1 //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This provides C++ code generation targeting the Itanium C++ ABI. The class
10 // in this file generates structures that follow the Itanium C++ ABI, which is
12 // https://itanium-cxx-abi.github.io/cxx-abi/abi.html
13 // https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
15 // It also supports the closely-related ARM ABI, documented at:
16 // https://developer.arm.com/documentation/ihi0041/g/
18 //===----------------------------------------------------------------------===//
21 #include "CGCleanup.h"
22 #include "CGRecordLayout.h"
23 #include "CGVTables.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenModule.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/Attr.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/Type.h"
31 #include "clang/CodeGen/ConstantInitBuilder.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/ScopedPrinter.h"
39 using namespace clang
;
40 using namespace CodeGen
;
43 class ItaniumCXXABI
: public CodeGen::CGCXXABI
{
44 /// VTables - All the vtables which have been defined.
45 llvm::DenseMap
<const CXXRecordDecl
*, llvm::GlobalVariable
*> VTables
;
47 /// All the thread wrapper functions that have been used.
48 llvm::SmallVector
<std::pair
<const VarDecl
*, llvm::Function
*>, 8>
52 bool UseARMMethodPtrABI
;
53 bool UseARMGuardVarABI
;
54 bool Use32BitVTableOffsetABI
;
56 ItaniumMangleContext
&getMangleContext() {
57 return cast
<ItaniumMangleContext
>(CodeGen::CGCXXABI::getMangleContext());
61 ItaniumCXXABI(CodeGen::CodeGenModule
&CGM
,
62 bool UseARMMethodPtrABI
= false,
63 bool UseARMGuardVarABI
= false) :
64 CGCXXABI(CGM
), UseARMMethodPtrABI(UseARMMethodPtrABI
),
65 UseARMGuardVarABI(UseARMGuardVarABI
),
66 Use32BitVTableOffsetABI(false) { }
68 bool classifyReturnType(CGFunctionInfo
&FI
) const override
;
70 RecordArgABI
getRecordArgABI(const CXXRecordDecl
*RD
) const override
{
71 // If C++ prohibits us from making a copy, pass by address.
72 if (!RD
->canPassInRegisters())
77 bool isThisCompleteObject(GlobalDecl GD
) const override
{
78 // The Itanium ABI has separate complete-object vs. base-object
79 // variants of both constructors and destructors.
80 if (isa
<CXXDestructorDecl
>(GD
.getDecl())) {
81 switch (GD
.getDtorType()) {
90 llvm_unreachable("emitting dtor comdat as function?");
92 llvm_unreachable("bad dtor kind");
94 if (isa
<CXXConstructorDecl
>(GD
.getDecl())) {
95 switch (GD
.getCtorType()) {
102 case Ctor_CopyingClosure
:
103 case Ctor_DefaultClosure
:
104 llvm_unreachable("closure ctors in Itanium ABI?");
107 llvm_unreachable("emitting ctor comdat as function?");
109 llvm_unreachable("bad dtor kind");
116 bool isZeroInitializable(const MemberPointerType
*MPT
) override
;
118 llvm::Type
*ConvertMemberPointerType(const MemberPointerType
*MPT
) override
;
121 EmitLoadOfMemberFunctionPointer(CodeGenFunction
&CGF
,
124 llvm::Value
*&ThisPtrForCall
,
125 llvm::Value
*MemFnPtr
,
126 const MemberPointerType
*MPT
) override
;
129 EmitMemberDataPointerAddress(CodeGenFunction
&CGF
, const Expr
*E
,
132 const MemberPointerType
*MPT
) override
;
134 llvm::Value
*EmitMemberPointerConversion(CodeGenFunction
&CGF
,
136 llvm::Value
*Src
) override
;
137 llvm::Constant
*EmitMemberPointerConversion(const CastExpr
*E
,
138 llvm::Constant
*Src
) override
;
140 llvm::Constant
*EmitNullMemberPointer(const MemberPointerType
*MPT
) override
;
142 llvm::Constant
*EmitMemberFunctionPointer(const CXXMethodDecl
*MD
) override
;
143 llvm::Constant
*EmitMemberDataPointer(const MemberPointerType
*MPT
,
144 CharUnits offset
) override
;
145 llvm::Constant
*EmitMemberPointer(const APValue
&MP
, QualType MPT
) override
;
146 llvm::Constant
*BuildMemberPointer(const CXXMethodDecl
*MD
,
147 CharUnits ThisAdjustment
);
149 llvm::Value
*EmitMemberPointerComparison(CodeGenFunction
&CGF
,
150 llvm::Value
*L
, llvm::Value
*R
,
151 const MemberPointerType
*MPT
,
152 bool Inequality
) override
;
154 llvm::Value
*EmitMemberPointerIsNotNull(CodeGenFunction
&CGF
,
156 const MemberPointerType
*MPT
) override
;
158 void emitVirtualObjectDelete(CodeGenFunction
&CGF
, const CXXDeleteExpr
*DE
,
159 Address Ptr
, QualType ElementType
,
160 const CXXDestructorDecl
*Dtor
) override
;
162 void emitRethrow(CodeGenFunction
&CGF
, bool isNoReturn
) override
;
163 void emitThrow(CodeGenFunction
&CGF
, const CXXThrowExpr
*E
) override
;
165 void emitBeginCatch(CodeGenFunction
&CGF
, const CXXCatchStmt
*C
) override
;
168 emitTerminateForUnexpectedException(CodeGenFunction
&CGF
,
169 llvm::Value
*Exn
) override
;
171 void EmitFundamentalRTTIDescriptors(const CXXRecordDecl
*RD
);
172 llvm::Constant
*getAddrOfRTTIDescriptor(QualType Ty
) override
;
174 getAddrOfCXXCatchHandlerType(QualType Ty
,
175 QualType CatchHandlerType
) override
{
176 return CatchTypeInfo
{getAddrOfRTTIDescriptor(Ty
), 0};
179 bool shouldTypeidBeNullChecked(bool IsDeref
, QualType SrcRecordTy
) override
;
180 void EmitBadTypeidCall(CodeGenFunction
&CGF
) override
;
181 llvm::Value
*EmitTypeid(CodeGenFunction
&CGF
, QualType SrcRecordTy
,
183 llvm::Type
*StdTypeInfoPtrTy
) override
;
185 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr
,
186 QualType SrcRecordTy
) override
;
188 llvm::Value
*emitDynamicCastCall(CodeGenFunction
&CGF
, Address Value
,
189 QualType SrcRecordTy
, QualType DestTy
,
190 QualType DestRecordTy
,
191 llvm::BasicBlock
*CastEnd
) override
;
193 llvm::Value
*emitDynamicCastToVoid(CodeGenFunction
&CGF
, Address Value
,
194 QualType SrcRecordTy
) override
;
196 bool EmitBadCastCall(CodeGenFunction
&CGF
) override
;
199 GetVirtualBaseClassOffset(CodeGenFunction
&CGF
, Address This
,
200 const CXXRecordDecl
*ClassDecl
,
201 const CXXRecordDecl
*BaseClassDecl
) override
;
203 void EmitCXXConstructors(const CXXConstructorDecl
*D
) override
;
205 AddedStructorArgCounts
206 buildStructorSignature(GlobalDecl GD
,
207 SmallVectorImpl
<CanQualType
> &ArgTys
) override
;
209 bool useThunkForDtorVariant(const CXXDestructorDecl
*Dtor
,
210 CXXDtorType DT
) const override
{
211 // Itanium does not emit any destructor variant as an inline thunk.
