[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / StaticAnalyzer / Core / CallEvent.cpp
blob8516e3643425fd0434b37e6fbc07b1550f1c44f8
1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
13 //===----------------------------------------------------------------------===//
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/ImmutableList.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <optional>
64 #include <utility>
66 #define DEBUG_TYPE "static-analyzer-call-event"
68 using namespace clang;
69 using namespace ento;
71 QualType CallEvent::getResultType() const {
72 ASTContext &Ctx = getState()->getStateManager().getContext();
73 const Expr *E = getOriginExpr();
74 if (!E)
75 return Ctx.VoidTy;
76 return Ctx.getReferenceQualifiedType(E);
79 static bool isCallback(QualType T) {
80 // If a parameter is a block or a callback, assume it can modify pointer.
81 if (T->isBlockPointerType() ||
82 T->isFunctionPointerType() ||
83 T->isObjCSelType())
84 return true;
86 // Check if a callback is passed inside a struct (for both, struct passed by
87 // reference and by value). Dig just one level into the struct for now.
89 if (T->isAnyPointerType() || T->isReferenceType())
90 T = T->getPointeeType();
92 if (const RecordType *RT = T->getAsStructureType()) {
93 const RecordDecl *RD = RT->getDecl();
94 for (const auto *I : RD->fields()) {
95 QualType FieldT = I->getType();
96 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
97 return true;
100 return false;
103 static bool isVoidPointerToNonConst(QualType T) {
104 if (const auto *PT = T->getAs<PointerType>()) {
105 QualType PointeeTy = PT->getPointeeType();
106 if (PointeeTy.isConstQualified())
107 return false;
108 return PointeeTy->isVoidType();
109 } else
110 return false;
113 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
114 unsigned NumOfArgs = getNumArgs();
116 // If calling using a function pointer, assume the function does not
117 // satisfy the callback.
118 // TODO: We could check the types of the arguments here.
119 if (!getDecl())
120 return false;
122 unsigned Idx = 0;
123 for (CallEvent::param_type_iterator I = param_type_begin(),
124 E = param_type_end();
125 I != E && Idx < NumOfArgs; ++I, ++Idx) {
126 // If the parameter is 0, it's harmless.
127 if (getArgSVal(Idx).isZeroConstant())
128 continue;
130 if (Condition(*I))
131 return true;
133 return false;
136 bool CallEvent::hasNonZeroCallbackArg() const {
137 return hasNonNullArgumentsWithType(isCallback);
140 bool CallEvent::hasVoidPointerToNonConstArg() const {
141 return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
144 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
145 const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
146 if (!FD)
147 return false;
149 return CheckerContext::isCLibraryFunction(FD, FunctionName);
152 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
153 const Decl *D = getDecl();
154 if (!D)
155 return nullptr;
157 AnalysisDeclContext *ADC =
158 LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
160 return ADC;
163 const StackFrameContext *
164 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
165 AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
166 if (!ADC)
167 return nullptr;
169 const Expr *E = getOriginExpr();
170 if (!E)
171 return nullptr;
173 // Recover CFG block via reverse lookup.
174 // TODO: If we were to keep CFG element information as part of the CallEvent
175 // instead of doing this reverse lookup, we would be able to build the stack
176 // frame for non-expression-based calls, and also we wouldn't need the reverse
177 // lookup.
178 CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
179 const CFGBlock *B = Map->getBlock(E);
180 assert(B);
182 // Also recover CFG index by scanning the CFG block.
183 unsigned Idx = 0, Sz = B->size();
184 for (; Idx < Sz; ++Idx)
185 if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
186 if (StmtElem->getStmt() == E)
187 break;
188 assert(Idx < Sz);
190 return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
193 const ParamVarRegion
194 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
195 const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
196 // We cannot construct a VarRegion without a stack frame.
197 if (!SFC)
198 return nullptr;
200 const ParamVarRegion *PVR =
201 State->getStateManager().getRegionManager().getParamVarRegion(
202 getOriginExpr(), Index, SFC);
203 return PVR;
206 /// Returns true if a type is a pointer-to-const or reference-to-const
207 /// with no further indirection.
208 static bool isPointerToConst(QualType Ty) {
209 QualType PointeeTy = Ty->getPointeeType();
210 if (PointeeTy == QualType())
211 return false;
212 if (!PointeeTy.isConstQualified())
213 return false;
214 if (PointeeTy->isAnyPointerType())
215 return false;
216 return true;
219 // Try to retrieve the function declaration and find the function parameter
220 // types which are pointers/references to a non-pointer const.
221 // We will not invalidate the corresponding argument regions.
222 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
223 const CallEvent &Call) {
224 unsigned Idx = 0;
225 for (CallEvent::param_type_iterator I = Call.param_type_begin(),
226 E = Call.param_type_end();
227 I != E; ++I, ++Idx) {
228 if (isPointerToConst(*I))
229 PreserveArgs.insert(Idx);
233 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
234 ProgramStateRef Orig) const {
235 ProgramStateRef Result = (Orig ? Orig : getState());
237 // Don't invalidate anything if the callee is marked pure/const.
