithTBAA(Store
, TBAAInfo
);
1890 void CodeGenFunction::EmitStoreOfScalar(llvm::Value
*value
, LValue lvalue
,
1892 if (lvalue
.getType()->isConstantMatrixType()) {
1893 EmitStoreOfMatrixScalar(value
, lvalue
, isInit
, *this);
1897 EmitStoreOfScalar(value
, lvalue
.getAddress(*this), lvalue
.isVolatile(),
1898 lvalue
.getType(), lvalue
.getBaseInfo(),
1899 lvalue
.getTBAAInfo(), isInit
, lvalue
.isNontemporal());
1902 // Emit a load of a LValue of matrix type. This may require casting the pointer
1903 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1904 static RValue
EmitLoadOfMatrixLValue(LValue LV
, SourceLocation Loc
,
1905 CodeGenFunction
&CGF
) {
1906 assert(LV
.getType()->isConstantMatrixType());
1907 Address Addr
= MaybeConvertMatrixAddress(LV
.getAddress(CGF
), CGF
);
1908 LV
.setAddress(Addr
);
1909 return RValue::get(CGF
.EmitLoadOfScalar(LV
, Loc
));
1912 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1913 /// method emits the address of the lvalue, then loads the result as an rvalue,
1914 /// returning the rvalue.
1915 RValue
CodeGenFunction::EmitLoadOfLValue(LValue LV
, SourceLocation Loc
) {
1916 if (LV
.isObjCWeak()) {
1917 // load of a __weak object.
1918 Address AddrWeakObj
= LV
.getAddress(*this);
1919 return RValue::get(CGM
.getObjCRuntime().EmitObjCWeakRead(*this,
1922 if (LV
.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1923 // In MRC mode, we do a load+autorelease.
1924 if (!getLangOpts().ObjCAutoRefCount
) {
1925 return RValue::get(EmitARCLoadWeak(LV
.getAddress(*this)));
1928 // In ARC mode, we load retained and then consume the value.
1929 llvm::Value
*Object
= EmitARCLoadWeakRetained(LV
.getAddress(*this));
1930 Object
= EmitObjCConsumeObject(LV
.getType(), Object
);
1931 return RValue::get(Object
);
1934 if (LV
.isSimple()) {
1935 assert(!LV
.getType()->isFunctionType());
1937 if (LV
.getType()->isConstantMatrixType())
1938 return EmitLoadOfMatrixLValue(LV
, Loc
, *this);
1940 // Everything needs a load.
1941 return RValue::get(EmitLoadOfScalar(LV
, Loc
));
1944 if (LV
.isVectorElt()) {
1945 llvm::LoadInst
*Load
= Builder
.CreateLoad(LV
.getVectorAddress(),
1946 LV
.isVolatileQualified());
1947 return RValue::get(Builder
.CreateExtractElement(Load
, LV
.getVectorIdx(),
1951 // If this is a reference to a subset of the elements of a vector, either
1952 // shuffle the input or extract/insert them as appropriate.
1953 if (LV
.isExtVectorElt()) {
1954 return EmitLoadOfExtVectorElementLValue(LV
);
1957 // Global Register variables always invoke intrinsics
1958 if (LV
.isGlobalReg())
1959 return EmitLoadOfGlobalRegLValue(LV
);
1961 if (LV
.isMatrixElt()) {
1962 llvm::Value
*Idx
= LV
.getMatrixIdx();
1963 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0) {
1964 const auto *const MatTy
= LV
.getType()->castAs
<ConstantMatrixType
>();
1965 llvm::MatrixBuilder
MB(Builder
);
1966 MB
.CreateIndexAssumption(Idx
, MatTy
->getNumElementsFlattened());
1968 llvm::LoadInst
*Load
=
1969 Builder
.CreateLoad(LV
.getMatrixAddress(), LV
.isVolatileQualified());
1970 return RValue::get(Builder
.CreateExtractElement(Load
, Idx
, "matrixext"));
1973 assert(LV
.isBitField() && "Unknown LValue type!");
1974 return EmitLoadOfBitfieldLValue(LV
, Loc
);
1977 RValue
CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV
,
1978 SourceLocation Loc
) {
1979 const CGBitFieldInfo
&Info
= LV
.getBitFieldInfo();
1981 // Get the output type.
1982 llvm::Type
*ResLTy
= ConvertType(LV
.getType());
1984 Address Ptr
= LV
.getBitFieldAddress();
1986 Builder
.CreateLoad(Ptr
, LV
.isVolatileQualified(), "bf.load");
1988 bool UseVolatile
= LV
.isVolatileQualified() &&
1989 Info
.VolatileStorageSize
!= 0 && isAAPCS(CGM
.getTarget());
1990 const unsigned Offset
= UseVolatile
? Info
.VolatileOffset
: Info
.Offset
;
1991 const unsigned StorageSize
=
1992 UseVolatile
? Info
.VolatileStorageSize
: Info
.StorageSize
;
1993 if (Info
.IsSigned
) {
1994 assert(static_cast<unsigned>(Offset
+ Info
.Size
) <= StorageSize
);
1995 unsigned HighBits
= StorageSize
- Offset
- Info
.Size
;
1997 Val
= Builder
.CreateShl(Val
, HighBits
, "bf.shl");
1998 if (Offset
+ HighBits
)
1999 Val
= Builder
.CreateAShr(Val
, Offset
+ HighBits
, "bf.ashr");
2002 Val
= Builder
.CreateLShr(Val
, Offset
, "bf.lshr");
2003 if (static_cast<unsigned>(Offset
) + Info
.Size
< StorageSize
)
2004 Val
= Builder
.CreateAnd(
2005 Val
, llvm::APInt::getLowBitsSet(StorageSize
, Info
.Size
), "bf.clear");
2007 Val
= Builder
.CreateIntCast(Val
, ResLTy
, Info
.IsSigned
, "bf.cast");
2008 EmitScalarRangeCheck(Val
, LV
.getType(), Loc
);
2009 return RValue::get(Val
);
2012 // If this is a reference to a subset of the elements of a vector, create an
2013 // appropriate shufflevector.
2014 RValue
CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV
) {
2015 llvm::Value
*Vec
= Builder
.CreateLoad(LV
.getExtVectorAddress(),
2016 LV
.isVolatileQualified());
2018 const llvm::Constant
*Elts
= LV
.getExtVectorElts();
2020 // If the result of the expression is a non-vector type, we must be extracting
2021 // a single element. Just codegen as an extractelement.
2022 const VectorType
*ExprVT
= LV
.getType()->getAs
<VectorType
>();
2024 unsigned InIdx
= getAccessedFieldNo(0, Elts
);
2025 llvm::Value
*Elt
= llvm::ConstantInt::get(SizeTy
, InIdx
);
2026 return RValue::get(Builder
.CreateExtractElement(Vec
, Elt
));
2029 // Always use shuffle vector to try to retain the original program structure
2030 unsigned NumResultElts
= ExprVT
->getNumElements();
2032 SmallVector
<int, 4> Mask
;
2033 for (unsigned i
= 0; i
!= NumResultElts
; ++i
)
2034 Mask
.push_back(getAccessedFieldNo(i
, Elts
));
2036 Vec
= Builder
.CreateShuffleVector(Vec
, Mask
);
2037 return RValue::get(Vec
);
2040 /// Generates lvalue for partial ext_vector access.
2041 Address
CodeGenFunction::EmitExtVectorElementLValue(LValue LV
) {
2042 Address VectorAddress
= LV
.getExtVectorAddress();
2043 QualType EQT
= LV
.getType()->castAs
<VectorType
>()->getElementType();
2044 llvm::Type
*VectorElementTy
= CGM
.getTypes().ConvertType(EQT
);
2046 Address CastToPointerElement
=
2047 Builder
.CreateElementBitCast(VectorAddress
, VectorElementTy
,
2048 "conv.ptr.element");
2050 const llvm::Constant
*Elts
= LV
.getExtVectorElts();
2051 unsigned ix
= getAccessedFieldNo(0, Elts
);
2053 Address VectorBasePtrPlusIx
=
2054 Builder
.CreateConstInBoundsGEP(CastToPointerElement
, ix
,
2057 return VectorBasePtrPlusIx
;
2060 /// Load of global gamed gegisters are always calls to intrinsics.
2061 RValue
CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV
) {
2062 assert((LV
.getType()->isIntegerType() || LV
.getType()->isPointerType()) &&
2063 "Bad type for register variable");
2064 llvm::MDNode
*RegName
= cast
<llvm::MDNode
>(
2065 cast
<llvm::MetadataAsValue
>(LV
.getGlobalReg())->getMetadata());
2067 // We accept integer and pointer types only
2068 llvm::Type
*OrigTy
= CGM
.getTypes().ConvertType(LV
.getType());
2069 llvm::Type
*Ty
= OrigTy
;
2070 if (OrigTy
->isPointerTy())
2071 Ty
= CGM
.getTypes().getDataLayout().getIntPtrType(OrigTy
);
2072 llvm::Type
*Types
[] = { Ty
};
2074 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::read_register
, Types
);
2075 llvm::Value
*Call
= Builder
.CreateCall(
2076 F
, llvm::MetadataAsValue::get(Ty
->getContext(), RegName
));
2077 if (OrigTy
->isPointerTy())
2078 Call
= Builder
.CreateIntToPtr(Call
, OrigTy
);
2079 return RValue::get(Call
);
2082 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2083 /// lvalue, where both are guaranteed to the have the same type, and that type
2085 void CodeGenFunction::EmitStoreThroughLValue(RValue Src
, LValue Dst
,
2087 if (!Dst
.isSimple()) {
2088 if (Dst
.isVectorElt()) {
2089 // Read/modify/write the vector, inserting the new element.
2090 llvm::Value
*Vec
= Builder
.CreateLoad(Dst
.getVectorAddress(),
2091 Dst
.isVolatileQualified());
2092 auto *IRStoreTy
= dyn_cast
<llvm::IntegerType
>(Vec
->getType());
2094 auto *IRVecTy
= llvm::FixedVectorType::get(
2095 Builder
.getInt1Ty(), IRStoreTy
->getPrimitiveSizeInBits());
2096 Vec
= Builder
.CreateBitCast(Vec
, IRVecTy
);
2099 Vec
= Builder
.CreateInsertElement(Vec
, Src
.getScalarVal(),
2100 Dst
.getVectorIdx(), "vecins");
2102 // <N x i1> --> <iN>.
2103 Vec
= Builder
.CreateBitCast(Vec
, IRStoreTy
);
2105 Builder
.CreateStore(Vec
, Dst
.getVectorAddress(),
2106 Dst
.isVolatileQualified());
2110 // If this is an update of extended vector elements, insert them as
2112 if (Dst
.isExtVectorElt())
2113 return EmitStoreThroughExtVectorComponentLValue(Src
, Dst
);
2115 if (Dst
.isGlobalReg())
2116 return EmitStoreThroughGlobalRegLValue(Src
, Dst
);
2118 if (Dst
.isMatrixElt()) {
2119 llvm::Value
*Idx
= Dst
.getMatrixIdx();
2120 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0) {
2121 const auto *const MatTy
= Dst
.getType()->castAs
<ConstantMatrixType
>();
2122 llvm::MatrixBuilder
MB(Builder
);
2123 MB
.CreateIndexAssumption(Idx
, MatTy
->getNumElementsFlattened());
2125 llvm::Instruction
*Load
= Builder
.CreateLoad(Dst
.getMatrixAddress());
2127 Builder
.CreateInsertElement(Load
, Src
.getScalarVal(), Idx
, "matins");
2128 Builder
.CreateStore(Vec
, Dst
.getMatrixAddress(),
2129 Dst
.isVolatileQualified());
2133 assert(Dst
.isBitField() && "Unknown LValue type");
2134 return EmitStoreThroughBitfieldLValue(Src
, Dst
);
2137 // There's special magic for assigning into an ARC-qualified l-value.
2138 if (Qualifiers::ObjCLifetime Lifetime
= Dst
.getQuals().getObjCLifetime()) {
2140 case Qualifiers::OCL_None
:
2141 llvm_unreachable("present but none");
2143 case Qualifiers::OCL_ExplicitNone
:
2147 case Qualifiers::OCL_Strong
:
2149 Src
= RValue::get(EmitARCRetain(Dst
.getType(), Src
.getScalarVal()));
2152 EmitARCStoreStrong(Dst
, Src
.getScalarVal(), /*ignore*/ true);
2155 case Qualifiers::OCL_Weak
:
2157 // Initialize and then skip the primitive store.
2158 EmitARCInitWeak(Dst
.getAddress(*this), Src
.getScalarVal());
2160 EmitARCStoreWeak(Dst
.getAddress(*this), Src
.getScalarVal(),
2164 case Qualifiers::OCL_Autoreleasing
:
2165 Src
= RValue::get(EmitObjCExtendObjectLifetime(Dst
.getType(),
2166 Src
.getScalarVal()));
2167 // fall into the normal path
2172 if (Dst
.isObjCWeak() && !Dst
.isNonGC()) {
2173 // load of a __weak object.
2174 Address LvalueDst
= Dst
.getAddress(*this);
2175 llvm::Value
*src
= Src
.getScalarVal();
2176 CGM
.getObjCRuntime().EmitObjCWeakAssign(*this, src
, LvalueDst
);
2180 if (Dst
.isObjCStrong() && !Dst
.isNonGC()) {
2181 // load of a __strong object.
2182 Address LvalueDst
= Dst
.getAddress(*this);
2183 llvm::Value
*src
= Src
.getScalarVal();
2184 if (Dst
.isObjCIvar()) {
2185 assert(Dst
.getBaseIvarExp() && "BaseIvarExp is NULL");
2186 llvm::Type
*ResultType
= IntPtrTy
;
2187 Address dst
= EmitPointerWithAlignment(Dst
.getBaseIvarExp());
2188 llvm::Value
*RHS
= dst
.getPointer();
2189 RHS
= Builder
.CreatePtrToInt(RHS
, ResultType
, "sub.ptr.rhs.cast");
2191 Builder
.CreatePtrToInt(LvalueDst
.getPointer(), ResultType
,
2192 "sub.ptr.lhs.cast");
2193 llvm::Value
*BytesBetween
= Builder
.CreateSub(LHS
, RHS
, "ivar.offset");
2194 CGM
.getObjCRuntime().EmitObjCIvarAssign(*this, src
, dst
,
2196 } else if (Dst
.isGlobalObjCRef()) {
2197 CGM
.getObjCRuntime().EmitObjCGlobalAssign(*this, src
, LvalueDst
,
2198 Dst
.isThreadLocalRef());
2201 CGM
.getObjCRuntime().EmitObjCStrongCastAssign(*this, src
, LvalueDst
);
2205 assert(Src
.isScalar() && "Can't emit an agg store with this method");
2206 EmitStoreOfScalar(Src
.getScalarVal(), Dst
, isInit
);
2209 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src
, LValue Dst
,
2210 llvm::Value
**Result
) {
2211 const CGBitFieldInfo
&Info
= Dst
.getBitFieldInfo();
2212 llvm::Type
*ResLTy
= ConvertTypeForMem(Dst
.getType());
2213 Address Ptr
= Dst
.getBitFieldAddress();
2215 // Get the source value, truncated to the width of the bit-field.
2216 llvm::Value
*SrcVal
= Src
.getScalarVal();
2218 // Cast the source to the storage type and shift it into place.
2219 SrcVal
= Builder
.CreateIntCast(SrcVal
, Ptr
.getElementType(),
2220 /*isSigned=*/false);
2221 llvm::Value
*MaskedVal
= SrcVal
;
2223 const bool UseVolatile
=
2224 CGM
.getCodeGenOpts().AAPCSBitfieldWidth
&& Dst
.isVolatileQualified() &&
2225 Info
.VolatileStorageSize
!= 0 && isAAPCS(CGM
.getTarget());
2226 const unsigned StorageSize
=
2227 UseVolatile
? Info
.VolatileStorageSize
: Info
.StorageSize
;
2228 const unsigned Offset
= UseVolatile
? Info
.VolatileOffset
: Info
.Offset
;
2229 // See if there are other bits in the bitfield's storage we'll need to load
2230 // and mask together with source before storing.
2231 if (StorageSize
!= Info
.Size
) {
2232 assert(StorageSize
> Info
.Size
&& "Invalid bitfield size.");
2234 Builder
.CreateLoad(Ptr
, Dst
.isVolatileQualified(), "bf.load");
2236 // Mask the source value as needed.
2237 if (!hasBooleanRepresentation(Dst
.getType()))
2238 SrcVal
= Builder
.CreateAnd(
2239 SrcVal
, llvm::APInt::getLowBitsSet(StorageSize
, Info
.Size
),
2243 SrcVal
= Builder
.CreateShl(SrcVal
, Offset
, "bf.shl");
2245 // Mask out the original value.
2246 Val
= Builder
.CreateAnd(
2247 Val
, ~llvm::APInt::getBitsSet(StorageSize
, Offset
, Offset
+ Info
.Size
),
2250 // Or together the unchanged values and the source value.
2251 SrcVal
= Builder
.CreateOr(Val
, SrcVal
, "bf.set");
2253 assert(Offset
== 0);
2254 // According to the AACPS:
2255 // When a volatile bit-field is written, and its container does not overlap
2256 // with any non-bit-field member, its container must be read exactly once
2257 // and written exactly once using the access width appropriate to the type
2258 // of the container. The two accesses are not atomic.
2259 if (Dst
.isVolatileQualified() && isAAPCS(CGM
.getTarget()) &&
2260 CGM
.getCodeGenOpts().ForceAAPCSBitfieldLoad
)
2261 Builder
.CreateLoad(Ptr
, true, "bf.load");
2264 // Write the new value back out.
2265 Builder
.CreateStore(SrcVal
, Ptr
, Dst
.isVolatileQualified());
2267 // Return the new value of the bit-field, if requested.
2269 llvm::Value
*ResultVal
= MaskedVal
;
2271 // Sign extend the value if needed.
2272 if (Info
.IsSigned
) {
2273 assert(Info
.Size
<= StorageSize
);
2274 unsigned HighBits
= StorageSize
- Info
.Size
;
2276 ResultVal
= Builder
.CreateShl(ResultVal
, HighBits
, "bf.result.shl");
2277 ResultVal
= Builder
.CreateAShr(ResultVal
, HighBits
, "bf.result.ashr");
2281 ResultVal
= Builder
.CreateIntCast(ResultVal
, ResLTy
, Info
.IsSigned
,
2283 *Result
= EmitFromMemory(ResultVal
, Dst
.getType());
2287 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src
,
2289 // This access turns into a read/modify/write of the vector. Load the input
2291 llvm::Value
*Vec
= Builder
.CreateLoad(Dst
.getExtVectorAddress(),
2292 Dst
.isVolatileQualified());
2293 const llvm::Constant
*Elts
= Dst
.getExtVectorElts();
2295 llvm::Value
*SrcVal
= Src
.getScalarVal();
2297 if (const VectorType
*VTy
= Dst
.getType()->getAs
<VectorType
>()) {
2298 unsigned NumSrcElts
= VTy
->getNumElements();
2299 unsigned NumDstElts
=
2300 cast
<llvm::FixedVectorType
>(Vec
->getType())->getNumElements();
2301 if (NumDstElts
== NumSrcElts
) {
2302 // Use shuffle vector is the src and destination are the same number of
2303 // elements and restore the vector mask since it is on the side it will be
2305 SmallVector
<int, 4> Mask(NumDstElts
);
2306 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
)
2307 Mask
[getAccessedFieldNo(i
, Elts
)] = i
;
2309 Vec
= Builder
.CreateShuffleVector(SrcVal
, Mask
);
2310 } else if (NumDstElts
> NumSrcElts
) {
2311 // Extended the source vector to the same length and then shuffle it
2312 // into the destination.
2313 // FIXME: since we're shuffling with undef, can we just use the indices
2314 // into that? This could be simpler.
2315 SmallVector
<int, 4> ExtMask
;
2316 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
)
2317 ExtMask
.push_back(i
);
2318 ExtMask
.resize(NumDstElts
, -1);
2319 llvm::Value
*ExtSrcVal
= Builder
.CreateShuffleVector(SrcVal
, ExtMask
);
2321 SmallVector
<int, 4> Mask
;
2322 for (unsigned i
= 0; i
!= NumDstElts
; ++i
)
2325 // When the vector size is odd and .odd or .hi is used, the last element
2326 // of the Elts constant array will be one past the size of the vector.
2327 // Ignore the last element here, if it is greater than the mask size.
2328 if (getAccessedFieldNo(NumSrcElts
- 1, Elts
) == Mask
.size())
2331 // modify when what gets shuffled in
2332 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
)
2333 Mask
[getAccessedFieldNo(i
, Elts
)] = i
+ NumDstElts
;
2334 Vec
= Builder
.CreateShuffleVector(Vec
, ExtSrcVal
, Mask
);
2336 // We should never shorten the vector
2337 llvm_unreachable("unexpected shorten vector length");
2340 // If the Src is a scalar (not a vector) it must be updating one element.
2341 unsigned InIdx
= getAccessedFieldNo(0, Elts
);
2342 llvm::Value
*Elt
= llvm::ConstantInt::get(SizeTy
, InIdx
);
2343 Vec
= Builder
.CreateInsertElement(Vec
, SrcVal
, Elt
);
2346 Builder
.CreateStore(Vec
, Dst
.getExtVectorAddress(),
2347 Dst
.isVolatileQualified());
2350 /// Store of global named registers are always calls to intrinsics.
