[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / StaticAnalyzer / Core / RegionStore.cpp
blob46948c12617c0b78711daaacef582dbaf9e83a1d
1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a basic region store model. In this model, we do have field
10 // sensitivity. But we assume nothing about the heap shape. So recursive data
11 // structures are largely ignored. Basically we do 1-limiting analysis.
12 // Parameter pointers are assumed with no aliasing. Pointee objects of
13 // parameters are created lazily.
15 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/ASTMatchers/ASTMatchFinder.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Basic/JsonSupport.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <optional>
33 #include <utility>
35 using namespace clang;
36 using namespace ento;
38 //===----------------------------------------------------------------------===//
39 // Representation of binding keys.
40 //===----------------------------------------------------------------------===//
42 namespace {
43 class BindingKey {
44 public:
45 enum Kind { Default = 0x0, Direct = 0x1 };
46 private:
47 enum { Symbolic = 0x2 };
49 llvm::PointerIntPair<const MemRegion *, 2> P;
50 uint64_t Data;
52 /// Create a key for a binding to region \p r, which has a symbolic offset
53 /// from region \p Base.
54 explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55 : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56 assert(r && Base && "Must have known regions.");
57 assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
60 /// Create a key for a binding at \p offset from base region \p r.
61 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62 : P(r, k), Data(offset) {
63 assert(r && "Must have known regions.");
64 assert(getOffset() == offset && "Failed to store offset");
65 assert((r == r->getBaseRegion() ||
66 isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
67 "Not a base");
69 public:
71 bool isDirect() const { return P.getInt() & Direct; }
72 bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
74 const MemRegion *getRegion() const { return P.getPointer(); }
75 uint64_t getOffset() const {
76 assert(!hasSymbolicOffset());
77 return Data;
80 const SubRegion *getConcreteOffsetRegion() const {
81 assert(hasSymbolicOffset());
82 return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
85 const MemRegion *getBaseRegion() const {
86 if (hasSymbolicOffset())
87 return getConcreteOffsetRegion()->getBaseRegion();
88 return getRegion()->getBaseRegion();
91 void Profile(llvm::FoldingSetNodeID& ID) const {
92 ID.AddPointer(P.getOpaqueValue());
93 ID.AddInteger(Data);
96 static BindingKey Make(const MemRegion *R, Kind k);
98 bool operator<(const BindingKey &X) const {
99 if (P.getOpaqueValue() < X.P.getOpaqueValue())
100 return true;
101 if (P.getOpaqueValue() > X.P.getOpaqueValue())
102 return false;
103 return Data < X.Data;
106 bool operator==(const BindingKey &X) const {
107 return P.getOpaqueValue() == X.P.getOpaqueValue() &&
108 Data == X.Data;
111 LLVM_DUMP_METHOD void dump() const;
113 } // end anonymous namespace
115 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
116 const RegionOffset &RO = R->getAsOffset();
117 if (RO.hasSymbolicOffset())
118 return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
120 return BindingKey(RO.getRegion(), RO.getOffset(), k);
123 namespace llvm {
124 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
125 Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
126 << "\", \"offset\": ";
128 if (!K.hasSymbolicOffset())
129 Out << K.getOffset();
130 else
131 Out << "null";
133 return Out;
136 } // namespace llvm
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 void BindingKey::dump() const { llvm::errs() << *this; }
140 #endif
142 //===----------------------------------------------------------------------===//
143 // Actual Store type.
144 //===----------------------------------------------------------------------===//
146 typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
147 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
148 typedef std::pair<BindingKey, SVal> BindingPair;
150 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
151 RegionBindings;
153 namespace {
154 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
155 ClusterBindings> {
156 ClusterBindings::Factory *CBFactory;
158 // This flag indicates whether the current bindings are within the analysis
159 // that has started from main(). It affects how we perform loads from
160 // global variables that have initializers: if we have observed the
161 // program execution from the start and we know that these variables
162 // have not been overwritten yet, we can be sure that their initializers
163 // are still relevant. This flag never gets changed when the bindings are
164 // updated, so it could potentially be moved into RegionStoreManager
165 // (as if it's the same bindings but a different loading procedure)
166 // however that would have made the manager needlessly stateful.
167 bool IsMainAnalysis;
169 public:
170 typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
171 ParentTy;
173 RegionBindingsRef(ClusterBindings::Factory &CBFactory,
174 const RegionBindings::TreeTy *T,
175 RegionBindings::TreeTy::Factory *F,
176 bool IsMainAnalysis)
177 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
178 CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
180 RegionBindingsRef(const ParentTy &P,
181 ClusterBindings::Factory &CBFactory,
182 bool IsMainAnalysis)
183 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
184 CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
186 RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
187 return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
188 *CBFactory, IsMainAnalysis);
191 RegionBindingsRef remove(key_type_ref K) const {
192 return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
193 *CBFactory, IsMainAnalysis);
196 RegionBindingsRef addBinding(BindingKey K, SVal V) const;
198 RegionBindingsRef addBinding(const MemRegion *R,
199 BindingKey::Kind k, SVal V) const;
201 const SVal *lookup(BindingKey K) const;
202 const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
203 using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
205 RegionBindingsRef removeBinding(BindingKey K);
207 RegionBindingsRef removeBinding(const MemRegion *R,
208 BindingKey::Kind k);
210 RegionBindingsRef removeBinding(const MemRegion *R) {
211 return removeBinding(R, BindingKey::Direct).
212 removeBinding(R, BindingKey::Default);
215 std::optional<SVal> getDirectBinding(const MemRegion *R) const;
217 /// getDefaultBinding - Returns an SVal* representing an optional default
218 /// binding associated with a region and its subregions.
219 std::optional<SVal> getDefaultBinding(const MemRegion *R) const;
221 /// Return the internal tree as a Store.
222 Store asStore() const {
223 llvm::PointerIntPair<Store, 1, bool> Ptr = {
224 asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
225 return reinterpret_cast<Store>(Ptr.getOpaqueValue());
228 bool isMainAnalysis() const {
229 return IsMainAnalysis;
232 void printJson(raw_ostream &Out, const char *NL = "\n",
233 unsigned int Space = 0, bool IsDot = false) const {
234 for (iterator I = begin(); I != end(); ++I) {
235 // TODO: We might need a .printJson for I.getKey() as well.
236 Indent(Out, Space, IsDot)
237 << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
238 << (const void *)I.getKey() << "\", \"items\": [" << NL;
240 ++Space;
241 const ClusterBindings &CB = I.getData();
242 for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
243 Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
244 CI.getData().printJson(Out, /*AddQuotes=*/true);
245 Out << " }";
246 if (std::next(CI) != CB.end())
247 Out << ',';
248 Out << NL;
251 --Space;
252 Indent(Out, Space, IsDot) << "]}";
253 if (std::next(I) != end())
254 Out << ',';
255 Out << NL;
259 LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
261 } // end anonymous namespace
263 typedef const RegionBindingsRef& RegionBindingsConstRef;
265 std::optional<SVal>
266 RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
267 const SVal *V = lookup(R, BindingKey::Direct);
268 return V ? std::optional<SVal>(*V) : std::nullopt;
271 std::optional<SVal>
272 RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
273 const SVal *V = lookup(R, BindingKey::Default);
274 return V ? std::optional<SVal>(*V) : std::nullopt;
277 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
278 const MemRegion *Base = K.getBaseRegion();
280 const ClusterBindings *ExistingCluster = lookup(Base);
281 ClusterBindings Cluster =
282 (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
284 ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
285 return add(Base, NewCluster);
289 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
290 BindingKey::Kind k,
291 SVal V) const {
292 return addBinding(BindingKey::Make(R, k), V);
295 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
296 const ClusterBindings *Cluster = lookup(K.getBaseRegion());
297 if (!Cluster)
298 return nullptr;
299 return Cluster->lookup(K);
302 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
303 BindingKey::Kind k) const {
304 return lookup(BindingKey::Make(R, k));
307 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
308 const MemRegion *Base = K.getBaseRegion();
309 const ClusterBindings *Cluster = lookup(Base);
310 if (!Cluster)
311 return *this;
313 ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
314 if (NewCluster.isEmpty())
315 return remove(Base);
316 return add(Base, NewCluster);
319 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
320 BindingKey::Kind k){
321 return removeBinding(BindingKey::Make(R, k));
324 //===----------------------------------------------------------------------===//
325 // Main RegionStore logic.
326 //===----------------------------------------------------------------------===//
328 namespace {
329 class InvalidateRegionsWorker;
331 class RegionStoreManager : public StoreManager {
332 public:
333 RegionBindings::Factory RBFactory;
334 mutable ClusterBindings::Factory CBFactory;
336 typedef std::vector<SVal> SValListTy;
337 private:
338 typedef llvm::DenseMap<const LazyCompoundValData *,
339 SValListTy> LazyBindingsMapTy;
340 LazyBindingsMapTy LazyBindingsMap;
342 /// The largest number of fields a struct can have and still be
343 /// considered "small".
345 /// This is currently used to decide whether or not it is worth "forcing" a
346 /// LazyCompoundVal on bind.
348 /// This is controlled by 'region-store-small-struct-limit' option.
349 /// To disable all small-struct-dependent behavior, set the option to "0".
350 unsigned SmallStructLimit;
352 /// The largest number of element an array can have and still be
353 /// considered "small".
355 /// This is currently used to decide whether or not it is worth "forcing" a
356 /// LazyCompoundVal on bind.
358 /// This is controlled by 'region-store-small-struct-limit' option.
359 /// To disable all small-struct-dependent behavior, set the option to "0".
360 unsigned SmallArrayLimit;
362 /// A helper used to populate the work list with the given set of
363 /// regions.
364 void populateWorkList(InvalidateRegionsWorker &W,
365 ArrayRef<SVal> Values,
366 InvalidatedRegions *TopLevelRegions);
368 public:
369 RegionStoreManager(ProgramStateManager &mgr)
370 : StoreManager(mgr), RBFactory(mgr.getAllocator()),
371 CBFactory(mgr.getAllocator()), SmallStructLimit(0), SmallArrayLimit(0) {
372 ExprEngine &Eng = StateMgr.getOwningEngine();
373 AnalyzerOptions &Options = Eng.getAnalysisManager().options;
374 SmallStructLimit = Options.RegionStoreSmallStructLimit;
375 SmallArrayLimit = Options.RegionStoreSmallArrayLimit;
378 /// setImplicitDefaultValue - Set the default binding for the provided
379 /// MemRegion to the value implicitly defined for compound literals when
380 /// the value is not specified.
381 RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
382 const MemRegion *R, QualType T);
384 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
385 /// type. 'Array' represents the lvalue of the array being decayed
386 /// to a pointer, and the returned SVal represents the decayed
387 /// version of that lvalue (i.e., a pointer to the first element of
388 /// the array). This is called by ExprEngine when evaluating
389 /// casts from arrays to pointers.
390 SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
392 /// Creates the Store that correctly represents memory contents before
393 /// the beginning of the analysis of the given top-level stack frame.
394 StoreRef getInitialStore(const LocationContext *InitLoc) override {
395 bool IsMainAnalysis = false;
396 if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
397 IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
398 return StoreRef(RegionBindingsRef(
399 RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
400 CBFactory, IsMainAnalysis).asStore(), *this);
403 //===-------------------------------------------------------------------===//
404 // Binding values to regions.