238 if (const Decl *callee = getDecl())
239 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
240 return Result;
242 SmallVector<SVal, 8> ValuesToInvalidate;
243 RegionAndSymbolInvalidationTraits ETraits;
245 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
247 // Indexes of arguments whose values will be preserved by the call.
248 llvm::SmallSet<unsigned, 4> PreserveArgs;
249 if (!argumentsMayEscape())
250 findPtrToConstParams(PreserveArgs, *this);
252 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
253 // Mark this region for invalidation. We batch invalidate regions
254 // below for efficiency.
255 if (PreserveArgs.count(Idx))
256 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
257 ETraits.setTrait(MR->getBaseRegion(),
258 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
259 // TODO: Factor this out + handle the lower level const pointers.
261 ValuesToInvalidate.push_back(getArgSVal(Idx));
263 // If a function accepts an object by argument (which would of course be a
264 // temporary that isn't lifetime-extended), invalidate the object itself,
265 // not only other objects reachable from it. This is necessary because the
266 // destructor has access to the temporary object after the call.
267 // TODO: Support placement arguments once we start
268 // constructing them directly.
269 // TODO: This is unnecessary when there's no destructor, but that's
270 // currently hard to figure out.
271 if (getKind() != CE_CXXAllocator)
272 if (isArgumentConstructedDirectly(Idx))
273 if (auto AdjIdx = getAdjustedParameterIndex(Idx))
274 if (const TypedValueRegion *TVR =
275 getParameterLocation(*AdjIdx, BlockCount))
276 ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
279 // Invalidate designated regions using the batch invalidation API.
280 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
281 // global variables.
282 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
283 BlockCount, getLocationContext(),
284 /*CausedByPointerEscape*/ true,
285 /*Symbols=*/nullptr, this, &ETraits);
288 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
289 const ProgramPointTag *Tag) const {
290 if (const Expr *E = getOriginExpr()) {
291 if (IsPreVisit)
292 return PreStmt(E, getLocationContext(), Tag);
293 return PostStmt(E, getLocationContext(), Tag);
296 const Decl *D = getDecl();
297 assert(D && "Cannot get a program point without a statement or decl");
299 SourceLocation Loc = getSourceRange().getBegin();
300 if (IsPreVisit)
301 return PreImplicitCall(D, Loc, getLocationContext(), Tag);
302 return PostImplicitCall(D, Loc, getLocationContext(), Tag);
305 SVal CallEvent::getArgSVal(unsigned Index) const {
306 const Expr *ArgE = getArgExpr(Index);
307 if (!ArgE)
308 return UnknownVal();
309 return getSVal(ArgE);
312 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
313 const Expr *ArgE = getArgExpr(Index);
314 if (!ArgE)
315 return {};
316 return ArgE->getSourceRange();
319 SVal CallEvent::getReturnValue() const {
320 const Expr *E = getOriginExpr();
321 if (!E)
322 return UndefinedVal();
323 return getSVal(E);
326 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
328 void CallEvent::dump(raw_ostream &Out) const {
329 ASTContext &Ctx = getState()->getStateManager().getContext();
330 if (const Expr *E = getOriginExpr()) {
331 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
332 return;
335 if (const Decl *D = getDecl()) {
336 Out << "Call to ";
337 D->print(Out, Ctx.getPrintingPolicy());
338 return;
341 Out << "Unknown call (type " << getKindAsString() << ")";
344 bool CallEvent::isCallStmt(const Stmt *S) {
345 return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(S);
348 QualType CallEvent::getDeclaredResultType(const Decl *D) {
349 assert(D);
350 if (const auto *FD = dyn_cast<FunctionDecl>(D))
351 return FD->getReturnType();
352 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
353 return MD->getReturnType();
354 if (const auto *BD = dyn_cast<BlockDecl>(D)) {
355 // Blocks are difficult because the return type may not be stored in the
356 // BlockDecl itself. The AST should probably be enhanced, but for now we
357 // just do what we can.
358 // If the block is declared without an explicit argument list, the
359 // signature-as-written just includes the return type, not the entire
360 // function type.
361 // FIXME: All blocks should have signatures-as-written, even if the return
362 // type is inferred. (That's signified with a dependent result type.)
363 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
364 QualType Ty = TSI->getType();
365 if (const FunctionType *FT = Ty->getAs<FunctionType>())
366 Ty = FT->getReturnType();
367 if (!Ty->isDependentType())
368 return Ty;
371 return {};
374 llvm_unreachable("unknown callable kind");
377 bool CallEvent::isVariadic(const Decl *D) {
378 assert(D);
380 if (const auto *FD = dyn_cast<FunctionDecl>(D))
381 return FD->isVariadic();
382 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
383 return MD->isVariadic();
384 if (const auto *BD = dyn_cast<BlockDecl>(D))
385 return BD->isVariadic();
387 llvm_unreachable("unknown callable kind");
390 static bool isTransparentUnion(QualType T) {
391 const RecordType *UT = T->getAsUnionType();
392 return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>();
395 // In some cases, symbolic cases should be transformed before we associate
396 // them with parameters. This function incapsulates such cases.
397 static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
398 const ParmVarDecl *Parameter, SValBuilder &SVB) {
399 QualType ParamType = Parameter->getType();
400 QualType ArgumentType = ArgumentExpr->getType();
402 // Transparent unions allow users to easily convert values of union field
403 // types into union-typed objects.
