1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface. See ARM document DUI0348B.
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors. Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
22 // See also the documentation in include/clang/Basic/arm_neon.td.
24 //===----------------------------------------------------------------------===//
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/TableGen/Error.h"
37 #include "llvm/TableGen/Record.h"
38 #include "llvm/TableGen/SetTheory.h"
57 // While globals are generally bad, this one allows us to perform assertions
58 // liberally and somehow still trace them back to the def they indirectly
60 static Record
*CurrentRecord
= nullptr;
61 static void assert_with_loc(bool Assertion
, const std::string
&Str
) {
64 PrintFatalError(CurrentRecord
->getLoc(), Str
);
72 ClassI
, // generic integer instruction, e.g., "i8" suffix
73 ClassS
, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
74 ClassW
, // width-specific instruction, e.g., "8" suffix
75 ClassB
, // bitcast arguments with enum argument to specify type
76 ClassL
, // Logical instructions which are op instructions
77 // but we need to not emit any suffix for in our
79 ClassNoTest
// Instructions which we do not test since they are
80 // not TRUE instructions.
83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
84 /// builtins. These must be kept in sync with the flags in
85 /// include/clang/Basic/TargetBuiltins.h.
86 namespace NeonTypeFlags
{
88 enum { EltTypeMask
= 0xf, UnsignedFlag
= 0x10, QuadFlag
= 0x20 };
105 } // end namespace NeonTypeFlags
109 //===----------------------------------------------------------------------===//
111 //===----------------------------------------------------------------------===//
113 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
114 /// for strong typing purposes.
116 /// A TypeSpec can be used to create a type.
117 class TypeSpec
: public std::string
{
119 static std::vector
<TypeSpec
> fromTypeSpecs(StringRef Str
) {
120 std::vector
<TypeSpec
> Ret
;
122 for (char I
: Str
.str()) {
125 Ret
.push_back(TypeSpec(Acc
));
135 //===----------------------------------------------------------------------===//
137 //===----------------------------------------------------------------------===//
139 /// A Type. Not much more to say here.
153 bool Immediate
, Constant
, Pointer
;
154 // ScalarForMangling and NoManglingQ are really not suited to live here as
155 // they are not related to the type. But they live in the TypeSpec (not the
156 // prototype), so this is really the only place to store them.
157 bool ScalarForMangling
, NoManglingQ
;
158 unsigned Bitwidth
, ElementBitwidth
, NumVectors
;
162 : Kind(Void
), Immediate(false), Constant(false),
163 Pointer(false), ScalarForMangling(false), NoManglingQ(false),
164 Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
166 Type(TypeSpec TS
, StringRef CharMods
)
167 : TS(std::move(TS
)), Kind(Void
), Immediate(false),
168 Constant(false), Pointer(false), ScalarForMangling(false),
169 NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
170 applyModifiers(CharMods
);
173 /// Returns a type representing "void".
174 static Type
getVoid() { return Type(); }
176 bool operator==(const Type
&Other
) const { return str() == Other
.str(); }
177 bool operator!=(const Type
&Other
) const { return !operator==(Other
); }
182 bool isScalarForMangling() const { return ScalarForMangling
; }
183 bool noManglingQ() const { return NoManglingQ
; }
185 bool isPointer() const { return Pointer
; }
186 bool isValue() const { return !isVoid() && !isPointer(); }
187 bool isScalar() const { return isValue() && NumVectors
== 0; }
188 bool isVector() const { return isValue() && NumVectors
> 0; }
189 bool isConstPointer() const { return Constant
; }
190 bool isFloating() const { return Kind
== Float
; }
191 bool isInteger() const { return Kind
== SInt
|| Kind
== UInt
; }
192 bool isPoly() const { return Kind
== Poly
; }
193 bool isSigned() const { return Kind
== SInt
; }
194 bool isImmediate() const { return Immediate
; }
195 bool isFloat() const { return isFloating() && ElementBitwidth
== 32; }
196 bool isDouble() const { return isFloating() && ElementBitwidth
== 64; }
197 bool isHalf() const { return isFloating() && ElementBitwidth
== 16; }
198 bool isChar() const { return ElementBitwidth
== 8; }
199 bool isShort() const { return isInteger() && ElementBitwidth
== 16; }
200 bool isInt() const { return isInteger() && ElementBitwidth
== 32; }
201 bool isLong() const { return isInteger() && ElementBitwidth
== 64; }
202 bool isVoid() const { return Kind
== Void
; }
203 bool isBFloat16() const { return Kind
== BFloat16
; }
204 unsigned getNumElements() const { return Bitwidth
/ ElementBitwidth
; }
205 unsigned getSizeInBits() const { return Bitwidth
; }
206 unsigned getElementSizeInBits() const { return ElementBitwidth
; }
207 unsigned getNumVectors() const { return NumVectors
; }
212 void makeUnsigned() {
213 assert(!isVoid() && "not a potentially signed type");
217 assert(!isVoid() && "not a potentially signed type");
221 void makeInteger(unsigned ElemWidth
, bool Sign
) {
222 assert(!isVoid() && "converting void to int probably not useful");
223 Kind
= Sign
? SInt
: UInt
;
225 ElementBitwidth
= ElemWidth
;
228 void makeImmediate(unsigned ElemWidth
) {
231 ElementBitwidth
= ElemWidth
;
235 Bitwidth
= ElementBitwidth
;
239 void makeOneVector() {
244 void make32BitElement() {
245 assert_with_loc(Bitwidth
> 32, "Not enough bits to make it 32!");
246 ElementBitwidth
= 32;
250 assert_with_loc(Bitwidth
!= 128, "Can't get bigger than 128!");
255 assert_with_loc(Bitwidth
!= 64, "Can't get smaller than 64!");
259 /// Return the C string representation of a type, which is the typename
260 /// defined in stdint.h or arm_neon.h.
261 std::string
str() const;
263 /// Return the string representation of a type, which is an encoded
264 /// string for passing to the BUILTIN() macro in Builtins.def.
265 std::string
builtin_str() const;
267 /// Return the value in NeonTypeFlags for this type.
268 unsigned getNeonEnum() const;
270 /// Parse a type from a stdint.h or arm_neon.h typedef name,
271 /// for example uint32x2_t or int64_t.
272 static Type
fromTypedefName(StringRef Name
);
275 /// Creates the type based on the typespec string in TS.
276 /// Sets "Quad" to true if the "Q" or "H" modifiers were
277 /// seen. This is needed by applyModifier as some modifiers
278 /// only take effect if the type size was changed by "Q" or "H".
279 void applyTypespec(bool &Quad
);
280 /// Applies prototype modifiers to the type.
281 void applyModifiers(StringRef Mods
);
284 //===----------------------------------------------------------------------===//
286 //===----------------------------------------------------------------------===//
288 /// A variable is a simple class that just has a type and a name.
294 Variable() : T(Type::getVoid()) {}
295 Variable(Type T
, std::string N
) : T(std::move(T
)), N(std::move(N
)) {}
297 Type
getType() const { return T
; }
298 std::string
getName() const { return "__" + N
; }
301 //===----------------------------------------------------------------------===//
303 //===----------------------------------------------------------------------===//
305 /// The main grunt class. This represents an instantiation of an intrinsic with
306 /// a particular typespec and prototype.
308 /// The Record this intrinsic was created from.
310 /// The unmangled name.
312 /// The input and output typespecs. InTS == OutTS except when
313 /// CartesianProductWith is non-empty - this is the case for vreinterpret.
314 TypeSpec OutTS
, InTS
;
315 /// The base class kind. Most intrinsics use ClassS, which has full type
316 /// info for integers (s32/u32). Some use ClassI, which doesn't care about
317 /// signedness (i32), while some (ClassB) have no type at all, only a width
320 /// The list of DAGs for the body. May be empty, in which case we should
321 /// emit a builtin call.
323 /// The architectural ifdef guard.
324 std::string ArchGuard
;
325 /// The architectural target() guard.
326 std::string TargetGuard
;
327 /// Set if the Unavailable bit is 1. This means we don't generate a body,
328 /// just an "unavailable" attribute on a declaration.
330 /// Is this intrinsic safe for big-endian? or does it need its arguments
334 /// The types of return value [0] and parameters [1..].
335 std::vector
<Type
> Types
;
336 /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
337 int PolymorphicKeyType
;
338 /// The local variables defined.
339 std::map
<std::string
, Variable
> Variables
;
340 /// NeededEarly - set if any other intrinsic depends on this intrinsic.
342 /// UseMacro - set if we should implement using a macro or unset for a
345 /// The set of intrinsics that this intrinsic uses/requires.
346 std::set
<Intrinsic
*> Dependencies
;
347 /// The "base type", which is Type('d', OutTS). InBaseType is only
348 /// different if CartesianProductWith is non-empty (for vreinterpret).
349 Type BaseType
, InBaseType
;
350 /// The return variable.
352 /// A postfix to apply to every variable. Defaults to "".
353 std::string VariablePostfix
;
355 NeonEmitter
&Emitter
;
356 std::stringstream OS
;
358 bool isBigEndianSafe() const {
362 for (const auto &T
: Types
){
363 if (T
.isVector() && T
.getNumElements() > 1)
370 Intrinsic(Record
*R
, StringRef Name
, StringRef Proto
, TypeSpec OutTS
,
371 TypeSpec InTS
, ClassKind CK
, ListInit
*Body
, NeonEmitter
&Emitter
,
372 StringRef ArchGuard
, StringRef TargetGuard
, bool IsUnavailable
, bool BigEndianSafe
)
373 : R(R
), Name(Name
.str()), OutTS(OutTS
), InTS(InTS
), CK(CK
), Body(Body
),
374 ArchGuard(ArchGuard
.str()), TargetGuard(TargetGuard
.str()), IsUnavailable(IsUnavailable
),
375 BigEndianSafe(BigEndianSafe
), PolymorphicKeyType(0), NeededEarly(false),
376 UseMacro(false), BaseType(OutTS
, "."), InBaseType(InTS
, "."),
378 // Modify the TypeSpec per-argument to get a concrete Type, and create
379 // known variables for each.
380 // Types[0] is the return value.
382 Types
.emplace_back(OutTS
, getNextModifiers(Proto
, Pos
));
383 StringRef Mods
= getNextModifiers(Proto
, Pos
);
384 while (!Mods
.empty()) {
385 Types
.emplace_back(InTS
, Mods
);
386 if (Mods
.contains('!'))
