[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / utils / TableGen / NeonEmitter.cpp
blob8f46b08b1366f02eb0ea3a8ee7198ce5bcc859ce
1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface. See ARM document DUI0348B.
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors. Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
22 // See also the documentation in include/clang/Basic/arm_neon.td.
24 //===----------------------------------------------------------------------===//
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/TableGen/Error.h"
37 #include "llvm/TableGen/Record.h"
38 #include "llvm/TableGen/SetTheory.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cctype>
42 #include <cstddef>
43 #include <cstdint>
44 #include <deque>
45 #include <map>
46 #include <optional>
47 #include <set>
48 #include <sstream>
49 #include <string>
50 #include <utility>
51 #include <vector>
53 using namespace llvm;
55 namespace {
57 // While globals are generally bad, this one allows us to perform assertions
58 // liberally and somehow still trace them back to the def they indirectly
59 // came from.
60 static Record *CurrentRecord = nullptr;
61 static void assert_with_loc(bool Assertion, const std::string &Str) {
62 if (!Assertion) {
63 if (CurrentRecord)
64 PrintFatalError(CurrentRecord->getLoc(), Str);
65 else
66 PrintFatalError(Str);
70 enum ClassKind {
71 ClassNone,
72 ClassI, // generic integer instruction, e.g., "i8" suffix
73 ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
74 ClassW, // width-specific instruction, e.g., "8" suffix
75 ClassB, // bitcast arguments with enum argument to specify type
76 ClassL, // Logical instructions which are op instructions
77 // but we need to not emit any suffix for in our
78 // tests.
79 ClassNoTest // Instructions which we do not test since they are
80 // not TRUE instructions.
83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
84 /// builtins. These must be kept in sync with the flags in
85 /// include/clang/Basic/TargetBuiltins.h.
86 namespace NeonTypeFlags {
88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
90 enum EltType {
91 Int8,
92 Int16,
93 Int32,
94 Int64,
95 Poly8,
96 Poly16,
97 Poly64,
98 Poly128,
99 Float16,
100 Float32,
101 Float64,
102 BFloat16
105 } // end namespace NeonTypeFlags
107 class NeonEmitter;
109 //===----------------------------------------------------------------------===//
110 // TypeSpec
111 //===----------------------------------------------------------------------===//
113 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
114 /// for strong typing purposes.
116 /// A TypeSpec can be used to create a type.
117 class TypeSpec : public std::string {
118 public:
119 static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
120 std::vector<TypeSpec> Ret;
121 TypeSpec Acc;
122 for (char I : Str.str()) {
123 if (islower(I)) {
124 Acc.push_back(I);
125 Ret.push_back(TypeSpec(Acc));
126 Acc.clear();
127 } else {
128 Acc.push_back(I);
131 return Ret;
135 //===----------------------------------------------------------------------===//
136 // Type
137 //===----------------------------------------------------------------------===//
139 /// A Type. Not much more to say here.
140 class Type {
141 private:
142 TypeSpec TS;
144 enum TypeKind {
145 Void,
146 Float,
147 SInt,
148 UInt,
149 Poly,
150 BFloat16,
152 TypeKind Kind;
153 bool Immediate, Constant, Pointer;
154 // ScalarForMangling and NoManglingQ are really not suited to live here as
155 // they are not related to the type. But they live in the TypeSpec (not the
156 // prototype), so this is really the only place to store them.
157 bool ScalarForMangling, NoManglingQ;
158 unsigned Bitwidth, ElementBitwidth, NumVectors;
160 public:
161 Type()
162 : Kind(Void), Immediate(false), Constant(false),
163 Pointer(false), ScalarForMangling(false), NoManglingQ(false),
164 Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
166 Type(TypeSpec TS, StringRef CharMods)
167 : TS(std::move(TS)), Kind(Void), Immediate(false),
168 Constant(false), Pointer(false), ScalarForMangling(false),
169 NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
170 applyModifiers(CharMods);
173 /// Returns a type representing "void".
174 static Type getVoid() { return Type(); }
176 bool operator==(const Type &Other) const { return str() == Other.str(); }
177 bool operator!=(const Type &Other) const { return !operator==(Other); }
180 // Query functions
182 bool isScalarForMangling() const { return ScalarForMangling; }
183 bool noManglingQ() const { return NoManglingQ; }
185 bool isPointer() const { return Pointer; }
186 bool isValue() const { return !isVoid() && !isPointer(); }
187 bool isScalar() const { return isValue() && NumVectors == 0; }
188 bool isVector() const { return isValue() && NumVectors > 0; }
189 bool isConstPointer() const { return Constant; }
190 bool isFloating() const { return Kind == Float; }
191 bool isInteger() const { return Kind == SInt || Kind == UInt; }
192 bool isPoly() const { return Kind == Poly; }
193 bool isSigned() const { return Kind == SInt; }
194 bool isImmediate() const { return Immediate; }
195 bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
196 bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
197 bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
198 bool isChar() const { return ElementBitwidth == 8; }
199 bool isShort() const { return isInteger() && ElementBitwidth == 16; }
200 bool isInt() const { return isInteger() && ElementBitwidth == 32; }
201 bool isLong() const { return isInteger() && ElementBitwidth == 64; }
202 bool isVoid() const { return Kind == Void; }
203 bool isBFloat16() const { return Kind == BFloat16; }
204 unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
205 unsigned getSizeInBits() const { return Bitwidth; }
206 unsigned getElementSizeInBits() const { return ElementBitwidth; }
207 unsigned getNumVectors() const { return NumVectors; }
210 // Mutator functions
212 void makeUnsigned() {
213 assert(!isVoid() && "not a potentially signed type");
214 Kind = UInt;
216 void makeSigned() {
217 assert(!isVoid() && "not a potentially signed type");
218 Kind = SInt;
221 void makeInteger(unsigned ElemWidth, bool Sign) {
222 assert(!isVoid() && "converting void to int probably not useful");
223 Kind = Sign ? SInt : UInt;
224 Immediate = false;
225 ElementBitwidth = ElemWidth;
228 void makeImmediate(unsigned ElemWidth) {
229 Kind = SInt;
230 Immediate = true;
231 ElementBitwidth = ElemWidth;
234 void makeScalar() {
235 Bitwidth = ElementBitwidth;
236 NumVectors = 0;
239 void makeOneVector() {
240 assert(isVector());
241 NumVectors = 1;
244 void make32BitElement() {
245 assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
246 ElementBitwidth = 32;
249 void doubleLanes() {
250 assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
251 Bitwidth = 128;
254 void halveLanes() {
255 assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
256 Bitwidth = 64;
259 /// Return the C string representation of a type, which is the typename
260 /// defined in stdint.h or arm_neon.h.
261 std::string str() const;
263 /// Return the string representation of a type, which is an encoded
264 /// string for passing to the BUILTIN() macro in Builtins.def.
265 std::string builtin_str() const;
267 /// Return the value in NeonTypeFlags for this type.
268 unsigned getNeonEnum() const;
270 /// Parse a type from a stdint.h or arm_neon.h typedef name,
271 /// for example uint32x2_t or int64_t.
272 static Type fromTypedefName(StringRef Name);
274 private:
275 /// Creates the type based on the typespec string in TS.
276 /// Sets "Quad" to true if the "Q" or "H" modifiers were
277 /// seen. This is needed by applyModifier as some modifiers
278 /// only take effect if the type size was changed by "Q" or "H".
279 void applyTypespec(bool &Quad);
280 /// Applies prototype modifiers to the type.
281 void applyModifiers(StringRef Mods);
284 //===----------------------------------------------------------------------===//
285 // Variable
286 //===----------------------------------------------------------------------===//
288 /// A variable is a simple class that just has a type and a name.
289 class Variable {
290 Type T;
291 std::string N;
293 public:
294 Variable() : T(Type::getVoid()) {}
295 Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
297 Type getType() const { return T; }
298 std::string getName() const { return "__" + N; }
301 //===----------------------------------------------------------------------===//
302 // Intrinsic
303 //===----------------------------------------------------------------------===//
305 /// The main grunt class. This represents an instantiation of an intrinsic with
306 /// a particular typespec and prototype.
307 class Intrinsic {
308 /// The Record this intrinsic was created from.
309 Record *R;
310 /// The unmangled name.
311 std::string Name;
312 /// The input and output typespecs. InTS == OutTS except when
313 /// CartesianProductWith is non-empty - this is the case for vreinterpret.
314 TypeSpec OutTS, InTS;
315 /// The base class kind. Most intrinsics use ClassS, which has full type
316 /// info for integers (s32/u32). Some use ClassI, which doesn't care about
317 /// signedness (i32), while some (ClassB) have no type at all, only a width
318 /// (32).
319 ClassKind CK;
320 /// The list of DAGs for the body. May be empty, in which case we should
321 /// emit a builtin call.
322 ListInit *Body;
323 /// The architectural ifdef guard.
324 std::string ArchGuard;
325 /// The architectural target() guard.
326 std::string TargetGuard;
327 /// Set if the Unavailable bit is 1. This means we don't generate a body,
328 /// just an "unavailable" attribute on a declaration.
329 bool IsUnavailable;
330 /// Is this intrinsic safe for big-endian? or does it need its arguments
331 /// reversing?
332 bool BigEndianSafe;
334 /// The types of return value [0] and parameters [1..].
335 std::vector<Type> Types;
336 /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
337 int PolymorphicKeyType;
338 /// The local variables defined.
339 std::map<std::string, Variable> Variables;
340 /// NeededEarly - set if any other intrinsic depends on this intrinsic.
341 bool NeededEarly;
342 /// UseMacro - set if we should implement using a macro or unset for a
343 /// function.
344 bool UseMacro;
345 /// The set of intrinsics that this intrinsic uses/requires.