405 // Also, more importantly, they allow users to define functions with different
406 // different parameter types, substituting types matching transparent union
407 // field types with the union type itself.
409 // Here, we check specifically for latter cases and prevent binding
410 // field-typed values to union-typed regions.
411 if (isTransparentUnion(ParamType) &&
412 // Let's check that we indeed trying to bind different types.
413 !isTransparentUnion(ArgumentType)) {
414 BasicValueFactory &BVF = SVB.getBasicValueFactory();
416 llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
417 CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
419 // Wrap it with compound value.
420 return SVB.makeCompoundVal(ParamType, CompoundSVals);
423 return Value;
426 /// Cast the argument value to the type of the parameter at the function
427 /// declaration.
428 /// Returns the argument value if it didn't need a cast.
429 /// Or returns the cast argument if it needed a cast.
430 /// Or returns 'Unknown' if it would need a cast but the callsite and the
431 /// runtime definition don't match in terms of argument and parameter count.
432 static SVal castArgToParamTypeIfNeeded(const CallEvent &Call, unsigned ArgIdx,
433 SVal ArgVal, SValBuilder &SVB) {
434 const FunctionDecl *RTDecl =
435 Call.getRuntimeDefinition().getDecl()->getAsFunction();
436 const auto *CallExprDecl = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
438 if (!RTDecl || !CallExprDecl)
439 return ArgVal;
441 // The function decl of the Call (in the AST) will not have any parameter
442 // declarations, if it was 'only' declared without a prototype. However, the
443 // engine will find the appropriate runtime definition - basically a
444 // redeclaration, which has a function body (and a function prototype).
445 if (CallExprDecl->hasPrototype() || !RTDecl->hasPrototype())
446 return ArgVal;
448 // Only do this cast if the number arguments at the callsite matches with
449 // the parameters at the runtime definition.
450 if (Call.getNumArgs() != RTDecl->getNumParams())
451 return UnknownVal();
453 const Expr *ArgExpr = Call.getArgExpr(ArgIdx);
454 const ParmVarDecl *Param = RTDecl->getParamDecl(ArgIdx);
455 return SVB.evalCast(ArgVal, Param->getType(), ArgExpr->getType());
458 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
459 CallEvent::BindingsTy &Bindings,
460 SValBuilder &SVB,
461 const CallEvent &Call,
462 ArrayRef<ParmVarDecl*> parameters) {
463 MemRegionManager &MRMgr = SVB.getRegionManager();
465 // If the function has fewer parameters than the call has arguments, we simply
466 // do not bind any values to them.
467 unsigned NumArgs = Call.getNumArgs();
468 unsigned Idx = 0;
469 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
470 for (; I != E && Idx < NumArgs; ++I, ++Idx) {
471 assert(*I && "Formal parameter has no decl?");
473 // TODO: Support allocator calls.
474 if (Call.getKind() != CE_CXXAllocator)
475 if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
476 continue;
478 // TODO: Allocators should receive the correct size and possibly alignment,
479 // determined in compile-time but not represented as arg-expressions,
480 // which makes getArgSVal() fail and return UnknownVal.
481 SVal ArgVal = Call.getArgSVal(Idx);
482 const Expr *ArgExpr = Call.getArgExpr(Idx);
484 if (ArgVal.isUnknown())
485 continue;
487 // Cast the argument value to match the type of the parameter in some
488 // edge-cases.
489 ArgVal = castArgToParamTypeIfNeeded(Call, Idx, ArgVal, SVB);
491 Loc ParamLoc = SVB.makeLoc(
492 MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
493 Bindings.push_back(
494 std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
497 // FIXME: Variadic arguments are not handled at all right now.
500 const ConstructionContext *CallEvent::getConstructionContext() const {
501 const StackFrameContext *StackFrame = getCalleeStackFrame(0);
502 if (!StackFrame)
503 return nullptr;
505 const CFGElement Element = StackFrame->getCallSiteCFGElement();
506 if (const auto Ctor = Element.getAs<CFGConstructor>()) {
507 return Ctor->getConstructionContext();
510 if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
511 return RecCall->getConstructionContext();
514 return nullptr;
517 std::optional<SVal> CallEvent::getReturnValueUnderConstruction() const {
518 const auto *CC = getConstructionContext();
519 if (!CC)
520 return std::nullopt;
522 EvalCallOptions CallOpts;
523 ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
524 SVal RetVal = Engine.computeObjectUnderConstruction(
525 getOriginExpr(), getState(), &Engine.getBuilderContext(),
526 getLocationContext(), CC, CallOpts);
527 return RetVal;
530 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
531 const FunctionDecl *D = getDecl();
532 if (!D)
533 return std::nullopt;
534 return D->parameters();
537 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
538 const FunctionDecl *FD = getDecl();
539 if (!FD)
540 return {};
542 // Note that the AnalysisDeclContext will have the FunctionDecl with
543 // the definition (if one exists).