387 PolymorphicKeyType
= Types
.size() - 1;
389 Mods
= getNextModifiers(Proto
, Pos
);
392 for (auto Type
: Types
) {
393 // If this builtin takes an immediate argument, we need to #define it rather
394 // than use a standard declaration, so that SemaChecking can range check
395 // the immediate passed by the user.
397 // Pointer arguments need to use macros to avoid hiding aligned attributes
398 // from the pointer type.
400 // It is not permitted to pass or return an __fp16 by value, so intrinsics
401 // taking a scalar float16_t must be implemented as macros.
402 if (Type
.isImmediate() || Type
.isPointer() ||
403 (Type
.isScalar() && Type
.isHalf()))
408 /// Get the Record that this intrinsic is based off.
409 Record
*getRecord() const { return R
; }
410 /// Get the set of Intrinsics that this intrinsic calls.
411 /// this is the set of immediate dependencies, NOT the
412 /// transitive closure.
413 const std::set
<Intrinsic
*> &getDependencies() const { return Dependencies
; }
414 /// Get the architectural guard string (#ifdef).
415 std::string
getArchGuard() const { return ArchGuard
; }
416 std::string
getTargetGuard() const { return TargetGuard
; }
417 /// Get the non-mangled name.
418 std::string
getName() const { return Name
; }
420 /// Return true if the intrinsic takes an immediate operand.
421 bool hasImmediate() const {
422 return llvm::any_of(Types
, [](const Type
&T
) { return T
.isImmediate(); });
425 /// Return the parameter index of the immediate operand.
426 unsigned getImmediateIdx() const {
427 for (unsigned Idx
= 0; Idx
< Types
.size(); ++Idx
)
428 if (Types
[Idx
].isImmediate())
430 llvm_unreachable("Intrinsic has no immediate");
434 unsigned getNumParams() const { return Types
.size() - 1; }
435 Type
getReturnType() const { return Types
[0]; }
436 Type
getParamType(unsigned I
) const { return Types
[I
+ 1]; }
437 Type
getBaseType() const { return BaseType
; }
438 Type
getPolymorphicKeyType() const { return Types
[PolymorphicKeyType
]; }
440 /// Return true if the prototype has a scalar argument.
441 bool protoHasScalar() const;
443 /// Return the index that parameter PIndex will sit at
444 /// in a generated function call. This is often just PIndex,
445 /// but may not be as things such as multiple-vector operands
446 /// and sret parameters need to be taken into account.
447 unsigned getGeneratedParamIdx(unsigned PIndex
) {
449 if (getReturnType().getNumVectors() > 1)
450 // Multiple vectors are passed as sret.
453 for (unsigned I
= 0; I
< PIndex
; ++I
)
454 Idx
+= std::max(1U, getParamType(I
).getNumVectors());
459 bool hasBody() const { return Body
&& !Body
->getValues().empty(); }
461 void setNeededEarly() { NeededEarly
= true; }
463 bool operator<(const Intrinsic
&Other
) const {
464 // Sort lexicographically on a three-tuple (ArchGuard, TargetGuard, Name)
465 if (ArchGuard
!= Other
.ArchGuard
)
466 return ArchGuard
< Other
.ArchGuard
;
467 if (TargetGuard
!= Other
.TargetGuard
)
468 return TargetGuard
< Other
.TargetGuard
;
469 return Name
< Other
.Name
;
472 ClassKind
getClassKind(bool UseClassBIfScalar
= false) {
473 if (UseClassBIfScalar
&& !protoHasScalar())
478 /// Return the name, mangled with type information.
479 /// If ForceClassS is true, use ClassS (u32/s32) instead
480 /// of the intrinsic's own type class.
481 std::string
getMangledName(bool ForceClassS
= false) const;
482 /// Return the type code for a builtin function call.
483 std::string
getInstTypeCode(Type T
, ClassKind CK
) const;
484 /// Return the type string for a BUILTIN() macro in Builtins.def.
485 std::string
getBuiltinTypeStr();
487 /// Generate the intrinsic, returning code.
488 std::string
generate();
489 /// Perform type checking and populate the dependency graph, but
490 /// don't generate code yet.
494 StringRef
getNextModifiers(StringRef Proto
, unsigned &Pos
) const;
496 std::string
mangleName(std::string Name
, ClassKind CK
) const;
498 void initVariables();
499 std::string
replaceParamsIn(std::string S
);
501 void emitBodyAsBuiltinCall();
503 void generateImpl(bool ReverseArguments
,
504 StringRef NamePrefix
, StringRef CallPrefix
);
506 void emitBody(StringRef CallPrefix
);
507 void emitShadowedArgs();
508 void emitArgumentReversal();
509 void emitReturnVarDecl();
510 void emitReturnReversal();
511 void emitReverseVariable(Variable
&Dest
, Variable
&Src
);
513 void emitClosingBrace();
514 void emitOpeningBrace();
515 void emitPrototype(StringRef NamePrefix
);
519 StringRef CallPrefix
;
522 DagEmitter(Intrinsic
&Intr
, StringRef CallPrefix
) :
523 Intr(Intr
), CallPrefix(CallPrefix
) {
525 std::pair
<Type
, std::string
> emitDagArg(Init
*Arg
, std::string ArgName
);
526 std::pair
<Type
, std::string
> emitDagSaveTemp(DagInit
*DI
);
527 std::pair
<Type
, std::string
> emitDagSplat(DagInit
*DI
);
528 std::pair
<Type
, std::string
> emitDagDup(DagInit
*DI
);
529 std::pair
<Type
, std::string
> emitDagDupTyped(DagInit
*DI
);
530 std::pair
<Type
, std::string
> emitDagShuffle(DagInit
*DI
);
531 std::pair
<Type
, std::string
> emitDagCast(DagInit
*DI
, bool IsBitCast
);
532 std::pair
<Type
, std::string
> emitDagCall(DagInit
*DI
,
533 bool MatchMangledName
);
534 std::pair
<Type
, std::string
> emitDagNameReplace(DagInit
*DI
);
535 std::pair
<Type
, std::string
> emitDagLiteral(DagInit
*DI
);
536 std::pair
<Type
, std::string
> emitDagOp(DagInit
*DI
);
537 std::pair
<Type
, std::string
> emitDag(DagInit
*DI
);
541 //===----------------------------------------------------------------------===//
543 //===----------------------------------------------------------------------===//
546 RecordKeeper
&Records
;
547 DenseMap
<Record
*, ClassKind
> ClassMap
;
548 std::map
<std::string
, std::deque
<Intrinsic
>> IntrinsicMap
;
549 unsigned UniqueNumber
;
551 void createIntrinsic(Record
*R
, SmallVectorImpl
<Intrinsic
*> &Out
);
552 void genBuiltinsDef(raw_ostream
&OS
, SmallVectorImpl
<Intrinsic
*> &Defs
);
553 void genOverloadTypeCheckCode(raw_ostream
&OS
,
554 SmallVectorImpl
<Intrinsic
*> &Defs
);
555 void genIntrinsicRangeCheckCode(raw_ostream
&OS
,
556 SmallVectorImpl
<Intrinsic
*> &Defs
);
559 /// Called by Intrinsic - this attempts to get an intrinsic that takes
560 /// the given types as arguments.
561 Intrinsic
&getIntrinsic(StringRef Name
, ArrayRef
<Type
> Types
,
562 std::optional
<std::string
> MangledName
);
564 /// Called by Intrinsic - returns a globally-unique number.
565 unsigned getUniqueNumber() { return UniqueNumber
++; }
567 NeonEmitter(RecordKeeper
&R
) : Records(R
), UniqueNumber(0) {
568 Record
*SI
= R
.getClass("SInst");
569 Record
*II
= R
.getClass("IInst");
570 Record
*WI
= R
.getClass("WInst");
571 Record
*SOpI
= R
.getClass("SOpInst");
572 Record
*IOpI
= R
.getClass("IOpInst");
573 Record
*WOpI
= R
.getClass("WOpInst");
574 Record
*LOpI
= R
.getClass("LOpInst");
575 Record
*NoTestOpI
= R
.getClass("NoTestOpInst");
577 ClassMap
[SI
] = ClassS
;
578 ClassMap
[II
] = ClassI
;
579 ClassMap
[WI
] = ClassW
;
580 ClassMap
[SOpI
] = ClassS
;
581 ClassMap
[IOpI
] = ClassI
;
582 ClassMap
[WOpI
] = ClassW
;
583 ClassMap
[LOpI
] = ClassL
;
584 ClassMap
[NoTestOpI
] = ClassNoTest
;
587 // Emit arm_neon.h.inc
588 void run(raw_ostream
&o
);
590 // Emit arm_fp16.h.inc
591 void runFP16(raw_ostream
&o
);
593 // Emit arm_bf16.h.inc
594 void runBF16(raw_ostream
&o
);
596 // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
598 void runHeader(raw_ostream
&o
);
601 } // end anonymous namespace
603 //===----------------------------------------------------------------------===//
604 // Type implementation
605 //===----------------------------------------------------------------------===//
607 std::string
Type::str() const {
612 if (isInteger() && !isSigned())
617 else if (isFloating())
619 else if (isBFloat16())
624 S
+= utostr(ElementBitwidth
);
626 S
+= "x" + utostr(getNumElements());
628 S
+= "x" + utostr(NumVectors
);
639 std::string
Type::builtin_str() const {
645 // All pointers are void pointers.
647 if (isConstPointer())
651 } else if (isInteger())
652 switch (ElementBitwidth
) {
653 case 8: S
+= "c"; break;
654 case 16: S
+= "s"; break;
655 case 32: S
+= "i"; break;
656 case 64: S
+= "Wi"; break;
657 case 128: S
+= "LLLi"; break;
658 default: llvm_unreachable("Unhandled case!");
660 else if (isBFloat16()) {
661 assert(ElementBitwidth
== 16 && "BFloat16 can only be 16 bits");
664 switch (ElementBitwidth
) {
665 case 16: S
+= "h"; break;
666 case 32: S
+= "f"; break;
667 case 64: S
+= "d"; break;
668 default: llvm_unreachable("Unhandled case!");
671 // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
672 if (isChar() && !isPointer() && isSigned())
673 // Make chars explicitly signed.
675 else if (isInteger() && !isSigned())
678 // Constant indices are "int", but have the "constant expression" modifier.
680 assert(isInteger() && isSigned());
688 for (unsigned I
= 0; I
< NumVectors
; ++I
)
689 Ret
+= "V" + utostr(getNumElements()) + S
;
694 unsigned Type::getNeonEnum() const {
696 switch (ElementBitwidth
) {
697 case 8: Addend
= 0; break;
698 case 16: Addend
= 1; break;
699 case 32: Addend
= 2; break;
700 case 64: Addend
= 3; break;
701 case 128: Addend
= 4; break;
702 default: llvm_unreachable("Unhandled element bitwidth!");
705 unsigned Base
= (unsigned)NeonTypeFlags::Int8
+ Addend
;
707 // Adjustment needed because Poly32 doesn't exist.