212 // Delegating may occur as an optimization, but all variants are either
213 // emitted with external linkage or as linkonce if they are inline and used.
217 void EmitCXXDestructors(const CXXDestructorDecl
*D
) override
;
219 void addImplicitStructorParams(CodeGenFunction
&CGF
, QualType
&ResTy
,
220 FunctionArgList
&Params
) override
;
222 void EmitInstanceFunctionProlog(CodeGenFunction
&CGF
) override
;
224 AddedStructorArgs
getImplicitConstructorArgs(CodeGenFunction
&CGF
,
225 const CXXConstructorDecl
*D
,
228 bool Delegating
) override
;
230 llvm::Value
*getCXXDestructorImplicitParam(CodeGenFunction
&CGF
,
231 const CXXDestructorDecl
*DD
,
234 bool Delegating
) override
;
236 void EmitDestructorCall(CodeGenFunction
&CGF
, const CXXDestructorDecl
*DD
,
237 CXXDtorType Type
, bool ForVirtualBase
,
238 bool Delegating
, Address This
,
239 QualType ThisTy
) override
;
241 void emitVTableDefinitions(CodeGenVTables
&CGVT
,
242 const CXXRecordDecl
*RD
) override
;
244 bool isVirtualOffsetNeededForVTableField(CodeGenFunction
&CGF
,
245 CodeGenFunction::VPtr Vptr
) override
;
247 bool doStructorsInitializeVPtrs(const CXXRecordDecl
*VTableClass
) override
{
252 getVTableAddressPoint(BaseSubobject Base
,
253 const CXXRecordDecl
*VTableClass
) override
;
255 llvm::Value
*getVTableAddressPointInStructor(
256 CodeGenFunction
&CGF
, const CXXRecordDecl
*VTableClass
,
257 BaseSubobject Base
, const CXXRecordDecl
*NearestVBase
) override
;
259 llvm::Value
*getVTableAddressPointInStructorWithVTT(
260 CodeGenFunction
&CGF
, const CXXRecordDecl
*VTableClass
,
261 BaseSubobject Base
, const CXXRecordDecl
*NearestVBase
);
264 getVTableAddressPointForConstExpr(BaseSubobject Base
,
265 const CXXRecordDecl
*VTableClass
) override
;
267 llvm::GlobalVariable
*getAddrOfVTable(const CXXRecordDecl
*RD
,
268 CharUnits VPtrOffset
) override
;
270 CGCallee
getVirtualFunctionPointer(CodeGenFunction
&CGF
, GlobalDecl GD
,
271 Address This
, llvm::Type
*Ty
,
272 SourceLocation Loc
) override
;
274 llvm::Value
*EmitVirtualDestructorCall(CodeGenFunction
&CGF
,
275 const CXXDestructorDecl
*Dtor
,
276 CXXDtorType DtorType
, Address This
,
277 DeleteOrMemberCallExpr E
) override
;
279 void emitVirtualInheritanceTables(const CXXRecordDecl
*RD
) override
;
281 bool canSpeculativelyEmitVTable(const CXXRecordDecl
*RD
) const override
;
282 bool canSpeculativelyEmitVTableAsBaseClass(const CXXRecordDecl
*RD
) const;
284 void setThunkLinkage(llvm::Function
*Thunk
, bool ForVTable
, GlobalDecl GD
,
285 bool ReturnAdjustment
) override
{
286 // Allow inlining of thunks by emitting them with available_externally
287 // linkage together with vtables when needed.
