1 //===-- safestack.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the runtime support for the safe stack protection
10 // mechanism. The runtime manages allocation/deallocation of the unsafe stack
11 // for the main thread, as well as all pthreads that are created/destroyed
12 // during program execution.
14 //===----------------------------------------------------------------------===//
16 #include "safestack_platform.h"
17 #include "safestack_util.h"
20 #include <sys/resource.h>
22 #include "interception/interception.h"
24 using namespace safestack
;
26 // TODO: To make accessing the unsafe stack pointer faster, we plan to
27 // eventually store it directly in the thread control block data structure on
28 // platforms where this structure is pointed to by %fs or %gs. This is exactly
29 // the same mechanism as currently being used by the traditional stack
30 // protector pass to store the stack guard (see getStackCookieLocation()
31 // function above). Doing so requires changing the tcbhead_t struct in glibc
32 // on Linux and tcb struct in libc on FreeBSD.
34 // For now, store it in a thread-local variable.
36 __attribute__((visibility(
37 "default"))) __thread
void *__safestack_unsafe_stack_ptr
= nullptr;
42 // TODO: The runtime library does not currently protect the safe stack beyond
43 // relying on the system-enforced ASLR. The protection of the (safe) stack can
44 // be provided by three alternative features:
46 // 1) Protection via hardware segmentation on x86-32 and some x86-64
47 // architectures: the (safe) stack segment (implicitly accessed via the %ss
48 // segment register) can be separated from the data segment (implicitly
49 // accessed via the %ds segment register). Dereferencing a pointer to the safe
50 // segment would result in a segmentation fault.
52 // 2) Protection via software fault isolation: memory writes that are not meant
53 // to access the safe stack can be prevented from doing so through runtime
54 // instrumentation. One way to do it is to allocate the safe stack(s) in the
55 // upper half of the userspace and bitmask the corresponding upper bit of the
56 // memory addresses of memory writes that are not meant to access the safe
59 // 3) Protection via information hiding on 64 bit architectures: the location
60 // of the safe stack(s) can be randomized through secure mechanisms, and the
61 // leakage of the stack pointer can be prevented. Currently, libc can leak the
62 // stack pointer in several ways (e.g. in longjmp, signal handling, user-level
63 // context switching related functions, etc.). These can be fixed in libc and
64 // in other low-level libraries, by either eliminating the escaping/dumping of
65 // the stack pointer (i.e., %rsp) when that's possible, or by using
66 // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
67 // we control and protect better, as is already done for setjmp in glibc.)
68 // Furthermore, a static machine code level verifier can be ran after code
69 // generation to make sure that the stack pointer is never written to memory,
70 // or if it is, its written on the safe stack.
72 // Finally, while the Unsafe Stack pointer is currently stored in a thread
73 // local variable, with libc support it could be stored in the TCB (thread
74 // control block) as well, eliminating another level of indirection and making
75 // such accesses faster. Alternatively, dedicating a separate register for
76 // storing it would also be possible.
78 /// Minimum stack alignment for the unsafe stack.
79 const unsigned kStackAlign
= 16;
81 /// Default size of the unsafe stack. This value is only used if the stack
82 /// size rlimit is set to infinity.
83 const unsigned kDefaultUnsafeStackSize
= 0x2800000;
85 // Per-thread unsafe stack information. It's not frequently accessed, so there
86 // it can be kept out of the tcb in normal thread-local variables.