405 //===-------------------------------------------------------------------===//
406 RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
407 const Expr *Ex,
408 unsigned Count,
409 const LocationContext *LCtx,
410 RegionBindingsRef B,
411 InvalidatedRegions *Invalidated);
413 StoreRef invalidateRegions(Store store,
414 ArrayRef<SVal> Values,
415 const Expr *E, unsigned Count,
416 const LocationContext *LCtx,
417 const CallEvent *Call,
418 InvalidatedSymbols &IS,
419 RegionAndSymbolInvalidationTraits &ITraits,
420 InvalidatedRegions *Invalidated,
421 InvalidatedRegions *InvalidatedTopLevel) override;
423 bool scanReachableSymbols(Store S, const MemRegion *R,
424 ScanReachableSymbols &Callbacks) override;
426 RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
427 const SubRegion *R);
428 std::optional<SVal>
429 getConstantValFromConstArrayInitializer(RegionBindingsConstRef B,
430 const ElementRegion *R);
431 std::optional<SVal>
432 getSValFromInitListExpr(const InitListExpr *ILE,
433 const SmallVector<uint64_t, 2> &ConcreteOffsets,
434 QualType ElemT);
435 SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset,
436 QualType ElemT);
438 public: // Part of public interface to class.
440 StoreRef Bind(Store store, Loc LV, SVal V) override {
441 return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
444 RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
446 // BindDefaultInitial is only used to initialize a region with
447 // a default value.
448 StoreRef BindDefaultInitial(Store store, const MemRegion *R,
449 SVal V) override {
450 RegionBindingsRef B = getRegionBindings(store);
451 // Use other APIs when you have to wipe the region that was initialized
452 // earlier.
453 assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
454 "Double initialization!");
455 B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
456 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
459 // BindDefaultZero is used for zeroing constructors that may accidentally
460 // overwrite existing bindings.
461 StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
462 // FIXME: The offsets of empty bases can be tricky because of
463 // of the so called "empty base class optimization".
464 // If a base class has been optimized out
465 // we should not try to create a binding, otherwise we should.
466 // Unfortunately, at the moment ASTRecordLayout doesn't expose
467 // the actual sizes of the empty bases
468 // and trying to infer them from offsets/alignments
469 // seems to be error-prone and non-trivial because of the trailing padding.
470 // As a temporary mitigation we don't create bindings for empty bases.
471 if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
472 if (BR->getDecl()->isEmpty())
473 return StoreRef(store, *this);
475 RegionBindingsRef B = getRegionBindings(store);
476 SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
477 B = removeSubRegionBindings(B, cast<SubRegion>(R));
478 B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
479 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
482 /// Attempt to extract the fields of \p LCV and bind them to the struct region
483 /// \p R.
485 /// This path is used when it seems advantageous to "force" loading the values
486 /// within a LazyCompoundVal to bind memberwise to the struct region, rather
487 /// than using a Default binding at the base of the entire region. This is a
488 /// heuristic attempting to avoid building long chains of LazyCompoundVals.
490 /// \returns The updated store bindings, or \c std::nullopt if binding
491 /// non-lazily would be too expensive.
492 std::optional<RegionBindingsRef>
493 tryBindSmallStruct(RegionBindingsConstRef B, const TypedValueRegion *R,
494 const RecordDecl *RD, nonloc::LazyCompoundVal LCV);
496 /// BindStruct - Bind a compound value to a structure.
497 RegionBindingsRef bindStruct(RegionBindingsConstRef B,
498 const TypedValueRegion* R, SVal V);
500 /// BindVector - Bind a compound value to a vector.
501 RegionBindingsRef bindVector(RegionBindingsConstRef B,
502 const TypedValueRegion* R, SVal V);
504 std::optional<RegionBindingsRef>
505 tryBindSmallArray(RegionBindingsConstRef B, const TypedValueRegion *R,
506 const ArrayType *AT, nonloc::LazyCompoundVal LCV);
508 RegionBindingsRef bindArray(RegionBindingsConstRef B,
509 const TypedValueRegion* R,
510 SVal V);
512 /// Clears out all bindings in the given region and assigns a new value
513 /// as a Default binding.
514 RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
515 const TypedRegion *R,
516 SVal DefaultVal);
518 /// Create a new store with the specified binding removed.
519 /// \param ST the original store, that is the basis for the new store.
520 /// \param L the location whose binding should be removed.
521 StoreRef killBinding(Store ST, Loc L) override;
523 void incrementReferenceCount(Store store) override {
524 getRegionBindings(store).manualRetain();
527 /// If the StoreManager supports it, decrement the reference count of
528 /// the specified Store object. If the reference count hits 0, the memory
529 /// associated with the object is recycled.
530 void decrementReferenceCount(Store store) override {
531 getRegionBindings(store).manualRelease();
534 bool includedInBindings(Store store, const MemRegion *region) const override;
536 /// Return the value bound to specified location in a given state.
538 /// The high level logic for this method is this:
539 /// getBinding (L)
540 /// if L has binding
541 /// return L's binding
542 /// else if L is in killset
543 /// return unknown
544 /// else
545 /// if L is on stack or heap
546 /// return undefined
547 /// else
548 /// return symbolic
549 SVal getBinding(Store S, Loc L, QualType T) override {
550 return getBinding(getRegionBindings(S), L, T);
553 std::optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
554 RegionBindingsRef B = getRegionBindings(S);
555 // Default bindings are always applied over a base region so look up the
556 // base region's default binding, otherwise the lookup will fail when R
557 // is at an offset from R->getBaseRegion().
558 return B.getDefaultBinding(R->getBaseRegion());
561 SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
563 SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
565 SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
567 SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
569 SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
571 SVal getBindingForLazySymbol(const TypedValueRegion *R);
573 SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
574 const TypedValueRegion *R,
575 QualType Ty);
577 SVal getLazyBinding(const SubRegion *LazyBindingRegion,
578 RegionBindingsRef LazyBinding);
580 /// Get bindings for the values in a struct and return a CompoundVal, used
581 /// when doing struct copy:
582 /// struct s x, y;
583 /// x = y;
584 /// y's value is retrieved by this method.
585 SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
586 SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
587 NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
589 /// Used to lazily generate derived symbols for bindings that are defined
590 /// implicitly by default bindings in a super region.
592 /// Note that callers may need to specially handle LazyCompoundVals, which
593 /// are returned as is in case the caller needs to treat them differently.
594 std::optional<SVal>
595 getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
596 const MemRegion *superR,
597 const TypedValueRegion *R, QualType Ty);
599 /// Get the state and region whose binding this region \p R corresponds to.
601 /// If there is no lazy binding for \p R, the returned value will have a null
602 /// \c second. Note that a null pointer can represents a valid Store.
603 std::pair<Store, const SubRegion *>
604 findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
605 const SubRegion *originalRegion);
607 /// Returns the cached set of interesting SVals contained within a lazy
608 /// binding.
610 /// The precise value of "interesting" is determined for the purposes of
611 /// RegionStore's internal analysis. It must always contain all regions and
612 /// symbols, but may omit constants and other kinds of SVal.
614 /// In contrast to compound values, LazyCompoundVals are also added
615 /// to the 'interesting values' list in addition to the child interesting
616 /// values.
617 const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
619 //===------------------------------------------------------------------===//
620 // State pruning.
621 //===------------------------------------------------------------------===//
623 /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
624 /// It returns a new Store with these values removed.
625 StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
626 SymbolReaper& SymReaper) override;
628 //===------------------------------------------------------------------===//
629 // Utility methods.
630 //===------------------------------------------------------------------===//
632 RegionBindingsRef getRegionBindings(Store store) const {
633 llvm::PointerIntPair<Store, 1, bool> Ptr;
634 Ptr.setFromOpaqueValue(const_cast<void *>(store));
635 return RegionBindingsRef(
636 CBFactory,
637 static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
638 RBFactory.getTreeFactory(),
639 Ptr.getInt());
642 void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
643 unsigned int Space = 0, bool IsDot = false) const override;
645 void iterBindings(Store store, BindingsHandler& f) override {
646 RegionBindingsRef B = getRegionBindings(store);
647 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
648 const ClusterBindings &Cluster = I.getData();
649 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
650 CI != CE; ++CI) {
651 const BindingKey &K = CI.getKey();
652 if (!K.isDirect())
653 continue;
654 if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
655 // FIXME: Possibly incorporate the offset?
656 if (!f.HandleBinding(*this, store, R, CI.getData()))
657 return;
664 } // end anonymous namespace
666 //===----------------------------------------------------------------------===//
667 // RegionStore creation.
668 //===----------------------------------------------------------------------===//
670 std::unique_ptr<StoreManager>
671 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
672 return std::make_unique<RegionStoreManager>(StMgr);
675 //===----------------------------------------------------------------------===//
676 // Region Cluster analysis.
677 //===----------------------------------------------------------------------===//
679 namespace {
680 /// Used to determine which global regions are automatically included in the
681 /// initial worklist of a ClusterAnalysis.
682 enum GlobalsFilterKind {
683 /// Don't include any global regions.
684 GFK_None,
685 /// Only include system globals.
686 GFK_SystemOnly,
687 /// Include all global regions.
688 GFK_All
691 template <typename DERIVED>
692 class ClusterAnalysis {
693 protected:
694 typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
695 typedef const MemRegion * WorkListElement;
696 typedef SmallVector<WorkListElement, 10> WorkList;
698 llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
700 WorkList WL;
702 RegionStoreManager &RM;
703 ASTContext &Ctx;
704 SValBuilder &svalBuilder;
706 RegionBindingsRef B;
709 protected:
710 const ClusterBindings *getCluster(const MemRegion *R) {
711 return B.lookup(R);
714 /// Returns true if all clusters in the given memspace should be initially
715 /// included in the cluster analysis. Subclasses may provide their
716 /// own implementation.
717 bool includeEntireMemorySpace(const MemRegion *Base) {
718 return false;
721 public:
722 ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
723 RegionBindingsRef b)
724 : RM(rm), Ctx(StateMgr.getContext()),
725 svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
727 RegionBindingsRef getRegionBindings() const { return B; }
729 bool isVisited(const MemRegion *R) {
730 return Visited.count(getCluster(R));
733 void GenerateClusters() {
734 // Scan the entire set of bindings and record the region clusters.
735 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
736 RI != RE; ++RI){
737 const MemRegion *Base = RI.getKey();
739 const ClusterBindings &Cluster = RI.getData();
740 assert(!Cluster.isEmpty() && "Empty clusters should be removed");
741 static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
743 // If the base's memspace should be entirely invalidated, add the cluster
744 // to the workspace up front.
745 if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
746 AddToWorkList(WorkListElement(Base), &Cluster);
750 bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
751 if (C && !Visited.insert(C).second)
752 return false;
753 WL.push_back(E);
754 return true;
757 bool AddToWorkList(const MemRegion *R) {
758 return static_cast<DERIVED*>(this)->AddToWorkList(R);
761 void RunWorkList() {
762 while (!WL.empty()) {
763 WorkListElement E = WL.pop_back_val();
764 const MemRegion *BaseR = E;
766 static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
770 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
771 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
773 void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
774 bool Flag) {
775 static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
780 //===----------------------------------------------------------------------===//
781 // Binding invalidation.