710 Base
= (unsigned)NeonTypeFlags::Poly8
+ Addend
;
713 assert(Addend
!= 0 && "Float8 doesn't exist!");
714 Base
= (unsigned)NeonTypeFlags::Float16
+ (Addend
- 1);
718 assert(Addend
== 1 && "BFloat16 is only 16 bit");
719 Base
= (unsigned)NeonTypeFlags::BFloat16
;
723 Base
|= (unsigned)NeonTypeFlags::QuadFlag
;
724 if (isInteger() && !isSigned())
725 Base
|= (unsigned)NeonTypeFlags::UnsignedFlag
;
730 Type
Type::fromTypedefName(StringRef Name
) {
734 if (Name
.front() == 'u') {
736 Name
= Name
.drop_front();
739 if (Name
.startswith("float")) {
741 Name
= Name
.drop_front(5);
742 } else if (Name
.startswith("poly")) {
744 Name
= Name
.drop_front(4);
745 } else if (Name
.startswith("bfloat")) {
747 Name
= Name
.drop_front(6);
749 assert(Name
.startswith("int"));
750 Name
= Name
.drop_front(3);
754 for (I
= 0; I
< Name
.size(); ++I
) {
755 if (!isdigit(Name
[I
]))
758 Name
.substr(0, I
).getAsInteger(10, T
.ElementBitwidth
);
759 Name
= Name
.drop_front(I
);
761 T
.Bitwidth
= T
.ElementBitwidth
;
764 if (Name
.front() == 'x') {
765 Name
= Name
.drop_front();
767 for (I
= 0; I
< Name
.size(); ++I
) {
768 if (!isdigit(Name
[I
]))
772 Name
.substr(0, I
).getAsInteger(10, NumLanes
);
773 Name
= Name
.drop_front(I
);
774 T
.Bitwidth
= T
.ElementBitwidth
* NumLanes
;
779 if (Name
.front() == 'x') {
780 Name
= Name
.drop_front();
782 for (I
= 0; I
< Name
.size(); ++I
) {
783 if (!isdigit(Name
[I
]))
786 Name
.substr(0, I
).getAsInteger(10, T
.NumVectors
);
787 Name
= Name
.drop_front(I
);
790 assert(Name
.startswith("_t") && "Malformed typedef!");
794 void Type::applyTypespec(bool &Quad
) {
796 ScalarForMangling
= false;
798 ElementBitwidth
= ~0U;
804 ScalarForMangling
= true;
826 ElementBitwidth
= 16;
832 ElementBitwidth
= 32;
838 ElementBitwidth
= 64;
841 ElementBitwidth
= 128;
842 // Poly doesn't have a 128x1 type.
848 ElementBitwidth
= 16;
851 llvm_unreachable("Unhandled type code!");
854 assert(ElementBitwidth
!= ~0U && "Bad element bitwidth!");
856 Bitwidth
= Quad
? 128 : 64;
859 void Type::applyModifiers(StringRef Mods
) {
860 bool AppliedQuad
= false;
861 applyTypespec(AppliedQuad
);
863 for (char Mod
: Mods
) {
878 ElementBitwidth
= 16;
887 assert(ElementBitwidth
< 128);
888 ElementBitwidth
*= 2;
891 assert(ElementBitwidth
> 8);
892 ElementBitwidth
/= 2;
920 ElementBitwidth
= Bitwidth
= 32;
929 // Key type, handled elsewhere.
932 llvm_unreachable("Unhandled character!");
937 //===----------------------------------------------------------------------===//
938 // Intrinsic implementation
939 //===----------------------------------------------------------------------===//
941 StringRef
Intrinsic::getNextModifiers(StringRef Proto
, unsigned &Pos
) const {
942 if (Proto
.size() == Pos
)
944 else if (Proto
[Pos
] != '(')
945 return Proto
.substr(Pos
++, 1);
947 size_t Start
= Pos
+ 1;
948 size_t End
= Proto
.find(')', Start
);
949 assert_with_loc(End
!= StringRef::npos
, "unmatched modifier group paren");
951 return Proto
.slice(Start
, End
);
954 std::string
Intrinsic::getInstTypeCode(Type T
, ClassKind CK
) const {
955 char typeCode
= '\0';
956 bool printNumber
= true;
958 if (CK
== ClassB
&& TargetGuard
== "")
966 else if (T
.isInteger())
967 typeCode
= T
.isSigned() ? 's' : 'u';
982 if (CK
== ClassB
&& TargetGuard
== "") {
987 if (typeCode
!= '\0')
988 S
.push_back(typeCode
);
990 S
+= utostr(T
.getElementSizeInBits());
995 std::string
Intrinsic::getBuiltinTypeStr() {
996 ClassKind LocalCK
= getClassKind(true);
999 Type RetT
= getReturnType();
1000 if ((LocalCK
== ClassI
|| LocalCK
== ClassW
) && RetT
.isScalar() &&
1001 !RetT
.isFloating() && !RetT
.isBFloat16())
1002 RetT
.makeInteger(RetT
.getElementSizeInBits(), false);
1004 // Since the return value must be one type, return a vector type of the
1005 // appropriate width which we will bitcast. An exception is made for
1006 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1007 // fashion, storing them to a pointer arg.
1008 if (RetT
.getNumVectors() > 1) {
1009 S
+= "vv*"; // void result with void* first argument
1012 RetT
.makeInteger(RetT
.getElementSizeInBits(), false);
1013 if (!RetT
.isScalar() && RetT
.isInteger() && !RetT
.isSigned())
1016 if (LocalCK
== ClassB
&& RetT
.isValue() && !RetT
.isScalar())
1017 // Cast to vector of 8-bit elements.
1018 RetT
.makeInteger(8, true);
1020 S
+= RetT
.builtin_str();
1023 for (unsigned I
= 0; I
< getNumParams(); ++I
) {
1024 Type T
= getParamType(I
);
1026 T
.makeInteger(T
.getElementSizeInBits(), false);
1028 if (LocalCK
== ClassB
&& !T
.isScalar())
1029 T
.makeInteger(8, true);
1030 // Halves always get converted to 8-bit elements.
1031 if (T
.isHalf() && T
.isVector() && !T
.isScalarForMangling())
1032 T
.makeInteger(8, true);
1034 if (LocalCK
== ClassI
&& T
.isInteger())
1037 if (hasImmediate() && getImmediateIdx() == I
)
1038 T
.makeImmediate(32);
1040 S
+= T
.builtin_str();
1043 // Extra constant integer to hold type class enum for this function, e.g. s8
1044 if (LocalCK
== ClassB
)
1050 std::string
Intrinsic::getMangledName(bool ForceClassS
) const {
1051 // Check if the prototype has a scalar operand with the type of the vector
1052 // elements. If not, bitcasting the args will take care of arg checking.
1053 // The actual signedness etc. will be taken care of with special enums.
1054 ClassKind LocalCK
= CK
;
1055 if (!protoHasScalar())
1058 return mangleName(Name
, ForceClassS
? ClassS
: LocalCK
);
1061 std::string
Intrinsic::mangleName(std::string Name
, ClassKind LocalCK
) const {
1062 std::string typeCode
= getInstTypeCode(BaseType
, LocalCK
);
1063 std::string S
= Name
;
1065 if (Name
== "vcvt_f16_f32" || Name
== "vcvt_f32_f16" ||
1066 Name
== "vcvt_f32_f64" || Name
== "vcvt_f64_f32" ||
1067 Name
== "vcvt_f32_bf16")
1070 if (!typeCode
.empty()) {
1071 // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1072 if (Name
.size() >= 3 && isdigit(Name
.back()) &&
1073 Name
[Name
.length() - 2] == 'x' && Name
[Name
.length() - 3] == '_')
1074 S
.insert(S
.length() - 3, "_" + typeCode
);
1076 S
+= "_" + typeCode
;
1079 if (BaseType
!= InBaseType
) {
1080 // A reinterpret - out the input base type at the end.
1081 S
+= "_" + getInstTypeCode(InBaseType
, LocalCK
);
1084 if (LocalCK
== ClassB
&& TargetGuard
== "")
1087 // Insert a 'q' before the first '_' character so that it ends up before
1088 // _lane or _n on vector-scalar operations.
1089 if (BaseType
.getSizeInBits() == 128 && !BaseType
.noManglingQ()) {
1090 size_t Pos
= S
.find('_');
1095 if (BaseType
.isScalarForMangling()) {
1096 switch (BaseType
.getElementSizeInBits()) {
1097 case 8: Suffix
= 'b'; break;
1098 case 16: Suffix
= 'h'; break;
1099 case 32: Suffix
= 's'; break;
1100 case 64: Suffix
= 'd'; break;
1101 default: llvm_unreachable("Bad suffix!");
1104 if (Suffix
!= '\0') {
1105 size_t Pos
= S
.find('_');
1106 S
.insert(Pos
, &Suffix
, 1);
1112 std::string
Intrinsic::replaceParamsIn(std::string S
) {
1113 while (S
.find('$') != std::string::npos
) {
1114 size_t Pos
= S
.find('$');
1115 size_t End
= Pos
+ 1;
1116 while (isalpha(S
[End
]))
1119 std::string VarName
= S
.substr(Pos
+ 1, End
- Pos
- 1);
1120 assert_with_loc(Variables
.find(VarName
) != Variables
.end(),
1121 "Variable not defined!");
1122 S
.replace(Pos
, End
- Pos
, Variables
.find(VarName
)->second
.getName());
1128 void Intrinsic::initVariables() {
1131 // Modify the TypeSpec per-argument to get a concrete Type, and create
1132 // known variables for each.