2351 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src
, LValue Dst
) {
2352 assert((Dst
.getType()->isIntegerType() || Dst
.getType()->isPointerType()) &&
2353 "Bad type for register variable");
2354 llvm::MDNode
*RegName
= cast
<llvm::MDNode
>(
2355 cast
<llvm::MetadataAsValue
>(Dst
.getGlobalReg())->getMetadata());
2356 assert(RegName
&& "Register LValue is not metadata");
2358 // We accept integer and pointer types only
2359 llvm::Type
*OrigTy
= CGM
.getTypes().ConvertType(Dst
.getType());
2360 llvm::Type
*Ty
= OrigTy
;
2361 if (OrigTy
->isPointerTy())
2362 Ty
= CGM
.getTypes().getDataLayout().getIntPtrType(OrigTy
);
2363 llvm::Type
*Types
[] = { Ty
};
2365 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::write_register
, Types
);
2366 llvm::Value
*Value
= Src
.getScalarVal();
2367 if (OrigTy
->isPointerTy())
2368 Value
= Builder
.CreatePtrToInt(Value
, Ty
);
2370 F
, {llvm::MetadataAsValue::get(Ty
->getContext(), RegName
), Value
});
2373 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2374 // generating write-barries API. It is currently a global, ivar,
2376 static void setObjCGCLValueClass(const ASTContext
&Ctx
, const Expr
*E
,
2378 bool IsMemberAccess
=false) {
2379 if (Ctx
.getLangOpts().getGC() == LangOptions::NonGC
)
2382 if (isa
<ObjCIvarRefExpr
>(E
)) {
2383 QualType ExpTy
= E
->getType();
2384 if (IsMemberAccess
&& ExpTy
->isPointerType()) {
2385 // If ivar is a structure pointer, assigning to field of
2386 // this struct follows gcc's behavior and makes it a non-ivar
2387 // writer-barrier conservatively.
2388 ExpTy
= ExpTy
->castAs
<PointerType
>()->getPointeeType();
2389 if (ExpTy
->isRecordType()) {
2390 LV
.setObjCIvar(false);
2394 LV
.setObjCIvar(true);
2395 auto *Exp
= cast
<ObjCIvarRefExpr
>(const_cast<Expr
*>(E
));
2396 LV
.setBaseIvarExp(Exp
->getBase());
2397 LV
.setObjCArray(E
->getType()->isArrayType());
2401 if (const auto *Exp
= dyn_cast
<DeclRefExpr
>(E
)) {
2402 if (const auto *VD
= dyn_cast
<VarDecl
>(Exp
->getDecl())) {
2403 if (VD
->hasGlobalStorage()) {
2404 LV
.setGlobalObjCRef(true);
2405 LV
.setThreadLocalRef(VD
->getTLSKind() != VarDecl::TLS_None
);
2408 LV
.setObjCArray(E
->getType()->isArrayType());
2412 if (const auto *Exp
= dyn_cast
<UnaryOperator
>(E
)) {
2413 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2417 if (const auto *Exp
= dyn_cast
<ParenExpr
>(E
)) {
2418 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2419 if (LV
.isObjCIvar()) {
2420 // If cast is to a structure pointer, follow gcc's behavior and make it
2421 // a non-ivar write-barrier.
2422 QualType ExpTy
= E
->getType();
2423 if (ExpTy
->isPointerType())
2424 ExpTy
= ExpTy
->castAs
<PointerType
>()->getPointeeType();
2425 if (ExpTy
->isRecordType())
2426 LV
.setObjCIvar(false);
2431 if (const auto *Exp
= dyn_cast
<GenericSelectionExpr
>(E
)) {
2432 setObjCGCLValueClass(Ctx
, Exp
->getResultExpr(), LV
);
2436 if (const auto *Exp
= dyn_cast
<ImplicitCastExpr
>(E
)) {
2437 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2441 if (const auto *Exp
= dyn_cast
<CStyleCastExpr
>(E
)) {
2442 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2446 if (const auto *Exp
= dyn_cast
<ObjCBridgedCastExpr
>(E
)) {
2447 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2451 if (const auto *Exp
= dyn_cast
<ArraySubscriptExpr
>(E
)) {
2452 setObjCGCLValueClass(Ctx
, Exp
->getBase(), LV
);
2453 if (LV
.isObjCIvar() && !LV
.isObjCArray())
2454 // Using array syntax to assigning to what an ivar points to is not
2455 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2456 LV
.setObjCIvar(false);
2457 else if (LV
.isGlobalObjCRef() && !LV
.isObjCArray())
2458 // Using array syntax to assigning to what global points to is not
2459 // same as assigning to the global itself. {id *G;} G[i] = 0;
2460 LV
.setGlobalObjCRef(false);
2464 if (const auto *Exp
= dyn_cast
<MemberExpr
>(E
)) {
2465 setObjCGCLValueClass(Ctx
, Exp
->getBase(), LV
, true);
2466 // We don't know if member is an 'ivar', but this flag is looked at
2467 // only in the context of LV.isObjCIvar().
2468 LV
.setObjCArray(E
->getType()->isArrayType());
2473 static llvm::Value
*
2474 EmitBitCastOfLValueToProperType(CodeGenFunction
&CGF
,
2475 llvm::Value
*V
, llvm::Type
*IRType
,
2476 StringRef Name
= StringRef()) {
2477 unsigned AS
= cast
<llvm::PointerType
>(V
->getType())->getAddressSpace();
2478 return CGF
.Builder
.CreateBitCast(V
, IRType
->getPointerTo(AS
), Name
);
2481 static LValue
EmitThreadPrivateVarDeclLValue(
2482 CodeGenFunction
&CGF
, const VarDecl
*VD
, QualType T
, Address Addr
,
2483 llvm::Type
*RealVarTy
, SourceLocation Loc
) {
2484 if (CGF
.CGM
.getLangOpts().OpenMPIRBuilder
)
2485 Addr
= CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2486 CGF
, VD
, Addr
, Loc
);
2489 CGF
.CGM
.getOpenMPRuntime().getAddrOfThreadPrivate(CGF
, VD
, Addr
, Loc
);
2491 Addr
= CGF
.Builder
.CreateElementBitCast(Addr
, RealVarTy
);
2492 return CGF
.MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2495 static Address
emitDeclTargetVarDeclLValue(CodeGenFunction
&CGF
,
2496 const VarDecl
*VD
, QualType T
) {
2497 std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> Res
=
2498 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
);
2499 // Return an invalid address if variable is MT_To (or MT_Enter starting with
2500 // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link
2501 // and MT_To (or MT_Enter) with unified memory, return a valid address.
2502 if (!Res
|| ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
2503 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
2504 !CGF
.CGM
.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2505 return Address::invalid();
2506 assert(((*Res
== OMPDeclareTargetDeclAttr::MT_Link
) ||
2507 ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
2508 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
2509 CGF
.CGM
.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2510 "Expected link clause OR to clause with unified memory enabled.");
2511 QualType PtrTy
= CGF
.getContext().getPointerType(VD
->getType());
2512 Address Addr
= CGF
.CGM
.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD
);
2513 return CGF
.EmitLoadOfPointer(Addr
, PtrTy
->castAs
<PointerType
>());
2517 CodeGenFunction::EmitLoadOfReference(LValue RefLVal
,
2518 LValueBaseInfo
*PointeeBaseInfo
,
2519 TBAAAccessInfo
*PointeeTBAAInfo
) {
2520 llvm::LoadInst
*Load
=
2521 Builder
.CreateLoad(RefLVal
.getAddress(*this), RefLVal
.isVolatile());
2522 CGM
.DecorateInstructionWithTBAA(Load
, RefLVal
.getTBAAInfo());
2524 QualType PointeeType
= RefLVal
.getType()->getPointeeType();
2525 CharUnits Align
= CGM
.getNaturalTypeAlignment(
2526 PointeeType
, PointeeBaseInfo
, PointeeTBAAInfo
,
2527 /* forPointeeType= */ true);
2528 return Address(Load
, ConvertTypeForMem(PointeeType
), Align
);
2531 LValue
CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal
) {
2532 LValueBaseInfo PointeeBaseInfo
;
2533 TBAAAccessInfo PointeeTBAAInfo
;
2534 Address PointeeAddr
= EmitLoadOfReference(RefLVal
, &PointeeBaseInfo
,
2536 return MakeAddrLValue(PointeeAddr
, RefLVal
.getType()->getPointeeType(),
2537 PointeeBaseInfo
, PointeeTBAAInfo
);
2540 Address
CodeGenFunction::EmitLoadOfPointer(Address Ptr
,
2541 const PointerType
*PtrTy
,
2542 LValueBaseInfo
*BaseInfo
,
2543 TBAAAccessInfo
*TBAAInfo
) {
2544 llvm::Value
*Addr
= Builder
.CreateLoad(Ptr
);
2545 return Address(Addr
, ConvertTypeForMem(PtrTy
->getPointeeType()),
2546 CGM
.getNaturalTypeAlignment(PtrTy
->getPointeeType(), BaseInfo
,
2548 /*forPointeeType=*/true));
2551 LValue
CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr
,
2552 const PointerType
*PtrTy
) {
2553 LValueBaseInfo BaseInfo
;
2554 TBAAAccessInfo TBAAInfo
;
2555 Address Addr
= EmitLoadOfPointer(PtrAddr
, PtrTy
, &BaseInfo
, &TBAAInfo
);
2556 return MakeAddrLValue(Addr
, PtrTy
->getPointeeType(), BaseInfo
, TBAAInfo
);
2559 static LValue
EmitGlobalVarDeclLValue(CodeGenFunction
&CGF
,
2560 const Expr
*E
, const VarDecl
*VD
) {
2561 QualType T
= E
->getType();
2563 // If it's thread_local, emit a call to its wrapper function instead.
2564 if (VD
->getTLSKind() == VarDecl::TLS_Dynamic
&&
2565 CGF
.CGM
.getCXXABI().usesThreadWrapperFunction(VD
))
2566 return CGF
.CGM
.getCXXABI().EmitThreadLocalVarDeclLValue(CGF
, VD
, T
);
2567 // Check if the variable is marked as declare target with link clause in
2569 if (CGF
.getLangOpts().OpenMPIsDevice
) {
2570 Address Addr
= emitDeclTargetVarDeclLValue(CGF
, VD
, T
);
2572 return CGF
.MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2575 llvm::Value
*V
= CGF
.CGM
.GetAddrOfGlobalVar(VD
);
2577 if (VD
->getTLSKind() != VarDecl::TLS_None
)
2578 V
= CGF
.Builder
.CreateThreadLocalAddress(V
);
2580 llvm::Type
*RealVarTy
= CGF
.getTypes().ConvertTypeForMem(VD
->getType());
2581 V
= EmitBitCastOfLValueToProperType(CGF
, V
, RealVarTy
);
2582 CharUnits Alignment
= CGF
.getContext().getDeclAlign(VD
);
2583 Address
Addr(V
, RealVarTy
, Alignment
);
2584 // Emit reference to the private copy of the variable if it is an OpenMP
2585 // threadprivate variable.
2586 if (CGF
.getLangOpts().OpenMP
&& !CGF
.getLangOpts().OpenMPSimd
&&
2587 VD
->hasAttr
<OMPThreadPrivateDeclAttr
>()) {
2588 return EmitThreadPrivateVarDeclLValue(CGF
, VD
, T
, Addr
, RealVarTy
,
2591 LValue LV
= VD
->getType()->isReferenceType() ?
2592 CGF
.EmitLoadOfReferenceLValue(Addr
, VD
->getType(),
2593 AlignmentSource::Decl
) :
2594 CGF
.MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2595 setObjCGCLValueClass(CGF
.getContext(), E
, LV
);
2599 static llvm::Constant
*EmitFunctionDeclPointer(CodeGenModule
&CGM
,
2601 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
2602 if (FD
->hasAttr
<WeakRefAttr
>()) {
2603 ConstantAddress aliasee
= CGM
.GetWeakRefReference(FD
);
2604 return aliasee
.getPointer();
2607 llvm::Constant
*V
= CGM
.GetAddrOfFunction(GD
);
2608 if (!FD
->hasPrototype()) {
2609 if (const FunctionProtoType
*Proto
=
2610 FD
->getType()->getAs
<FunctionProtoType
>()) {
2611 // Ugly case: for a K&R-style definition, the type of the definition
2612 // isn't the same as the type of a use. Correct for this with a
2614 QualType NoProtoType
=
2615 CGM
.getContext().getFunctionNoProtoType(Proto
->getReturnType());
2616 NoProtoType
= CGM
.getContext().getPointerType(NoProtoType
);
2617 V
= llvm::ConstantExpr::getBitCast(V
,
2618 CGM
.getTypes().ConvertType(NoProtoType
));
2624 static LValue
EmitFunctionDeclLValue(CodeGenFunction
&CGF
, const Expr
*E
,
2626 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
2627 llvm::Value
*V
= EmitFunctionDeclPointer(CGF
.CGM
, GD
);
2628 CharUnits Alignment
= CGF
.getContext().getDeclAlign(FD
);
2629 return CGF
.MakeAddrLValue(V
, E
->getType(), Alignment
,
2630 AlignmentSource::Decl
);
2633 static LValue
EmitCapturedFieldLValue(CodeGenFunction
&CGF
, const FieldDecl
*FD
,
2634 llvm::Value
*ThisValue
) {
2635 QualType TagType
= CGF
.getContext().getTagDeclType(FD
->getParent());
2636 LValue LV
= CGF
.MakeNaturalAlignAddrLValue(ThisValue
, TagType
);
2637 return CGF
.EmitLValueForField(LV
, FD
);
2640 /// Named Registers are named metadata pointing to the register name
2641 /// which will be read from/written to as an argument to the intrinsic
2642 /// @llvm.read/write_register.
2643 /// So far, only the name is being passed down, but other options such as
2644 /// register type, allocation type or even optimization options could be
2645 /// passed down via the metadata node.
2646 static LValue
EmitGlobalNamedRegister(const VarDecl
*VD
, CodeGenModule
&CGM
) {
2647 SmallString
<64> Name("llvm.named.register.");
2648 AsmLabelAttr
*Asm
= VD
->getAttr
<AsmLabelAttr
>();
2649 assert(Asm
->getLabel().size() < 64-Name
.size() &&
2650 "Register name too big");
2651 Name
.append(Asm
->getLabel());
2652 llvm::NamedMDNode
*M
=
2653 CGM
.getModule().getOrInsertNamedMetadata(Name
);
2654 if (M
->getNumOperands() == 0) {
2655 llvm::MDString
*Str
= llvm::MDString::get(CGM
.getLLVMContext(),
2657 llvm::Metadata
*Ops
[] = {Str
};
2658 M
->addOperand(llvm::MDNode::get(CGM
.getLLVMContext(), Ops
));
2661 CharUnits Alignment
= CGM
.getContext().getDeclAlign(VD
);
2664 llvm::MetadataAsValue::get(CGM
.getLLVMContext(), M
->getOperand(0));
2665 return LValue::MakeGlobalReg(Ptr
, Alignment
, VD
->getType());
2668 /// Determine whether we can emit a reference to \p VD from the current
2669 /// context, despite not necessarily having seen an odr-use of the variable in
2671 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction
&CGF
,
2672 const DeclRefExpr
*E
,
2675 // For a variable declared in an enclosing scope, do not emit a spurious
2676 // reference even if we have a capture, as that will emit an unwarranted
2677 // reference to our capture state, and will likely generate worse code than
2678 // emitting a local copy.
2679 if (E
->refersToEnclosingVariableOrCapture())
2682 // For a local declaration declared in this function, we can always reference
2683 // it even if we don't have an odr-use.
2684 if (VD
->hasLocalStorage()) {
2685 return VD
->getDeclContext() ==
2686 dyn_cast_or_null
<DeclContext
>(CGF
.CurCodeDecl
);
2689 // For a global declaration, we can emit a reference to it if we know
2690 // for sure that we are able to emit a definition of it.
2691 VD
= VD
->getDefinition(CGF
.getContext());
2695 // Don't emit a spurious reference if it might be to a variable that only
2696 // exists on a different device / target.
2697 // FIXME: This is unnecessarily broad. Check whether this would actually be a
2698 // cross-target reference.
2699 if (CGF
.getLangOpts().OpenMP
|| CGF
.getLangOpts().CUDA
||
2700 CGF
.getLangOpts().OpenCL
) {
2704 // We can emit a spurious reference only if the linkage implies that we'll
2705 // be emitting a non-interposable symbol that will be retained until link
2707 switch (CGF
.CGM
.getLLVMLinkageVarDefinition(VD
, IsConstant
)) {
2708 case llvm::GlobalValue::ExternalLinkage
:
2709 case llvm::GlobalValue::LinkOnceODRLinkage
:
2710 case llvm::GlobalValue::WeakODRLinkage
:
2711 case llvm::GlobalValue::InternalLinkage
:
2712 case llvm::GlobalValue::PrivateLinkage
:
2719 LValue
CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr
*E
) {
2720 const NamedDecl
*ND
= E
->getDecl();
2721 QualType T
= E
->getType();
2723 assert(E
->isNonOdrUse() != NOUR_Unevaluated
&&
2724 "should not emit an unevaluated operand");
2726 if (const auto *VD
= dyn_cast
<VarDecl
>(ND
)) {
2727 // Global Named registers access via intrinsics only
2728 if (VD
->getStorageClass() == SC_Register
&&
2729 VD
->hasAttr
<AsmLabelAttr
>() && !VD
->isLocalVarDecl())
2730 return EmitGlobalNamedRegister(VD
, CGM
);
2732 // If this DeclRefExpr does not constitute an odr-use of the variable,
2733 // we're not permitted to emit a reference to it in general, and it might
2734 // not be captured if capture would be necessary for a use. Emit the
2735 // constant value directly instead.
2736 if (E
->isNonOdrUse() == NOUR_Constant
&&
2737 (VD
->getType()->isReferenceType() ||
2738 !canEmitSpuriousReferenceToVariable(*this, E
, VD
, true))) {
2739 VD
->getAnyInitializer(VD
);
2740 llvm::Constant
*Val
= ConstantEmitter(*this).emitAbstract(
2741 E
->getLocation(), *VD
->evaluateValue(), VD
->getType());
2742 assert(Val
&& "failed to emit constant expression");
2744 Address Addr
= Address::invalid();
2745 if (!VD
->getType()->isReferenceType()) {
2746 // Spill the constant value to a global.
2747 Addr
= CGM
.createUnnamedGlobalFrom(*VD
, Val
,
2748 getContext().getDeclAlign(VD
));
2749 llvm::Type
*VarTy
= getTypes().ConvertTypeForMem(VD
->getType());
2750 auto *PTy
= llvm::PointerType::get(
2751 VarTy
, getTypes().getTargetAddressSpace(VD
->getType()));
2752 Addr
= Builder
.CreatePointerBitCastOrAddrSpaceCast(Addr
, PTy
, VarTy
);
2754 // Should we be using the alignment of the constant pointer we emitted?
2755 CharUnits Alignment
=
2756 CGM
.getNaturalTypeAlignment(E
->getType(),
2757 /* BaseInfo= */ nullptr,
2758 /* TBAAInfo= */ nullptr,
2759 /* forPointeeType= */ true);
2760 Addr
= Address(Val
, ConvertTypeForMem(E
->getType()), Alignment
);
2762 return MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2765 // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2767 // Check for captured variables.
2768 if (E
->refersToEnclosingVariableOrCapture()) {
2769 VD
= VD
->getCanonicalDecl();
2770 if (auto *FD
= LambdaCaptureFields
.lookup(VD
))
2771 return EmitCapturedFieldLValue(*this, FD
, CXXABIThisValue
);
2772 if (CapturedStmtInfo
) {
2773 auto I
= LocalDeclMap
.find(VD
);
2774 if (I
!= LocalDeclMap
.end()) {
2776 if (VD
->getType()->isReferenceType())
2777 CapLVal
= EmitLoadOfReferenceLValue(I
->second
, VD
->getType(),
2778 AlignmentSource::Decl
);
2780 CapLVal
= MakeAddrLValue(I
->second
, T
);
2781 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2783 if (getLangOpts().OpenMP
&&
2784 CGM
.getOpenMPRuntime().isNontemporalDecl(VD
))
2785 CapLVal
.setNontemporal(/*Value=*/true);
2789 EmitCapturedFieldLValue(*this, CapturedStmtInfo
->lookup(VD
),
2790 CapturedStmtInfo
->getContextValue());
2791 Address LValueAddress
= CapLVal
.getAddress(*this);
2792 CapLVal
= MakeAddrLValue(
2793 Address(LValueAddress
.getPointer(), LValueAddress
.getElementType(),
2794 getContext().getDeclAlign(VD
)),
2795 CapLVal
.getType(), LValueBaseInfo(AlignmentSource::Decl
),
2796 CapLVal
.getTBAAInfo());
2797 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2799 if (getLangOpts().OpenMP
&&
2800 CGM
.getOpenMPRuntime().isNontemporalDecl(VD
))
2801 CapLVal
.setNontemporal(/*Value=*/true);
2805 assert(isa
<BlockDecl
>(CurCodeDecl
));
2806 Address addr
= GetAddrOfBlockDecl(VD
);
2807 return MakeAddrLValue(addr
, T
, AlignmentSource::Decl
);
2811 // FIXME: We should be able to assert this for FunctionDecls as well!
2812 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2813 // those with a valid source location.