346 std::set<Intrinsic *> Dependencies;
347 /// The "base type", which is Type('d', OutTS). InBaseType is only
348 /// different if CartesianProductWith is non-empty (for vreinterpret).
349 Type BaseType, InBaseType;
350 /// The return variable.
351 Variable RetVar;
352 /// A postfix to apply to every variable. Defaults to "".
353 std::string VariablePostfix;
355 NeonEmitter &Emitter;
356 std::stringstream OS;
358 bool isBigEndianSafe() const {
359 if (BigEndianSafe)
360 return true;
362 for (const auto &T : Types){
363 if (T.isVector() && T.getNumElements() > 1)
364 return false;
366 return true;
369 public:
370 Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
371 TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
372 StringRef ArchGuard, StringRef TargetGuard, bool IsUnavailable, bool BigEndianSafe)
373 : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
374 ArchGuard(ArchGuard.str()), TargetGuard(TargetGuard.str()), IsUnavailable(IsUnavailable),
375 BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
376 UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
377 Emitter(Emitter) {
378 // Modify the TypeSpec per-argument to get a concrete Type, and create
379 // known variables for each.
380 // Types[0] is the return value.
381 unsigned Pos = 0;
382 Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
383 StringRef Mods = getNextModifiers(Proto, Pos);
384 while (!Mods.empty()) {
385 Types.emplace_back(InTS, Mods);
386 if (Mods.contains('!'))
387 PolymorphicKeyType = Types.size() - 1;
389 Mods = getNextModifiers(Proto, Pos);
392 for (auto Type : Types) {
393 // If this builtin takes an immediate argument, we need to #define it rather
394 // than use a standard declaration, so that SemaChecking can range check
395 // the immediate passed by the user.
397 // Pointer arguments need to use macros to avoid hiding aligned attributes
398 // from the pointer type.
400 // It is not permitted to pass or return an __fp16 by value, so intrinsics
401 // taking a scalar float16_t must be implemented as macros.
402 if (Type.isImmediate() || Type.isPointer() ||
403 (Type.isScalar() && Type.isHalf()))
404 UseMacro = true;
408 /// Get the Record that this intrinsic is based off.
409 Record *getRecord() const { return R; }
410 /// Get the set of Intrinsics that this intrinsic calls.
411 /// this is the set of immediate dependencies, NOT the
412 /// transitive closure.
413 const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
414 /// Get the architectural guard string (#ifdef).
415 std::string getArchGuard() const { return ArchGuard; }
416 std::string getTargetGuard() const { return TargetGuard; }
417 /// Get the non-mangled name.
418 std::string getName() const { return Name; }
420 /// Return true if the intrinsic takes an immediate operand.
421 bool hasImmediate() const {
422 return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); });
425 /// Return the parameter index of the immediate operand.
426 unsigned getImmediateIdx() const {
427 for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
428 if (Types[Idx].isImmediate())
429 return Idx - 1;
430 llvm_unreachable("Intrinsic has no immediate");
434 unsigned getNumParams() const { return Types.size() - 1; }
435 Type getReturnType() const { return Types[0]; }
436 Type getParamType(unsigned I) const { return Types[I + 1]; }
437 Type getBaseType() const { return BaseType; }
438 Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
440 /// Return true if the prototype has a scalar argument.
441 bool protoHasScalar() const;
443 /// Return the index that parameter PIndex will sit at
444 /// in a generated function call. This is often just PIndex,
445 /// but may not be as things such as multiple-vector operands
446 /// and sret parameters need to be taken into account.
447 unsigned getGeneratedParamIdx(unsigned PIndex) {
448 unsigned Idx = 0;
449 if (getReturnType().getNumVectors() > 1)
450 // Multiple vectors are passed as sret.
451 ++Idx;
453 for (unsigned I = 0; I < PIndex; ++I)
454 Idx += std::max(1U, getParamType(I).getNumVectors());
456 return Idx;
459 bool hasBody() const { return Body && !Body->getValues().empty(); }
461 void setNeededEarly() { NeededEarly = true; }
463 bool operator<(const Intrinsic &Other) const {
464 // Sort lexicographically on a three-tuple (ArchGuard, TargetGuard, Name)
465 if (ArchGuard != Other.ArchGuard)
466 return ArchGuard < Other.ArchGuard;
467 if (TargetGuard != Other.TargetGuard)
468 return TargetGuard < Other.TargetGuard;
469 return Name < Other.Name;
472 ClassKind getClassKind(bool UseClassBIfScalar = false) {
473 if (UseClassBIfScalar && !protoHasScalar())
474 return ClassB;
475 return CK;
478 /// Return the name, mangled with type information.
479 /// If ForceClassS is true, use ClassS (u32/s32) instead
480 /// of the intrinsic's own type class.
481 std::string getMangledName(bool ForceClassS = false) const;
482 /// Return the type code for a builtin function call.
483 std::string getInstTypeCode(Type T, ClassKind CK) const;
484 /// Return the type string for a BUILTIN() macro in Builtins.def.
485 std::string getBuiltinTypeStr();
487 /// Generate the intrinsic, returning code.
488 std::string generate();
489 /// Perform type checking and populate the dependency graph, but
490 /// don't generate code yet.
491 void indexBody();
493 private:
494 StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
496 std::string mangleName(std::string Name, ClassKind CK) const;
498 void initVariables();
499 std::string replaceParamsIn(std::string S);
501 void emitBodyAsBuiltinCall();
503 void generateImpl(bool ReverseArguments,
504 StringRef NamePrefix, StringRef CallPrefix);
505 void emitReturn();
506 void emitBody(StringRef CallPrefix);
507 void emitShadowedArgs();
508 void emitArgumentReversal();
509 void emitReturnVarDecl();
510 void emitReturnReversal();
511 void emitReverseVariable(Variable &Dest, Variable &Src);
512 void emitNewLine();
513 void emitClosingBrace();
514 void emitOpeningBrace();
515 void emitPrototype(StringRef NamePrefix);
517 class DagEmitter {
518 Intrinsic &Intr;
519 StringRef CallPrefix;
521 public:
522 DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
523 Intr(Intr), CallPrefix(CallPrefix) {
525 std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
526 std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
527 std::pair<Type, std::string> emitDagSplat(DagInit *DI);
528 std::pair<Type, std::string> emitDagDup(DagInit *DI);
529 std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
530 std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
531 std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
532 std::pair<Type, std::string> emitDagCall(DagInit *DI,
533 bool MatchMangledName);
534 std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
535 std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
536 std::pair<Type, std::string> emitDagOp(DagInit *DI);
537 std::pair<Type, std::string> emitDag(DagInit *DI);
541 //===----------------------------------------------------------------------===//
542 // NeonEmitter
543 //===----------------------------------------------------------------------===//
545 class NeonEmitter {
546 RecordKeeper &Records;
547 DenseMap<Record *, ClassKind> ClassMap;
548 std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
549 unsigned UniqueNumber;
551 void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
552 void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
553 void genOverloadTypeCheckCode(raw_ostream &OS,
554 SmallVectorImpl<Intrinsic *> &Defs);
555 void genIntrinsicRangeCheckCode(raw_ostream &OS,
556 SmallVectorImpl<Intrinsic *> &Defs);
558 public:
559 /// Called by Intrinsic - this attempts to get an intrinsic that takes
560 /// the given types as arguments.
561 Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
562 std::optional<std::string> MangledName);
564 /// Called by Intrinsic - returns a globally-unique number.
565 unsigned getUniqueNumber() { return UniqueNumber++; }
567 NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
568 Record *SI = R.getClass("SInst");
569 Record *II = R.getClass("IInst");
570 Record *WI = R.getClass("WInst");
571 Record *SOpI = R.getClass("SOpInst");
572 Record *IOpI = R.getClass("IOpInst");
573 Record *WOpI = R.getClass("WOpInst");
574 Record *LOpI = R.getClass("LOpInst");
575 Record *NoTestOpI = R.getClass("NoTestOpInst");
577 ClassMap[SI] = ClassS;
578 ClassMap[II] = ClassI;
579 ClassMap[WI] = ClassW;
580 ClassMap[SOpI] = ClassS;
581 ClassMap[IOpI] = ClassI;
582 ClassMap[WOpI] = ClassW;
583 ClassMap[LOpI] = ClassL;
584 ClassMap[NoTestOpI] = ClassNoTest;
587 // Emit arm_neon.h.inc
588 void run(raw_ostream &o);
590 // Emit arm_fp16.h.inc
591 void runFP16(raw_ostream &o);
593 // Emit arm_bf16.h.inc
594 void runBF16(raw_ostream &o);
596 // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
597 // arm_bf16.h
598 void runHeader(raw_ostream &o);
601 } // end anonymous namespace
603 //===----------------------------------------------------------------------===//
604 // Type implementation
605 //===----------------------------------------------------------------------===//
607 std::string Type::str() const {
608 if (isVoid())
609 return "void";
610 std::string S;
612 if (isInteger() && !isSigned())
613 S += "u";
615 if (isPoly())
616 S += "poly";
617 else if (isFloating())
618 S += "float";
619 else if (isBFloat16())
620 S += "bfloat";
621 else
622 S += "int";
624 S += utostr(ElementBitwidth);
625 if (isVector())
626 S += "x" + utostr(getNumElements());
627 if (NumVectors > 1)
628 S += "x" + utostr(NumVectors);
629 S += "_t";
631 if (Constant)
632 S += " const";
633 if (Pointer)
634 S += " *";
636 return S;
639 std::string Type::builtin_str() const {
640 std::string S;
641 if (isVoid())
642 return "v";
644 if (isPointer()) {
645 // All pointers are void pointers.