87 __thread
void *unsafe_stack_start
= nullptr;
88 __thread
size_t unsafe_stack_size
= 0;
89 __thread
size_t unsafe_stack_guard
= 0;
91 inline void *unsafe_stack_alloc(size_t size
, size_t guard
) {
92 SFS_CHECK(size
+ guard
>= size
);
93 void *addr
= Mmap(nullptr, size
+ guard
, PROT_READ
| PROT_WRITE
,
94 MAP_PRIVATE
| MAP_ANON
, -1, 0);
95 SFS_CHECK(MAP_FAILED
!= addr
);
96 Mprotect(addr
, guard
, PROT_NONE
);
97 return (char *)addr
+ guard
;
100 inline void unsafe_stack_setup(void *start
, size_t size
, size_t guard
) {
101 SFS_CHECK((char *)start
+ size
>= (char *)start
);
102 SFS_CHECK((char *)start
+ guard
>= (char *)start
);
103 void *stack_ptr
= (char *)start
+ size
;
104 SFS_CHECK((((size_t)stack_ptr
) & (kStackAlign
- 1)) == 0);
106 __safestack_unsafe_stack_ptr
= stack_ptr
;
107 unsafe_stack_start
= start
;
108 unsafe_stack_size
= size
;
109 unsafe_stack_guard
= guard
;
112 /// Thread data for the cleanup handler
113 pthread_key_t thread_cleanup_key
;
115 /// Safe stack per-thread information passed to the thread_start function
117 void *(*start_routine
)(void *);
118 void *start_routine_arg
;
120 void *unsafe_stack_start
;
121 size_t unsafe_stack_size
;
122 size_t unsafe_stack_guard
;
125 /// Wrap the thread function in order to deallocate the unsafe stack when the
126 /// thread terminates by returning from its main function.
127 void *thread_start(void *arg
) {
128 struct tinfo
*tinfo
= (struct tinfo
*)arg
;
130 void *(*start_routine
)(void *) = tinfo
->start_routine
;
131 void *start_routine_arg
= tinfo
->start_routine_arg
;
133 // Setup the unsafe stack; this will destroy tinfo content
134 unsafe_stack_setup(tinfo
->unsafe_stack_start
, tinfo
->unsafe_stack_size
,
135 tinfo
->unsafe_stack_guard
);
137 // Make sure out thread-specific destructor will be called
138 pthread_setspecific(thread_cleanup_key
, (void *)1);
140 return start_routine(start_routine_arg
);
143 /// Linked list used to store exiting threads stack/thread information.
144 struct thread_stack_ll
{
145 struct thread_stack_ll
*next
;
152 /// Linked list of unsafe stacks for threads that are exiting. We delay
153 /// unmapping them until the thread exits.
154 thread_stack_ll
*thread_stacks
= nullptr;
155 pthread_mutex_t thread_stacks_mutex
= PTHREAD_MUTEX_INITIALIZER
;
157 /// Thread-specific data destructor. We want to free the unsafe stack only after
158 /// this thread is terminated. libc can call functions in safestack-instrumented
159 /// code (like free) after thread-specific data destructors have run.
160 void thread_cleanup_handler(void *_iter
) {
161 SFS_CHECK(unsafe_stack_start
!= nullptr);
162 pthread_setspecific(thread_cleanup_key
, NULL
);
164 pthread_mutex_lock(&thread_stacks_mutex
);
165 // Temporary list to hold the previous threads stacks so we don't hold the
166 // thread_stacks_mutex for long.