2814 assert((ND
->isUsed(false) || !isa
<VarDecl
>(ND
) || E
->isNonOdrUse() ||
2815 !E
->getLocation().isValid()) &&
2816 "Should not use decl without marking it used!");
2818 if (ND
->hasAttr
<WeakRefAttr
>()) {
2819 const auto *VD
= cast
<ValueDecl
>(ND
);
2820 ConstantAddress Aliasee
= CGM
.GetWeakRefReference(VD
);
2821 return MakeAddrLValue(Aliasee
, T
, AlignmentSource::Decl
);
2824 if (const auto *VD
= dyn_cast
<VarDecl
>(ND
)) {
2825 // Check if this is a global variable.
2826 if (VD
->hasLinkage() || VD
->isStaticDataMember())
2827 return EmitGlobalVarDeclLValue(*this, E
, VD
);
2829 Address addr
= Address::invalid();
2831 // The variable should generally be present in the local decl map.
2832 auto iter
= LocalDeclMap
.find(VD
);
2833 if (iter
!= LocalDeclMap
.end()) {
2834 addr
= iter
->second
;
2836 // Otherwise, it might be static local we haven't emitted yet for
2837 // some reason; most likely, because it's in an outer function.
2838 } else if (VD
->isStaticLocal()) {
2839 llvm::Constant
*var
= CGM
.getOrCreateStaticVarDecl(
2840 *VD
, CGM
.getLLVMLinkageVarDefinition(VD
, /*IsConstant=*/false));
2842 var
, ConvertTypeForMem(VD
->getType()), getContext().getDeclAlign(VD
));
2844 // No other cases for now.
2846 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2849 // Handle threadlocal function locals.
2850 if (VD
->getTLSKind() != VarDecl::TLS_None
)
2852 addr
.withPointer(Builder
.CreateThreadLocalAddress(addr
.getPointer()));
2854 // Check for OpenMP threadprivate variables.
2855 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
&&
2856 VD
->hasAttr
<OMPThreadPrivateDeclAttr
>()) {
2857 return EmitThreadPrivateVarDeclLValue(
2858 *this, VD
, T
, addr
, getTypes().ConvertTypeForMem(VD
->getType()),
2862 // Drill into block byref variables.
2863 bool isBlockByref
= VD
->isEscapingByref();
2865 addr
= emitBlockByrefAddress(addr
, VD
);
2868 // Drill into reference types.
2869 LValue LV
= VD
->getType()->isReferenceType() ?
2870 EmitLoadOfReferenceLValue(addr
, VD
->getType(), AlignmentSource::Decl
) :
2871 MakeAddrLValue(addr
, T
, AlignmentSource::Decl
);
2873 bool isLocalStorage
= VD
->hasLocalStorage();
2875 bool NonGCable
= isLocalStorage
&&
2876 !VD
->getType()->isReferenceType() &&
2879 LV
.getQuals().removeObjCGCAttr();
2883 bool isImpreciseLifetime
=
2884 (isLocalStorage
&& !VD
->hasAttr
<ObjCPreciseLifetimeAttr
>());
2885 if (isImpreciseLifetime
)
2886 LV
.setARCPreciseLifetime(ARCImpreciseLifetime
);
2887 setObjCGCLValueClass(getContext(), E
, LV
);
2891 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
)) {
2892 LValue LV
= EmitFunctionDeclLValue(*this, E
, FD
);
2894 // Emit debuginfo for the function declaration if the target wants to.
2895 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2896 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo()) {
2898 cast
<llvm::Function
>(LV
.getPointer(*this)->stripPointerCasts());
2899 if (!Fn
->getSubprogram())
2900 DI
->EmitFunctionDecl(FD
, FD
->getLocation(), T
, Fn
);
2907 // FIXME: While we're emitting a binding from an enclosing scope, all other
2908 // DeclRefExprs we see should be implicitly treated as if they also refer to
2909 // an enclosing scope.
2910 if (const auto *BD
= dyn_cast
<BindingDecl
>(ND
)) {
2911 if (E
->refersToEnclosingVariableOrCapture()) {
2912 auto *FD
= LambdaCaptureFields
.lookup(BD
);
2913 return EmitCapturedFieldLValue(*this, FD
, CXXABIThisValue
);
2915 return EmitLValue(BD
->getBinding());
2918 // We can form DeclRefExprs naming GUID declarations when reconstituting
2919 // non-type template parameters into expressions.
2920 if (const auto *GD
= dyn_cast
<MSGuidDecl
>(ND
))
2921 return MakeAddrLValue(CGM
.GetAddrOfMSGuidDecl(GD
), T
,
2922 AlignmentSource::Decl
);
2924 if (const auto *TPO
= dyn_cast
<TemplateParamObjectDecl
>(ND
))
2925 return MakeAddrLValue(CGM
.GetAddrOfTemplateParamObject(TPO
), T
,
2926 AlignmentSource::Decl
);
2928 llvm_unreachable("Unhandled DeclRefExpr");
2931 LValue
CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator
*E
) {
2932 // __extension__ doesn't affect lvalue-ness.
2933 if (E
->getOpcode() == UO_Extension
)
2934 return EmitLValue(E
->getSubExpr());
2936 QualType ExprTy
= getContext().getCanonicalType(E
->getSubExpr()->getType());
2937 switch (E
->getOpcode()) {
2938 default: llvm_unreachable("Unknown unary operator lvalue!");
2940 QualType T
= E
->getSubExpr()->getType()->getPointeeType();
2941 assert(!T
.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2943 LValueBaseInfo BaseInfo
;
2944 TBAAAccessInfo TBAAInfo
;
2945 Address Addr
= EmitPointerWithAlignment(E
->getSubExpr(), &BaseInfo
,
2947 LValue LV
= MakeAddrLValue(Addr
, T
, BaseInfo
, TBAAInfo
);
2948 LV
.getQuals().setAddressSpace(ExprTy
.getAddressSpace());
2950 // We should not generate __weak write barrier on indirect reference
2951 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2952 // But, we continue to generate __strong write barrier on indirect write
2953 // into a pointer to object.
2954 if (getLangOpts().ObjC
&&
2955 getLangOpts().getGC() != LangOptions::NonGC
&&
2957 LV
.setNonGC(!E
->isOBJCGCCandidate(getContext()));
2962 LValue LV
= EmitLValue(E
->getSubExpr());
2963 assert(LV
.isSimple() && "real/imag on non-ordinary l-value");
2965 // __real is valid on scalars. This is a faster way of testing that.
2966 // __imag can only produce an rvalue on scalars.
2967 if (E
->getOpcode() == UO_Real
&&
2968 !LV
.getAddress(*this).getElementType()->isStructTy()) {
2969 assert(E
->getSubExpr()->getType()->isArithmeticType());
2973 QualType T
= ExprTy
->castAs
<ComplexType
>()->getElementType();
2976 (E
->getOpcode() == UO_Real
2977 ? emitAddrOfRealComponent(LV
.getAddress(*this), LV
.getType())
2978 : emitAddrOfImagComponent(LV
.getAddress(*this), LV
.getType()));
2979 LValue ElemLV
= MakeAddrLValue(Component
, T
, LV
.getBaseInfo(),
2980 CGM
.getTBAAInfoForSubobject(LV
, T
));
2981 ElemLV
.getQuals().addQualifiers(LV
.getQuals());
2986 LValue LV
= EmitLValue(E
->getSubExpr());
2987 bool isInc
= E
->getOpcode() == UO_PreInc
;
2989 if (E
->getType()->isAnyComplexType())
2990 EmitComplexPrePostIncDec(E
, LV
, isInc
, true/*isPre*/);
2992 EmitScalarPrePostIncDec(E
, LV
, isInc
, true/*isPre*/);
2998 LValue
CodeGenFunction::EmitStringLiteralLValue(const StringLiteral
*E
) {
2999 return MakeAddrLValue(CGM
.GetAddrOfConstantStringFromLiteral(E
),
3000 E
->getType(), AlignmentSource::Decl
);
3003 LValue
CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr
*E
) {
3004 return MakeAddrLValue(CGM
.GetAddrOfConstantStringFromObjCEncode(E
),
3005 E
->getType(), AlignmentSource::Decl
);
3008 LValue
CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr
*E
) {
3009 auto SL
= E
->getFunctionName();
3010 assert(SL
!= nullptr && "No StringLiteral name in PredefinedExpr");
3011 StringRef FnName
= CurFn
->getName();
3012 if (FnName
.startswith("\01"))
3013 FnName
= FnName
.substr(1);
3014 StringRef NameItems
[] = {
3015 PredefinedExpr::getIdentKindName(E
->getIdentKind()), FnName
};
3016 std::string GVName
= llvm::join(NameItems
, NameItems
+ 2, ".");
3017 if (auto *BD
= dyn_cast_or_null
<BlockDecl
>(CurCodeDecl
)) {
3018 std::string Name
= std::string(SL
->getString());
3019 if (!Name
.empty()) {
3020 unsigned Discriminator
=
3021 CGM
.getCXXABI().getMangleContext().getBlockId(BD
, true);
3023 Name
+= "_" + Twine(Discriminator
+ 1).str();
3024 auto C
= CGM
.GetAddrOfConstantCString(Name
, GVName
.c_str());
3025 return MakeAddrLValue(C
, E
->getType(), AlignmentSource::Decl
);
3028 CGM
.GetAddrOfConstantCString(std::string(FnName
), GVName
.c_str());
3029 return MakeAddrLValue(C
, E
->getType(), AlignmentSource::Decl
);
3032 auto C
= CGM
.GetAddrOfConstantStringFromLiteral(SL
, GVName
);
3033 return MakeAddrLValue(C
, E
->getType(), AlignmentSource::Decl
);
3036 /// Emit a type description suitable for use by a runtime sanitizer library. The
3037 /// format of a type descriptor is
3040 /// { i16 TypeKind, i16 TypeInfo }
3043 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3044 /// integer, 1 for a floating point value, and -1 for anything else.
3045 llvm::Constant
*CodeGenFunction::EmitCheckTypeDescriptor(QualType T
) {
3046 // Only emit each type's descriptor once.
3047 if (llvm::Constant
*C
= CGM
.getTypeDescriptorFromMap(T
))
3050 uint16_t TypeKind
= -1;
3051 uint16_t TypeInfo
= 0;
3053 if (T
->isIntegerType()) {
3055 TypeInfo
= (llvm::Log2_32(getContext().getTypeSize(T
)) << 1) |
3056 (T
->isSignedIntegerType() ? 1 : 0);
3057 } else if (T
->isFloatingType()) {
3059 TypeInfo
= getContext().getTypeSize(T
);
3062 // Format the type name as if for a diagnostic, including quotes and
3063 // optionally an 'aka'.
3064 SmallString
<32> Buffer
;
3065 CGM
.getDiags().ConvertArgToString(
3066 DiagnosticsEngine::ak_qualtype
, (intptr_t)T
.getAsOpaquePtr(), StringRef(),
3067 StringRef(), std::nullopt
, Buffer
, std::nullopt
);
3069 llvm::Constant
*Components
[] = {
3070 Builder
.getInt16(TypeKind
), Builder
.getInt16(TypeInfo
),
3071 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer
)
3073 llvm::Constant
*Descriptor
= llvm::ConstantStruct::getAnon(Components
);
3075 auto *GV
= new llvm::GlobalVariable(
3076 CGM
.getModule(), Descriptor
->getType(),
3077 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage
, Descriptor
);
3078 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3079 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(GV
);
3081 // Remember the descriptor for this type.
3082 CGM
.setTypeDescriptorInMap(T
, GV
);
3087 llvm::Value
*CodeGenFunction::EmitCheckValue(llvm::Value
*V
) {
3088 llvm::Type
*TargetTy
= IntPtrTy
;
3090 if (V
->getType() == TargetTy
)
3093 // Floating-point types which fit into intptr_t are bitcast to integers
3094 // and then passed directly (after zero-extension, if necessary).
3095 if (V
->getType()->isFloatingPointTy()) {
3096 unsigned Bits
= V
->getType()->getPrimitiveSizeInBits().getFixedValue();
3097 if (Bits
<= TargetTy
->getIntegerBitWidth())
3098 V
= Builder
.CreateBitCast(V
, llvm::Type::getIntNTy(getLLVMContext(),
3102 // Integers which fit in intptr_t are zero-extended and passed directly.
3103 if (V
->getType()->isIntegerTy() &&
3104 V
->getType()->getIntegerBitWidth() <= TargetTy
->getIntegerBitWidth())
3105 return Builder
.CreateZExt(V
, TargetTy
);
3107 // Pointers are passed directly, everything else is passed by address.
3108 if (!V
->getType()->isPointerTy()) {
3109 Address Ptr
= CreateDefaultAlignTempAlloca(V
->getType());
3110 Builder
.CreateStore(V
, Ptr
);
3111 V
= Ptr
.getPointer();
3113 return Builder
.CreatePtrToInt(V
, TargetTy
);
3116 /// Emit a representation of a SourceLocation for passing to a handler
3117 /// in a sanitizer runtime library. The format for this data is:
3119 /// struct SourceLocation {
3120 /// const char *Filename;
3121 /// int32_t Line, Column;
3124 /// For an invalid SourceLocation, the Filename pointer is null.
3125 llvm::Constant
*CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc
) {
3126 llvm::Constant
*Filename
;
3129 PresumedLoc PLoc
= getContext().getSourceManager().getPresumedLoc(Loc
);
3130 if (PLoc
.isValid()) {
3131 StringRef FilenameString
= PLoc
.getFilename();
3133 int PathComponentsToStrip
=
3134 CGM
.getCodeGenOpts().EmitCheckPathComponentsToStrip
;
3135 if (PathComponentsToStrip
< 0) {
3136 assert(PathComponentsToStrip
!= INT_MIN
);
3137 int PathComponentsToKeep
= -PathComponentsToStrip
;
3138 auto I
= llvm::sys::path::rbegin(FilenameString
);
3139 auto E
= llvm::sys::path::rend(FilenameString
);
3140 while (I
!= E
&& --PathComponentsToKeep
)
3143 FilenameString
= FilenameString
.substr(I
- E
);
3144 } else if (PathComponentsToStrip
> 0) {
3145 auto I
= llvm::sys::path::begin(FilenameString
);
3146 auto E
= llvm::sys::path::end(FilenameString
);
3147 while (I
!= E
&& PathComponentsToStrip
--)
3152 FilenameString
.substr(I
- llvm::sys::path::begin(FilenameString
));
3154 FilenameString
= llvm::sys::path::filename(FilenameString
);
3158 CGM
.GetAddrOfConstantCString(std::string(FilenameString
), ".src");
3159 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(
3160 cast
<llvm::GlobalVariable
>(
3161 FilenameGV
.getPointer()->stripPointerCasts()));
3162 Filename
= FilenameGV
.getPointer();
3163 Line
= PLoc
.getLine();
3164 Column
= PLoc
.getColumn();
3166 Filename
= llvm::Constant::getNullValue(Int8PtrTy
);
3170 llvm::Constant
*Data
[] = {Filename
, Builder
.getInt32(Line
),
3171 Builder
.getInt32(Column
)};
3173 return llvm::ConstantStruct::getAnon(Data
);
3177 /// Specify under what conditions this check can be recovered
3178 enum class CheckRecoverableKind
{
3179 /// Always terminate program execution if this check fails.
3181 /// Check supports recovering, runtime has both fatal (noreturn) and
3182 /// non-fatal handlers for this check.
3184 /// Runtime conditionally aborts, always need to support recovery.
3189 static CheckRecoverableKind
getRecoverableKind(SanitizerMask Kind
) {
3190 assert(Kind
.countPopulation() == 1);
3191 if (Kind
== SanitizerKind::Function
|| Kind
== SanitizerKind::Vptr
)
3192 return CheckRecoverableKind::AlwaysRecoverable
;
3193 else if (Kind
== SanitizerKind::Return
|| Kind
== SanitizerKind::Unreachable
)
3194 return CheckRecoverableKind::Unrecoverable
;
3196 return CheckRecoverableKind::Recoverable
;
3200 struct SanitizerHandlerInfo
{
3201 char const *const Name
;
3206 const SanitizerHandlerInfo SanitizerHandlers
[] = {
3207 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3208 LIST_SANITIZER_CHECKS
3209 #undef SANITIZER_CHECK
3212 static void emitCheckHandlerCall(CodeGenFunction
&CGF
,
3213 llvm::FunctionType
*FnType
,
3214 ArrayRef
<llvm::Value
*> FnArgs
,
3215 SanitizerHandler CheckHandler
,
3216 CheckRecoverableKind RecoverKind
, bool IsFatal
,
3217 llvm::BasicBlock
*ContBB
) {
3218 assert(IsFatal
|| RecoverKind
!= CheckRecoverableKind::Unrecoverable
);
3219 std::optional
<ApplyDebugLocation
> DL
;
3220 if (!CGF
.Builder
.getCurrentDebugLocation()) {
3221 // Ensure that the call has at least an artificial debug location.
3222 DL
.emplace(CGF
, SourceLocation());
3224 bool NeedsAbortSuffix
=
3225 IsFatal
&& RecoverKind
!= CheckRecoverableKind::Unrecoverable
;
3226 bool MinimalRuntime
= CGF
.CGM
.getCodeGenOpts().SanitizeMinimalRuntime
;
3227 const SanitizerHandlerInfo
&CheckInfo
= SanitizerHandlers
[CheckHandler
];
3228 const StringRef CheckName
= CheckInfo
.Name
;
3229 std::string FnName
= "__ubsan_handle_" + CheckName
.str();
3230 if (CheckInfo
.Version
&& !MinimalRuntime
)
3231 FnName
+= "_v" + llvm::utostr(CheckInfo
.Version
);
3233 FnName
+= "_minimal";
3234 if (NeedsAbortSuffix
)
3237 !IsFatal
|| RecoverKind
== CheckRecoverableKind::AlwaysRecoverable
;
3239 llvm::AttrBuilder
B(CGF
.getLLVMContext());
3241 B
.addAttribute(llvm::Attribute::NoReturn
)
3242 .addAttribute(llvm::Attribute::NoUnwind
);
3244 B
.addUWTableAttr(llvm::UWTableKind::Default
);
3246 llvm::FunctionCallee Fn
= CGF
.CGM
.CreateRuntimeFunction(
3248 llvm::AttributeList::get(CGF
.getLLVMContext(),
3249 llvm::AttributeList::FunctionIndex
, B
),
3251 llvm::CallInst
*HandlerCall
= CGF
.EmitNounwindRuntimeCall(Fn
, FnArgs
);
3253 HandlerCall
->setDoesNotReturn();
3254 CGF
.Builder
.CreateUnreachable();
3256 CGF
.Builder
.CreateBr(ContBB
);
3260 void CodeGenFunction::EmitCheck(
3261 ArrayRef
<std::pair
<llvm::Value
*, SanitizerMask
>> Checked
,
3262 SanitizerHandler CheckHandler
, ArrayRef
<llvm::Constant
*> StaticArgs
,
3263 ArrayRef
<llvm::Value
*> DynamicArgs
) {
3264 assert(IsSanitizerScope
);
3265 assert(Checked
.size() > 0);
3266 assert(CheckHandler
>= 0 &&
3267 size_t(CheckHandler
) < std::size(SanitizerHandlers
));
3268 const StringRef CheckName
= SanitizerHandlers
[CheckHandler
].Name
;
3270 llvm::Value
*FatalCond
= nullptr;
3271 llvm::Value
*RecoverableCond
= nullptr;
3272 llvm::Value
*TrapCond
= nullptr;
3273 for (int i
= 0, n
= Checked
.size(); i
< n
; ++i
) {
3274 llvm::Value
*Check
= Checked
[i
].first
;
3275 // -fsanitize-trap= overrides -fsanitize-recover=.
3276 llvm::Value
*&Cond
=
3277 CGM
.getCodeGenOpts().SanitizeTrap
.has(Checked
[i
].second
)
3279 : CGM
.getCodeGenOpts().SanitizeRecover
.has(Checked
[i
].second
)
3282 Cond
= Cond
? Builder
.CreateAnd(Cond
, Check
) : Check
;
3286 EmitTrapCheck(TrapCond
, CheckHandler
);
3287 if (!FatalCond
&& !RecoverableCond
)
3290 llvm::Value
*JointCond
;
3291 if (FatalCond
&& RecoverableCond
)
3292 JointCond
= Builder
.CreateAnd(FatalCond
, RecoverableCond
);
3294 JointCond
= FatalCond
? FatalCond
: RecoverableCond
;
3297 CheckRecoverableKind RecoverKind
= getRecoverableKind(Checked
[0].second
);
3298 assert(SanOpts
.has(Checked
[0].second
));
3300 for (int i
= 1, n
= Checked
.size(); i
< n
; ++i
) {
3301 assert(RecoverKind
== getRecoverableKind(Checked
[i
].second
) &&
3302 "All recoverable kinds in a single check must be same!");
3303 assert(SanOpts
.has(Checked
[i
].second
));
3307 llvm::BasicBlock
*Cont
= createBasicBlock("cont");
3308 llvm::BasicBlock
*Handlers
= createBasicBlock("handler." + CheckName
);
3309 llvm::Instruction
*Branch
= Builder
.CreateCondBr(JointCond
, Cont
, Handlers
);
3310 // Give hint that we very much don't expect to execute the handler
3311 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3312 llvm::MDBuilder
MDHelper(getLLVMContext());
3313 llvm::MDNode
*Node
= MDHelper
.createBranchWeights((1U << 20) - 1, 1);
3314 Branch
->setMetadata(llvm::LLVMContext::MD_prof
, Node
);
3315 EmitBlock(Handlers
);
3317 // Handler functions take an i8* pointing to the (handler-specific) static
3318 // information block, followed by a sequence of intptr_t arguments
3319 // representing operand values.