288 if (ForVTable
&& !Thunk
->hasLocalLinkage())
289 Thunk
->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage
);
290 CGM
.setGVProperties(Thunk
, GD
);
293 bool exportThunk() override
{ return true; }
295 llvm::Value
*performThisAdjustment(CodeGenFunction
&CGF
, Address This
,
296 const ThisAdjustment
&TA
) override
;
298 llvm::Value
*performReturnAdjustment(CodeGenFunction
&CGF
, Address Ret
,
299 const ReturnAdjustment
&RA
) override
;
301 size_t getSrcArgforCopyCtor(const CXXConstructorDecl
*,
302 FunctionArgList
&Args
) const override
{
303 assert(!Args
.empty() && "expected the arglist to not be empty!");
304 return Args
.size() - 1;
307 StringRef
GetPureVirtualCallName() override
{ return "__cxa_pure_virtual"; }
308 StringRef
GetDeletedVirtualCallName() override
309 { return "__cxa_deleted_virtual"; }
311 CharUnits
getArrayCookieSizeImpl(QualType elementType
) override
;
312 Address
InitializeArrayCookie(CodeGenFunction
&CGF
,
314 llvm::Value
*NumElements
,
315 const CXXNewExpr
*expr
,
316 QualType ElementType
) override
;
317 llvm::Value
*readArrayCookieImpl(CodeGenFunction
&CGF
,
319 CharUnits cookieSize
) override
;
321 void EmitGuardedInit(CodeGenFunction
&CGF
, const VarDecl
&D
,
322 llvm::GlobalVariable
*DeclPtr
,
323 bool PerformInit
) override
;
324 void registerGlobalDtor(CodeGenFunction
&CGF
, const VarDecl
&D
,
325 llvm::FunctionCallee dtor
,
326 llvm::Constant
*addr
) override
;
328 llvm::Function
*getOrCreateThreadLocalWrapper(const VarDecl
*VD
,
330 void EmitThreadLocalInitFuncs(
332 ArrayRef
<const VarDecl
*> CXXThreadLocals
,
333 ArrayRef
<llvm::Function
*> CXXThreadLocalInits
,
334 ArrayRef
<const VarDecl
*> CXXThreadLocalInitVars
) override
;
336 bool usesThreadWrapperFunction(const VarDecl
*VD
) const override
{
337 return !isEmittedWithConstantInitializer(VD
) ||
338 mayNeedDestruction(VD
);
340 LValue
EmitThreadLocalVarDeclLValue(CodeGenFunction
&CGF
, const VarDecl
*VD
,
341 QualType LValType
) override
;
343 bool NeedsVTTParameter(GlobalDecl GD
) override
;
345 /**************************** RTTI Uniqueness ******************************/
348 /// Returns true if the ABI requires RTTI type_info objects to be unique
349 /// across a program.
350 virtual bool shouldRTTIBeUnique() const { return true; }
353 /// What sort of unique-RTTI behavior should we use?
354 enum RTTIUniquenessKind
{
355 /// We are guaranteeing, or need to guarantee, that the RTTI string
359 /// We are not guaranteeing uniqueness for the RTTI string, so we
360 /// can demote to hidden visibility but must use string comparisons.
363 /// We are not guaranteeing uniqueness for the RTTI string, so we
364 /// have to use string comparisons, but we also have to emit it with
365 /// non-hidden visibility.
369 /// Return the required visibility status for the given type and linkage in
372 classifyRTTIUniqueness(QualType CanTy
,
373 llvm::GlobalValue::LinkageTypes Linkage
) const;
374 friend class ItaniumRTTIBuilder
;
376 void emitCXXStructor(GlobalDecl GD
) override
;
378 std::pair
<llvm::Value
*, const CXXRecordDecl
*>
379 LoadVTablePtr(CodeGenFunction
&CGF
, Address This
,
380 const CXXRecordDecl
*RD
) override
;
383 bool hasAnyUnusedVirtualInlineFunction(const CXXRecordDecl
*RD
) const {
384 const auto &VtableLayout
=
385 CGM
.getItaniumVTableContext().getVTableLayout(RD
);
387 for (const auto &VtableComponent
: VtableLayout
.vtable_components()) {
389 if (!VtableComponent
.isUsedFunctionPointerKind())
392 const CXXMethodDecl
*Method
= VtableComponent
.getFunctionDecl();
393 if (!Method
->getCanonicalDecl()->isInlined())
396 StringRef Name
= CGM
.getMangledName(VtableComponent
.getGlobalDecl());
397 auto *Entry
= CGM
.GetGlobalValue(Name
);
398 // This checks if virtual inline function has already been emitted.
399 // Note that it is possible that this inline function would be emitted
400 // after trying to emit vtable speculatively. Because of this we do
401 // an extra pass after emitting all deferred vtables to find and emit
402 // these vtables opportunistically.
403 if (!Entry
|| Entry
->isDeclaration())
409 bool isVTableHidden(const CXXRecordDecl
*RD
) const {
410 const auto &VtableLayout
=
411 CGM
.getItaniumVTableContext().getVTableLayout(RD
);
413 for (const auto &VtableComponent
: VtableLayout
.vtable_components()) {
414 if (VtableComponent
.isRTTIKind()) {
415 const CXXRecordDecl
*RTTIDecl
= VtableComponent
.getRTTIDecl();
416 if (RTTIDecl
->getVisibility() == Visibility::HiddenVisibility
)
418 } else if (VtableComponent
.isUsedFunctionPointerKind()) {
419 const CXXMethodDecl
*Method
= VtableComponent
.getFunctionDecl();
420 if (Method
->getVisibility() == Visibility::HiddenVisibility
&&
421 !Method
->isDefined())
429 class ARMCXXABI
: public ItaniumCXXABI
{
431 ARMCXXABI(CodeGen::CodeGenModule
&CGM
) :
432 ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true,
433 /*UseARMGuardVarABI=*/true) {}
435 bool constructorsAndDestructorsReturnThis() const override
{ return true; }
437 void EmitReturnFromThunk(CodeGenFunction
&CGF
, RValue RV
,
438 QualType ResTy
) override
;
440 CharUnits
getArrayCookieSizeImpl(QualType elementType
) override
;
441 Address
InitializeArrayCookie(CodeGenFunction
&CGF
,
443 llvm::Value
*NumElements
,
444 const CXXNewExpr
*expr
,
445 QualType ElementType
) override
;
446 llvm::Value
*readArrayCookieImpl(CodeGenFunction
&CGF
, Address allocPtr
,
447 CharUnits cookieSize
) override
;
450 class AppleARM64CXXABI
: public ARMCXXABI
{
452 AppleARM64CXXABI(CodeGen::CodeGenModule
&CGM
) : ARMCXXABI(CGM
) {
453 Use32BitVTableOffsetABI
= true;
456 // ARM64 libraries are prepared for non-unique RTTI.