646 S = "v";
647 if (isConstPointer())
648 S += "C";
649 S += "*";
650 return S;
651 } else if (isInteger())
652 switch (ElementBitwidth) {
653 case 8: S += "c"; break;
654 case 16: S += "s"; break;
655 case 32: S += "i"; break;
656 case 64: S += "Wi"; break;
657 case 128: S += "LLLi"; break;
658 default: llvm_unreachable("Unhandled case!");
660 else if (isBFloat16()) {
661 assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
662 S += "y";
663 } else
664 switch (ElementBitwidth) {
665 case 16: S += "h"; break;
666 case 32: S += "f"; break;
667 case 64: S += "d"; break;
668 default: llvm_unreachable("Unhandled case!");
671 // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
672 if (isChar() && !isPointer() && isSigned())
673 // Make chars explicitly signed.
674 S = "S" + S;
675 else if (isInteger() && !isSigned())
676 S = "U" + S;
678 // Constant indices are "int", but have the "constant expression" modifier.
679 if (isImmediate()) {
680 assert(isInteger() && isSigned());
681 S = "I" + S;
684 if (isScalar())
685 return S;
687 std::string Ret;
688 for (unsigned I = 0; I < NumVectors; ++I)
689 Ret += "V" + utostr(getNumElements()) + S;
691 return Ret;
694 unsigned Type::getNeonEnum() const {
695 unsigned Addend;
696 switch (ElementBitwidth) {
697 case 8: Addend = 0; break;
698 case 16: Addend = 1; break;
699 case 32: Addend = 2; break;
700 case 64: Addend = 3; break;
701 case 128: Addend = 4; break;
702 default: llvm_unreachable("Unhandled element bitwidth!");
705 unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
706 if (isPoly()) {
707 // Adjustment needed because Poly32 doesn't exist.
708 if (Addend >= 2)
709 --Addend;
710 Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
712 if (isFloating()) {
713 assert(Addend != 0 && "Float8 doesn't exist!");
714 Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
717 if (isBFloat16()) {
718 assert(Addend == 1 && "BFloat16 is only 16 bit");
719 Base = (unsigned)NeonTypeFlags::BFloat16;
722 if (Bitwidth == 128)
723 Base |= (unsigned)NeonTypeFlags::QuadFlag;
724 if (isInteger() && !isSigned())
725 Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
727 return Base;
730 Type Type::fromTypedefName(StringRef Name) {
731 Type T;
732 T.Kind = SInt;
734 if (Name.front() == 'u') {
735 T.Kind = UInt;
736 Name = Name.drop_front();
739 if (Name.startswith("float")) {
740 T.Kind = Float;
741 Name = Name.drop_front(5);
742 } else if (Name.startswith("poly")) {
743 T.Kind = Poly;
744 Name = Name.drop_front(4);
745 } else if (Name.startswith("bfloat")) {
746 T.Kind = BFloat16;
747 Name = Name.drop_front(6);
748 } else {
749 assert(Name.startswith("int"));
750 Name = Name.drop_front(3);
753 unsigned I = 0;
754 for (I = 0; I < Name.size(); ++I) {
755 if (!isdigit(Name[I]))
756 break;
758 Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
759 Name = Name.drop_front(I);
761 T.Bitwidth = T.ElementBitwidth;
762 T.NumVectors = 1;
764 if (Name.front() == 'x') {
765 Name = Name.drop_front();
766 unsigned I = 0;
767 for (I = 0; I < Name.size(); ++I) {
768 if (!isdigit(Name[I]))
769 break;
771 unsigned NumLanes;
772 Name.substr(0, I).getAsInteger(10, NumLanes);
773 Name = Name.drop_front(I);
774 T.Bitwidth = T.ElementBitwidth * NumLanes;
775 } else {
776 // Was scalar.
777 T.NumVectors = 0;
779 if (Name.front() == 'x') {
780 Name = Name.drop_front();
781 unsigned I = 0;
782 for (I = 0; I < Name.size(); ++I) {
783 if (!isdigit(Name[I]))
784 break;
786 Name.substr(0, I).getAsInteger(10, T.NumVectors);
787 Name = Name.drop_front(I);
790 assert(Name.startswith("_t") && "Malformed typedef!");
791 return T;
794 void Type::applyTypespec(bool &Quad) {
795 std::string S = TS;
796 ScalarForMangling = false;
797 Kind = SInt;
798 ElementBitwidth = ~0U;
799 NumVectors = 1;
801 for (char I : S) {
802 switch (I) {
803 case 'S':
804 ScalarForMangling = true;
805 break;
806 case 'H':
807 NoManglingQ = true;
808 Quad = true;
809 break;
810 case 'Q':
811 Quad = true;
812 break;
813 case 'P':
814 Kind = Poly;
815 break;
816 case 'U':
817 Kind = UInt;
818 break;
819 case 'c':
820 ElementBitwidth = 8;
821 break;
822 case 'h':
823 Kind = Float;
824 [[fallthrough]];
825 case 's':
826 ElementBitwidth = 16;
827 break;
828 case 'f':
829 Kind = Float;
830 [[fallthrough]];
831 case 'i':
832 ElementBitwidth = 32;
833 break;
834 case 'd':
835 Kind = Float;
836 [[fallthrough]];
837 case 'l':
838 ElementBitwidth = 64;
839 break;
840 case 'k':
841 ElementBitwidth = 128;
842 // Poly doesn't have a 128x1 type.
843 if (isPoly())
844 NumVectors = 0;
845 break;
846 case 'b':
847 Kind = BFloat16;
848 ElementBitwidth = 16;
849 break;
850 default:
851 llvm_unreachable("Unhandled type code!");
854 assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
856 Bitwidth = Quad ? 128 : 64;
859 void Type::applyModifiers(StringRef Mods) {
860 bool AppliedQuad = false;
861 applyTypespec(AppliedQuad);
863 for (char Mod : Mods) {
864 switch (Mod) {
865 case '.':
866 break;
867 case 'v':
868 Kind = Void;
869 break;
870 case 'S':
871 Kind = SInt;
872 break;
873 case 'U':
874 Kind = UInt;
875 break;
876 case 'B':
877 Kind = BFloat16;
878 ElementBitwidth = 16;
879 break;
880 case 'F':
881 Kind = Float;
882 break;
883 case 'P':
884 Kind = Poly;
885 break;
886 case '>':
887 assert(ElementBitwidth < 128);
888 ElementBitwidth *= 2;
889 break;
890 case '<':
891 assert(ElementBitwidth > 8);
892 ElementBitwidth /= 2;
893 break;
894 case '1':
895 NumVectors = 0;
896 break;
897 case '2':
898 NumVectors = 2;
899 break;
900 case '3':
901 NumVectors = 3;
902 break;
903 case '4':
904 NumVectors = 4;
905 break;
906 case '*':
907 Pointer = true;
908 break;
909 case 'c':
910 Constant = true;
911 break;
912 case 'Q':
913 Bitwidth = 128;
914 break;
915 case 'q':
916 Bitwidth = 64;
917 break;
918 case 'I':
919 Kind = SInt;
920 ElementBitwidth = Bitwidth = 32;
921 NumVectors = 0;
922 Immediate = true;
923 break;
924 case 'p':
925 if (isPoly())
926 Kind = UInt;
927 break;
928 case '!':
929 // Key type, handled elsewhere.
930 break;
931 default:
932 llvm_unreachable("Unhandled character!");
937 //===----------------------------------------------------------------------===//
938 // Intrinsic implementation
939 //===----------------------------------------------------------------------===//
941 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
942 if (Proto.size() == Pos)
943 return StringRef();
944 else if (Proto[Pos] != '(')
945 return Proto.substr(Pos++, 1);
947 size_t Start = Pos + 1;
948 size_t End = Proto.find(')', Start);
949 assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
950 Pos = End + 1;
951 return Proto.slice(Start, End);
954 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
955 char typeCode = '\0';
956 bool printNumber = true;
958 if (CK == ClassB && TargetGuard == "")
959 return "";
961 if (T.isBFloat16())
962 return "bf16";
964 if (T.isPoly())
965 typeCode = 'p';
966 else if (T.isInteger())
967 typeCode = T.isSigned() ? 's' : 'u';
968 else
969 typeCode = 'f';
971 if (CK == ClassI) {
972 switch (typeCode) {
973 default:
974 break;
975 case 's':
976 case 'u':
977 case 'p':
978 typeCode = 'i';
979 break;
982 if (CK == ClassB && TargetGuard == "") {
983 typeCode = '\0';
986 std::string S;
987 if (typeCode != '\0')
988 S.push_back(typeCode);
989 if (printNumber)
990 S += utostr(T.getElementSizeInBits());
992 return S;
995 std::string Intrinsic::getBuiltinTypeStr() {
996 ClassKind LocalCK = getClassKind(true);
997 std::string S;
999 Type RetT = getReturnType();
1000 if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1001 !RetT.isFloating() && !RetT.isBFloat16())
1002 RetT.makeInteger(RetT.getElementSizeInBits(), false);
1004 // Since the return value must be one type, return a vector type of the
1005 // appropriate width which we will bitcast. An exception is made for
1006 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1007 // fashion, storing them to a pointer arg.
1008 if (RetT.getNumVectors() > 1) {
1009 S += "vv*"; // void result with void* first argument
1010 } else {
1011 if (RetT.isPoly())
1012 RetT.makeInteger(RetT.getElementSizeInBits(), false);
1013 if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1014 RetT.makeSigned();
1016 if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1017 // Cast to vector of 8-bit elements.
1018 RetT.makeInteger(8, true);
1020 S += RetT.builtin_str();
1023 for (unsigned I = 0; I < getNumParams(); ++I) {
1024 Type T = getParamType(I);
1025 if (T.isPoly())
1026 T.makeInteger(T.getElementSizeInBits(), false);
1028 if (LocalCK == ClassB && !T.isScalar())
1029 T.makeInteger(8, true);
1030 // Halves always get converted to 8-bit elements.
