[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / Lex / Lexer.cpp
blobb9b13725edbc55ffe2df7ff8e5ff88f8f0a71313
1 //===- Lexer.cpp - C Language Family Lexer --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Lexer and Token interfaces.
11 //===----------------------------------------------------------------------===//
13 #include "clang/Lex/Lexer.h"
14 #include "UnicodeCharSets.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/LLVM.h"
19 #include "clang/Basic/LangOptions.h"
20 #include "clang/Basic/SourceLocation.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TokenKinds.h"
23 #include "clang/Lex/LexDiagnostic.h"
24 #include "clang/Lex/LiteralSupport.h"
25 #include "clang/Lex/MultipleIncludeOpt.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Lex/PreprocessorOptions.h"
28 #include "clang/Lex/Token.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/ADT/StringSwitch.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/ConvertUTF.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/MemoryBufferRef.h"
37 #include "llvm/Support/NativeFormatting.h"
38 #include "llvm/Support/Unicode.h"
39 #include "llvm/Support/UnicodeCharRanges.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <cstdint>
44 #include <cstring>
45 #include <optional>
46 #include <string>
47 #include <tuple>
48 #include <utility>
50 using namespace clang;
52 //===----------------------------------------------------------------------===//
53 // Token Class Implementation
54 //===----------------------------------------------------------------------===//
56 /// isObjCAtKeyword - Return true if we have an ObjC keyword identifier.
57 bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const {
58 if (isAnnotation())
59 return false;
60 if (IdentifierInfo *II = getIdentifierInfo())
61 return II->getObjCKeywordID() == objcKey;
62 return false;
65 /// getObjCKeywordID - Return the ObjC keyword kind.
66 tok::ObjCKeywordKind Token::getObjCKeywordID() const {
67 if (isAnnotation())
68 return tok::objc_not_keyword;
69 IdentifierInfo *specId = getIdentifierInfo();
70 return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword;
73 //===----------------------------------------------------------------------===//
74 // Lexer Class Implementation
75 //===----------------------------------------------------------------------===//
77 void Lexer::anchor() {}
79 void Lexer::InitLexer(const char *BufStart, const char *BufPtr,
80 const char *BufEnd) {
81 BufferStart = BufStart;
82 BufferPtr = BufPtr;
83 BufferEnd = BufEnd;
85 assert(BufEnd[0] == 0 &&
86 "We assume that the input buffer has a null character at the end"
87 " to simplify lexing!");
89 // Check whether we have a BOM in the beginning of the buffer. If yes - act
90 // accordingly. Right now we support only UTF-8 with and without BOM, so, just
91 // skip the UTF-8 BOM if it's present.
92 if (BufferStart == BufferPtr) {
93 // Determine the size of the BOM.
94 StringRef Buf(BufferStart, BufferEnd - BufferStart);
95 size_t BOMLength = llvm::StringSwitch<size_t>(Buf)
96 .StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM
97 .Default(0);
99 // Skip the BOM.
100 BufferPtr += BOMLength;
103 Is_PragmaLexer = false;
104 CurrentConflictMarkerState = CMK_None;
106 // Start of the file is a start of line.
107 IsAtStartOfLine = true;
108 IsAtPhysicalStartOfLine = true;
110 HasLeadingSpace = false;
111 HasLeadingEmptyMacro = false;
113 // We are not after parsing a #.
114 ParsingPreprocessorDirective = false;
116 // We are not after parsing #include.
117 ParsingFilename = false;
119 // We are not in raw mode. Raw mode disables diagnostics and interpretation
120 // of tokens (e.g. identifiers, thus disabling macro expansion). It is used
121 // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block
122 // or otherwise skipping over tokens.
123 LexingRawMode = false;
125 // Default to not keeping comments.
126 ExtendedTokenMode = 0;
128 NewLinePtr = nullptr;
131 /// Lexer constructor - Create a new lexer object for the specified buffer
132 /// with the specified preprocessor managing the lexing process. This lexer
133 /// assumes that the associated file buffer and Preprocessor objects will
134 /// outlive it, so it doesn't take ownership of either of them.
135 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &InputFile,
136 Preprocessor &PP, bool IsFirstIncludeOfFile)
137 : PreprocessorLexer(&PP, FID),
138 FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)),
139 LangOpts(PP.getLangOpts()), LineComment(LangOpts.LineComment),
140 IsFirstTimeLexingFile(IsFirstIncludeOfFile) {
141 InitLexer(InputFile.getBufferStart(), InputFile.getBufferStart(),
142 InputFile.getBufferEnd());
144 resetExtendedTokenMode();
147 /// Lexer constructor - Create a new raw lexer object. This object is only
148 /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text
149 /// range will outlive it, so it doesn't take ownership of it.
150 Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts,
151 const char *BufStart, const char *BufPtr, const char *BufEnd,
152 bool IsFirstIncludeOfFile)
153 : FileLoc(fileloc), LangOpts(langOpts), LineComment(LangOpts.LineComment),
154 IsFirstTimeLexingFile(IsFirstIncludeOfFile) {
155 InitLexer(BufStart, BufPtr, BufEnd);
157 // We *are* in raw mode.
158 LexingRawMode = true;
161 /// Lexer constructor - Create a new raw lexer object. This object is only
162 /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text
163 /// range will outlive it, so it doesn't take ownership of it.
164 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &FromFile,
165 const SourceManager &SM, const LangOptions &langOpts,
166 bool IsFirstIncludeOfFile)
167 : Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile.getBufferStart(),
168 FromFile.getBufferStart(), FromFile.getBufferEnd(),
169 IsFirstIncludeOfFile) {}
171 void Lexer::resetExtendedTokenMode() {
172 assert(PP && "Cannot reset token mode without a preprocessor");
173 if (LangOpts.TraditionalCPP)
174 SetKeepWhitespaceMode(true);
175 else
176 SetCommentRetentionState(PP->getCommentRetentionState());
179 /// Create_PragmaLexer: Lexer constructor - Create a new lexer object for
180 /// _Pragma expansion. This has a variety of magic semantics that this method
181 /// sets up. It returns a new'd Lexer that must be delete'd when done.
183 /// On entrance to this routine, TokStartLoc is a macro location which has a
184 /// spelling loc that indicates the bytes to be lexed for the token and an
185 /// expansion location that indicates where all lexed tokens should be
186 /// "expanded from".
188 /// TODO: It would really be nice to make _Pragma just be a wrapper around a
189 /// normal lexer that remaps tokens as they fly by. This would require making
190 /// Preprocessor::Lex virtual. Given that, we could just dump in a magic lexer
191 /// interface that could handle this stuff. This would pull GetMappedTokenLoc
192 /// out of the critical path of the lexer!
194 Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc,
195 SourceLocation ExpansionLocStart,
196 SourceLocation ExpansionLocEnd,
197 unsigned TokLen, Preprocessor &PP) {
198 SourceManager &SM = PP.getSourceManager();
200 // Create the lexer as if we were going to lex the file normally.
201 FileID SpellingFID = SM.getFileID(SpellingLoc);
202 llvm::MemoryBufferRef InputFile = SM.getBufferOrFake(SpellingFID);
203 Lexer *L = new Lexer(SpellingFID, InputFile, PP);
205 // Now that the lexer is created, change the start/end locations so that we
206 // just lex the subsection of the file that we want. This is lexing from a
207 // scratch buffer.
208 const char *StrData = SM.getCharacterData(SpellingLoc);
210 L->BufferPtr = StrData;
211 L->BufferEnd = StrData+TokLen;
212 assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!");
214 // Set the SourceLocation with the remapping information. This ensures that
215 // GetMappedTokenLoc will remap the tokens as they are lexed.
216 L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID),
217 ExpansionLocStart,
218 ExpansionLocEnd, TokLen);
220 // Ensure that the lexer thinks it is inside a directive, so that end \n will
221 // return an EOD token.
222 L->ParsingPreprocessorDirective = true;
224 // This lexer really is for _Pragma.
225 L->Is_PragmaLexer = true;
226 return L;
229 void Lexer::seek(unsigned Offset, bool IsAtStartOfLine) {
230 this->IsAtPhysicalStartOfLine = IsAtStartOfLine;
231 this->IsAtStartOfLine = IsAtStartOfLine;
232 assert((BufferStart + Offset) <= BufferEnd);
233 BufferPtr = BufferStart + Offset;
236 template <typename T> static void StringifyImpl(T &Str, char Quote) {
237 typename T::size_type i = 0, e = Str.size();
238 while (i < e) {
239 if (Str[i] == '\\' || Str[i] == Quote) {
240 Str.insert(Str.begin() + i, '\\');
241 i += 2;
242 ++e;
243 } else if (Str[i] == '\n' || Str[i] == '\r') {
244 // Replace '\r\n' and '\n\r' to '\\' followed by 'n'.
245 if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') &&
246 Str[i] != Str[i + 1]) {
247 Str[i] = '\\';
248 Str[i + 1] = 'n';
249 } else {
250 // Replace '\n' and '\r' to '\\' followed by 'n'.
251 Str[i] = '\\';
252 Str.insert(Str.begin() + i + 1, 'n');
253 ++e;
255 i += 2;
256 } else
257 ++i;
261 std::string Lexer::Stringify(StringRef Str, bool Charify) {
262 std::string Result = std::string(Str);
263 char Quote = Charify ? '\'' : '"';
264 StringifyImpl(Result, Quote);
265 return Result;
268 void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, '"'); }
270 //===----------------------------------------------------------------------===//
271 // Token Spelling
272 //===----------------------------------------------------------------------===//
274 /// Slow case of getSpelling. Extract the characters comprising the
275 /// spelling of this token from the provided input buffer.
276 static size_t getSpellingSlow(const Token &Tok, const char *BufPtr,
277 const LangOptions &LangOpts, char *Spelling) {
278 assert(Tok.needsCleaning() && "getSpellingSlow called on simple token");
280 size_t Length = 0;
281 const char *BufEnd = BufPtr + Tok.getLength();
283 if (tok::isStringLiteral(Tok.getKind())) {
284 // Munch the encoding-prefix and opening double-quote.
285 while (BufPtr < BufEnd) {
286 unsigned Size;
287 Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
288 BufPtr += Size;
290 if (Spelling[Length - 1] == '"')
291 break;
294 // Raw string literals need special handling; trigraph expansion and line
295 // splicing do not occur within their d-char-sequence nor within their
296 // r-char-sequence.
297 if (Length >= 2 &&
298 Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') {
299 // Search backwards from the end of the token to find the matching closing
300 // quote.
301 const char *RawEnd = BufEnd;
302 do --RawEnd; while (*RawEnd != '"');
303 size_t RawLength = RawEnd - BufPtr + 1;
305 // Everything between the quotes is included verbatim in the spelling.
306 memcpy(Spelling + Length, BufPtr, RawLength);
307 Length += RawLength;
308 BufPtr += RawLength;
310 // The rest of the token is lexed normally.
314 while (BufPtr < BufEnd) {
315 unsigned Size;
316 Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
317 BufPtr += Size;
320 assert(Length < Tok.getLength() &&
321 "NeedsCleaning flag set on token that didn't need cleaning!");
322 return Length;
325 /// getSpelling() - Return the 'spelling' of this token. The spelling of a
326 /// token are the characters used to represent the token in the source file
327 /// after trigraph expansion and escaped-newline folding. In particular, this
328 /// wants to get the true, uncanonicalized, spelling of things like digraphs
329 /// UCNs, etc.
330 StringRef Lexer::getSpelling(SourceLocation loc,
331 SmallVectorImpl<char> &buffer,
332 const SourceManager &SM,
333 const LangOptions &options,
334 bool *invalid) {
335 // Break down the source location.
336 std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
338 // Try to the load the file buffer.
339 bool invalidTemp = false;
340 StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
341 if (invalidTemp) {
342 if (invalid) *invalid = true;
343 return {};
346 const char *tokenBegin = file.data() + locInfo.second;
348 // Lex from the start of the given location.
349 Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options,
350 file.begin(), tokenBegin, file.end());
351 Token token;
352 lexer.LexFromRawLexer(token);
354 unsigned length = token.getLength();
356 // Common case: no need for cleaning.
357 if (!token.needsCleaning())
358 return StringRef(tokenBegin, length);
360 // Hard case, we need to relex the characters into the string.
361 buffer.resize(length);
362 buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data()));
363 return StringRef(buffer.data(), buffer.size());
366 /// getSpelling() - Return the 'spelling' of this token. The spelling of a
367 /// token are the characters used to represent the token in the source file
368 /// after trigraph expansion and escaped-newline folding. In particular, this
369 /// wants to get the true, uncanonicalized, spelling of things like digraphs
370 /// UCNs, etc.
371 std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr,
372 const LangOptions &LangOpts, bool *Invalid) {
373 assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
375 bool CharDataInvalid = false;
376 const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(),
377 &CharDataInvalid);
378 if (Invalid)
379 *Invalid = CharDataInvalid;
380 if (CharDataInvalid)
381 return {};
383 // If this token contains nothing interesting, return it directly.
384 if (!Tok.needsCleaning())
385 return std::string(TokStart, TokStart + Tok.getLength());
387 std::string Result;
388 Result.resize(Tok.getLength());
389 Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin()));
390 return Result;
393 /// getSpelling - This method is used to get the spelling of a token into a
394 /// preallocated buffer, instead of as an std::string. The caller is required
395 /// to allocate enough space for the token, which is guaranteed to be at least
396 /// Tok.getLength() bytes long. The actual length of the token is returned.
398 /// Note that this method may do two possible things: it may either fill in
399 /// the buffer specified with characters, or it may *change the input pointer*
400 /// to point to a constant buffer with the data already in it (avoiding a
401 /// copy). The caller is not allowed to modify the returned buffer pointer
402 /// if an internal buffer is returned.
403 unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer,
404 const SourceManager &SourceMgr,
405 const LangOptions &LangOpts, bool *Invalid) {
406 assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
408 const char *TokStart = nullptr;
409 // NOTE: this has to be checked *before* testing for an IdentifierInfo.
410 if (Tok.is(tok::raw_identifier))
411 TokStart = Tok.getRawIdentifier().data();
412 else if (!Tok.hasUCN()) {
413 if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
414 // Just return the string from the identifier table, which is very quick.
415 Buffer = II->getNameStart();
416 return II->getLength();
420 // NOTE: this can be checked even after testing for an IdentifierInfo.
421 if (Tok.isLiteral())
422 TokStart = Tok.getLiteralData();
424 if (!TokStart) {
425 // Compute the start of the token in the input lexer buffer.
426 bool CharDataInvalid = false;
427 TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid);
428 if (Invalid)
429 *Invalid = CharDataInvalid;
430 if (CharDataInvalid) {
431 Buffer = "";
432 return 0;
436 // If this token contains nothing interesting, return it directly.
437 if (!Tok.needsCleaning()) {
438 Buffer = TokStart;
439 return Tok.getLength();
442 // Otherwise, hard case, relex the characters into the string.
443 return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer));
446 /// MeasureTokenLength - Relex the token at the specified location and return
447 /// its length in bytes in the input file. If the token needs cleaning (e.g.
448 /// includes a trigraph or an escaped newline) then this count includes bytes
449 /// that are part of that.
450 unsigned Lexer::MeasureTokenLength(SourceLocation Loc,
451 const SourceManager &SM,
452 const LangOptions &LangOpts) {
453 Token TheTok;
454 if (getRawToken(Loc, TheTok, SM, LangOpts))
455 return 0;
456 return TheTok.getLength();
459 /// Relex the token at the specified location.
460 /// \returns true if there was a failure, false on success.
461 bool Lexer::getRawToken(SourceLocation Loc, Token &Result,
462 const SourceManager &SM,
463 const LangOptions &LangOpts,
464 bool IgnoreWhiteSpace) {
465 // TODO: this could be special cased for common tokens like identifiers, ')',
466 // etc to make this faster, if it mattered. Just look at StrData[0] to handle
467 // all obviously single-char tokens. This could use
468 // Lexer::isObviouslySimpleCharacter for example to handle identifiers or
469 // something.
471 // If this comes from a macro expansion, we really do want the macro name, not
472 // the token this macro expanded to.
473 Loc = SM.getExpansionLoc(Loc);
474 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
475 bool Invalid = false;
476 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
477 if (Invalid)
478 return true;
480 const char *StrData = Buffer.data()+LocInfo.second;
482 if (!IgnoreWhiteSpace && isWhitespace(StrData[0]))
483 return true;
485 // Create a lexer starting at the beginning of this token.
486 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts,
487 Buffer.begin(), StrData, Buffer.end());
488 TheLexer.SetCommentRetentionState(true);
489 TheLexer.LexFromRawLexer(Result);
490 return false;
493 /// Returns the pointer that points to the beginning of line that contains
494 /// the given offset, or null if the offset if invalid.
495 static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) {
496 const char *BufStart = Buffer.data();
497 if (Offset >= Buffer.size())
498 return nullptr;
500 const char *LexStart = BufStart + Offset;
501 for (; LexStart != BufStart; --LexStart) {
502 if (isVerticalWhitespace(LexStart[0]) &&
503 !Lexer::isNewLineEscaped(BufStart, LexStart)) {
504 // LexStart should point at first character of logical line.
505 ++LexStart;
506 break;
509 return LexStart;
512 static SourceLocation getBeginningOfFileToken(SourceLocation Loc,
513 const SourceManager &SM,
514 const LangOptions &LangOpts) {
515 assert(Loc.isFileID());
516 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
517 if (LocInfo.first.isInvalid())
518 return Loc;
520 bool Invalid = false;
521 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
522 if (Invalid)
523 return Loc;
525 // Back up from the current location until we hit the beginning of a line
526 // (or the buffer). We'll relex from that point.
527 const char *StrData = Buffer.data() + LocInfo.second;
528 const char *LexStart = findBeginningOfLine(Buffer, LocInfo.second);
529 if (!LexStart || LexStart == StrData)
530 return Loc;
532 // Create a lexer starting at the beginning of this token.
533 SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second);
534 Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart,
535 Buffer.end());
536 TheLexer.SetCommentRetentionState(true);
538 // Lex tokens until we find the token that contains the source location.
539 Token TheTok;
540 do {
541 TheLexer.LexFromRawLexer(TheTok);
543 if (TheLexer.getBufferLocation() > StrData) {
544 // Lexing this token has taken the lexer past the source location we're
545 // looking for. If the current token encompasses our source location,
546 // return the beginning of that token.
547 if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData)
548 return TheTok.getLocation();
550 // We ended up skipping over the source location entirely, which means
551 // that it points into whitespace. We're done here.
552 break;
554 } while (TheTok.getKind() != tok::eof);
556 // We've passed our source location; just return the original source location.
557 return Loc;
560 SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc,
561 const SourceManager &SM,
562 const LangOptions &LangOpts) {
563 if (Loc.isFileID())
564 return getBeginningOfFileToken(Loc, SM, LangOpts);
566 if (!SM.isMacroArgExpansion(Loc))
567 return Loc;
569 SourceLocation FileLoc = SM.getSpellingLoc(Loc);
570 SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts);
571 std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc);
572 std::pair<FileID, unsigned> BeginFileLocInfo =
573 SM.getDecomposedLoc(BeginFileLoc);
574 assert(FileLocInfo.first == BeginFileLocInfo.first &&
575 FileLocInfo.second >= BeginFileLocInfo.second);
576 return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second);
579 namespace {
581 enum PreambleDirectiveKind {
582 PDK_Skipped,
583 PDK_Unknown
586 } // namespace
588 PreambleBounds Lexer::ComputePreamble(StringRef Buffer,
589 const LangOptions &LangOpts,
590 unsigned MaxLines) {
591 // Create a lexer starting at the beginning of the file. Note that we use a
592 // "fake" file source location at offset 1 so that the lexer will track our
593 // position within the file.