167 thread_stack_ll
*temp_stacks
= thread_stacks
;
168 thread_stacks
= nullptr;
169 pthread_mutex_unlock(&thread_stacks_mutex
);
171 pid_t pid
= getpid();
172 ThreadId tid
= GetTid();
174 // Free stacks for dead threads
175 thread_stack_ll
**stackp
= &temp_stacks
;
177 thread_stack_ll
*stack
= *stackp
;
178 if (stack
->pid
!= pid
||
179 (-1 == TgKill(stack
->pid
, stack
->tid
, 0) && errno
== ESRCH
)) {
180 Munmap(stack
->stack_base
, stack
->size
);
181 *stackp
= stack
->next
;
184 stackp
= &stack
->next
;
187 thread_stack_ll
*cur_stack
=
188 (thread_stack_ll
*)malloc(sizeof(thread_stack_ll
));
189 cur_stack
->stack_base
= (char *)unsafe_stack_start
- unsafe_stack_guard
;
190 cur_stack
->size
= unsafe_stack_size
+ unsafe_stack_guard
;
191 cur_stack
->pid
= pid
;
192 cur_stack
->tid
= tid
;
194 pthread_mutex_lock(&thread_stacks_mutex
);
195 // Merge thread_stacks with the current thread's stack and any remaining
197 *stackp
= thread_stacks
;
198 cur_stack
->next
= temp_stacks
;
199 thread_stacks
= cur_stack
;
200 pthread_mutex_unlock(&thread_stacks_mutex
);
202 unsafe_stack_start
= nullptr;
205 void EnsureInterceptorsInitialized();
207 /// Intercept thread creation operation to allocate and setup the unsafe stack
208 INTERCEPTOR(int, pthread_create
, pthread_t
*thread
,
209 const pthread_attr_t
*attr
,
210 void *(*start_routine
)(void*), void *arg
) {
211 EnsureInterceptorsInitialized();
216 pthread_attr_getstacksize(attr
, &size
);
217 pthread_attr_getguardsize(attr
, &guard
);
219 // get pthread default stack size
220 pthread_attr_t tmpattr
;
221 pthread_attr_init(&tmpattr
);
222 pthread_attr_getstacksize(&tmpattr
, &size
);
223 pthread_attr_getguardsize(&tmpattr
, &guard
);
224 pthread_attr_destroy(&tmpattr
);
228 size
= RoundUpTo(size
, kStackAlign
);
230 void *addr
= unsafe_stack_alloc(size
, guard
);
231 // Put tinfo at the end of the buffer. guard may be not page aligned.
232 // If that is so then some bytes after addr can be mprotected.
233 struct tinfo
*tinfo
=
234 (struct tinfo
*)(((char *)addr
) + size
- sizeof(struct tinfo
));
235 tinfo
->start_routine
= start_routine
;
236 tinfo
->start_routine_arg
= arg
;
237 tinfo
->unsafe_stack_start
= addr
;
238 tinfo
->unsafe_stack_size
= size
;
239 tinfo
->unsafe_stack_guard
= guard
;
241 return REAL(pthread_create
)(thread
, attr
, thread_start
, tinfo
);
244 pthread_mutex_t interceptor_init_mutex
= PTHREAD_MUTEX_INITIALIZER
;
245 bool interceptors_inited
= false;
247 void EnsureInterceptorsInitialized() {
248 MutexLock
lock(interceptor_init_mutex
);
249 if (interceptors_inited
)
252 // Initialize pthread interceptors for thread allocation
253 INTERCEPT_FUNCTION(pthread_create
);
255 interceptors_inited
= true;
260 extern "C" __attribute__((visibility("default")))
261 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
262 // On ELF platforms, the constructor is invoked using .preinit_array (see below)
263 __attribute__((constructor(0)))
265 void __safestack_init() {
266 // Determine the stack size for the main thread.
267 size_t size
= kDefaultUnsafeStackSize
;
271 if (getrlimit(RLIMIT_STACK
, &limit
) == 0 && limit
.rlim_cur
!= RLIM_INFINITY
)
272 size
= limit
.rlim_cur
;
274 // Allocate unsafe stack for main thread
275 void *addr
= unsafe_stack_alloc(size
, guard
);
276 unsafe_stack_setup(addr
, size
, guard
);
278 // Setup the cleanup handler
279 pthread_key_create(&thread_cleanup_key
, thread_cleanup_handler
);
282 #if SANITIZER_CAN_USE_PREINIT_ARRAY
283 // On ELF platforms, run safestack initialization before any other constructors.
284 // On other platforms we use the constructor attribute to arrange to run our
285 // initialization early.
287 __attribute__((section(".preinit_array"),
288 used
)) void (*__safestack_preinit
)(void) = __safestack_init
;
293 __attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() {
294 return unsafe_stack_start
;
298 __attribute__((visibility("default"))) void *__get_unsafe_stack_top() {
299 return (char*)unsafe_stack_start
+ unsafe_stack_size
;
303 __attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
304 return unsafe_stack_start
;
308 __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
309 return __safestack_unsafe_stack_ptr
;