1031 if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1032 T.makeInteger(8, true);
1034 if (LocalCK == ClassI && T.isInteger())
1035 T.makeSigned();
1037 if (hasImmediate() && getImmediateIdx() == I)
1038 T.makeImmediate(32);
1040 S += T.builtin_str();
1043 // Extra constant integer to hold type class enum for this function, e.g. s8
1044 if (LocalCK == ClassB)
1045 S += "i";
1047 return S;
1050 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1051 // Check if the prototype has a scalar operand with the type of the vector
1052 // elements. If not, bitcasting the args will take care of arg checking.
1053 // The actual signedness etc. will be taken care of with special enums.
1054 ClassKind LocalCK = CK;
1055 if (!protoHasScalar())
1056 LocalCK = ClassB;
1058 return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1061 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1062 std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1063 std::string S = Name;
1065 if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1066 Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1067 Name == "vcvt_f32_bf16")
1068 return Name;
1070 if (!typeCode.empty()) {
1071 // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1072 if (Name.size() >= 3 && isdigit(Name.back()) &&
1073 Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1074 S.insert(S.length() - 3, "_" + typeCode);
1075 else
1076 S += "_" + typeCode;
1079 if (BaseType != InBaseType) {
1080 // A reinterpret - out the input base type at the end.
1081 S += "_" + getInstTypeCode(InBaseType, LocalCK);
1084 if (LocalCK == ClassB && TargetGuard == "")
1085 S += "_v";
1087 // Insert a 'q' before the first '_' character so that it ends up before
1088 // _lane or _n on vector-scalar operations.
1089 if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1090 size_t Pos = S.find('_');
1091 S.insert(Pos, "q");
1094 char Suffix = '\0';
1095 if (BaseType.isScalarForMangling()) {
1096 switch (BaseType.getElementSizeInBits()) {
1097 case 8: Suffix = 'b'; break;
1098 case 16: Suffix = 'h'; break;
1099 case 32: Suffix = 's'; break;
1100 case 64: Suffix = 'd'; break;
1101 default: llvm_unreachable("Bad suffix!");
1104 if (Suffix != '\0') {
1105 size_t Pos = S.find('_');
1106 S.insert(Pos, &Suffix, 1);
1109 return S;
1112 std::string Intrinsic::replaceParamsIn(std::string S) {
1113 while (S.find('$') != std::string::npos) {
1114 size_t Pos = S.find('$');
1115 size_t End = Pos + 1;
1116 while (isalpha(S[End]))
1117 ++End;
1119 std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1120 assert_with_loc(Variables.find(VarName) != Variables.end(),
1121 "Variable not defined!");
1122 S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1125 return S;
1128 void Intrinsic::initVariables() {
1129 Variables.clear();
1131 // Modify the TypeSpec per-argument to get a concrete Type, and create
1132 // known variables for each.
1133 for (unsigned I = 1; I < Types.size(); ++I) {
1134 char NameC = '0' + (I - 1);
1135 std::string Name = "p";
1136 Name.push_back(NameC);
1138 Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1140 RetVar = Variable(Types[0], "ret" + VariablePostfix);
1143 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1144 if (UseMacro) {
1145 OS << "#define ";
1146 } else {
1147 OS << "__ai ";
1148 if (TargetGuard != "")
1149 OS << "__attribute__((target(\"" << TargetGuard << "\"))) ";
1150 OS << Types[0].str() << " ";
1153 OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1155 for (unsigned I = 0; I < getNumParams(); ++I) {
1156 if (I != 0)
1157 OS << ", ";
1159 char NameC = '0' + I;
1160 std::string Name = "p";
1161 Name.push_back(NameC);
1162 assert(Variables.find(Name) != Variables.end());
1163 Variable &V = Variables[Name];
1165 if (!UseMacro)
1166 OS << V.getType().str() << " ";
1167 OS << V.getName();
1170 OS << ")";
1173 void Intrinsic::emitOpeningBrace() {
1174 if (UseMacro)
1175 OS << " __extension__ ({";
1176 else
1177 OS << " {";
1178 emitNewLine();
1181 void Intrinsic::emitClosingBrace() {
1182 if (UseMacro)
1183 OS << "})";
1184 else
1185 OS << "}";
1188 void Intrinsic::emitNewLine() {
1189 if (UseMacro)
1190 OS << " \\\n";
1191 else
1192 OS << "\n";
1195 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1196 if (Dest.getType().getNumVectors() > 1) {
1197 emitNewLine();
1199 for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1200 OS << " " << Dest.getName() << ".val[" << K << "] = "
1201 << "__builtin_shufflevector("
1202 << Src.getName() << ".val[" << K << "], "
1203 << Src.getName() << ".val[" << K << "]";
1204 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1205 OS << ", " << J;
1206 OS << ");";
1207 emitNewLine();
1209 } else {
1210 OS << " " << Dest.getName()
1211 << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1212 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1213 OS << ", " << J;
1214 OS << ");";
1215 emitNewLine();
1219 void Intrinsic::emitArgumentReversal() {
1220 if (isBigEndianSafe())
1221 return;
1223 // Reverse all vector arguments.
1224 for (unsigned I = 0; I < getNumParams(); ++I) {
1225 std::string Name = "p" + utostr(I);
1226 std::string NewName = "rev" + utostr(I);
1228 Variable &V = Variables[Name];
1229 Variable NewV(V.getType(), NewName + VariablePostfix);
1231 if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1232 continue;
1234 OS << " " << NewV.getType().str() << " " << NewV.getName() << ";";
1235 emitReverseVariable(NewV, V);
1236 V = NewV;
1240 void Intrinsic::emitReturnVarDecl() {
1241 assert(RetVar.getType() == Types[0]);
1242 // Create a return variable, if we're not void.
1243 if (!RetVar.getType().isVoid()) {
1244 OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1245 emitNewLine();
1249 void Intrinsic::emitReturnReversal() {
1250 if (isBigEndianSafe())
1251 return;
1252 if (!getReturnType().isVector() || getReturnType().isVoid() ||
1253 getReturnType().getNumElements() == 1)
1254 return;
1255 emitReverseVariable(RetVar, RetVar);
1258 void Intrinsic::emitShadowedArgs() {
1259 // Macro arguments are not type-checked like inline function arguments,
1260 // so assign them to local temporaries to get the right type checking.
1261 if (!UseMacro)
1262 return;
1264 for (unsigned I = 0; I < getNumParams(); ++I) {
1265 // Do not create a temporary for an immediate argument.
1266 // That would defeat the whole point of using a macro!
1267 if (getParamType(I).isImmediate())
1268 continue;
1269 // Do not create a temporary for pointer arguments. The input
1270 // pointer may have an alignment hint.
1271 if (getParamType(I).isPointer())
1272 continue;
1274 std::string Name = "p" + utostr(I);
1276 assert(Variables.find(Name) != Variables.end());
1277 Variable &V = Variables[Name];
1279 std::string NewName = "s" + utostr(I);
1280 Variable V2(V.getType(), NewName + VariablePostfix);
1282 OS << " " << V2.getType().str() << " " << V2.getName() << " = "
1283 << V.getName() << ";";
1284 emitNewLine();
1286 V = V2;
1290 bool Intrinsic::protoHasScalar() const {
1291 return llvm::any_of(
1292 Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); });
1295 void Intrinsic::emitBodyAsBuiltinCall() {
1296 std::string S;
1298 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1299 // sret-like argument.
1300 bool SRet = getReturnType().getNumVectors() >= 2;
1302 StringRef N = Name;
1303 ClassKind LocalCK = CK;
1304 if (!protoHasScalar())
1305 LocalCK = ClassB;
1307 if (!getReturnType().isVoid() && !SRet)
1308 S += "(" + RetVar.getType().str() + ") ";
1310 S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1312 if (SRet)
1313 S += "&" + RetVar.getName() + ", ";
1315 for (unsigned I = 0; I < getNumParams(); ++I) {
1316 Variable &V = Variables["p" + utostr(I)];
1317 Type T = V.getType();
1319 // Handle multiple-vector values specially, emitting each subvector as an
1320 // argument to the builtin.
1321 if (T.getNumVectors() > 1) {
1322 // Check if an explicit cast is needed.
1323 std::string Cast;
1324 if (LocalCK == ClassB) {
1325 Type T2 = T;
1326 T2.makeOneVector();
1327 T2.makeInteger(8, /*Sign=*/true);
1328 Cast = "(" + T2.str() + ")";
1331 for (unsigned J = 0; J < T.getNumVectors(); ++J)
1332 S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1333 continue;
1336 std::string Arg = V.getName();
1337 Type CastToType = T;
1339 // Check if an explicit cast is needed.
1340 if (CastToType.isVector() &&
1341 (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1342 CastToType.makeInteger(8, true);
1343 Arg = "(" + CastToType.str() + ")" + Arg;
1344 } else if (CastToType.isVector() && LocalCK == ClassI) {
1345 if (CastToType.isInteger())
1346 CastToType.makeSigned();
1347 Arg = "(" + CastToType.str() + ")" + Arg;
1350 S += Arg + ", ";
1353 // Extra constant integer to hold type class enum for this function, e.g. s8
1354 if (getClassKind(true) == ClassB) {
1355 S += utostr(getPolymorphicKeyType().getNeonEnum());
1356 } else {
1357 // Remove extraneous ", ".