594 const SourceLocation::UIntTy StartOffset = 1;
595 SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset);
596 Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(),
597 Buffer.end());
598 TheLexer.SetCommentRetentionState(true);
600 bool InPreprocessorDirective = false;
601 Token TheTok;
602 SourceLocation ActiveCommentLoc;
604 unsigned MaxLineOffset = 0;
605 if (MaxLines) {
606 const char *CurPtr = Buffer.begin();
607 unsigned CurLine = 0;
608 while (CurPtr != Buffer.end()) {
609 char ch = *CurPtr++;
610 if (ch == '\n') {
611 ++CurLine;
612 if (CurLine == MaxLines)
613 break;
616 if (CurPtr != Buffer.end())
617 MaxLineOffset = CurPtr - Buffer.begin();
620 do {
621 TheLexer.LexFromRawLexer(TheTok);
623 if (InPreprocessorDirective) {
624 // If we've hit the end of the file, we're done.
625 if (TheTok.getKind() == tok::eof) {
626 break;
629 // If we haven't hit the end of the preprocessor directive, skip this
630 // token.
631 if (!TheTok.isAtStartOfLine())
632 continue;
634 // We've passed the end of the preprocessor directive, and will look
635 // at this token again below.
636 InPreprocessorDirective = false;
639 // Keep track of the # of lines in the preamble.
640 if (TheTok.isAtStartOfLine()) {
641 unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset;
643 // If we were asked to limit the number of lines in the preamble,
644 // and we're about to exceed that limit, we're done.
645 if (MaxLineOffset && TokOffset >= MaxLineOffset)
646 break;
649 // Comments are okay; skip over them.
650 if (TheTok.getKind() == tok::comment) {
651 if (ActiveCommentLoc.isInvalid())
652 ActiveCommentLoc = TheTok.getLocation();
653 continue;
656 if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) {
657 // This is the start of a preprocessor directive.
658 Token HashTok = TheTok;
659 InPreprocessorDirective = true;
660 ActiveCommentLoc = SourceLocation();
662 // Figure out which directive this is. Since we're lexing raw tokens,
663 // we don't have an identifier table available. Instead, just look at
664 // the raw identifier to recognize and categorize preprocessor directives.
665 TheLexer.LexFromRawLexer(TheTok);
666 if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) {
667 StringRef Keyword = TheTok.getRawIdentifier();
668 PreambleDirectiveKind PDK
669 = llvm::StringSwitch<PreambleDirectiveKind>(Keyword)
670 .Case("include", PDK_Skipped)
671 .Case("__include_macros", PDK_Skipped)
672 .Case("define", PDK_Skipped)
673 .Case("undef", PDK_Skipped)
674 .Case("line", PDK_Skipped)
675 .Case("error", PDK_Skipped)
676 .Case("pragma", PDK_Skipped)
677 .Case("import", PDK_Skipped)
678 .Case("include_next", PDK_Skipped)
679 .Case("warning", PDK_Skipped)
680 .Case("ident", PDK_Skipped)
681 .Case("sccs", PDK_Skipped)
682 .Case("assert", PDK_Skipped)
683 .Case("unassert", PDK_Skipped)
684 .Case("if", PDK_Skipped)
685 .Case("ifdef", PDK_Skipped)
686 .Case("ifndef", PDK_Skipped)
687 .Case("elif", PDK_Skipped)
688 .Case("elifdef", PDK_Skipped)
689 .Case("elifndef", PDK_Skipped)
690 .Case("else", PDK_Skipped)
691 .Case("endif", PDK_Skipped)
692 .Default(PDK_Unknown);
694 switch (PDK) {
695 case PDK_Skipped:
696 continue;
698 case PDK_Unknown:
699 // We don't know what this directive is; stop at the '#'.
700 break;
704 // We only end up here if we didn't recognize the preprocessor
705 // directive or it was one that can't occur in the preamble at this
706 // point. Roll back the current token to the location of the '#'.
707 TheTok = HashTok;
710 // We hit a token that we don't recognize as being in the
711 // "preprocessing only" part of the file, so we're no longer in
712 // the preamble.
713 break;
714 } while (true);
716 SourceLocation End;
717 if (ActiveCommentLoc.isValid())
718 End = ActiveCommentLoc; // don't truncate a decl comment.
719 else
720 End = TheTok.getLocation();
722 return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(),
723 TheTok.isAtStartOfLine());
726 unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo,
727 const SourceManager &SM,
728 const LangOptions &LangOpts) {
729 // Figure out how many physical characters away the specified expansion
730 // character is. This needs to take into consideration newlines and
731 // trigraphs.
732 bool Invalid = false;
733 const char *TokPtr = SM.getCharacterData(TokStart, &Invalid);
735 // If they request the first char of the token, we're trivially done.
736 if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr)))
737 return 0;
739 unsigned PhysOffset = 0;
741 // The usual case is that tokens don't contain anything interesting. Skip
742 // over the uninteresting characters. If a token only consists of simple
743 // chars, this method is extremely fast.
744 while (Lexer::isObviouslySimpleCharacter(*TokPtr)) {
745 if (CharNo == 0)
746 return PhysOffset;
747 ++TokPtr;
748 --CharNo;
749 ++PhysOffset;
752 // If we have a character that may be a trigraph or escaped newline, use a
753 // lexer to parse it correctly.
754 for (; CharNo; --CharNo) {
755 unsigned Size;
756 Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts);
757 TokPtr += Size;
758 PhysOffset += Size;
761 // Final detail: if we end up on an escaped newline, we want to return the
762 // location of the actual byte of the token. For example foo\<newline>bar
763 // advanced by 3 should return the location of b, not of \\. One compounding
764 // detail of this is that the escape may be made by a trigraph.
765 if (!Lexer::isObviouslySimpleCharacter(*TokPtr))
766 PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr;
768 return PhysOffset;
771 /// Computes the source location just past the end of the
772 /// token at this source location.
774 /// This routine can be used to produce a source location that
775 /// points just past the end of the token referenced by \p Loc, and
776 /// is generally used when a diagnostic needs to point just after a
777 /// token where it expected something different that it received. If
778 /// the returned source location would not be meaningful (e.g., if
779 /// it points into a macro), this routine returns an invalid
780 /// source location.
782 /// \param Offset an offset from the end of the token, where the source
783 /// location should refer to. The default offset (0) produces a source
784 /// location pointing just past the end of the token; an offset of 1 produces
785 /// a source location pointing to the last character in the token, etc.
786 SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset,
787 const SourceManager &SM,
788 const LangOptions &LangOpts) {
789 if (Loc.isInvalid())
790 return {};
792 if (Loc.isMacroID()) {
793 if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
794 return {}; // Points inside the macro expansion.
797 unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
798 if (Len > Offset)
799 Len = Len - Offset;
800 else
801 return Loc;
803 return Loc.getLocWithOffset(Len);
806 /// Returns true if the given MacroID location points at the first
807 /// token of the macro expansion.
808 bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc,
809 const SourceManager &SM,
810 const LangOptions &LangOpts,
811 SourceLocation *MacroBegin) {
812 assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
814 SourceLocation expansionLoc;
815 if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc))
816 return false;
818 if (expansionLoc.isFileID()) {
819 // No other macro expansions, this is the first.
820 if (MacroBegin)
821 *MacroBegin = expansionLoc;
822 return true;
825 return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin);
828 /// Returns true if the given MacroID location points at the last
829 /// token of the macro expansion.
830 bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc,
831 const SourceManager &SM,
832 const LangOptions &LangOpts,
833 SourceLocation *MacroEnd) {
834 assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
836 SourceLocation spellLoc = SM.getSpellingLoc(loc);
837 unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts);
838 if (tokLen == 0)
839 return false;
841 SourceLocation afterLoc = loc.getLocWithOffset(tokLen);
842 SourceLocation expansionLoc;
843 if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc))
844 return false;
846 if (expansionLoc.isFileID()) {
847 // No other macro expansions.
848 if (MacroEnd)
849 *MacroEnd = expansionLoc;
850 return true;
853 return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd);
856 static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range,
857 const SourceManager &SM,
858 const LangOptions &LangOpts) {
859 SourceLocation Begin = Range.getBegin();
860 SourceLocation End = Range.getEnd();
861 assert(Begin.isFileID() && End.isFileID());
862 if (Range.isTokenRange()) {
863 End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts);
864 if (End.isInvalid())
865 return {};
868 // Break down the source locations.
869 FileID FID;
870 unsigned BeginOffs;
871 std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin);
872 if (FID.isInvalid())
873 return {};
875 unsigned EndOffs;
876 if (!SM.isInFileID(End, FID, &EndOffs) ||
877 BeginOffs > EndOffs)
878 return {};
880 return CharSourceRange::getCharRange(Begin, End);
883 // Assumes that `Loc` is in an expansion.
884 static bool isInExpansionTokenRange(const SourceLocation Loc,
885 const SourceManager &SM) {
886 return SM.getSLocEntry(SM.getFileID(Loc))
887 .getExpansion()
888 .isExpansionTokenRange();
891 CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range,
892 const SourceManager &SM,
893 const LangOptions &LangOpts) {
894 SourceLocation Begin = Range.getBegin();
895 SourceLocation End = Range.getEnd();
896 if (Begin.isInvalid() || End.isInvalid())
897 return {};
899 if (Begin.isFileID() && End.isFileID())
900 return makeRangeFromFileLocs(Range, SM, LangOpts);
902 if (Begin.isMacroID() && End.isFileID()) {
903 if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin))
904 return {};
905 Range.setBegin(Begin);
906 return makeRangeFromFileLocs(Range, SM, LangOpts);
909 if (Begin.isFileID() && End.isMacroID()) {
910 if (Range.isTokenRange()) {
911 if (!isAtEndOfMacroExpansion(End, SM, LangOpts, &End))
912 return {};
913 // Use the *original* end, not the expanded one in `End`.
914 Range.setTokenRange(isInExpansionTokenRange(Range.getEnd(), SM));
915 } else if (!isAtStartOfMacroExpansion(End, SM, LangOpts, &End))
916 return {};
917 Range.setEnd(End);
918 return makeRangeFromFileLocs(Range, SM, LangOpts);
921 assert(Begin.isMacroID() && End.isMacroID());
922 SourceLocation MacroBegin, MacroEnd;
923 if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) &&
924 ((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts,
925 &MacroEnd)) ||
926 (Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts,
927 &MacroEnd)))) {
928 Range.setBegin(MacroBegin);
929 Range.setEnd(MacroEnd);
930 // Use the *original* `End`, not the expanded one in `MacroEnd`.
931 if (Range.isTokenRange())
932 Range.setTokenRange(isInExpansionTokenRange(End, SM));
933 return makeRangeFromFileLocs(Range, SM, LangOpts);
936 bool Invalid = false;
937 const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin),
938 &Invalid);
939 if (Invalid)
940 return {};
942 if (BeginEntry.getExpansion().isMacroArgExpansion()) {
943 const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End),
944 &Invalid);
945 if (Invalid)
946 return {};
948 if (EndEntry.getExpansion().isMacroArgExpansion() &&
949 BeginEntry.getExpansion().getExpansionLocStart() ==
950 EndEntry.getExpansion().getExpansionLocStart()) {
951 Range.setBegin(SM.getImmediateSpellingLoc(Begin));
952 Range.setEnd(SM.getImmediateSpellingLoc(End));
953 return makeFileCharRange(Range, SM, LangOpts);
957 return {};
960 StringRef Lexer::getSourceText(CharSourceRange Range,
961 const SourceManager &SM,
962 const LangOptions &LangOpts,
963 bool *Invalid) {
964 Range = makeFileCharRange(Range, SM, LangOpts);
965 if (Range.isInvalid()) {
966 if (Invalid) *Invalid = true;
967 return {};
970 // Break down the source location.
971 std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin());
972 if (beginInfo.first.isInvalid()) {
973 if (Invalid) *Invalid = true;
974 return {};
977 unsigned EndOffs;
978 if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) ||
979 beginInfo.second > EndOffs) {
980 if (Invalid) *Invalid = true;
981 return {};
984 // Try to the load the file buffer.
985 bool invalidTemp = false;
986 StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp);
987 if (invalidTemp) {
988 if (Invalid) *Invalid = true;
989 return {};
992 if (Invalid) *Invalid = false;
993 return file.substr(beginInfo.second, EndOffs - beginInfo.second);
996 StringRef Lexer::getImmediateMacroName(SourceLocation Loc,
997 const SourceManager &SM,
998 const LangOptions &LangOpts) {
999 assert(Loc.isMacroID() && "Only reasonable to call this on macros");
1001 // Find the location of the immediate macro expansion.
1002 while (true) {
1003 FileID FID = SM.getFileID(Loc);
1004 const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID);
1005 const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
1006 Loc = Expansion.getExpansionLocStart();
1007 if (!Expansion.isMacroArgExpansion())
1008 break;
1010 // For macro arguments we need to check that the argument did not come
1011 // from an inner macro, e.g: "MAC1( MAC2(foo) )"
1013 // Loc points to the argument id of the macro definition, move to the
1014 // macro expansion.
1015 Loc = SM.getImmediateExpansionRange(Loc).getBegin();
1016 SourceLocation SpellLoc = Expansion.getSpellingLoc();
1017 if (SpellLoc.isFileID())
1018 break; // No inner macro.
1020 // If spelling location resides in the same FileID as macro expansion
1021 // location, it means there is no inner macro.
1022 FileID MacroFID = SM.getFileID(Loc);
1023 if (SM.isInFileID(SpellLoc, MacroFID))
1024 break;
1026 // Argument came from inner macro.
1027 Loc = SpellLoc;
1030 // Find the spelling location of the start of the non-argument expansion
1031 // range. This is where the macro name was spelled in order to begin
1032 // expanding this macro.
1033 Loc = SM.getSpellingLoc(Loc);
1035 // Dig out the buffer where the macro name was spelled and the extents of the
1036 // name so that we can render it into the expansion note.
1037 std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
1038 unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
1039 StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
1040 return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
1043 StringRef Lexer::getImmediateMacroNameForDiagnostics(
1044 SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) {
1045 assert(Loc.isMacroID() && "Only reasonable to call this on macros");
1046 // Walk past macro argument expansions.
1047 while (SM.isMacroArgExpansion(Loc))
1048 Loc = SM.getImmediateExpansionRange(Loc).getBegin();
1050 // If the macro's spelling isn't FileID or from scratch space, then it's
1051 // actually a token paste or stringization (or similar) and not a macro at
1052 // all.
1053 SourceLocation SpellLoc = SM.getSpellingLoc(Loc);
1054 if (!SpellLoc.isFileID() || SM.isWrittenInScratchSpace(SpellLoc))
1055 return {};
1057 // Find the spelling location of the start of the non-argument expansion
1058 // range. This is where the macro name was spelled in order to begin
1059 // expanding this macro.
1060 Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).getBegin());
1062 // Dig out the buffer where the macro name was spelled and the extents of the
1063 // name so that we can render it into the expansion note.
1064 std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
1065 unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
1066 StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
1067 return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
1070 bool Lexer::isAsciiIdentifierContinueChar(char c, const LangOptions &LangOpts) {
1071 return isAsciiIdentifierContinue(c, LangOpts.DollarIdents);
1074 bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) {
1075 assert(isVerticalWhitespace(Str[0]));
1076 if (Str - 1 < BufferStart)
1077 return false;
1079 if ((Str[0] == '\n' && Str[-1] == '\r') ||
1080 (Str[0] == '\r' && Str[-1] == '\n')) {
1081 if (Str - 2 < BufferStart)
1082 return false;
1083 --Str;
1085 --Str;
1087 // Rewind to first non-space character:
1088 while (Str > BufferStart && isHorizontalWhitespace(*Str))
1089 --Str;
1091 return *Str == '\\';
1094 StringRef Lexer::getIndentationForLine(SourceLocation Loc,
1095 const SourceManager &SM) {
1096 if (Loc.isInvalid() || Loc.isMacroID())
1097 return {};
1098 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
1099 if (LocInfo.first.isInvalid())
1100 return {};
1101 bool Invalid = false;
1102 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1103 if (Invalid)
1104 return {};
1105 const char *Line = findBeginningOfLine(Buffer, LocInfo.second);
1106 if (!Line)
1107 return {};
1108 StringRef Rest = Buffer.substr(Line - Buffer.data());
1109 size_t NumWhitespaceChars = Rest.find_first_not_of(" \t");
1110 return NumWhitespaceChars == StringRef::npos
1111 ? ""
1112 : Rest.take_front(NumWhitespaceChars);
1115 //===----------------------------------------------------------------------===//
1116 // Diagnostics forwarding code.
1117 //===----------------------------------------------------------------------===//
1119 /// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the
1120 /// lexer buffer was all expanded at a single point, perform the mapping.
1121 /// This is currently only used for _Pragma implementation, so it is the slow
1122 /// path of the hot getSourceLocation method. Do not allow it to be inlined.
1123 static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc(
1124 Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen);
1125 static SourceLocation GetMappedTokenLoc(Preprocessor &PP,
1126 SourceLocation FileLoc,
1127 unsigned CharNo, unsigned TokLen) {
1128 assert(FileLoc.isMacroID() && "Must be a macro expansion");
1130 // Otherwise, we're lexing "mapped tokens". This is used for things like
1131 // _Pragma handling. Combine the expansion location of FileLoc with the
1132 // spelling location.
1133 SourceManager &SM = PP.getSourceManager();
1135 // Create a new SLoc which is expanded from Expansion(FileLoc) but whose
1136 // characters come from spelling(FileLoc)+Offset.
1137 SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc);
1138 SpellingLoc = SpellingLoc.getLocWithOffset(CharNo);
1140 // Figure out the expansion loc range, which is the range covered by the
1141 // original _Pragma(...) sequence.
1142 CharSourceRange II = SM.getImmediateExpansionRange(FileLoc);
1144 return SM.createExpansionLoc(SpellingLoc, II.getBegin(), II.getEnd(), TokLen);
1147 /// getSourceLocation - Return a source location identifier for the specified
1148 /// offset in the current file.
1149 SourceLocation Lexer::getSourceLocation(const char *Loc,
1150 unsigned TokLen) const {
1151 assert(Loc >= BufferStart && Loc <= BufferEnd &&
1152 "Location out of range for this buffer!");
1154 // In the normal case, we're just lexing from a simple file buffer, return
1155 // the file id from FileLoc with the offset specified.
1156 unsigned CharNo = Loc-BufferStart;
1157 if (FileLoc.isFileID())
1158 return FileLoc.getLocWithOffset(CharNo);
1160 // Otherwise, this is the _Pragma lexer case, which pretends that all of the
1161 // tokens are lexed from where the _Pragma was defined.
1162 assert(PP && "This doesn't work on raw lexers");
1163 return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen);
1166 /// Diag - Forwarding function for diagnostics. This translate a source
1167 /// position in the current buffer into a SourceLocation object for rendering.
1168 DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const {
1169 return PP->Diag(getSourceLocation(Loc), DiagID);
1172 //===----------------------------------------------------------------------===//
1173 // Trigraph and Escaped Newline Handling Code.
1174 //===----------------------------------------------------------------------===//
1176 /// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair,
1177 /// return the decoded trigraph letter it corresponds to, or '\0' if nothing.
1178 static char GetTrigraphCharForLetter(char Letter) {
1179 switch (Letter) {
1180 default: return 0;
1181 case '=': return '#';
1182 case ')': return ']';
1183 case '(': return '[';
1184 case '!': return '|';
1185 case '\'': return '^';
1186 case '>': return '}';
1187 case '/': return '\\';
1188 case '<': return '{';
1189 case '-': return '~';
1193 /// DecodeTrigraphChar - If the specified character is a legal trigraph when
1194 /// prefixed with ??, emit a trigraph warning. If trigraphs are enabled,
1195 /// return the result character. Finally, emit a warning about trigraph use
1196 /// whether trigraphs are enabled or not.
1197 static char DecodeTrigraphChar(const char *CP, Lexer *L, bool Trigraphs) {
1198 char Res = GetTrigraphCharForLetter(*CP);
1199 if (!Res)
1200 return Res;
1202 if (!Trigraphs) {
1203 if (L && !L->isLexingRawMode())
1204 L->Diag(CP-2, diag::trigraph_ignored);
1205 return 0;
1208 if (L && !L->isLexingRawMode())
1209 L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1);
1210 return Res;
1213 /// getEscapedNewLineSize - Return the size of the specified escaped newline,
1214 /// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a
1215 /// trigraph equivalent on entry to this function.