782 //===----------------------------------------------------------------------===//
784 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
785 ScanReachableSymbols &Callbacks) {
786 assert(R == R->getBaseRegion() && "Should only be called for base regions");
787 RegionBindingsRef B = getRegionBindings(S);
788 const ClusterBindings *Cluster = B.lookup(R);
790 if (!Cluster)
791 return true;
793 for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
794 RI != RE; ++RI) {
795 if (!Callbacks.scan(RI.getData()))
796 return false;
799 return true;
802 static inline bool isUnionField(const FieldRegion *FR) {
803 return FR->getDecl()->getParent()->isUnion();
806 typedef SmallVector<const FieldDecl *, 8> FieldVector;
808 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
809 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
811 const MemRegion *Base = K.getConcreteOffsetRegion();
812 const MemRegion *R = K.getRegion();
814 while (R != Base) {
815 if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
816 if (!isUnionField(FR))
817 Fields.push_back(FR->getDecl());
819 R = cast<SubRegion>(R)->getSuperRegion();
823 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
824 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
826 if (Fields.empty())
827 return true;
829 FieldVector FieldsInBindingKey;
830 getSymbolicOffsetFields(K, FieldsInBindingKey);
832 ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
833 if (Delta >= 0)
834 return std::equal(FieldsInBindingKey.begin() + Delta,
835 FieldsInBindingKey.end(),
836 Fields.begin());
837 else
838 return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
839 Fields.begin() - Delta);
842 /// Collects all bindings in \p Cluster that may refer to bindings within
843 /// \p Top.
845 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
846 /// \c second is the value (an SVal).
848 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
849 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
850 /// an aggregate within a larger aggregate with a default binding.
851 static void
852 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
853 SValBuilder &SVB, const ClusterBindings &Cluster,
854 const SubRegion *Top, BindingKey TopKey,
855 bool IncludeAllDefaultBindings) {
856 FieldVector FieldsInSymbolicSubregions;
857 if (TopKey.hasSymbolicOffset()) {
858 getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
859 Top = TopKey.getConcreteOffsetRegion();
860 TopKey = BindingKey::Make(Top, BindingKey::Default);
863 // Find the length (in bits) of the region being invalidated.
864 uint64_t Length = UINT64_MAX;
865 SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
866 if (std::optional<nonloc::ConcreteInt> ExtentCI =
867 Extent.getAs<nonloc::ConcreteInt>()) {
868 const llvm::APSInt &ExtentInt = ExtentCI->getValue();
869 assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
870 // Extents are in bytes but region offsets are in bits. Be careful!
871 Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
872 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
873 if (FR->getDecl()->isBitField())
874 Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
877 for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
878 I != E; ++I) {
879 BindingKey NextKey = I.getKey();
880 if (NextKey.getRegion() == TopKey.getRegion()) {
881 // FIXME: This doesn't catch the case where we're really invalidating a
882 // region with a symbolic offset. Example:
883 // R: points[i].y
884 // Next: points[0].x
886 if (NextKey.getOffset() > TopKey.getOffset() &&
887 NextKey.getOffset() - TopKey.getOffset() < Length) {
888 // Case 1: The next binding is inside the region we're invalidating.
889 // Include it.
890 Bindings.push_back(*I);
892 } else if (NextKey.getOffset() == TopKey.getOffset()) {
893 // Case 2: The next binding is at the same offset as the region we're
894 // invalidating. In this case, we need to leave default bindings alone,
895 // since they may be providing a default value for a regions beyond what
896 // we're invalidating.
897 // FIXME: This is probably incorrect; consider invalidating an outer
898 // struct whose first field is bound to a LazyCompoundVal.
899 if (IncludeAllDefaultBindings || NextKey.isDirect())
900 Bindings.push_back(*I);
903 } else if (NextKey.hasSymbolicOffset()) {
904 const MemRegion *Base = NextKey.getConcreteOffsetRegion();
905 if (Top->isSubRegionOf(Base) && Top != Base) {
906 // Case 3: The next key is symbolic and we just changed something within
907 // its concrete region. We don't know if the binding is still valid, so
908 // we'll be conservative and include it.
909 if (IncludeAllDefaultBindings || NextKey.isDirect())
910 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
911 Bindings.push_back(*I);
912 } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
913 // Case 4: The next key is symbolic, but we changed a known
914 // super-region. In this case the binding is certainly included.
915 if (BaseSR->isSubRegionOf(Top))
916 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
917 Bindings.push_back(*I);
923 static void
924 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
925 SValBuilder &SVB, const ClusterBindings &Cluster,
926 const SubRegion *Top, bool IncludeAllDefaultBindings) {
927 collectSubRegionBindings(Bindings, SVB, Cluster, Top,
928 BindingKey::Make(Top, BindingKey::Default),
929 IncludeAllDefaultBindings);
932 RegionBindingsRef
933 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
934 const SubRegion *Top) {
935 BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
936 const MemRegion *ClusterHead = TopKey.getBaseRegion();
938 if (Top == ClusterHead) {
939 // We can remove an entire cluster's bindings all in one go.
940 return B.remove(Top);
943 const ClusterBindings *Cluster = B.lookup(ClusterHead);
944 if (!Cluster) {
945 // If we're invalidating a region with a symbolic offset, we need to make
946 // sure we don't treat the base region as uninitialized anymore.
947 if (TopKey.hasSymbolicOffset()) {
948 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
949 return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
951 return B;
954 SmallVector<BindingPair, 32> Bindings;
955 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
956 /*IncludeAllDefaultBindings=*/false);
958 ClusterBindingsRef Result(*Cluster, CBFactory);
959 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
960 E = Bindings.end();
961 I != E; ++I)
962 Result = Result.remove(I->first);
964 // If we're invalidating a region with a symbolic offset, we need to make sure
965 // we don't treat the base region as uninitialized anymore.
966 // FIXME: This isn't very precise; see the example in
967 // collectSubRegionBindings.
968 if (TopKey.hasSymbolicOffset()) {
969 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
970 Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
971 UnknownVal());
974 if (Result.isEmpty())
975 return B.remove(ClusterHead);
976 return B.add(ClusterHead, Result.asImmutableMap());
979 namespace {
980 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
982 const Expr *Ex;
983 unsigned Count;
984 const LocationContext *LCtx;
985 InvalidatedSymbols &IS;
986 RegionAndSymbolInvalidationTraits &ITraits;
987 StoreManager::InvalidatedRegions *Regions;
988 GlobalsFilterKind GlobalsFilter;
989 public:
990 InvalidateRegionsWorker(RegionStoreManager &rm,
991 ProgramStateManager &stateMgr,
992 RegionBindingsRef b,
993 const Expr *ex, unsigned count,
994 const LocationContext *lctx,
995 InvalidatedSymbols &is,
996 RegionAndSymbolInvalidationTraits &ITraitsIn,
997 StoreManager::InvalidatedRegions *r,
998 GlobalsFilterKind GFK)
999 : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
1000 Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
1001 GlobalsFilter(GFK) {}
1003 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1004 void VisitBinding(SVal V);
1006 using ClusterAnalysis::AddToWorkList;
1008 bool AddToWorkList(const MemRegion *R);
1010 /// Returns true if all clusters in the memory space for \p Base should be
1011 /// be invalidated.
1012 bool includeEntireMemorySpace(const MemRegion *Base);
1014 /// Returns true if the memory space of the given region is one of the global
1015 /// regions specially included at the start of invalidation.
1016 bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1020 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1021 bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1022 R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1023 const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1024 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1027 void InvalidateRegionsWorker::VisitBinding(SVal V) {
1028 // A symbol? Mark it touched by the invalidation.
1029 if (SymbolRef Sym = V.getAsSymbol())
1030 IS.insert(Sym);
1032 if (const MemRegion *R = V.getAsRegion()) {
1033 AddToWorkList(R);
1034 return;
1037 // Is it a LazyCompoundVal? All references get invalidated as well.
1038 if (std::optional<nonloc::LazyCompoundVal> LCS =
1039 V.getAs<nonloc::LazyCompoundVal>()) {
1041 // `getInterestingValues()` returns SVals contained within LazyCompoundVals,
1042 // so there is no need to visit them.
1043 for (SVal V : RM.getInterestingValues(*LCS))
1044 if (!isa<nonloc::LazyCompoundVal>(V))
1045 VisitBinding(V);
1047 return;
1051 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1052 const ClusterBindings *C) {
1054 bool PreserveRegionsContents =
1055 ITraits.hasTrait(baseR,
1056 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1058 if (C) {
1059 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1060 VisitBinding(I.getData());
1062 // Invalidate regions contents.
1063 if (!PreserveRegionsContents)
1064 B = B.remove(baseR);
1067 if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1068 if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1070 // Lambdas can affect all static local variables without explicitly
1071 // capturing those.
1072 // We invalidate all static locals referenced inside the lambda body.
1073 if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1074 using namespace ast_matchers;
1076 const char *DeclBind = "DeclBind";
1077 StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1078 to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1079 auto Matches =
1080 match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1081 RD->getASTContext());
1083 for (BoundNodes &Match : Matches) {
1084 auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1085 const VarRegion *ToInvalidate =
1086 RM.getRegionManager().getVarRegion(VD, LCtx);
1087 AddToWorkList(ToInvalidate);
1093 // BlockDataRegion? If so, invalidate captured variables that are passed
1094 // by reference.
1095 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1096 for (BlockDataRegion::referenced_vars_iterator
1097 BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1098 BI != BE; ++BI) {
1099 const VarRegion *VR = BI.getCapturedRegion();
1100 const VarDecl *VD = VR->getDecl();
1101 if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1102 AddToWorkList(VR);
1104 else if (Loc::isLocType(VR->getValueType())) {
1105 // Map the current bindings to a Store to retrieve the value
1106 // of the binding. If that binding itself is a region, we should
1107 // invalidate that region. This is because a block may capture
1108 // a pointer value, but the thing pointed by that pointer may
1109 // get invalidated.
1110 SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1111 if (std::optional<Loc> L = V.getAs<Loc>()) {
1112 if (const MemRegion *LR = L->getAsRegion())
1113 AddToWorkList(LR);
1117 return;
1120 // Symbolic region?
1121 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1122 IS.insert(SR->getSymbol());
1124 // Nothing else should be done in the case when we preserve regions context.
1125 if (PreserveRegionsContents)
1126 return;
1128 // Otherwise, we have a normal data region. Record that we touched the region.
1129 if (Regions)
1130 Regions->push_back(baseR);
1132 if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1133 // Invalidate the region by setting its default value to
1134 // conjured symbol. The type of the symbol is irrelevant.
1135 DefinedOrUnknownSVal V =
1136 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1137 B = B.addBinding(baseR, BindingKey::Default, V);
1138 return;
1141 if (!baseR->isBoundable())
1142 return;
1144 const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1145 QualType T = TR->getValueType();
1147 if (isInitiallyIncludedGlobalRegion(baseR)) {
1148 // If the region is a global and we are invalidating all globals,
1149 // erasing the entry is good enough. This causes all globals to be lazily
1150 // symbolicated from the same base symbol.
1151 return;
1154 if (T->isRecordType()) {
1155 // Invalidate the region by setting its default value to
1156 // conjured symbol. The type of the symbol is irrelevant.