457 bool shouldRTTIBeUnique() const override
{ return false; }
460 class FuchsiaCXXABI final
: public ItaniumCXXABI
{
462 explicit FuchsiaCXXABI(CodeGen::CodeGenModule
&CGM
)
463 : ItaniumCXXABI(CGM
) {}
466 bool constructorsAndDestructorsReturnThis() const override
{ return true; }
469 class WebAssemblyCXXABI final
: public ItaniumCXXABI
{
471 explicit WebAssemblyCXXABI(CodeGen::CodeGenModule
&CGM
)
472 : ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true,
473 /*UseARMGuardVarABI=*/true) {}
474 void emitBeginCatch(CodeGenFunction
&CGF
, const CXXCatchStmt
*C
) override
;
476 emitTerminateForUnexpectedException(CodeGenFunction
&CGF
,
477 llvm::Value
*Exn
) override
;
480 bool constructorsAndDestructorsReturnThis() const override
{ return true; }
481 bool canCallMismatchedFunctionType() const override
{ return false; }
484 class XLCXXABI final
: public ItaniumCXXABI
{
486 explicit XLCXXABI(CodeGen::CodeGenModule
&CGM
)
487 : ItaniumCXXABI(CGM
) {}
489 void registerGlobalDtor(CodeGenFunction
&CGF
, const VarDecl
&D
,
490 llvm::FunctionCallee dtor
,
491 llvm::Constant
*addr
) override
;
493 bool useSinitAndSterm() const override
{ return true; }
496 void emitCXXStermFinalizer(const VarDecl
&D
, llvm::Function
*dtorStub
,
497 llvm::Constant
*addr
);
501 CodeGen::CGCXXABI
*CodeGen::CreateItaniumCXXABI(CodeGenModule
&CGM
) {
502 switch (CGM
.getContext().getCXXABIKind()) {
503 // For IR-generation purposes, there's no significant difference
504 // between the ARM and iOS ABIs.
505 case TargetCXXABI::GenericARM
:
506 case TargetCXXABI::iOS
:
507 case TargetCXXABI::WatchOS
:
508 return new ARMCXXABI(CGM
);
510 case TargetCXXABI::AppleARM64
:
511 return new AppleARM64CXXABI(CGM
);
513 case TargetCXXABI::Fuchsia
:
514 return new FuchsiaCXXABI(CGM
);
516 // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
517 // include the other 32-bit ARM oddities: constructor/destructor return values
518 // and array cookies.
519 case TargetCXXABI::GenericAArch64
:
520 return new ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true,
521 /*UseARMGuardVarABI=*/true);
523 case TargetCXXABI::GenericMIPS
:
524 return new ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true);
526 case TargetCXXABI::WebAssembly
:
527 return new WebAssemblyCXXABI(CGM
);
529 case TargetCXXABI::XL
:
530 return new XLCXXABI(CGM
);
532 case TargetCXXABI::GenericItanium
:
533 if (CGM
.getContext().getTargetInfo().getTriple().getArch()
534 == llvm::Triple::le32
) {
535 // For PNaCl, use ARM-style method pointers so that PNaCl code
536 // does not assume anything about the alignment of function
538 return new ItaniumCXXABI(CGM
, /*UseARMMethodPtrABI=*/true);
540 return new ItaniumCXXABI(CGM
);
542 case TargetCXXABI::Microsoft
:
543 llvm_unreachable("Microsoft ABI is not Itanium-based");
545 llvm_unreachable("bad ABI kind");
549 ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType
*MPT
) {
550 if (MPT
->isMemberDataPointer())
551 return CGM
.PtrDiffTy
;
552 return llvm::StructType::get(CGM
.PtrDiffTy
, CGM
.PtrDiffTy
);
555 /// In the Itanium and ARM ABIs, method pointers have the form:
556 /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
558 /// In the Itanium ABI:
559 /// - method pointers are virtual if (memptr.ptr & 1) is nonzero
560 /// - the this-adjustment is (memptr.adj)
561 /// - the virtual offset is (memptr.ptr - 1)
564 /// - method pointers are virtual if (memptr.adj & 1) is nonzero
565 /// - the this-adjustment is (memptr.adj >> 1)
566 /// - the virtual offset is (memptr.ptr)
567 /// ARM uses 'adj' for the virtual flag because Thumb functions
568 /// may be only single-byte aligned.
570 /// If the member is virtual, the adjusted 'this' pointer points
571 /// to a vtable pointer from which the virtual offset is applied.
573 /// If the member is non-virtual, memptr.ptr is the address of
574 /// the function to call.
575 CGCallee
ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(
576 CodeGenFunction
&CGF
, const Expr
*E
, Address ThisAddr
,
577 llvm::Value
*&ThisPtrForCall
,
578 llvm::Value
*MemFnPtr
, const MemberPointerType
*MPT
) {
579 CGBuilderTy
&Builder
= CGF
.Builder
;
581 const FunctionProtoType
*FPT
=
582 MPT
->getPointeeType()->castAs
<FunctionProtoType
>();
584 cast
<CXXRecordDecl
>(MPT
->getClass()->castAs
<RecordType
>()->getDecl());
586 llvm::Constant
*ptrdiff_1
= llvm::ConstantInt::get(CGM
.PtrDiffTy
, 1);
588 llvm::BasicBlock
*FnVirtual
= CGF
.createBasicBlock("memptr.virtual");
589 llvm::BasicBlock
*FnNonVirtual
= CGF
.createBasicBlock("memptr.nonvirtual");
590 llvm::BasicBlock
*FnEnd
= CGF
.createBasicBlock("memptr.end");
592 // Extract memptr.adj, which is in the second field.
593 llvm::Value
*RawAdj
= Builder
.CreateExtractValue(MemFnPtr
, 1, "memptr.adj");
595 // Compute the true adjustment.
596 llvm::Value
*Adj
= RawAdj
;
597 if (UseARMMethodPtrABI
)
598 Adj
= Builder
.CreateAShr(Adj
, ptrdiff_1
, "memptr.adj.shifted");
600 // Apply the adjustment and cast back to the original struct type
602 llvm::Value
*This
= ThisAddr
.getPointer();
603 llvm::Value
*Ptr
= Builder
.CreateBitCast(This
, Builder
.getInt8PtrTy());
604 Ptr
= Builder
.CreateInBoundsGEP(Builder
.getInt8Ty(), Ptr
, Adj
);
605 This
= Builder
.CreateBitCast(Ptr
, This
->getType(), "this.adjusted");
606 ThisPtrForCall
= This
;
608 // Load the function pointer.