1133 for (unsigned I
= 1; I
< Types
.size(); ++I
) {
1134 char NameC
= '0' + (I
- 1);
1135 std::string Name
= "p";
1136 Name
.push_back(NameC
);
1138 Variables
[Name
] = Variable(Types
[I
], Name
+ VariablePostfix
);
1140 RetVar
= Variable(Types
[0], "ret" + VariablePostfix
);
1143 void Intrinsic::emitPrototype(StringRef NamePrefix
) {
1148 if (TargetGuard
!= "")
1149 OS
<< "__attribute__((target(\"" << TargetGuard
<< "\"))) ";
1150 OS
<< Types
[0].str() << " ";
1153 OS
<< NamePrefix
.str() << mangleName(Name
, ClassS
) << "(";
1155 for (unsigned I
= 0; I
< getNumParams(); ++I
) {
1159 char NameC
= '0' + I
;
1160 std::string Name
= "p";
1161 Name
.push_back(NameC
);
1162 assert(Variables
.find(Name
) != Variables
.end());
1163 Variable
&V
= Variables
[Name
];
1166 OS
<< V
.getType().str() << " ";
1173 void Intrinsic::emitOpeningBrace() {
1175 OS
<< " __extension__ ({";
1181 void Intrinsic::emitClosingBrace() {
1188 void Intrinsic::emitNewLine() {
1195 void Intrinsic::emitReverseVariable(Variable
&Dest
, Variable
&Src
) {
1196 if (Dest
.getType().getNumVectors() > 1) {
1199 for (unsigned K
= 0; K
< Dest
.getType().getNumVectors(); ++K
) {
1200 OS
<< " " << Dest
.getName() << ".val[" << K
<< "] = "
1201 << "__builtin_shufflevector("
1202 << Src
.getName() << ".val[" << K
<< "], "
1203 << Src
.getName() << ".val[" << K
<< "]";
1204 for (int J
= Dest
.getType().getNumElements() - 1; J
>= 0; --J
)
1210 OS
<< " " << Dest
.getName()
1211 << " = __builtin_shufflevector(" << Src
.getName() << ", " << Src
.getName();
1212 for (int J
= Dest
.getType().getNumElements() - 1; J
>= 0; --J
)
1219 void Intrinsic::emitArgumentReversal() {
1220 if (isBigEndianSafe())
1223 // Reverse all vector arguments.
1224 for (unsigned I
= 0; I
< getNumParams(); ++I
) {
1225 std::string Name
= "p" + utostr(I
);
1226 std::string NewName
= "rev" + utostr(I
);
1228 Variable
&V
= Variables
[Name
];
1229 Variable
NewV(V
.getType(), NewName
+ VariablePostfix
);
1231 if (!NewV
.getType().isVector() || NewV
.getType().getNumElements() == 1)
1234 OS
<< " " << NewV
.getType().str() << " " << NewV
.getName() << ";";
1235 emitReverseVariable(NewV
, V
);
1240 void Intrinsic::emitReturnVarDecl() {
1241 assert(RetVar
.getType() == Types
[0]);
1242 // Create a return variable, if we're not void.
1243 if (!RetVar
.getType().isVoid()) {
1244 OS
<< " " << RetVar
.getType().str() << " " << RetVar
.getName() << ";";
1249 void Intrinsic::emitReturnReversal() {
1250 if (isBigEndianSafe())
1252 if (!getReturnType().isVector() || getReturnType().isVoid() ||
1253 getReturnType().getNumElements() == 1)
1255 emitReverseVariable(RetVar
, RetVar
);
1258 void Intrinsic::emitShadowedArgs() {
1259 // Macro arguments are not type-checked like inline function arguments,
1260 // so assign them to local temporaries to get the right type checking.
1264 for (unsigned I
= 0; I
< getNumParams(); ++I
) {
1265 // Do not create a temporary for an immediate argument.
1266 // That would defeat the whole point of using a macro!
1267 if (getParamType(I
).isImmediate())
1269 // Do not create a temporary for pointer arguments. The input
1270 // pointer may have an alignment hint.
1271 if (getParamType(I
).isPointer())
1274 std::string Name
= "p" + utostr(I
);
1276 assert(Variables
.find(Name
) != Variables
.end());
1277 Variable
&V
= Variables
[Name
];
1279 std::string NewName
= "s" + utostr(I
);
1280 Variable
V2(V
.getType(), NewName
+ VariablePostfix
);
1282 OS
<< " " << V2
.getType().str() << " " << V2
.getName() << " = "
1283 << V
.getName() << ";";
1290 bool Intrinsic::protoHasScalar() const {
1291 return llvm::any_of(
1292 Types
, [](const Type
&T
) { return T
.isScalar() && !T
.isImmediate(); });
1295 void Intrinsic::emitBodyAsBuiltinCall() {
1298 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1299 // sret-like argument.
1300 bool SRet
= getReturnType().getNumVectors() >= 2;
1303 ClassKind LocalCK
= CK
;
1304 if (!protoHasScalar())
1307 if (!getReturnType().isVoid() && !SRet
)
1308 S
+= "(" + RetVar
.getType().str() + ") ";
1310 S
+= "__builtin_neon_" + mangleName(std::string(N
), LocalCK
) + "(";
1313 S
+= "&" + RetVar
.getName() + ", ";
1315 for (unsigned I
= 0; I
< getNumParams(); ++I
) {
1316 Variable
&V
= Variables
["p" + utostr(I
)];
1317 Type T
= V
.getType();
1319 // Handle multiple-vector values specially, emitting each subvector as an
1320 // argument to the builtin.
1321 if (T
.getNumVectors() > 1) {
1322 // Check if an explicit cast is needed.
1324 if (LocalCK
== ClassB
) {
1327 T2
.makeInteger(8, /*Sign=*/true);
1328 Cast
= "(" + T2
.str() + ")";
1331 for (unsigned J
= 0; J
< T
.getNumVectors(); ++J
)
1332 S
+= Cast
+ V
.getName() + ".val[" + utostr(J
) + "], ";
1336 std::string Arg
= V
.getName();
1337 Type CastToType
= T
;
1339 // Check if an explicit cast is needed.
1340 if (CastToType
.isVector() &&
1341 (LocalCK
== ClassB
|| (T
.isHalf() && !T
.isScalarForMangling()))) {
1342 CastToType
.makeInteger(8, true);
1343 Arg
= "(" + CastToType
.str() + ")" + Arg
;
1344 } else if (CastToType
.isVector() && LocalCK
== ClassI
) {
1345 if (CastToType
.isInteger())
1346 CastToType
.makeSigned();
1347 Arg
= "(" + CastToType
.str() + ")" + Arg
;
1353 // Extra constant integer to hold type class enum for this function, e.g. s8
1354 if (getClassKind(true) == ClassB
) {
1355 S
+= utostr(getPolymorphicKeyType().getNeonEnum());
1357 // Remove extraneous ", ".
1363 std::string RetExpr
;
1364 if (!SRet
&& !RetVar
.getType().isVoid())
1365 RetExpr
= RetVar
.getName() + " = ";
1367 OS
<< " " << RetExpr
<< S
;
1371 void Intrinsic::emitBody(StringRef CallPrefix
) {
1372 std::vector
<std::string
> Lines
;
1374 if (!Body
|| Body
->getValues().empty()) {
1375 // Nothing specific to output - must output a builtin.
1376 emitBodyAsBuiltinCall();
1380 // We have a list of "things to output". The last should be returned.
1381 for (auto *I
: Body
->getValues()) {
1382 if (StringInit
*SI
= dyn_cast
<StringInit
>(I
)) {
1383 Lines
.push_back(replaceParamsIn(SI
->getAsString()));
1384 } else if (DagInit
*DI
= dyn_cast
<DagInit
>(I
)) {
1385 DagEmitter
DE(*this, CallPrefix
);
1386 Lines
.push_back(DE
.emitDag(DI
).second
+ ";");
1390 assert(!Lines
.empty() && "Empty def?");
1391 if (!RetVar
.getType().isVoid())
1392 Lines
.back().insert(0, RetVar
.getName() + " = ");
1394 for (auto &L
: Lines
) {
1400 void Intrinsic::emitReturn() {
1401 if (RetVar
.getType().isVoid())
1404 OS
<< " " << RetVar
.getName() << ";";
1406 OS
<< " return " << RetVar
.getName() << ";";
1410 std::pair
<Type
, std::string
> Intrinsic::DagEmitter::emitDag(DagInit
*DI
) {
1411 // At this point we should only be seeing a def.
1412 DefInit
*DefI
= cast
<DefInit
>(DI
->getOperator());
1413 std::string Op
= DefI
->getAsString();
1415 if (Op
== "cast" || Op
== "bitcast")
1416 return emitDagCast(DI
, Op
== "bitcast");
1417 if (Op
== "shuffle")
1418 return emitDagShuffle(DI
);
1420 return emitDagDup(DI
);
1421 if (Op
== "dup_typed")
1422 return emitDagDupTyped(DI
);
1424 return emitDagSplat(DI
);
1425 if (Op
== "save_temp")
1426 return emitDagSaveTemp(DI
);
1428 return emitDagOp(DI
);
1429 if (Op
== "call" || Op
== "call_mangled")
1430 return emitDagCall(DI
, Op
== "call_mangled");
1431 if (Op
== "name_replace")
1432 return emitDagNameReplace(DI
);
1433 if (Op
== "literal")
1434 return emitDagLiteral(DI
);
1435 assert_with_loc(false, "Unknown operation!");
1436 return std::make_pair(Type::getVoid(), "");
1439 std::pair
<Type
, std::string
> Intrinsic::DagEmitter::emitDagOp(DagInit
*DI
) {
1440 std::string Op
= cast
<StringInit
>(DI
->getArg(0))->getAsUnquotedString();
1441 if (DI
->getNumArgs() == 2) {
1443 std::pair
<Type
, std::string
> R
=
1444 emitDagArg(DI
->getArg(1), std::string(DI
->getArgNameStr(1)));
1445 return std::make_pair(R
.first
, Op
+ R
.second
);
1447 assert(DI
->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1448 std::pair
<Type
, std::string
> R1
=
1449 emitDagArg(DI
->getArg(1), std::string(DI
->getArgNameStr(1)));
1450 std::pair
<Type
, std::string
> R2
=
1451 emitDagArg(DI
->getArg(2), std::string(DI
->getArgNameStr(2)));
1452 assert_with_loc(R1
.first
== R2
.first
, "Argument type mismatch!");
1453 return std::make_pair(R1
.first
, R1
.second
+ " " + Op
+ " " + R2
.second
);
1457 std::pair
<Type
, std::string
>
1458 Intrinsic::DagEmitter::emitDagCall(DagInit
*DI
, bool MatchMangledName
) {
1459 std::vector
<Type
> Types
;
1460 std::vector
<std::string
> Values
;
1461 for (unsigned I
= 0; I
< DI
->getNumArgs() - 1; ++I
) {
1462 std::pair
<Type
, std::string
> R
=
1463 emitDagArg(DI
->getArg(I
+ 1), std::string(DI
->getArgNameStr(I
+ 1)));
1464 Types
.push_back(R
.first
);
1465 Values
.push_back(R
.second
);
1468 // Look up the called intrinsic.