3320 SmallVector
<llvm::Value
*, 4> Args
;
3321 SmallVector
<llvm::Type
*, 4> ArgTypes
;
3322 if (!CGM
.getCodeGenOpts().SanitizeMinimalRuntime
) {
3323 Args
.reserve(DynamicArgs
.size() + 1);
3324 ArgTypes
.reserve(DynamicArgs
.size() + 1);
3326 // Emit handler arguments and create handler function type.
3327 if (!StaticArgs
.empty()) {
3328 llvm::Constant
*Info
= llvm::ConstantStruct::getAnon(StaticArgs
);
3329 auto *InfoPtr
= new llvm::GlobalVariable(
3330 CGM
.getModule(), Info
->getType(), false,
3331 llvm::GlobalVariable::PrivateLinkage
, Info
, "", nullptr,
3332 llvm::GlobalVariable::NotThreadLocal
,
3333 CGM
.getDataLayout().getDefaultGlobalsAddressSpace());
3334 InfoPtr
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3335 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr
);
3336 Args
.push_back(EmitCastToVoidPtr(InfoPtr
));
3337 ArgTypes
.push_back(Args
.back()->getType());
3340 for (size_t i
= 0, n
= DynamicArgs
.size(); i
!= n
; ++i
) {
3341 Args
.push_back(EmitCheckValue(DynamicArgs
[i
]));
3342 ArgTypes
.push_back(IntPtrTy
);
3346 llvm::FunctionType
*FnType
=
3347 llvm::FunctionType::get(CGM
.VoidTy
, ArgTypes
, false);
3349 if (!FatalCond
|| !RecoverableCond
) {
3350 // Simple case: we need to generate a single handler call, either
3351 // fatal, or non-fatal.
3352 emitCheckHandlerCall(*this, FnType
, Args
, CheckHandler
, RecoverKind
,
3353 (FatalCond
!= nullptr), Cont
);
3355 // Emit two handler calls: first one for set of unrecoverable checks,
3356 // another one for recoverable.
3357 llvm::BasicBlock
*NonFatalHandlerBB
=
3358 createBasicBlock("non_fatal." + CheckName
);
3359 llvm::BasicBlock
*FatalHandlerBB
= createBasicBlock("fatal." + CheckName
);
3360 Builder
.CreateCondBr(FatalCond
, NonFatalHandlerBB
, FatalHandlerBB
);
3361 EmitBlock(FatalHandlerBB
);
3362 emitCheckHandlerCall(*this, FnType
, Args
, CheckHandler
, RecoverKind
, true,
3364 EmitBlock(NonFatalHandlerBB
);
3365 emitCheckHandlerCall(*this, FnType
, Args
, CheckHandler
, RecoverKind
, false,
3372 void CodeGenFunction::EmitCfiSlowPathCheck(
3373 SanitizerMask Kind
, llvm::Value
*Cond
, llvm::ConstantInt
*TypeId
,
3374 llvm::Value
*Ptr
, ArrayRef
<llvm::Constant
*> StaticArgs
) {
3375 llvm::BasicBlock
*Cont
= createBasicBlock("cfi.cont");
3377 llvm::BasicBlock
*CheckBB
= createBasicBlock("cfi.slowpath");
3378 llvm::BranchInst
*BI
= Builder
.CreateCondBr(Cond
, Cont
, CheckBB
);
3380 llvm::MDBuilder
MDHelper(getLLVMContext());
3381 llvm::MDNode
*Node
= MDHelper
.createBranchWeights((1U << 20) - 1, 1);
3382 BI
->setMetadata(llvm::LLVMContext::MD_prof
, Node
);
3386 bool WithDiag
= !CGM
.getCodeGenOpts().SanitizeTrap
.has(Kind
);
3388 llvm::CallInst
*CheckCall
;
3389 llvm::FunctionCallee SlowPathFn
;
3391 llvm::Constant
*Info
= llvm::ConstantStruct::getAnon(StaticArgs
);
3393 new llvm::GlobalVariable(CGM
.getModule(), Info
->getType(), false,
3394 llvm::GlobalVariable::PrivateLinkage
, Info
);
3395 InfoPtr
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3396 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr
);
3398 SlowPathFn
= CGM
.getModule().getOrInsertFunction(
3399 "__cfi_slowpath_diag",
3400 llvm::FunctionType::get(VoidTy
, {Int64Ty
, Int8PtrTy
, Int8PtrTy
},
3402 CheckCall
= Builder
.CreateCall(
3403 SlowPathFn
, {TypeId
, Ptr
, Builder
.CreateBitCast(InfoPtr
, Int8PtrTy
)});
3405 SlowPathFn
= CGM
.getModule().getOrInsertFunction(
3407 llvm::FunctionType::get(VoidTy
, {Int64Ty
, Int8PtrTy
}, false));
3408 CheckCall
= Builder
.CreateCall(SlowPathFn
, {TypeId
, Ptr
});
3412 cast
<llvm::GlobalValue
>(SlowPathFn
.getCallee()->stripPointerCasts()));
3413 CheckCall
->setDoesNotThrow();
3418 // Emit a stub for __cfi_check function so that the linker knows about this
3419 // symbol in LTO mode.
3420 void CodeGenFunction::EmitCfiCheckStub() {
3421 llvm::Module
*M
= &CGM
.getModule();
3422 auto &Ctx
= M
->getContext();
3423 llvm::Function
*F
= llvm::Function::Create(
3424 llvm::FunctionType::get(VoidTy
, {Int64Ty
, Int8PtrTy
, Int8PtrTy
}, false),
3425 llvm::GlobalValue::WeakAnyLinkage
, "__cfi_check", M
);
3427 llvm::BasicBlock
*BB
= llvm::BasicBlock::Create(Ctx
, "entry", F
);
3428 // FIXME: consider emitting an intrinsic call like
3429 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3430 // which can be lowered in CrossDSOCFI pass to the actual contents of
3431 // __cfi_check. This would allow inlining of __cfi_check calls.
3432 llvm::CallInst::Create(
3433 llvm::Intrinsic::getDeclaration(M
, llvm::Intrinsic::trap
), "", BB
);
3434 llvm::ReturnInst::Create(Ctx
, nullptr, BB
);
3437 // This function is basically a switch over the CFI failure kind, which is
3438 // extracted from CFICheckFailData (1st function argument). Each case is either
3439 // llvm.trap or a call to one of the two runtime handlers, based on
3440 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
3441 // failure kind) traps, but this should really never happen. CFICheckFailData
3442 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3443 // check kind; in this case __cfi_check_fail traps as well.
3444 void CodeGenFunction::EmitCfiCheckFail() {
3445 SanitizerScope
SanScope(this);
3446 FunctionArgList Args
;
3447 ImplicitParamDecl
ArgData(getContext(), getContext().VoidPtrTy
,
3448 ImplicitParamDecl::Other
);
3449 ImplicitParamDecl
ArgAddr(getContext(), getContext().VoidPtrTy
,
3450 ImplicitParamDecl::Other
);
3451 Args
.push_back(&ArgData
);
3452 Args
.push_back(&ArgAddr
);
3454 const CGFunctionInfo
&FI
=
3455 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy
, Args
);
3457 llvm::Function
*F
= llvm::Function::Create(
3458 llvm::FunctionType::get(VoidTy
, {VoidPtrTy
, VoidPtrTy
}, false),
3459 llvm::GlobalValue::WeakODRLinkage
, "__cfi_check_fail", &CGM
.getModule());
3461 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
, F
, /*IsThunk=*/false);
3462 CGM
.SetLLVMFunctionAttributesForDefinition(nullptr, F
);
3463 F
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
3465 StartFunction(GlobalDecl(), CGM
.getContext().VoidTy
, F
, FI
, Args
,
3468 // This function is not affected by NoSanitizeList. This function does
3469 // not have a source location, but "src:*" would still apply. Revert any
3470 // changes to SanOpts made in StartFunction.
3471 SanOpts
= CGM
.getLangOpts().Sanitize
;
3474 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData
), /*Volatile=*/false,
3475 CGM
.getContext().VoidPtrTy
, ArgData
.getLocation());
3477 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr
), /*Volatile=*/false,
3478 CGM
.getContext().VoidPtrTy
, ArgAddr
.getLocation());
3480 // Data == nullptr means the calling module has trap behaviour for this check.
3481 llvm::Value
*DataIsNotNullPtr
=
3482 Builder
.CreateICmpNE(Data
, llvm::ConstantPointerNull::get(Int8PtrTy
));
3483 EmitTrapCheck(DataIsNotNullPtr
, SanitizerHandler::CFICheckFail
);
3485 llvm::StructType
*SourceLocationTy
=
3486 llvm::StructType::get(VoidPtrTy
, Int32Ty
, Int32Ty
);
3487 llvm::StructType
*CfiCheckFailDataTy
=
3488 llvm::StructType::get(Int8Ty
, SourceLocationTy
, VoidPtrTy
);
3490 llvm::Value
*V
= Builder
.CreateConstGEP2_32(
3492 Builder
.CreatePointerCast(Data
, CfiCheckFailDataTy
->getPointerTo(0)), 0,
3495 Address
CheckKindAddr(V
, Int8Ty
, getIntAlign());
3496 llvm::Value
*CheckKind
= Builder
.CreateLoad(CheckKindAddr
);
3498 llvm::Value
*AllVtables
= llvm::MetadataAsValue::get(
3499 CGM
.getLLVMContext(),
3500 llvm::MDString::get(CGM
.getLLVMContext(), "all-vtables"));
3501 llvm::Value
*ValidVtable
= Builder
.CreateZExt(
3502 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::type_test
),
3503 {Addr
, AllVtables
}),
3506 const std::pair
<int, SanitizerMask
> CheckKinds
[] = {
3507 {CFITCK_VCall
, SanitizerKind::CFIVCall
},
3508 {CFITCK_NVCall
, SanitizerKind::CFINVCall
},
3509 {CFITCK_DerivedCast
, SanitizerKind::CFIDerivedCast
},
3510 {CFITCK_UnrelatedCast
, SanitizerKind::CFIUnrelatedCast
},
3511 {CFITCK_ICall
, SanitizerKind::CFIICall
}};
3513 SmallVector
<std::pair
<llvm::Value
*, SanitizerMask
>, 5> Checks
;
3514 for (auto CheckKindMaskPair
: CheckKinds
) {
3515 int Kind
= CheckKindMaskPair
.first
;
3516 SanitizerMask Mask
= CheckKindMaskPair
.second
;
3518 Builder
.CreateICmpNE(CheckKind
, llvm::ConstantInt::get(Int8Ty
, Kind
));
3519 if (CGM
.getLangOpts().Sanitize
.has(Mask
))
3520 EmitCheck(std::make_pair(Cond
, Mask
), SanitizerHandler::CFICheckFail
, {},
3521 {Data
, Addr
, ValidVtable
});
3523 EmitTrapCheck(Cond
, SanitizerHandler::CFICheckFail
);
3527 // The only reference to this function will be created during LTO link.
3528 // Make sure it survives until then.
3529 CGM
.addUsedGlobal(F
);
3532 void CodeGenFunction::EmitUnreachable(SourceLocation Loc
) {
3533 if (SanOpts
.has(SanitizerKind::Unreachable
)) {
3534 SanitizerScope
SanScope(this);
3535 EmitCheck(std::make_pair(static_cast<llvm::Value
*>(Builder
.getFalse()),
3536 SanitizerKind::Unreachable
),
3537 SanitizerHandler::BuiltinUnreachable
,
3538 EmitCheckSourceLocation(Loc
), std::nullopt
);
3540 Builder
.CreateUnreachable();
3543 void CodeGenFunction::EmitTrapCheck(llvm::Value
*Checked
,
3544 SanitizerHandler CheckHandlerID
) {
3545 llvm::BasicBlock
*Cont
= createBasicBlock("cont");
3547 // If we're optimizing, collapse all calls to trap down to just one per
3548 // check-type per function to save on code size.
3549 if (TrapBBs
.size() <= CheckHandlerID
)
3550 TrapBBs
.resize(CheckHandlerID
+ 1);
3551 llvm::BasicBlock
*&TrapBB
= TrapBBs
[CheckHandlerID
];
3553 if (!CGM
.getCodeGenOpts().OptimizationLevel
|| !TrapBB
||
3554 (CurCodeDecl
&& CurCodeDecl
->hasAttr
<OptimizeNoneAttr
>())) {
3555 TrapBB
= createBasicBlock("trap");
3556 Builder
.CreateCondBr(Checked
, Cont
, TrapBB
);
3559 llvm::CallInst
*TrapCall
=
3560 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::ubsantrap
),
3561 llvm::ConstantInt::get(CGM
.Int8Ty
, CheckHandlerID
));
3563 if (!CGM
.getCodeGenOpts().TrapFuncName
.empty()) {
3564 auto A
= llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3565 CGM
.getCodeGenOpts().TrapFuncName
);
3566 TrapCall
->addFnAttr(A
);
3568 TrapCall
->setDoesNotReturn();
3569 TrapCall
->setDoesNotThrow();
3570 Builder
.CreateUnreachable();
3572 auto Call
= TrapBB
->begin();
3573 assert(isa
<llvm::CallInst
>(Call
) && "Expected call in trap BB");
3575 Call
->applyMergedLocation(Call
->getDebugLoc(),
3576 Builder
.getCurrentDebugLocation());
3577 Builder
.CreateCondBr(Checked
, Cont
, TrapBB
);
3583 llvm::CallInst
*CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID
) {
3584 llvm::CallInst
*TrapCall
=
3585 Builder
.CreateCall(CGM
.getIntrinsic(IntrID
));
3587 if (!CGM
.getCodeGenOpts().TrapFuncName
.empty()) {
3588 auto A
= llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3589 CGM
.getCodeGenOpts().TrapFuncName
);
3590 TrapCall
->addFnAttr(A
);
3596 Address
CodeGenFunction::EmitArrayToPointerDecay(const Expr
*E
,
3597 LValueBaseInfo
*BaseInfo
,
3598 TBAAAccessInfo
*TBAAInfo
) {
3599 assert(E
->getType()->isArrayType() &&
3600 "Array to pointer decay must have array source type!");
3602 // Expressions of array type can't be bitfields or vector elements.
3603 LValue LV
= EmitLValue(E
);
3604 Address Addr
= LV
.getAddress(*this);
3606 // If the array type was an incomplete type, we need to make sure
3607 // the decay ends up being the right type.
3608 llvm::Type
*NewTy
= ConvertType(E
->getType());
3609 Addr
= Builder
.CreateElementBitCast(Addr
, NewTy
);
3611 // Note that VLA pointers are always decayed, so we don't need to do
3613 if (!E
->getType()->isVariableArrayType()) {
3614 assert(isa
<llvm::ArrayType
>(Addr
.getElementType()) &&
3615 "Expected pointer to array");
3616 Addr
= Builder
.CreateConstArrayGEP(Addr
, 0, "arraydecay");
3619 // The result of this decay conversion points to an array element within the
3620 // base lvalue. However, since TBAA currently does not support representing
3621 // accesses to elements of member arrays, we conservatively represent accesses
3622 // to the pointee object as if it had no any base lvalue specified.
3623 // TODO: Support TBAA for member arrays.
3624 QualType EltType
= E
->getType()->castAsArrayTypeUnsafe()->getElementType();
3625 if (BaseInfo
) *BaseInfo
= LV
.getBaseInfo();
3626 if (TBAAInfo
) *TBAAInfo
= CGM
.getTBAAAccessInfo(EltType
);
3628 return Builder
.CreateElementBitCast(Addr
, ConvertTypeForMem(EltType
));
3631 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3632 /// array to pointer, return the array subexpression.
3633 static const Expr
*isSimpleArrayDecayOperand(const Expr
*E
) {
3634 // If this isn't just an array->pointer decay, bail out.
3635 const auto *CE
= dyn_cast
<CastExpr
>(E
);
3636 if (!CE
|| CE
->getCastKind() != CK_ArrayToPointerDecay
)
3639 // If this is a decay from variable width array, bail out.
3640 const Expr
*SubExpr
= CE
->getSubExpr();
3641 if (SubExpr
->getType()->isVariableArrayType())
3647 static llvm::Value
*emitArraySubscriptGEP(CodeGenFunction
&CGF
,
3648 llvm::Type
*elemType
,
3650 ArrayRef
<llvm::Value
*> indices
,
3654 const llvm::Twine
&name
= "arrayidx") {
3656 return CGF
.EmitCheckedInBoundsGEP(elemType
, ptr
, indices
, signedIndices
,
3657 CodeGenFunction::NotSubtraction
, loc
,
3660 return CGF
.Builder
.CreateGEP(elemType
, ptr
, indices
, name
);
3664 static CharUnits
getArrayElementAlign(CharUnits arrayAlign
,
3666 CharUnits eltSize
) {
3667 // If we have a constant index, we can use the exact offset of the
3668 // element we're accessing.
3669 if (auto constantIdx
= dyn_cast
<llvm::ConstantInt
>(idx
)) {
3670 CharUnits offset
= constantIdx
->getZExtValue() * eltSize
;
3671 return arrayAlign
.alignmentAtOffset(offset
);
3673 // Otherwise, use the worst-case alignment for any element.
3675 return arrayAlign
.alignmentOfArrayElement(eltSize
);
3679 static QualType
getFixedSizeElementType(const ASTContext
&ctx
,
3680 const VariableArrayType
*vla
) {
3683 eltType
= vla
->getElementType();
3684 } while ((vla
= ctx
.getAsVariableArrayType(eltType
)));
3688 /// Given an array base, check whether its member access belongs to a record
3689 /// with preserve_access_index attribute or not.
3690 static bool IsPreserveAIArrayBase(CodeGenFunction
&CGF
, const Expr
*ArrayBase
) {
3691 if (!ArrayBase
|| !CGF
.getDebugInfo())
3694 // Only support base as either a MemberExpr or DeclRefExpr.
3695 // DeclRefExpr to cover cases like:
3696 // struct s { int a; int b[10]; };
3699 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3700 // p->b[5] is a MemberExpr example.
3701 const Expr
*E
= ArrayBase
->IgnoreImpCasts();
3702 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
))
3703 return ME
->getMemberDecl()->hasAttr
<BPFPreserveAccessIndexAttr
>();
3705 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
3706 const auto *VarDef
= dyn_cast
<VarDecl
>(DRE
->getDecl());
3710 const auto *PtrT
= VarDef
->getType()->getAs
<PointerType
>();
3714 const auto *PointeeT
= PtrT
->getPointeeType()
3715 ->getUnqualifiedDesugaredType();
3716 if (const auto *RecT
= dyn_cast
<RecordType
>(PointeeT
))
3717 return RecT
->getDecl()->hasAttr
<BPFPreserveAccessIndexAttr
>();
3724 static Address
emitArraySubscriptGEP(CodeGenFunction
&CGF
, Address addr
,
3725 ArrayRef
<llvm::Value
*> indices
,
3726 QualType eltType
, bool inbounds
,
3727 bool signedIndices
, SourceLocation loc
,
3728 QualType
*arrayType
= nullptr,
3729 const Expr
*Base
= nullptr,
3730 const llvm::Twine
&name
= "arrayidx") {
3731 // All the indices except that last must be zero.
3733 for (auto *idx
: indices
.drop_back())
3734 assert(isa
<llvm::ConstantInt
>(idx
) &&
3735 cast
<llvm::ConstantInt
>(idx
)->isZero());
3738 // Determine the element size of the statically-sized base. This is
3739 // the thing that the indices are expressed in terms of.
3740 if (auto vla
= CGF
.getContext().getAsVariableArrayType(eltType
)) {
3741 eltType
= getFixedSizeElementType(CGF
.getContext(), vla
);
3744 // We can use that to compute the best alignment of the element.
3745 CharUnits eltSize
= CGF
.getContext().getTypeSizeInChars(eltType
);
3746 CharUnits eltAlign
=
3747 getArrayElementAlign(addr
.getAlignment(), indices
.back(), eltSize
);
3749 llvm::Value
*eltPtr
;
3750 auto LastIndex
= dyn_cast
<llvm::ConstantInt
>(indices
.back());
3752 (!CGF
.IsInPreservedAIRegion
&& !IsPreserveAIArrayBase(CGF
, Base
))) {
3753 eltPtr
= emitArraySubscriptGEP(
3754 CGF
, addr
.getElementType(), addr
.getPointer(), indices
, inbounds
,
3755 signedIndices
, loc
, name
);
3757 // Remember the original array subscript for bpf target
3758 unsigned idx
= LastIndex
->getZExtValue();
3759 llvm::DIType
*DbgInfo
= nullptr;
3761 DbgInfo
= CGF
.getDebugInfo()->getOrCreateStandaloneType(*arrayType
, loc
);
3762 eltPtr
= CGF
.Builder
.CreatePreserveArrayAccessIndex(addr
.getElementType(),
3768 return Address(eltPtr
, CGF
.ConvertTypeForMem(eltType
), eltAlign
);
3771 LValue
CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr
*E
,
3773 // The index must always be an integer, which is not an aggregate. Emit it
3774 // in lexical order (this complexity is, sadly, required by C++17).