544 AnalysisDeclContext *AD =
545 getLocationContext()->getAnalysisDeclContext()->
546 getManager()->getContext(FD);
547 bool IsAutosynthesized;
548 Stmt* Body = AD->getBody(IsAutosynthesized);
549 LLVM_DEBUG({
550 if (IsAutosynthesized)
551 llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
552 << "\n";
555 ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
556 cross_tu::CrossTranslationUnitContext &CTUCtx =
557 *Engine.getCrossTranslationUnitContext();
559 AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
561 if (Body) {
562 const Decl* Decl = AD->getDecl();
563 if (Opts.IsNaiveCTUEnabled && CTUCtx.isImportedAsNew(Decl)) {
564 // A newly created definition, but we had error(s) during the import.
565 if (CTUCtx.hasError(Decl))
566 return {};
567 return RuntimeDefinition(Decl, /*Foreign=*/true);
569 return RuntimeDefinition(Decl, /*Foreign=*/false);
572 // Try to get CTU definition only if CTUDir is provided.
573 if (!Opts.IsNaiveCTUEnabled)
574 return {};
576 llvm::Expected<const FunctionDecl *> CTUDeclOrError =
577 CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
578 Opts.DisplayCTUProgress);
580 if (!CTUDeclOrError) {
581 handleAllErrors(CTUDeclOrError.takeError(),
582 [&](const cross_tu::IndexError &IE) {
583 CTUCtx.emitCrossTUDiagnostics(IE);
585 return {};
588 return RuntimeDefinition(*CTUDeclOrError, /*Foreign=*/true);
591 void AnyFunctionCall::getInitialStackFrameContents(
592 const StackFrameContext *CalleeCtx,
593 BindingsTy &Bindings) const {
594 const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
595 SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
596 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
597 D->parameters());
600 bool AnyFunctionCall::argumentsMayEscape() const {
601 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
602 return true;
604 const FunctionDecl *D = getDecl();
605 if (!D)
606 return true;
608 const IdentifierInfo *II = D->getIdentifier();
609 if (!II)
610 return false;
612 // This set of "escaping" APIs is
614 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
615 // value into thread local storage. The value can later be retrieved with
616 // 'void *ptheread_getspecific(pthread_key)'. So even thought the
617 // parameter is 'const void *', the region escapes through the call.
618 if (II->isStr("pthread_setspecific"))
619 return true;
621 // - xpc_connection_set_context stores a value which can be retrieved later
622 // with xpc_connection_get_context.
623 if (II->isStr("xpc_connection_set_context"))
624 return true;
626 // - funopen - sets a buffer for future IO calls.
627 if (II->isStr("funopen"))
628 return true;
630 // - __cxa_demangle - can reallocate memory and can return the pointer to
631 // the input buffer.
632 if (II->isStr("__cxa_demangle"))
633 return true;
635 StringRef FName = II->getName();
637 // - CoreFoundation functions that end with "NoCopy" can free a passed-in
638 // buffer even if it is const.
639 if (FName.endswith("NoCopy"))
640 return true;
642 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
643 // be deallocated by NSMapRemove.
644 if (FName.startswith("NS") && FName.contains("Insert"))
645 return true;
647 // - Many CF containers allow objects to escape through custom
648 // allocators/deallocators upon container construction. (PR12101)
649 if (FName.startswith("CF") || FName.startswith("CG")) {
650 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos ||
651 StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
652 StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
653 StrInStrNoCase(FName, "WithData") != StringRef::npos ||
654 StrInStrNoCase(FName, "AppendValue") != StringRef::npos ||
655 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
658 return false;
661 const FunctionDecl *SimpleFunctionCall::getDecl() const {
662 const FunctionDecl *D = getOriginExpr()->getDirectCallee();
663 if (D)
664 return D;
666 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
669 const FunctionDecl *CXXInstanceCall::getDecl() const {
670 const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
671 if (!CE)
672 return AnyFunctionCall::getDecl();
674 const FunctionDecl *D = CE->getDirectCallee();
675 if (D)
676 return D;
678 return getSVal(CE->getCallee()).getAsFunctionDecl();
681 void CXXInstanceCall::getExtraInvalidatedValues(
682 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
683 SVal ThisVal = getCXXThisVal();
684 Values.push_back(ThisVal);
686 // Don't invalidate if the method is const and there are no mutable fields.
687 if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
688 if (!D->isConst())
689 return;
690 // Get the record decl for the class of 'This'. D->getParent() may return a
691 // base class decl, rather than the class of the instance which needs to be
692 // checked for mutable fields.
693 // TODO: We might as well look at the dynamic type of the object.
694 const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts();
695 QualType T = Ex->getType();
696 if (T->isPointerType()) // Arrow or implicit-this syntax?
697 T = T->getPointeeType();
698 const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
699 assert(ParentRecord);
700 if (ParentRecord->hasMutableFields())
701 return;
702 // Preserve CXXThis.
703 const MemRegion *ThisRegion = ThisVal.getAsRegion();
704 if (!ThisRegion)
705 return;
707 ETraits->setTrait(ThisRegion->getBaseRegion(),
708 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
712 SVal CXXInstanceCall::getCXXThisVal() const {
713 const Expr *Base = getCXXThisExpr();
714 // FIXME: This doesn't handle an overloaded ->* operator.
715 if (!Base)
716 return UnknownVal();
718 SVal ThisVal = getSVal(Base);
719 assert(ThisVal.isUnknownOrUndef() || isa<Loc>(ThisVal));
720 return ThisVal;
723 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
724 // Do we have a decl at all?
