1 //===- Store.cpp - Interface for maps from Locations to Values ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defined the types Store and StoreManager.
11 //===----------------------------------------------------------------------===//
13 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
31 #include "llvm/ADT/APSInt.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
39 using namespace clang
;
42 StoreManager::StoreManager(ProgramStateManager
&stateMgr
)
43 : svalBuilder(stateMgr
.getSValBuilder()), StateMgr(stateMgr
),
44 MRMgr(svalBuilder
.getRegionManager()), Ctx(stateMgr
.getContext()) {}
46 StoreRef
StoreManager::enterStackFrame(Store OldStore
,
47 const CallEvent
&Call
,
48 const StackFrameContext
*LCtx
) {
49 StoreRef Store
= StoreRef(OldStore
, *this);
51 SmallVector
<CallEvent::FrameBindingTy
, 16> InitialBindings
;
52 Call
.getInitialStackFrameContents(LCtx
, InitialBindings
);
54 for (const auto &I
: InitialBindings
)
55 Store
= Bind(Store
.getStore(), I
.first
.castAs
<Loc
>(), I
.second
);
60 const ElementRegion
*StoreManager::MakeElementRegion(const SubRegion
*Base
,
63 NonLoc idx
= svalBuilder
.makeArrayIndex(index
);
64 return MRMgr
.getElementRegion(EleTy
, idx
, Base
, svalBuilder
.getContext());
67 const ElementRegion
*StoreManager::GetElementZeroRegion(const SubRegion
*R
,
69 NonLoc idx
= svalBuilder
.makeZeroArrayIndex();
71 return MRMgr
.getElementRegion(T
, idx
, R
, Ctx
);
74 std::optional
<const MemRegion
*> StoreManager::castRegion(const MemRegion
*R
,
76 ASTContext
&Ctx
= StateMgr
.getContext();
78 // Handle casts to Objective-C objects.
79 if (CastToTy
->isObjCObjectPointerType())
80 return R
->StripCasts();
82 if (CastToTy
->isBlockPointerType()) {
83 // FIXME: We may need different solutions, depending on the symbol
84 // involved. Blocks can be casted to/from 'id', as they can be treated
85 // as Objective-C objects. This could possibly be handled by enhancing
86 // our reasoning of downcasts of symbolic objects.
87 if (isa
<CodeTextRegion
, SymbolicRegion
>(R
))
90 // We don't know what to make of it. Return a NULL region, which
91 // will be interpreted as UnknownVal.
95 // Now assume we are casting from pointer to pointer. Other cases should
96 // already be handled.
97 QualType PointeeTy
= CastToTy
->getPointeeType();
98 QualType CanonPointeeTy
= Ctx
.getCanonicalType(PointeeTy
);
99 CanonPointeeTy
= CanonPointeeTy
.getLocalUnqualifiedType();
101 // Handle casts to void*. We just pass the region through.
102 if (CanonPointeeTy
== Ctx
.VoidTy
)
105 const auto IsSameRegionType
= [&Ctx
](const MemRegion
*R
, QualType OtherTy
) {
106 if (const auto *TR
= dyn_cast
<TypedValueRegion
>(R
)) {
107 QualType ObjTy
= Ctx
.getCanonicalType(TR
->getValueType());
108 if (OtherTy
== ObjTy
.getLocalUnqualifiedType())
114 // Handle casts from compatible types.
115 if (R
->isBoundable() && IsSameRegionType(R
, CanonPointeeTy
))
118 // Process region cast according to the kind of the region being cast.
119 switch (R
->getKind()) {
120 case MemRegion::CXXThisRegionKind
:
121 case MemRegion::CodeSpaceRegionKind
:
122 case MemRegion::StackLocalsSpaceRegionKind
:
123 case MemRegion::StackArgumentsSpaceRegionKind
:
124 case MemRegion::HeapSpaceRegionKind
:
125 case MemRegion::UnknownSpaceRegionKind
:
126 case MemRegion::StaticGlobalSpaceRegionKind
:
127 case MemRegion::GlobalInternalSpaceRegionKind
:
128 case MemRegion::GlobalSystemSpaceRegionKind
:
129 case MemRegion::GlobalImmutableSpaceRegionKind
: {
130 llvm_unreachable("Invalid region cast");
133 case MemRegion::FunctionCodeRegionKind
:
134 case MemRegion::BlockCodeRegionKind
:
135 case MemRegion::BlockDataRegionKind
:
136 case MemRegion::StringRegionKind
:
137 // FIXME: Need to handle arbitrary downcasts.