1216 unsigned Lexer::getEscapedNewLineSize(const char *Ptr) {
1217 unsigned Size = 0;
1218 while (isWhitespace(Ptr[Size])) {
1219 ++Size;
1221 if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r')
1222 continue;
1224 // If this is a \r\n or \n\r, skip the other half.
1225 if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') &&
1226 Ptr[Size-1] != Ptr[Size])
1227 ++Size;
1229 return Size;
1232 // Not an escaped newline, must be a \t or something else.
1233 return 0;
1236 /// SkipEscapedNewLines - If P points to an escaped newline (or a series of
1237 /// them), skip over them and return the first non-escaped-newline found,
1238 /// otherwise return P.
1239 const char *Lexer::SkipEscapedNewLines(const char *P) {
1240 while (true) {
1241 const char *AfterEscape;
1242 if (*P == '\\') {
1243 AfterEscape = P+1;
1244 } else if (*P == '?') {
1245 // If not a trigraph for escape, bail out.
1246 if (P[1] != '?' || P[2] != '/')
1247 return P;
1248 // FIXME: Take LangOpts into account; the language might not
1249 // support trigraphs.
1250 AfterEscape = P+3;
1251 } else {
1252 return P;
1255 unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape);
1256 if (NewLineSize == 0) return P;
1257 P = AfterEscape+NewLineSize;
1261 std::optional<Token> Lexer::findNextToken(SourceLocation Loc,
1262 const SourceManager &SM,
1263 const LangOptions &LangOpts) {
1264 if (Loc.isMacroID()) {
1265 if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
1266 return std::nullopt;
1268 Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts);
1270 // Break down the source location.
1271 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
1273 // Try to load the file buffer.
1274 bool InvalidTemp = false;
1275 StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp);
1276 if (InvalidTemp)
1277 return std::nullopt;
1279 const char *TokenBegin = File.data() + LocInfo.second;
1281 // Lex from the start of the given location.
1282 Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(),
1283 TokenBegin, File.end());
1284 // Find the token.
1285 Token Tok;
1286 lexer.LexFromRawLexer(Tok);
1287 return Tok;
1290 /// Checks that the given token is the first token that occurs after the
1291 /// given location (this excludes comments and whitespace). Returns the location
1292 /// immediately after the specified token. If the token is not found or the
1293 /// location is inside a macro, the returned source location will be invalid.
1294 SourceLocation Lexer::findLocationAfterToken(
1295 SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM,
1296 const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) {
1297 std::optional<Token> Tok = findNextToken(Loc, SM, LangOpts);
1298 if (!Tok || Tok->isNot(TKind))
1299 return {};
1300 SourceLocation TokenLoc = Tok->getLocation();
1302 // Calculate how much whitespace needs to be skipped if any.
1303 unsigned NumWhitespaceChars = 0;
1304 if (SkipTrailingWhitespaceAndNewLine) {
1305 const char *TokenEnd = SM.getCharacterData(TokenLoc) + Tok->getLength();
1306 unsigned char C = *TokenEnd;
1307 while (isHorizontalWhitespace(C)) {
1308 C = *(++TokenEnd);
1309 NumWhitespaceChars++;
1312 // Skip \r, \n, \r\n, or \n\r
1313 if (C == '\n' || C == '\r') {
1314 char PrevC = C;
1315 C = *(++TokenEnd);
1316 NumWhitespaceChars++;
1317 if ((C == '\n' || C == '\r') && C != PrevC)
1318 NumWhitespaceChars++;
1322 return TokenLoc.getLocWithOffset(Tok->getLength() + NumWhitespaceChars);
1325 /// getCharAndSizeSlow - Peek a single 'character' from the specified buffer,
1326 /// get its size, and return it. This is tricky in several cases:
1327 /// 1. If currently at the start of a trigraph, we warn about the trigraph,
1328 /// then either return the trigraph (skipping 3 chars) or the '?',
1329 /// depending on whether trigraphs are enabled or not.
1330 /// 2. If this is an escaped newline (potentially with whitespace between
1331 /// the backslash and newline), implicitly skip the newline and return
1332 /// the char after it.
1334 /// This handles the slow/uncommon case of the getCharAndSize method. Here we
1335 /// know that we can accumulate into Size, and that we have already incremented
1336 /// Ptr by Size bytes.
1338 /// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should
1339 /// be updated to match.
1340 char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size,
1341 Token *Tok) {
1342 // If we have a slash, look for an escaped newline.
1343 if (Ptr[0] == '\\') {
1344 ++Size;
1345 ++Ptr;
1346 Slash:
1347 // Common case, backslash-char where the char is not whitespace.
1348 if (!isWhitespace(Ptr[0])) return '\\';
1350 // See if we have optional whitespace characters between the slash and
1351 // newline.
1352 if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
1353 // Remember that this token needs to be cleaned.
1354 if (Tok) Tok->setFlag(Token::NeedsCleaning);
1356 // Warn if there was whitespace between the backslash and newline.
1357 if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode())
1358 Diag(Ptr, diag::backslash_newline_space);
1360 // Found backslash<whitespace><newline>. Parse the char after it.
1361 Size += EscapedNewLineSize;
1362 Ptr += EscapedNewLineSize;
1364 // Use slow version to accumulate a correct size field.
1365 return getCharAndSizeSlow(Ptr, Size, Tok);
1368 // Otherwise, this is not an escaped newline, just return the slash.
1369 return '\\';
1372 // If this is a trigraph, process it.
1373 if (Ptr[0] == '?' && Ptr[1] == '?') {
1374 // If this is actually a legal trigraph (not something like "??x"), emit
1375 // a trigraph warning. If so, and if trigraphs are enabled, return it.
1376 if (char C = DecodeTrigraphChar(Ptr + 2, Tok ? this : nullptr,
1377 LangOpts.Trigraphs)) {
1378 // Remember that this token needs to be cleaned.
1379 if (Tok) Tok->setFlag(Token::NeedsCleaning);
1381 Ptr += 3;
1382 Size += 3;
1383 if (C == '\\') goto Slash;
1384 return C;
1388 // If this is neither, return a single character.
1389 ++Size;
1390 return *Ptr;
1393 /// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the
1394 /// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size,
1395 /// and that we have already incremented Ptr by Size bytes.
1397 /// NOTE: When this method is updated, getCharAndSizeSlow (above) should
1398 /// be updated to match.
1399 char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size,
1400 const LangOptions &LangOpts) {
1401 // If we have a slash, look for an escaped newline.
1402 if (Ptr[0] == '\\') {
1403 ++Size;
1404 ++Ptr;
1405 Slash:
1406 // Common case, backslash-char where the char is not whitespace.
1407 if (!isWhitespace(Ptr[0])) return '\\';
1409 // See if we have optional whitespace characters followed by a newline.
1410 if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
1411 // Found backslash<whitespace><newline>. Parse the char after it.
1412 Size += EscapedNewLineSize;
1413 Ptr += EscapedNewLineSize;
1415 // Use slow version to accumulate a correct size field.
1416 return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts);
1419 // Otherwise, this is not an escaped newline, just return the slash.
1420 return '\\';
1423 // If this is a trigraph, process it.
1424 if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') {
1425 // If this is actually a legal trigraph (not something like "??x"), return
1426 // it.
1427 if (char C = GetTrigraphCharForLetter(Ptr[2])) {
1428 Ptr += 3;
1429 Size += 3;
1430 if (C == '\\') goto Slash;
1431 return C;
1435 // If this is neither, return a single character.
1436 ++Size;
1437 return *Ptr;
1440 //===----------------------------------------------------------------------===//
1441 // Helper methods for lexing.
1442 //===----------------------------------------------------------------------===//
1444 /// Routine that indiscriminately sets the offset into the source file.
1445 void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) {
1446 BufferPtr = BufferStart + Offset;
1447 if (BufferPtr > BufferEnd)
1448 BufferPtr = BufferEnd;
1449 // FIXME: What exactly does the StartOfLine bit mean? There are two
1450 // possible meanings for the "start" of the line: the first token on the
1451 // unexpanded line, or the first token on the expanded line.
1452 IsAtStartOfLine = StartOfLine;
1453 IsAtPhysicalStartOfLine = StartOfLine;
1456 static bool isUnicodeWhitespace(uint32_t Codepoint) {
1457 static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars(
1458 UnicodeWhitespaceCharRanges);
1459 return UnicodeWhitespaceChars.contains(Codepoint);
1462 static llvm::SmallString<5> codepointAsHexString(uint32_t C) {
1463 llvm::SmallString<5> CharBuf;
1464 llvm::raw_svector_ostream CharOS(CharBuf);
1465 llvm::write_hex(CharOS, C, llvm::HexPrintStyle::Upper, 4);
1466 return CharBuf;
1469 // To mitigate https://github.com/llvm/llvm-project/issues/54732,
1470 // we allow "Mathematical Notation Characters" in identifiers.
1471 // This is a proposed profile that extends the XID_Start/XID_continue
1472 // with mathematical symbols, superscipts and subscripts digits
1473 // found in some production software.
1474 // https://www.unicode.org/L2/L2022/22230-math-profile.pdf
1475 static bool isMathematicalExtensionID(uint32_t C, const LangOptions &LangOpts,
1476 bool IsStart, bool &IsExtension) {
1477 static const llvm::sys::UnicodeCharSet MathStartChars(
1478 MathematicalNotationProfileIDStartRanges);
1479 static const llvm::sys::UnicodeCharSet MathContinueChars(
1480 MathematicalNotationProfileIDContinueRanges);
1481 if (MathStartChars.contains(C) ||
1482 (!IsStart && MathContinueChars.contains(C))) {
1483 IsExtension = true;
1484 return true;
1486 return false;
1489 static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts,
1490 bool &IsExtension) {
1491 if (LangOpts.AsmPreprocessor) {
1492 return false;
1493 } else if (LangOpts.DollarIdents && '$' == C) {
1494 return true;
1495 } else if (LangOpts.CPlusPlus || LangOpts.C2x) {
1496 // A non-leading codepoint must have the XID_Continue property.
1497 // XIDContinueRanges doesn't contains characters also in XIDStartRanges,
1498 // so we need to check both tables.
1499 // '_' doesn't have the XID_Continue property but is allowed in C and C++.
1500 static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges);
1501 static const llvm::sys::UnicodeCharSet XIDContinueChars(XIDContinueRanges);
1502 if (C == '_' || XIDStartChars.contains(C) || XIDContinueChars.contains(C))
1503 return true;
1504 return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/false,
1505 IsExtension);
1506 } else if (LangOpts.C11) {
1507 static const llvm::sys::UnicodeCharSet C11AllowedIDChars(
1508 C11AllowedIDCharRanges);
1509 return C11AllowedIDChars.contains(C);
1510 } else {
1511 static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
1512 C99AllowedIDCharRanges);
1513 return C99AllowedIDChars.contains(C);
1517 static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts,
1518 bool &IsExtension) {
1519 assert(C > 0x7F && "isAllowedInitiallyIDChar called with an ASCII codepoint");
1520 IsExtension = false;
1521 if (LangOpts.AsmPreprocessor) {
1522 return false;
1524 if (LangOpts.CPlusPlus || LangOpts.C2x) {
1525 static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges);
1526 if (XIDStartChars.contains(C))
1527 return true;
1528 return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/true,
1529 IsExtension);
1531 if (!isAllowedIDChar(C, LangOpts, IsExtension))
1532 return false;
1533 if (LangOpts.C11) {
1534 static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars(
1535 C11DisallowedInitialIDCharRanges);
1536 return !C11DisallowedInitialIDChars.contains(C);
1538 static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
1539 C99DisallowedInitialIDCharRanges);
1540 return !C99DisallowedInitialIDChars.contains(C);
1543 static void diagnoseExtensionInIdentifier(DiagnosticsEngine &Diags, uint32_t C,
1544 CharSourceRange Range) {
1546 static const llvm::sys::UnicodeCharSet MathStartChars(
1547 MathematicalNotationProfileIDStartRanges);
1548 static const llvm::sys::UnicodeCharSet MathContinueChars(
1549 MathematicalNotationProfileIDContinueRanges);
1551 (void)MathStartChars;
1552 (void)MathContinueChars;
1553 assert((MathStartChars.contains(C) || MathContinueChars.contains(C)) &&
1554 "Unexpected mathematical notation codepoint");
1555 Diags.Report(Range.getBegin(), diag::ext_mathematical_notation)
1556 << codepointAsHexString(C) << Range;
1559 static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin,
1560 const char *End) {
1561 return CharSourceRange::getCharRange(L.getSourceLocation(Begin),
1562 L.getSourceLocation(End));
1565 static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C,
1566 CharSourceRange Range, bool IsFirst) {
1567 // Check C99 compatibility.
1568 if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) {
1569 enum {
1570 CannotAppearInIdentifier = 0,
1571 CannotStartIdentifier
1574 static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
1575 C99AllowedIDCharRanges);
1576 static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
1577 C99DisallowedInitialIDCharRanges);
1578 if (!C99AllowedIDChars.contains(C)) {
1579 Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
1580 << Range
1581 << CannotAppearInIdentifier;
1582 } else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) {
1583 Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
1584 << Range
1585 << CannotStartIdentifier;
1590 /// After encountering UTF-8 character C and interpreting it as an identifier
1591 /// character, check whether it's a homoglyph for a common non-identifier
1592 /// source character that is unlikely to be an intentional identifier
1593 /// character and warn if so.
1594 static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C,
1595 CharSourceRange Range) {
1596 // FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes).
1597 struct HomoglyphPair {
1598 uint32_t Character;
1599 char LooksLike;
1600 bool operator<(HomoglyphPair R) const { return Character < R.Character; }
1602 static constexpr HomoglyphPair SortedHomoglyphs[] = {
1603 {U'\u00ad', 0}, // SOFT HYPHEN
1604 {U'\u01c3', '!'}, // LATIN LETTER RETROFLEX CLICK
1605 {U'\u037e', ';'}, // GREEK QUESTION MARK
1606 {U'\u200b', 0}, // ZERO WIDTH SPACE
1607 {U'\u200c', 0}, // ZERO WIDTH NON-JOINER
1608 {U'\u200d', 0}, // ZERO WIDTH JOINER
1609 {U'\u2060', 0}, // WORD JOINER
1610 {U'\u2061', 0}, // FUNCTION APPLICATION
1611 {U'\u2062', 0}, // INVISIBLE TIMES
1612 {U'\u2063', 0}, // INVISIBLE SEPARATOR
1613 {U'\u2064', 0}, // INVISIBLE PLUS
1614 {U'\u2212', '-'}, // MINUS SIGN
1615 {U'\u2215', '/'}, // DIVISION SLASH
1616 {U'\u2216', '\\'}, // SET MINUS
1617 {U'\u2217', '*'}, // ASTERISK OPERATOR
1618 {U'\u2223', '|'}, // DIVIDES
1619 {U'\u2227', '^'}, // LOGICAL AND
1620 {U'\u2236', ':'}, // RATIO
1621 {U'\u223c', '~'}, // TILDE OPERATOR
1622 {U'\ua789', ':'}, // MODIFIER LETTER COLON
1623 {U'\ufeff', 0}, // ZERO WIDTH NO-BREAK SPACE
1624 {U'\uff01', '!'}, // FULLWIDTH EXCLAMATION MARK
1625 {U'\uff03', '#'}, // FULLWIDTH NUMBER SIGN
1626 {U'\uff04', '$'}, // FULLWIDTH DOLLAR SIGN
1627 {U'\uff05', '%'}, // FULLWIDTH PERCENT SIGN
1628 {U'\uff06', '&'}, // FULLWIDTH AMPERSAND
1629 {U'\uff08', '('}, // FULLWIDTH LEFT PARENTHESIS
1630 {U'\uff09', ')'}, // FULLWIDTH RIGHT PARENTHESIS
1631 {U'\uff0a', '*'}, // FULLWIDTH ASTERISK
1632 {U'\uff0b', '+'}, // FULLWIDTH ASTERISK
1633 {U'\uff0c', ','}, // FULLWIDTH COMMA
1634 {U'\uff0d', '-'}, // FULLWIDTH HYPHEN-MINUS
1635 {U'\uff0e', '.'}, // FULLWIDTH FULL STOP
1636 {U'\uff0f', '/'}, // FULLWIDTH SOLIDUS
1637 {U'\uff1a', ':'}, // FULLWIDTH COLON
1638 {U'\uff1b', ';'}, // FULLWIDTH SEMICOLON
1639 {U'\uff1c', '<'}, // FULLWIDTH LESS-THAN SIGN
1640 {U'\uff1d', '='}, // FULLWIDTH EQUALS SIGN
1641 {U'\uff1e', '>'}, // FULLWIDTH GREATER-THAN SIGN
1642 {U'\uff1f', '?'}, // FULLWIDTH QUESTION MARK
1643 {U'\uff20', '@'}, // FULLWIDTH COMMERCIAL AT
1644 {U'\uff3b', '['}, // FULLWIDTH LEFT SQUARE BRACKET
1645 {U'\uff3c', '\\'}, // FULLWIDTH REVERSE SOLIDUS
1646 {U'\uff3d', ']'}, // FULLWIDTH RIGHT SQUARE BRACKET
1647 {U'\uff3e', '^'}, // FULLWIDTH CIRCUMFLEX ACCENT
1648 {U'\uff5b', '{'}, // FULLWIDTH LEFT CURLY BRACKET
1649 {U'\uff5c', '|'}, // FULLWIDTH VERTICAL LINE
1650 {U'\uff5d', '}'}, // FULLWIDTH RIGHT CURLY BRACKET
1651 {U'\uff5e', '~'}, // FULLWIDTH TILDE
1652 {0, 0}
1654 auto Homoglyph =
1655 std::lower_bound(std::begin(SortedHomoglyphs),
1656 std::end(SortedHomoglyphs) - 1, HomoglyphPair{C, '\0'});
1657 if (Homoglyph->Character == C) {
1658 if (Homoglyph->LooksLike) {
1659 const char LooksLikeStr[] = {Homoglyph->LooksLike, 0};
1660 Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph)
1661 << Range << codepointAsHexString(C) << LooksLikeStr;
1662 } else {
1663 Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_zero_width)
1664 << Range << codepointAsHexString(C);
1669 static void diagnoseInvalidUnicodeCodepointInIdentifier(
1670 DiagnosticsEngine &Diags, const LangOptions &LangOpts, uint32_t CodePoint,
1671 CharSourceRange Range, bool IsFirst) {
1672 if (isASCII(CodePoint))
1673 return;
1675 bool IsExtension;
1676 bool IsIDStart = isAllowedInitiallyIDChar(CodePoint, LangOpts, IsExtension);
1677 bool IsIDContinue =
1678 IsIDStart || isAllowedIDChar(CodePoint, LangOpts, IsExtension);
1680 if ((IsFirst && IsIDStart) || (!IsFirst && IsIDContinue))
1681 return;
1683 bool InvalidOnlyAtStart = IsFirst && !IsIDStart && IsIDContinue;
1685 if (!IsFirst || InvalidOnlyAtStart) {
1686 Diags.Report(Range.getBegin(), diag::err_character_not_allowed_identifier)
1687 << Range << codepointAsHexString(CodePoint) << int(InvalidOnlyAtStart)
1688 << FixItHint::CreateRemoval(Range);
1689 } else {
1690 Diags.Report(Range.getBegin(), diag::err_character_not_allowed)
1691 << Range << codepointAsHexString(CodePoint)
1692 << FixItHint::CreateRemoval(Range);
1696 bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size,
1697 Token &Result) {
1698 const char *UCNPtr = CurPtr + Size;
1699 uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr);
1700 if (CodePoint == 0) {
1701 return false;
1703 bool IsExtension = false;
1704 if (!isAllowedIDChar(CodePoint, LangOpts, IsExtension)) {
1705 if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint))
1706 return false;
1707 if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1708 !PP->isPreprocessedOutput())
1709 diagnoseInvalidUnicodeCodepointInIdentifier(
1710 PP->getDiagnostics(), LangOpts, CodePoint,
1711 makeCharRange(*this, CurPtr, UCNPtr),
1712 /*IsFirst=*/false);
1714 // We got a unicode codepoint that is neither a space nor a
1715 // a valid identifier part.