3775 llvm::Value
*IdxPre
=
3776 (E
->getLHS() == E
->getIdx()) ? EmitScalarExpr(E
->getIdx()) : nullptr;
3777 bool SignedIndices
= false;
3778 auto EmitIdxAfterBase
= [&, IdxPre
](bool Promote
) -> llvm::Value
* {
3780 if (E
->getLHS() != E
->getIdx()) {
3781 assert(E
->getRHS() == E
->getIdx() && "index was neither LHS nor RHS");
3782 Idx
= EmitScalarExpr(E
->getIdx());
3785 QualType IdxTy
= E
->getIdx()->getType();
3786 bool IdxSigned
= IdxTy
->isSignedIntegerOrEnumerationType();
3787 SignedIndices
|= IdxSigned
;
3789 if (SanOpts
.has(SanitizerKind::ArrayBounds
))
3790 EmitBoundsCheck(E
, E
->getBase(), Idx
, IdxTy
, Accessed
);
3792 // Extend or truncate the index type to 32 or 64-bits.
3793 if (Promote
&& Idx
->getType() != IntPtrTy
)
3794 Idx
= Builder
.CreateIntCast(Idx
, IntPtrTy
, IdxSigned
, "idxprom");
3800 // If the base is a vector type, then we are forming a vector element lvalue
3801 // with this subscript.
3802 if (E
->getBase()->getType()->isVectorType() &&
3803 !isa
<ExtVectorElementExpr
>(E
->getBase())) {
3804 // Emit the vector as an lvalue to get its address.
3805 LValue LHS
= EmitLValue(E
->getBase());
3806 auto *Idx
= EmitIdxAfterBase(/*Promote*/false);
3807 assert(LHS
.isSimple() && "Can only subscript lvalue vectors here!");
3808 return LValue::MakeVectorElt(LHS
.getAddress(*this), Idx
,
3809 E
->getBase()->getType(), LHS
.getBaseInfo(),
3813 // All the other cases basically behave like simple offsetting.
3815 // Handle the extvector case we ignored above.
3816 if (isa
<ExtVectorElementExpr
>(E
->getBase())) {
3817 LValue LV
= EmitLValue(E
->getBase());
3818 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3819 Address Addr
= EmitExtVectorElementLValue(LV
);
3821 QualType EltType
= LV
.getType()->castAs
<VectorType
>()->getElementType();
3822 Addr
= emitArraySubscriptGEP(*this, Addr
, Idx
, EltType
, /*inbounds*/ true,
3823 SignedIndices
, E
->getExprLoc());
3824 return MakeAddrLValue(Addr
, EltType
, LV
.getBaseInfo(),
3825 CGM
.getTBAAInfoForSubobject(LV
, EltType
));
3828 LValueBaseInfo EltBaseInfo
;
3829 TBAAAccessInfo EltTBAAInfo
;
3830 Address Addr
= Address::invalid();
3831 if (const VariableArrayType
*vla
=
3832 getContext().getAsVariableArrayType(E
->getType())) {
3833 // The base must be a pointer, which is not an aggregate. Emit
3834 // it. It needs to be emitted first in case it's what captures
3836 Addr
= EmitPointerWithAlignment(E
->getBase(), &EltBaseInfo
, &EltTBAAInfo
);
3837 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3839 // The element count here is the total number of non-VLA elements.
3840 llvm::Value
*numElements
= getVLASize(vla
).NumElts
;
3842 // Effectively, the multiply by the VLA size is part of the GEP.
3843 // GEP indexes are signed, and scaling an index isn't permitted to
3844 // signed-overflow, so we use the same semantics for our explicit
3845 // multiply. We suppress this if overflow is not undefined behavior.
3846 if (getLangOpts().isSignedOverflowDefined()) {
3847 Idx
= Builder
.CreateMul(Idx
, numElements
);
3849 Idx
= Builder
.CreateNSWMul(Idx
, numElements
);
3852 Addr
= emitArraySubscriptGEP(*this, Addr
, Idx
, vla
->getElementType(),
3853 !getLangOpts().isSignedOverflowDefined(),
3854 SignedIndices
, E
->getExprLoc());
3856 } else if (const ObjCObjectType
*OIT
= E
->getType()->getAs
<ObjCObjectType
>()){
3857 // Indexing over an interface, as in "NSString *P; P[4];"
3859 // Emit the base pointer.
3860 Addr
= EmitPointerWithAlignment(E
->getBase(), &EltBaseInfo
, &EltTBAAInfo
);
3861 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3863 CharUnits InterfaceSize
= getContext().getTypeSizeInChars(OIT
);
3864 llvm::Value
*InterfaceSizeVal
=
3865 llvm::ConstantInt::get(Idx
->getType(), InterfaceSize
.getQuantity());
3867 llvm::Value
*ScaledIdx
= Builder
.CreateMul(Idx
, InterfaceSizeVal
);
3869 // We don't necessarily build correct LLVM struct types for ObjC
3870 // interfaces, so we can't rely on GEP to do this scaling
3871 // correctly, so we need to cast to i8*. FIXME: is this actually
3872 // true? A lot of other things in the fragile ABI would break...
3873 llvm::Type
*OrigBaseElemTy
= Addr
.getElementType();
3874 Addr
= Builder
.CreateElementBitCast(Addr
, Int8Ty
);
3877 CharUnits EltAlign
=
3878 getArrayElementAlign(Addr
.getAlignment(), Idx
, InterfaceSize
);
3879 llvm::Value
*EltPtr
=
3880 emitArraySubscriptGEP(*this, Addr
.getElementType(), Addr
.getPointer(),
3881 ScaledIdx
, false, SignedIndices
, E
->getExprLoc());
3882 Addr
= Address(EltPtr
, Addr
.getElementType(), EltAlign
);
3885 Addr
= Builder
.CreateElementBitCast(Addr
, OrigBaseElemTy
);
3886 } else if (const Expr
*Array
= isSimpleArrayDecayOperand(E
->getBase())) {
3887 // If this is A[i] where A is an array, the frontend will have decayed the
3888 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3889 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3890 // "gep x, i" here. Emit one "gep A, 0, i".
3891 assert(Array
->getType()->isArrayType() &&
3892 "Array to pointer decay must have array source type!");
3894 // For simple multidimensional array indexing, set the 'accessed' flag for
3895 // better bounds-checking of the base expression.
3896 if (const auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(Array
))
3897 ArrayLV
= EmitArraySubscriptExpr(ASE
, /*Accessed*/ true);
3899 ArrayLV
= EmitLValue(Array
);
3900 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3902 // Propagate the alignment from the array itself to the result.
3903 QualType arrayType
= Array
->getType();
3904 Addr
= emitArraySubscriptGEP(
3905 *this, ArrayLV
.getAddress(*this), {CGM
.getSize(CharUnits::Zero()), Idx
},
3906 E
->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices
,
3907 E
->getExprLoc(), &arrayType
, E
->getBase());
3908 EltBaseInfo
= ArrayLV
.getBaseInfo();
3909 EltTBAAInfo
= CGM
.getTBAAInfoForSubobject(ArrayLV
, E
->getType());
3911 // The base must be a pointer; emit it with an estimate of its alignment.
3912 Addr
= EmitPointerWithAlignment(E
->getBase(), &EltBaseInfo
, &EltTBAAInfo
);
3913 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3914 QualType ptrType
= E
->getBase()->getType();
3915 Addr
= emitArraySubscriptGEP(*this, Addr
, Idx
, E
->getType(),
3916 !getLangOpts().isSignedOverflowDefined(),
3917 SignedIndices
, E
->getExprLoc(), &ptrType
,
3921 LValue LV
= MakeAddrLValue(Addr
, E
->getType(), EltBaseInfo
, EltTBAAInfo
);
3923 if (getLangOpts().ObjC
&&
3924 getLangOpts().getGC() != LangOptions::NonGC
) {
3925 LV
.setNonGC(!E
->isOBJCGCCandidate(getContext()));
3926 setObjCGCLValueClass(getContext(), E
, LV
);
3931 LValue
CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr
*E
) {
3933 !E
->isIncomplete() &&
3934 "incomplete matrix subscript expressions should be rejected during Sema");
3935 LValue Base
= EmitLValue(E
->getBase());
3936 llvm::Value
*RowIdx
= EmitScalarExpr(E
->getRowIdx());
3937 llvm::Value
*ColIdx
= EmitScalarExpr(E
->getColumnIdx());
3938 llvm::Value
*NumRows
= Builder
.getIntN(
3939 RowIdx
->getType()->getScalarSizeInBits(),
3940 E
->getBase()->getType()->castAs
<ConstantMatrixType
>()->getNumRows());
3941 llvm::Value
*FinalIdx
=
3942 Builder
.CreateAdd(Builder
.CreateMul(ColIdx
, NumRows
), RowIdx
);
3943 return LValue::MakeMatrixElt(
3944 MaybeConvertMatrixAddress(Base
.getAddress(*this), *this), FinalIdx
,
3945 E
->getBase()->getType(), Base
.getBaseInfo(), TBAAAccessInfo());
3948 static Address
emitOMPArraySectionBase(CodeGenFunction
&CGF
, const Expr
*Base
,
3949 LValueBaseInfo
&BaseInfo
,
3950 TBAAAccessInfo
&TBAAInfo
,
3951 QualType BaseTy
, QualType ElTy
,
3952 bool IsLowerBound
) {
3954 if (auto *ASE
= dyn_cast
<OMPArraySectionExpr
>(Base
->IgnoreParenImpCasts())) {
3955 BaseLVal
= CGF
.EmitOMPArraySectionExpr(ASE
, IsLowerBound
);
3956 if (BaseTy
->isArrayType()) {
3957 Address Addr
= BaseLVal
.getAddress(CGF
);
3958 BaseInfo
= BaseLVal
.getBaseInfo();
3960 // If the array type was an incomplete type, we need to make sure
3961 // the decay ends up being the right type.
3962 llvm::Type
*NewTy
= CGF
.ConvertType(BaseTy
);
3963 Addr
= CGF
.Builder
.CreateElementBitCast(Addr
, NewTy
);
3965 // Note that VLA pointers are always decayed, so we don't need to do
3967 if (!BaseTy
->isVariableArrayType()) {
3968 assert(isa
<llvm::ArrayType
>(Addr
.getElementType()) &&
3969 "Expected pointer to array");
3970 Addr
= CGF
.Builder
.CreateConstArrayGEP(Addr
, 0, "arraydecay");
3973 return CGF
.Builder
.CreateElementBitCast(Addr
,
3974 CGF
.ConvertTypeForMem(ElTy
));
3976 LValueBaseInfo TypeBaseInfo
;
3977 TBAAAccessInfo TypeTBAAInfo
;
3979 CGF
.CGM
.getNaturalTypeAlignment(ElTy
, &TypeBaseInfo
, &TypeTBAAInfo
);
3980 BaseInfo
.mergeForCast(TypeBaseInfo
);
3981 TBAAInfo
= CGF
.CGM
.mergeTBAAInfoForCast(TBAAInfo
, TypeTBAAInfo
);
3982 return Address(CGF
.Builder
.CreateLoad(BaseLVal
.getAddress(CGF
)),
3983 CGF
.ConvertTypeForMem(ElTy
), Align
);
3985 return CGF
.EmitPointerWithAlignment(Base
, &BaseInfo
, &TBAAInfo
);
3988 LValue
CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr
*E
,
3989 bool IsLowerBound
) {
3990 QualType BaseTy
= OMPArraySectionExpr::getBaseOriginalType(E
->getBase());
3991 QualType ResultExprTy
;
3992 if (auto *AT
= getContext().getAsArrayType(BaseTy
))
3993 ResultExprTy
= AT
->getElementType();
3995 ResultExprTy
= BaseTy
->getPointeeType();
3996 llvm::Value
*Idx
= nullptr;
3997 if (IsLowerBound
|| E
->getColonLocFirst().isInvalid()) {
3998 // Requesting lower bound or upper bound, but without provided length and
3999 // without ':' symbol for the default length -> length = 1.
4000 // Idx = LowerBound ?: 0;
4001 if (auto *LowerBound
= E
->getLowerBound()) {
4002 Idx
= Builder
.CreateIntCast(
4003 EmitScalarExpr(LowerBound
), IntPtrTy
,
4004 LowerBound
->getType()->hasSignedIntegerRepresentation());
4006 Idx
= llvm::ConstantInt::getNullValue(IntPtrTy
);
4008 // Try to emit length or lower bound as constant. If this is possible, 1
4009 // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4010 // IR (LB + Len) - 1.
4011 auto &C
= CGM
.getContext();
4012 auto *Length
= E
->getLength();
4013 llvm::APSInt ConstLength
;
4015 // Idx = LowerBound + Length - 1;
4016 if (std::optional
<llvm::APSInt
> CL
= Length
->getIntegerConstantExpr(C
)) {
4017 ConstLength
= CL
->zextOrTrunc(PointerWidthInBits
);
4020 auto *LowerBound
= E
->getLowerBound();
4021 llvm::APSInt
ConstLowerBound(PointerWidthInBits
, /*isUnsigned=*/false);
4023 if (std::optional
<llvm::APSInt
> LB
=
4024 LowerBound
->getIntegerConstantExpr(C
)) {
4025 ConstLowerBound
= LB
->zextOrTrunc(PointerWidthInBits
);
4026 LowerBound
= nullptr;
4031 else if (!LowerBound
)
4034 if (Length
|| LowerBound
) {
4035 auto *LowerBoundVal
=
4037 ? Builder
.CreateIntCast(
4038 EmitScalarExpr(LowerBound
), IntPtrTy
,
4039 LowerBound
->getType()->hasSignedIntegerRepresentation())
4040 : llvm::ConstantInt::get(IntPtrTy
, ConstLowerBound
);
4043 ? Builder
.CreateIntCast(
4044 EmitScalarExpr(Length
), IntPtrTy
,
4045 Length
->getType()->hasSignedIntegerRepresentation())
4046 : llvm::ConstantInt::get(IntPtrTy
, ConstLength
);
4047 Idx
= Builder
.CreateAdd(LowerBoundVal
, LengthVal
, "lb_add_len",
4049 !getLangOpts().isSignedOverflowDefined());
4050 if (Length
&& LowerBound
) {
4051 Idx
= Builder
.CreateSub(
4052 Idx
, llvm::ConstantInt::get(IntPtrTy
, /*V=*/1), "idx_sub_1",
4053 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4056 Idx
= llvm::ConstantInt::get(IntPtrTy
, ConstLength
+ ConstLowerBound
);
4058 // Idx = ArraySize - 1;
4059 QualType ArrayTy
= BaseTy
->isPointerType()
4060 ? E
->getBase()->IgnoreParenImpCasts()->getType()
4062 if (auto *VAT
= C
.getAsVariableArrayType(ArrayTy
)) {
4063 Length
= VAT
->getSizeExpr();
4064 if (std::optional
<llvm::APSInt
> L
= Length
->getIntegerConstantExpr(C
)) {
4069 auto *CAT
= C
.getAsConstantArrayType(ArrayTy
);
4070 ConstLength
= CAT
->getSize();
4073 auto *LengthVal
= Builder
.CreateIntCast(
4074 EmitScalarExpr(Length
), IntPtrTy
,
4075 Length
->getType()->hasSignedIntegerRepresentation());
4076 Idx
= Builder
.CreateSub(
4077 LengthVal
, llvm::ConstantInt::get(IntPtrTy
, /*V=*/1), "len_sub_1",
4078 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4080 ConstLength
= ConstLength
.zextOrTrunc(PointerWidthInBits
);
4082 Idx
= llvm::ConstantInt::get(IntPtrTy
, ConstLength
);
4088 Address EltPtr
= Address::invalid();
4089 LValueBaseInfo BaseInfo
;
4090 TBAAAccessInfo TBAAInfo
;
4091 if (auto *VLA
= getContext().getAsVariableArrayType(ResultExprTy
)) {
4092 // The base must be a pointer, which is not an aggregate. Emit
4093 // it. It needs to be emitted first in case it's what captures
4096 emitOMPArraySectionBase(*this, E
->getBase(), BaseInfo
, TBAAInfo
,
4097 BaseTy
, VLA
->getElementType(), IsLowerBound
);
4098 // The element count here is the total number of non-VLA elements.
4099 llvm::Value
*NumElements
= getVLASize(VLA
).NumElts
;
4101 // Effectively, the multiply by the VLA size is part of the GEP.
4102 // GEP indexes are signed, and scaling an index isn't permitted to
4103 // signed-overflow, so we use the same semantics for our explicit
4104 // multiply. We suppress this if overflow is not undefined behavior.
4105 if (getLangOpts().isSignedOverflowDefined())
4106 Idx
= Builder
.CreateMul(Idx
, NumElements
);
4108 Idx
= Builder
.CreateNSWMul(Idx
, NumElements
);
4109 EltPtr
= emitArraySubscriptGEP(*this, Base
, Idx
, VLA
->getElementType(),
4110 !getLangOpts().isSignedOverflowDefined(),
4111 /*signedIndices=*/false, E
->getExprLoc());
4112 } else if (const Expr
*Array
= isSimpleArrayDecayOperand(E
->getBase())) {
4113 // If this is A[i] where A is an array, the frontend will have decayed the
4114 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
4115 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4116 // "gep x, i" here. Emit one "gep A, 0, i".
4117 assert(Array
->getType()->isArrayType() &&
4118 "Array to pointer decay must have array source type!");
4120 // For simple multidimensional array indexing, set the 'accessed' flag for
4121 // better bounds-checking of the base expression.
4122 if (const auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(Array
))
4123 ArrayLV
= EmitArraySubscriptExpr(ASE
, /*Accessed*/ true);
4125 ArrayLV
= EmitLValue(Array
);
4127 // Propagate the alignment from the array itself to the result.
4128 EltPtr
= emitArraySubscriptGEP(
4129 *this, ArrayLV
.getAddress(*this), {CGM
.getSize(CharUnits::Zero()), Idx
},
4130 ResultExprTy
, !getLangOpts().isSignedOverflowDefined(),
4131 /*signedIndices=*/false, E
->getExprLoc());
4132 BaseInfo
= ArrayLV
.getBaseInfo();
4133 TBAAInfo
= CGM
.getTBAAInfoForSubobject(ArrayLV
, ResultExprTy
);
4135 Address Base
= emitOMPArraySectionBase(*this, E
->getBase(), BaseInfo
,
4136 TBAAInfo
, BaseTy
, ResultExprTy
,
4138 EltPtr
= emitArraySubscriptGEP(*this, Base
, Idx
, ResultExprTy
,
4139 !getLangOpts().isSignedOverflowDefined(),
4140 /*signedIndices=*/false, E
->getExprLoc());
4143 return MakeAddrLValue(EltPtr
, ResultExprTy
, BaseInfo
, TBAAInfo
);
4146 LValue
CodeGenFunction::
4147 EmitExtVectorElementExpr(const ExtVectorElementExpr
*E
) {
4148 // Emit the base vector as an l-value.
4151 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4153 // If it is a pointer to a vector, emit the address and form an lvalue with
4155 LValueBaseInfo BaseInfo
;
4156 TBAAAccessInfo TBAAInfo
;
4157 Address Ptr
= EmitPointerWithAlignment(E
->getBase(), &BaseInfo
, &TBAAInfo
);
4158 const auto *PT
= E
->getBase()->getType()->castAs
<PointerType
>();
4159 Base
= MakeAddrLValue(Ptr
, PT
->getPointeeType(), BaseInfo
, TBAAInfo
);
4160 Base
.getQuals().removeObjCGCAttr();
4161 } else if (E
->getBase()->isGLValue()) {
4162 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4163 // emit the base as an lvalue.
4164 assert(E
->getBase()->getType()->isVectorType());
4165 Base
= EmitLValue(E
->getBase());
4167 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4168 assert(E
->getBase()->getType()->isVectorType() &&
4169 "Result must be a vector");
4170 llvm::Value
*Vec
= EmitScalarExpr(E
->getBase());
4172 // Store the vector to memory (because LValue wants an address).
4173 Address VecMem
= CreateMemTemp(E
->getBase()->getType());
4174 Builder
.CreateStore(Vec
, VecMem
);
4175 Base
= MakeAddrLValue(VecMem
, E
->getBase()->getType(),
4176 AlignmentSource::Decl
);
4180 E
->getType().withCVRQualifiers(Base
.getQuals().getCVRQualifiers());
4182 // Encode the element access list into a vector of unsigned indices.