1157 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1158 Ctx.IntTy, Count);
1159 B = B.addBinding(baseR, BindingKey::Default, V);
1160 return;
1163 if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1164 bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1165 baseR,
1166 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1168 if (doNotInvalidateSuperRegion) {
1169 // We are not doing blank invalidation of the whole array region so we
1170 // have to manually invalidate each elements.
1171 std::optional<uint64_t> NumElements;
1173 // Compute lower and upper offsets for region within array.
1174 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1175 NumElements = CAT->getSize().getZExtValue();
1176 if (!NumElements) // We are not dealing with a constant size array
1177 goto conjure_default;
1178 QualType ElementTy = AT->getElementType();
1179 uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1180 const RegionOffset &RO = baseR->getAsOffset();
1181 const MemRegion *SuperR = baseR->getBaseRegion();
1182 if (RO.hasSymbolicOffset()) {
1183 // If base region has a symbolic offset,
1184 // we revert to invalidating the super region.
1185 if (SuperR)
1186 AddToWorkList(SuperR);
1187 goto conjure_default;
1190 uint64_t LowerOffset = RO.getOffset();
1191 uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1192 bool UpperOverflow = UpperOffset < LowerOffset;
1194 // Invalidate regions which are within array boundaries,
1195 // or have a symbolic offset.
1196 if (!SuperR)
1197 goto conjure_default;
1199 const ClusterBindings *C = B.lookup(SuperR);
1200 if (!C)
1201 goto conjure_default;
1203 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1204 ++I) {
1205 const BindingKey &BK = I.getKey();
1206 std::optional<uint64_t> ROffset =
1207 BK.hasSymbolicOffset() ? std::optional<uint64_t>() : BK.getOffset();
1209 // Check offset is not symbolic and within array's boundaries.
1210 // Handles arrays of 0 elements and of 0-sized elements as well.
1211 if (!ROffset ||
1212 ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1213 (UpperOverflow &&
1214 (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1215 (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1216 B = B.removeBinding(I.getKey());
1217 // Bound symbolic regions need to be invalidated for dead symbol
1218 // detection.
1219 SVal V = I.getData();
1220 const MemRegion *R = V.getAsRegion();
1221 if (isa_and_nonnull<SymbolicRegion>(R))
1222 VisitBinding(V);
1226 conjure_default:
1227 // Set the default value of the array to conjured symbol.
1228 DefinedOrUnknownSVal V =
1229 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1230 AT->getElementType(), Count);
1231 B = B.addBinding(baseR, BindingKey::Default, V);
1232 return;
1235 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1236 T,Count);
1237 assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1238 B = B.addBinding(baseR, BindingKey::Direct, V);
1241 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1242 const MemRegion *R) {
1243 switch (GlobalsFilter) {
1244 case GFK_None:
1245 return false;
1246 case GFK_SystemOnly:
1247 return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1248 case GFK_All:
1249 return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1252 llvm_unreachable("unknown globals filter");
1255 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1256 if (isInitiallyIncludedGlobalRegion(Base))
1257 return true;
1259 const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1260 return ITraits.hasTrait(MemSpace,
1261 RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1264 RegionBindingsRef
1265 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1266 const Expr *Ex,
1267 unsigned Count,
1268 const LocationContext *LCtx,
1269 RegionBindingsRef B,
1270 InvalidatedRegions *Invalidated) {
1271 // Bind the globals memory space to a new symbol that we will use to derive
1272 // the bindings for all globals.
1273 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1274 SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1275 /* type does not matter */ Ctx.IntTy,
1276 Count);
1278 B = B.removeBinding(GS)
1279 .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1281 // Even if there are no bindings in the global scope, we still need to
1282 // record that we touched it.
1283 if (Invalidated)
1284 Invalidated->push_back(GS);
1286 return B;
1289 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1290 ArrayRef<SVal> Values,
1291 InvalidatedRegions *TopLevelRegions) {
1292 for (ArrayRef<SVal>::iterator I = Values.begin(),
1293 E = Values.end(); I != E; ++I) {
1294 SVal V = *I;
1295 if (std::optional<nonloc::LazyCompoundVal> LCS =
1296 V.getAs<nonloc::LazyCompoundVal>()) {
1298 for (SVal S : getInterestingValues(*LCS))
1299 if (const MemRegion *R = S.getAsRegion())
1300 W.AddToWorkList(R);
1302 continue;
1305 if (const MemRegion *R = V.getAsRegion()) {
1306 if (TopLevelRegions)
1307 TopLevelRegions->push_back(R);
1308 W.AddToWorkList(R);
1309 continue;
1314 StoreRef
1315 RegionStoreManager::invalidateRegions(Store store,
1316 ArrayRef<SVal> Values,
1317 const Expr *Ex, unsigned Count,
1318 const LocationContext *LCtx,
1319 const CallEvent *Call,
1320 InvalidatedSymbols &IS,
1321 RegionAndSymbolInvalidationTraits &ITraits,
1322 InvalidatedRegions *TopLevelRegions,
1323 InvalidatedRegions *Invalidated) {
1324 GlobalsFilterKind GlobalsFilter;
1325 if (Call) {
1326 if (Call->isInSystemHeader())
1327 GlobalsFilter = GFK_SystemOnly;
1328 else
1329 GlobalsFilter = GFK_All;
1330 } else {
1331 GlobalsFilter = GFK_None;
1334 RegionBindingsRef B = getRegionBindings(store);
1335 InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1336 Invalidated, GlobalsFilter);
1338 // Scan the bindings and generate the clusters.
1339 W.GenerateClusters();
1341 // Add the regions to the worklist.
1342 populateWorkList(W, Values, TopLevelRegions);
1344 W.RunWorkList();
1346 // Return the new bindings.
1347 B = W.getRegionBindings();
1349 // For calls, determine which global regions should be invalidated and
1350 // invalidate them. (Note that function-static and immutable globals are never
1351 // invalidated by this.)
1352 // TODO: This could possibly be more precise with modules.
1353 switch (GlobalsFilter) {
1354 case GFK_All:
1355 B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1356 Ex, Count, LCtx, B, Invalidated);
1357 [[fallthrough]];
1358 case GFK_SystemOnly:
1359 B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1360 Ex, Count, LCtx, B, Invalidated);
1361 [[fallthrough]];
1362 case GFK_None:
1363 break;
1366 return StoreRef(B.asStore(), *this);
1369 //===----------------------------------------------------------------------===//
1370 // Location and region casting.
1371 //===----------------------------------------------------------------------===//
1373 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1374 /// type. 'Array' represents the lvalue of the array being decayed
1375 /// to a pointer, and the returned SVal represents the decayed
1376 /// version of that lvalue (i.e., a pointer to the first element of
1377 /// the array). This is called by ExprEngine when evaluating casts
1378 /// from arrays to pointers.
1379 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1380 if (isa<loc::ConcreteInt>(Array))
1381 return Array;
1383 if (!isa<loc::MemRegionVal>(Array))
1384 return UnknownVal();
1386 const SubRegion *R =
1387 cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1388 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1389 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1392 //===----------------------------------------------------------------------===//
1393 // Loading values from regions.
1394 //===----------------------------------------------------------------------===//
1396 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1397 assert(!isa<UnknownVal>(L) && "location unknown");
1398 assert(!isa<UndefinedVal>(L) && "location undefined");
1400 // For access to concrete addresses, return UnknownVal. Checks
1401 // for null dereferences (and similar errors) are done by checkers, not
1402 // the Store.
1403 // FIXME: We can consider lazily symbolicating such memory, but we really
1404 // should defer this when we can reason easily about symbolicating arrays
1405 // of bytes.
1406 if (L.getAs<loc::ConcreteInt>()) {
1407 return UnknownVal();
1409 if (!L.getAs<loc::MemRegionVal>()) {
1410 return UnknownVal();
1413 const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1415 if (isa<BlockDataRegion>(MR)) {
1416 return UnknownVal();
1419 // Auto-detect the binding type.
1420 if (T.isNull()) {
1421 if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
1422 T = TVR->getValueType();
1423 else if (const auto *TR = dyn_cast<TypedRegion>(MR))
1424 T = TR->getLocationType()->getPointeeType();
1425 else if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
1426 T = SR->getPointeeStaticType();
1428 assert(!T.isNull() && "Unable to auto-detect binding type!");
1429 assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1431 if (!isa<TypedValueRegion>(MR))
1432 MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1434 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1435 // instead of 'Loc', and have the other Loc cases handled at a higher level.
1436 const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1437 QualType RTy = R->getValueType();
1439 // FIXME: we do not yet model the parts of a complex type, so treat the
1440 // whole thing as "unknown".
1441 if (RTy->isAnyComplexType())
1442 return UnknownVal();
1444 // FIXME: We should eventually handle funny addressing. e.g.:
1446 // int x = ...;
1447 // int *p = &x;
1448 // char *q = (char*) p;
1449 // char c = *q; // returns the first byte of 'x'.
1451 // Such funny addressing will occur due to layering of regions.
1452 if (RTy->isStructureOrClassType())
1453 return getBindingForStruct(B, R);
1455 // FIXME: Handle unions.
1456 if (RTy->isUnionType())
1457 return createLazyBinding(B, R);
1459 if (RTy->isArrayType()) {
1460 if (RTy->isConstantArrayType())
1461 return getBindingForArray(B, R);
1462 else
1463 return UnknownVal();
1466 // FIXME: handle Vector types.
1467 if (RTy->isVectorType())
1468 return UnknownVal();
1470 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1471 return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1473 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1474 // FIXME: Here we actually perform an implicit conversion from the loaded
1475 // value to the element type. Eventually we want to compose these values
1476 // more intelligently. For example, an 'element' can encompass multiple
1477 // bound regions (e.g., several bound bytes), or could be a subset of
1478 // a larger value.
1479 return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1482 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1483 // FIXME: Here we actually perform an implicit conversion from the loaded
1484 // value to the ivar type. What we should model is stores to ivars
1485 // that blow past the extent of the ivar. If the address of the ivar is
1486 // reinterpretted, it is possible we stored a different value that could
1487 // fit within the ivar. Either we need to cast these when storing them
1488 // or reinterpret them lazily (as we do here).
1489 return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1492 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1493 // FIXME: Here we actually perform an implicit conversion from the loaded
1494 // value to the variable type. What we should model is stores to variables
1495 // that blow past the extent of the variable. If the address of the
1496 // variable is reinterpretted, it is possible we stored a different value
1497 // that could fit within the variable. Either we need to cast these when
1498 // storing them or reinterpret them lazily (as we do here).
1499 return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1502 const SVal *V = B.lookup(R, BindingKey::Direct);
1504 // Check if the region has a binding.
1505 if (V)
1506 return *V;
1508 // The location does not have a bound value. This means that it has
1509 // the value it had upon its creation and/or entry to the analyzed
1510 // function/method. These are either symbolic values or 'undefined'.
1511 if (R->hasStackNonParametersStorage()) {
1512 // All stack variables are considered to have undefined values
1513 // upon creation. All heap allocated blocks are considered to
1514 // have undefined values as well unless they are explicitly bound
1515 // to specific values.
1516 return UndefinedVal();
1519 // All other values are symbolic.