1358 S.pop_back();
1359 S.pop_back();
1361 S += ");";
1363 std::string RetExpr;
1364 if (!SRet && !RetVar.getType().isVoid())
1365 RetExpr = RetVar.getName() + " = ";
1367 OS << " " << RetExpr << S;
1368 emitNewLine();
1371 void Intrinsic::emitBody(StringRef CallPrefix) {
1372 std::vector<std::string> Lines;
1374 if (!Body || Body->getValues().empty()) {
1375 // Nothing specific to output - must output a builtin.
1376 emitBodyAsBuiltinCall();
1377 return;
1380 // We have a list of "things to output". The last should be returned.
1381 for (auto *I : Body->getValues()) {
1382 if (StringInit *SI = dyn_cast<StringInit>(I)) {
1383 Lines.push_back(replaceParamsIn(SI->getAsString()));
1384 } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1385 DagEmitter DE(*this, CallPrefix);
1386 Lines.push_back(DE.emitDag(DI).second + ";");
1390 assert(!Lines.empty() && "Empty def?");
1391 if (!RetVar.getType().isVoid())
1392 Lines.back().insert(0, RetVar.getName() + " = ");
1394 for (auto &L : Lines) {
1395 OS << " " << L;
1396 emitNewLine();
1400 void Intrinsic::emitReturn() {
1401 if (RetVar.getType().isVoid())
1402 return;
1403 if (UseMacro)
1404 OS << " " << RetVar.getName() << ";";
1405 else
1406 OS << " return " << RetVar.getName() << ";";
1407 emitNewLine();
1410 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1411 // At this point we should only be seeing a def.
1412 DefInit *DefI = cast<DefInit>(DI->getOperator());
1413 std::string Op = DefI->getAsString();
1415 if (Op == "cast" || Op == "bitcast")
1416 return emitDagCast(DI, Op == "bitcast");
1417 if (Op == "shuffle")
1418 return emitDagShuffle(DI);
1419 if (Op == "dup")
1420 return emitDagDup(DI);
1421 if (Op == "dup_typed")
1422 return emitDagDupTyped(DI);
1423 if (Op == "splat")
1424 return emitDagSplat(DI);
1425 if (Op == "save_temp")
1426 return emitDagSaveTemp(DI);
1427 if (Op == "op")
1428 return emitDagOp(DI);
1429 if (Op == "call" || Op == "call_mangled")
1430 return emitDagCall(DI, Op == "call_mangled");
1431 if (Op == "name_replace")
1432 return emitDagNameReplace(DI);
1433 if (Op == "literal")
1434 return emitDagLiteral(DI);
1435 assert_with_loc(false, "Unknown operation!");
1436 return std::make_pair(Type::getVoid(), "");
1439 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1440 std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1441 if (DI->getNumArgs() == 2) {
1442 // Unary op.
1443 std::pair<Type, std::string> R =
1444 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1445 return std::make_pair(R.first, Op + R.second);
1446 } else {
1447 assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1448 std::pair<Type, std::string> R1 =
1449 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1450 std::pair<Type, std::string> R2 =
1451 emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1452 assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1453 return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1457 std::pair<Type, std::string>
1458 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1459 std::vector<Type> Types;
1460 std::vector<std::string> Values;
1461 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1462 std::pair<Type, std::string> R =
1463 emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1464 Types.push_back(R.first);
1465 Values.push_back(R.second);
1468 // Look up the called intrinsic.
1469 std::string N;
1470 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1471 N = SI->getAsUnquotedString();
1472 else
1473 N = emitDagArg(DI->getArg(0), "").second;
1474 std::optional<std::string> MangledName;
1475 if (MatchMangledName) {
1476 if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1477 N += "q";
1478 MangledName = Intr.mangleName(N, ClassS);
1480 Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1482 // Make sure the callee is known as an early def.
1483 Callee.setNeededEarly();
1484 Intr.Dependencies.insert(&Callee);
1486 // Now create the call itself.
1487 std::string S;
1488 if (!Callee.isBigEndianSafe())
1489 S += CallPrefix.str();
1490 S += Callee.getMangledName(true) + "(";
1491 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1492 if (I != 0)
1493 S += ", ";
1494 S += Values[I];
1496 S += ")";
1498 return std::make_pair(Callee.getReturnType(), S);
1501 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1502 bool IsBitCast){
1503 // (cast MOD* VAL) -> cast VAL to type given by MOD.
1504 std::pair<Type, std::string> R =
1505 emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1506 std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1507 Type castToType = R.first;
1508 for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1510 // MOD can take several forms:
1511 // 1. $X - take the type of parameter / variable X.
1512 // 2. The value "R" - take the type of the return type.
1513 // 3. a type string
1514 // 4. The value "U" or "S" to switch the signedness.
1515 // 5. The value "H" or "D" to half or double the bitwidth.
1516 // 6. The value "8" to convert to 8-bit (signed) integer lanes.
1517 if (!DI->getArgNameStr(ArgIdx).empty()) {
1518 assert_with_loc(Intr.Variables.find(std::string(
1519 DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1520 "Variable not found");
1521 castToType =
1522 Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1523 } else {
1524 StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1525 assert_with_loc(SI, "Expected string type or $Name for cast type");
1527 if (SI->getAsUnquotedString() == "R") {
1528 castToType = Intr.getReturnType();
1529 } else if (SI->getAsUnquotedString() == "U") {
1530 castToType.makeUnsigned();
1531 } else if (SI->getAsUnquotedString() == "S") {
1532 castToType.makeSigned();
1533 } else if (SI->getAsUnquotedString() == "H") {
1534 castToType.halveLanes();
1535 } else if (SI->getAsUnquotedString() == "D") {
1536 castToType.doubleLanes();
1537 } else if (SI->getAsUnquotedString() == "8") {
1538 castToType.makeInteger(8, true);
1539 } else if (SI->getAsUnquotedString() == "32") {
1540 castToType.make32BitElement();
1541 } else {
1542 castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1543 assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1548 std::string S;
1549 if (IsBitCast) {
1550 // Emit a reinterpret cast. The second operand must be an lvalue, so create
1551 // a temporary.
1552 std::string N = "reint";
1553 unsigned I = 0;
1554 while (Intr.Variables.find(N) != Intr.Variables.end())
1555 N = "reint" + utostr(++I);
1556 Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1558 Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1559 << R.second << ";";
1560 Intr.emitNewLine();
1562 S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1563 } else {
1564 // Emit a normal (static) cast.
1565 S = "(" + castToType.str() + ")(" + R.second + ")";
1568 return std::make_pair(castToType, S);
1571 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1572 // See the documentation in arm_neon.td for a description of these operators.
1573 class LowHalf : public SetTheory::Operator {
1574 public:
1575 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1576 ArrayRef<SMLoc> Loc) override {
1577 SetTheory::RecSet Elts2;
1578 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1579 Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1583 class HighHalf : public SetTheory::Operator {
1584 public:
1585 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1586 ArrayRef<SMLoc> Loc) override {
1587 SetTheory::RecSet Elts2;
1588 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1589 Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1593 class Rev : public SetTheory::Operator {
1594 unsigned ElementSize;
1596 public:
1597 Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1599 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1600 ArrayRef<SMLoc> Loc) override {
1601 SetTheory::RecSet Elts2;
1602 ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1604 int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1605 VectorSize /= ElementSize;
1607 std::vector<Record *> Revved;
1608 for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1609 for (int LI = VectorSize - 1; LI >= 0; --LI) {
1610 Revved.push_back(Elts2[VI + LI]);
1614 Elts.insert(Revved.begin(), Revved.end());
1618 class MaskExpander : public SetTheory::Expander {
1619 unsigned N;
1621 public:
1622 MaskExpander(unsigned N) : N(N) {}
1624 void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1625 unsigned Addend = 0;
1626 if (R->getName() == "mask0")
1627 Addend = 0;
1628 else if (R->getName() == "mask1")
1629 Addend = N;
1630 else
1631 return;
1632 for (unsigned I = 0; I < N; ++I)
1633 Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1637 // (shuffle arg1, arg2, sequence)
1638 std::pair<Type, std::string> Arg1 =
1639 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1640 std::pair<Type, std::string> Arg2 =
1641 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1642 assert_with_loc(Arg1.first == Arg2.first,
1643 "Different types in arguments to shuffle!");
1645 SetTheory ST;
1646 SetTheory::RecSet Elts;
1647 ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1648 ST.addOperator("highhalf", std::make_unique<HighHalf>());
1649 ST.addOperator("rev",
1650 std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1651 ST.addExpander("MaskExpand",
1652 std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1653 ST.evaluate(DI->getArg(2), Elts, std::nullopt);
1655 std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1656 for (auto &E : Elts) {
1657 StringRef Name = E->getName();
1658 assert_with_loc(Name.startswith("sv"),
1659 "Incorrect element kind in shuffle mask!");
1660 S += ", " + Name.drop_front(2).str();
1662 S += ")";
1664 // Recalculate the return type - the shuffle may have halved or doubled it.
1665 Type T(Arg1.first);
1666 if (Elts.size() > T.getNumElements()) {
1667 assert_with_loc(
1668 Elts.size() == T.getNumElements() * 2,
1669 "Can only double or half the number of elements in a shuffle!");
1670 T.doubleLanes();
1671 } else if (Elts.size() < T.getNumElements()) {
1672 assert_with_loc(
1673 Elts.size() == T.getNumElements() / 2,
1674 "Can only double or half the number of elements in a shuffle!");
1675 T.halveLanes();
1678 return std::make_pair(T, S);
1681 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1682 assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1683 std::pair<Type, std::string> A =
1684 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1685 assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1687 Type T = Intr.getBaseType();
1688 assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1689 std::string S = "(" + T.str() + ") {";
1690 for (unsigned I = 0; I < T.getNumElements(); ++I) {
1691 if (I != 0)
1692 S += ", ";
1693 S += A.second;
1695 S += "}";
1697 return std::make_pair(T, S);
1700 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1701 assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1702 std::pair<Type, std::string> B =
1703 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1704 assert_with_loc(B.first.isScalar(),
1705 "dup_typed() requires a scalar as the second argument");
1706 Type T;
1707 // If the type argument is a constant string, construct the type directly.