1716 // Carry on as if the codepoint was valid for recovery purposes.
1717 } else if (!isLexingRawMode()) {
1718 if (IsExtension)
1719 diagnoseExtensionInIdentifier(PP->getDiagnostics(), CodePoint,
1720 makeCharRange(*this, CurPtr, UCNPtr));
1722 maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
1723 makeCharRange(*this, CurPtr, UCNPtr),
1724 /*IsFirst=*/false);
1727 Result.setFlag(Token::HasUCN);
1728 if ((UCNPtr - CurPtr == 6 && CurPtr[1] == 'u') ||
1729 (UCNPtr - CurPtr == 10 && CurPtr[1] == 'U'))
1730 CurPtr = UCNPtr;
1731 else
1732 while (CurPtr != UCNPtr)
1733 (void)getAndAdvanceChar(CurPtr, Result);
1734 return true;
1737 bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr) {
1738 const char *UnicodePtr = CurPtr;
1739 llvm::UTF32 CodePoint;
1740 llvm::ConversionResult Result =
1741 llvm::convertUTF8Sequence((const llvm::UTF8 **)&UnicodePtr,
1742 (const llvm::UTF8 *)BufferEnd,
1743 &CodePoint,
1744 llvm::strictConversion);
1745 if (Result != llvm::conversionOK)
1746 return false;
1748 bool IsExtension = false;
1749 if (!isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts,
1750 IsExtension)) {
1751 if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint))
1752 return false;
1754 if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1755 !PP->isPreprocessedOutput())
1756 diagnoseInvalidUnicodeCodepointInIdentifier(
1757 PP->getDiagnostics(), LangOpts, CodePoint,
1758 makeCharRange(*this, CurPtr, UnicodePtr), /*IsFirst=*/false);
1759 // We got a unicode codepoint that is neither a space nor a
1760 // a valid identifier part. Carry on as if the codepoint was
1761 // valid for recovery purposes.
1762 } else if (!isLexingRawMode()) {
1763 if (IsExtension)
1764 diagnoseExtensionInIdentifier(PP->getDiagnostics(), CodePoint,
1765 makeCharRange(*this, CurPtr, UnicodePtr));
1766 maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
1767 makeCharRange(*this, CurPtr, UnicodePtr),
1768 /*IsFirst=*/false);
1769 maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint,
1770 makeCharRange(*this, CurPtr, UnicodePtr));
1773 CurPtr = UnicodePtr;
1774 return true;
1777 bool Lexer::LexUnicodeIdentifierStart(Token &Result, uint32_t C,
1778 const char *CurPtr) {
1779 bool IsExtension = false;
1780 if (isAllowedInitiallyIDChar(C, LangOpts, IsExtension)) {
1781 if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1782 !PP->isPreprocessedOutput()) {
1783 if (IsExtension)
1784 diagnoseExtensionInIdentifier(PP->getDiagnostics(), C,
1785 makeCharRange(*this, BufferPtr, CurPtr));
1786 maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C,
1787 makeCharRange(*this, BufferPtr, CurPtr),
1788 /*IsFirst=*/true);
1789 maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), C,
1790 makeCharRange(*this, BufferPtr, CurPtr));
1793 MIOpt.ReadToken();
1794 return LexIdentifierContinue(Result, CurPtr);
1797 if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1798 !PP->isPreprocessedOutput() && !isASCII(*BufferPtr) &&
1799 !isUnicodeWhitespace(C)) {
1800 // Non-ASCII characters tend to creep into source code unintentionally.
1801 // Instead of letting the parser complain about the unknown token,
1802 // just drop the character.
1803 // Note that we can /only/ do this when the non-ASCII character is actually
1804 // spelled as Unicode, not written as a UCN. The standard requires that
1805 // we not throw away any possible preprocessor tokens, but there's a
1806 // loophole in the mapping of Unicode characters to basic character set
1807 // characters that allows us to map these particular characters to, say,
1808 // whitespace.
1809 diagnoseInvalidUnicodeCodepointInIdentifier(
1810 PP->getDiagnostics(), LangOpts, C,
1811 makeCharRange(*this, BufferPtr, CurPtr), /*IsStart*/ true);
1812 BufferPtr = CurPtr;
1813 return false;
1816 // Otherwise, we have an explicit UCN or a character that's unlikely to show
1817 // up by accident.
1818 MIOpt.ReadToken();
1819 FormTokenWithChars(Result, CurPtr, tok::unknown);
1820 return true;
1823 bool Lexer::LexIdentifierContinue(Token &Result, const char *CurPtr) {
1824 // Match [_A-Za-z0-9]*, we have already matched an identifier start.
1825 while (true) {
1826 unsigned char C = *CurPtr;
1827 // Fast path.
1828 if (isAsciiIdentifierContinue(C)) {
1829 ++CurPtr;
1830 continue;
1833 unsigned Size;
1834 // Slow path: handle trigraph, unicode codepoints, UCNs.
1835 C = getCharAndSize(CurPtr, Size);
1836 if (isAsciiIdentifierContinue(C)) {
1837 CurPtr = ConsumeChar(CurPtr, Size, Result);
1838 continue;
1840 if (C == '$') {
1841 // If we hit a $ and they are not supported in identifiers, we are done.
1842 if (!LangOpts.DollarIdents)
1843 break;
1844 // Otherwise, emit a diagnostic and continue.
1845 if (!isLexingRawMode())
1846 Diag(CurPtr, diag::ext_dollar_in_identifier);
1847 CurPtr = ConsumeChar(CurPtr, Size, Result);
1848 continue;
1850 if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1851 continue;
1852 if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
1853 continue;
1854 // Neither an expected Unicode codepoint nor a UCN.
1855 break;
1858 const char *IdStart = BufferPtr;
1859 FormTokenWithChars(Result, CurPtr, tok::raw_identifier);
1860 Result.setRawIdentifierData(IdStart);
1862 // If we are in raw mode, return this identifier raw. There is no need to
1863 // look up identifier information or attempt to macro expand it.
1864 if (LexingRawMode)
1865 return true;
1867 // Fill in Result.IdentifierInfo and update the token kind,
1868 // looking up the identifier in the identifier table.
1869 IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
1870 // Note that we have to call PP->LookUpIdentifierInfo() even for code
1871 // completion, it writes IdentifierInfo into Result, and callers rely on it.
1873 // If the completion point is at the end of an identifier, we want to treat
1874 // the identifier as incomplete even if it resolves to a macro or a keyword.
1875 // This allows e.g. 'class^' to complete to 'classifier'.
1876 if (isCodeCompletionPoint(CurPtr)) {
1877 // Return the code-completion token.
1878 Result.setKind(tok::code_completion);
1879 // Skip the code-completion char and all immediate identifier characters.
1880 // This ensures we get consistent behavior when completing at any point in
1881 // an identifier (i.e. at the start, in the middle, at the end). Note that
1882 // only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code
1883 // simpler.
1884 assert(*CurPtr == 0 && "Completion character must be 0");
1885 ++CurPtr;
1886 // Note that code completion token is not added as a separate character
1887 // when the completion point is at the end of the buffer. Therefore, we need
1888 // to check if the buffer has ended.
1889 if (CurPtr < BufferEnd) {
1890 while (isAsciiIdentifierContinue(*CurPtr))
1891 ++CurPtr;
1893 BufferPtr = CurPtr;
1894 return true;
1897 // Finally, now that we know we have an identifier, pass this off to the
1898 // preprocessor, which may macro expand it or something.
1899 if (II->isHandleIdentifierCase())
1900 return PP->HandleIdentifier(Result);
1902 return true;
1905 /// isHexaLiteral - Return true if Start points to a hex constant.
1906 /// in microsoft mode (where this is supposed to be several different tokens).
1907 bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) {
1908 unsigned Size;
1909 char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts);
1910 if (C1 != '0')
1911 return false;
1912 char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts);
1913 return (C2 == 'x' || C2 == 'X');
1916 /// LexNumericConstant - Lex the remainder of a integer or floating point
1917 /// constant. From[-1] is the first character lexed. Return the end of the
1918 /// constant.
1919 bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) {
1920 unsigned Size;
1921 char C = getCharAndSize(CurPtr, Size);
1922 char PrevCh = 0;
1923 while (isPreprocessingNumberBody(C)) {
1924 CurPtr = ConsumeChar(CurPtr, Size, Result);
1925 PrevCh = C;
1926 C = getCharAndSize(CurPtr, Size);
1929 // If we fell out, check for a sign, due to 1e+12. If we have one, continue.
1930 if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) {
1931 // If we are in Microsoft mode, don't continue if the constant is hex.
1932 // For example, MSVC will accept the following as 3 tokens: 0x1234567e+1
1933 if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts))
1934 return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
1937 // If we have a hex FP constant, continue.
1938 if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) {
1939 // Outside C99 and C++17, we accept hexadecimal floating point numbers as a
1940 // not-quite-conforming extension. Only do so if this looks like it's
1941 // actually meant to be a hexfloat, and not if it has a ud-suffix.
1942 bool IsHexFloat = true;
1943 if (!LangOpts.C99) {
1944 if (!isHexaLiteral(BufferPtr, LangOpts))
1945 IsHexFloat = false;
1946 else if (!LangOpts.CPlusPlus17 &&
1947 std::find(BufferPtr, CurPtr, '_') != CurPtr)
1948 IsHexFloat = false;
1950 if (IsHexFloat)
1951 return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
1954 // If we have a digit separator, continue.
1955 if (C == '\'' && (LangOpts.CPlusPlus14 || LangOpts.C2x)) {
1956 unsigned NextSize;
1957 char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, LangOpts);
1958 if (isAsciiIdentifierContinue(Next)) {
1959 if (!isLexingRawMode())
1960 Diag(CurPtr, LangOpts.CPlusPlus
1961 ? diag::warn_cxx11_compat_digit_separator
1962 : diag::warn_c2x_compat_digit_separator);
1963 CurPtr = ConsumeChar(CurPtr, Size, Result);
1964 CurPtr = ConsumeChar(CurPtr, NextSize, Result);
1965 return LexNumericConstant(Result, CurPtr);
1969 // If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue.
1970 if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1971 return LexNumericConstant(Result, CurPtr);
1972 if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
1973 return LexNumericConstant(Result, CurPtr);
1975 // Update the location of token as well as BufferPtr.
1976 const char *TokStart = BufferPtr;
1977 FormTokenWithChars(Result, CurPtr, tok::numeric_constant);
1978 Result.setLiteralData(TokStart);
1979 return true;
1982 /// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes
1983 /// in C++11, or warn on a ud-suffix in C++98.
1984 const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr,
1985 bool IsStringLiteral) {
1986 assert(LangOpts.CPlusPlus);
1988 // Maximally munch an identifier.
1989 unsigned Size;
1990 char C = getCharAndSize(CurPtr, Size);
1991 bool Consumed = false;
1993 if (!isAsciiIdentifierStart(C)) {
1994 if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1995 Consumed = true;
1996 else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
1997 Consumed = true;
1998 else
1999 return CurPtr;
2002 if (!LangOpts.CPlusPlus11) {
2003 if (!isLexingRawMode())
2004 Diag(CurPtr,
2005 C == '_' ? diag::warn_cxx11_compat_user_defined_literal
2006 : diag::warn_cxx11_compat_reserved_user_defined_literal)
2007 << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
2008 return CurPtr;
2011 // C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix
2012 // that does not start with an underscore is ill-formed. As a conforming
2013 // extension, we treat all such suffixes as if they had whitespace before
2014 // them. We assume a suffix beginning with a UCN or UTF-8 character is more
2015 // likely to be a ud-suffix than a macro, however, and accept that.
2016 if (!Consumed) {
2017 bool IsUDSuffix = false;
2018 if (C == '_')
2019 IsUDSuffix = true;
2020 else if (IsStringLiteral && LangOpts.CPlusPlus14) {
2021 // In C++1y, we need to look ahead a few characters to see if this is a
2022 // valid suffix for a string literal or a numeric literal (this could be
2023 // the 'operator""if' defining a numeric literal operator).
2024 const unsigned MaxStandardSuffixLength = 3;
2025 char Buffer[MaxStandardSuffixLength] = { C };
2026 unsigned Consumed = Size;
2027 unsigned Chars = 1;
2028 while (true) {
2029 unsigned NextSize;
2030 char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize, LangOpts);
2031 if (!isAsciiIdentifierContinue(Next)) {
2032 // End of suffix. Check whether this is on the allowed list.
2033 const StringRef CompleteSuffix(Buffer, Chars);
2034 IsUDSuffix =
2035 StringLiteralParser::isValidUDSuffix(LangOpts, CompleteSuffix);
2036 break;
2039 if (Chars == MaxStandardSuffixLength)
2040 // Too long: can't be a standard suffix.
2041 break;
2043 Buffer[Chars++] = Next;
2044 Consumed += NextSize;
2048 if (!IsUDSuffix) {
2049 if (!isLexingRawMode())
2050 Diag(CurPtr, LangOpts.MSVCCompat
2051 ? diag::ext_ms_reserved_user_defined_literal
2052 : diag::ext_reserved_user_defined_literal)
2053 << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
2054 return CurPtr;
2057 CurPtr = ConsumeChar(CurPtr, Size, Result);
2060 Result.setFlag(Token::HasUDSuffix);
2061 while (true) {
2062 C = getCharAndSize(CurPtr, Size);
2063 if (isAsciiIdentifierContinue(C)) {
2064 CurPtr = ConsumeChar(CurPtr, Size, Result);
2065 } else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {
2066 } else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {
2067 } else
2068 break;
2071 return CurPtr;
2074 /// LexStringLiteral - Lex the remainder of a string literal, after having lexed
2075 /// either " or L" or u8" or u" or U".
2076 bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr,
2077 tok::TokenKind Kind) {
2078 const char *AfterQuote = CurPtr;
2079 // Does this string contain the \0 character?
2080 const char *NulCharacter = nullptr;
2082 if (!isLexingRawMode() &&
2083 (Kind == tok::utf8_string_literal ||
2084 Kind == tok::utf16_string_literal ||
2085 Kind == tok::utf32_string_literal))
2086 Diag(BufferPtr, LangOpts.CPlusPlus ? diag::warn_cxx98_compat_unicode_literal
2087 : diag::warn_c99_compat_unicode_literal);
2089 char C = getAndAdvanceChar(CurPtr, Result);
2090 while (C != '"') {
2091 // Skip escaped characters. Escaped newlines will already be processed by
2092 // getAndAdvanceChar.
2093 if (C == '\\')
2094 C = getAndAdvanceChar(CurPtr, Result);
2096 if (C == '\n' || C == '\r' || // Newline.
2097 (C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
2098 if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2099 Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 1;
2100 FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2101 return true;
2104 if (C == 0) {
2105 if (isCodeCompletionPoint(CurPtr-1)) {
2106 if (ParsingFilename)
2107 codeCompleteIncludedFile(AfterQuote, CurPtr - 1, /*IsAngled=*/false);
2108 else
2109 PP->CodeCompleteNaturalLanguage();
2110 FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
2111 cutOffLexing();
2112 return true;
2115 NulCharacter = CurPtr-1;
2117 C = getAndAdvanceChar(CurPtr, Result);
2120 // If we are in C++11, lex the optional ud-suffix.
2121 if (LangOpts.CPlusPlus)
2122 CurPtr = LexUDSuffix(Result, CurPtr, true);
2124 // If a nul character existed in the string, warn about it.
2125 if (NulCharacter && !isLexingRawMode())
2126 Diag(NulCharacter, diag::null_in_char_or_string) << 1;
2128 // Update the location of the token as well as the BufferPtr instance var.
2129 const char *TokStart = BufferPtr;
2130 FormTokenWithChars(Result, CurPtr, Kind);
2131 Result.setLiteralData(TokStart);
2132 return true;
2135 /// LexRawStringLiteral - Lex the remainder of a raw string literal, after
2136 /// having lexed R", LR", u8R", uR", or UR".
2137 bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr,
2138 tok::TokenKind Kind) {
2139 // This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3:
2140 // Between the initial and final double quote characters of the raw string,
2141 // any transformations performed in phases 1 and 2 (trigraphs,
2142 // universal-character-names, and line splicing) are reverted.
2144 if (!isLexingRawMode())
2145 Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal);
2147 unsigned PrefixLen = 0;
2149 while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen]))
2150 ++PrefixLen;
2152 // If the last character was not a '(', then we didn't lex a valid delimiter.
2153 if (CurPtr[PrefixLen] != '(') {
2154 if (!isLexingRawMode()) {
2155 const char *PrefixEnd = &CurPtr[PrefixLen];
2156 if (PrefixLen == 16) {
2157 Diag(PrefixEnd, diag::err_raw_delim_too_long);
2158 } else {
2159 Diag(PrefixEnd, diag::err_invalid_char_raw_delim)
2160 << StringRef(PrefixEnd, 1);
2164 // Search for the next '"' in hopes of salvaging the lexer. Unfortunately,
2165 // it's possible the '"' was intended to be part of the raw string, but
2166 // there's not much we can do about that.
2167 while (true) {
2168 char C = *CurPtr++;
2170 if (C == '"')
2171 break;
2172 if (C == 0 && CurPtr-1 == BufferEnd) {
2173 --CurPtr;
2174 break;
2178 FormTokenWithChars(Result, CurPtr, tok::unknown);
2179 return true;
2182 // Save prefix and move CurPtr past it
2183 const char *Prefix = CurPtr;
2184 CurPtr += PrefixLen + 1; // skip over prefix and '('
2186 while (true) {
2187 char C = *CurPtr++;
2189 if (C == ')') {
2190 // Check for prefix match and closing quote.
2191 if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') {
2192 CurPtr += PrefixLen + 1; // skip over prefix and '"'
2193 break;
2195 } else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file.
2196 if (!isLexingRawMode())
2197 Diag(BufferPtr, diag::err_unterminated_raw_string)
2198 << StringRef(Prefix, PrefixLen);
2199 FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2200 return true;
2204 // If we are in C++11, lex the optional ud-suffix.
2205 if (LangOpts.CPlusPlus)
2206 CurPtr = LexUDSuffix(Result, CurPtr, true);
2208 // Update the location of token as well as BufferPtr.
2209 const char *TokStart = BufferPtr;
2210 FormTokenWithChars(Result, CurPtr, Kind);
2211 Result.setLiteralData(TokStart);
2212 return true;
2215 /// LexAngledStringLiteral - Lex the remainder of an angled string literal,
2216 /// after having lexed the '<' character. This is used for #include filenames.
2217 bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) {
2218 // Does this string contain the \0 character?
2219 const char *NulCharacter = nullptr;
2220 const char *AfterLessPos = CurPtr;
2221 char C = getAndAdvanceChar(CurPtr, Result);
2222 while (C != '>') {
2223 // Skip escaped characters. Escaped newlines will already be processed by
2224 // getAndAdvanceChar.
2225 if (C == '\\')
2226 C = getAndAdvanceChar(CurPtr, Result);
2228 if (isVerticalWhitespace(C) || // Newline.
2229 (C == 0 && (CurPtr - 1 == BufferEnd))) { // End of file.
2230 // If the filename is unterminated, then it must just be a lone <
2231 // character. Return this as such.
2232 FormTokenWithChars(Result, AfterLessPos, tok::less);
2233 return true;
2236 if (C == 0) {
2237 if (isCodeCompletionPoint(CurPtr - 1)) {
2238 codeCompleteIncludedFile(AfterLessPos, CurPtr - 1, /*IsAngled=*/true);
2239 cutOffLexing();
2240 FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
2241 return true;
2243 NulCharacter = CurPtr-1;
2245 C = getAndAdvanceChar(CurPtr, Result);
2248 // If a nul character existed in the string, warn about it.