1520 return svalBuilder.getRegionValueSymbolVal(R);
1523 static QualType getUnderlyingType(const SubRegion *R) {
1524 QualType RegionTy;
1525 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1526 RegionTy = TVR->getValueType();
1528 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1529 RegionTy = SR->getSymbol()->getType();
1531 return RegionTy;
1534 /// Checks to see if store \p B has a lazy binding for region \p R.
1536 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1537 /// if there are additional bindings within \p R.
1539 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1540 /// for lazy bindings for super-regions of \p R.
1541 static std::optional<nonloc::LazyCompoundVal>
1542 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1543 const SubRegion *R, bool AllowSubregionBindings) {
1544 std::optional<SVal> V = B.getDefaultBinding(R);
1545 if (!V)
1546 return std::nullopt;
1548 std::optional<nonloc::LazyCompoundVal> LCV =
1549 V->getAs<nonloc::LazyCompoundVal>();
1550 if (!LCV)
1551 return std::nullopt;
1553 // If the LCV is for a subregion, the types might not match, and we shouldn't
1554 // reuse the binding.
1555 QualType RegionTy = getUnderlyingType(R);
1556 if (!RegionTy.isNull() &&
1557 !RegionTy->isVoidPointerType()) {
1558 QualType SourceRegionTy = LCV->getRegion()->getValueType();
1559 if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1560 return std::nullopt;
1563 if (!AllowSubregionBindings) {
1564 // If there are any other bindings within this region, we shouldn't reuse
1565 // the top-level binding.
1566 SmallVector<BindingPair, 16> Bindings;
1567 collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1568 /*IncludeAllDefaultBindings=*/true);
1569 if (Bindings.size() > 1)
1570 return std::nullopt;
1573 return *LCV;
1576 std::pair<Store, const SubRegion *>
1577 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1578 const SubRegion *R,
1579 const SubRegion *originalRegion) {
1580 if (originalRegion != R) {
1581 if (std::optional<nonloc::LazyCompoundVal> V =
1582 getExistingLazyBinding(svalBuilder, B, R, true))
1583 return std::make_pair(V->getStore(), V->getRegion());
1586 typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1587 StoreRegionPair Result = StoreRegionPair();
1589 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1590 Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1591 originalRegion);
1593 if (Result.second)
1594 Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1596 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1597 Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1598 originalRegion);
1600 if (Result.second)
1601 Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1603 } else if (const CXXBaseObjectRegion *BaseReg =
1604 dyn_cast<CXXBaseObjectRegion>(R)) {
1605 // C++ base object region is another kind of region that we should blast
1606 // through to look for lazy compound value. It is like a field region.
1607 Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1608 originalRegion);
1610 if (Result.second)
1611 Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1612 Result.second);
1615 return Result;
1618 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1620 /// Return an array of extents of the declared array type.
1622 /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }.
1623 static SmallVector<uint64_t, 2>
1624 getConstantArrayExtents(const ConstantArrayType *CAT) {
1625 assert(CAT && "ConstantArrayType should not be null");
1626 CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal());
1627 SmallVector<uint64_t, 2> Extents;
1628 do {
1629 Extents.push_back(CAT->getSize().getZExtValue());
1630 } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType())));
1631 return Extents;
1634 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1636 /// Return an array of offsets from nested ElementRegions and a root base
1637 /// region. The array is never empty and a base region is never null.
1639 /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }.
1640 /// This represents an access through indirection: `arr[1][2][3];`
1642 /// \param ER The given (possibly nested) ElementRegion.
1644 /// \note The result array is in the reverse order of indirection expression:
1645 /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n
1646 /// is a number of indirections. It may not affect performance in real-life
1647 /// code, though.
1648 static std::pair<SmallVector<SVal, 2>, const MemRegion *>
1649 getElementRegionOffsetsWithBase(const ElementRegion *ER) {
1650 assert(ER && "ConstantArrayType should not be null");
1651 const MemRegion *Base;
1652 SmallVector<SVal, 2> SValOffsets;
1653 do {
1654 SValOffsets.push_back(ER->getIndex());
1655 Base = ER->getSuperRegion();
1656 ER = dyn_cast<ElementRegion>(Base);
1657 } while (ER);
1658 return {SValOffsets, Base};
1661 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1663 /// Convert array of offsets from `SVal` to `uint64_t` in consideration of
1664 /// respective array extents.
1665 /// \param SrcOffsets [in] The array of offsets of type `SVal` in reversed
1666 /// order (expectedly received from `getElementRegionOffsetsWithBase`).
1667 /// \param ArrayExtents [in] The array of extents.
1668 /// \param DstOffsets [out] The array of offsets of type `uint64_t`.
1669 /// \returns:
1670 /// - `std::nullopt` for successful convertion.
1671 /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal
1672 /// will be returned as a suitable value of the access operation.
1673 /// which should be returned as a correct
1675 /// \example:
1676 /// const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 }
1677 /// int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) }
1678 /// // DstOffsets { 4, 5, 6 }
1679 /// // returns std::nullopt
1680 /// int x2 = arr[42][5][-6]; // returns UndefinedVal
1681 /// int x3 = arr[4][5][x2]; // returns UnknownVal
1682 static std::optional<SVal>
1683 convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets,
1684 const SmallVector<uint64_t, 2> ArrayExtents,
1685 SmallVector<uint64_t, 2> &DstOffsets) {
1686 // Check offsets for being out of bounds.
1687 // C++20 [expr.add] 7.6.6.4 (excerpt):
1688 // If P points to an array element i of an array object x with n
1689 // elements, where i < 0 or i > n, the behavior is undefined.
1690 // Dereferencing is not allowed on the "one past the last
1691 // element", when i == n.
1692 // Example:
1693 // const int arr[3][2] = {{1, 2}, {3, 4}};
1694 // arr[0][0]; // 1
1695 // arr[0][1]; // 2
1696 // arr[0][2]; // UB
1697 // arr[1][0]; // 3
1698 // arr[1][1]; // 4
1699 // arr[1][-1]; // UB
1700 // arr[2][0]; // 0
1701 // arr[2][1]; // 0
1702 // arr[-2][0]; // UB
1703 DstOffsets.resize(SrcOffsets.size());
1704 auto ExtentIt = ArrayExtents.begin();
1705 auto OffsetIt = DstOffsets.begin();
1706 // Reverse `SValOffsets` to make it consistent with `ArrayExtents`.
1707 for (SVal V : llvm::reverse(SrcOffsets)) {
1708 if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1709 // When offset is out of array's bounds, result is UB.
1710 const llvm::APSInt &Offset = CI->getValue();
1711 if (Offset.isNegative() || Offset.uge(*(ExtentIt++)))
1712 return UndefinedVal();
1713 // Store index in a reversive order.
1714 *(OffsetIt++) = Offset.getZExtValue();
1715 continue;
1717 // Symbolic index presented. Return Unknown value.
1718 // FIXME: We also need to take ElementRegions with symbolic indexes into
1719 // account.
1720 return UnknownVal();
1722 return std::nullopt;
1725 std::optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1726 RegionBindingsConstRef B, const ElementRegion *R) {
1727 assert(R && "ElementRegion should not be null");
1729 // Treat an n-dimensional array.
1730 SmallVector<SVal, 2> SValOffsets;
1731 const MemRegion *Base;
1732 std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R);
1733 const VarRegion *VR = dyn_cast<VarRegion>(Base);
1734 if (!VR)
1735 return std::nullopt;
1737 assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the "
1738 "offsets vector is not empty.");
1740 // Check if the containing array has an initialized value that we can trust.
1741 // We can trust a const value or a value of a global initializer in main().
1742 const VarDecl *VD = VR->getDecl();
1743 if (!VD->getType().isConstQualified() &&
1744 !R->getElementType().isConstQualified() &&
1745 (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1746 return std::nullopt;
1748 // Array's declaration should have `ConstantArrayType` type, because only this
1749 // type contains an array extent. It may happen that array type can be of
1750 // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1751 // type, we should find the declaration in the redeclarations chain that has
1752 // the initialization expression.
1753 // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1754 // from which an initializer is obtained. We replace current `VD` with the new
1755 // `VD`. If the return value of the function is null than `VD` won't be
1756 // replaced.
1757 const Expr *Init = VD->getAnyInitializer(VD);
1758 // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1759 // `Init` for null only and don't worry about the replaced `VD`.
1760 if (!Init)
1761 return std::nullopt;
1763 // Array's declaration should have ConstantArrayType type, because only this
1764 // type contains an array extent.
1765 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1766 if (!CAT)
1767 return std::nullopt;
1769 // Get array extents.
1770 SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT);
1772 // The number of offsets should equal to the numbers of extents,
1773 // otherwise wrong type punning occurred. For instance:
1774 // int arr[1][2][3];
1775 // auto ptr = (int(*)[42])arr;
1776 // auto x = ptr[4][2]; // UB
1777 // FIXME: Should return UndefinedVal.
1778 if (SValOffsets.size() != Extents.size())
1779 return std::nullopt;
1781 SmallVector<uint64_t, 2> ConcreteOffsets;
1782 if (std::optional<SVal> V = convertOffsetsFromSvalToUnsigneds(
1783 SValOffsets, Extents, ConcreteOffsets))
1784 return *V;
1786 // Handle InitListExpr.
1787 // Example:
1788 // const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 };
1789 if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1790 return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType());
1792 // Handle StringLiteral.
1793 // Example:
1794 // const char arr[] = "abc";
1795 if (const auto *SL = dyn_cast<StringLiteral>(Init))
1796 return getSValFromStringLiteral(SL, ConcreteOffsets.front(),
1797 R->getElementType());
1799 // FIXME: Handle CompoundLiteralExpr.
1801 return std::nullopt;
1804 /// Returns an SVal, if possible, for the specified position of an
1805 /// initialization list.
1807 /// \param ILE The given initialization list.
1808 /// \param Offsets The array of unsigned offsets. E.g. for the expression
1809 /// `int x = arr[1][2][3];` an array should be { 1, 2, 3 }.
1810 /// \param ElemT The type of the result SVal expression.
1811 /// \return Optional SVal for the particular position in the initialization
1812 /// list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets:
1813 /// - {1, 1} returns SVal{4}, because it's the second position in the second
1814 /// sublist;
1815 /// - {3, 0} returns SVal{0}, because there's no explicit value at this
1816 /// position in the sublist.
1818 /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets
1819 /// for the given initialization list. Otherwise SVal can be an equivalent to 0
1820 /// or lead to assertion.
1821 std::optional<SVal> RegionStoreManager::getSValFromInitListExpr(
1822 const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets,
1823 QualType ElemT) {
1824 assert(ILE && "InitListExpr should not be null");
1826 for (uint64_t Offset : Offsets) {
1827 // C++20 [dcl.init.string] 9.4.2.1:
1828 // An array of ordinary character type [...] can be initialized by [...]
1829 // an appropriately-typed string-literal enclosed in braces.
1830 // Example:
1831 // const char arr[] = { "abc" };
1832 if (ILE->isStringLiteralInit())
1833 if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0)))
1834 return getSValFromStringLiteral(SL, Offset, ElemT);
1836 // C++20 [expr.add] 9.4.17.5 (excerpt):
1837 // i-th array element is value-initialized for each k < i ≤ n,
1838 // where k is an expression-list size and n is an array extent.
1839 if (Offset >= ILE->getNumInits())
1840 return svalBuilder.makeZeroVal(ElemT);
1842 const Expr *E = ILE->getInit(Offset);
1843 const auto *IL = dyn_cast<InitListExpr>(E);
1844 if (!IL)
1845 // Return a constant value, if it is presented.