1470 if (StringInit
*SI
= dyn_cast
<StringInit
>(DI
->getArg(0)))
1471 N
= SI
->getAsUnquotedString();
1473 N
= emitDagArg(DI
->getArg(0), "").second
;
1474 std::optional
<std::string
> MangledName
;
1475 if (MatchMangledName
) {
1476 if (Intr
.getRecord()->getValueAsBit("isLaneQ"))
1478 MangledName
= Intr
.mangleName(N
, ClassS
);
1480 Intrinsic
&Callee
= Intr
.Emitter
.getIntrinsic(N
, Types
, MangledName
);
1482 // Make sure the callee is known as an early def.
1483 Callee
.setNeededEarly();
1484 Intr
.Dependencies
.insert(&Callee
);
1486 // Now create the call itself.
1488 if (!Callee
.isBigEndianSafe())
1489 S
+= CallPrefix
.str();
1490 S
+= Callee
.getMangledName(true) + "(";
1491 for (unsigned I
= 0; I
< DI
->getNumArgs() - 1; ++I
) {
1498 return std::make_pair(Callee
.getReturnType(), S
);
1501 std::pair
<Type
, std::string
> Intrinsic::DagEmitter::emitDagCast(DagInit
*DI
,
1503 // (cast MOD* VAL) -> cast VAL to type given by MOD.
1504 std::pair
<Type
, std::string
> R
=
1505 emitDagArg(DI
->getArg(DI
->getNumArgs() - 1),
1506 std::string(DI
->getArgNameStr(DI
->getNumArgs() - 1)));
1507 Type castToType
= R
.first
;
1508 for (unsigned ArgIdx
= 0; ArgIdx
< DI
->getNumArgs() - 1; ++ArgIdx
) {
1510 // MOD can take several forms:
1511 // 1. $X - take the type of parameter / variable X.
1512 // 2. The value "R" - take the type of the return type.
1514 // 4. The value "U" or "S" to switch the signedness.
1515 // 5. The value "H" or "D" to half or double the bitwidth.
1516 // 6. The value "8" to convert to 8-bit (signed) integer lanes.
1517 if (!DI
->getArgNameStr(ArgIdx
).empty()) {
1518 assert_with_loc(Intr
.Variables
.find(std::string(
1519 DI
->getArgNameStr(ArgIdx
))) != Intr
.Variables
.end(),
1520 "Variable not found");
1522 Intr
.Variables
[std::string(DI
->getArgNameStr(ArgIdx
))].getType();
1524 StringInit
*SI
= dyn_cast
<StringInit
>(DI
->getArg(ArgIdx
));
1525 assert_with_loc(SI
, "Expected string type or $Name for cast type");
1527 if (SI
->getAsUnquotedString() == "R") {
1528 castToType
= Intr
.getReturnType();
1529 } else if (SI
->getAsUnquotedString() == "U") {
1530 castToType
.makeUnsigned();
1531 } else if (SI
->getAsUnquotedString() == "S") {
1532 castToType
.makeSigned();
1533 } else if (SI
->getAsUnquotedString() == "H") {
1534 castToType
.halveLanes();
1535 } else if (SI
->getAsUnquotedString() == "D") {
1536 castToType
.doubleLanes();
1537 } else if (SI
->getAsUnquotedString() == "8") {
1538 castToType
.makeInteger(8, true);
1539 } else if (SI
->getAsUnquotedString() == "32") {
1540 castToType
.make32BitElement();
1542 castToType
= Type::fromTypedefName(SI
->getAsUnquotedString());
1543 assert_with_loc(!castToType
.isVoid(), "Unknown typedef");
1550 // Emit a reinterpret cast. The second operand must be an lvalue, so create
1552 std::string N
= "reint";
1554 while (Intr
.Variables
.find(N
) != Intr
.Variables
.end())
1555 N
= "reint" + utostr(++I
);
1556 Intr
.Variables
[N
] = Variable(R
.first
, N
+ Intr
.VariablePostfix
);
1558 Intr
.OS
<< R
.first
.str() << " " << Intr
.Variables
[N
].getName() << " = "
1562 S
= "*(" + castToType
.str() + " *) &" + Intr
.Variables
[N
].getName() + "";
1564 // Emit a normal (static) cast.
1565 S
= "(" + castToType
.str() + ")(" + R
.second
+ ")";
1568 return std::make_pair(castToType
, S
);
1571 std::pair
<Type
, std::string
> Intrinsic::DagEmitter::emitDagShuffle(DagInit
*DI
){
1572 // See the documentation in arm_neon.td for a description of these operators.
1573 class LowHalf
: public SetTheory::Operator
{
1575 void apply(SetTheory
&ST
, DagInit
*Expr
, SetTheory::RecSet
&Elts
,
1576 ArrayRef
<SMLoc
> Loc
) override
{
1577 SetTheory::RecSet Elts2
;
1578 ST
.evaluate(Expr
->arg_begin(), Expr
->arg_end(), Elts2
, Loc
);
1579 Elts
.insert(Elts2
.begin(), Elts2
.begin() + (Elts2
.size() / 2));
1583 class HighHalf
: public SetTheory::Operator
{
1585 void apply(SetTheory
&ST
, DagInit
*Expr
, SetTheory::RecSet
&Elts
,
1586 ArrayRef
<SMLoc
> Loc
) override
{
1587 SetTheory::RecSet Elts2
;
1588 ST
.evaluate(Expr
->arg_begin(), Expr
->arg_end(), Elts2
, Loc
);
1589 Elts
.insert(Elts2
.begin() + (Elts2
.size() / 2), Elts2
.end());
1593 class Rev
: public SetTheory::Operator
{
1594 unsigned ElementSize
;
1597 Rev(unsigned ElementSize
) : ElementSize(ElementSize
) {}
1599 void apply(SetTheory
&ST
, DagInit
*Expr
, SetTheory::RecSet
&Elts
,
1600 ArrayRef
<SMLoc
> Loc
) override
{
1601 SetTheory::RecSet Elts2
;
1602 ST
.evaluate(Expr
->arg_begin() + 1, Expr
->arg_end(), Elts2
, Loc
);
1604 int64_t VectorSize
= cast
<IntInit
>(Expr
->getArg(0))->getValue();
1605 VectorSize
/= ElementSize
;
1607 std::vector
<Record
*> Revved
;
1608 for (unsigned VI
= 0; VI
< Elts2
.size(); VI
+= VectorSize
) {
1609 for (int LI
= VectorSize
- 1; LI
>= 0; --LI
) {
1610 Revved
.push_back(Elts2
[VI
+ LI
]);
1614 Elts
.insert(Revved
.begin(), Revved
.end());
1618 class MaskExpander
: public SetTheory::Expander
{
1622 MaskExpander(unsigned N
) : N(N
) {}
1624 void expand(SetTheory
&ST
, Record
*R
, SetTheory::RecSet
&Elts
) override
{
1625 unsigned Addend
= 0;
1626 if (R
->getName() == "mask0")
1628 else if (R
->getName() == "mask1")
1632 for (unsigned I
= 0; I
< N
; ++I
)
1633 Elts
.insert(R
->getRecords().getDef("sv" + utostr(I
+ Addend
)));
1637 // (shuffle arg1, arg2, sequence)
1638 std::pair
<Type
, std::string
> Arg1
=
1639 emitDagArg(DI
->getArg(0), std::string(DI
->getArgNameStr(0)));
1640 std::pair
<Type
, std::string
> Arg2
=
1641 emitDagArg(DI
->getArg(1), std::string(DI
->getArgNameStr(1)));
1642 assert_with_loc(Arg1
.first
== Arg2
.first
,
1643 "Different types in arguments to shuffle!");
1646 SetTheory::RecSet Elts
;
1647 ST
.addOperator("lowhalf", std::make_unique
<LowHalf
>());
1648 ST
.addOperator("highhalf", std::make_unique
<HighHalf
>());
1649 ST
.addOperator("rev",
1650 std::make_unique
<Rev
>(Arg1
.first
.getElementSizeInBits()));
1651 ST
.addExpander("MaskExpand",
1652 std::make_unique
<MaskExpander
>(Arg1
.first
.getNumElements()));
1653 ST
.evaluate(DI
->getArg(2), Elts
, std::nullopt
);
1655 std::string S
= "__builtin_shufflevector(" + Arg1
.second
+ ", " + Arg2
.second
;
1656 for (auto &E
: Elts
) {
1657 StringRef Name
= E
->getName();
1658 assert_with_loc(Name
.startswith("sv"),
1659 "Incorrect element kind in shuffle mask!");
1660 S
+= ", " + Name
.drop_front(2).str();
1664 // Recalculate the return type - the shuffle may have halved or doubled it.
1666 if (Elts
.size() > T
.getNumElements()) {
1668 Elts
.size() == T
.getNumElements() * 2,
1669 "Can only double or half the number of elements in a shuffle!");
1671 } else if (Elts
.size() < T
.getNumElements()) {
1673 Elts
.size() == T
.getNumElements() / 2,
1674 "Can only double or half the number of elements in a shuffle!");
1678 return std::make_pair(T
, S
);
1681 std::pair
<Type
, std::string
> Intrinsic::DagEmitter::emitDagDup(DagInit
*DI
) {
1682 assert_with_loc(DI
->getNumArgs() == 1, "dup() expects one argument");
1683 std::pair
<Type
, std::string
> A
=
1684 emitDagArg(DI
->getArg(0), std::string(DI
->getArgNameStr(0)));
1685 assert_with_loc(A
.first
.isScalar(), "dup() expects a scalar argument");
1687 Type T
= Intr
.getBaseType();
1688 assert_with_loc(T
.isVector(), "dup() used but default type is scalar!");
1689 std::string S
= "(" + T
.str() + ") {";
1690 for (unsigned I
= 0; I
< T
.getNumElements(); ++I
) {
1697 return std::make_pair(T
, S
);
1700 std::pair
<Type
, std::string
> Intrinsic::DagEmitter::emitDagDupTyped(DagInit
*DI
) {
1701 assert_with_loc(DI
->getNumArgs() == 2, "dup_typed() expects two arguments");
1702 std::pair
<Type
, std::string
> B
=
1703 emitDagArg(DI
->getArg(1), std::string(DI
->getArgNameStr(1)));
1704 assert_with_loc(B
.first
.isScalar(),
1705 "dup_typed() requires a scalar as the second argument");
1707 // If the type argument is a constant string, construct the type directly.