2249 if (NulCharacter && !isLexingRawMode())
2250 Diag(NulCharacter, diag::null_in_char_or_string) << 1;
2252 // Update the location of token as well as BufferPtr.
2253 const char *TokStart = BufferPtr;
2254 FormTokenWithChars(Result, CurPtr, tok::header_name);
2255 Result.setLiteralData(TokStart);
2256 return true;
2259 void Lexer::codeCompleteIncludedFile(const char *PathStart,
2260 const char *CompletionPoint,
2261 bool IsAngled) {
2262 // Completion only applies to the filename, after the last slash.
2263 StringRef PartialPath(PathStart, CompletionPoint - PathStart);
2264 llvm::StringRef SlashChars = LangOpts.MSVCCompat ? "/\\" : "/";
2265 auto Slash = PartialPath.find_last_of(SlashChars);
2266 StringRef Dir =
2267 (Slash == StringRef::npos) ? "" : PartialPath.take_front(Slash);
2268 const char *StartOfFilename =
2269 (Slash == StringRef::npos) ? PathStart : PathStart + Slash + 1;
2270 // Code completion filter range is the filename only, up to completion point.
2271 PP->setCodeCompletionIdentifierInfo(&PP->getIdentifierTable().get(
2272 StringRef(StartOfFilename, CompletionPoint - StartOfFilename)));
2273 // We should replace the characters up to the closing quote or closest slash,
2274 // if any.
2275 while (CompletionPoint < BufferEnd) {
2276 char Next = *(CompletionPoint + 1);
2277 if (Next == 0 || Next == '\r' || Next == '\n')
2278 break;
2279 ++CompletionPoint;
2280 if (Next == (IsAngled ? '>' : '"'))
2281 break;
2282 if (llvm::is_contained(SlashChars, Next))
2283 break;
2286 PP->setCodeCompletionTokenRange(
2287 FileLoc.getLocWithOffset(StartOfFilename - BufferStart),
2288 FileLoc.getLocWithOffset(CompletionPoint - BufferStart));
2289 PP->CodeCompleteIncludedFile(Dir, IsAngled);
2292 /// LexCharConstant - Lex the remainder of a character constant, after having
2293 /// lexed either ' or L' or u8' or u' or U'.
2294 bool Lexer::LexCharConstant(Token &Result, const char *CurPtr,
2295 tok::TokenKind Kind) {
2296 // Does this character contain the \0 character?
2297 const char *NulCharacter = nullptr;
2299 if (!isLexingRawMode()) {
2300 if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant)
2301 Diag(BufferPtr, LangOpts.CPlusPlus
2302 ? diag::warn_cxx98_compat_unicode_literal
2303 : diag::warn_c99_compat_unicode_literal);
2304 else if (Kind == tok::utf8_char_constant)
2305 Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal);
2308 char C = getAndAdvanceChar(CurPtr, Result);
2309 if (C == '\'') {
2310 if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2311 Diag(BufferPtr, diag::ext_empty_character);
2312 FormTokenWithChars(Result, CurPtr, tok::unknown);
2313 return true;
2316 while (C != '\'') {
2317 // Skip escaped characters.
2318 if (C == '\\')
2319 C = getAndAdvanceChar(CurPtr, Result);
2321 if (C == '\n' || C == '\r' || // Newline.
2322 (C == 0 && CurPtr-1 == BufferEnd)) { // End of file.
2323 if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2324 Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 0;
2325 FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2326 return true;
2329 if (C == 0) {
2330 if (isCodeCompletionPoint(CurPtr-1)) {
2331 PP->CodeCompleteNaturalLanguage();
2332 FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2333 cutOffLexing();
2334 return true;
2337 NulCharacter = CurPtr-1;
2339 C = getAndAdvanceChar(CurPtr, Result);
2342 // If we are in C++11, lex the optional ud-suffix.
2343 if (LangOpts.CPlusPlus)
2344 CurPtr = LexUDSuffix(Result, CurPtr, false);
2346 // If a nul character existed in the character, warn about it.
2347 if (NulCharacter && !isLexingRawMode())
2348 Diag(NulCharacter, diag::null_in_char_or_string) << 0;
2350 // Update the location of token as well as BufferPtr.
2351 const char *TokStart = BufferPtr;
2352 FormTokenWithChars(Result, CurPtr, Kind);
2353 Result.setLiteralData(TokStart);
2354 return true;
2357 /// SkipWhitespace - Efficiently skip over a series of whitespace characters.
2358 /// Update BufferPtr to point to the next non-whitespace character and return.
2360 /// This method forms a token and returns true if KeepWhitespaceMode is enabled.
2361 bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr,
2362 bool &TokAtPhysicalStartOfLine) {
2363 // Whitespace - Skip it, then return the token after the whitespace.
2364 bool SawNewline = isVerticalWhitespace(CurPtr[-1]);
2366 unsigned char Char = *CurPtr;
2368 const char *lastNewLine = nullptr;
2369 auto setLastNewLine = [&](const char *Ptr) {
2370 lastNewLine = Ptr;
2371 if (!NewLinePtr)
2372 NewLinePtr = Ptr;
2374 if (SawNewline)
2375 setLastNewLine(CurPtr - 1);
2377 // Skip consecutive spaces efficiently.
2378 while (true) {
2379 // Skip horizontal whitespace very aggressively.
2380 while (isHorizontalWhitespace(Char))
2381 Char = *++CurPtr;
2383 // Otherwise if we have something other than whitespace, we're done.
2384 if (!isVerticalWhitespace(Char))
2385 break;
2387 if (ParsingPreprocessorDirective) {
2388 // End of preprocessor directive line, let LexTokenInternal handle this.
2389 BufferPtr = CurPtr;
2390 return false;
2393 // OK, but handle newline.
2394 if (*CurPtr == '\n')
2395 setLastNewLine(CurPtr);
2396 SawNewline = true;
2397 Char = *++CurPtr;
2400 // If the client wants us to return whitespace, return it now.
2401 if (isKeepWhitespaceMode()) {
2402 FormTokenWithChars(Result, CurPtr, tok::unknown);
2403 if (SawNewline) {
2404 IsAtStartOfLine = true;
2405 IsAtPhysicalStartOfLine = true;
2407 // FIXME: The next token will not have LeadingSpace set.
2408 return true;
2411 // If this isn't immediately after a newline, there is leading space.
2412 char PrevChar = CurPtr[-1];
2413 bool HasLeadingSpace = !isVerticalWhitespace(PrevChar);
2415 Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
2416 if (SawNewline) {
2417 Result.setFlag(Token::StartOfLine);
2418 TokAtPhysicalStartOfLine = true;
2420 if (NewLinePtr && lastNewLine && NewLinePtr != lastNewLine && PP) {
2421 if (auto *Handler = PP->getEmptylineHandler())
2422 Handler->HandleEmptyline(SourceRange(getSourceLocation(NewLinePtr + 1),
2423 getSourceLocation(lastNewLine)));
2427 BufferPtr = CurPtr;
2428 return false;
2431 /// We have just read the // characters from input. Skip until we find the
2432 /// newline character that terminates the comment. Then update BufferPtr and
2433 /// return.
2435 /// If we're in KeepCommentMode or any CommentHandler has inserted
2436 /// some tokens, this will store the first token and return true.
2437 bool Lexer::SkipLineComment(Token &Result, const char *CurPtr,
2438 bool &TokAtPhysicalStartOfLine) {
2439 // If Line comments aren't explicitly enabled for this language, emit an
2440 // extension warning.
2441 if (!LineComment) {
2442 if (!isLexingRawMode()) // There's no PP in raw mode, so can't emit diags.
2443 Diag(BufferPtr, diag::ext_line_comment);
2445 // Mark them enabled so we only emit one warning for this translation
2446 // unit.
2447 LineComment = true;
2450 // Scan over the body of the comment. The common case, when scanning, is that
2451 // the comment contains normal ascii characters with nothing interesting in
2452 // them. As such, optimize for this case with the inner loop.
2454 // This loop terminates with CurPtr pointing at the newline (or end of buffer)
2455 // character that ends the line comment.
2457 // C++23 [lex.phases] p1
2458 // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a
2459 // diagnostic only once per entire ill-formed subsequence to avoid
2460 // emiting to many diagnostics (see http://unicode.org/review/pr-121.html).
2461 bool UnicodeDecodingAlreadyDiagnosed = false;
2463 char C;
2464 while (true) {
2465 C = *CurPtr;
2466 // Skip over characters in the fast loop.
2467 while (isASCII(C) && C != 0 && // Potentially EOF.
2468 C != '\n' && C != '\r') { // Newline or DOS-style newline.
2469 C = *++CurPtr;
2470 UnicodeDecodingAlreadyDiagnosed = false;
2473 if (!isASCII(C)) {
2474 unsigned Length = llvm::getUTF8SequenceSize(
2475 (const llvm::UTF8 *)CurPtr, (const llvm::UTF8 *)BufferEnd);
2476 if (Length == 0) {
2477 if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode())
2478 Diag(CurPtr, diag::warn_invalid_utf8_in_comment);
2479 UnicodeDecodingAlreadyDiagnosed = true;
2480 ++CurPtr;
2481 } else {
2482 UnicodeDecodingAlreadyDiagnosed = false;
2483 CurPtr += Length;
2485 continue;
2488 const char *NextLine = CurPtr;
2489 if (C != 0) {
2490 // We found a newline, see if it's escaped.
2491 const char *EscapePtr = CurPtr-1;
2492 bool HasSpace = false;
2493 while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace.
2494 --EscapePtr;
2495 HasSpace = true;
2498 if (*EscapePtr == '\\')
2499 // Escaped newline.
2500 CurPtr = EscapePtr;
2501 else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' &&
2502 EscapePtr[-2] == '?' && LangOpts.Trigraphs)
2503 // Trigraph-escaped newline.
2504 CurPtr = EscapePtr-2;
2505 else
2506 break; // This is a newline, we're done.
2508 // If there was space between the backslash and newline, warn about it.
2509 if (HasSpace && !isLexingRawMode())
2510 Diag(EscapePtr, diag::backslash_newline_space);
2513 // Otherwise, this is a hard case. Fall back on getAndAdvanceChar to
2514 // properly decode the character. Read it in raw mode to avoid emitting
2515 // diagnostics about things like trigraphs. If we see an escaped newline,
2516 // we'll handle it below.
2517 const char *OldPtr = CurPtr;
2518 bool OldRawMode = isLexingRawMode();
2519 LexingRawMode = true;
2520 C = getAndAdvanceChar(CurPtr, Result);
2521 LexingRawMode = OldRawMode;
2523 // If we only read only one character, then no special handling is needed.
2524 // We're done and can skip forward to the newline.
2525 if (C != 0 && CurPtr == OldPtr+1) {
2526 CurPtr = NextLine;
2527 break;
2530 // If we read multiple characters, and one of those characters was a \r or
2531 // \n, then we had an escaped newline within the comment. Emit diagnostic
2532 // unless the next line is also a // comment.
2533 if (CurPtr != OldPtr + 1 && C != '/' &&
2534 (CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) {
2535 for (; OldPtr != CurPtr; ++OldPtr)
2536 if (OldPtr[0] == '\n' || OldPtr[0] == '\r') {
2537 // Okay, we found a // comment that ends in a newline, if the next
2538 // line is also a // comment, but has spaces, don't emit a diagnostic.
2539 if (isWhitespace(C)) {
2540 const char *ForwardPtr = CurPtr;
2541 while (isWhitespace(*ForwardPtr)) // Skip whitespace.
2542 ++ForwardPtr;
2543 if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/')
2544 break;
2547 if (!isLexingRawMode())
2548 Diag(OldPtr-1, diag::ext_multi_line_line_comment);
2549 break;
2553 if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) {
2554 --CurPtr;
2555 break;
2558 if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
2559 PP->CodeCompleteNaturalLanguage();
2560 cutOffLexing();
2561 return false;
2565 // Found but did not consume the newline. Notify comment handlers about the
2566 // comment unless we're in a #if 0 block.
2567 if (PP && !isLexingRawMode() &&
2568 PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
2569 getSourceLocation(CurPtr)))) {
2570 BufferPtr = CurPtr;
2571 return true; // A token has to be returned.
2574 // If we are returning comments as tokens, return this comment as a token.
2575 if (inKeepCommentMode())
2576 return SaveLineComment(Result, CurPtr);
2578 // If we are inside a preprocessor directive and we see the end of line,
2579 // return immediately, so that the lexer can return this as an EOD token.
2580 if (ParsingPreprocessorDirective || CurPtr == BufferEnd) {
2581 BufferPtr = CurPtr;
2582 return false;
2585 // Otherwise, eat the \n character. We don't care if this is a \n\r or
2586 // \r\n sequence. This is an efficiency hack (because we know the \n can't
2587 // contribute to another token), it isn't needed for correctness. Note that
2588 // this is ok even in KeepWhitespaceMode, because we would have returned the
2589 /// comment above in that mode.
2590 NewLinePtr = CurPtr++;
2592 // The next returned token is at the start of the line.
2593 Result.setFlag(Token::StartOfLine);
2594 TokAtPhysicalStartOfLine = true;
2595 // No leading whitespace seen so far.
2596 Result.clearFlag(Token::LeadingSpace);
2597 BufferPtr = CurPtr;
2598 return false;
2601 /// If in save-comment mode, package up this Line comment in an appropriate
2602 /// way and return it.
2603 bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) {
2604 // If we're not in a preprocessor directive, just return the // comment
2605 // directly.
2606 FormTokenWithChars(Result, CurPtr, tok::comment);
2608 if (!ParsingPreprocessorDirective || LexingRawMode)
2609 return true;
2611 // If this Line-style comment is in a macro definition, transmogrify it into
2612 // a C-style block comment.
2613 bool Invalid = false;
2614 std::string Spelling = PP->getSpelling(Result, &Invalid);
2615 if (Invalid)
2616 return true;
2618 assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?");
2619 Spelling[1] = '*'; // Change prefix to "/*".
2620 Spelling += "*/"; // add suffix.
2622 Result.setKind(tok::comment);
2623 PP->CreateString(Spelling, Result,
2624 Result.getLocation(), Result.getLocation());
2625 return true;
2628 /// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline
2629 /// character (either \\n or \\r) is part of an escaped newline sequence. Issue
2630 /// a diagnostic if so. We know that the newline is inside of a block comment.
2631 static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr, Lexer *L,
2632 bool Trigraphs) {
2633 assert(CurPtr[0] == '\n' || CurPtr[0] == '\r');
2635 // Position of the first trigraph in the ending sequence.
2636 const char *TrigraphPos = nullptr;
2637 // Position of the first whitespace after a '\' in the ending sequence.
2638 const char *SpacePos = nullptr;
2640 while (true) {
2641 // Back up off the newline.
2642 --CurPtr;
2644 // If this is a two-character newline sequence, skip the other character.
2645 if (CurPtr[0] == '\n' || CurPtr[0] == '\r') {
2646 // \n\n or \r\r -> not escaped newline.
2647 if (CurPtr[0] == CurPtr[1])
2648 return false;
2649 // \n\r or \r\n -> skip the newline.
2650 --CurPtr;
2653 // If we have horizontal whitespace, skip over it. We allow whitespace
2654 // between the slash and newline.
2655 while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) {
2656 SpacePos = CurPtr;
2657 --CurPtr;
2660 // If we have a slash, this is an escaped newline.
2661 if (*CurPtr == '\\') {
2662 --CurPtr;
2663 } else if (CurPtr[0] == '/' && CurPtr[-1] == '?' && CurPtr[-2] == '?') {
2664 // This is a trigraph encoding of a slash.
2665 TrigraphPos = CurPtr - 2;
2666 CurPtr -= 3;
2667 } else {
2668 return false;
2671 // If the character preceding the escaped newline is a '*', then after line
2672 // splicing we have a '*/' ending the comment.
2673 if (*CurPtr == '*')
2674 break;
2676 if (*CurPtr != '\n' && *CurPtr != '\r')
2677 return false;
2680 if (TrigraphPos) {
2681 // If no trigraphs are enabled, warn that we ignored this trigraph and
2682 // ignore this * character.
2683 if (!Trigraphs) {
2684 if (!L->isLexingRawMode())
2685 L->Diag(TrigraphPos, diag::trigraph_ignored_block_comment);
2686 return false;
2688 if (!L->isLexingRawMode())
2689 L->Diag(TrigraphPos, diag::trigraph_ends_block_comment);
2692 // Warn about having an escaped newline between the */ characters.
2693 if (!L->isLexingRawMode())
2694 L->Diag(CurPtr + 1, diag::escaped_newline_block_comment_end);
2696 // If there was space between the backslash and newline, warn about it.
2697 if (SpacePos && !L->isLexingRawMode())
2698 L->Diag(SpacePos, diag::backslash_newline_space);
2700 return true;
2703 #ifdef __SSE2__
2704 #include <emmintrin.h>
2705 #elif __ALTIVEC__
2706 #include <altivec.h>
2707 #undef bool
2708 #endif
2710 /// We have just read from input the / and * characters that started a comment.
2711 /// Read until we find the * and / characters that terminate the comment.
2712 /// Note that we don't bother decoding trigraphs or escaped newlines in block
2713 /// comments, because they cannot cause the comment to end. The only thing
2714 /// that can happen is the comment could end with an escaped newline between
2715 /// the terminating * and /.
2717 /// If we're in KeepCommentMode or any CommentHandler has inserted
2718 /// some tokens, this will store the first token and return true.
2719 bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr,
2720 bool &TokAtPhysicalStartOfLine) {
2721 // Scan one character past where we should, looking for a '/' character. Once
2722 // we find it, check to see if it was preceded by a *. This common
2723 // optimization helps people who like to put a lot of * characters in their
2724 // comments.
2726 // The first character we get with newlines and trigraphs skipped to handle
2727 // the degenerate /*/ case below correctly if the * has an escaped newline
2728 // after it.
2729 unsigned CharSize;
2730 unsigned char C = getCharAndSize(CurPtr, CharSize);
2731 CurPtr += CharSize;
2732 if (C == 0 && CurPtr == BufferEnd+1) {
2733 if (!isLexingRawMode())
2734 Diag(BufferPtr, diag::err_unterminated_block_comment);
2735 --CurPtr;
2737 // KeepWhitespaceMode should return this broken comment as a token. Since
2738 // it isn't a well formed comment, just return it as an 'unknown' token.
2739 if (isKeepWhitespaceMode()) {
2740 FormTokenWithChars(Result, CurPtr, tok::unknown);
2741 return true;
2744 BufferPtr = CurPtr;
2745 return false;
2748 // Check to see if the first character after the '/*' is another /. If so,
2749 // then this slash does not end the block comment, it is part of it.
2750 if (C == '/')
2751 C = *CurPtr++;
2753 // C++23 [lex.phases] p1
2754 // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a
2755 // diagnostic only once per entire ill-formed subsequence to avoid
2756 // emiting to many diagnostics (see http://unicode.org/review/pr-121.html).
2757 bool UnicodeDecodingAlreadyDiagnosed = false;
2759 while (true) {
2760 // Skip over all non-interesting characters until we find end of buffer or a
2761 // (probably ending) '/' character.
2762 if (CurPtr + 24 < BufferEnd &&
2763 // If there is a code-completion point avoid the fast scan because it
2764 // doesn't check for '\0'.
2765 !(PP && PP->getCodeCompletionFileLoc() == FileLoc)) {
2766 // While not aligned to a 16-byte boundary.
2767 while (C != '/' && (intptr_t)CurPtr % 16 != 0) {
2768 if (!isASCII(C))
2769 goto MultiByteUTF8;
2770 C = *CurPtr++;
2772 if (C == '/') goto FoundSlash;
2774 #ifdef __SSE2__
2775 __m128i Slashes = _mm_set1_epi8('/');
2776 while (CurPtr + 16 < BufferEnd) {
2777 int Mask = _mm_movemask_epi8(*(const __m128i *)CurPtr);
2778 if (LLVM_UNLIKELY(Mask != 0)) {
2779 goto MultiByteUTF8;
2781 // look for slashes
2782 int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr,
2783 Slashes));
2784 if (cmp != 0) {
2785 // Adjust the pointer to point directly after the first slash. It's
2786 // not necessary to set C here, it will be overwritten at the end of
2787 // the outer loop.