725 const Decl *D = getDecl();
726 if (!D)
727 return {};
729 // If the method is non-virtual, we know we can inline it.
730 const auto *MD = cast<CXXMethodDecl>(D);
731 if (!MD->isVirtual())
732 return AnyFunctionCall::getRuntimeDefinition();
734 // Do we know the implicit 'this' object being called?
735 const MemRegion *R = getCXXThisVal().getAsRegion();
736 if (!R)
737 return {};
739 // Do we know anything about the type of 'this'?
740 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
741 if (!DynType.isValid())
742 return {};
744 // Is the type a C++ class? (This is mostly a defensive check.)
745 QualType RegionType = DynType.getType()->getPointeeType();
746 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
748 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
749 if (!RD || !RD->hasDefinition())
750 return {};
752 // Find the decl for this method in that class.
753 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
754 if (!Result) {
755 // We might not even get the original statically-resolved method due to
756 // some particularly nasty casting (e.g. casts to sister classes).
757 // However, we should at least be able to search up and down our own class
758 // hierarchy, and some real bugs have been caught by checking this.
759 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
761 // FIXME: This is checking that our DynamicTypeInfo is at least as good as
762 // the static type. However, because we currently don't update
763 // DynamicTypeInfo when an object is cast, we can't actually be sure the
764 // DynamicTypeInfo is up to date. This assert should be re-enabled once
765 // this is fixed. <rdar://problem/12287087>
766 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
768 return {};
771 // Does the decl that we found have an implementation?
772 const FunctionDecl *Definition;
773 if (!Result->hasBody(Definition)) {
774 if (!DynType.canBeASubClass())
775 return AnyFunctionCall::getRuntimeDefinition();
776 return {};
779 // We found a definition. If we're not sure that this devirtualization is
780 // actually what will happen at runtime, make sure to provide the region so
781 // that ExprEngine can decide what to do with it.
782 if (DynType.canBeASubClass())
783 return RuntimeDefinition(Definition, R->StripCasts());
784 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
787 void CXXInstanceCall::getInitialStackFrameContents(
788 const StackFrameContext *CalleeCtx,
789 BindingsTy &Bindings) const {
790 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
792 // Handle the binding of 'this' in the new stack frame.
793 SVal ThisVal = getCXXThisVal();
794 if (!ThisVal.isUnknown()) {
795 ProgramStateManager &StateMgr = getState()->getStateManager();
796 SValBuilder &SVB = StateMgr.getSValBuilder();
798 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
799 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
801 // If we devirtualized to a different member function, we need to make sure
802 // we have the proper layering of CXXBaseObjectRegions.
803 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
804 ASTContext &Ctx = SVB.getContext();
805 const CXXRecordDecl *Class = MD->getParent();
806 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
808 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
809 std::optional<SVal> V =
810 StateMgr.getStoreManager().evalBaseToDerived(ThisVal, Ty);
811 if (!V) {
812 // We might have suffered some sort of placement new earlier, so
813 // we're constructing in a completely unexpected storage.
814 // Fall back to a generic pointer cast for this-value.
815 const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
816 const CXXRecordDecl *StaticClass = StaticMD->getParent();
817 QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
818 ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
819 } else
820 ThisVal = *V;
823 if (!ThisVal.isUnknown())
824 Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
828 const Expr *CXXMemberCall::getCXXThisExpr() const {
829 return getOriginExpr()->getImplicitObjectArgument();
832 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
833 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
834 // id-expression in the class member access expression is a qualified-id,
835 // that function is called. Otherwise, its final overrider in the dynamic type
836 // of the object expression is called.
837 if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
838 if (ME->hasQualifier())
839 return AnyFunctionCall::getRuntimeDefinition();
841 return CXXInstanceCall::getRuntimeDefinition();
844 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
845 return getOriginExpr()->getArg(0);
848 const BlockDataRegion *BlockCall::getBlockRegion() const {
849 const Expr *Callee = getOriginExpr()->getCallee();
850 const MemRegion *DataReg = getSVal(Callee).getAsRegion();
852 return dyn_cast_or_null<BlockDataRegion>(DataReg);
855 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
856 const BlockDecl *D = getDecl();
857 if (!D)
858 return std::nullopt;
859 return D->parameters();
862 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
863 RegionAndSymbolInvalidationTraits *ETraits) const {
864 // FIXME: This also needs to invalidate captured globals.
865 if (const MemRegion *R = getBlockRegion())
866 Values.push_back(loc::MemRegionVal(R));
869 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
870 BindingsTy &Bindings) const {
871 SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
872 ArrayRef<ParmVarDecl*> Params;
873 if (isConversionFromLambda()) {
874 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
875 Params = LambdaOperatorDecl->parameters();
877 // For blocks converted from a C++ lambda, the callee declaration is the
878 // operator() method on the lambda so we bind "this" to
879 // the lambda captured by the block.