609 llvm::Value
*FnAsInt
= Builder
.CreateExtractValue(MemFnPtr
, 0, "memptr.ptr");
611 // If the LSB in the function pointer is 1, the function pointer points to
612 // a virtual function.
613 llvm::Value
*IsVirtual
;
614 if (UseARMMethodPtrABI
)
615 IsVirtual
= Builder
.CreateAnd(RawAdj
, ptrdiff_1
);
617 IsVirtual
= Builder
.CreateAnd(FnAsInt
, ptrdiff_1
);
618 IsVirtual
= Builder
.CreateIsNotNull(IsVirtual
, "memptr.isvirtual");
619 Builder
.CreateCondBr(IsVirtual
, FnVirtual
, FnNonVirtual
);
621 // In the virtual path, the adjustment left 'This' pointing to the
622 // vtable of the correct base subobject. The "function pointer" is an
623 // offset within the vtable (+1 for the virtual flag on non-ARM).
624 CGF
.EmitBlock(FnVirtual
);
626 // Cast the adjusted this to a pointer to vtable pointer and load.
627 llvm::Type
*VTableTy
= CGF
.CGM
.GlobalsInt8PtrTy
;
628 CharUnits VTablePtrAlign
=
629 CGF
.CGM
.getDynamicOffsetAlignment(ThisAddr
.getAlignment(), RD
,
630 CGF
.getPointerAlign());
631 llvm::Value
*VTable
= CGF
.GetVTablePtr(
632 Address(This
, ThisAddr
.getElementType(), VTablePtrAlign
), VTableTy
, RD
);
635 // On ARM64, to reserve extra space in virtual member function pointers,
636 // we only pay attention to the low 32 bits of the offset.
637 llvm::Value
*VTableOffset
= FnAsInt
;
638 if (!UseARMMethodPtrABI
)
639 VTableOffset
= Builder
.CreateSub(VTableOffset
, ptrdiff_1
);
640 if (Use32BitVTableOffsetABI
) {
641 VTableOffset
= Builder
.CreateTrunc(VTableOffset
, CGF
.Int32Ty
);
642 VTableOffset
= Builder
.CreateZExt(VTableOffset
, CGM
.PtrDiffTy
);
645 // Check the address of the function pointer if CFI on member function
646 // pointers is enabled.
647 llvm::Constant
*CheckSourceLocation
;
648 llvm::Constant
*CheckTypeDesc
;
649 bool ShouldEmitCFICheck
= CGF
.SanOpts
.has(SanitizerKind::CFIMFCall
) &&
650 CGM
.HasHiddenLTOVisibility(RD
);
651 bool ShouldEmitVFEInfo
= CGM
.getCodeGenOpts().VirtualFunctionElimination
&&
652 CGM
.HasHiddenLTOVisibility(RD
);
653 bool ShouldEmitWPDInfo
=
654 CGM
.getCodeGenOpts().WholeProgramVTables
&&
655 // Don't insert type tests if we are forcing public visibility.
656 !CGM
.AlwaysHasLTOVisibilityPublic(RD
);
657 llvm::Value
*VirtualFn
= nullptr;
660 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
661 llvm::Value
*TypeId
= nullptr;
662 llvm::Value
*CheckResult
= nullptr;
664 if (ShouldEmitCFICheck
|| ShouldEmitVFEInfo
|| ShouldEmitWPDInfo
) {
665 // If doing CFI, VFE or WPD, we will need the metadata node to check
668 CGM
.CreateMetadataIdentifierForVirtualMemPtrType(QualType(MPT
, 0));
669 TypeId
= llvm::MetadataAsValue::get(CGF
.getLLVMContext(), MD
);
672 if (ShouldEmitVFEInfo
) {
673 llvm::Value
*VFPAddr
=
674 Builder
.CreateGEP(CGF
.Int8Ty
, VTable
, VTableOffset
);
676 // If doing VFE, load from the vtable with a type.checked.load intrinsic
677 // call. Note that we use the GEP to calculate the address to load from
678 // and pass 0 as the offset to the intrinsic. This is because every
679 // vtable slot of the correct type is marked with matching metadata, and
680 // we know that the load must be from one of these slots.
681 llvm::Value
*CheckedLoad
= Builder
.CreateCall(
682 CGM
.getIntrinsic(llvm::Intrinsic::type_checked_load
),
683 {VFPAddr
, llvm::ConstantInt::get(CGM
.Int32Ty
, 0), TypeId
});
684 CheckResult
= Builder
.CreateExtractValue(CheckedLoad
, 1);
685 VirtualFn
= Builder
.CreateExtractValue(CheckedLoad
, 0);
687 // When not doing VFE, emit a normal load, as it allows more
688 // optimisations than type.checked.load.
689 if (ShouldEmitCFICheck
|| ShouldEmitWPDInfo
) {
690 llvm::Value
*VFPAddr
=
691 Builder
.CreateGEP(CGF
.Int8Ty
, VTable
, VTableOffset
);
692 llvm::Intrinsic::ID IID
= CGM
.HasHiddenLTOVisibility(RD
)
693 ? llvm::Intrinsic::type_test
694 : llvm::Intrinsic::public_type_test
;
696 CheckResult
= Builder
.CreateCall(
697 CGM
.getIntrinsic(IID
),
698 {Builder
.CreateBitCast(VFPAddr
, CGF
.Int8PtrTy
), TypeId
});
701 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
702 VirtualFn
= CGF
.Builder
.CreateCall(
703 CGM
.getIntrinsic(llvm::Intrinsic::load_relative
,
704 {VTableOffset
->getType()}),
705 {VTable
, VTableOffset
});
707 llvm::Value
*VFPAddr
=
708 CGF
.Builder
.CreateGEP(CGF
.Int8Ty
, VTable
, VTableOffset
);
709 VirtualFn
= CGF
.Builder
.CreateAlignedLoad(
710 llvm::PointerType::getUnqual(CGF
.getLLVMContext()), VFPAddr
,
711 CGF
.getPointerAlign(), "memptr.virtualfn");
714 assert(VirtualFn
&& "Virtual fuction pointer not created!");
715 assert((!ShouldEmitCFICheck
|| !ShouldEmitVFEInfo
|| !ShouldEmitWPDInfo
||
717 "Check result required but not created!");
719 if (ShouldEmitCFICheck
) {
720 // If doing CFI, emit the check.