1708 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1709 T = Type::fromTypedefName(SI->getAsUnquotedString());
1710 assert_with_loc(!T.isVoid(), "Unknown typedef");
1711 } else
1712 T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1714 assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1715 std::string S = "(" + T.str() + ") {";
1716 for (unsigned I = 0; I < T.getNumElements(); ++I) {
1717 if (I != 0)
1718 S += ", ";
1719 S += B.second;
1721 S += "}";
1723 return std::make_pair(T, S);
1726 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1727 assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1728 std::pair<Type, std::string> A =
1729 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1730 std::pair<Type, std::string> B =
1731 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1733 assert_with_loc(B.first.isScalar(),
1734 "splat() requires a scalar int as the second argument");
1736 std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1737 for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1738 S += ", " + B.second;
1740 S += ")";
1742 return std::make_pair(Intr.getBaseType(), S);
1745 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1746 assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1747 std::pair<Type, std::string> A =
1748 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1750 assert_with_loc(!A.first.isVoid(),
1751 "Argument to save_temp() must have non-void type!");
1753 std::string N = std::string(DI->getArgNameStr(0));
1754 assert_with_loc(!N.empty(),
1755 "save_temp() expects a name as the first argument");
1757 assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1758 "Variable already defined!");
1759 Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1761 std::string S =
1762 A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1764 return std::make_pair(Type::getVoid(), S);
1767 std::pair<Type, std::string>
1768 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1769 std::string S = Intr.Name;
1771 assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1772 std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1773 std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1775 size_t Idx = S.find(ToReplace);
1777 assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1778 S.replace(Idx, ToReplace.size(), ReplaceWith);
1780 return std::make_pair(Type::getVoid(), S);
1783 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1784 std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1785 std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1786 return std::make_pair(Type::fromTypedefName(Ty), Value);
1789 std::pair<Type, std::string>
1790 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1791 if (!ArgName.empty()) {
1792 assert_with_loc(!Arg->isComplete(),
1793 "Arguments must either be DAGs or names, not both!");
1794 assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1795 "Variable not defined!");
1796 Variable &V = Intr.Variables[ArgName];
1797 return std::make_pair(V.getType(), V.getName());
1800 assert(Arg && "Neither ArgName nor Arg?!");
1801 DagInit *DI = dyn_cast<DagInit>(Arg);
1802 assert_with_loc(DI, "Arguments must either be DAGs or names!");
1804 return emitDag(DI);
1807 std::string Intrinsic::generate() {
1808 // Avoid duplicated code for big and little endian
1809 if (isBigEndianSafe()) {
1810 generateImpl(false, "", "");
1811 return OS.str();
1813 // Little endian intrinsics are simple and don't require any argument
1814 // swapping.
1815 OS << "#ifdef __LITTLE_ENDIAN__\n";
1817 generateImpl(false, "", "");
1819 OS << "#else\n";
1821 // Big endian intrinsics are more complex. The user intended these
1822 // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1823 // but we load as-if (V)LD1. So we should swap all arguments and
1824 // swap the return value too.
1826 // If we call sub-intrinsics, we should call a version that does
1827 // not re-swap the arguments!
1828 generateImpl(true, "", "__noswap_");
1830 // If we're needed early, create a non-swapping variant for
1831 // big-endian.
1832 if (NeededEarly) {
1833 generateImpl(false, "__noswap_", "__noswap_");
1835 OS << "#endif\n\n";
1837 return OS.str();
1840 void Intrinsic::generateImpl(bool ReverseArguments,
1841 StringRef NamePrefix, StringRef CallPrefix) {
1842 CurrentRecord = R;
1844 // If we call a macro, our local variables may be corrupted due to
1845 // lack of proper lexical scoping. So, add a globally unique postfix
1846 // to every variable.
1848 // indexBody() should have set up the Dependencies set by now.
1849 for (auto *I : Dependencies)
1850 if (I->UseMacro) {
1851 VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1852 break;
1855 initVariables();
1857 emitPrototype(NamePrefix);
1859 if (IsUnavailable) {
1860 OS << " __attribute__((unavailable));";
1861 } else {
1862 emitOpeningBrace();
1863 // Emit return variable declaration first as to not trigger
1864 // -Wdeclaration-after-statement.
1865 emitReturnVarDecl();
1866 emitShadowedArgs();
1867 if (ReverseArguments)
1868 emitArgumentReversal();
1869 emitBody(CallPrefix);
1870 if (ReverseArguments)
1871 emitReturnReversal();
1872 emitReturn();
1873 emitClosingBrace();
1875 OS << "\n";
1877 CurrentRecord = nullptr;
1880 void Intrinsic::indexBody() {
1881 CurrentRecord = R;
1883 initVariables();
1884 // Emit return variable declaration first as to not trigger
1885 // -Wdeclaration-after-statement.
1886 emitReturnVarDecl();
1887 emitBody("");
1888 OS.str("");
1890 CurrentRecord = nullptr;
1893 //===----------------------------------------------------------------------===//
1894 // NeonEmitter implementation
1895 //===----------------------------------------------------------------------===//
1897 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1898 std::optional<std::string> MangledName) {
1899 // First, look up the name in the intrinsic map.
1900 assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1901 ("Intrinsic '" + Name + "' not found!").str());
1902 auto &V = IntrinsicMap.find(Name.str())->second;
1903 std::vector<Intrinsic *> GoodVec;
1905 // Create a string to print if we end up failing.
1906 std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1907 for (unsigned I = 0; I < Types.size(); ++I) {
1908 if (I != 0)
1909 ErrMsg += ", ";
1910 ErrMsg += Types[I].str();
1912 ErrMsg += ")'\n";
1913 ErrMsg += "Available overloads:\n";
1915 // Now, look through each intrinsic implementation and see if the types are
1916 // compatible.
1917 for (auto &I : V) {
1918 ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName();
1919 ErrMsg += "(";
1920 for (unsigned A = 0; A < I.getNumParams(); ++A) {
1921 if (A != 0)
1922 ErrMsg += ", ";
1923 ErrMsg += I.getParamType(A).str();
1925 ErrMsg += ")\n";
1927 if (MangledName && MangledName != I.getMangledName(true))
1928 continue;
1930 if (I.getNumParams() != Types.size())
1931 continue;
1933 unsigned ArgNum = 0;
1934 bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) {
1935 return Type == I.getParamType(ArgNum++);
1938 if (MatchingArgumentTypes)
1939 GoodVec.push_back(&I);
1942 assert_with_loc(!GoodVec.empty(),
1943 "No compatible intrinsic found - " + ErrMsg);
1944 assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1946 return *GoodVec.front();
1949 void NeonEmitter::createIntrinsic(Record *R,
1950 SmallVectorImpl<Intrinsic *> &Out) {
1951 std::string Name = std::string(R->getValueAsString("Name"));
1952 std::string Proto = std::string(R->getValueAsString("Prototype"));
1953 std::string Types = std::string(R->getValueAsString("Types"));
1954 Record *OperationRec = R->getValueAsDef("Operation");
1955 bool BigEndianSafe = R->getValueAsBit("BigEndianSafe");
1956 std::string ArchGuard = std::string(R->getValueAsString("ArchGuard"));
1957 std::string TargetGuard = std::string(R->getValueAsString("TargetGuard"));
1958 bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1959 std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1961 // Set the global current record. This allows assert_with_loc to produce
1962 // decent location information even when highly nested.
1963 CurrentRecord = R;
1965 ListInit *Body = OperationRec->getValueAsListInit("Ops");
1967 std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1969 ClassKind CK = ClassNone;
1970 if (R->getSuperClasses().size() >= 2)
1971 CK = ClassMap[R->getSuperClasses()[1].first];
1973 std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1974 if (!CartesianProductWith.empty()) {
1975 std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1976 for (auto TS : TypeSpecs) {
1977 Type DefaultT(TS, ".");
1978 for (auto SrcTS : ProductTypeSpecs) {
1979 Type DefaultSrcT(SrcTS, ".");
1980 if (TS == SrcTS ||
1981 DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1982 continue;
1983 NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1986 } else {
1987 for (auto TS : TypeSpecs) {
1988 NewTypeSpecs.push_back(std::make_pair(TS, TS));
1992 llvm::sort(NewTypeSpecs);
1993 NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1994 NewTypeSpecs.end());
1995 auto &Entry = IntrinsicMap[Name];
1997 for (auto &I : NewTypeSpecs) {
1998 Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1999 ArchGuard, TargetGuard, IsUnavailable, BigEndianSafe);
2000 Out.push_back(&Entry.back());
2003 CurrentRecord = nullptr;
2006 /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def
2007 /// declaration of builtins, checking for unique builtin declarations.
2008 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2009 SmallVectorImpl<Intrinsic *> &Defs) {
2010 OS << "#ifdef GET_NEON_BUILTINS\n";
2012 // We only want to emit a builtin once, and we want to emit them in
2013 // alphabetical order, so use a std::set.
2014 std::set<std::pair<std::string, std::string>> Builtins;
2016 for (auto *Def : Defs) {
2017 if (Def->hasBody())
2018 continue;
2020 std::string S = "__builtin_neon_" + Def->getMangledName() + ", \"";
2021 S += Def->getBuiltinTypeStr();
2022 S += "\", \"n\"";
2024 Builtins.emplace(S, Def->getTargetGuard());
2027 for (auto &S : Builtins) {
2028 if (S.second == "")
2029 OS << "BUILTIN(";
2030 else
2031 OS << "TARGET_BUILTIN(";
2032 OS << S.first;
2033 if (S.second == "")
2034 OS << ")\n";
2035 else
2036 OS << ", \"" << S.second << "\")\n";
2039 OS << "#endif\n\n";
2042 /// Generate the ARM and AArch64 overloaded type checking code for
2043 /// SemaChecking.cpp, checking for unique builtin declarations.