2788 CurPtr += llvm::countr_zero<unsigned>(cmp) + 1;
2789 goto FoundSlash;
2791 CurPtr += 16;
2793 #elif __ALTIVEC__
2794 __vector unsigned char LongUTF = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
2795 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
2796 0x80, 0x80, 0x80, 0x80};
2797 __vector unsigned char Slashes = {
2798 '/', '/', '/', '/', '/', '/', '/', '/',
2799 '/', '/', '/', '/', '/', '/', '/', '/'
2801 while (CurPtr + 16 < BufferEnd) {
2802 if (LLVM_UNLIKELY(
2803 vec_any_ge(*(const __vector unsigned char *)CurPtr, LongUTF)))
2804 goto MultiByteUTF8;
2805 if (vec_any_eq(*(const __vector unsigned char *)CurPtr, Slashes)) {
2806 break;
2808 CurPtr += 16;
2811 #else
2812 while (CurPtr + 16 < BufferEnd) {
2813 bool HasNonASCII = false;
2814 for (unsigned I = 0; I < 16; ++I)
2815 HasNonASCII |= !isASCII(CurPtr[I]);
2817 if (LLVM_UNLIKELY(HasNonASCII))
2818 goto MultiByteUTF8;
2820 bool HasSlash = false;
2821 for (unsigned I = 0; I < 16; ++I)
2822 HasSlash |= CurPtr[I] == '/';
2823 if (HasSlash)
2824 break;
2825 CurPtr += 16;
2827 #endif
2829 // It has to be one of the bytes scanned, increment to it and read one.
2830 C = *CurPtr++;
2833 // Loop to scan the remainder, warning on invalid UTF-8
2834 // if the corresponding warning is enabled, emitting a diagnostic only once
2835 // per sequence that cannot be decoded.
2836 while (C != '/' && C != '\0') {
2837 if (isASCII(C)) {
2838 UnicodeDecodingAlreadyDiagnosed = false;
2839 C = *CurPtr++;
2840 continue;
2842 MultiByteUTF8:
2843 // CurPtr is 1 code unit past C, so to decode
2844 // the codepoint, we need to read from the previous position.
2845 unsigned Length = llvm::getUTF8SequenceSize(
2846 (const llvm::UTF8 *)CurPtr - 1, (const llvm::UTF8 *)BufferEnd);
2847 if (Length == 0) {
2848 if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode())
2849 Diag(CurPtr - 1, diag::warn_invalid_utf8_in_comment);
2850 UnicodeDecodingAlreadyDiagnosed = true;
2851 } else {
2852 UnicodeDecodingAlreadyDiagnosed = false;
2853 CurPtr += Length - 1;
2855 C = *CurPtr++;
2858 if (C == '/') {
2859 FoundSlash:
2860 if (CurPtr[-2] == '*') // We found the final */. We're done!
2861 break;
2863 if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) {
2864 if (isEndOfBlockCommentWithEscapedNewLine(CurPtr - 2, this,
2865 LangOpts.Trigraphs)) {
2866 // We found the final */, though it had an escaped newline between the
2867 // * and /. We're done!
2868 break;
2871 if (CurPtr[0] == '*' && CurPtr[1] != '/') {
2872 // If this is a /* inside of the comment, emit a warning. Don't do this
2873 // if this is a /*/, which will end the comment. This misses cases with
2874 // embedded escaped newlines, but oh well.
2875 if (!isLexingRawMode())
2876 Diag(CurPtr-1, diag::warn_nested_block_comment);
2878 } else if (C == 0 && CurPtr == BufferEnd+1) {
2879 if (!isLexingRawMode())
2880 Diag(BufferPtr, diag::err_unterminated_block_comment);
2881 // Note: the user probably forgot a */. We could continue immediately
2882 // after the /*, but this would involve lexing a lot of what really is the
2883 // comment, which surely would confuse the parser.
2884 --CurPtr;
2886 // KeepWhitespaceMode should return this broken comment as a token. Since
2887 // it isn't a well formed comment, just return it as an 'unknown' token.
2888 if (isKeepWhitespaceMode()) {
2889 FormTokenWithChars(Result, CurPtr, tok::unknown);
2890 return true;
2893 BufferPtr = CurPtr;
2894 return false;
2895 } else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
2896 PP->CodeCompleteNaturalLanguage();
2897 cutOffLexing();
2898 return false;
2901 C = *CurPtr++;
2904 // Notify comment handlers about the comment unless we're in a #if 0 block.
2905 if (PP && !isLexingRawMode() &&
2906 PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
2907 getSourceLocation(CurPtr)))) {
2908 BufferPtr = CurPtr;
2909 return true; // A token has to be returned.
2912 // If we are returning comments as tokens, return this comment as a token.
2913 if (inKeepCommentMode()) {
2914 FormTokenWithChars(Result, CurPtr, tok::comment);
2915 return true;
2918 // It is common for the tokens immediately after a /**/ comment to be
2919 // whitespace. Instead of going through the big switch, handle it
2920 // efficiently now. This is safe even in KeepWhitespaceMode because we would
2921 // have already returned above with the comment as a token.
2922 if (isHorizontalWhitespace(*CurPtr)) {
2923 SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine);
2924 return false;
2927 // Otherwise, just return so that the next character will be lexed as a token.
2928 BufferPtr = CurPtr;
2929 Result.setFlag(Token::LeadingSpace);
2930 return false;
2933 //===----------------------------------------------------------------------===//
2934 // Primary Lexing Entry Points
2935 //===----------------------------------------------------------------------===//
2937 /// ReadToEndOfLine - Read the rest of the current preprocessor line as an
2938 /// uninterpreted string. This switches the lexer out of directive mode.
2939 void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) {
2940 assert(ParsingPreprocessorDirective && ParsingFilename == false &&
2941 "Must be in a preprocessing directive!");
2942 Token Tmp;
2943 Tmp.startToken();
2945 // CurPtr - Cache BufferPtr in an automatic variable.
2946 const char *CurPtr = BufferPtr;
2947 while (true) {
2948 char Char = getAndAdvanceChar(CurPtr, Tmp);
2949 switch (Char) {
2950 default:
2951 if (Result)
2952 Result->push_back(Char);
2953 break;
2954 case 0: // Null.
2955 // Found end of file?
2956 if (CurPtr-1 != BufferEnd) {
2957 if (isCodeCompletionPoint(CurPtr-1)) {
2958 PP->CodeCompleteNaturalLanguage();
2959 cutOffLexing();
2960 return;
2963 // Nope, normal character, continue.
2964 if (Result)
2965 Result->push_back(Char);
2966 break;
2968 // FALL THROUGH.
2969 [[fallthrough]];
2970 case '\r':
2971 case '\n':
2972 // Okay, we found the end of the line. First, back up past the \0, \r, \n.
2973 assert(CurPtr[-1] == Char && "Trigraphs for newline?");
2974 BufferPtr = CurPtr-1;
2976 // Next, lex the character, which should handle the EOD transition.
2977 Lex(Tmp);
2978 if (Tmp.is(tok::code_completion)) {
2979 if (PP)
2980 PP->CodeCompleteNaturalLanguage();
2981 Lex(Tmp);
2983 assert(Tmp.is(tok::eod) && "Unexpected token!");
2985 // Finally, we're done;
2986 return;
2991 /// LexEndOfFile - CurPtr points to the end of this file. Handle this
2992 /// condition, reporting diagnostics and handling other edge cases as required.
2993 /// This returns true if Result contains a token, false if PP.Lex should be
2994 /// called again.
2995 bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) {
2996 // If we hit the end of the file while parsing a preprocessor directive,
2997 // end the preprocessor directive first. The next token returned will
2998 // then be the end of file.
2999 if (ParsingPreprocessorDirective) {
3000 // Done parsing the "line".
3001 ParsingPreprocessorDirective = false;
3002 // Update the location of token as well as BufferPtr.
3003 FormTokenWithChars(Result, CurPtr, tok::eod);
3005 // Restore comment saving mode, in case it was disabled for directive.
3006 if (PP)
3007 resetExtendedTokenMode();
3008 return true; // Have a token.
3011 // If we are in raw mode, return this event as an EOF token. Let the caller
3012 // that put us in raw mode handle the event.
3013 if (isLexingRawMode()) {
3014 Result.startToken();
3015 BufferPtr = BufferEnd;
3016 FormTokenWithChars(Result, BufferEnd, tok::eof);
3017 return true;
3020 if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) {
3021 PP->setRecordedPreambleConditionalStack(ConditionalStack);
3022 // If the preamble cuts off the end of a header guard, consider it guarded.
3023 // The guard is valid for the preamble content itself, and for tools the
3024 // most useful answer is "yes, this file has a header guard".
3025 if (!ConditionalStack.empty())
3026 MIOpt.ExitTopLevelConditional();
3027 ConditionalStack.clear();
3030 // Issue diagnostics for unterminated #if and missing newline.
3032 // If we are in a #if directive, emit an error.
3033 while (!ConditionalStack.empty()) {
3034 if (PP->getCodeCompletionFileLoc() != FileLoc)
3035 PP->Diag(ConditionalStack.back().IfLoc,
3036 diag::err_pp_unterminated_conditional);
3037 ConditionalStack.pop_back();
3040 // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue
3041 // a pedwarn.
3042 if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) {
3043 DiagnosticsEngine &Diags = PP->getDiagnostics();
3044 SourceLocation EndLoc = getSourceLocation(BufferEnd);
3045 unsigned DiagID;
3047 if (LangOpts.CPlusPlus11) {
3048 // C++11 [lex.phases] 2.2 p2
3049 // Prefer the C++98 pedantic compatibility warning over the generic,
3050 // non-extension, user-requested "missing newline at EOF" warning.
3051 if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) {
3052 DiagID = diag::warn_cxx98_compat_no_newline_eof;
3053 } else {
3054 DiagID = diag::warn_no_newline_eof;
3056 } else {
3057 DiagID = diag::ext_no_newline_eof;
3060 Diag(BufferEnd, DiagID)
3061 << FixItHint::CreateInsertion(EndLoc, "\n");
3064 BufferPtr = CurPtr;
3066 // Finally, let the preprocessor handle this.
3067 return PP->HandleEndOfFile(Result, isPragmaLexer());
3070 /// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from
3071 /// the specified lexer will return a tok::l_paren token, 0 if it is something
3072 /// else and 2 if there are no more tokens in the buffer controlled by the
3073 /// lexer.
3074 unsigned Lexer::isNextPPTokenLParen() {
3075 assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?");
3077 if (isDependencyDirectivesLexer()) {
3078 if (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size())
3079 return 2;
3080 return DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is(
3081 tok::l_paren);
3084 // Switch to 'skipping' mode. This will ensure that we can lex a token
3085 // without emitting diagnostics, disables macro expansion, and will cause EOF
3086 // to return an EOF token instead of popping the include stack.
3087 LexingRawMode = true;
3089 // Save state that can be changed while lexing so that we can restore it.
3090 const char *TmpBufferPtr = BufferPtr;
3091 bool inPPDirectiveMode = ParsingPreprocessorDirective;
3092 bool atStartOfLine = IsAtStartOfLine;
3093 bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
3094 bool leadingSpace = HasLeadingSpace;
3096 Token Tok;
3097 Lex(Tok);
3099 // Restore state that may have changed.
3100 BufferPtr = TmpBufferPtr;
3101 ParsingPreprocessorDirective = inPPDirectiveMode;
3102 HasLeadingSpace = leadingSpace;
3103 IsAtStartOfLine = atStartOfLine;
3104 IsAtPhysicalStartOfLine = atPhysicalStartOfLine;
3106 // Restore the lexer back to non-skipping mode.
3107 LexingRawMode = false;
3109 if (Tok.is(tok::eof))
3110 return 2;
3111 return Tok.is(tok::l_paren);
3114 /// Find the end of a version control conflict marker.
3115 static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd,
3116 ConflictMarkerKind CMK) {
3117 const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>";
3118 size_t TermLen = CMK == CMK_Perforce ? 5 : 7;
3119 auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(TermLen);
3120 size_t Pos = RestOfBuffer.find(Terminator);
3121 while (Pos != StringRef::npos) {
3122 // Must occur at start of line.
3123 if (Pos == 0 ||
3124 (RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) {
3125 RestOfBuffer = RestOfBuffer.substr(Pos+TermLen);
3126 Pos = RestOfBuffer.find(Terminator);
3127 continue;
3129 return RestOfBuffer.data()+Pos;
3131 return nullptr;
3134 /// IsStartOfConflictMarker - If the specified pointer is the start of a version
3135 /// control conflict marker like '<<<<<<<', recognize it as such, emit an error
3136 /// and recover nicely. This returns true if it is a conflict marker and false
3137 /// if not.
3138 bool Lexer::IsStartOfConflictMarker(const char *CurPtr) {
3139 // Only a conflict marker if it starts at the beginning of a line.
3140 if (CurPtr != BufferStart &&
3141 CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
3142 return false;
3144 // Check to see if we have <<<<<<< or >>>>.
3145 if (!StringRef(CurPtr, BufferEnd - CurPtr).startswith("<<<<<<<") &&
3146 !StringRef(CurPtr, BufferEnd - CurPtr).startswith(">>>> "))
3147 return false;
3149 // If we have a situation where we don't care about conflict markers, ignore
3150 // it.
3151 if (CurrentConflictMarkerState || isLexingRawMode())
3152 return false;
3154 ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce;
3156 // Check to see if there is an ending marker somewhere in the buffer at the
3157 // start of a line to terminate this conflict marker.
3158 if (FindConflictEnd(CurPtr, BufferEnd, Kind)) {
3159 // We found a match. We are really in a conflict marker.
3160 // Diagnose this, and ignore to the end of line.
3161 Diag(CurPtr, diag::err_conflict_marker);
3162 CurrentConflictMarkerState = Kind;
3164 // Skip ahead to the end of line. We know this exists because the
3165 // end-of-conflict marker starts with \r or \n.
3166 while (*CurPtr != '\r' && *CurPtr != '\n') {
3167 assert(CurPtr != BufferEnd && "Didn't find end of line");
3168 ++CurPtr;
3170 BufferPtr = CurPtr;
3171 return true;
3174 // No end of conflict marker found.
3175 return false;
3178 /// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if
3179 /// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it
3180 /// is the end of a conflict marker. Handle it by ignoring up until the end of
3181 /// the line. This returns true if it is a conflict marker and false if not.
3182 bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) {
3183 // Only a conflict marker if it starts at the beginning of a line.
3184 if (CurPtr != BufferStart &&
3185 CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
3186 return false;
3188 // If we have a situation where we don't care about conflict markers, ignore
3189 // it.
3190 if (!CurrentConflictMarkerState || isLexingRawMode())
3191 return false;
3193 // Check to see if we have the marker (4 characters in a row).
3194 for (unsigned i = 1; i != 4; ++i)
3195 if (CurPtr[i] != CurPtr[0])
3196 return false;
3198 // If we do have it, search for the end of the conflict marker. This could
3199 // fail if it got skipped with a '#if 0' or something. Note that CurPtr might
3200 // be the end of conflict marker.
3201 if (const char *End = FindConflictEnd(CurPtr, BufferEnd,
3202 CurrentConflictMarkerState)) {
3203 CurPtr = End;
3205 // Skip ahead to the end of line.
3206 while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n')
3207 ++CurPtr;
3209 BufferPtr = CurPtr;
3211 // No longer in the conflict marker.
3212 CurrentConflictMarkerState = CMK_None;
3213 return true;
3216 return false;
3219 static const char *findPlaceholderEnd(const char *CurPtr,
3220 const char *BufferEnd) {
3221 if (CurPtr == BufferEnd)
3222 return nullptr;
3223 BufferEnd -= 1; // Scan until the second last character.
3224 for (; CurPtr != BufferEnd; ++CurPtr) {
3225 if (CurPtr[0] == '#' && CurPtr[1] == '>')
3226 return CurPtr + 2;
3228 return nullptr;
3231 bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) {
3232 assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!");
3233 if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode)
3234 return false;
3235 const char *End = findPlaceholderEnd(CurPtr + 1, BufferEnd);
3236 if (!End)
3237 return false;
3238 const char *Start = CurPtr - 1;
3239 if (!LangOpts.AllowEditorPlaceholders)
3240 Diag(Start, diag::err_placeholder_in_source);
3241 Result.startToken();
3242 FormTokenWithChars(Result, End, tok::raw_identifier);
3243 Result.setRawIdentifierData(Start);
3244 PP->LookUpIdentifierInfo(Result);
3245 Result.setFlag(Token::IsEditorPlaceholder);
3246 BufferPtr = End;
3247 return true;
3250 bool Lexer::isCodeCompletionPoint(const char *CurPtr) const {
3251 if (PP && PP->isCodeCompletionEnabled()) {
3252 SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart);
3253 return Loc == PP->getCodeCompletionLoc();
3256 return false;
3259 std::optional<uint32_t> Lexer::tryReadNumericUCN(const char *&StartPtr,
3260 const char *SlashLoc,
3261 Token *Result) {
3262 unsigned CharSize;
3263 char Kind = getCharAndSize(StartPtr, CharSize);
3264 assert((Kind == 'u' || Kind == 'U') && "expected a UCN");
3266 unsigned NumHexDigits;
3267 if (Kind == 'u')
3268 NumHexDigits = 4;
3269 else if (Kind == 'U')
3270 NumHexDigits = 8;
3272 bool Delimited = false;
3273 bool FoundEndDelimiter = false;
3274 unsigned Count = 0;
3275 bool Diagnose = Result && !isLexingRawMode();
3277 if (!LangOpts.CPlusPlus && !LangOpts.C99) {
3278 if (Diagnose)
3279 Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89);
3280 return std::nullopt;
3283 const char *CurPtr = StartPtr + CharSize;
3284 const char *KindLoc = &CurPtr[-1];
3286 uint32_t CodePoint = 0;
3287 while (Count != NumHexDigits || Delimited) {
3288 char C = getCharAndSize(CurPtr, CharSize);
3289 if (!Delimited && Count == 0 && C == '{') {
3290 Delimited = true;
3291 CurPtr += CharSize;
3292 continue;
3295 if (Delimited && C == '}') {
3296 CurPtr += CharSize;
3297 FoundEndDelimiter = true;
3298 break;
3301 unsigned Value = llvm::hexDigitValue(C);
3302 if (Value == -1U) {
3303 if (!Delimited)
3304 break;
3305 if (Diagnose)
3306 Diag(SlashLoc, diag::warn_delimited_ucn_incomplete)
3307 << StringRef(KindLoc, 1);
3308 return std::nullopt;
3311 if (CodePoint & 0xF000'0000) {
3312 if (Diagnose)
3313 Diag(KindLoc, diag::err_escape_too_large) << 0;
3314 return std::nullopt;
3317 CodePoint <<= 4;
3318 CodePoint |= Value;
3319 CurPtr += CharSize;
3320 Count++;
3323 if (Count == 0) {
3324 if (Diagnose)
3325 Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty
3326 : diag::warn_ucn_escape_no_digits)
3327 << StringRef(KindLoc, 1);
3328 return std::nullopt;
3331 if (Delimited && Kind == 'U') {
3332 if (Diagnose)
3333 Diag(SlashLoc, diag::err_hex_escape_no_digits) << StringRef(KindLoc, 1);
3334 return std::nullopt;
3337 if (!Delimited && Count != NumHexDigits) {
3338 if (Diagnose) {
3339 Diag(SlashLoc, diag::warn_ucn_escape_incomplete);
3340 // If the user wrote \U1234, suggest a fixit to \u.