138 case MemRegion::SymbolicRegionKind
:
139 case MemRegion::AllocaRegionKind
:
140 case MemRegion::CompoundLiteralRegionKind
:
141 case MemRegion::FieldRegionKind
:
142 case MemRegion::ObjCIvarRegionKind
:
143 case MemRegion::ObjCStringRegionKind
:
144 case MemRegion::NonParamVarRegionKind
:
145 case MemRegion::ParamVarRegionKind
:
146 case MemRegion::CXXTempObjectRegionKind
:
147 case MemRegion::CXXBaseObjectRegionKind
:
148 case MemRegion::CXXDerivedObjectRegionKind
:
149 return MakeElementRegion(cast
<SubRegion
>(R
), PointeeTy
);
151 case MemRegion::ElementRegionKind
: {
152 // If we are casting from an ElementRegion to another type, the
153 // algorithm is as follows:
155 // (1) Compute the "raw offset" of the ElementRegion from the
156 // base region. This is done by calling 'getAsRawOffset()'.
158 // (2a) If we get a 'RegionRawOffset' after calling
159 // 'getAsRawOffset()', determine if the absolute offset
160 // can be exactly divided into chunks of the size of the
161 // casted-pointee type. If so, create a new ElementRegion with
162 // the pointee-cast type as the new ElementType and the index
163 // being the offset divded by the chunk size. If not, create
164 // a new ElementRegion at offset 0 off the raw offset region.
166 // (2b) If we don't a get a 'RegionRawOffset' after calling
167 // 'getAsRawOffset()', it means that we are at offset 0.
169 // FIXME: Handle symbolic raw offsets.
171 const ElementRegion
*elementR
= cast
<ElementRegion
>(R
);
172 const RegionRawOffset
&rawOff
= elementR
->getAsArrayOffset();
173 const MemRegion
*baseR
= rawOff
.getRegion();
175 // If we cannot compute a raw offset, throw up our hands and return
176 // a NULL MemRegion*.
180 CharUnits off
= rawOff
.getOffset();
183 // Edge case: we are at 0 bytes off the beginning of baseR. We check to
184 // see if the type we are casting to is the same as the type of the base
185 // region. If so, just return the base region.
186 if (IsSameRegionType(baseR
, CanonPointeeTy
))
188 // Otherwise, create a new ElementRegion at offset 0.
189 return MakeElementRegion(cast
<SubRegion
>(baseR
), PointeeTy
);
192 // We have a non-zero offset from the base region. We want to determine
193 // if the offset can be evenly divided by sizeof(PointeeTy). If so,
194 // we create an ElementRegion whose index is that value. Otherwise, we
195 // create two ElementRegions, one that reflects a raw offset and the other
196 // that reflects the cast.
198 // Compute the index for the new ElementRegion.
199 int64_t newIndex
= 0;
200 const MemRegion
*newSuperR
= nullptr;
202 // We can only compute sizeof(PointeeTy) if it is a complete type.
203 if (!PointeeTy
->isIncompleteType()) {
204 // Compute the size in **bytes**.
205 CharUnits pointeeTySize
= Ctx
.getTypeSizeInChars(PointeeTy
);
206 if (!pointeeTySize
.isZero()) {
207 // Is the offset a multiple of the size? If so, we can layer the
208 // ElementRegion (with elementType == PointeeTy) directly on top of
210 if (off
% pointeeTySize
== 0) {
211 newIndex
= off
/ pointeeTySize
;
218 // Create an intermediate ElementRegion to represent the raw byte.
219 // This will be the super region of the final ElementRegion.