4183 SmallVector
<uint32_t, 4> Indices
;
4184 E
->getEncodedElementAccess(Indices
);
4186 if (Base
.isSimple()) {
4187 llvm::Constant
*CV
=
4188 llvm::ConstantDataVector::get(getLLVMContext(), Indices
);
4189 return LValue::MakeExtVectorElt(Base
.getAddress(*this), CV
, type
,
4190 Base
.getBaseInfo(), TBAAAccessInfo());
4192 assert(Base
.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4194 llvm::Constant
*BaseElts
= Base
.getExtVectorElts();
4195 SmallVector
<llvm::Constant
*, 4> CElts
;
4197 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
)
4198 CElts
.push_back(BaseElts
->getAggregateElement(Indices
[i
]));
4199 llvm::Constant
*CV
= llvm::ConstantVector::get(CElts
);
4200 return LValue::MakeExtVectorElt(Base
.getExtVectorAddress(), CV
, type
,
4201 Base
.getBaseInfo(), TBAAAccessInfo());
4204 LValue
CodeGenFunction::EmitMemberExpr(const MemberExpr
*E
) {
4205 if (DeclRefExpr
*DRE
= tryToConvertMemberExprToDeclRefExpr(*this, E
)) {
4206 EmitIgnoredExpr(E
->getBase());
4207 return EmitDeclRefLValue(DRE
);
4210 Expr
*BaseExpr
= E
->getBase();
4211 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
4214 LValueBaseInfo BaseInfo
;
4215 TBAAAccessInfo TBAAInfo
;
4216 Address Addr
= EmitPointerWithAlignment(BaseExpr
, &BaseInfo
, &TBAAInfo
);
4217 QualType PtrTy
= BaseExpr
->getType()->getPointeeType();
4218 SanitizerSet SkippedChecks
;
4219 bool IsBaseCXXThis
= IsWrappedCXXThis(BaseExpr
);
4221 SkippedChecks
.set(SanitizerKind::Alignment
, true);
4222 if (IsBaseCXXThis
|| isa
<DeclRefExpr
>(BaseExpr
))
4223 SkippedChecks
.set(SanitizerKind::Null
, true);
4224 EmitTypeCheck(TCK_MemberAccess
, E
->getExprLoc(), Addr
.getPointer(), PtrTy
,
4225 /*Alignment=*/CharUnits::Zero(), SkippedChecks
);
4226 BaseLV
= MakeAddrLValue(Addr
, PtrTy
, BaseInfo
, TBAAInfo
);
4228 BaseLV
= EmitCheckedLValue(BaseExpr
, TCK_MemberAccess
);
4230 NamedDecl
*ND
= E
->getMemberDecl();
4231 if (auto *Field
= dyn_cast
<FieldDecl
>(ND
)) {
4232 LValue LV
= EmitLValueForField(BaseLV
, Field
);
4233 setObjCGCLValueClass(getContext(), E
, LV
);
4234 if (getLangOpts().OpenMP
) {
4235 // If the member was explicitly marked as nontemporal, mark it as
4236 // nontemporal. If the base lvalue is marked as nontemporal, mark access
4237 // to children as nontemporal too.
4238 if ((IsWrappedCXXThis(BaseExpr
) &&
4239 CGM
.getOpenMPRuntime().isNontemporalDecl(Field
)) ||
4240 BaseLV
.isNontemporal())
4241 LV
.setNontemporal(/*Value=*/true);
4246 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
4247 return EmitFunctionDeclLValue(*this, E
, FD
);
4249 llvm_unreachable("Unhandled member declaration!");
4252 /// Given that we are currently emitting a lambda, emit an l-value for
4253 /// one of its members.
4254 LValue
CodeGenFunction::EmitLValueForLambdaField(const FieldDecl
*Field
) {
4256 assert(cast
<CXXMethodDecl
>(CurCodeDecl
)->getParent()->isLambda());
4257 assert(cast
<CXXMethodDecl
>(CurCodeDecl
)->getParent() == Field
->getParent());
4259 QualType LambdaTagType
=
4260 getContext().getTagDeclType(Field
->getParent());
4261 LValue LambdaLV
= MakeNaturalAlignAddrLValue(CXXABIThisValue
, LambdaTagType
);
4262 return EmitLValueForField(LambdaLV
, Field
);
4265 /// Get the field index in the debug info. The debug info structure/union
4266 /// will ignore the unnamed bitfields.
4267 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl
*Rec
,
4268 unsigned FieldIndex
) {
4269 unsigned I
= 0, Skipped
= 0;
4271 for (auto *F
: Rec
->getDefinition()->fields()) {
4272 if (I
== FieldIndex
)
4274 if (F
->isUnnamedBitfield())
4279 return FieldIndex
- Skipped
;
4282 /// Get the address of a zero-sized field within a record. The resulting
4283 /// address doesn't necessarily have the right type.
4284 static Address
emitAddrOfZeroSizeField(CodeGenFunction
&CGF
, Address Base
,
4285 const FieldDecl
*Field
) {
4286 CharUnits Offset
= CGF
.getContext().toCharUnitsFromBits(
4287 CGF
.getContext().getFieldOffset(Field
));
4288 if (Offset
.isZero())
4290 Base
= CGF
.Builder
.CreateElementBitCast(Base
, CGF
.Int8Ty
);
4291 return CGF
.Builder
.CreateConstInBoundsByteGEP(Base
, Offset
);
4294 /// Drill down to the storage of a field without walking into
4295 /// reference types.
4297 /// The resulting address doesn't necessarily have the right type.
4298 static Address
emitAddrOfFieldStorage(CodeGenFunction
&CGF
, Address base
,
4299 const FieldDecl
*field
) {
4300 if (field
->isZeroSize(CGF
.getContext()))
4301 return emitAddrOfZeroSizeField(CGF
, base
, field
);
4303 const RecordDecl
*rec
= field
->getParent();
4306 CGF
.CGM
.getTypes().getCGRecordLayout(rec
).getLLVMFieldNo(field
);
4308 return CGF
.Builder
.CreateStructGEP(base
, idx
, field
->getName());
4311 static Address
emitPreserveStructAccess(CodeGenFunction
&CGF
, LValue base
,
4312 Address addr
, const FieldDecl
*field
) {
4313 const RecordDecl
*rec
= field
->getParent();
4314 llvm::DIType
*DbgInfo
= CGF
.getDebugInfo()->getOrCreateStandaloneType(
4315 base
.getType(), rec
->getLocation());
4318 CGF
.CGM
.getTypes().getCGRecordLayout(rec
).getLLVMFieldNo(field
);
4320 return CGF
.Builder
.CreatePreserveStructAccessIndex(
4321 addr
, idx
, CGF
.getDebugInfoFIndex(rec
, field
->getFieldIndex()), DbgInfo
);
4324 static bool hasAnyVptr(const QualType Type
, const ASTContext
&Context
) {
4325 const auto *RD
= Type
.getTypePtr()->getAsCXXRecordDecl();
4329 if (RD
->isDynamicClass())
4332 for (const auto &Base
: RD
->bases())
4333 if (hasAnyVptr(Base
.getType(), Context
))
4336 for (const FieldDecl
*Field
: RD
->fields())
4337 if (hasAnyVptr(Field
->getType(), Context
))
4343 LValue
CodeGenFunction::EmitLValueForField(LValue base
,
4344 const FieldDecl
*field
) {
4345 LValueBaseInfo BaseInfo
= base
.getBaseInfo();
4347 if (field
->isBitField()) {
4348 const CGRecordLayout
&RL
=
4349 CGM
.getTypes().getCGRecordLayout(field
->getParent());
4350 const CGBitFieldInfo
&Info
= RL
.getBitFieldInfo(field
);
4351 const bool UseVolatile
= isAAPCS(CGM
.getTarget()) &&
4352 CGM
.getCodeGenOpts().AAPCSBitfieldWidth
&&
4353 Info
.VolatileStorageSize
!= 0 &&
4355 .withCVRQualifiers(base
.getVRQualifiers())
4356 .isVolatileQualified();
4357 Address Addr
= base
.getAddress(*this);
4358 unsigned Idx
= RL
.getLLVMFieldNo(field
);
4359 const RecordDecl
*rec
= field
->getParent();
4361 if (!IsInPreservedAIRegion
&&
4362 (!getDebugInfo() || !rec
->hasAttr
<BPFPreserveAccessIndexAttr
>())) {
4364 // For structs, we GEP to the field that the record layout suggests.
4365 Addr
= Builder
.CreateStructGEP(Addr
, Idx
, field
->getName());
4367 llvm::DIType
*DbgInfo
= getDebugInfo()->getOrCreateRecordType(
4368 getContext().getRecordType(rec
), rec
->getLocation());
4369 Addr
= Builder
.CreatePreserveStructAccessIndex(
4370 Addr
, Idx
, getDebugInfoFIndex(rec
, field
->getFieldIndex()),
4375 UseVolatile
? Info
.VolatileStorageSize
: Info
.StorageSize
;
4376 // Get the access type.
4377 llvm::Type
*FieldIntTy
= llvm::Type::getIntNTy(getLLVMContext(), SS
);
4378 if (Addr
.getElementType() != FieldIntTy
)
4379 Addr
= Builder
.CreateElementBitCast(Addr
, FieldIntTy
);
4381 const unsigned VolatileOffset
= Info
.VolatileStorageOffset
.getQuantity();
4383 Addr
= Builder
.CreateConstInBoundsGEP(Addr
, VolatileOffset
);
4386 QualType fieldType
=
4387 field
->getType().withCVRQualifiers(base
.getVRQualifiers());
4388 // TODO: Support TBAA for bit fields.
4389 LValueBaseInfo
FieldBaseInfo(BaseInfo
.getAlignmentSource());
4390 return LValue::MakeBitfield(Addr
, Info
, fieldType
, FieldBaseInfo
,
4394 // Fields of may-alias structures are may-alias themselves.
4395 // FIXME: this should get propagated down through anonymous structs
4397 QualType FieldType
= field
->getType();
4398 const RecordDecl
*rec
= field
->getParent();
4399 AlignmentSource BaseAlignSource
= BaseInfo
.getAlignmentSource();
4400 LValueBaseInfo
FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource
));
4401 TBAAAccessInfo FieldTBAAInfo
;
4402 if (base
.getTBAAInfo().isMayAlias() ||
4403 rec
->hasAttr
<MayAliasAttr
>() || FieldType
->isVectorType()) {
4404 FieldTBAAInfo
= TBAAAccessInfo::getMayAliasInfo();
4405 } else if (rec
->isUnion()) {
4406 // TODO: Support TBAA for unions.
4407 FieldTBAAInfo
= TBAAAccessInfo::getMayAliasInfo();
4409 // If no base type been assigned for the base access, then try to generate
4410 // one for this base lvalue.
4411 FieldTBAAInfo
= base
.getTBAAInfo();
4412 if (!FieldTBAAInfo
.BaseType
) {
4413 FieldTBAAInfo
.BaseType
= CGM
.getTBAABaseTypeInfo(base
.getType());
4414 assert(!FieldTBAAInfo
.Offset
&&
4415 "Nonzero offset for an access with no base type!");
4418 // Adjust offset to be relative to the base type.
4419 const ASTRecordLayout
&Layout
=
4420 getContext().getASTRecordLayout(field
->getParent());
4421 unsigned CharWidth
= getContext().getCharWidth();
4422 if (FieldTBAAInfo
.BaseType
)
4423 FieldTBAAInfo
.Offset
+=
4424 Layout
.getFieldOffset(field
->getFieldIndex()) / CharWidth
;
4426 // Update the final access type and size.
4427 FieldTBAAInfo
.AccessType
= CGM
.getTBAATypeInfo(FieldType
);
4428 FieldTBAAInfo
.Size
=
4429 getContext().getTypeSizeInChars(FieldType
).getQuantity();
4432 Address addr
= base
.getAddress(*this);
4433 if (auto *ClassDef
= dyn_cast
<CXXRecordDecl
>(rec
)) {
4434 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
4435 ClassDef
->isDynamicClass()) {
4436 // Getting to any field of dynamic object requires stripping dynamic
4437 // information provided by invariant.group. This is because accessing
4438 // fields may leak the real address of dynamic object, which could result
4439 // in miscompilation when leaked pointer would be compared.
4440 auto *stripped
= Builder
.CreateStripInvariantGroup(addr
.getPointer());
4441 addr
= Address(stripped
, addr
.getElementType(), addr
.getAlignment());
4445 unsigned RecordCVR
= base
.getVRQualifiers();
4446 if (rec
->isUnion()) {
4447 // For unions, there is no pointer adjustment.
4448 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
4449 hasAnyVptr(FieldType
, getContext()))
4450 // Because unions can easily skip invariant.barriers, we need to add
4451 // a barrier every time CXXRecord field with vptr is referenced.
4452 addr
= Builder
.CreateLaunderInvariantGroup(addr
);
4454 if (IsInPreservedAIRegion
||
4455 (getDebugInfo() && rec
->hasAttr
<BPFPreserveAccessIndexAttr
>())) {
4456 // Remember the original union field index
4457 llvm::DIType
*DbgInfo
= getDebugInfo()->getOrCreateStandaloneType(base
.getType(),
4458 rec
->getLocation());
4460 Builder
.CreatePreserveUnionAccessIndex(
4461 addr
.getPointer(), getDebugInfoFIndex(rec
, field
->getFieldIndex()), DbgInfo
),
4462 addr
.getElementType(), addr
.getAlignment());
4465 if (FieldType
->isReferenceType())
4466 addr
= Builder
.CreateElementBitCast(
4467 addr
, CGM
.getTypes().ConvertTypeForMem(FieldType
), field
->getName());
4469 if (!IsInPreservedAIRegion
&&
4470 (!getDebugInfo() || !rec
->hasAttr
<BPFPreserveAccessIndexAttr
>()))
4471 // For structs, we GEP to the field that the record layout suggests.
4472 addr
= emitAddrOfFieldStorage(*this, addr
, field
);
4474 // Remember the original struct field index
4475 addr
= emitPreserveStructAccess(*this, base
, addr
, field
);
4478 // If this is a reference field, load the reference right now.
4479 if (FieldType
->isReferenceType()) {
4481 MakeAddrLValue(addr
, FieldType
, FieldBaseInfo
, FieldTBAAInfo
);
4482 if (RecordCVR
& Qualifiers::Volatile
)
4483 RefLVal
.getQuals().addVolatile();
4484 addr
= EmitLoadOfReference(RefLVal
, &FieldBaseInfo
, &FieldTBAAInfo
);
4486 // Qualifiers on the struct don't apply to the referencee.
4488 FieldType
= FieldType
->getPointeeType();
4491 // Make sure that the address is pointing to the right type. This is critical
4492 // for both unions and structs. A union needs a bitcast, a struct element
4493 // will need a bitcast if the LLVM type laid out doesn't match the desired
4495 addr
= Builder
.CreateElementBitCast(
4496 addr
, CGM
.getTypes().ConvertTypeForMem(FieldType
), field
->getName());
4498 if (field
->hasAttr
<AnnotateAttr
>())
4499 addr
= EmitFieldAnnotations(field
, addr
);
4501 LValue LV
= MakeAddrLValue(addr
, FieldType
, FieldBaseInfo
, FieldTBAAInfo
);
4502 LV
.getQuals().addCVRQualifiers(RecordCVR
);
4504 // __weak attribute on a field is ignored.
4505 if (LV
.getQuals().getObjCGCAttr() == Qualifiers::Weak
)
4506 LV
.getQuals().removeObjCGCAttr();
4512 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base
,
4513 const FieldDecl
*Field
) {
4514 QualType FieldType
= Field
->getType();
4516 if (!FieldType
->isReferenceType())
4517 return EmitLValueForField(Base
, Field
);
4519 Address V
= emitAddrOfFieldStorage(*this, Base
.getAddress(*this), Field
);
4521 // Make sure that the address is pointing to the right type.
4522 llvm::Type
*llvmType
= ConvertTypeForMem(FieldType
);
4523 V
= Builder
.CreateElementBitCast(V
, llvmType
, Field
->getName());
4525 // TODO: Generate TBAA information that describes this access as a structure
4526 // member access and not just an access to an object of the field's type. This
4527 // should be similar to what we do in EmitLValueForField().
4528 LValueBaseInfo BaseInfo
= Base
.getBaseInfo();
4529 AlignmentSource FieldAlignSource
= BaseInfo
.getAlignmentSource();
4530 LValueBaseInfo
FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource
));
4531 return MakeAddrLValue(V
, FieldType
, FieldBaseInfo
,
4532 CGM
.getTBAAInfoForSubobject(Base
, FieldType
));
4535 LValue
CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr
*E
){
4536 if (E
->isFileScope()) {
4537 ConstantAddress GlobalPtr
= CGM
.GetAddrOfConstantCompoundLiteral(E
);
4538 return MakeAddrLValue(GlobalPtr
, E
->getType(), AlignmentSource::Decl
);
4540 if (E
->getType()->isVariablyModifiedType())
4541 // make sure to emit the VLA size.
4542 EmitVariablyModifiedType(E
->getType());
4544 Address DeclPtr
= CreateMemTemp(E
->getType(), ".compoundliteral");
4545 const Expr
*InitExpr
= E
->getInitializer();
4546 LValue Result
= MakeAddrLValue(DeclPtr
, E
->getType(), AlignmentSource::Decl
);
4548 EmitAnyExprToMem(InitExpr
, DeclPtr
, E
->getType().getQualifiers(),
4551 // Block-scope compound literals are destroyed at the end of the enclosing
4553 if (!getLangOpts().CPlusPlus
)
4554 if (QualType::DestructionKind DtorKind
= E
->getType().isDestructedType())
4555 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind
), DeclPtr
,
4556 E
->getType(), getDestroyer(DtorKind
),
4557 DtorKind
& EHCleanup
);
4562 LValue
CodeGenFunction::EmitInitListLValue(const InitListExpr
*E
) {
4563 if (!E
->isGLValue())
4564 // Initializing an aggregate temporary in C++11: T{...}.
4565 return EmitAggExprToLValue(E
);
4567 // An lvalue initializer list must be initializing a reference.
4568 assert(E
->isTransparent() && "non-transparent glvalue init list");
4569 return EmitLValue(E
->getInit(0));
4572 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4573 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4574 /// LValue is returned and the current block has been terminated.
4575 static std::optional
<LValue
> EmitLValueOrThrowExpression(CodeGenFunction
&CGF
,
4576 const Expr
*Operand
) {
4577 if (auto *ThrowExpr
= dyn_cast
<CXXThrowExpr
>(Operand
->IgnoreParens())) {
4578 CGF
.EmitCXXThrowExpr(ThrowExpr
, /*KeepInsertionPoint*/false);
4579 return std::nullopt
;
4582 return CGF
.EmitLValue(Operand
);
4586 // Handle the case where the condition is a constant evaluatable simple integer,
4587 // which means we don't have to separately handle the true/false blocks.
4588 std::optional
<LValue
> HandleConditionalOperatorLValueSimpleCase(
4589 CodeGenFunction
&CGF
, const AbstractConditionalOperator
*E
) {
4590 const Expr
*condExpr
= E
->getCond();
4592 if (CGF
.ConstantFoldsToSimpleInteger(condExpr
, CondExprBool
)) {
4593 const Expr
*Live
= E
->getTrueExpr(), *Dead
= E
->getFalseExpr();
4595 std::swap(Live
, Dead
);
4597 if (!CGF
.ContainsLabel(Dead
)) {
4598 // If the true case is live, we need to track its region.
4600 CGF
.incrementProfileCounter(E
);
4601 // If a throw expression we emit it and return an undefined lvalue
4602 // because it can't be used.
4603 if (auto *ThrowExpr
= dyn_cast
<CXXThrowExpr
>(Live
->IgnoreParens())) {
4604 CGF
.EmitCXXThrowExpr(ThrowExpr
);
4605 llvm::Type
*ElemTy
= CGF
.ConvertType(Dead
->getType());
4606 llvm::Type
*Ty
= llvm::PointerType::getUnqual(ElemTy
);
4607 return CGF
.MakeAddrLValue(
4608 Address(llvm::UndefValue::get(Ty
), ElemTy
, CharUnits::One()),
4611 return CGF
.EmitLValue(Live
);
4614 return std::nullopt
;
4616 struct ConditionalInfo
{
4617 llvm::BasicBlock
*lhsBlock
, *rhsBlock
;
4618 std::optional
<LValue
> LHS
, RHS
;
4621 // Create and generate the 3 blocks for a conditional operator.
4622 // Leaves the 'current block' in the continuation basic block.
4623 template<typename FuncTy
>
4624 ConditionalInfo
EmitConditionalBlocks(CodeGenFunction
&CGF
,
4625 const AbstractConditionalOperator
*E
,
4626 const FuncTy
&BranchGenFunc
) {
4627 ConditionalInfo Info
{CGF
.createBasicBlock("cond.true"),
4628 CGF
.createBasicBlock("cond.false"), std::nullopt
,
4630 llvm::BasicBlock
*endBlock
= CGF
.createBasicBlock("cond.end");
4632 CodeGenFunction::ConditionalEvaluation
eval(CGF
);
4633 CGF
.EmitBranchOnBoolExpr(E
->getCond(), Info
.lhsBlock
, Info
.rhsBlock
,
4634 CGF
.getProfileCount(E
));
4636 // Any temporaries created here are conditional.
4637 CGF
.EmitBlock(Info
.lhsBlock
);
4638 CGF
.incrementProfileCounter(E
);
4640 Info
.LHS
= BranchGenFunc(CGF
, E
->getTrueExpr());
4642 Info
.lhsBlock
= CGF
.Builder
.GetInsertBlock();
4645 CGF
.Builder
.CreateBr(endBlock
);
4647 // Any temporaries created here are conditional.
4648 CGF
.EmitBlock(Info
.rhsBlock
);
4650 Info
.RHS
= BranchGenFunc(CGF
, E
->getFalseExpr());
4652 Info
.rhsBlock
= CGF
.Builder
.GetInsertBlock();
4653 CGF
.EmitBlock(endBlock
);
4659 void CodeGenFunction::EmitIgnoredConditionalOperator(
4660 const AbstractConditionalOperator
*E
) {
4661 if (!E
->isGLValue()) {
4662 // ?: here should be an aggregate.
4663 assert(hasAggregateEvaluationKind(E
->getType()) &&
4664 "Unexpected conditional operator!");
4665 return (void)EmitAggExprToLValue(E
);
4668 OpaqueValueMapping
binding(*this, E
);
4669 if (HandleConditionalOperatorLValueSimpleCase(*this, E
))
4672 EmitConditionalBlocks(*this, E
, [](CodeGenFunction
&CGF
, const Expr
*E
) {
4673 CGF
.EmitIgnoredExpr(E
);
4677 LValue
CodeGenFunction::EmitConditionalOperatorLValue(
4678 const AbstractConditionalOperator
*expr
) {
4679 if (!expr
->isGLValue()) {
4680 // ?: here should be an aggregate.