1846 // FIXME: Support other SVals.
1847 return svalBuilder.getConstantVal(E);
1849 // Go to the nested initializer list.
1850 ILE = IL;
1852 llvm_unreachable(
1853 "Unhandled InitListExpr sub-expressions or invalid offsets.");
1856 /// Returns an SVal, if possible, for the specified position in a string
1857 /// literal.
1859 /// \param SL The given string literal.
1860 /// \param Offset The unsigned offset. E.g. for the expression
1861 /// `char x = str[42];` an offset should be 42.
1862 /// E.g. for the string "abc" offset:
1863 /// - 1 returns SVal{b}, because it's the second position in the string.
1864 /// - 42 returns SVal{0}, because there's no explicit value at this
1865 /// position in the string.
1866 /// \param ElemT The type of the result SVal expression.
1868 /// NOTE: We return `0` for every offset >= the literal length for array
1869 /// declarations, like:
1870 /// const char str[42] = "123"; // Literal length is 4.
1871 /// char c = str[41]; // Offset is 41.
1872 /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like:
1873 /// const char * const str = "123"; // Literal length is 4.
1874 /// char c = str[41]; // Offset is 41. Returns `0`, but Undef
1875 /// // expected.
1876 /// It should be properly handled before reaching this point.
1877 /// The main problem is that we can't distinguish between these declarations,
1878 /// because in case of array we can get the Decl from VarRegion, but in case
1879 /// of pointer the region is a StringRegion, which doesn't contain a Decl.
1880 /// Possible solution could be passing an array extent along with the offset.
1881 SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL,
1882 uint64_t Offset,
1883 QualType ElemT) {
1884 assert(SL && "StringLiteral should not be null");
1885 // C++20 [dcl.init.string] 9.4.2.3:
1886 // If there are fewer initializers than there are array elements, each
1887 // element not explicitly initialized shall be zero-initialized [dcl.init].
1888 uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset);
1889 return svalBuilder.makeIntVal(Code, ElemT);
1892 static std::optional<SVal> getDerivedSymbolForBinding(
1893 RegionBindingsConstRef B, const TypedValueRegion *BaseRegion,
1894 const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) {
1895 assert(BaseRegion);
1896 QualType BaseTy = BaseRegion->getValueType();
1897 QualType Ty = SubReg->getValueType();
1898 if (BaseTy->isScalarType() && Ty->isScalarType()) {
1899 if (Ctx.getTypeSizeInChars(BaseTy) >= Ctx.getTypeSizeInChars(Ty)) {
1900 if (const std::optional<SVal> &ParentValue =
1901 B.getDirectBinding(BaseRegion)) {
1902 if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol())
1903 return SVB.getDerivedRegionValueSymbolVal(ParentValueAsSym, SubReg);
1905 if (ParentValue->isUndef())
1906 return UndefinedVal();
1908 // Other cases: give up. We are indexing into a larger object
1909 // that has some value, but we don't know how to handle that yet.
1910 return UnknownVal();
1914 return std::nullopt;
1917 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1918 const ElementRegion* R) {
1919 // Check if the region has a binding.
1920 if (const std::optional<SVal> &V = B.getDirectBinding(R))
1921 return *V;
1923 const MemRegion* superR = R->getSuperRegion();
1925 // Check if the region is an element region of a string literal.
1926 if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1927 // FIXME: Handle loads from strings where the literal is treated as
1928 // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according
1929 // to C++20 7.2.1.11 [basic.lval].
1930 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1931 if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1932 return UnknownVal();
1933 if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1934 const llvm::APSInt &Idx = CI->getValue();
1935 if (Idx < 0)
1936 return UndefinedVal();
1937 const StringLiteral *SL = StrR->getStringLiteral();
1938 return getSValFromStringLiteral(SL, Idx.getZExtValue(), T);
1940 } else if (isa<ElementRegion, VarRegion>(superR)) {
1941 if (std::optional<SVal> V = getConstantValFromConstArrayInitializer(B, R))
1942 return *V;
1945 // Check for loads from a code text region. For such loads, just give up.
1946 if (isa<CodeTextRegion>(superR))
1947 return UnknownVal();
1949 // Handle the case where we are indexing into a larger scalar object.
1950 // For example, this handles:
1951 // int x = ...
1952 // char *y = &x;
1953 // return *y;
1954 // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1955 const RegionRawOffset &O = R->getAsArrayOffset();
1957 // If we cannot reason about the offset, return an unknown value.
1958 if (!O.getRegion())
1959 return UnknownVal();
1961 if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(O.getRegion()))
1962 if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder))
1963 return *V;
1965 return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1968 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1969 const FieldRegion* R) {
1971 // Check if the region has a binding.
1972 if (const std::optional<SVal> &V = B.getDirectBinding(R))
1973 return *V;
1975 // If the containing record was initialized, try to get its constant value.
1976 const FieldDecl *FD = R->getDecl();
1977 QualType Ty = FD->getType();
1978 const MemRegion* superR = R->getSuperRegion();
1979 if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1980 const VarDecl *VD = VR->getDecl();
1981 QualType RecordVarTy = VD->getType();
1982 unsigned Index = FD->getFieldIndex();
1983 // Either the record variable or the field has an initializer that we can
1984 // trust. We trust initializers of constants and, additionally, respect
1985 // initializers of globals when analyzing main().
1986 if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1987 (B.isMainAnalysis() && VD->hasGlobalStorage()))
1988 if (const Expr *Init = VD->getAnyInitializer())
1989 if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1990 if (Index < InitList->getNumInits()) {
1991 if (const Expr *FieldInit = InitList->getInit(Index))
1992 if (std::optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1993 return *V;
1994 } else {
1995 return svalBuilder.makeZeroVal(Ty);
2000 // Handle the case where we are accessing into a larger scalar object.
2001 // For example, this handles:
2002 // struct header {
2003 // unsigned a : 1;
2004 // unsigned b : 1;
2005 // };
2006 // struct parse_t {
2007 // unsigned bits0 : 1;
2008 // unsigned bits2 : 2; // <-- header
2009 // unsigned bits4 : 4;
2010 // };
2011 // int parse(parse_t *p) {
2012 // unsigned copy = p->bits2;
2013 // header *bits = (header *)&copy;
2014 // return bits->b; <-- here
2015 // }
2016 if (const auto *Base = dyn_cast<TypedValueRegion>(R->getBaseRegion()))
2017 if (auto V = getDerivedSymbolForBinding(B, Base, R, Ctx, svalBuilder))
2018 return *V;
2020 return getBindingForFieldOrElementCommon(B, R, Ty);
2023 std::optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue(
2024 RegionBindingsConstRef B, const MemRegion *superR,
2025 const TypedValueRegion *R, QualType Ty) {
2027 if (const std::optional<SVal> &D = B.getDefaultBinding(superR)) {
2028 const SVal &val = *D;
2029 if (SymbolRef parentSym = val.getAsSymbol())
2030 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2032 if (val.isZeroConstant())
2033 return svalBuilder.makeZeroVal(Ty);
2035 if (val.isUnknownOrUndef())
2036 return val;
2038 // Lazy bindings are usually handled through getExistingLazyBinding().
2039 // We should unify these two code paths at some point.
2040 if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(val))
2041 return val;
2043 llvm_unreachable("Unknown default value");
2046 return std::nullopt;
2049 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
2050 RegionBindingsRef LazyBinding) {
2051 SVal Result;
2052 if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
2053 Result = getBindingForElement(LazyBinding, ER);
2054 else
2055 Result = getBindingForField(LazyBinding,
2056 cast<FieldRegion>(LazyBindingRegion));
2058 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2059 // default value for /part/ of an aggregate from a default value for the
2060 // /entire/ aggregate. The most common case of this is when struct Outer
2061 // has as its first member a struct Inner, which is copied in from a stack
2062 // variable. In this case, even if the Outer's default value is symbolic, 0,
2063 // or unknown, it gets overridden by the Inner's default value of undefined.
2065 // This is a general problem -- if the Inner is zero-initialized, the Outer
2066 // will now look zero-initialized. The proper way to solve this is with a
2067 // new version of RegionStore that tracks the extent of a binding as well
2068 // as the offset.
2070 // This hack only takes care of the undefined case because that can very
2071 // quickly result in a warning.
2072 if (Result.isUndef())
2073 Result = UnknownVal();
2075 return Result;
2078 SVal
2079 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
2080 const TypedValueRegion *R,
2081 QualType Ty) {
2083 // At this point we have already checked in either getBindingForElement or
2084 // getBindingForField if 'R' has a direct binding.
2086 // Lazy binding?
2087 Store lazyBindingStore = nullptr;
2088 const SubRegion *lazyBindingRegion = nullptr;
2089 std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
2090 if (lazyBindingRegion)
2091 return getLazyBinding(lazyBindingRegion,
2092 getRegionBindings(lazyBindingStore));
2094 // Record whether or not we see a symbolic index. That can completely
2095 // be out of scope of our lookup.
2096 bool hasSymbolicIndex = false;
2098 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2099 // default value for /part/ of an aggregate from a default value for the
2100 // /entire/ aggregate. The most common case of this is when struct Outer
2101 // has as its first member a struct Inner, which is copied in from a stack
2102 // variable. In this case, even if the Outer's default value is symbolic, 0,
2103 // or unknown, it gets overridden by the Inner's default value of undefined.
2105 // This is a general problem -- if the Inner is zero-initialized, the Outer
2106 // will now look zero-initialized. The proper way to solve this is with a
2107 // new version of RegionStore that tracks the extent of a binding as well
2108 // as the offset.
2110 // This hack only takes care of the undefined case because that can very
2111 // quickly result in a warning.
2112 bool hasPartialLazyBinding = false;
2114 const SubRegion *SR = R;
2115 while (SR) {
2116 const MemRegion *Base = SR->getSuperRegion();
2117 if (std::optional<SVal> D =
2118 getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
2119 if (D->getAs<nonloc::LazyCompoundVal>()) {
2120 hasPartialLazyBinding = true;
2121 break;
2124 return *D;
2127 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
2128 NonLoc index = ER->getIndex();
2129 if (!index.isConstant())
2130 hasSymbolicIndex = true;
2133 // If our super region is a field or element itself, walk up the region
2134 // hierarchy to see if there is a default value installed in an ancestor.
2135 SR = dyn_cast<SubRegion>(Base);
2138 if (R->hasStackNonParametersStorage()) {
2139 if (isa<ElementRegion>(R)) {
2140 // Currently we don't reason specially about Clang-style vectors. Check
2141 // if superR is a vector and if so return Unknown.
2142 if (const TypedValueRegion *typedSuperR =
2143 dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
2144 if (typedSuperR->getValueType()->isVectorType())
2145 return UnknownVal();
2149 // FIXME: We also need to take ElementRegions with symbolic indexes into
2150 // account. This case handles both directly accessing an ElementRegion
2151 // with a symbolic offset, but also fields within an element with
2152 // a symbolic offset.
2153 if (hasSymbolicIndex)
2154 return UnknownVal();
2156 // Additionally allow introspection of a block's internal layout.
2157 // Try to get direct binding if all other attempts failed thus far.