220 newSuperR
= MakeElementRegion(cast
<SubRegion
>(baseR
), Ctx
.CharTy
,
224 return MakeElementRegion(cast
<SubRegion
>(newSuperR
), PointeeTy
, newIndex
);
228 llvm_unreachable("unreachable");
231 static bool regionMatchesCXXRecordType(SVal V
, QualType Ty
) {
232 const MemRegion
*MR
= V
.getAsRegion();
236 const auto *TVR
= dyn_cast
<TypedValueRegion
>(MR
);
240 const CXXRecordDecl
*RD
= TVR
->getValueType()->getAsCXXRecordDecl();
244 const CXXRecordDecl
*Expected
= Ty
->getPointeeCXXRecordDecl();
246 Expected
= Ty
->getAsCXXRecordDecl();
248 return Expected
->getCanonicalDecl() == RD
->getCanonicalDecl();
251 SVal
StoreManager::evalDerivedToBase(SVal Derived
, const CastExpr
*Cast
) {
252 // Early return to avoid doing the wrong thing in the face of
254 if (!regionMatchesCXXRecordType(Derived
, Cast
->getSubExpr()->getType()))
257 // Walk through the cast path to create nested CXXBaseRegions.
258 SVal Result
= Derived
;
259 for (CastExpr::path_const_iterator I
= Cast
->path_begin(),
260 E
= Cast
->path_end();
262 Result
= evalDerivedToBase(Result
, (*I
)->getType(), (*I
)->isVirtual());
267 SVal
StoreManager::evalDerivedToBase(SVal Derived
, const CXXBasePath
&Path
) {
268 // Walk through the path to create nested CXXBaseRegions.
269 SVal Result
= Derived
;
270 for (const auto &I
: Path
)
271 Result
= evalDerivedToBase(Result
, I
.Base
->getType(),
272 I
.Base
->isVirtual());
276 SVal
StoreManager::evalDerivedToBase(SVal Derived
, QualType BaseType
,
278 const MemRegion
*DerivedReg
= Derived
.getAsRegion();
282 const CXXRecordDecl
*BaseDecl
= BaseType
->getPointeeCXXRecordDecl();
284 BaseDecl
= BaseType
->getAsCXXRecordDecl();
285 assert(BaseDecl
&& "not a C++ object?");
287 if (const auto *AlreadyDerivedReg
=
288 dyn_cast
<CXXDerivedObjectRegion
>(DerivedReg
)) {
290 dyn_cast
<SymbolicRegion
>(AlreadyDerivedReg
->getSuperRegion()))
291 if (SR
->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl
)
292 return loc::MemRegionVal(SR
);
294 DerivedReg
= AlreadyDerivedReg
->getSuperRegion();
297 const MemRegion
*BaseReg
= MRMgr
.getCXXBaseObjectRegion(
298 BaseDecl
, cast
<SubRegion
>(DerivedReg
), IsVirtual
);
300 return loc::MemRegionVal(BaseReg
);
303 /// Returns the static type of the given region, if it represents a C++ class
306 /// This handles both fully-typed regions, where the dynamic type is known, and
307 /// symbolic regions, where the dynamic type is merely bounded (and even then,
308 /// only ostensibly!), but does not take advantage of any dynamic type info.
309 static const CXXRecordDecl
*getCXXRecordType(const MemRegion
*MR
) {
310 if (const auto *TVR
= dyn_cast
<TypedValueRegion
>(MR
))
311 return TVR
->getValueType()->getAsCXXRecordDecl();
312 if (const auto *SR
= dyn_cast
<SymbolicRegion
>(MR
))
313 return SR
->getSymbol()->getType()->getPointeeCXXRecordDecl();
317 std::optional
<SVal
> StoreManager::evalBaseToDerived(SVal Base
,
318 QualType TargetType
) {
319 const MemRegion
*MR
= Base
.getAsRegion();
323 // Assume the derived class is a pointer or a reference to a CXX record.