4681 assert(hasAggregateEvaluationKind(expr
->getType()) &&
4682 "Unexpected conditional operator!");
4683 return EmitAggExprToLValue(expr
);
4686 OpaqueValueMapping
binding(*this, expr
);
4687 if (std::optional
<LValue
> Res
=
4688 HandleConditionalOperatorLValueSimpleCase(*this, expr
))
4691 ConditionalInfo Info
= EmitConditionalBlocks(
4692 *this, expr
, [](CodeGenFunction
&CGF
, const Expr
*E
) {
4693 return EmitLValueOrThrowExpression(CGF
, E
);
4696 if ((Info
.LHS
&& !Info
.LHS
->isSimple()) ||
4697 (Info
.RHS
&& !Info
.RHS
->isSimple()))
4698 return EmitUnsupportedLValue(expr
, "conditional operator");
4700 if (Info
.LHS
&& Info
.RHS
) {
4701 Address lhsAddr
= Info
.LHS
->getAddress(*this);
4702 Address rhsAddr
= Info
.RHS
->getAddress(*this);
4703 llvm::PHINode
*phi
= Builder
.CreatePHI(lhsAddr
.getType(), 2, "cond-lvalue");
4704 phi
->addIncoming(lhsAddr
.getPointer(), Info
.lhsBlock
);
4705 phi
->addIncoming(rhsAddr
.getPointer(), Info
.rhsBlock
);
4706 Address
result(phi
, lhsAddr
.getElementType(),
4707 std::min(lhsAddr
.getAlignment(), rhsAddr
.getAlignment()));
4708 AlignmentSource alignSource
=
4709 std::max(Info
.LHS
->getBaseInfo().getAlignmentSource(),
4710 Info
.RHS
->getBaseInfo().getAlignmentSource());
4711 TBAAAccessInfo TBAAInfo
= CGM
.mergeTBAAInfoForConditionalOperator(
4712 Info
.LHS
->getTBAAInfo(), Info
.RHS
->getTBAAInfo());
4713 return MakeAddrLValue(result
, expr
->getType(), LValueBaseInfo(alignSource
),
4716 assert((Info
.LHS
|| Info
.RHS
) &&
4717 "both operands of glvalue conditional are throw-expressions?");
4718 return Info
.LHS
? *Info
.LHS
: *Info
.RHS
;
4722 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4723 /// type. If the cast is to a reference, we can have the usual lvalue result,
4724 /// otherwise if a cast is needed by the code generator in an lvalue context,
4725 /// then it must mean that we need the address of an aggregate in order to
4726 /// access one of its members. This can happen for all the reasons that casts
4727 /// are permitted with aggregate result, including noop aggregate casts, and
4728 /// cast from scalar to union.
4729 LValue
CodeGenFunction::EmitCastLValue(const CastExpr
*E
) {
4730 switch (E
->getCastKind()) {
4733 case CK_LValueToRValueBitCast
:
4734 case CK_ArrayToPointerDecay
:
4735 case CK_FunctionToPointerDecay
:
4736 case CK_NullToMemberPointer
:
4737 case CK_NullToPointer
:
4738 case CK_IntegralToPointer
:
4739 case CK_PointerToIntegral
:
4740 case CK_PointerToBoolean
:
4741 case CK_VectorSplat
:
4742 case CK_IntegralCast
:
4743 case CK_BooleanToSignedIntegral
:
4744 case CK_IntegralToBoolean
:
4745 case CK_IntegralToFloating
:
4746 case CK_FloatingToIntegral
:
4747 case CK_FloatingToBoolean
:
4748 case CK_FloatingCast
:
4749 case CK_FloatingRealToComplex
:
4750 case CK_FloatingComplexToReal
:
4751 case CK_FloatingComplexToBoolean
:
4752 case CK_FloatingComplexCast
:
4753 case CK_FloatingComplexToIntegralComplex
:
4754 case CK_IntegralRealToComplex
:
4755 case CK_IntegralComplexToReal
:
4756 case CK_IntegralComplexToBoolean
:
4757 case CK_IntegralComplexCast
:
4758 case CK_IntegralComplexToFloatingComplex
:
4759 case CK_DerivedToBaseMemberPointer
:
4760 case CK_BaseToDerivedMemberPointer
:
4761 case CK_MemberPointerToBoolean
:
4762 case CK_ReinterpretMemberPointer
:
4763 case CK_AnyPointerToBlockPointerCast
:
4764 case CK_ARCProduceObject
:
4765 case CK_ARCConsumeObject
:
4766 case CK_ARCReclaimReturnedObject
:
4767 case CK_ARCExtendBlockObject
:
4768 case CK_CopyAndAutoreleaseBlockObject
:
4769 case CK_IntToOCLSampler
:
4770 case CK_FloatingToFixedPoint
:
4771 case CK_FixedPointToFloating
:
4772 case CK_FixedPointCast
:
4773 case CK_FixedPointToBoolean
:
4774 case CK_FixedPointToIntegral
:
4775 case CK_IntegralToFixedPoint
:
4777 return EmitUnsupportedLValue(E
, "unexpected cast lvalue");
4780 llvm_unreachable("dependent cast kind in IR gen!");
4782 case CK_BuiltinFnToFnPtr
:
4783 llvm_unreachable("builtin functions are handled elsewhere");
4785 // These are never l-values; just use the aggregate emission code.
4786 case CK_NonAtomicToAtomic
:
4787 case CK_AtomicToNonAtomic
:
4788 return EmitAggExprToLValue(E
);
4791 LValue LV
= EmitLValue(E
->getSubExpr());
4792 Address V
= LV
.getAddress(*this);
4793 const auto *DCE
= cast
<CXXDynamicCastExpr
>(E
);
4794 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V
, DCE
), E
->getType());
4797 case CK_ConstructorConversion
:
4798 case CK_UserDefinedConversion
:
4799 case CK_CPointerToObjCPointerCast
:
4800 case CK_BlockPointerToObjCPointerCast
:
4801 case CK_LValueToRValue
:
4802 return EmitLValue(E
->getSubExpr());
4805 // CK_NoOp can model a qualification conversion, which can remove an array
4806 // bound and change the IR type.
4807 // FIXME: Once pointee types are removed from IR, remove this.
4808 LValue LV
= EmitLValue(E
->getSubExpr());
4809 if (LV
.isSimple()) {
4810 Address V
= LV
.getAddress(*this);
4812 llvm::Type
*T
= ConvertTypeForMem(E
->getType());
4813 if (V
.getElementType() != T
)
4814 LV
.setAddress(Builder
.CreateElementBitCast(V
, T
));
4820 case CK_UncheckedDerivedToBase
:
4821 case CK_DerivedToBase
: {
4822 const auto *DerivedClassTy
=
4823 E
->getSubExpr()->getType()->castAs
<RecordType
>();
4824 auto *DerivedClassDecl
= cast
<CXXRecordDecl
>(DerivedClassTy
->getDecl());
4826 LValue LV
= EmitLValue(E
->getSubExpr());
4827 Address This
= LV
.getAddress(*this);
4829 // Perform the derived-to-base conversion
4830 Address Base
= GetAddressOfBaseClass(
4831 This
, DerivedClassDecl
, E
->path_begin(), E
->path_end(),
4832 /*NullCheckValue=*/false, E
->getExprLoc());
4834 // TODO: Support accesses to members of base classes in TBAA. For now, we
4835 // conservatively pretend that the complete object is of the base class
4837 return MakeAddrLValue(Base
, E
->getType(), LV
.getBaseInfo(),
4838 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4841 return EmitAggExprToLValue(E
);
4842 case CK_BaseToDerived
: {
4843 const auto *DerivedClassTy
= E
->getType()->castAs
<RecordType
>();
4844 auto *DerivedClassDecl
= cast
<CXXRecordDecl
>(DerivedClassTy
->getDecl());
4846 LValue LV
= EmitLValue(E
->getSubExpr());
4848 // Perform the base-to-derived conversion
4849 Address Derived
= GetAddressOfDerivedClass(
4850 LV
.getAddress(*this), DerivedClassDecl
, E
->path_begin(), E
->path_end(),
4851 /*NullCheckValue=*/false);
4853 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4854 // performed and the object is not of the derived type.
4855 if (sanitizePerformTypeCheck())
4856 EmitTypeCheck(TCK_DowncastReference
, E
->getExprLoc(),
4857 Derived
.getPointer(), E
->getType());
4859 if (SanOpts
.has(SanitizerKind::CFIDerivedCast
))
4860 EmitVTablePtrCheckForCast(E
->getType(), Derived
,
4861 /*MayBeNull=*/false, CFITCK_DerivedCast
,
4864 return MakeAddrLValue(Derived
, E
->getType(), LV
.getBaseInfo(),
4865 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4867 case CK_LValueBitCast
: {
4868 // This must be a reinterpret_cast (or c-style equivalent).
4869 const auto *CE
= cast
<ExplicitCastExpr
>(E
);
4871 CGM
.EmitExplicitCastExprType(CE
, this);
4872 LValue LV
= EmitLValue(E
->getSubExpr());
4873 Address V
= Builder
.CreateElementBitCast(
4874 LV
.getAddress(*this),
4875 ConvertTypeForMem(CE
->getTypeAsWritten()->getPointeeType()));
4877 if (SanOpts
.has(SanitizerKind::CFIUnrelatedCast
))
4878 EmitVTablePtrCheckForCast(E
->getType(), V
,
4879 /*MayBeNull=*/false, CFITCK_UnrelatedCast
,
4882 return MakeAddrLValue(V
, E
->getType(), LV
.getBaseInfo(),
4883 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4885 case CK_AddressSpaceConversion
: {
4886 LValue LV
= EmitLValue(E
->getSubExpr());
4887 QualType DestTy
= getContext().getPointerType(E
->getType());
4888 llvm::Value
*V
= getTargetHooks().performAddrSpaceCast(
4889 *this, LV
.getPointer(*this),
4890 E
->getSubExpr()->getType().getAddressSpace(),
4891 E
->getType().getAddressSpace(), ConvertType(DestTy
));
4892 return MakeAddrLValue(Address(V
, ConvertTypeForMem(E
->getType()),
4893 LV
.getAddress(*this).getAlignment()),
4894 E
->getType(), LV
.getBaseInfo(), LV
.getTBAAInfo());
4896 case CK_ObjCObjectLValueCast
: {
4897 LValue LV
= EmitLValue(E
->getSubExpr());
4898 Address V
= Builder
.CreateElementBitCast(LV
.getAddress(*this),
4899 ConvertType(E
->getType()));
4900 return MakeAddrLValue(V
, E
->getType(), LV
.getBaseInfo(),
4901 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4903 case CK_ZeroToOCLOpaqueType
:
4904 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4907 llvm_unreachable("Unhandled lvalue cast kind?");
4910 LValue
CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr
*e
) {
4911 assert(OpaqueValueMappingData::shouldBindAsLValue(e
));
4912 return getOrCreateOpaqueLValueMapping(e
);
4916 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr
*e
) {
4917 assert(OpaqueValueMapping::shouldBindAsLValue(e
));
4919 llvm::DenseMap
<const OpaqueValueExpr
*,LValue
>::iterator
4920 it
= OpaqueLValues
.find(e
);
4922 if (it
!= OpaqueLValues
.end())
4925 assert(e
->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4926 return EmitLValue(e
->getSourceExpr());
4930 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr
*e
) {
4931 assert(!OpaqueValueMapping::shouldBindAsLValue(e
));
4933 llvm::DenseMap
<const OpaqueValueExpr
*,RValue
>::iterator
4934 it
= OpaqueRValues
.find(e
);
4936 if (it
!= OpaqueRValues
.end())
4939 assert(e
->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4940 return EmitAnyExpr(e
->getSourceExpr());
4943 RValue
CodeGenFunction::EmitRValueForField(LValue LV
,
4944 const FieldDecl
*FD
,
4945 SourceLocation Loc
) {
4946 QualType FT
= FD
->getType();
4947 LValue FieldLV
= EmitLValueForField(LV
, FD
);
4948 switch (getEvaluationKind(FT
)) {
4950 return RValue::getComplex(EmitLoadOfComplex(FieldLV
, Loc
));
4952 return FieldLV
.asAggregateRValue(*this);
4954 // This routine is used to load fields one-by-one to perform a copy, so
4955 // don't load reference fields.
4956 if (FD
->getType()->isReferenceType())
4957 return RValue::get(FieldLV
.getPointer(*this));
4958 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4960 if (FieldLV
.isBitField())
4961 return EmitLoadOfLValue(FieldLV
, Loc
);
4962 return RValue::get(EmitLoadOfScalar(FieldLV
, Loc
));
4964 llvm_unreachable("bad evaluation kind");
4967 //===--------------------------------------------------------------------===//
4968 // Expression Emission
4969 //===--------------------------------------------------------------------===//
4971 RValue
CodeGenFunction::EmitCallExpr(const CallExpr
*E
,
4972 ReturnValueSlot ReturnValue
) {
4973 // Builtins never have block type.
4974 if (E
->getCallee()->getType()->isBlockPointerType())
4975 return EmitBlockCallExpr(E
, ReturnValue
);
4977 if (const auto *CE
= dyn_cast
<CXXMemberCallExpr
>(E
))
4978 return EmitCXXMemberCallExpr(CE
, ReturnValue
);
4980 if (const auto *CE
= dyn_cast
<CUDAKernelCallExpr
>(E
))
4981 return EmitCUDAKernelCallExpr(CE
, ReturnValue
);
4983 if (const auto *CE
= dyn_cast
<CXXOperatorCallExpr
>(E
))
4984 if (const CXXMethodDecl
*MD
=
4985 dyn_cast_or_null
<CXXMethodDecl
>(CE
->getCalleeDecl()))
4986 return EmitCXXOperatorMemberCallExpr(CE
, MD
, ReturnValue
);
4988 CGCallee callee
= EmitCallee(E
->getCallee());
4990 if (callee
.isBuiltin()) {
4991 return EmitBuiltinExpr(callee
.getBuiltinDecl(), callee
.getBuiltinID(),
4995 if (callee
.isPseudoDestructor()) {
4996 return EmitCXXPseudoDestructorExpr(callee
.getPseudoDestructorExpr());
4999 return EmitCall(E
->getCallee()->getType(), callee
, E
, ReturnValue
);
5002 /// Emit a CallExpr without considering whether it might be a subclass.
5003 RValue
CodeGenFunction::EmitSimpleCallExpr(const CallExpr
*E
,
5004 ReturnValueSlot ReturnValue
) {
5005 CGCallee Callee
= EmitCallee(E
->getCallee());
5006 return EmitCall(E
->getCallee()->getType(), Callee
, E
, ReturnValue
);
5009 // Detect the unusual situation where an inline version is shadowed by a
5010 // non-inline version. In that case we should pick the external one
5011 // everywhere. That's GCC behavior too.
5012 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl
*FD
) {
5013 for (const FunctionDecl
*PD
= FD
; PD
; PD
= PD
->getPreviousDecl())
5014 if (!PD
->isInlineBuiltinDeclaration())
5019 static CGCallee
EmitDirectCallee(CodeGenFunction
&CGF
, GlobalDecl GD
) {
5020 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
5022 if (auto builtinID
= FD
->getBuiltinID()) {
5023 std::string NoBuiltinFD
= ("no-builtin-" + FD
->getName()).str();
5024 std::string NoBuiltins
= "no-builtins";
5026 StringRef Ident
= CGF
.CGM
.getMangledName(GD
);
5027 std::string FDInlineName
= (Ident
+ ".inline").str();
5029 bool IsPredefinedLibFunction
=
5030 CGF
.getContext().BuiltinInfo
.isPredefinedLibFunction(builtinID
);
5031 bool HasAttributeNoBuiltin
=
5032 CGF
.CurFn
->getAttributes().hasFnAttr(NoBuiltinFD
) ||
5033 CGF
.CurFn
->getAttributes().hasFnAttr(NoBuiltins
);
5035 // When directing calling an inline builtin, call it through it's mangled
5036 // name to make it clear it's not the actual builtin.
5037 if (CGF
.CurFn
->getName() != FDInlineName
&&
5038 OnlyHasInlineBuiltinDeclaration(FD
)) {
5039 llvm::Constant
*CalleePtr
= EmitFunctionDeclPointer(CGF
.CGM
, GD
);
5040 llvm::Function
*Fn
= llvm::cast
<llvm::Function
>(CalleePtr
);
5041 llvm::Module
*M
= Fn
->getParent();
5042 llvm::Function
*Clone
= M
->getFunction(FDInlineName
);
5044 Clone
= llvm::Function::Create(Fn
->getFunctionType(),
5045 llvm::GlobalValue::InternalLinkage
,
5046 Fn
->getAddressSpace(), FDInlineName
, M
);
5047 Clone
->addFnAttr(llvm::Attribute::AlwaysInline
);
5049 return CGCallee::forDirect(Clone
, GD
);
5052 // Replaceable builtins provide their own implementation of a builtin. If we
5053 // are in an inline builtin implementation, avoid trivial infinite
5054 // recursion. Honor __attribute__((no_builtin("foo"))) or
5055 // __attribute__((no_builtin)) on the current function unless foo is
5056 // not a predefined library function which means we must generate the
5057 // builtin no matter what.
5058 else if (!IsPredefinedLibFunction
|| !HasAttributeNoBuiltin
)
5059 return CGCallee::forBuiltin(builtinID
, FD
);
5062 llvm::Constant
*CalleePtr
= EmitFunctionDeclPointer(CGF
.CGM
, GD
);
5063 if (CGF
.CGM
.getLangOpts().CUDA
&& !CGF
.CGM
.getLangOpts().CUDAIsDevice
&&
5064 FD
->hasAttr
<CUDAGlobalAttr
>())
5065 CalleePtr
= CGF
.CGM
.getCUDARuntime().getKernelStub(
5066 cast
<llvm::GlobalValue
>(CalleePtr
->stripPointerCasts()));
5068 return CGCallee::forDirect(CalleePtr
, GD
);
5071 CGCallee
CodeGenFunction::EmitCallee(const Expr
*E
) {
5072 E
= E
->IgnoreParens();
5074 // Look through function-to-pointer decay.
5075 if (auto ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
5076 if (ICE
->getCastKind() == CK_FunctionToPointerDecay
||
5077 ICE
->getCastKind() == CK_BuiltinFnToFnPtr
) {
5078 return EmitCallee(ICE
->getSubExpr());
5081 // Resolve direct calls.
5082 } else if (auto DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
5083 if (auto FD
= dyn_cast
<FunctionDecl
>(DRE
->getDecl())) {
5084 return EmitDirectCallee(*this, FD
);
5086 } else if (auto ME
= dyn_cast
<MemberExpr
>(E
)) {
5087 if (auto FD
= dyn_cast
<FunctionDecl
>(ME
->getMemberDecl())) {
5088 EmitIgnoredExpr(ME
->getBase());
5089 return EmitDirectCallee(*this, FD
);
5092 // Look through template substitutions.
5093 } else if (auto NTTP
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
)) {
5094 return EmitCallee(NTTP
->getReplacement());
5096 // Treat pseudo-destructor calls differently.
5097 } else if (auto PDE
= dyn_cast
<CXXPseudoDestructorExpr
>(E
)) {
5098 return CGCallee::forPseudoDestructor(PDE
);
5101 // Otherwise, we have an indirect reference.
5102 llvm::Value
*calleePtr
;
5103 QualType functionType
;
5104 if (auto ptrType
= E
->getType()->getAs
<PointerType
>()) {
5105 calleePtr
= EmitScalarExpr(E
);
5106 functionType
= ptrType
->getPointeeType();
5108 functionType
= E
->getType();
5109 calleePtr
= EmitLValue(E
).getPointer(*this);
5111 assert(functionType
->isFunctionType());
5114 if (const auto *VD
=
5115 dyn_cast_or_null
<VarDecl
>(E
->getReferencedDeclOfCallee()))
5116 GD
= GlobalDecl(VD
);
5118 CGCalleeInfo
calleeInfo(functionType
->getAs
<FunctionProtoType
>(), GD
);
5119 CGCallee
callee(calleeInfo
, calleePtr
);
5123 LValue
CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator
*E
) {
5124 // Comma expressions just emit their LHS then their RHS as an l-value.
5125 if (E
->getOpcode() == BO_Comma
) {
5126 EmitIgnoredExpr(E
->getLHS());
5127 EnsureInsertPoint();
5128 return EmitLValue(E
->getRHS());
5131 if (E
->getOpcode() == BO_PtrMemD
||
5132 E
->getOpcode() == BO_PtrMemI
)
5133 return EmitPointerToDataMemberBinaryExpr(E
);
5135 assert(E
->getOpcode() == BO_Assign
&& "unexpected binary l-value");
5137 // Note that in all of these cases, __block variables need the RHS
5138 // evaluated first just in case the variable gets moved by the RHS.
5140 switch (getEvaluationKind(E
->getType())) {
5142 switch (E
->getLHS()->getType().getObjCLifetime()) {
5143 case Qualifiers::OCL_Strong
:
5144 return EmitARCStoreStrong(E
, /*ignored*/ false).first
;
5146 case Qualifiers::OCL_Autoreleasing
:
5147 return EmitARCStoreAutoreleasing(E
).first
;
5149 // No reason to do any of these differently.