2158 // Else, return UndefinedVal()
2159 if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion())) {
2160 if (const std::optional<SVal> &V = B.getDefaultBinding(R))
2161 return *V;
2162 return UndefinedVal();
2166 // All other values are symbolic.
2167 return svalBuilder.getRegionValueSymbolVal(R);
2170 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
2171 const ObjCIvarRegion* R) {
2172 // Check if the region has a binding.
2173 if (const std::optional<SVal> &V = B.getDirectBinding(R))
2174 return *V;
2176 const MemRegion *superR = R->getSuperRegion();
2178 // Check if the super region has a default binding.
2179 if (const std::optional<SVal> &V = B.getDefaultBinding(superR)) {
2180 if (SymbolRef parentSym = V->getAsSymbol())
2181 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2183 // Other cases: give up.
2184 return UnknownVal();
2187 return getBindingForLazySymbol(R);
2190 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2191 const VarRegion *R) {
2193 // Check if the region has a binding.
2194 if (std::optional<SVal> V = B.getDirectBinding(R))
2195 return *V;
2197 if (std::optional<SVal> V = B.getDefaultBinding(R))
2198 return *V;
2200 // Lazily derive a value for the VarRegion.
2201 const VarDecl *VD = R->getDecl();
2202 const MemSpaceRegion *MS = R->getMemorySpace();
2204 // Arguments are always symbolic.
2205 if (isa<StackArgumentsSpaceRegion>(MS))
2206 return svalBuilder.getRegionValueSymbolVal(R);
2208 // Is 'VD' declared constant? If so, retrieve the constant value.
2209 if (VD->getType().isConstQualified()) {
2210 if (const Expr *Init = VD->getAnyInitializer()) {
2211 if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2212 return *V;
2214 // If the variable is const qualified and has an initializer but
2215 // we couldn't evaluate initializer to a value, treat the value as
2216 // unknown.
2217 return UnknownVal();
2221 // This must come after the check for constants because closure-captured
2222 // constant variables may appear in UnknownSpaceRegion.
2223 if (isa<UnknownSpaceRegion>(MS))
2224 return svalBuilder.getRegionValueSymbolVal(R);
2226 if (isa<GlobalsSpaceRegion>(MS)) {
2227 QualType T = VD->getType();
2229 // If we're in main(), then global initializers have not become stale yet.
2230 if (B.isMainAnalysis())
2231 if (const Expr *Init = VD->getAnyInitializer())
2232 if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2233 return *V;
2235 // Function-scoped static variables are default-initialized to 0; if they
2236 // have an initializer, it would have been processed by now.
2237 // FIXME: This is only true when we're starting analysis from main().
2238 // We're losing a lot of coverage here.
2239 if (isa<StaticGlobalSpaceRegion>(MS))
2240 return svalBuilder.makeZeroVal(T);
2242 if (std::optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2243 assert(!V->getAs<nonloc::LazyCompoundVal>());
2244 return *V;
2247 return svalBuilder.getRegionValueSymbolVal(R);
2250 return UndefinedVal();
2253 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2254 // All other values are symbolic.
2255 return svalBuilder.getRegionValueSymbolVal(R);
2258 const RegionStoreManager::SValListTy &
2259 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2260 // First, check the cache.
2261 LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2262 if (I != LazyBindingsMap.end())
2263 return I->second;
2265 // If we don't have a list of values cached, start constructing it.
2266 SValListTy List;
2268 const SubRegion *LazyR = LCV.getRegion();
2269 RegionBindingsRef B = getRegionBindings(LCV.getStore());
2271 // If this region had /no/ bindings at the time, there are no interesting
2272 // values to return.
2273 const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2274 if (!Cluster)
2275 return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2277 SmallVector<BindingPair, 32> Bindings;
2278 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2279 /*IncludeAllDefaultBindings=*/true);
2280 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2281 E = Bindings.end();
2282 I != E; ++I) {
2283 SVal V = I->second;
2284 if (V.isUnknownOrUndef() || V.isConstant())
2285 continue;
2287 if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) {
2288 const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2289 List.insert(List.end(), InnerList.begin(), InnerList.end());
2292 List.push_back(V);
2295 return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2298 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2299 const TypedValueRegion *R) {
2300 if (std::optional<nonloc::LazyCompoundVal> V =
2301 getExistingLazyBinding(svalBuilder, B, R, false))
2302 return *V;
2304 return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2307 static bool isRecordEmpty(const RecordDecl *RD) {
2308 if (!RD->field_empty())
2309 return false;
2310 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2311 return CRD->getNumBases() == 0;
2312 return true;
2315 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2316 const TypedValueRegion *R) {
2317 const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2318 if (!RD->getDefinition() || isRecordEmpty(RD))
2319 return UnknownVal();
2321 return createLazyBinding(B, R);
2324 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2325 const TypedValueRegion *R) {
2326 assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2327 "Only constant array types can have compound bindings.");
2329 return createLazyBinding(B, R);
2332 bool RegionStoreManager::includedInBindings(Store store,
2333 const MemRegion *region) const {
2334 RegionBindingsRef B = getRegionBindings(store);
2335 region = region->getBaseRegion();
2337 // Quick path: if the base is the head of a cluster, the region is live.
2338 if (B.lookup(region))
2339 return true;
2341 // Slow path: if the region is the VALUE of any binding, it is live.
2342 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2343 const ClusterBindings &Cluster = RI.getData();
2344 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2345 CI != CE; ++CI) {
2346 const SVal &D = CI.getData();
2347 if (const MemRegion *R = D.getAsRegion())
2348 if (R->getBaseRegion() == region)
2349 return true;
2353 return false;
2356 //===----------------------------------------------------------------------===//
2357 // Binding values to regions.
2358 //===----------------------------------------------------------------------===//
2360 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2361 if (std::optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2362 if (const MemRegion* R = LV->getRegion())
2363 return StoreRef(getRegionBindings(ST).removeBinding(R)
2364 .asImmutableMap()
2365 .getRootWithoutRetain(),
2366 *this);
2368 return StoreRef(ST, *this);
2371 RegionBindingsRef
2372 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2373 if (L.getAs<loc::ConcreteInt>())
2374 return B;
2376 // If we get here, the location should be a region.
2377 const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2379 // Check if the region is a struct region.
2380 if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2381 QualType Ty = TR->getValueType();
2382 if (Ty->isArrayType())
2383 return bindArray(B, TR, V);
2384 if (Ty->isStructureOrClassType())
2385 return bindStruct(B, TR, V);
2386 if (Ty->isVectorType())
2387 return bindVector(B, TR, V);
2388 if (Ty->isUnionType())
2389 return bindAggregate(B, TR, V);
2392 // Binding directly to a symbolic region should be treated as binding
2393 // to element 0.
2394 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2395 R = GetElementZeroRegion(SR, SR->getPointeeStaticType());
2397 assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2398 "'this' pointer is not an l-value and is not assignable");
2400 // Clear out bindings that may overlap with this binding.
2401 RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2403 // LazyCompoundVals should be always bound as 'default' bindings.
2404 auto KeyKind = isa<nonloc::LazyCompoundVal>(V) ? BindingKey::Default
2405 : BindingKey::Direct;
2406 return NewB.addBinding(BindingKey::Make(R, KeyKind), V);
2409 RegionBindingsRef
2410 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2411 const MemRegion *R,
2412 QualType T) {
2413 SVal V;
2415 if (Loc::isLocType(T))
2416 V = svalBuilder.makeNullWithType(T);
2417 else if (T->isIntegralOrEnumerationType())
2418 V = svalBuilder.makeZeroVal(T);
2419 else if (T->isStructureOrClassType() || T->isArrayType()) {
2420 // Set the default value to a zero constant when it is a structure
2421 // or array. The type doesn't really matter.
2422 V = svalBuilder.makeZeroVal(Ctx.IntTy);
2424 else {
2425 // We can't represent values of this type, but we still need to set a value
2426 // to record that the region has been initialized.
2427 // If this assertion ever fires, a new case should be added above -- we
2428 // should know how to default-initialize any value we can symbolicate.
2429 assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2430 V = UnknownVal();
2433 return B.addBinding(R, BindingKey::Default, V);
2436 std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallArray(
2437 RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT,
2438 nonloc::LazyCompoundVal LCV) {
2440 auto CAT = dyn_cast<ConstantArrayType>(AT);
2442 // If we don't know the size, create a lazyCompoundVal instead.
2443 if (!CAT)
2444 return std::nullopt;
2446 QualType Ty = CAT->getElementType();
2447 if (!(Ty->isScalarType() || Ty->isReferenceType()))
2448 return std::nullopt;
2450 // If the array is too big, create a LCV instead.
2451 uint64_t ArrSize = CAT->getSize().getLimitedValue();
2452 if (ArrSize > SmallArrayLimit)
2453 return std::nullopt;
2455 RegionBindingsRef NewB = B;
2457 for (uint64_t i = 0; i < ArrSize; ++i) {
2458 auto Idx = svalBuilder.makeArrayIndex(i);
2459 const ElementRegion *SrcER =
2460 MRMgr.getElementRegion(Ty, Idx, LCV.getRegion(), Ctx);
2461 SVal V = getBindingForElement(getRegionBindings(LCV.getStore()), SrcER);
2463 const ElementRegion *DstER = MRMgr.getElementRegion(Ty, Idx, R, Ctx);
2464 NewB = bind(NewB, loc::MemRegionVal(DstER), V);
2467 return NewB;
2470 RegionBindingsRef
2471 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2472 const TypedValueRegion* R,
2473 SVal Init) {
2475 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2476 QualType ElementTy = AT->getElementType();
2477 std::optional<uint64_t> Size;
2479 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2480 Size = CAT->getSize().getZExtValue();
2482 // Check if the init expr is a literal. If so, bind the rvalue instead.
2483 // FIXME: It's not responsibility of the Store to transform this lvalue
2484 // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2485 if (std::optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2486 SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2487 return bindAggregate(B, R, V);
2490 // Handle lazy compound values.
2491 if (std::optional<nonloc::LazyCompoundVal> LCV =
2492 Init.getAs<nonloc::LazyCompoundVal>()) {
2493 if (std::optional<RegionBindingsRef> NewB =
2494 tryBindSmallArray(B, R, AT, *LCV))
2495 return *NewB;
2497 return bindAggregate(B, R, Init);
2500 if (Init.isUnknown())
2501 return bindAggregate(B, R, UnknownVal());
2503 // Remaining case: explicit compound values.
2504 const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2505 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2506 uint64_t i = 0;
2508 RegionBindingsRef NewB(B);
2510 for (; Size ? i < *Size : true; ++i, ++VI) {
2511 // The init list might be shorter than the array length.
2512 if (VI == VE)
2513 break;
2515 const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2516 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2518 if (ElementTy->isStructureOrClassType())
2519 NewB = bindStruct(NewB, ER, *VI);
2520 else if (ElementTy->isArrayType())
2521 NewB = bindArray(NewB, ER, *VI);
2522 else
2523 NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2526 // If the init list is shorter than the array length (or the array has
2527 // variable length), set the array default value. Values that are already set
2528 // are not overwritten.
2529 if (!Size || i < *Size)
2530 NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2532 return NewB;
2535 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2536 const TypedValueRegion* R,
2537 SVal V) {
2538 QualType T = R->getValueType();
2539 const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2541 // Handle lazy compound values and symbolic values.