1708 if (StringInit
*SI
= dyn_cast
<StringInit
>(DI
->getArg(0))) {
1709 T
= Type::fromTypedefName(SI
->getAsUnquotedString());
1710 assert_with_loc(!T
.isVoid(), "Unknown typedef");
1712 T
= emitDagArg(DI
->getArg(0), std::string(DI
->getArgNameStr(0))).first
;
1714 assert_with_loc(T
.isVector(), "dup_typed() used but target type is scalar!");
1715 std::string S
= "(" + T
.str() + ") {";
1716 for (unsigned I
= 0; I
< T
.getNumElements(); ++I
) {
1723 return std::make_pair(T
, S
);
1726 std::pair
<Type
, std::string
> Intrinsic::DagEmitter::emitDagSplat(DagInit
*DI
) {
1727 assert_with_loc(DI
->getNumArgs() == 2, "splat() expects two arguments");
1728 std::pair
<Type
, std::string
> A
=
1729 emitDagArg(DI
->getArg(0), std::string(DI
->getArgNameStr(0)));
1730 std::pair
<Type
, std::string
> B
=
1731 emitDagArg(DI
->getArg(1), std::string(DI
->getArgNameStr(1)));
1733 assert_with_loc(B
.first
.isScalar(),
1734 "splat() requires a scalar int as the second argument");
1736 std::string S
= "__builtin_shufflevector(" + A
.second
+ ", " + A
.second
;
1737 for (unsigned I
= 0; I
< Intr
.getBaseType().getNumElements(); ++I
) {
1738 S
+= ", " + B
.second
;
1742 return std::make_pair(Intr
.getBaseType(), S
);
1745 std::pair
<Type
, std::string
> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit
*DI
) {
1746 assert_with_loc(DI
->getNumArgs() == 2, "save_temp() expects two arguments");
1747 std::pair
<Type
, std::string
> A
=
1748 emitDagArg(DI
->getArg(1), std::string(DI
->getArgNameStr(1)));
1750 assert_with_loc(!A
.first
.isVoid(),
1751 "Argument to save_temp() must have non-void type!");
1753 std::string N
= std::string(DI
->getArgNameStr(0));
1754 assert_with_loc(!N
.empty(),
1755 "save_temp() expects a name as the first argument");
1757 assert_with_loc(Intr
.Variables
.find(N
) == Intr
.Variables
.end(),
1758 "Variable already defined!");
1759 Intr
.Variables
[N
] = Variable(A
.first
, N
+ Intr
.VariablePostfix
);
1762 A
.first
.str() + " " + Intr
.Variables
[N
].getName() + " = " + A
.second
;
1764 return std::make_pair(Type::getVoid(), S
);
1767 std::pair
<Type
, std::string
>
1768 Intrinsic::DagEmitter::emitDagNameReplace(DagInit
*DI
) {
1769 std::string S
= Intr
.Name
;
1771 assert_with_loc(DI
->getNumArgs() == 2, "name_replace requires 2 arguments!");
1772 std::string ToReplace
= cast
<StringInit
>(DI
->getArg(0))->getAsUnquotedString();
1773 std::string ReplaceWith
= cast
<StringInit
>(DI
->getArg(1))->getAsUnquotedString();
1775 size_t Idx
= S
.find(ToReplace
);
1777 assert_with_loc(Idx
!= std::string::npos
, "name should contain '" + ToReplace
+ "'!");
1778 S
.replace(Idx
, ToReplace
.size(), ReplaceWith
);
1780 return std::make_pair(Type::getVoid(), S
);
1783 std::pair
<Type
, std::string
> Intrinsic::DagEmitter::emitDagLiteral(DagInit
*DI
){
1784 std::string Ty
= cast
<StringInit
>(DI
->getArg(0))->getAsUnquotedString();
1785 std::string Value
= cast
<StringInit
>(DI
->getArg(1))->getAsUnquotedString();
1786 return std::make_pair(Type::fromTypedefName(Ty
), Value
);
1789 std::pair
<Type
, std::string
>
1790 Intrinsic::DagEmitter::emitDagArg(Init
*Arg
, std::string ArgName
) {
1791 if (!ArgName
.empty()) {
1792 assert_with_loc(!Arg
->isComplete(),
1793 "Arguments must either be DAGs or names, not both!");
1794 assert_with_loc(Intr
.Variables
.find(ArgName
) != Intr
.Variables
.end(),
1795 "Variable not defined!");
1796 Variable
&V
= Intr
.Variables
[ArgName
];
1797 return std::make_pair(V
.getType(), V
.getName());
1800 assert(Arg
&& "Neither ArgName nor Arg?!");
1801 DagInit
*DI
= dyn_cast
<DagInit
>(Arg
);
1802 assert_with_loc(DI
, "Arguments must either be DAGs or names!");
1807 std::string
Intrinsic::generate() {
1808 // Avoid duplicated code for big and little endian
1809 if (isBigEndianSafe()) {
1810 generateImpl(false, "", "");
1813 // Little endian intrinsics are simple and don't require any argument
1815 OS
<< "#ifdef __LITTLE_ENDIAN__\n";
1817 generateImpl(false, "", "");
1821 // Big endian intrinsics are more complex. The user intended these
1822 // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1823 // but we load as-if (V)LD1. So we should swap all arguments and
1824 // swap the return value too.
1826 // If we call sub-intrinsics, we should call a version that does
1827 // not re-swap the arguments!
1828 generateImpl(true, "", "__noswap_");
1830 // If we're needed early, create a non-swapping variant for
1833 generateImpl(false, "__noswap_", "__noswap_");
1840 void Intrinsic::generateImpl(bool ReverseArguments
,
1841 StringRef NamePrefix
, StringRef CallPrefix
) {
1844 // If we call a macro, our local variables may be corrupted due to
1845 // lack of proper lexical scoping. So, add a globally unique postfix
1846 // to every variable.
1848 // indexBody() should have set up the Dependencies set by now.
1849 for (auto *I
: Dependencies
)
1851 VariablePostfix
= "_" + utostr(Emitter
.getUniqueNumber());
1857 emitPrototype(NamePrefix
);
1859 if (IsUnavailable
) {
1860 OS
<< " __attribute__((unavailable));";
1863 // Emit return variable declaration first as to not trigger
1864 // -Wdeclaration-after-statement.
1865 emitReturnVarDecl();
1867 if (ReverseArguments
)
1868 emitArgumentReversal();
1869 emitBody(CallPrefix
);
1870 if (ReverseArguments
)
1871 emitReturnReversal();
1877 CurrentRecord
= nullptr;
1880 void Intrinsic::indexBody() {
1884 // Emit return variable declaration first as to not trigger
1885 // -Wdeclaration-after-statement.
1886 emitReturnVarDecl();
1890 CurrentRecord
= nullptr;
1893 //===----------------------------------------------------------------------===//
1894 // NeonEmitter implementation
1895 //===----------------------------------------------------------------------===//
1897 Intrinsic
&NeonEmitter::getIntrinsic(StringRef Name
, ArrayRef
<Type
> Types
,
1898 std::optional
<std::string
> MangledName
) {
1899 // First, look up the name in the intrinsic map.
1900 assert_with_loc(IntrinsicMap
.find(Name
.str()) != IntrinsicMap
.end(),
1901 ("Intrinsic '" + Name
+ "' not found!").str());
1902 auto &V
= IntrinsicMap
.find(Name
.str())->second
;
1903 std::vector
<Intrinsic
*> GoodVec
;
1905 // Create a string to print if we end up failing.
1906 std::string ErrMsg
= "looking up intrinsic '" + Name
.str() + "(";
1907 for (unsigned I
= 0; I
< Types
.size(); ++I
) {
1910 ErrMsg
+= Types
[I
].str();
1913 ErrMsg
+= "Available overloads:\n";
1915 // Now, look through each intrinsic implementation and see if the types are
1918 ErrMsg
+= " - " + I
.getReturnType().str() + " " + I
.getMangledName();
1920 for (unsigned A
= 0; A
< I
.getNumParams(); ++A
) {
1923 ErrMsg
+= I
.getParamType(A
).str();
1927 if (MangledName
&& MangledName
!= I
.getMangledName(true))
1930 if (I
.getNumParams() != Types
.size())
1933 unsigned ArgNum
= 0;
1934 bool MatchingArgumentTypes
= llvm::all_of(Types
, [&](const auto &Type
) {
1935 return Type
== I
.getParamType(ArgNum
++);
1938 if (MatchingArgumentTypes
)
1939 GoodVec
.push_back(&I
);
1942 assert_with_loc(!GoodVec
.empty(),
1943 "No compatible intrinsic found - " + ErrMsg
);
1944 assert_with_loc(GoodVec
.size() == 1, "Multiple overloads found - " + ErrMsg
);
1946 return *GoodVec
.front();
1949 void NeonEmitter::createIntrinsic(Record
*R
,
1950 SmallVectorImpl
<Intrinsic
*> &Out
) {
1951 std::string Name
= std::string(R
->getValueAsString("Name"));
1952 std::string Proto
= std::string(R
->getValueAsString("Prototype"));
1953 std::string Types
= std::string(R
->getValueAsString("Types"));
1954 Record
*OperationRec
= R
->getValueAsDef("Operation");
1955 bool BigEndianSafe
= R
->getValueAsBit("BigEndianSafe");
1956 std::string ArchGuard
= std::string(R
->getValueAsString("ArchGuard"));
1957 std::string TargetGuard
= std::string(R
->getValueAsString("TargetGuard"));
1958 bool IsUnavailable
= OperationRec
->getValueAsBit("Unavailable");
1959 std::string CartesianProductWith
= std::string(R
->getValueAsString("CartesianProductWith"));
1961 // Set the global current record. This allows assert_with_loc to produce
1962 // decent location information even when highly nested.