2044 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2045 SmallVectorImpl<Intrinsic *> &Defs) {
2046 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2048 // We record each overload check line before emitting because subsequent Inst
2049 // definitions may extend the number of permitted types (i.e. augment the
2050 // Mask). Use std::map to avoid sorting the table by hash number.
2051 struct OverloadInfo {
2052 uint64_t Mask;
2053 int PtrArgNum;
2054 bool HasConstPtr;
2055 OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2057 std::map<std::string, OverloadInfo> OverloadMap;
2059 for (auto *Def : Defs) {
2060 // If the def has a body (that is, it has Operation DAGs), it won't call
2061 // __builtin_neon_* so we don't need to generate a definition for it.
2062 if (Def->hasBody())
2063 continue;
2064 // Functions which have a scalar argument cannot be overloaded, no need to
2065 // check them if we are emitting the type checking code.
2066 if (Def->protoHasScalar())
2067 continue;
2069 uint64_t Mask = 0ULL;
2070 Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2072 // Check if the function has a pointer or const pointer argument.
2073 int PtrArgNum = -1;
2074 bool HasConstPtr = false;
2075 for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2076 const auto &Type = Def->getParamType(I);
2077 if (Type.isPointer()) {
2078 PtrArgNum = I;
2079 HasConstPtr = Type.isConstPointer();
2083 // For sret builtins, adjust the pointer argument index.
2084 if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2085 PtrArgNum += 1;
2087 std::string Name = Def->getName();
2088 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2089 // and vst1_lane intrinsics. Using a pointer to the vector element
2090 // type with one of those operations causes codegen to select an aligned
2091 // load/store instruction. If you want an unaligned operation,
2092 // the pointer argument needs to have less alignment than element type,
2093 // so just accept any pointer type.
2094 if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2095 PtrArgNum = -1;
2096 HasConstPtr = false;
2099 if (Mask) {
2100 std::string Name = Def->getMangledName();
2101 OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2102 OverloadInfo &OI = OverloadMap[Name];
2103 OI.Mask |= Mask;
2104 OI.PtrArgNum |= PtrArgNum;
2105 OI.HasConstPtr = HasConstPtr;
2109 for (auto &I : OverloadMap) {
2110 OverloadInfo &OI = I.second;
2112 OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2113 OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2114 if (OI.PtrArgNum >= 0)
2115 OS << "; PtrArgNum = " << OI.PtrArgNum;
2116 if (OI.HasConstPtr)
2117 OS << "; HasConstPtr = true";
2118 OS << "; break;\n";
2120 OS << "#endif\n\n";
2123 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2124 SmallVectorImpl<Intrinsic *> &Defs) {
2125 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2127 std::set<std::string> Emitted;
2129 for (auto *Def : Defs) {
2130 if (Def->hasBody())
2131 continue;
2132 // Functions which do not have an immediate do not need to have range
2133 // checking code emitted.
2134 if (!Def->hasImmediate())
2135 continue;
2136 if (Emitted.find(Def->getMangledName()) != Emitted.end())
2137 continue;
2139 std::string LowerBound, UpperBound;
2141 Record *R = Def->getRecord();
2142 if (R->getValueAsBit("isVXAR")) {
2143 //VXAR takes an immediate in the range [0, 63]
2144 LowerBound = "0";
2145 UpperBound = "63";
2146 } else if (R->getValueAsBit("isVCVT_N")) {
2147 // VCVT between floating- and fixed-point values takes an immediate
2148 // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2149 LowerBound = "1";
2150 if (Def->getBaseType().getElementSizeInBits() == 16 ||
2151 Def->getName().find('h') != std::string::npos)
2152 // VCVTh operating on FP16 intrinsics in range [1, 16)
2153 UpperBound = "15";
2154 else if (Def->getBaseType().getElementSizeInBits() == 32)
2155 UpperBound = "31";
2156 else
2157 UpperBound = "63";
2158 } else if (R->getValueAsBit("isScalarShift")) {
2159 // Right shifts have an 'r' in the name, left shifts do not. Convert
2160 // instructions have the same bounds and right shifts.
2161 if (Def->getName().find('r') != std::string::npos ||
2162 Def->getName().find("cvt") != std::string::npos)
2163 LowerBound = "1";
2165 UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2166 } else if (R->getValueAsBit("isShift")) {
2167 // Builtins which are overloaded by type will need to have their upper
2168 // bound computed at Sema time based on the type constant.
2170 // Right shifts have an 'r' in the name, left shifts do not.
2171 if (Def->getName().find('r') != std::string::npos)
2172 LowerBound = "1";
2173 UpperBound = "RFT(TV, true)";
2174 } else if (Def->getClassKind(true) == ClassB) {
2175 // ClassB intrinsics have a type (and hence lane number) that is only
2176 // known at runtime.
2177 if (R->getValueAsBit("isLaneQ"))
2178 UpperBound = "RFT(TV, false, true)";
2179 else
2180 UpperBound = "RFT(TV, false, false)";
2181 } else {
2182 // The immediate generally refers to a lane in the preceding argument.
2183 assert(Def->getImmediateIdx() > 0);
2184 Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2185 UpperBound = utostr(T.getNumElements() - 1);
2188 // Calculate the index of the immediate that should be range checked.
2189 unsigned Idx = Def->getNumParams();
2190 if (Def->hasImmediate())
2191 Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2193 OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2194 << "i = " << Idx << ";";
2195 if (!LowerBound.empty())
2196 OS << " l = " << LowerBound << ";";
2197 if (!UpperBound.empty())
2198 OS << " u = " << UpperBound << ";";
2199 OS << " break;\n";
2201 Emitted.insert(Def->getMangledName());
2204 OS << "#endif\n\n";
2207 /// runHeader - Emit a file with sections defining:
2208 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2209 /// 2. the SemaChecking code for the type overload checking.
2210 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2211 void NeonEmitter::runHeader(raw_ostream &OS) {
2212 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2214 SmallVector<Intrinsic *, 128> Defs;
2215 for (auto *R : RV)
2216 createIntrinsic(R, Defs);
2218 // Generate shared BuiltinsXXX.def
2219 genBuiltinsDef(OS, Defs);
2221 // Generate ARM overloaded type checking code for SemaChecking.cpp
2222 genOverloadTypeCheckCode(OS, Defs);
2224 // Generate ARM range checking code for shift/lane immediates.
2225 genIntrinsicRangeCheckCode(OS, Defs);
2228 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2229 std::string TypedefTypes(types);
2230 std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2232 // Emit vector typedefs.
2233 bool InIfdef = false;
2234 for (auto &TS : TDTypeVec) {
2235 bool IsA64 = false;
2236 Type T(TS, ".");
2237 if (T.isDouble())
2238 IsA64 = true;
2240 if (InIfdef && !IsA64) {
2241 OS << "#endif\n";
2242 InIfdef = false;
2244 if (!InIfdef && IsA64) {
2245 OS << "#ifdef __aarch64__\n";
2246 InIfdef = true;
2249 if (T.isPoly())
2250 OS << "typedef __attribute__((neon_polyvector_type(";
2251 else
2252 OS << "typedef __attribute__((neon_vector_type(";
2254 Type T2 = T;
2255 T2.makeScalar();
2256 OS << T.getNumElements() << "))) ";
2257 OS << T2.str();
2258 OS << " " << T.str() << ";\n";
2260 if (InIfdef)
2261 OS << "#endif\n";
2262 OS << "\n";
2264 // Emit struct typedefs.
2265 InIfdef = false;
2266 for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2267 for (auto &TS : TDTypeVec) {
2268 bool IsA64 = false;
2269 Type T(TS, ".");
2270 if (T.isDouble())
2271 IsA64 = true;
2273 if (InIfdef && !IsA64) {
2274 OS << "#endif\n";
2275 InIfdef = false;
2277 if (!InIfdef && IsA64) {
2278 OS << "#ifdef __aarch64__\n";
2279 InIfdef = true;
2282 const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2283 Type VT(TS, Mods);
2284 OS << "typedef struct " << VT.str() << " {\n";
2285 OS << " " << T.str() << " val";
2286 OS << "[" << NumMembers << "]";
2287 OS << ";\n} ";
2288 OS << VT.str() << ";\n";
2289 OS << "\n";
2292 if (InIfdef)
2293 OS << "#endif\n";
2296 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
2297 /// is comprised of type definitions and function declarations.