3341 if (Count == 4 && NumHexDigits == 8) {
3342 CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1);
3343 Diag(KindLoc, diag::note_ucn_four_not_eight)
3344 << FixItHint::CreateReplacement(URange, "u");
3347 return std::nullopt;
3350 if (Delimited && PP) {
3351 Diag(SlashLoc, PP->getLangOpts().CPlusPlus2b
3352 ? diag::warn_cxx2b_delimited_escape_sequence
3353 : diag::ext_delimited_escape_sequence)
3354 << /*delimited*/ 0 << (PP->getLangOpts().CPlusPlus ? 1 : 0);
3357 if (Result) {
3358 Result->setFlag(Token::HasUCN);
3359 // If the UCN contains either a trigraph or a line splicing,
3360 // we need to call getAndAdvanceChar again to set the appropriate flags
3361 // on Result.
3362 if (CurPtr - StartPtr == (ptrdiff_t)(Count + 1 + (Delimited ? 2 : 0)))
3363 StartPtr = CurPtr;
3364 else
3365 while (StartPtr != CurPtr)
3366 (void)getAndAdvanceChar(StartPtr, *Result);
3367 } else {
3368 StartPtr = CurPtr;
3370 return CodePoint;
3373 std::optional<uint32_t> Lexer::tryReadNamedUCN(const char *&StartPtr,
3374 const char *SlashLoc,
3375 Token *Result) {
3376 unsigned CharSize;
3377 bool Diagnose = Result && !isLexingRawMode();
3379 char C = getCharAndSize(StartPtr, CharSize);
3380 assert(C == 'N' && "expected \\N{...}");
3382 const char *CurPtr = StartPtr + CharSize;
3383 const char *KindLoc = &CurPtr[-1];
3385 C = getCharAndSize(CurPtr, CharSize);
3386 if (C != '{') {
3387 if (Diagnose)
3388 Diag(SlashLoc, diag::warn_ucn_escape_incomplete);
3389 return std::nullopt;
3391 CurPtr += CharSize;
3392 const char *StartName = CurPtr;
3393 bool FoundEndDelimiter = false;
3394 llvm::SmallVector<char, 30> Buffer;
3395 while (C) {
3396 C = getCharAndSize(CurPtr, CharSize);
3397 CurPtr += CharSize;
3398 if (C == '}') {
3399 FoundEndDelimiter = true;
3400 break;
3403 if (isVerticalWhitespace(C))
3404 break;
3405 Buffer.push_back(C);
3408 if (!FoundEndDelimiter || Buffer.empty()) {
3409 if (Diagnose)
3410 Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty
3411 : diag::warn_delimited_ucn_incomplete)
3412 << StringRef(KindLoc, 1);
3413 return std::nullopt;
3416 StringRef Name(Buffer.data(), Buffer.size());
3417 std::optional<char32_t> Match =
3418 llvm::sys::unicode::nameToCodepointStrict(Name);
3419 std::optional<llvm::sys::unicode::LooseMatchingResult> LooseMatch;
3420 if (!Match) {
3421 LooseMatch = llvm::sys::unicode::nameToCodepointLooseMatching(Name);
3422 if (Diagnose) {
3423 Diag(StartName, diag::err_invalid_ucn_name)
3424 << StringRef(Buffer.data(), Buffer.size())
3425 << makeCharRange(*this, StartName, CurPtr - CharSize);
3426 if (LooseMatch) {
3427 Diag(StartName, diag::note_invalid_ucn_name_loose_matching)
3428 << FixItHint::CreateReplacement(
3429 makeCharRange(*this, StartName, CurPtr - CharSize),
3430 LooseMatch->Name);
3433 // We do not offer misspelled character names suggestions here
3434 // as the set of what would be a valid suggestion depends on context,
3435 // and we should not make invalid suggestions.
3438 if (Diagnose && Match)
3439 Diag(SlashLoc, PP->getLangOpts().CPlusPlus2b
3440 ? diag::warn_cxx2b_delimited_escape_sequence
3441 : diag::ext_delimited_escape_sequence)
3442 << /*named*/ 1 << (PP->getLangOpts().CPlusPlus ? 1 : 0);
3444 // If no diagnostic has been emitted yet, likely because we are doing a
3445 // tentative lexing, we do not want to recover here to make sure the token
3446 // will not be incorrectly considered valid. This function will be called
3447 // again and a diagnostic emitted then.
3448 if (LooseMatch && Diagnose)
3449 Match = LooseMatch->CodePoint;
3451 if (Result) {
3452 Result->setFlag(Token::HasUCN);
3453 // If the UCN contains either a trigraph or a line splicing,
3454 // we need to call getAndAdvanceChar again to set the appropriate flags
3455 // on Result.
3456 if (CurPtr - StartPtr == (ptrdiff_t)(Buffer.size() + 3))
3457 StartPtr = CurPtr;
3458 else
3459 while (StartPtr != CurPtr)
3460 (void)getAndAdvanceChar(StartPtr, *Result);
3461 } else {
3462 StartPtr = CurPtr;
3464 return Match ? std::optional<uint32_t>(*Match) : std::nullopt;
3467 uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc,
3468 Token *Result) {
3470 unsigned CharSize;
3471 std::optional<uint32_t> CodePointOpt;
3472 char Kind = getCharAndSize(StartPtr, CharSize);
3473 if (Kind == 'u' || Kind == 'U')
3474 CodePointOpt = tryReadNumericUCN(StartPtr, SlashLoc, Result);
3475 else if (Kind == 'N')
3476 CodePointOpt = tryReadNamedUCN(StartPtr, SlashLoc, Result);
3478 if (!CodePointOpt)
3479 return 0;
3481 uint32_t CodePoint = *CodePointOpt;
3483 // Don't apply C family restrictions to UCNs in assembly mode
3484 if (LangOpts.AsmPreprocessor)
3485 return CodePoint;
3487 // C99 6.4.3p2: A universal character name shall not specify a character whose
3488 // short identifier is less than 00A0 other than 0024 ($), 0040 (@), or
3489 // 0060 (`), nor one in the range D800 through DFFF inclusive.)
3490 // C++11 [lex.charset]p2: If the hexadecimal value for a
3491 // universal-character-name corresponds to a surrogate code point (in the
3492 // range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally,
3493 // if the hexadecimal value for a universal-character-name outside the
3494 // c-char-sequence, s-char-sequence, or r-char-sequence of a character or
3495 // string literal corresponds to a control character (in either of the
3496 // ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the
3497 // basic source character set, the program is ill-formed.
3498 if (CodePoint < 0xA0) {
3499 if (CodePoint == 0x24 || CodePoint == 0x40 || CodePoint == 0x60)
3500 return CodePoint;
3502 // We don't use isLexingRawMode() here because we need to warn about bad
3503 // UCNs even when skipping preprocessing tokens in a #if block.
3504 if (Result && PP) {
3505 if (CodePoint < 0x20 || CodePoint >= 0x7F)
3506 Diag(BufferPtr, diag::err_ucn_control_character);
3507 else {
3508 char C = static_cast<char>(CodePoint);
3509 Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1);
3513 return 0;
3514 } else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) {
3515 // C++03 allows UCNs representing surrogate characters. C99 and C++11 don't.
3516 // We don't use isLexingRawMode() here because we need to diagnose bad
3517 // UCNs even when skipping preprocessing tokens in a #if block.
3518 if (Result && PP) {
3519 if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11)
3520 Diag(BufferPtr, diag::warn_ucn_escape_surrogate);
3521 else
3522 Diag(BufferPtr, diag::err_ucn_escape_invalid);
3524 return 0;
3527 return CodePoint;
3530 bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C,
3531 const char *CurPtr) {
3532 if (!isLexingRawMode() && !PP->isPreprocessedOutput() &&
3533 isUnicodeWhitespace(C)) {
3534 Diag(BufferPtr, diag::ext_unicode_whitespace)
3535 << makeCharRange(*this, BufferPtr, CurPtr);
3537 Result.setFlag(Token::LeadingSpace);
3538 return true;
3540 return false;
3543 void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) {
3544 IsAtStartOfLine = Result.isAtStartOfLine();
3545 HasLeadingSpace = Result.hasLeadingSpace();
3546 HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro();
3547 // Note that this doesn't affect IsAtPhysicalStartOfLine.
3550 bool Lexer::Lex(Token &Result) {
3551 assert(!isDependencyDirectivesLexer());
3553 // Start a new token.
3554 Result.startToken();
3556 // Set up misc whitespace flags for LexTokenInternal.
3557 if (IsAtStartOfLine) {
3558 Result.setFlag(Token::StartOfLine);
3559 IsAtStartOfLine = false;
3562 if (HasLeadingSpace) {
3563 Result.setFlag(Token::LeadingSpace);
3564 HasLeadingSpace = false;
3567 if (HasLeadingEmptyMacro) {
3568 Result.setFlag(Token::LeadingEmptyMacro);
3569 HasLeadingEmptyMacro = false;
3572 bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
3573 IsAtPhysicalStartOfLine = false;
3574 bool isRawLex = isLexingRawMode();
3575 (void) isRawLex;
3576 bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine);
3577 // (After the LexTokenInternal call, the lexer might be destroyed.)
3578 assert((returnedToken || !isRawLex) && "Raw lex must succeed");
3579 return returnedToken;
3582 /// LexTokenInternal - This implements a simple C family lexer. It is an
3583 /// extremely performance critical piece of code. This assumes that the buffer
3584 /// has a null character at the end of the file. This returns a preprocessing
3585 /// token, not a normal token, as such, it is an internal interface. It assumes
3586 /// that the Flags of result have been cleared before calling this.
3587 bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) {
3588 LexStart:
3589 assert(!Result.needsCleaning() && "Result needs cleaning");
3590 assert(!Result.hasPtrData() && "Result has not been reset");
3592 // CurPtr - Cache BufferPtr in an automatic variable.
3593 const char *CurPtr = BufferPtr;
3595 // Small amounts of horizontal whitespace is very common between tokens.
3596 if (isHorizontalWhitespace(*CurPtr)) {
3597 do {
3598 ++CurPtr;
3599 } while (isHorizontalWhitespace(*CurPtr));
3601 // If we are keeping whitespace and other tokens, just return what we just
3602 // skipped. The next lexer invocation will return the token after the
3603 // whitespace.
3604 if (isKeepWhitespaceMode()) {
3605 FormTokenWithChars(Result, CurPtr, tok::unknown);
3606 // FIXME: The next token will not have LeadingSpace set.
3607 return true;
3610 BufferPtr = CurPtr;
3611 Result.setFlag(Token::LeadingSpace);
3614 unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below.
3616 // Read a character, advancing over it.
3617 char Char = getAndAdvanceChar(CurPtr, Result);
3618 tok::TokenKind Kind;
3620 if (!isVerticalWhitespace(Char))
3621 NewLinePtr = nullptr;
3623 switch (Char) {
3624 case 0: // Null.
3625 // Found end of file?
3626 if (CurPtr-1 == BufferEnd)
3627 return LexEndOfFile(Result, CurPtr-1);
3629 // Check if we are performing code completion.
3630 if (isCodeCompletionPoint(CurPtr-1)) {
3631 // Return the code-completion token.
3632 Result.startToken();
3633 FormTokenWithChars(Result, CurPtr, tok::code_completion);
3634 return true;
3637 if (!isLexingRawMode())
3638 Diag(CurPtr-1, diag::null_in_file);
3639 Result.setFlag(Token::LeadingSpace);
3640 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3641 return true; // KeepWhitespaceMode
3643 // We know the lexer hasn't changed, so just try again with this lexer.
3644 // (We manually eliminate the tail call to avoid recursion.)
3645 goto LexNextToken;
3647 case 26: // DOS & CP/M EOF: "^Z".
3648 // If we're in Microsoft extensions mode, treat this as end of file.
3649 if (LangOpts.MicrosoftExt) {
3650 if (!isLexingRawMode())
3651 Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft);
3652 return LexEndOfFile(Result, CurPtr-1);
3655 // If Microsoft extensions are disabled, this is just random garbage.
3656 Kind = tok::unknown;
3657 break;
3659 case '\r':
3660 if (CurPtr[0] == '\n')
3661 (void)getAndAdvanceChar(CurPtr, Result);
3662 [[fallthrough]];
3663 case '\n':
3664 // If we are inside a preprocessor directive and we see the end of line,
3665 // we know we are done with the directive, so return an EOD token.
3666 if (ParsingPreprocessorDirective) {
3667 // Done parsing the "line".
3668 ParsingPreprocessorDirective = false;
3670 // Restore comment saving mode, in case it was disabled for directive.
3671 if (PP)
3672 resetExtendedTokenMode();
3674 // Since we consumed a newline, we are back at the start of a line.
3675 IsAtStartOfLine = true;
3676 IsAtPhysicalStartOfLine = true;
3677 NewLinePtr = CurPtr - 1;
3679 Kind = tok::eod;
3680 break;
3683 // No leading whitespace seen so far.
3684 Result.clearFlag(Token::LeadingSpace);
3686 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3687 return true; // KeepWhitespaceMode
3689 // We only saw whitespace, so just try again with this lexer.
3690 // (We manually eliminate the tail call to avoid recursion.)
3691 goto LexNextToken;
3692 case ' ':
3693 case '\t':
3694 case '\f':
3695 case '\v':
3696 SkipHorizontalWhitespace:
3697 Result.setFlag(Token::LeadingSpace);
3698 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3699 return true; // KeepWhitespaceMode
3701 SkipIgnoredUnits:
3702 CurPtr = BufferPtr;
3704 // If the next token is obviously a // or /* */ comment, skip it efficiently
3705 // too (without going through the big switch stmt).
3706 if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() &&
3707 LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) {
3708 if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
3709 return true; // There is a token to return.
3710 goto SkipIgnoredUnits;
3711 } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) {
3712 if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
3713 return true; // There is a token to return.
3714 goto SkipIgnoredUnits;
3715 } else if (isHorizontalWhitespace(*CurPtr)) {
3716 goto SkipHorizontalWhitespace;
3718 // We only saw whitespace, so just try again with this lexer.
3719 // (We manually eliminate the tail call to avoid recursion.)
3720 goto LexNextToken;
3722 // C99 6.4.4.1: Integer Constants.
3723 // C99 6.4.4.2: Floating Constants.
3724 case '0': case '1': case '2': case '3': case '4':
3725 case '5': case '6': case '7': case '8': case '9':
3726 // Notify MIOpt that we read a non-whitespace/non-comment token.
3727 MIOpt.ReadToken();
3728 return LexNumericConstant(Result, CurPtr);
3730 // Identifier (e.g., uber), or
3731 // UTF-8 (C2x/C++17) or UTF-16 (C11/C++11) character literal, or
3732 // UTF-8 or UTF-16 string literal (C11/C++11).
3733 case 'u':
3734 // Notify MIOpt that we read a non-whitespace/non-comment token.
3735 MIOpt.ReadToken();
3737 if (LangOpts.CPlusPlus11 || LangOpts.C11) {
3738 Char = getCharAndSize(CurPtr, SizeTmp);
3740 // UTF-16 string literal
3741 if (Char == '"')
3742 return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3743 tok::utf16_string_literal);
3745 // UTF-16 character constant
3746 if (Char == '\'')
3747 return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3748 tok::utf16_char_constant);
3750 // UTF-16 raw string literal
3751 if (Char == 'R' && LangOpts.CPlusPlus11 &&
3752 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3753 return LexRawStringLiteral(Result,
3754 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3755 SizeTmp2, Result),
3756 tok::utf16_string_literal);
3758 if (Char == '8') {
3759 char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2);
3761 // UTF-8 string literal
3762 if (Char2 == '"')
3763 return LexStringLiteral(Result,
3764 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3765 SizeTmp2, Result),
3766 tok::utf8_string_literal);
3767 if (Char2 == '\'' && (LangOpts.CPlusPlus17 || LangOpts.C2x))
3768 return LexCharConstant(
3769 Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3770 SizeTmp2, Result),
3771 tok::utf8_char_constant);
3773 if (Char2 == 'R' && LangOpts.CPlusPlus11) {
3774 unsigned SizeTmp3;
3775 char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
3776 // UTF-8 raw string literal
3777 if (Char3 == '"') {
3778 return LexRawStringLiteral(Result,
3779 ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3780 SizeTmp2, Result),
3781 SizeTmp3, Result),
3782 tok::utf8_string_literal);
3788 // treat u like the start of an identifier.
3789 return LexIdentifierContinue(Result, CurPtr);
3791 case 'U': // Identifier (e.g. Uber) or C11/C++11 UTF-32 string literal
3792 // Notify MIOpt that we read a non-whitespace/non-comment token.
3793 MIOpt.ReadToken();
3795 if (LangOpts.CPlusPlus11 || LangOpts.C11) {
3796 Char = getCharAndSize(CurPtr, SizeTmp);
3798 // UTF-32 string literal
3799 if (Char == '"')
3800 return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3801 tok::utf32_string_literal);
3803 // UTF-32 character constant
3804 if (Char == '\'')
3805 return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3806 tok::utf32_char_constant);
3808 // UTF-32 raw string literal
3809 if (Char == 'R' && LangOpts.CPlusPlus11 &&
3810 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3811 return LexRawStringLiteral(Result,
3812 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3813 SizeTmp2, Result),
3814 tok::utf32_string_literal);
3817 // treat U like the start of an identifier.
3818 return LexIdentifierContinue(Result, CurPtr);
3820 case 'R': // Identifier or C++0x raw string literal
3821 // Notify MIOpt that we read a non-whitespace/non-comment token.
3822 MIOpt.ReadToken();
3824 if (LangOpts.CPlusPlus11) {
3825 Char = getCharAndSize(CurPtr, SizeTmp);
3827 if (Char == '"')
3828 return LexRawStringLiteral(Result,
3829 ConsumeChar(CurPtr, SizeTmp, Result),
3830 tok::string_literal);
3833 // treat R like the start of an identifier.
3834 return LexIdentifierContinue(Result, CurPtr);
3836 case 'L': // Identifier (Loony) or wide literal (L'x' or L"xyz").
3837 // Notify MIOpt that we read a non-whitespace/non-comment token.
3838 MIOpt.ReadToken();
3839 Char = getCharAndSize(CurPtr, SizeTmp);
3841 // Wide string literal.
3842 if (Char == '"')
3843 return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3844 tok::wide_string_literal);
3846 // Wide raw string literal.
3847 if (LangOpts.CPlusPlus11 && Char == 'R' &&
3848 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3849 return LexRawStringLiteral(Result,
3850 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3851 SizeTmp2, Result),
3852 tok::wide_string_literal);
3854 // Wide character constant.
3855 if (Char == '\'')
3856 return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3857 tok::wide_char_constant);
3858 // FALL THROUGH, treating L like the start of an identifier.
3859 [[fallthrough]];
3861 // C99 6.4.2: Identifiers.
3862 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
3863 case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N':
3864 case 'O': case 'P': case 'Q': /*'R'*/case 'S': case 'T': /*'U'*/
3865 case 'V': case 'W': case 'X': case 'Y': case 'Z':
3866 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
3867 case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
3868 case 'o': case 'p': case 'q': case 'r': case 's': case 't': /*'u'*/
3869 case 'v': case 'w': case 'x': case 'y': case 'z':
3870 case '_':
3871 // Notify MIOpt that we read a non-whitespace/non-comment token.
3872 MIOpt.ReadToken();
3873 return LexIdentifierContinue(Result, CurPtr);
3875 case '$': // $ in identifiers.
3876 if (LangOpts.DollarIdents) {
3877 if (!isLexingRawMode())
3878 Diag(CurPtr-1, diag::ext_dollar_in_identifier);
3879 // Notify MIOpt that we read a non-whitespace/non-comment token.
3880 MIOpt.ReadToken();
3881 return LexIdentifierContinue(Result, CurPtr);
3884 Kind = tok::unknown;
3885 break;
3887 // C99 6.4.4: Character Constants.
3888 case '\'':
3889 // Notify MIOpt that we read a non-whitespace/non-comment token.
3890 MIOpt.ReadToken();
3891 return LexCharConstant(Result, CurPtr, tok::char_constant);
3893 // C99 6.4.5: String Literals.
3894 case '"':
3895 // Notify MIOpt that we read a non-whitespace/non-comment token.
3896 MIOpt.ReadToken();
3897 return LexStringLiteral(Result, CurPtr,
3898 ParsingFilename ? tok::header_name
3899 : tok::string_literal);
3901 // C99 6.4.6: Punctuators.