880 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
881 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
882 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
883 Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
884 } else {
885 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
888 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
889 Params);
892 SVal AnyCXXConstructorCall::getCXXThisVal() const {
893 if (Data)
894 return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
895 return UnknownVal();
898 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
899 RegionAndSymbolInvalidationTraits *ETraits) const {
900 SVal V = getCXXThisVal();
901 if (SymbolRef Sym = V.getAsSymbol(true))
902 ETraits->setTrait(Sym,
903 RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
904 Values.push_back(V);
907 void AnyCXXConstructorCall::getInitialStackFrameContents(
908 const StackFrameContext *CalleeCtx,
909 BindingsTy &Bindings) const {
910 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
912 SVal ThisVal = getCXXThisVal();
913 if (!ThisVal.isUnknown()) {
914 SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
915 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
916 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
917 Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
921 const StackFrameContext *
922 CXXInheritedConstructorCall::getInheritingStackFrame() const {
923 const StackFrameContext *SFC = getLocationContext()->getStackFrame();
924 while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
925 SFC = SFC->getParent()->getStackFrame();
926 return SFC;
929 SVal CXXDestructorCall::getCXXThisVal() const {
930 if (Data)
931 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
932 return UnknownVal();
935 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
936 // Base destructors are always called non-virtually.
937 // Skip CXXInstanceCall's devirtualization logic in this case.
938 if (isBaseDestructor())
939 return AnyFunctionCall::getRuntimeDefinition();
941 return CXXInstanceCall::getRuntimeDefinition();
944 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
945 const ObjCMethodDecl *D = getDecl();
946 if (!D)
947 return std::nullopt;
948 return D->parameters();
951 void ObjCMethodCall::getExtraInvalidatedValues(
952 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
954 // If the method call is a setter for property known to be backed by
955 // an instance variable, don't invalidate the entire receiver, just
956 // the storage for that instance variable.
957 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
958 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
959 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
960 if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
961 ETraits->setTrait(
962 IvarRegion,
963 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
964 ETraits->setTrait(
965 IvarRegion,
966 RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
967 Values.push_back(IvarLVal);
969 return;
973 Values.push_back(getReceiverSVal());
976 SVal ObjCMethodCall::getReceiverSVal() const {
977 // FIXME: Is this the best way to handle class receivers?
978 if (!isInstanceMessage())
979 return UnknownVal();
981 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
982 return getSVal(RecE);
984 // An instance message with no expression means we are sending to super.
985 // In this case the object reference is the same as 'self'.
986 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
987 SVal SelfVal = getState()->getSelfSVal(getLocationContext());
988 assert(SelfVal.isValid() && "Calling super but not in ObjC method");
989 return SelfVal;
992 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
993 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
994 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
995 return true;
997 if (!isInstanceMessage())
998 return false;
1000 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1001 SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1003 return (RecVal == SelfVal);
1006 SourceRange ObjCMethodCall::getSourceRange() const {
1007 switch (getMessageKind()) {
1008 case OCM_Message:
1009 return getOriginExpr()->getSourceRange();
1010 case OCM_PropertyAccess:
1011 case OCM_Subscript:
1012 return getContainingPseudoObjectExpr()->getSourceRange();
1014 llvm_unreachable("unknown message kind");
1017 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1019 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1020 assert(Data && "Lazy lookup not yet performed.");
1021 assert(getMessageKind() != OCM_Message && "Explicit message send.");
1022 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1025 static const Expr *
1026 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1027 const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens();
1029 // This handles the funny case of assigning to the result of a getter.
1030 // This can happen if the getter returns a non-const reference.
1031 if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1032 Syntactic = BO->getLHS()->IgnoreParens();
1034 return Syntactic;
1037 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1038 if (!Data) {
1039 // Find the parent, ignoring implicit casts.
1040 const ParentMap &PM = getLocationContext()->getParentMap();
1041 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1043 // Check if parent is a PseudoObjectExpr.
1044 if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1045 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1047 ObjCMessageKind K;
1048 switch (Syntactic->getStmtClass()) {
1049 case Stmt::ObjCPropertyRefExprClass:
1050 K = OCM_PropertyAccess;
1051 break;
1052 case Stmt::ObjCSubscriptRefExprClass:
1053 K = OCM_Subscript;
1054 break;
1055 default:
1056 // FIXME: Can this ever happen?
1057 K = OCM_Message;
1058 break;
1061 if (K != OCM_Message) {
1062 const_cast<ObjCMethodCall *>(this)->Data
1063 = ObjCMessageDataTy(POE, K).getOpaqueValue();
1064 assert(getMessageKind() == K);
1065 return K;
1069 const_cast<ObjCMethodCall *>(this)->Data
1070 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1071 assert(getMessageKind() == OCM_Message);
1072 return OCM_Message;
1075 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1076 if (!Info.getPointer())
1077 return OCM_Message;
1078 return static_cast<ObjCMessageKind>(Info.getInt());
1081 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1082 // Look for properties accessed with property syntax (foo.bar = ...)
1083 if (getMessageKind() == OCM_PropertyAccess) {
1084 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1085 assert(POE && "Property access without PseudoObjectExpr?");
1087 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1088 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1090 if (RefExpr->isExplicitProperty())
1091 return RefExpr->getExplicitProperty();
1094 // Look for properties accessed with method syntax ([foo setBar:...]).
1095 const ObjCMethodDecl *MD = getDecl();
1096 if (!MD || !MD->isPropertyAccessor())
1097 return nullptr;
1099 // Note: This is potentially quite slow.