1965 ListInit
*Body
= OperationRec
->getValueAsListInit("Ops");
1967 std::vector
<TypeSpec
> TypeSpecs
= TypeSpec::fromTypeSpecs(Types
);
1969 ClassKind CK
= ClassNone
;
1970 if (R
->getSuperClasses().size() >= 2)
1971 CK
= ClassMap
[R
->getSuperClasses()[1].first
];
1973 std::vector
<std::pair
<TypeSpec
, TypeSpec
>> NewTypeSpecs
;
1974 if (!CartesianProductWith
.empty()) {
1975 std::vector
<TypeSpec
> ProductTypeSpecs
= TypeSpec::fromTypeSpecs(CartesianProductWith
);
1976 for (auto TS
: TypeSpecs
) {
1977 Type
DefaultT(TS
, ".");
1978 for (auto SrcTS
: ProductTypeSpecs
) {
1979 Type
DefaultSrcT(SrcTS
, ".");
1981 DefaultSrcT
.getSizeInBits() != DefaultT
.getSizeInBits())
1983 NewTypeSpecs
.push_back(std::make_pair(TS
, SrcTS
));
1987 for (auto TS
: TypeSpecs
) {
1988 NewTypeSpecs
.push_back(std::make_pair(TS
, TS
));
1992 llvm::sort(NewTypeSpecs
);
1993 NewTypeSpecs
.erase(std::unique(NewTypeSpecs
.begin(), NewTypeSpecs
.end()),
1994 NewTypeSpecs
.end());
1995 auto &Entry
= IntrinsicMap
[Name
];
1997 for (auto &I
: NewTypeSpecs
) {
1998 Entry
.emplace_back(R
, Name
, Proto
, I
.first
, I
.second
, CK
, Body
, *this,
1999 ArchGuard
, TargetGuard
, IsUnavailable
, BigEndianSafe
);
2000 Out
.push_back(&Entry
.back());
2003 CurrentRecord
= nullptr;
2006 /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def
2007 /// declaration of builtins, checking for unique builtin declarations.
2008 void NeonEmitter::genBuiltinsDef(raw_ostream
&OS
,
2009 SmallVectorImpl
<Intrinsic
*> &Defs
) {
2010 OS
<< "#ifdef GET_NEON_BUILTINS\n";
2012 // We only want to emit a builtin once, and we want to emit them in
2013 // alphabetical order, so use a std::set.
2014 std::set
<std::pair
<std::string
, std::string
>> Builtins
;
2016 for (auto *Def
: Defs
) {
2020 std::string S
= "__builtin_neon_" + Def
->getMangledName() + ", \"";
2021 S
+= Def
->getBuiltinTypeStr();
2024 Builtins
.emplace(S
, Def
->getTargetGuard());
2027 for (auto &S
: Builtins
) {
2031 OS
<< "TARGET_BUILTIN(";
2036 OS
<< ", \"" << S
.second
<< "\")\n";
2042 /// Generate the ARM and AArch64 overloaded type checking code for
2043 /// SemaChecking.cpp, checking for unique builtin declarations.
2044 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream
&OS
,
2045 SmallVectorImpl
<Intrinsic
*> &Defs
) {
2046 OS
<< "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2048 // We record each overload check line before emitting because subsequent Inst
2049 // definitions may extend the number of permitted types (i.e. augment the
2050 // Mask). Use std::map to avoid sorting the table by hash number.
2051 struct OverloadInfo
{
2055 OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2057 std::map
<std::string
, OverloadInfo
> OverloadMap
;
2059 for (auto *Def
: Defs
) {
2060 // If the def has a body (that is, it has Operation DAGs), it won't call
2061 // __builtin_neon_* so we don't need to generate a definition for it.
2064 // Functions which have a scalar argument cannot be overloaded, no need to
2065 // check them if we are emitting the type checking code.
2066 if (Def
->protoHasScalar())
2069 uint64_t Mask
= 0ULL;
2070 Mask
|= 1ULL << Def
->getPolymorphicKeyType().getNeonEnum();
2072 // Check if the function has a pointer or const pointer argument.
2074 bool HasConstPtr
= false;
2075 for (unsigned I
= 0; I
< Def
->getNumParams(); ++I
) {
2076 const auto &Type
= Def
->getParamType(I
);
2077 if (Type
.isPointer()) {
2079 HasConstPtr
= Type
.isConstPointer();
2083 // For sret builtins, adjust the pointer argument index.
2084 if (PtrArgNum
>= 0 && Def
->getReturnType().getNumVectors() > 1)
2087 std::string Name
= Def
->getName();
2088 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2089 // and vst1_lane intrinsics. Using a pointer to the vector element
2090 // type with one of those operations causes codegen to select an aligned
2091 // load/store instruction. If you want an unaligned operation,
2092 // the pointer argument needs to have less alignment than element type,
2093 // so just accept any pointer type.
2094 if (Name
== "vld1_lane" || Name
== "vld1_dup" || Name
== "vst1_lane") {
2096 HasConstPtr
= false;
2100 std::string Name
= Def
->getMangledName();
2101 OverloadMap
.insert(std::make_pair(Name
, OverloadInfo()));
2102 OverloadInfo
&OI
= OverloadMap
[Name
];
2104 OI
.PtrArgNum
|= PtrArgNum
;
2105 OI
.HasConstPtr
= HasConstPtr
;
2109 for (auto &I
: OverloadMap
) {
2110 OverloadInfo
&OI
= I
.second
;
2112 OS
<< "case NEON::BI__builtin_neon_" << I
.first
<< ": ";
2113 OS
<< "mask = 0x" << Twine::utohexstr(OI
.Mask
) << "ULL";
2114 if (OI
.PtrArgNum
>= 0)
2115 OS
<< "; PtrArgNum = " << OI
.PtrArgNum
;
2117 OS
<< "; HasConstPtr = true";
2123 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream
&OS
,
2124 SmallVectorImpl
<Intrinsic
*> &Defs
) {
2125 OS
<< "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2127 std::set
<std::string
> Emitted
;
2129 for (auto *Def
: Defs
) {
2132 // Functions which do not have an immediate do not need to have range
2133 // checking code emitted.
2134 if (!Def
->hasImmediate())
2136 if (Emitted
.find(Def
->getMangledName()) != Emitted
.end())
2139 std::string LowerBound
, UpperBound
;
2141 Record
*R
= Def
->getRecord();
2142 if (R
->getValueAsBit("isVXAR")) {
2143 //VXAR takes an immediate in the range [0, 63]
2146 } else if (R
->getValueAsBit("isVCVT_N")) {
2147 // VCVT between floating- and fixed-point values takes an immediate
2148 // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2150 if (Def
->getBaseType().getElementSizeInBits() == 16 ||
2151 Def
->getName().find('h') != std::string::npos
)
2152 // VCVTh operating on FP16 intrinsics in range [1, 16)
2154 else if (Def
->getBaseType().getElementSizeInBits() == 32)
2158 } else if (R
->getValueAsBit("isScalarShift")) {
2159 // Right shifts have an 'r' in the name, left shifts do not. Convert
2160 // instructions have the same bounds and right shifts.
2161 if (Def
->getName().find('r') != std::string::npos
||
2162 Def
->getName().find("cvt") != std::string::npos
)
2165 UpperBound
= utostr(Def
->getReturnType().getElementSizeInBits() - 1);
2166 } else if (R
->getValueAsBit("isShift")) {
2167 // Builtins which are overloaded by type will need to have their upper
2168 // bound computed at Sema time based on the type constant.
2170 // Right shifts have an 'r' in the name, left shifts do not.
2171 if (Def
->getName().find('r') != std::string::npos
)
2173 UpperBound
= "RFT(TV, true)";
2174 } else if (Def
->getClassKind(true) == ClassB
) {
2175 // ClassB intrinsics have a type (and hence lane number) that is only
2176 // known at runtime.
2177 if (R
->getValueAsBit("isLaneQ"))
2178 UpperBound
= "RFT(TV, false, true)";
2180 UpperBound
= "RFT(TV, false, false)";
2182 // The immediate generally refers to a lane in the preceding argument.
2183 assert(Def
->getImmediateIdx() > 0);
2184 Type T
= Def
->getParamType(Def
->getImmediateIdx() - 1);
2185 UpperBound
= utostr(T
.getNumElements() - 1);
2188 // Calculate the index of the immediate that should be range checked.
2189 unsigned Idx
= Def
->getNumParams();
2190 if (Def
->hasImmediate())
2191 Idx
= Def
->getGeneratedParamIdx(Def
->getImmediateIdx());
2193 OS
<< "case NEON::BI__builtin_neon_" << Def
->getMangledName() << ": "
2194 << "i = " << Idx
<< ";";
2195 if (!LowerBound
.empty())
2196 OS
<< " l = " << LowerBound
<< ";";
2197 if (!UpperBound
.empty())
2198 OS
<< " u = " << UpperBound
<< ";";
2201 Emitted
.insert(Def
->getMangledName());
2207 /// runHeader - Emit a file with sections defining:
2208 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2209 /// 2. the SemaChecking code for the type overload checking.
2210 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2211 void NeonEmitter::runHeader(raw_ostream
&OS
) {
2212 std::vector
<Record
*> RV
= Records
.getAllDerivedDefinitions("Inst");
2214 SmallVector
<Intrinsic
*, 128> Defs
;
2216 createIntrinsic(R
, Defs
);
2218 // Generate shared BuiltinsXXX.def
2219 genBuiltinsDef(OS
, Defs
);
2221 // Generate ARM overloaded type checking code for SemaChecking.cpp
2222 genOverloadTypeCheckCode(OS
, Defs
);
2224 // Generate ARM range checking code for shift/lane immediates.
2225 genIntrinsicRangeCheckCode(OS
, Defs
);
2228 static void emitNeonTypeDefs(const std::string
& types
, raw_ostream
&OS
) {
2229 std::string
TypedefTypes(types
);
2230 std::vector
<TypeSpec
> TDTypeVec
= TypeSpec::fromTypeSpecs(TypedefTypes
);
2232 // Emit vector typedefs.
2233 bool InIfdef
= false;
2234 for (auto &TS
: TDTypeVec
) {
2240 if (InIfdef
&& !IsA64
) {
2244 if (!InIfdef
&& IsA64
) {
2245 OS
<< "#ifdef __aarch64__\n";
2250 OS
<< "typedef __attribute__((neon_polyvector_type(";
2252 OS
<< "typedef __attribute__((neon_vector_type(";
2256 OS
<< T
.getNumElements() << "))) ";
2258 OS
<< " " << T
.str() << ";\n";
2264 // Emit struct typedefs.
2266 for (unsigned NumMembers
= 2; NumMembers
<= 4; ++NumMembers
) {
2267 for (auto &TS
: TDTypeVec
) {
2273 if (InIfdef
&& !IsA64
) {
2277 if (!InIfdef
&& IsA64
) {
2278 OS
<< "#ifdef __aarch64__\n";
2282 const char Mods
[] = { static_cast<char>('2' + (NumMembers
- 2)), 0};
2284 OS
<< "typedef struct " << VT
.str() << " {\n";
2285 OS
<< " " << T
.str() << " val";
2286 OS
<< "[" << NumMembers
<< "]";
2288 OS
<< VT
.str() << ";\n";
2296 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
2297 /// is comprised of type definitions and function declarations.