324 TargetType
= TargetType
->getPointeeType();
325 assert(!TargetType
.isNull());
326 const CXXRecordDecl
*TargetClass
= TargetType
->getAsCXXRecordDecl();
327 if (!TargetClass
&& !TargetType
->isVoidType())
330 // Drill down the CXXBaseObject chains, which represent upcasts (casts from
332 while (const CXXRecordDecl
*MRClass
= getCXXRecordType(MR
)) {
333 // If found the derived class, the cast succeeds.
334 if (MRClass
== TargetClass
)
335 return loc::MemRegionVal(MR
);
337 // We skip over incomplete types. They must be the result of an earlier
338 // reinterpret_cast, as one can only dynamic_cast between types in the same
340 if (!TargetType
->isVoidType() && MRClass
->hasDefinition()) {
341 // Static upcasts are marked as DerivedToBase casts by Sema, so this will
342 // only happen when multiple or virtual inheritance is involved.
343 CXXBasePaths
Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
344 /*DetectVirtual=*/false);
345 if (MRClass
->isDerivedFrom(TargetClass
, Paths
))
346 return evalDerivedToBase(loc::MemRegionVal(MR
), Paths
.front());
349 if (const auto *BaseR
= dyn_cast
<CXXBaseObjectRegion
>(MR
)) {
350 // Drill down the chain to get the derived classes.
351 MR
= BaseR
->getSuperRegion();
355 // If this is a cast to void*, return the region.
356 if (TargetType
->isVoidType())
357 return loc::MemRegionVal(MR
);
359 // Strange use of reinterpret_cast can give us paths we don't reason
360 // about well, by putting in ElementRegions where we'd expect
361 // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
362 // derived class has a zero offset from the base class), then it's safe
363 // to strip the cast; if it's invalid, -Wreinterpret-base-class should
364 // catch it. In the interest of performance, the analyzer will silently
365 // do the wrong thing in the invalid case (because offsets for subregions
367 const MemRegion
*Uncasted
= MR
->StripCasts(/*IncludeBaseCasts=*/false);
368 if (Uncasted
== MR
) {
369 // We reached the bottom of the hierarchy and did not find the derived
370 // class. We must be casting the base to derived, so the cast should
378 // If we're casting a symbolic base pointer to a derived class, use
379 // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
380 // unrelated type, it must be a weird reinterpret_cast and we have to
381 // be fine with ElementRegion. TODO: Should we instead make
382 // Derived{TargetClass, Element{SourceClass, SR}}?
383 if (const auto *SR
= dyn_cast
<SymbolicRegion
>(MR
)) {
384 QualType T
= SR
->getSymbol()->getType();
385 const CXXRecordDecl
*SourceClass
= T
->getPointeeCXXRecordDecl();
386 if (TargetClass
&& SourceClass
&& TargetClass
->isDerivedFrom(SourceClass
))
387 return loc::MemRegionVal(
388 MRMgr
.getCXXDerivedObjectRegion(TargetClass
, SR
));
389 return loc::MemRegionVal(GetElementZeroRegion(SR
, TargetType
));
392 // We failed if the region we ended up with has perfect type info.
393 if (isa
<TypedValueRegion
>(MR
))
399 SVal
StoreManager::getLValueFieldOrIvar(const Decl
*D
, SVal Base
) {
400 if (Base
.isUnknownOrUndef())
403 Loc BaseL
= Base
.castAs
<Loc
>();
404 const SubRegion
* BaseR
= nullptr;
406 switch (BaseL
.getSubKind()) {
407 case loc::MemRegionValKind
:
408 BaseR
= cast
<SubRegion
>(BaseL
.castAs
<loc::MemRegionVal
>().getRegion());
411 case loc::GotoLabelKind
:
412 // These are anormal cases. Flag an undefined value.
413 return UndefinedVal();
415 case loc::ConcreteIntKind
:
416 // While these seem funny, this can happen through casts.
417 // FIXME: What we should return is the field offset, not base. For example,
418 // add the field offset to the integer value. That way things
419 // like this work properly: &(((struct foo *) 0xa)->f)
420 // However, that's not easy to fix without reducing our abilities
421 // to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
422 // is a null dereference even though we're dereferencing offset of f
423 // rather than null. Coming up with an approach that computes offsets
424 // over null pointers properly while still being able to catch null
425 // dereferences might be worth it.