1100 return MD->findPropertyDecl();
1103 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1104 Selector Sel) const {
1105 assert(IDecl);
1106 AnalysisManager &AMgr =
1107 getState()->getStateManager().getOwningEngine().getAnalysisManager();
1108 // If the class interface is declared inside the main file, assume it is not
1109 // subcassed.
1110 // TODO: It could actually be subclassed if the subclass is private as well.
1111 // This is probably very rare.
1112 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1113 if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1114 return false;
1116 // Assume that property accessors are not overridden.
1117 if (getMessageKind() == OCM_PropertyAccess)
1118 return false;
1120 // We assume that if the method is public (declared outside of main file) or
1121 // has a parent which publicly declares the method, the method could be
1122 // overridden in a subclass.
1124 // Find the first declaration in the class hierarchy that declares
1125 // the selector.
1126 ObjCMethodDecl *D = nullptr;
1127 while (true) {
1128 D = IDecl->lookupMethod(Sel, true);
1130 // Cannot find a public definition.
1131 if (!D)
1132 return false;
1134 // If outside the main file,
1135 if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1136 return true;
1138 if (D->isOverriding()) {
1139 // Search in the superclass on the next iteration.
1140 IDecl = D->getClassInterface();
1141 if (!IDecl)
1142 return false;
1144 IDecl = IDecl->getSuperClass();
1145 if (!IDecl)
1146 return false;
1148 continue;
1151 return false;
1154 llvm_unreachable("The while loop should always terminate.");
1157 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1158 if (!MD)
1159 return MD;
1161 // Find the redeclaration that defines the method.
1162 if (!MD->hasBody()) {
1163 for (auto *I : MD->redecls())
1164 if (I->hasBody())
1165 MD = cast<ObjCMethodDecl>(I);
1167 return MD;
1170 struct PrivateMethodKey {
1171 const ObjCInterfaceDecl *Interface;
1172 Selector LookupSelector;
1173 bool IsClassMethod;
1176 namespace llvm {
1177 template <> struct DenseMapInfo<PrivateMethodKey> {
1178 using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1179 using SelectorInfo = DenseMapInfo<Selector>;
1181 static inline PrivateMethodKey getEmptyKey() {
1182 return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1185 static inline PrivateMethodKey getTombstoneKey() {
1186 return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1187 true};
1190 static unsigned getHashValue(const PrivateMethodKey &Key) {
1191 return llvm::hash_combine(
1192 llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1193 llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1194 Key.IsClassMethod);
1197 static bool isEqual(const PrivateMethodKey &LHS,
1198 const PrivateMethodKey &RHS) {
1199 return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1200 SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1201 LHS.IsClassMethod == RHS.IsClassMethod;
1204 } // end namespace llvm
1206 static const ObjCMethodDecl *
1207 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1208 Selector LookupSelector, bool InstanceMethod) {
1209 // Repeatedly calling lookupPrivateMethod() is expensive, especially
1210 // when in many cases it returns null. We cache the results so
1211 // that repeated queries on the same ObjCIntefaceDecl and Selector
1212 // don't incur the same cost. On some test cases, we can see the
1213 // same query being issued thousands of times.
1215 // NOTE: This cache is essentially a "global" variable, but it
1216 // only gets lazily created when we get here. The value of the
1217 // cache probably comes from it being global across ExprEngines,
1218 // where the same queries may get issued. If we are worried about
1219 // concurrency, or possibly loading/unloading ASTs, etc., we may
1220 // need to revisit this someday. In terms of memory, this table
1221 // stays around until clang quits, which also may be bad if we
1222 // need to release memory.
1223 using PrivateMethodCache =
1224 llvm::DenseMap<PrivateMethodKey, std::optional<const ObjCMethodDecl *>>;
1226 static PrivateMethodCache PMC;
1227 std::optional<const ObjCMethodDecl *> &Val =
1228 PMC[{Interface, LookupSelector, InstanceMethod}];
1230 // Query lookupPrivateMethod() if the cache does not hit.
1231 if (!Val) {
1232 Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1234 if (!*Val) {
1235 // Query 'lookupMethod' as a backup.
1236 Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1240 return *Val;
1243 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1244 const ObjCMessageExpr *E = getOriginExpr();
1245 assert(E);
1246 Selector Sel = E->getSelector();
1248 if (E->isInstanceMessage()) {
1249 // Find the receiver type.
1250 const ObjCObjectType *ReceiverT = nullptr;
1251 bool CanBeSubClassed = false;
1252 bool LookingForInstanceMethod = true;
1253 QualType SupersType = E->getSuperType();
1254 const MemRegion *Receiver = nullptr;
1256 if (!SupersType.isNull()) {
1257 // The receiver is guaranteed to be 'super' in this case.
1258 // Super always means the type of immediate predecessor to the method
1259 // where the call occurs.
1260 ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1261 } else {
1262 Receiver = getReceiverSVal().getAsRegion();
1263 if (!Receiver)
1264 return {};
1266 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1267 if (!DTI.isValid()) {
1268 assert(isa<AllocaRegion>(Receiver) &&
1269 "Unhandled untyped region class!");
1270 return {};
1273 QualType DynType = DTI.getType();
1274 CanBeSubClassed = DTI.canBeASubClass();
1276 const auto *ReceiverDynT =
1277 dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1279 if (ReceiverDynT) {
1280 ReceiverT = ReceiverDynT->getObjectType();
1282 // It can be actually class methods called with Class object as a
1283 // receiver. This type of messages is treated by the compiler as
1284 // instance (not class).