2298 void NeonEmitter::run(raw_ostream &OS) {
2299 OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2300 "------------------------------"
2301 "---===\n"
2302 " *\n"
2303 " * Permission is hereby granted, free of charge, to any person "
2304 "obtaining "
2305 "a copy\n"
2306 " * of this software and associated documentation files (the "
2307 "\"Software\"),"
2308 " to deal\n"
2309 " * in the Software without restriction, including without limitation "
2310 "the "
2311 "rights\n"
2312 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2313 "and/or sell\n"
2314 " * copies of the Software, and to permit persons to whom the Software "
2315 "is\n"
2316 " * furnished to do so, subject to the following conditions:\n"
2317 " *\n"
2318 " * The above copyright notice and this permission notice shall be "
2319 "included in\n"
2320 " * all copies or substantial portions of the Software.\n"
2321 " *\n"
2322 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2323 "EXPRESS OR\n"
2324 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2325 "MERCHANTABILITY,\n"
2326 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2327 "SHALL THE\n"
2328 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2329 "OTHER\n"
2330 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2331 "ARISING FROM,\n"
2332 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2333 "DEALINGS IN\n"
2334 " * THE SOFTWARE.\n"
2335 " *\n"
2336 " *===-----------------------------------------------------------------"
2337 "---"
2338 "---===\n"
2339 " */\n\n";
2341 OS << "#ifndef __ARM_NEON_H\n";
2342 OS << "#define __ARM_NEON_H\n\n";
2344 OS << "#ifndef __ARM_FP\n";
2345 OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2346 "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2347 OS << "#else\n\n";
2349 OS << "#if !defined(__ARM_NEON)\n";
2350 OS << "#error \"NEON support not enabled\"\n";
2351 OS << "#else\n\n";
2353 OS << "#include <stdint.h>\n\n";
2355 OS << "#include <arm_bf16.h>\n";
2356 OS << "typedef __bf16 bfloat16_t;\n";
2358 // Emit NEON-specific scalar typedefs.
2359 OS << "typedef float float32_t;\n";
2360 OS << "typedef __fp16 float16_t;\n";
2362 OS << "#ifdef __aarch64__\n";
2363 OS << "typedef double float64_t;\n";
2364 OS << "#endif\n\n";
2366 // For now, signedness of polynomial types depends on target
2367 OS << "#ifdef __aarch64__\n";
2368 OS << "typedef uint8_t poly8_t;\n";
2369 OS << "typedef uint16_t poly16_t;\n";
2370 OS << "typedef uint64_t poly64_t;\n";
2371 OS << "typedef __uint128_t poly128_t;\n";
2372 OS << "#else\n";
2373 OS << "typedef int8_t poly8_t;\n";
2374 OS << "typedef int16_t poly16_t;\n";
2375 OS << "typedef int64_t poly64_t;\n";
2376 OS << "#endif\n";
2378 emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl", OS);
2380 emitNeonTypeDefs("bQb", OS);
2382 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2383 "__nodebug__))\n\n";
2385 SmallVector<Intrinsic *, 128> Defs;
2386 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2387 for (auto *R : RV)
2388 createIntrinsic(R, Defs);
2390 for (auto *I : Defs)
2391 I->indexBody();
2393 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2395 // Only emit a def when its requirements have been met.
2396 // FIXME: This loop could be made faster, but it's fast enough for now.
2397 bool MadeProgress = true;
2398 std::string InGuard;
2399 while (!Defs.empty() && MadeProgress) {
2400 MadeProgress = false;
2402 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2403 I != Defs.end(); /*No step*/) {
2404 bool DependenciesSatisfied = true;
2405 for (auto *II : (*I)->getDependencies()) {
2406 if (llvm::is_contained(Defs, II))
2407 DependenciesSatisfied = false;
2409 if (!DependenciesSatisfied) {
2410 // Try the next one.
2411 ++I;
2412 continue;
2415 // Emit #endif/#if pair if needed.
2416 if ((*I)->getArchGuard() != InGuard) {
2417 if (!InGuard.empty())
2418 OS << "#endif\n";
2419 InGuard = (*I)->getArchGuard();
2420 if (!InGuard.empty())
2421 OS << "#if " << InGuard << "\n";
2424 // Actually generate the intrinsic code.
2425 OS << (*I)->generate();
2427 MadeProgress = true;
2428 I = Defs.erase(I);
2431 assert(Defs.empty() && "Some requirements were not satisfied!");
2432 if (!InGuard.empty())
2433 OS << "#endif\n";
2435 OS << "\n";
2436 OS << "#undef __ai\n\n";
2437 OS << "#endif /* if !defined(__ARM_NEON) */\n";
2438 OS << "#endif /* ifndef __ARM_FP */\n";
2439 OS << "#endif /* __ARM_NEON_H */\n";
2442 /// run - Read the records in arm_fp16.td and output arm_fp16.h. arm_fp16.h
2443 /// is comprised of type definitions and function declarations.
2444 void NeonEmitter::runFP16(raw_ostream &OS) {
2445 OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2446 "------------------------------"
2447 "---===\n"
2448 " *\n"
2449 " * Permission is hereby granted, free of charge, to any person "
2450 "obtaining a copy\n"
2451 " * of this software and associated documentation files (the "
2452 "\"Software\"), to deal\n"
2453 " * in the Software without restriction, including without limitation "
2454 "the rights\n"
2455 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2456 "and/or sell\n"
2457 " * copies of the Software, and to permit persons to whom the Software "
2458 "is\n"
2459 " * furnished to do so, subject to the following conditions:\n"
2460 " *\n"
2461 " * The above copyright notice and this permission notice shall be "
2462 "included in\n"
2463 " * all copies or substantial portions of the Software.\n"
2464 " *\n"
2465 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2466 "EXPRESS OR\n"
2467 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2468 "MERCHANTABILITY,\n"
2469 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2470 "SHALL THE\n"
2471 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2472 "OTHER\n"
2473 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2474 "ARISING FROM,\n"
2475 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2476 "DEALINGS IN\n"
2477 " * THE SOFTWARE.\n"
2478 " *\n"
2479 " *===-----------------------------------------------------------------"
2480 "---"
2481 "---===\n"
2482 " */\n\n";
2484 OS << "#ifndef __ARM_FP16_H\n";
2485 OS << "#define __ARM_FP16_H\n\n";
2487 OS << "#include <stdint.h>\n\n";
2489 OS << "typedef __fp16 float16_t;\n";
2491 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2492 "__nodebug__))\n\n";
2494 SmallVector<Intrinsic *, 128> Defs;
2495 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2496 for (auto *R : RV)
2497 createIntrinsic(R, Defs);
2499 for (auto *I : Defs)
2500 I->indexBody();
2502 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2504 // Only emit a def when its requirements have been met.
2505 // FIXME: This loop could be made faster, but it's fast enough for now.
2506 bool MadeProgress = true;
2507 std::string InGuard;
2508 while (!Defs.empty() && MadeProgress) {
2509 MadeProgress = false;
2511 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2512 I != Defs.end(); /*No step*/) {
2513 bool DependenciesSatisfied = true;
2514 for (auto *II : (*I)->getDependencies()) {
2515 if (llvm::is_contained(Defs, II))
2516 DependenciesSatisfied = false;
2518 if (!DependenciesSatisfied) {
2519 // Try the next one.
2520 ++I;
2521 continue;
2524 // Emit #endif/#if pair if needed.
2525 if ((*I)->getArchGuard() != InGuard) {
2526 if (!InGuard.empty())
2527 OS << "#endif\n";
2528 InGuard = (*I)->getArchGuard();
2529 if (!InGuard.empty())
2530 OS << "#if " << InGuard << "\n";
2533 // Actually generate the intrinsic code.
2534 OS << (*I)->generate();
2536 MadeProgress = true;
2537 I = Defs.erase(I);
2540 assert(Defs.empty() && "Some requirements were not satisfied!");
2541 if (!InGuard.empty())
2542 OS << "#endif\n";
2544 OS << "\n";
2545 OS << "#undef __ai\n\n";
2546 OS << "#endif /* __ARM_FP16_H */\n";
2549 void NeonEmitter::runBF16(raw_ostream &OS) {
2550 OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2551 "-----------------------------------===\n"
2552 " *\n"
2553 " *\n"
2554 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2555 "Exceptions.\n"
2556 " * See https://llvm.org/LICENSE.txt for license information.\n"
2557 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2558 " *\n"
2559 " *===-----------------------------------------------------------------"
2560 "------===\n"
2561 " */\n\n";
2563 OS << "#ifndef __ARM_BF16_H\n";
2564 OS << "#define __ARM_BF16_H\n\n";
2566 OS << "typedef __bf16 bfloat16_t;\n";
2568 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2569 "__nodebug__))\n\n";
2571 SmallVector<Intrinsic *, 128> Defs;
2572 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2573 for (auto *R : RV)
2574 createIntrinsic(R, Defs);
2576 for (auto *I : Defs)
2577 I->indexBody();
2579 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2581 // Only emit a def when its requirements have been met.
2582 // FIXME: This loop could be made faster, but it's fast enough for now.
2583 bool MadeProgress = true;
2584 std::string InGuard;
2585 while (!Defs.empty() && MadeProgress) {
2586 MadeProgress = false;
2588 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2589 I != Defs.end(); /*No step*/) {
2590 bool DependenciesSatisfied = true;
2591 for (auto *II : (*I)->getDependencies()) {
2592 if (llvm::is_contained(Defs, II))
2593 DependenciesSatisfied = false;
2595 if (!DependenciesSatisfied) {
2596 // Try the next one.
2597 ++I;
2598 continue;
2601 // Emit #endif/#if pair if needed.
2602 if ((*I)->getArchGuard() != InGuard) {
2603 if (!InGuard.empty())
2604 OS << "#endif\n";
2605 InGuard = (*I)->getArchGuard();
2606 if (!InGuard.empty())
2607 OS << "#if " << InGuard << "\n";
2610 // Actually generate the intrinsic code.
2611 OS << (*I)->generate();
2613 MadeProgress = true;
2614 I = Defs.erase(I);
2617 assert(Defs.empty() && "Some requirements were not satisfied!");
2618 if (!InGuard.empty())
2619 OS << "#endif\n";
2621 OS << "\n";
2622 OS << "#undef __ai\n\n";
2624 OS << "#endif\n";
2627 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2628 NeonEmitter(Records).run(OS);
2631 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2632 NeonEmitter(Records).runFP16(OS);
2635 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2636 NeonEmitter(Records).runBF16(OS);
2639 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2640 NeonEmitter(Records).runHeader(OS);
2643 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2644 llvm_unreachable("Neon test generation no longer implemented!");