721 CheckSourceLocation
= CGF
.EmitCheckSourceLocation(E
->getBeginLoc());
722 CheckTypeDesc
= CGF
.EmitCheckTypeDescriptor(QualType(MPT
, 0));
723 llvm::Constant
*StaticData
[] = {
724 llvm::ConstantInt::get(CGF
.Int8Ty
, CodeGenFunction::CFITCK_VMFCall
),
729 if (CGM
.getCodeGenOpts().SanitizeTrap
.has(SanitizerKind::CFIMFCall
)) {
730 CGF
.EmitTrapCheck(CheckResult
, SanitizerHandler::CFICheckFail
);
732 llvm::Value
*AllVtables
= llvm::MetadataAsValue::get(
733 CGM
.getLLVMContext(),
734 llvm::MDString::get(CGM
.getLLVMContext(), "all-vtables"));
735 llvm::Value
*ValidVtable
= Builder
.CreateCall(
736 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {VTable
, AllVtables
});
737 CGF
.EmitCheck(std::make_pair(CheckResult
, SanitizerKind::CFIMFCall
),
738 SanitizerHandler::CFICheckFail
, StaticData
,
739 {VTable
, ValidVtable
});
742 FnVirtual
= Builder
.GetInsertBlock();
744 } // End of sanitizer scope
746 CGF
.EmitBranch(FnEnd
);
748 // In the non-virtual path, the function pointer is actually a
750 CGF
.EmitBlock(FnNonVirtual
);
751 llvm::Value
*NonVirtualFn
= Builder
.CreateIntToPtr(
752 FnAsInt
, llvm::PointerType::getUnqual(CGF
.getLLVMContext()),
753 "memptr.nonvirtualfn");
755 // Check the function pointer if CFI on member function pointers is enabled.
756 if (ShouldEmitCFICheck
) {
757 CXXRecordDecl
*RD
= MPT
->getClass()->getAsCXXRecordDecl();
758 if (RD
->hasDefinition()) {
759 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
761 llvm::Constant
*StaticData
[] = {
762 llvm::ConstantInt::get(CGF
.Int8Ty
, CodeGenFunction::CFITCK_NVMFCall
),
767 llvm::Value
*Bit
= Builder
.getFalse();
768 llvm::Value
*CastedNonVirtualFn
=
769 Builder
.CreateBitCast(NonVirtualFn
, CGF
.Int8PtrTy
);
770 for (const CXXRecordDecl
*Base
: CGM
.getMostBaseClasses(RD
)) {
771 llvm::Metadata
*MD
= CGM
.CreateMetadataIdentifierForType(
772 getContext().getMemberPointerType(
773 MPT
->getPointeeType(),
774 getContext().getRecordType(Base
).getTypePtr()));
775 llvm::Value
*TypeId
=
776 llvm::MetadataAsValue::get(CGF
.getLLVMContext(), MD
);
778 llvm::Value
*TypeTest
=
779 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::type_test
),
780 {CastedNonVirtualFn
, TypeId
});
781 Bit
= Builder
.CreateOr(Bit
, TypeTest
);
784 CGF
.EmitCheck(std::make_pair(Bit
, SanitizerKind::CFIMFCall
),
785 SanitizerHandler::CFICheckFail
, StaticData
,
786 {CastedNonVirtualFn
, llvm::UndefValue::get(CGF
.IntPtrTy
)});
788 FnNonVirtual
= Builder
.GetInsertBlock();
793 CGF
.EmitBlock(FnEnd
);
794 llvm::PHINode
*CalleePtr
=
795 Builder
.CreatePHI(llvm::PointerType::getUnqual(CGF
.getLLVMContext()), 2);
796 CalleePtr
->addIncoming(VirtualFn
, FnVirtual
);
797 CalleePtr
->addIncoming(NonVirtualFn
, FnNonVirtual
);
799 CGCallee
Callee(FPT
, CalleePtr
);
803 /// Compute an l-value by applying the given pointer-to-member to a
805 llvm::Value
*ItaniumCXXABI::EmitMemberDataPointerAddress(
806 CodeGenFunction
&CGF
, const Expr
*E
, Address Base
, llvm::Value
*MemPtr
,
807 const MemberPointerType
*MPT
) {
808 assert(MemPtr
->getType() == CGM
.PtrDiffTy
);
810 CGBuilderTy
&Builder
= CGF
.Builder
;
812 // Apply the offset, which we assume is non-null.
813 return Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, Base
.getPointer(), MemPtr
,
817 /// Perform a bitcast, derived-to-base, or base-to-derived member pointer
820 /// Bitcast conversions are always a no-op under Itanium.
822 /// Obligatory offset/adjustment diagram:
823 /// <-- offset --> <-- adjustment -->
824 /// |--------------------------|----------------------|--------------------|
825 /// ^Derived address point ^Base address point ^Member address point
827 /// So when converting a base member pointer to a derived member pointer,
828 /// we add the offset to the adjustment because the address point has
829 /// decreased; and conversely, when converting a derived MP to a base MP
830 /// we subtract the offset from the adjustment because the address point
833 /// The standard forbids (at compile time) conversion to and from
834 /// virtual bases, which is why we don't have to consider them here.
836 /// The standard forbids (at run time) casting a derived MP to a base
837 /// MP when the derived MP does not point to a member of the base.
838 /// This is why -1 is a reasonable choice for null data member
841 ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction
&CGF
,
844 assert(E
->getCastKind() == CK_DerivedToBaseMemberPointer
||
845 E
->getCastKind() == CK_BaseToDerivedMemberPointer
||
846 E
->getCastKind() == CK_ReinterpretMemberPointer
);
848 // Under Itanium, reinterprets don't require any additional processing.
849 if (E
->getCastKind() == CK_ReinterpretMemberPointer
) return src
;
851 // Use constant emission if we can.