3902 case '?':
3903 Kind = tok::question;
3904 break;
3905 case '[':
3906 Kind = tok::l_square;
3907 break;
3908 case ']':
3909 Kind = tok::r_square;
3910 break;
3911 case '(':
3912 Kind = tok::l_paren;
3913 break;
3914 case ')':
3915 Kind = tok::r_paren;
3916 break;
3917 case '{':
3918 Kind = tok::l_brace;
3919 break;
3920 case '}':
3921 Kind = tok::r_brace;
3922 break;
3923 case '.':
3924 Char = getCharAndSize(CurPtr, SizeTmp);
3925 if (Char >= '0' && Char <= '9') {
3926 // Notify MIOpt that we read a non-whitespace/non-comment token.
3927 MIOpt.ReadToken();
3929 return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result));
3930 } else if (LangOpts.CPlusPlus && Char == '*') {
3931 Kind = tok::periodstar;
3932 CurPtr += SizeTmp;
3933 } else if (Char == '.' &&
3934 getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') {
3935 Kind = tok::ellipsis;
3936 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3937 SizeTmp2, Result);
3938 } else {
3939 Kind = tok::period;
3941 break;
3942 case '&':
3943 Char = getCharAndSize(CurPtr, SizeTmp);
3944 if (Char == '&') {
3945 Kind = tok::ampamp;
3946 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3947 } else if (Char == '=') {
3948 Kind = tok::ampequal;
3949 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3950 } else {
3951 Kind = tok::amp;
3953 break;
3954 case '*':
3955 if (getCharAndSize(CurPtr, SizeTmp) == '=') {
3956 Kind = tok::starequal;
3957 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3958 } else {
3959 Kind = tok::star;
3961 break;
3962 case '+':
3963 Char = getCharAndSize(CurPtr, SizeTmp);
3964 if (Char == '+') {
3965 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3966 Kind = tok::plusplus;
3967 } else if (Char == '=') {
3968 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3969 Kind = tok::plusequal;
3970 } else {
3971 Kind = tok::plus;
3973 break;
3974 case '-':
3975 Char = getCharAndSize(CurPtr, SizeTmp);
3976 if (Char == '-') { // --
3977 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3978 Kind = tok::minusminus;
3979 } else if (Char == '>' && LangOpts.CPlusPlus &&
3980 getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') { // C++ ->*
3981 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3982 SizeTmp2, Result);
3983 Kind = tok::arrowstar;
3984 } else if (Char == '>') { // ->
3985 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3986 Kind = tok::arrow;
3987 } else if (Char == '=') { // -=
3988 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3989 Kind = tok::minusequal;
3990 } else {
3991 Kind = tok::minus;
3993 break;
3994 case '~':
3995 Kind = tok::tilde;
3996 break;
3997 case '!':
3998 if (getCharAndSize(CurPtr, SizeTmp) == '=') {
3999 Kind = tok::exclaimequal;
4000 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4001 } else {
4002 Kind = tok::exclaim;
4004 break;
4005 case '/':
4006 // 6.4.9: Comments
4007 Char = getCharAndSize(CurPtr, SizeTmp);
4008 if (Char == '/') { // Line comment.
4009 // Even if Line comments are disabled (e.g. in C89 mode), we generally
4010 // want to lex this as a comment. There is one problem with this though,
4011 // that in one particular corner case, this can change the behavior of the
4012 // resultant program. For example, In "foo //**/ bar", C89 would lex
4013 // this as "foo / bar" and languages with Line comments would lex it as
4014 // "foo". Check to see if the character after the second slash is a '*'.
4015 // If so, we will lex that as a "/" instead of the start of a comment.
4016 // However, we never do this if we are just preprocessing.
4017 bool TreatAsComment =
4018 LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP);
4019 if (!TreatAsComment)
4020 if (!(PP && PP->isPreprocessedOutput()))
4021 TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*';
4023 if (TreatAsComment) {
4024 if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
4025 TokAtPhysicalStartOfLine))
4026 return true; // There is a token to return.
4028 // It is common for the tokens immediately after a // comment to be
4029 // whitespace (indentation for the next line). Instead of going through
4030 // the big switch, handle it efficiently now.
4031 goto SkipIgnoredUnits;
4035 if (Char == '*') { // /**/ comment.
4036 if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
4037 TokAtPhysicalStartOfLine))
4038 return true; // There is a token to return.
4040 // We only saw whitespace, so just try again with this lexer.
4041 // (We manually eliminate the tail call to avoid recursion.)
4042 goto LexNextToken;
4045 if (Char == '=') {
4046 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4047 Kind = tok::slashequal;
4048 } else {
4049 Kind = tok::slash;
4051 break;
4052 case '%':
4053 Char = getCharAndSize(CurPtr, SizeTmp);
4054 if (Char == '=') {
4055 Kind = tok::percentequal;
4056 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4057 } else if (LangOpts.Digraphs && Char == '>') {
4058 Kind = tok::r_brace; // '%>' -> '}'
4059 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4060 } else if (LangOpts.Digraphs && Char == ':') {
4061 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4062 Char = getCharAndSize(CurPtr, SizeTmp);
4063 if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') {
4064 Kind = tok::hashhash; // '%:%:' -> '##'
4065 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4066 SizeTmp2, Result);
4067 } else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize
4068 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4069 if (!isLexingRawMode())
4070 Diag(BufferPtr, diag::ext_charize_microsoft);
4071 Kind = tok::hashat;
4072 } else { // '%:' -> '#'
4073 // We parsed a # character. If this occurs at the start of the line,
4074 // it's actually the start of a preprocessing directive. Callback to
4075 // the preprocessor to handle it.
4076 // TODO: -fpreprocessed mode??
4077 if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
4078 goto HandleDirective;
4080 Kind = tok::hash;
4082 } else {
4083 Kind = tok::percent;
4085 break;
4086 case '<':
4087 Char = getCharAndSize(CurPtr, SizeTmp);
4088 if (ParsingFilename) {
4089 return LexAngledStringLiteral(Result, CurPtr);
4090 } else if (Char == '<') {
4091 char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4092 if (After == '=') {
4093 Kind = tok::lesslessequal;
4094 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4095 SizeTmp2, Result);
4096 } else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) {
4097 // If this is actually a '<<<<<<<' version control conflict marker,
4098 // recognize it as such and recover nicely.
4099 goto LexNextToken;
4100 } else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) {
4101 // If this is '<<<<' and we're in a Perforce-style conflict marker,
4102 // ignore it.
4103 goto LexNextToken;
4104 } else if (LangOpts.CUDA && After == '<') {
4105 Kind = tok::lesslessless;
4106 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4107 SizeTmp2, Result);
4108 } else {
4109 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4110 Kind = tok::lessless;
4112 } else if (Char == '=') {
4113 char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4114 if (After == '>') {
4115 if (LangOpts.CPlusPlus20) {
4116 if (!isLexingRawMode())
4117 Diag(BufferPtr, diag::warn_cxx17_compat_spaceship);
4118 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4119 SizeTmp2, Result);
4120 Kind = tok::spaceship;
4121 break;
4123 // Suggest adding a space between the '<=' and the '>' to avoid a
4124 // change in semantics if this turns up in C++ <=17 mode.
4125 if (LangOpts.CPlusPlus && !isLexingRawMode()) {
4126 Diag(BufferPtr, diag::warn_cxx20_compat_spaceship)
4127 << FixItHint::CreateInsertion(
4128 getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " ");
4131 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4132 Kind = tok::lessequal;
4133 } else if (LangOpts.Digraphs && Char == ':') { // '<:' -> '['
4134 if (LangOpts.CPlusPlus11 &&
4135 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') {
4136 // C++0x [lex.pptoken]p3:
4137 // Otherwise, if the next three characters are <:: and the subsequent
4138 // character is neither : nor >, the < is treated as a preprocessor
4139 // token by itself and not as the first character of the alternative
4140 // token <:.
4141 unsigned SizeTmp3;
4142 char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
4143 if (After != ':' && After != '>') {
4144 Kind = tok::less;
4145 if (!isLexingRawMode())
4146 Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon);
4147 break;
4151 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4152 Kind = tok::l_square;
4153 } else if (LangOpts.Digraphs && Char == '%') { // '<%' -> '{'
4154 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4155 Kind = tok::l_brace;
4156 } else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 &&
4157 lexEditorPlaceholder(Result, CurPtr)) {
4158 return true;
4159 } else {
4160 Kind = tok::less;
4162 break;
4163 case '>':
4164 Char = getCharAndSize(CurPtr, SizeTmp);
4165 if (Char == '=') {
4166 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4167 Kind = tok::greaterequal;
4168 } else if (Char == '>') {
4169 char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4170 if (After == '=') {
4171 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4172 SizeTmp2, Result);
4173 Kind = tok::greatergreaterequal;
4174 } else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) {
4175 // If this is actually a '>>>>' conflict marker, recognize it as such
4176 // and recover nicely.
4177 goto LexNextToken;
4178 } else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) {
4179 // If this is '>>>>>>>' and we're in a conflict marker, ignore it.
4180 goto LexNextToken;
4181 } else if (LangOpts.CUDA && After == '>') {
4182 Kind = tok::greatergreatergreater;
4183 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4184 SizeTmp2, Result);
4185 } else {
4186 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4187 Kind = tok::greatergreater;
4189 } else {
4190 Kind = tok::greater;
4192 break;
4193 case '^':
4194 Char = getCharAndSize(CurPtr, SizeTmp);
4195 if (Char == '=') {
4196 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4197 Kind = tok::caretequal;
4198 } else if (LangOpts.OpenCL && Char == '^') {
4199 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4200 Kind = tok::caretcaret;
4201 } else {
4202 Kind = tok::caret;
4204 break;
4205 case '|':
4206 Char = getCharAndSize(CurPtr, SizeTmp);
4207 if (Char == '=') {
4208 Kind = tok::pipeequal;
4209 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4210 } else if (Char == '|') {
4211 // If this is '|||||||' and we're in a conflict marker, ignore it.
4212 if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1))
4213 goto LexNextToken;
4214 Kind = tok::pipepipe;
4215 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4216 } else {
4217 Kind = tok::pipe;
4219 break;
4220 case ':':
4221 Char = getCharAndSize(CurPtr, SizeTmp);
4222 if (LangOpts.Digraphs && Char == '>') {
4223 Kind = tok::r_square; // ':>' -> ']'
4224 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4225 } else if ((LangOpts.CPlusPlus ||
4226 LangOpts.DoubleSquareBracketAttributes) &&
4227 Char == ':') {
4228 Kind = tok::coloncolon;
4229 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4230 } else {
4231 Kind = tok::colon;
4233 break;
4234 case ';':
4235 Kind = tok::semi;
4236 break;
4237 case '=':
4238 Char = getCharAndSize(CurPtr, SizeTmp);
4239 if (Char == '=') {
4240 // If this is '====' and we're in a conflict marker, ignore it.
4241 if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1))
4242 goto LexNextToken;
4244 Kind = tok::equalequal;
4245 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4246 } else {
4247 Kind = tok::equal;
4249 break;
4250 case ',':
4251 Kind = tok::comma;
4252 break;
4253 case '#':
4254 Char = getCharAndSize(CurPtr, SizeTmp);
4255 if (Char == '#') {
4256 Kind = tok::hashhash;
4257 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4258 } else if (Char == '@' && LangOpts.MicrosoftExt) { // #@ -> Charize
4259 Kind = tok::hashat;
4260 if (!isLexingRawMode())
4261 Diag(BufferPtr, diag::ext_charize_microsoft);
4262 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4263 } else {
4264 // We parsed a # character. If this occurs at the start of the line,
4265 // it's actually the start of a preprocessing directive. Callback to
4266 // the preprocessor to handle it.
4267 // TODO: -fpreprocessed mode??
4268 if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
4269 goto HandleDirective;
4271 Kind = tok::hash;
4273 break;
4275 case '@':
4276 // Objective C support.
4277 if (CurPtr[-1] == '@' && LangOpts.ObjC)
4278 Kind = tok::at;
4279 else
4280 Kind = tok::unknown;
4281 break;
4283 // UCNs (C99 6.4.3, C++11 [lex.charset]p2)
4284 case '\\':
4285 if (!LangOpts.AsmPreprocessor) {
4286 if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) {
4287 if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
4288 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
4289 return true; // KeepWhitespaceMode
4291 // We only saw whitespace, so just try again with this lexer.
4292 // (We manually eliminate the tail call to avoid recursion.)
4293 goto LexNextToken;
4296 return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr);
4300 Kind = tok::unknown;
4301 break;
4303 default: {
4304 if (isASCII(Char)) {
4305 Kind = tok::unknown;
4306 break;
4309 llvm::UTF32 CodePoint;
4311 // We can't just reset CurPtr to BufferPtr because BufferPtr may point to
4312 // an escaped newline.
4313 --CurPtr;
4314 llvm::ConversionResult Status =
4315 llvm::convertUTF8Sequence((const llvm::UTF8 **)&CurPtr,
4316 (const llvm::UTF8 *)BufferEnd,
4317 &CodePoint,
4318 llvm::strictConversion);
4319 if (Status == llvm::conversionOK) {
4320 if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
4321 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
4322 return true; // KeepWhitespaceMode
4324 // We only saw whitespace, so just try again with this lexer.
4325 // (We manually eliminate the tail call to avoid recursion.)
4326 goto LexNextToken;
4328 return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr);
4331 if (isLexingRawMode() || ParsingPreprocessorDirective ||
4332 PP->isPreprocessedOutput()) {
4333 ++CurPtr;
4334 Kind = tok::unknown;
4335 break;
4338 // Non-ASCII characters tend to creep into source code unintentionally.
4339 // Instead of letting the parser complain about the unknown token,
4340 // just diagnose the invalid UTF-8, then drop the character.
4341 Diag(CurPtr, diag::err_invalid_utf8);
4343 BufferPtr = CurPtr+1;
4344 // We're pretending the character didn't exist, so just try again with
4345 // this lexer.
4346 // (We manually eliminate the tail call to avoid recursion.)
4347 goto LexNextToken;
4351 // Notify MIOpt that we read a non-whitespace/non-comment token.
4352 MIOpt.ReadToken();
4354 // Update the location of token as well as BufferPtr.
4355 FormTokenWithChars(Result, CurPtr, Kind);
4356 return true;
4358 HandleDirective:
4359 // We parsed a # character and it's the start of a preprocessing directive.
4361 FormTokenWithChars(Result, CurPtr, tok::hash);
4362 PP->HandleDirective(Result);
4364 if (PP->hadModuleLoaderFatalFailure()) {
4365 // With a fatal failure in the module loader, we abort parsing.
4366 assert(Result.is(tok::eof) && "Preprocessor did not set tok:eof");
4367 return true;
4370 // We parsed the directive; lex a token with the new state.
4371 return false;
4373 LexNextToken:
4374 Result.clearFlag(Token::NeedsCleaning);
4375 goto LexStart;
4378 const char *Lexer::convertDependencyDirectiveToken(
4379 const dependency_directives_scan::Token &DDTok, Token &Result) {
4380 const char *TokPtr = BufferStart + DDTok.Offset;
4381 Result.startToken();
4382 Result.setLocation(getSourceLocation(TokPtr));
4383 Result.setKind(DDTok.Kind);
4384 Result.setFlag((Token::TokenFlags)DDTok.Flags);
4385 Result.setLength(DDTok.Length);
4386 BufferPtr = TokPtr + DDTok.Length;
4387 return TokPtr;
4390 bool Lexer::LexDependencyDirectiveToken(Token &Result) {
4391 assert(isDependencyDirectivesLexer());
4393 using namespace dependency_directives_scan;
4395 while (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) {
4396 if (DepDirectives.front().Kind == pp_eof)
4397 return LexEndOfFile(Result, BufferEnd);
4398 if (DepDirectives.front().Kind == tokens_present_before_eof)
4399 MIOpt.ReadToken();
4400 NextDepDirectiveTokenIndex = 0;
4401 DepDirectives = DepDirectives.drop_front();
4404 const dependency_directives_scan::Token &DDTok =
4405 DepDirectives.front().Tokens[NextDepDirectiveTokenIndex++];
4406 if (NextDepDirectiveTokenIndex > 1 || DDTok.Kind != tok::hash) {
4407 // Read something other than a preprocessor directive hash.
4408 MIOpt.ReadToken();
4411 if (ParsingFilename && DDTok.is(tok::less)) {
4412 BufferPtr = BufferStart + DDTok.Offset;
4413 LexAngledStringLiteral(Result, BufferPtr + 1);
4414 if (Result.isNot(tok::header_name))
4415 return true;
4416 // Advance the index of lexed tokens.
4417 while (true) {
4418 const dependency_directives_scan::Token &NextTok =
4419 DepDirectives.front().Tokens[NextDepDirectiveTokenIndex];
4420 if (BufferStart + NextTok.Offset >= BufferPtr)
4421 break;
4422 ++NextDepDirectiveTokenIndex;
4424 return true;
4427 const char *TokPtr = convertDependencyDirectiveToken(DDTok, Result);
4429 if (Result.is(tok::hash) && Result.isAtStartOfLine()) {
4430 PP->HandleDirective(Result);
4431 return false;
4433 if (Result.is(tok::raw_identifier)) {
4434 Result.setRawIdentifierData(TokPtr);
4435 if (!isLexingRawMode()) {
4436 IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
4437 if (II->isHandleIdentifierCase())
4438 return PP->HandleIdentifier(Result);
4440 return true;
4442 if (Result.isLiteral()) {
4443 Result.setLiteralData(TokPtr);
4444 return true;
4446 if (Result.is(tok::colon) &&
4447 (LangOpts.CPlusPlus || LangOpts.DoubleSquareBracketAttributes)) {
4448 // Convert consecutive colons to 'tok::coloncolon'.
4449 if (*BufferPtr == ':') {
4450 assert(DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is(
4451 tok::colon));
4452 ++NextDepDirectiveTokenIndex;
4453 Result.setKind(tok::coloncolon);
4455 return true;
4457 if (Result.is(tok::eod))
4458 ParsingPreprocessorDirective = false;
4460 return true;
4463 bool Lexer::LexDependencyDirectiveTokenWhileSkipping(Token &Result) {
4464 assert(isDependencyDirectivesLexer());
4466 using namespace dependency_directives_scan;
4468 bool Stop = false;
4469 unsigned NestedIfs = 0;
4470 do {
4471 DepDirectives = DepDirectives.drop_front();
4472 switch (DepDirectives.front().Kind) {
4473 case pp_none:
4474 llvm_unreachable("unexpected 'pp_none'");
4475 case pp_include:
4476 case pp___include_macros:
4477 case pp_define:
4478 case pp_undef:
4479 case pp_import:
4480 case pp_pragma_import:
4481 case pp_pragma_once:
4482 case pp_pragma_push_macro:
4483 case pp_pragma_pop_macro:
4484 case pp_pragma_include_alias:
4485 case pp_include_next:
4486 case decl_at_import:
4487 case cxx_module_decl:
4488 case cxx_import_decl:
4489 case cxx_export_module_decl:
4490 case cxx_export_import_decl:
4491 case tokens_present_before_eof:
4492 break;
4493 case pp_if:
4494 case pp_ifdef:
4495 case pp_ifndef:
4496 ++NestedIfs;
4497 break;
4498 case pp_elif:
4499 case pp_elifdef:
4500 case pp_elifndef:
4501 case pp_else:
4502 if (!NestedIfs) {
4503 Stop = true;
4505 break;
4506 case pp_endif:
4507 if (!NestedIfs) {
4508 Stop = true;
4509 } else {
4510 --NestedIfs;
4512 break;
4513 case pp_eof:
4514 NextDepDirectiveTokenIndex = 0;
4515 return LexEndOfFile(Result, BufferEnd);
4517 } while (!Stop);
4519 const dependency_directives_scan::Token &DDTok =
4520 DepDirectives.front().Tokens.front();
4521 assert(DDTok.is(tok::hash));
4522 NextDepDirectiveTokenIndex = 1;
4524 convertDependencyDirectiveToken(DDTok, Result);
4525 return false;