2298 void NeonEmitter::run(raw_ostream
&OS
) {
2299 OS
<< "/*===---- arm_neon.h - ARM Neon intrinsics "
2300 "------------------------------"
2303 " * Permission is hereby granted, free of charge, to any person "
2306 " * of this software and associated documentation files (the "
2309 " * in the Software without restriction, including without limitation "
2312 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2314 " * copies of the Software, and to permit persons to whom the Software "
2316 " * furnished to do so, subject to the following conditions:\n"
2318 " * The above copyright notice and this permission notice shall be "
2320 " * all copies or substantial portions of the Software.\n"
2322 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2324 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2325 "MERCHANTABILITY,\n"
2326 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2328 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2330 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2332 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2334 " * THE SOFTWARE.\n"
2336 " *===-----------------------------------------------------------------"
2341 OS
<< "#ifndef __ARM_NEON_H\n";
2342 OS
<< "#define __ARM_NEON_H\n\n";
2344 OS
<< "#ifndef __ARM_FP\n";
2345 OS
<< "#error \"NEON intrinsics not available with the soft-float ABI. "
2346 "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2349 OS
<< "#if !defined(__ARM_NEON)\n";
2350 OS
<< "#error \"NEON support not enabled\"\n";
2353 OS
<< "#include <stdint.h>\n\n";
2355 OS
<< "#include <arm_bf16.h>\n";
2356 OS
<< "typedef __bf16 bfloat16_t;\n";
2358 // Emit NEON-specific scalar typedefs.
2359 OS
<< "typedef float float32_t;\n";
2360 OS
<< "typedef __fp16 float16_t;\n";
2362 OS
<< "#ifdef __aarch64__\n";
2363 OS
<< "typedef double float64_t;\n";
2366 // For now, signedness of polynomial types depends on target
2367 OS
<< "#ifdef __aarch64__\n";
2368 OS
<< "typedef uint8_t poly8_t;\n";
2369 OS
<< "typedef uint16_t poly16_t;\n";
2370 OS
<< "typedef uint64_t poly64_t;\n";
2371 OS
<< "typedef __uint128_t poly128_t;\n";
2373 OS
<< "typedef int8_t poly8_t;\n";
2374 OS
<< "typedef int16_t poly16_t;\n";
2375 OS
<< "typedef int64_t poly64_t;\n";
2378 emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl", OS
);
2380 emitNeonTypeDefs("bQb", OS
);
2382 OS
<< "#define __ai static __inline__ __attribute__((__always_inline__, "
2383 "__nodebug__))\n\n";
2385 SmallVector
<Intrinsic
*, 128> Defs
;
2386 std::vector
<Record
*> RV
= Records
.getAllDerivedDefinitions("Inst");
2388 createIntrinsic(R
, Defs
);
2390 for (auto *I
: Defs
)
2393 llvm::stable_sort(Defs
, llvm::deref
<std::less
<>>());
2395 // Only emit a def when its requirements have been met.
2396 // FIXME: This loop could be made faster, but it's fast enough for now.
2397 bool MadeProgress
= true;
2398 std::string InGuard
;
2399 while (!Defs
.empty() && MadeProgress
) {
2400 MadeProgress
= false;
2402 for (SmallVector
<Intrinsic
*, 128>::iterator I
= Defs
.begin();
2403 I
!= Defs
.end(); /*No step*/) {
2404 bool DependenciesSatisfied
= true;
2405 for (auto *II
: (*I
)->getDependencies()) {
2406 if (llvm::is_contained(Defs
, II
))
2407 DependenciesSatisfied
= false;
2409 if (!DependenciesSatisfied
) {
2410 // Try the next one.
2415 // Emit #endif/#if pair if needed.
2416 if ((*I
)->getArchGuard() != InGuard
) {
2417 if (!InGuard
.empty())
2419 InGuard
= (*I
)->getArchGuard();
2420 if (!InGuard
.empty())
2421 OS
<< "#if " << InGuard
<< "\n";
2424 // Actually generate the intrinsic code.
2425 OS
<< (*I
)->generate();
2427 MadeProgress
= true;
2431 assert(Defs
.empty() && "Some requirements were not satisfied!");
2432 if (!InGuard
.empty())
2436 OS
<< "#undef __ai\n\n";
2437 OS
<< "#endif /* if !defined(__ARM_NEON) */\n";
2438 OS
<< "#endif /* ifndef __ARM_FP */\n";
2439 OS
<< "#endif /* __ARM_NEON_H */\n";
2442 /// run - Read the records in arm_fp16.td and output arm_fp16.h. arm_fp16.h
2443 /// is comprised of type definitions and function declarations.
2444 void NeonEmitter::runFP16(raw_ostream
&OS
) {
2445 OS
<< "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2446 "------------------------------"
2449 " * Permission is hereby granted, free of charge, to any person "
2450 "obtaining a copy\n"
2451 " * of this software and associated documentation files (the "
2452 "\"Software\"), to deal\n"
2453 " * in the Software without restriction, including without limitation "
2455 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2457 " * copies of the Software, and to permit persons to whom the Software "
2459 " * furnished to do so, subject to the following conditions:\n"
2461 " * The above copyright notice and this permission notice shall be "
2463 " * all copies or substantial portions of the Software.\n"
2465 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2467 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2468 "MERCHANTABILITY,\n"
2469 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2471 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2473 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2475 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2477 " * THE SOFTWARE.\n"
2479 " *===-----------------------------------------------------------------"
2484 OS
<< "#ifndef __ARM_FP16_H\n";
2485 OS
<< "#define __ARM_FP16_H\n\n";
2487 OS
<< "#include <stdint.h>\n\n";
2489 OS
<< "typedef __fp16 float16_t;\n";
2491 OS
<< "#define __ai static __inline__ __attribute__((__always_inline__, "
2492 "__nodebug__))\n\n";
2494 SmallVector
<Intrinsic
*, 128> Defs
;
2495 std::vector
<Record
*> RV
= Records
.getAllDerivedDefinitions("Inst");
2497 createIntrinsic(R
, Defs
);
2499 for (auto *I
: Defs
)
2502 llvm::stable_sort(Defs
, llvm::deref
<std::less
<>>());
2504 // Only emit a def when its requirements have been met.
2505 // FIXME: This loop could be made faster, but it's fast enough for now.
2506 bool MadeProgress
= true;
2507 std::string InGuard
;
2508 while (!Defs
.empty() && MadeProgress
) {
2509 MadeProgress
= false;
2511 for (SmallVector
<Intrinsic
*, 128>::iterator I
= Defs
.begin();
2512 I
!= Defs
.end(); /*No step*/) {
2513 bool DependenciesSatisfied
= true;
2514 for (auto *II
: (*I
)->getDependencies()) {
2515 if (llvm::is_contained(Defs
, II
))
2516 DependenciesSatisfied
= false;
2518 if (!DependenciesSatisfied
) {
2519 // Try the next one.
2524 // Emit #endif/#if pair if needed.
2525 if ((*I
)->getArchGuard() != InGuard
) {
2526 if (!InGuard
.empty())
2528 InGuard
= (*I
)->getArchGuard();
2529 if (!InGuard
.empty())
2530 OS
<< "#if " << InGuard
<< "\n";
2533 // Actually generate the intrinsic code.
2534 OS
<< (*I
)->generate();
2536 MadeProgress
= true;
2540 assert(Defs
.empty() && "Some requirements were not satisfied!");
2541 if (!InGuard
.empty())
2545 OS
<< "#undef __ai\n\n";
2546 OS
<< "#endif /* __ARM_FP16_H */\n";
2549 void NeonEmitter::runBF16(raw_ostream
&OS
) {
2550 OS
<< "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2551 "-----------------------------------===\n"
2554 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2556 " * See https://llvm.org/LICENSE.txt for license information.\n"
2557 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2559 " *===-----------------------------------------------------------------"
2563 OS
<< "#ifndef __ARM_BF16_H\n";
2564 OS
<< "#define __ARM_BF16_H\n\n";
2566 OS
<< "typedef __bf16 bfloat16_t;\n";
2568 OS
<< "#define __ai static __inline__ __attribute__((__always_inline__, "
2569 "__nodebug__))\n\n";
2571 SmallVector
<Intrinsic
*, 128> Defs
;
2572 std::vector
<Record
*> RV
= Records
.getAllDerivedDefinitions("Inst");
2574 createIntrinsic(R
, Defs
);
2576 for (auto *I
: Defs
)
2579 llvm::stable_sort(Defs
, llvm::deref
<std::less
<>>());
2581 // Only emit a def when its requirements have been met.
2582 // FIXME: This loop could be made faster, but it's fast enough for now.
2583 bool MadeProgress
= true;
2584 std::string InGuard
;
2585 while (!Defs
.empty() && MadeProgress
) {
2586 MadeProgress
= false;
2588 for (SmallVector
<Intrinsic
*, 128>::iterator I
= Defs
.begin();
2589 I
!= Defs
.end(); /*No step*/) {
2590 bool DependenciesSatisfied
= true;
2591 for (auto *II
: (*I
)->getDependencies()) {
2592 if (llvm::is_contained(Defs
, II
))
2593 DependenciesSatisfied
= false;
2595 if (!DependenciesSatisfied
) {
2596 // Try the next one.
2601 // Emit #endif/#if pair if needed.
2602 if ((*I
)->getArchGuard() != InGuard
) {
2603 if (!InGuard
.empty())
2605 InGuard
= (*I
)->getArchGuard();
2606 if (!InGuard
.empty())
2607 OS
<< "#if " << InGuard
<< "\n";
2610 // Actually generate the intrinsic code.
2611 OS
<< (*I
)->generate();
2613 MadeProgress
= true;
2617 assert(Defs
.empty() && "Some requirements were not satisfied!");
2618 if (!InGuard
.empty())
2622 OS
<< "#undef __ai\n\n";
2627 void clang::EmitNeon(RecordKeeper
&Records
, raw_ostream
&OS
) {
2628 NeonEmitter(Records
).run(OS
);
2631 void clang::EmitFP16(RecordKeeper
&Records
, raw_ostream
&OS
) {
2632 NeonEmitter(Records
).runFP16(OS
);
2635 void clang::EmitBF16(RecordKeeper
&Records
, raw_ostream
&OS
) {
2636 NeonEmitter(Records
).runBF16(OS
);
2639 void clang::EmitNeonSema(RecordKeeper
&Records
, raw_ostream
&OS
) {
2640 NeonEmitter(Records
).runHeader(OS
);
2643 void clang::EmitNeonTest(RecordKeeper
&Records
, raw_ostream
&OS
) {
2644 llvm_unreachable("Neon test generation no longer implemented!");