5150 case Qualifiers::OCL_None
:
5151 case Qualifiers::OCL_ExplicitNone
:
5152 case Qualifiers::OCL_Weak
:
5156 RValue RV
= EmitAnyExpr(E
->getRHS());
5157 LValue LV
= EmitCheckedLValue(E
->getLHS(), TCK_Store
);
5159 EmitNullabilityCheck(LV
, RV
.getScalarVal(), E
->getExprLoc());
5160 EmitStoreThroughLValue(RV
, LV
);
5161 if (getLangOpts().OpenMP
)
5162 CGM
.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5168 return EmitComplexAssignmentLValue(E
);
5171 return EmitAggExprToLValue(E
);
5173 llvm_unreachable("bad evaluation kind");
5176 LValue
CodeGenFunction::EmitCallExprLValue(const CallExpr
*E
) {
5177 RValue RV
= EmitCallExpr(E
);
5180 return MakeAddrLValue(RV
.getAggregateAddress(), E
->getType(),
5181 AlignmentSource::Decl
);
5183 assert(E
->getCallReturnType(getContext())->isReferenceType() &&
5184 "Can't have a scalar return unless the return type is a "
5187 return MakeNaturalAlignPointeeAddrLValue(RV
.getScalarVal(), E
->getType());
5190 LValue
CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr
*E
) {
5191 // FIXME: This shouldn't require another copy.
5192 return EmitAggExprToLValue(E
);
5195 LValue
CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr
*E
) {
5196 assert(E
->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5197 && "binding l-value to type which needs a temporary");
5198 AggValueSlot Slot
= CreateAggTemp(E
->getType());
5199 EmitCXXConstructExpr(E
, Slot
);
5200 return MakeAddrLValue(Slot
.getAddress(), E
->getType(), AlignmentSource::Decl
);
5204 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr
*E
) {
5205 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E
), E
->getType());
5208 Address
CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr
*E
) {
5209 return Builder
.CreateElementBitCast(CGM
.GetAddrOfMSGuidDecl(E
->getGuidDecl()),
5210 ConvertType(E
->getType()));
5213 LValue
CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr
*E
) {
5214 return MakeAddrLValue(EmitCXXUuidofExpr(E
), E
->getType(),
5215 AlignmentSource::Decl
);
5219 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr
*E
) {
5220 AggValueSlot Slot
= CreateAggTemp(E
->getType(), "temp.lvalue");
5221 Slot
.setExternallyDestructed();
5222 EmitAggExpr(E
->getSubExpr(), Slot
);
5223 EmitCXXTemporary(E
->getTemporary(), E
->getType(), Slot
.getAddress());
5224 return MakeAddrLValue(Slot
.getAddress(), E
->getType(), AlignmentSource::Decl
);
5227 LValue
CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr
*E
) {
5228 RValue RV
= EmitObjCMessageExpr(E
);
5231 return MakeAddrLValue(RV
.getAggregateAddress(), E
->getType(),
5232 AlignmentSource::Decl
);
5234 assert(E
->getMethodDecl()->getReturnType()->isReferenceType() &&
5235 "Can't have a scalar return unless the return type is a "
5238 return MakeNaturalAlignPointeeAddrLValue(RV
.getScalarVal(), E
->getType());
5241 LValue
CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr
*E
) {
5243 CGM
.getObjCRuntime().GetAddrOfSelector(*this, E
->getSelector());
5244 return MakeAddrLValue(V
, E
->getType(), AlignmentSource::Decl
);
5247 llvm::Value
*CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl
*Interface
,
5248 const ObjCIvarDecl
*Ivar
) {
5249 return CGM
.getObjCRuntime().EmitIvarOffset(*this, Interface
, Ivar
);
5253 CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl
*Interface
,
5254 const ObjCIvarDecl
*Ivar
) {
5255 llvm::Value
*OffsetValue
= EmitIvarOffset(Interface
, Ivar
);
5256 QualType PointerDiffType
= getContext().getPointerDiffType();
5257 return Builder
.CreateZExtOrTrunc(OffsetValue
,
5258 getTypes().ConvertType(PointerDiffType
));
5261 LValue
CodeGenFunction::EmitLValueForIvar(QualType ObjectTy
,
5262 llvm::Value
*BaseValue
,
5263 const ObjCIvarDecl
*Ivar
,
5264 unsigned CVRQualifiers
) {
5265 return CGM
.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy
, BaseValue
,
5266 Ivar
, CVRQualifiers
);
5269 LValue
CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr
*E
) {
5270 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5271 llvm::Value
*BaseValue
= nullptr;
5272 const Expr
*BaseExpr
= E
->getBase();
5273 Qualifiers BaseQuals
;
5276 BaseValue
= EmitScalarExpr(BaseExpr
);
5277 ObjectTy
= BaseExpr
->getType()->getPointeeType();
5278 BaseQuals
= ObjectTy
.getQualifiers();
5280 LValue BaseLV
= EmitLValue(BaseExpr
);
5281 BaseValue
= BaseLV
.getPointer(*this);
5282 ObjectTy
= BaseExpr
->getType();
5283 BaseQuals
= ObjectTy
.getQualifiers();
5287 EmitLValueForIvar(ObjectTy
, BaseValue
, E
->getDecl(),
5288 BaseQuals
.getCVRQualifiers());
5289 setObjCGCLValueClass(getContext(), E
, LV
);
5293 LValue
CodeGenFunction::EmitStmtExprLValue(const StmtExpr
*E
) {
5294 // Can only get l-value for message expression returning aggregate type
5295 RValue RV
= EmitAnyExprToTemp(E
);
5296 return MakeAddrLValue(RV
.getAggregateAddress(), E
->getType(),
5297 AlignmentSource::Decl
);
5300 RValue
CodeGenFunction::EmitCall(QualType CalleeType
, const CGCallee
&OrigCallee
,
5301 const CallExpr
*E
, ReturnValueSlot ReturnValue
,
5302 llvm::Value
*Chain
) {
5303 // Get the actual function type. The callee type will always be a pointer to
5304 // function type or a block pointer type.
5305 assert(CalleeType
->isFunctionPointerType() &&
5306 "Call must have function pointer type!");
5308 const Decl
*TargetDecl
=
5309 OrigCallee
.getAbstractInfo().getCalleeDecl().getDecl();
5311 CalleeType
= getContext().getCanonicalType(CalleeType
);
5313 auto PointeeType
= cast
<PointerType
>(CalleeType
)->getPointeeType();
5315 CGCallee Callee
= OrigCallee
;
5317 if (getLangOpts().CPlusPlus
&& SanOpts
.has(SanitizerKind::Function
) &&
5318 (!TargetDecl
|| !isa
<FunctionDecl
>(TargetDecl
))) {
5319 if (llvm::Constant
*PrefixSig
=
5320 CGM
.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM
)) {
5321 SanitizerScope
SanScope(this);
5322 // Remove any (C++17) exception specifications, to allow calling e.g. a
5323 // noexcept function through a non-noexcept pointer.
5325 getContext().getFunctionTypeWithExceptionSpec(PointeeType
, EST_None
);
5326 llvm::Constant
*FTRTTIConst
=
5327 CGM
.GetAddrOfRTTIDescriptor(ProtoTy
, /*ForEH=*/true);
5328 llvm::Type
*PrefixSigType
= PrefixSig
->getType();
5329 llvm::StructType
*PrefixStructTy
= llvm::StructType::get(
5330 CGM
.getLLVMContext(), {PrefixSigType
, Int32Ty
}, /*isPacked=*/true);
5332 llvm::Value
*CalleePtr
= Callee
.getFunctionPointer();
5334 llvm::Value
*CalleePrefixStruct
= Builder
.CreateBitCast(
5335 CalleePtr
, llvm::PointerType::getUnqual(PrefixStructTy
));
5336 llvm::Value
*CalleeSigPtr
=
5337 Builder
.CreateConstGEP2_32(PrefixStructTy
, CalleePrefixStruct
, 0, 0);
5338 llvm::Value
*CalleeSig
=
5339 Builder
.CreateAlignedLoad(PrefixSigType
, CalleeSigPtr
, getIntAlign());
5340 llvm::Value
*CalleeSigMatch
= Builder
.CreateICmpEQ(CalleeSig
, PrefixSig
);
5342 llvm::BasicBlock
*Cont
= createBasicBlock("cont");
5343 llvm::BasicBlock
*TypeCheck
= createBasicBlock("typecheck");
5344 Builder
.CreateCondBr(CalleeSigMatch
, TypeCheck
, Cont
);
5346 EmitBlock(TypeCheck
);
5347 llvm::Value
*CalleeRTTIPtr
=
5348 Builder
.CreateConstGEP2_32(PrefixStructTy
, CalleePrefixStruct
, 0, 1);
5349 llvm::Value
*CalleeRTTIEncoded
=
5350 Builder
.CreateAlignedLoad(Int32Ty
, CalleeRTTIPtr
, getPointerAlign());
5351 llvm::Value
*CalleeRTTI
=
5352 DecodeAddrUsedInPrologue(CalleePtr
, CalleeRTTIEncoded
);
5353 llvm::Value
*CalleeRTTIMatch
=
5354 Builder
.CreateICmpEQ(CalleeRTTI
, FTRTTIConst
);
5355 llvm::Constant
*StaticData
[] = {EmitCheckSourceLocation(E
->getBeginLoc()),
5356 EmitCheckTypeDescriptor(CalleeType
)};
5357 EmitCheck(std::make_pair(CalleeRTTIMatch
, SanitizerKind::Function
),
5358 SanitizerHandler::FunctionTypeMismatch
, StaticData
,
5359 {CalleePtr
, CalleeRTTI
, FTRTTIConst
});
5361 Builder
.CreateBr(Cont
);
5366 const auto *FnType
= cast
<FunctionType
>(PointeeType
);
5368 // If we are checking indirect calls and this call is indirect, check that the
5369 // function pointer is a member of the bit set for the function type.
5370 if (SanOpts
.has(SanitizerKind::CFIICall
) &&
5371 (!TargetDecl
|| !isa
<FunctionDecl
>(TargetDecl
))) {
5372 SanitizerScope
SanScope(this);
5373 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall
);
5376 if (CGM
.getCodeGenOpts().SanitizeCfiICallGeneralizePointers
)
5377 MD
= CGM
.CreateMetadataIdentifierGeneralized(QualType(FnType
, 0));
5379 MD
= CGM
.CreateMetadataIdentifierForType(QualType(FnType
, 0));
5381 llvm::Value
*TypeId
= llvm::MetadataAsValue::get(getLLVMContext(), MD
);
5383 llvm::Value
*CalleePtr
= Callee
.getFunctionPointer();
5384 llvm::Value
*CastedCallee
= Builder
.CreateBitCast(CalleePtr
, Int8PtrTy
);
5385 llvm::Value
*TypeTest
= Builder
.CreateCall(
5386 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {CastedCallee
, TypeId
});
5388 auto CrossDsoTypeId
= CGM
.CreateCrossDsoCfiTypeId(MD
);
5389 llvm::Constant
*StaticData
[] = {
5390 llvm::ConstantInt::get(Int8Ty
, CFITCK_ICall
),
5391 EmitCheckSourceLocation(E
->getBeginLoc()),
5392 EmitCheckTypeDescriptor(QualType(FnType
, 0)),
5394 if (CGM
.getCodeGenOpts().SanitizeCfiCrossDso
&& CrossDsoTypeId
) {
5395 EmitCfiSlowPathCheck(SanitizerKind::CFIICall
, TypeTest
, CrossDsoTypeId
,
5396 CastedCallee
, StaticData
);
5398 EmitCheck(std::make_pair(TypeTest
, SanitizerKind::CFIICall
),
5399 SanitizerHandler::CFICheckFail
, StaticData
,
5400 {CastedCallee
, llvm::UndefValue::get(IntPtrTy
)});
5406 Args
.add(RValue::get(Builder
.CreateBitCast(Chain
, CGM
.VoidPtrTy
)),
5407 CGM
.getContext().VoidPtrTy
);
5409 // C++17 requires that we evaluate arguments to a call using assignment syntax
5410 // right-to-left, and that we evaluate arguments to certain other operators
5411 // left-to-right. Note that we allow this to override the order dictated by
5412 // the calling convention on the MS ABI, which means that parameter
5413 // destruction order is not necessarily reverse construction order.
5414 // FIXME: Revisit this based on C++ committee response to unimplementability.
5415 EvaluationOrder Order
= EvaluationOrder::Default
;
5416 if (auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(E
)) {
5417 if (OCE
->isAssignmentOp())
5418 Order
= EvaluationOrder::ForceRightToLeft
;
5420 switch (OCE
->getOperator()) {
5422 case OO_GreaterGreater
:
5427 Order
= EvaluationOrder::ForceLeftToRight
;
5435 EmitCallArgs(Args
, dyn_cast
<FunctionProtoType
>(FnType
), E
->arguments(),
5436 E
->getDirectCallee(), /*ParamsToSkip*/ 0, Order
);
5438 const CGFunctionInfo
&FnInfo
= CGM
.getTypes().arrangeFreeFunctionCall(
5439 Args
, FnType
, /*ChainCall=*/Chain
);
5442 // If the expression that denotes the called function has a type
5443 // that does not include a prototype, [the default argument
5444 // promotions are performed]. If the number of arguments does not
5445 // equal the number of parameters, the behavior is undefined. If
5446 // the function is defined with a type that includes a prototype,
5447 // and either the prototype ends with an ellipsis (, ...) or the
5448 // types of the arguments after promotion are not compatible with
5449 // the types of the parameters, the behavior is undefined. If the
5450 // function is defined with a type that does not include a
5451 // prototype, and the types of the arguments after promotion are
5452 // not compatible with those of the parameters after promotion,
5453 // the behavior is undefined [except in some trivial cases].
5454 // That is, in the general case, we should assume that a call
5455 // through an unprototyped function type works like a *non-variadic*
5456 // call. The way we make this work is to cast to the exact type
5457 // of the promoted arguments.
5459 // Chain calls use this same code path to add the invisible chain parameter
5460 // to the function type.
5461 if (isa
<FunctionNoProtoType
>(FnType
) || Chain
) {
5462 llvm::Type
*CalleeTy
= getTypes().GetFunctionType(FnInfo
);
5463 int AS
= Callee
.getFunctionPointer()->getType()->getPointerAddressSpace();
5464 CalleeTy
= CalleeTy
->getPointerTo(AS
);
5466 llvm::Value
*CalleePtr
= Callee
.getFunctionPointer();
5467 CalleePtr
= Builder
.CreateBitCast(CalleePtr
, CalleeTy
, "callee.knr.cast");
5468 Callee
.setFunctionPointer(CalleePtr
);
5471 // HIP function pointer contains kernel handle when it is used in triple
5472 // chevron. The kernel stub needs to be loaded from kernel handle and used
5474 if (CGM
.getLangOpts().HIP
&& !CGM
.getLangOpts().CUDAIsDevice
&&
5475 isa
<CUDAKernelCallExpr
>(E
) &&
5476 (!TargetDecl
|| !isa
<FunctionDecl
>(TargetDecl
))) {
5477 llvm::Value
*Handle
= Callee
.getFunctionPointer();
5479 Builder
.CreateBitCast(Handle
, Handle
->getType()->getPointerTo());
5480 auto *Stub
= Builder
.CreateLoad(
5481 Address(Cast
, Handle
->getType(), CGM
.getPointerAlign()));
5482 Callee
.setFunctionPointer(Stub
);
5484 llvm::CallBase
*CallOrInvoke
= nullptr;
5485 RValue Call
= EmitCall(FnInfo
, Callee
, ReturnValue
, Args
, &CallOrInvoke
,
5486 E
== MustTailCall
, E
->getExprLoc());
5488 // Generate function declaration DISuprogram in order to be used
5489 // in debug info about call sites.
5490 if (CGDebugInfo
*DI
= getDebugInfo()) {
5491 if (auto *CalleeDecl
= dyn_cast_or_null
<FunctionDecl
>(TargetDecl
)) {
5492 FunctionArgList Args
;
5493 QualType ResTy
= BuildFunctionArgList(CalleeDecl
, Args
);
5494 DI
->EmitFuncDeclForCallSite(CallOrInvoke
,
5495 DI
->getFunctionType(CalleeDecl
, ResTy
, Args
),
5503 LValue
CodeGenFunction::
5504 EmitPointerToDataMemberBinaryExpr(const BinaryOperator
*E
) {
5505 Address BaseAddr
= Address::invalid();
5506 if (E
->getOpcode() == BO_PtrMemI
) {
5507 BaseAddr
= EmitPointerWithAlignment(E
->getLHS());
5509 BaseAddr
= EmitLValue(E
->getLHS()).getAddress(*this);
5512 llvm::Value
*OffsetV
= EmitScalarExpr(E
->getRHS());
5513 const auto *MPT
= E
->getRHS()->getType()->castAs
<MemberPointerType
>();
5515 LValueBaseInfo BaseInfo
;
5516 TBAAAccessInfo TBAAInfo
;
5517 Address MemberAddr
=
5518 EmitCXXMemberDataPointerAddress(E
, BaseAddr
, OffsetV
, MPT
, &BaseInfo
,
5521 return MakeAddrLValue(MemberAddr
, MPT
->getPointeeType(), BaseInfo
, TBAAInfo
);
5524 /// Given the address of a temporary variable, produce an r-value of
5526 RValue
CodeGenFunction::convertTempToRValue(Address addr
,
5528 SourceLocation loc
) {
5529 LValue lvalue
= MakeAddrLValue(addr
, type
, AlignmentSource::Decl
);
5530 switch (getEvaluationKind(type
)) {
5532 return RValue::getComplex(EmitLoadOfComplex(lvalue
, loc
));
5534 return lvalue
.asAggregateRValue(*this);
5536 return RValue::get(EmitLoadOfScalar(lvalue
, loc
));
5538 llvm_unreachable("bad evaluation kind");
5541 void CodeGenFunction::SetFPAccuracy(llvm::Value
*Val
, float Accuracy
) {
5542 assert(Val
->getType()->isFPOrFPVectorTy());
5543 if (Accuracy
== 0.0 || !isa
<llvm::Instruction
>(Val
))
5546 llvm::MDBuilder
MDHelper(getLLVMContext());
5547 llvm::MDNode
*Node
= MDHelper
.createFPMath(Accuracy
);
5549 cast
<llvm::Instruction
>(Val
)->setMetadata(llvm::LLVMContext::MD_fpmath
, Node
);
5553 struct LValueOrRValue
{
5559 static LValueOrRValue
emitPseudoObjectExpr(CodeGenFunction
&CGF
,
5560 const PseudoObjectExpr
*E
,
5562 AggValueSlot slot
) {
5563 SmallVector
<CodeGenFunction::OpaqueValueMappingData
, 4> opaques
;
5565 // Find the result expression, if any.
5566 const Expr
*resultExpr
= E
->getResultExpr();
5567 LValueOrRValue result
;
5569 for (PseudoObjectExpr::const_semantics_iterator
5570 i
= E
->semantics_begin(), e
= E
->semantics_end(); i
!= e
; ++i
) {
5571 const Expr
*semantic
= *i
;
5573 // If this semantic expression is an opaque value, bind it
5574 // to the result of its source expression.
5575 if (const auto *ov
= dyn_cast
<OpaqueValueExpr
>(semantic
)) {
5576 // Skip unique OVEs.
5577 if (ov
->isUnique()) {
5578 assert(ov
!= resultExpr
&&
5579 "A unique OVE cannot be used as the result expression");
5583 // If this is the result expression, we may need to evaluate
5584 // directly into the slot.
5585 typedef CodeGenFunction::OpaqueValueMappingData OVMA
;
5587 if (ov
== resultExpr
&& ov
->isPRValue() && !forLValue
&&
5588 CodeGenFunction::hasAggregateEvaluationKind(ov
->getType())) {
5589 CGF
.EmitAggExpr(ov
->getSourceExpr(), slot
);
5590 LValue LV
= CGF
.MakeAddrLValue(slot
.getAddress(), ov
->getType(),
5591 AlignmentSource::Decl
);
5592 opaqueData
= OVMA::bind(CGF
, ov
, LV
);
5593 result
.RV
= slot
.asRValue();
5595 // Otherwise, emit as normal.
5597 opaqueData
= OVMA::bind(CGF
, ov
, ov
->getSourceExpr());
5599 // If this is the result, also evaluate the result now.
5600 if (ov
== resultExpr
) {
5602 result
.LV
= CGF
.EmitLValue(ov
);
5604 result
.RV
= CGF
.EmitAnyExpr(ov
, slot
);
5608 opaques
.push_back(opaqueData
);
5610 // Otherwise, if the expression is the result, evaluate it
5611 // and remember the result.
5612 } else if (semantic
== resultExpr
) {
5614 result
.LV
= CGF
.EmitLValue(semantic
);
5616 result
.RV
= CGF
.EmitAnyExpr(semantic
, slot
);
5618 // Otherwise, evaluate the expression in an ignored context.
5620 CGF
.EmitIgnoredExpr(semantic
);
5624 // Unbind all the opaques now.
5625 for (unsigned i
= 0, e
= opaques
.size(); i
!= e
; ++i
)
5626 opaques
[i
].unbind(CGF
);
5631 RValue
CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr
*E
,
5632 AggValueSlot slot
) {
5633 return emitPseudoObjectExpr(*this, E
, false, slot
).RV
;
5636 LValue
CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr
*E
) {
5637 return emitPseudoObjectExpr(*this, E
, true, AggValueSlot::ignored()).LV
;