429 llvm_unreachable("Unhandled Base.");
432 // NOTE: We must have this check first because ObjCIvarDecl is a subclass
434 if (const auto *ID
= dyn_cast
<ObjCIvarDecl
>(D
))
435 return loc::MemRegionVal(MRMgr
.getObjCIvarRegion(ID
, BaseR
));
437 return loc::MemRegionVal(MRMgr
.getFieldRegion(cast
<FieldDecl
>(D
), BaseR
));
440 SVal
StoreManager::getLValueIvar(const ObjCIvarDecl
*decl
, SVal base
) {
441 return getLValueFieldOrIvar(decl
, base
);
444 SVal
StoreManager::getLValueElement(QualType elementType
, NonLoc Offset
,
447 // Special case, if index is 0, return the same type as if
448 // this was not an array dereference.
449 if (Offset
.isZeroConstant()) {
450 QualType BT
= Base
.getType(this->Ctx
);
451 if (!BT
.isNull() && !elementType
.isNull()) {
452 QualType PointeeTy
= BT
->getPointeeType();
453 if (!PointeeTy
.isNull() &&
454 PointeeTy
.getCanonicalType() == elementType
.getCanonicalType())
459 // If the base is an unknown or undefined value, just return it back.
460 // FIXME: For absolute pointer addresses, we just return that value back as
461 // well, although in reality we should return the offset added to that
462 // value. See also the similar FIXME in getLValueFieldOrIvar().
463 if (Base
.isUnknownOrUndef() || isa
<loc::ConcreteInt
>(Base
))
466 if (isa
<loc::GotoLabel
>(Base
))
469 const SubRegion
*BaseRegion
=
470 Base
.castAs
<loc::MemRegionVal
>().getRegionAs
<SubRegion
>();
472 // Pointer of any type can be cast and used as array base.
473 const auto *ElemR
= dyn_cast
<ElementRegion
>(BaseRegion
);
475 // Convert the offset to the appropriate size and signedness.
476 Offset
= svalBuilder
.convertToArrayIndex(Offset
).castAs
<NonLoc
>();
479 // If the base region is not an ElementRegion, create one.
480 // This can happen in the following example:
482 // char *p = __builtin_alloc(10);
485 // Observe that 'p' binds to an AllocaRegion.
486 return loc::MemRegionVal(MRMgr
.getElementRegion(elementType
, Offset
,
490 SVal BaseIdx
= ElemR
->getIndex();
492 if (!isa
<nonloc::ConcreteInt
>(BaseIdx
))
495 const llvm::APSInt
&BaseIdxI
=
496 BaseIdx
.castAs
<nonloc::ConcreteInt
>().getValue();
498 // Only allow non-integer offsets if the base region has no offset itself.
499 // FIXME: This is a somewhat arbitrary restriction. We should be using
500 // SValBuilder here to add the two offsets without checking their types.
501 if (!isa
<nonloc::ConcreteInt
>(Offset
)) {
502 if (isa
<ElementRegion
>(BaseRegion
->StripCasts()))
505 return loc::MemRegionVal(MRMgr
.getElementRegion(
506 elementType
, Offset
, cast
<SubRegion
>(ElemR
->getSuperRegion()), Ctx
));
509 const llvm::APSInt
& OffI
= Offset
.castAs
<nonloc::ConcreteInt
>().getValue();
510 assert(BaseIdxI
.isSigned());
512 // Compute the new index.
513 nonloc::ConcreteInt
NewIdx(svalBuilder
.getBasicValueFactory().getValue(BaseIdxI
+
516 // Construct the new ElementRegion.
517 const SubRegion
*ArrayR
= cast
<SubRegion
>(ElemR
->getSuperRegion());
518 return loc::MemRegionVal(MRMgr
.getElementRegion(elementType
, NewIdx
, ArrayR
,
522 StoreManager::BindingsHandler::~BindingsHandler() = default;
524 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager
& SMgr
,
528 SymbolRef SymV
= val
.getAsLocSymbol();
529 if (!SymV
|| SymV
!= Sym
)