852 if (isa
<llvm::Constant
>(src
))
853 return EmitMemberPointerConversion(E
, cast
<llvm::Constant
>(src
));
855 llvm::Constant
*adj
= getMemberPointerAdjustment(E
);
856 if (!adj
) return src
;
858 CGBuilderTy
&Builder
= CGF
.Builder
;
859 bool isDerivedToBase
= (E
->getCastKind() == CK_DerivedToBaseMemberPointer
);
861 const MemberPointerType
*destTy
=
862 E
->getType()->castAs
<MemberPointerType
>();
864 // For member data pointers, this is just a matter of adding the
865 // offset if the source is non-null.
866 if (destTy
->isMemberDataPointer()) {
869 dst
= Builder
.CreateNSWSub(src
, adj
, "adj");
871 dst
= Builder
.CreateNSWAdd(src
, adj
, "adj");
874 llvm::Value
*null
= llvm::Constant::getAllOnesValue(src
->getType());
875 llvm::Value
*isNull
= Builder
.CreateICmpEQ(src
, null
, "memptr.isnull");
876 return Builder
.CreateSelect(isNull
, src
, dst
);
879 // The this-adjustment is left-shifted by 1 on ARM.
880 if (UseARMMethodPtrABI
) {
881 uint64_t offset
= cast
<llvm::ConstantInt
>(adj
)->getZExtValue();
883 adj
= llvm::ConstantInt::get(adj
->getType(), offset
);
886 llvm::Value
*srcAdj
= Builder
.CreateExtractValue(src
, 1, "src.adj");
889 dstAdj
= Builder
.CreateNSWSub(srcAdj
, adj
, "adj");
891 dstAdj
= Builder
.CreateNSWAdd(srcAdj
, adj
, "adj");
893 return Builder
.CreateInsertValue(src
, dstAdj
, 1);
897 ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr
*E
,
898 llvm::Constant
*src
) {
899 assert(E
->getCastKind() == CK_DerivedToBaseMemberPointer
||
900 E
->getCastKind() == CK_BaseToDerivedMemberPointer
||
901 E
->getCastKind() == CK_ReinterpretMemberPointer
);
903 // Under Itanium, reinterprets don't require any additional processing.
904 if (E
->getCastKind() == CK_ReinterpretMemberPointer
) return src
;
906 // If the adjustment is trivial, we don't need to do anything.
907 llvm::Constant
*adj
= getMemberPointerAdjustment(E
);
908 if (!adj
) return src
;
910 bool isDerivedToBase
= (E
->getCastKind() == CK_DerivedToBaseMemberPointer
);
912 const MemberPointerType
*destTy
=
913 E
->getType()->castAs
<MemberPointerType
>();
915 // For member data pointers, this is just a matter of adding the
916 // offset if the source is non-null.
917 if (destTy
->isMemberDataPointer()) {
918 // null maps to null.
919 if (src
->isAllOnesValue()) return src
;
922 return llvm::ConstantExpr::getNSWSub(src
, adj
);
924 return llvm::ConstantExpr::getNSWAdd(src
, adj
);
927 // The this-adjustment is left-shifted by 1 on ARM.
928 if (UseARMMethodPtrABI
) {
929 uint64_t offset
= cast
<llvm::ConstantInt
>(adj
)->getZExtValue();
931 adj
= llvm::ConstantInt::get(adj
->getType(), offset
);
934 llvm::Constant
*srcAdj
= src
->getAggregateElement(1);
935 llvm::Constant
*dstAdj
;
937 dstAdj
= llvm::ConstantExpr::getNSWSub(srcAdj
, adj
);
939 dstAdj
= llvm::ConstantExpr::getNSWAdd(srcAdj
, adj
);
941 llvm::Constant
*res
= ConstantFoldInsertValueInstruction(src
, dstAdj
, 1);
942 assert(res
!= nullptr && "Folding must succeed");
947 ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType
*MPT
) {
948 // Itanium C++ ABI 2.3:
949 // A NULL pointer is represented as -1.
950 if (MPT
->isMemberDataPointer())
951 return llvm::ConstantInt::get(CGM
.PtrDiffTy
, -1ULL, /*isSigned=*/true);
953 llvm::Constant
*Zero
= llvm::ConstantInt::get(CGM
.PtrDiffTy
, 0);
954 llvm::Constant
*Values
[2] = { Zero
, Zero
};
955 return llvm::ConstantStruct::getAnon(Values
);
959 ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType
*MPT
,
961 // Itanium C++ ABI 2.3:
962 // A pointer to data member is an offset from the base address of
963 // the class object containing it, represented as a ptrdiff_t
964 return llvm::ConstantInt::get(CGM
.PtrDiffTy
, offset
.getQuantity());
968 ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl
*MD
) {
969 return BuildMemberPointer(MD
, CharUnits::Zero());
972 llvm::Constant
*ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl
*MD
,
973 CharUnits ThisAdjustment
) {
974 assert(MD
->isInstance() && "Member function must not be static!");
976 CodeGenTypes
&Types
= CGM
.getTypes();
978 // Get the function pointer (or index if this is a virtual function).
979 llvm::Constant
*MemPtr
[2];
980 if (MD
->isVirtual()) {
981 uint64_t Index
= CGM
.getItaniumVTableContext().getMethodVTableIndex(MD
);
982 uint64_t VTableOffset
;
983 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
984 // Multiply by 4-byte relative offsets.
985 VTableOffset
= Index
* 4;
987 const ASTContext
&Context
= getContext();
988 CharUnits PointerWidth
= Context
.toCharUnitsFromBits(
989 Context
.getTargetInfo().getPointerWidth(LangAS::Default
));
990 VTableOffset
= Index
* PointerWidth
.getQuantity();
993 if (UseARMMethodPtrABI
) {
994 // ARM C++ ABI 3.2.1:
995 // This ABI specifies that adj contains twice the this
996 // adjustment, plus 1 if the member function is virtual. The
997 // least significant bit of adj then makes exactly the same
998 // discrimination as the least significant bit of ptr does for
1000 MemPtr
[0] = llvm::ConstantInt::get(CGM
.PtrDiffTy
, VTableOffset
);
1001 MemPtr
[1] = llvm::ConstantInt::get(CGM
.PtrDiffTy
,
1002 2 * ThisAdjustment
.getQuantity() + 1);
1004 // Itanium C++ ABI 2.3:
1005 // For a virtual function, [the pointer field] is 1 plus the
1006 // virtual table offset (in bytes) of the function,
1007 // represented as a ptrdiff_t.