2542 if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(V))
2543 return bindAggregate(B, R, V);
2545 // We may get non-CompoundVal accidentally due to imprecise cast logic or
2546 // that we are binding symbolic struct value. Kill the field values, and if
2547 // the value is symbolic go and bind it as a "default" binding.
2548 if (!isa<nonloc::CompoundVal>(V)) {
2549 return bindAggregate(B, R, UnknownVal());
2552 QualType ElemType = VT->getElementType();
2553 nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2554 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2555 unsigned index = 0, numElements = VT->getNumElements();
2556 RegionBindingsRef NewB(B);
2558 for ( ; index != numElements ; ++index) {
2559 if (VI == VE)
2560 break;
2562 NonLoc Idx = svalBuilder.makeArrayIndex(index);
2563 const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2565 if (ElemType->isArrayType())
2566 NewB = bindArray(NewB, ER, *VI);
2567 else if (ElemType->isStructureOrClassType())
2568 NewB = bindStruct(NewB, ER, *VI);
2569 else
2570 NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2572 return NewB;
2575 std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallStruct(
2576 RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD,
2577 nonloc::LazyCompoundVal LCV) {
2578 FieldVector Fields;
2580 if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2581 if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2582 return std::nullopt;
2584 for (const auto *FD : RD->fields()) {
2585 if (FD->isUnnamedBitfield())
2586 continue;
2588 // If there are too many fields, or if any of the fields are aggregates,
2589 // just use the LCV as a default binding.
2590 if (Fields.size() == SmallStructLimit)
2591 return std::nullopt;
2593 QualType Ty = FD->getType();
2595 // Zero length arrays are basically no-ops, so we also ignore them here.
2596 if (Ty->isConstantArrayType() &&
2597 Ctx.getConstantArrayElementCount(Ctx.getAsConstantArrayType(Ty)) == 0)
2598 continue;
2600 if (!(Ty->isScalarType() || Ty->isReferenceType()))
2601 return std::nullopt;
2603 Fields.push_back(FD);
2606 RegionBindingsRef NewB = B;
2608 for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2609 const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2610 SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2612 const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2613 NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2616 return NewB;
2619 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2620 const TypedValueRegion *R,
2621 SVal V) {
2622 QualType T = R->getValueType();
2623 assert(T->isStructureOrClassType());
2625 const RecordType* RT = T->castAs<RecordType>();
2626 const RecordDecl *RD = RT->getDecl();
2628 if (!RD->isCompleteDefinition())
2629 return B;
2631 // Handle lazy compound values and symbolic values.
2632 if (std::optional<nonloc::LazyCompoundVal> LCV =
2633 V.getAs<nonloc::LazyCompoundVal>()) {
2634 if (std::optional<RegionBindingsRef> NewB =
2635 tryBindSmallStruct(B, R, RD, *LCV))
2636 return *NewB;
2637 return bindAggregate(B, R, V);
2639 if (isa<nonloc::SymbolVal>(V))
2640 return bindAggregate(B, R, V);
2642 // We may get non-CompoundVal accidentally due to imprecise cast logic or
2643 // that we are binding symbolic struct value. Kill the field values, and if
2644 // the value is symbolic go and bind it as a "default" binding.
2645 if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
2646 return bindAggregate(B, R, UnknownVal());
2648 // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2649 // list of other values. It appears pretty much only when there's an actual
2650 // initializer list expression in the program, and the analyzer tries to
2651 // unwrap it as soon as possible.
2652 // This code is where such unwrap happens: when the compound value is put into
2653 // the object that it was supposed to initialize (it's an *initializer* list,
2654 // after all), instead of binding the whole value to the whole object, we bind
2655 // sub-values to sub-objects. Sub-values may themselves be compound values,
2656 // and in this case the procedure becomes recursive.
2657 // FIXME: The annoying part about compound values is that they don't carry
2658 // any sort of information about which value corresponds to which sub-object.
2659 // It's simply a list of values in the middle of nowhere; we expect to match
2660 // them to sub-objects, essentially, "by index": first value binds to
2661 // the first field, second value binds to the second field, etc.
2662 // It would have been much safer to organize non-lazy compound values as
2663 // a mapping from fields/bases to values.
2664 const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2665 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2667 RegionBindingsRef NewB(B);
2669 // In C++17 aggregates may have base classes, handle those as well.
2670 // They appear before fields in the initializer list / compound value.
2671 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2672 // If the object was constructed with a constructor, its value is a
2673 // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2674 // performing aggregate initialization. The only exception from this
2675 // rule is sending an Objective-C++ message that returns a C++ object
2676 // to a nil receiver; in this case the semantics is to return a
2677 // zero-initialized object even if it's a C++ object that doesn't have
2678 // this sort of constructor; the CompoundVal is empty in this case.
2679 assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2680 "Non-aggregates are constructed with a constructor!");
2682 for (const auto &B : CRD->bases()) {
2683 // (Multiple inheritance is fine though.)
2684 assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2686 if (VI == VE)
2687 break;
2689 QualType BTy = B.getType();
2690 assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2692 const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2693 assert(BRD && "Base classes must be C++ classes!");
2695 const CXXBaseObjectRegion *BR =
2696 MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2698 NewB = bindStruct(NewB, BR, *VI);
2700 ++VI;
2704 RecordDecl::field_iterator FI, FE;
2706 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2708 if (VI == VE)
2709 break;
2711 // Skip any unnamed bitfields to stay in sync with the initializers.
2712 if (FI->isUnnamedBitfield())
2713 continue;
2715 QualType FTy = FI->getType();
2716 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2718 if (FTy->isArrayType())
2719 NewB = bindArray(NewB, FR, *VI);
2720 else if (FTy->isStructureOrClassType())
2721 NewB = bindStruct(NewB, FR, *VI);
2722 else
2723 NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2724 ++VI;
2727 // There may be fewer values in the initialize list than the fields of struct.
2728 if (FI != FE) {
2729 NewB = NewB.addBinding(R, BindingKey::Default,
2730 svalBuilder.makeIntVal(0, false));
2733 return NewB;
2736 RegionBindingsRef
2737 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2738 const TypedRegion *R,
2739 SVal Val) {
2740 // Remove the old bindings, using 'R' as the root of all regions
2741 // we will invalidate. Then add the new binding.
2742 return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2745 //===----------------------------------------------------------------------===//
2746 // State pruning.
2747 //===----------------------------------------------------------------------===//
2749 namespace {
2750 class RemoveDeadBindingsWorker
2751 : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2752 SmallVector<const SymbolicRegion *, 12> Postponed;
2753 SymbolReaper &SymReaper;
2754 const StackFrameContext *CurrentLCtx;
2756 public:
2757 RemoveDeadBindingsWorker(RegionStoreManager &rm,
2758 ProgramStateManager &stateMgr,
2759 RegionBindingsRef b, SymbolReaper &symReaper,
2760 const StackFrameContext *LCtx)
2761 : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2762 SymReaper(symReaper), CurrentLCtx(LCtx) {}
2764 // Called by ClusterAnalysis.
2765 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2766 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2767 using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2769 using ClusterAnalysis::AddToWorkList;
2771 bool AddToWorkList(const MemRegion *R);
2773 bool UpdatePostponed();
2774 void VisitBinding(SVal V);
2778 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2779 const MemRegion *BaseR = R->getBaseRegion();
2780 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2783 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2784 const ClusterBindings &C) {
2786 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2787 if (SymReaper.isLive(VR))
2788 AddToWorkList(baseR, &C);
2790 return;
2793 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2794 if (SymReaper.isLive(SR->getSymbol()))
2795 AddToWorkList(SR, &C);
2796 else
2797 Postponed.push_back(SR);
2799 return;
2802 if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2803 AddToWorkList(baseR, &C);
2804 return;
2807 // CXXThisRegion in the current or parent location context is live.
2808 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2809 const auto *StackReg =
2810 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2811 const StackFrameContext *RegCtx = StackReg->getStackFrame();
2812 if (CurrentLCtx &&
2813 (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2814 AddToWorkList(TR, &C);
2818 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2819 const ClusterBindings *C) {
2820 if (!C)
2821 return;
2823 // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2824 // This means we should continue to track that symbol.
2825 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2826 SymReaper.markLive(SymR->getSymbol());
2828 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2829 // Element index of a binding key is live.
2830 SymReaper.markElementIndicesLive(I.getKey().getRegion());
2832 VisitBinding(I.getData());
2836 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2837 // Is it a LazyCompoundVal? All referenced regions are live as well.
2838 // The LazyCompoundVal itself is not live but should be readable.
2839 if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) {
2840 SymReaper.markLazilyCopied(LCS->getRegion());
2842 for (SVal V : RM.getInterestingValues(*LCS)) {
2843 if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>())
2844 SymReaper.markLazilyCopied(DepLCS->getRegion());
2845 else
2846 VisitBinding(V);
2849 return;
2852 // If V is a region, then add it to the worklist.
2853 if (const MemRegion *R = V.getAsRegion()) {
2854 AddToWorkList(R);
2855 SymReaper.markLive(R);
2857 // All regions captured by a block are also live.
2858 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2859 BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2860 E = BR->referenced_vars_end();
2861 for ( ; I != E; ++I)
2862 AddToWorkList(I.getCapturedRegion());
2867 // Update the set of live symbols.
2868 for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
2869 SymReaper.markLive(*SI);
2872 bool RemoveDeadBindingsWorker::UpdatePostponed() {
2873 // See if any postponed SymbolicRegions are actually live now, after
2874 // having done a scan.
2875 bool Changed = false;
2877 for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
2878 if (const SymbolicRegion *SR = *I) {
2879 if (SymReaper.isLive(SR->getSymbol())) {
2880 Changed |= AddToWorkList(SR);
2881 *I = nullptr;
2886 return Changed;
2889 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2890 const StackFrameContext *LCtx,
2891 SymbolReaper& SymReaper) {
2892 RegionBindingsRef B = getRegionBindings(store);
2893 RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2894 W.GenerateClusters();
2896 // Enqueue the region roots onto the worklist.
2897 for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2898 E = SymReaper.region_end(); I != E; ++I) {
2899 W.AddToWorkList(*I);
2902 do W.RunWorkList(); while (W.UpdatePostponed());
2904 // We have now scanned the store, marking reachable regions and symbols
2905 // as live. We now remove all the regions that are dead from the store
2906 // as well as update DSymbols with the set symbols that are now dead.
2907 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2908 const MemRegion *Base = I.getKey();
2910 // If the cluster has been visited, we know the region has been marked.
2911 // Otherwise, remove the dead entry.
2912 if (!W.isVisited(Base))
2913 B = B.remove(Base);
2916 return StoreRef(B.asStore(), *this);
2919 //===----------------------------------------------------------------------===//
2920 // Utility methods.
2921 //===----------------------------------------------------------------------===//
2923 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2924 unsigned int Space, bool IsDot) const {
2925 RegionBindingsRef Bindings = getRegionBindings(S);
2927 Indent(Out, Space, IsDot) << "\"store\": ";
2929 if (Bindings.isEmpty()) {
2930 Out << "null," << NL;
2931 return;
2934 Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2935 Bindings.printJson(Out, NL, Space + 1, IsDot);
2936 Indent(Out, Space, IsDot) << "]}," << NL;