1285 if (ReceiverT->isObjCClass()) {
1287 SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1288 // For [self classMethod], return compiler visible declaration.
1289 if (Receiver == SelfVal.getAsRegion()) {
1290 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1293 // Otherwise, let's check if we know something about the type
1294 // inside of this class object.
1295 if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1296 DynamicTypeInfo DTI =
1297 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1298 if (DTI.isValid()) {
1299 // Let's use this type for lookup.
1300 ReceiverT =
1301 cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1303 CanBeSubClassed = DTI.canBeASubClass();
1304 // And it should be a class method instead.
1305 LookingForInstanceMethod = false;
1310 if (CanBeSubClassed)
1311 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1312 // Even if `DynamicTypeInfo` told us that it can be
1313 // not necessarily this type, but its descendants, we still want
1314 // to check again if this selector can be actually overridden.
1315 CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1319 // Lookup the instance method implementation.
1320 if (ReceiverT)
1321 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1322 const ObjCMethodDecl *MD =
1323 lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1325 if (MD && !MD->hasBody())
1326 MD = MD->getCanonicalDecl();
1328 if (CanBeSubClassed)
1329 return RuntimeDefinition(MD, Receiver);
1330 else
1331 return RuntimeDefinition(MD, nullptr);
1333 } else {
1334 // This is a class method.
1335 // If we have type info for the receiver class, we are calling via
1336 // class name.
1337 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1338 // Find/Return the method implementation.
1339 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1343 return {};
1346 bool ObjCMethodCall::argumentsMayEscape() const {
1347 if (isInSystemHeader() && !isInstanceMessage()) {
1348 Selector Sel = getSelector();
1349 if (Sel.getNumArgs() == 1 &&
1350 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1351 return true;
1354 return CallEvent::argumentsMayEscape();
1357 void ObjCMethodCall::getInitialStackFrameContents(
1358 const StackFrameContext *CalleeCtx,
1359 BindingsTy &Bindings) const {
1360 const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1361 SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1362 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1363 D->parameters());
1365 SVal SelfVal = getReceiverSVal();
1366 if (!SelfVal.isUnknown()) {
1367 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1368 MemRegionManager &MRMgr = SVB.getRegionManager();
1369 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1370 Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1374 CallEventRef<>
1375 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1376 const LocationContext *LCtx) {
1377 if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1378 return create<CXXMemberCall>(MCE, State, LCtx);
1380 if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1381 const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1382 if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1383 if (MD->isInstance())
1384 return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1386 } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1387 return create<BlockCall>(CE, State, LCtx);
1390 // Otherwise, it's a normal function call, static member function call, or
1391 // something we can't reason about.
1392 return create<SimpleFunctionCall>(CE, State, LCtx);
1395 CallEventRef<>
1396 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1397 ProgramStateRef State) {
1398 const LocationContext *ParentCtx = CalleeCtx->getParent();
1399 const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1400 assert(CallerCtx && "This should not be used for top-level stack frames");
1402 const Stmt *CallSite = CalleeCtx->getCallSite();
1404 if (CallSite) {
1405 if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1406 return Out;
1408 SValBuilder &SVB = State->getStateManager().getSValBuilder();
1409 const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1410 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1411 SVal ThisVal = State->getSVal(ThisPtr);
1413 if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1414 return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
1415 else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1416 return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1417 CallerCtx);
1418 else {
1419 // All other cases are handled by getCall.
1420 llvm_unreachable("This is not an inlineable statement");
1424 // Fall back to the CFG. The only thing we haven't handled yet is
1425 // destructors, though this could change in the future.
1426 const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1427 CFGElement E = (*B)[CalleeCtx->getIndex()];
1428 assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1429 "All other CFG elements should have exprs");
1431 SValBuilder &SVB = State->getStateManager().getSValBuilder();
1432 const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1433 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1434 SVal ThisVal = State->getSVal(ThisPtr);
1436 const Stmt *Trigger;
1437 if (std::optional<CFGAutomaticObjDtor> AutoDtor =
1438 E.getAs<CFGAutomaticObjDtor>())
1439 Trigger = AutoDtor->getTriggerStmt();
1440 else if (std::optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1441 Trigger = DeleteDtor->getDeleteExpr();
1442 else
1443 Trigger = Dtor->getBody();
1445 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1446 E.getAs<CFGBaseDtor>().has_value(), State,
1447 CallerCtx);
1450 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1451 const LocationContext *LC) {
1452 if (const auto *CE = dyn_cast<CallExpr>(S)) {
1453 return getSimpleCall(CE, State, LC);
1454 } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1455 return getCXXAllocatorCall(NE, State, LC);
1456 } else if (const auto *DE = dyn_cast<CXXDeleteExpr>(S)) {
1457 return getCXXDeallocatorCall(DE, State, LC);
1458 } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1459 return getObjCMethodCall(ME, State, LC);
1460 } else {
1461 return nullptr;