1008 MemPtr
[0] = llvm::ConstantInt::get(CGM
.PtrDiffTy
, VTableOffset
+ 1);
1009 MemPtr
[1] = llvm::ConstantInt::get(CGM
.PtrDiffTy
,
1010 ThisAdjustment
.getQuantity());
1013 const FunctionProtoType
*FPT
= MD
->getType()->castAs
<FunctionProtoType
>();
1015 // Check whether the function has a computable LLVM signature.
1016 if (Types
.isFuncTypeConvertible(FPT
)) {
1017 // The function has a computable LLVM signature; use the correct type.
1018 Ty
= Types
.GetFunctionType(Types
.arrangeCXXMethodDeclaration(MD
));
1020 // Use an arbitrary non-function type to tell GetAddrOfFunction that the
1021 // function type is incomplete.
1024 llvm::Constant
*addr
= CGM
.GetAddrOfFunction(MD
, Ty
);
1026 MemPtr
[0] = llvm::ConstantExpr::getPtrToInt(addr
, CGM
.PtrDiffTy
);
1027 MemPtr
[1] = llvm::ConstantInt::get(CGM
.PtrDiffTy
,
1028 (UseARMMethodPtrABI
? 2 : 1) *
1029 ThisAdjustment
.getQuantity());
1032 return llvm::ConstantStruct::getAnon(MemPtr
);
1035 llvm::Constant
*ItaniumCXXABI::EmitMemberPointer(const APValue
&MP
,
1037 const MemberPointerType
*MPT
= MPType
->castAs
<MemberPointerType
>();
1038 const ValueDecl
*MPD
= MP
.getMemberPointerDecl();
1040 return EmitNullMemberPointer(MPT
);
1042 CharUnits ThisAdjustment
= getContext().getMemberPointerPathAdjustment(MP
);
1044 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(MPD
))
1045 return BuildMemberPointer(MD
, ThisAdjustment
);
1047 CharUnits FieldOffset
=
1048 getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD
));
1049 return EmitMemberDataPointer(MPT
, ThisAdjustment
+ FieldOffset
);
1052 /// The comparison algorithm is pretty easy: the member pointers are
1053 /// the same if they're either bitwise identical *or* both null.
1055 /// ARM is different here only because null-ness is more complicated.
1057 ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction
&CGF
,
1060 const MemberPointerType
*MPT
,
1062 CGBuilderTy
&Builder
= CGF
.Builder
;
1064 llvm::ICmpInst::Predicate Eq
;
1065 llvm::Instruction::BinaryOps And
, Or
;
1067 Eq
= llvm::ICmpInst::ICMP_NE
;
1068 And
= llvm::Instruction::Or
;
1069 Or
= llvm::Instruction::And
;
1071 Eq
= llvm::ICmpInst::ICMP_EQ
;
1072 And
= llvm::Instruction::And
;
1073 Or
= llvm::Instruction::Or
;
1076 // Member data pointers are easy because there's a unique null
1077 // value, so it just comes down to bitwise equality.
1078 if (MPT
->isMemberDataPointer())
1079 return Builder
.CreateICmp(Eq
, L
, R
);
1081 // For member function pointers, the tautologies are more complex.
1082 // The Itanium tautology is:
1083 // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
1084 // The ARM tautology is:
1085 // (L == R) <==> (L.ptr == R.ptr &&
1086 // (L.adj == R.adj ||
1087 // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
1088 // The inequality tautologies have exactly the same structure, except
1089 // applying De Morgan's laws.
1091 llvm::Value
*LPtr
= Builder
.CreateExtractValue(L
, 0, "lhs.memptr.ptr");
1092 llvm::Value
*RPtr
= Builder
.CreateExtractValue(R
, 0, "rhs.memptr.ptr");
1094 // This condition tests whether L.ptr == R.ptr. This must always be
1095 // true for equality to hold.
1096 llvm::Value
*PtrEq
= Builder
.CreateICmp(Eq
, LPtr
, RPtr
, "cmp.ptr");
1098 // This condition, together with the assumption that L.ptr == R.ptr,
1099 // tests whether the pointers are both null. ARM imposes an extra
1101 llvm::Value
*Zero
= llvm::Constant::getNullValue(LPtr
->getType());
1102 llvm::Value
*EqZero
= Builder
.CreateICmp(Eq
, LPtr
, Zero
, "cmp.ptr.null");
1104 // This condition tests whether L.adj == R.adj. If this isn't
1105 // true, the pointers are unequal unless they're both null.
1106 llvm::Value
*LAdj
= Builder
.CreateExtractValue(L
, 1, "lhs.memptr.adj");
1107 llvm::Value
*RAdj
= Builder
.CreateExtractValue(R
, 1, "rhs.memptr.adj");
1108 llvm::Value
*AdjEq
= Builder
.CreateICmp(Eq
, LAdj
, RAdj
, "cmp.adj");
1110 // Null member function pointers on ARM clear the low bit of Adj,
1111 // so the zero condition has to check that neither low bit is set.
1112 if (UseARMMethodPtrABI
) {
1113 llvm::Value
*One
= llvm::ConstantInt::get(LPtr
->getType(), 1);
1115 // Compute (l.adj | r.adj) & 1 and test it against zero.
1116 llvm::Value
*OrAdj
= Builder
.CreateOr(LAdj
, RAdj
, "or.adj");
1117 llvm::Value
*OrAdjAnd1
= Builder
.CreateAnd(OrAdj
, One
);
1118 llvm::Value
*OrAdjAnd1EqZero
= Builder
.CreateICmp(Eq
, OrAdjAnd1
, Zero
,
1120 EqZero
= Builder
.CreateBinOp(And
, EqZero
, OrAdjAnd1EqZero
);
1123 // Tie together all our conditions.
1124 llvm::Value
*Result
= Builder
.CreateBinOp(Or
, EqZero
, AdjEq
);
1125 Result
= Builder
.CreateBinOp(And
, PtrEq
, Result
,
1126 Inequality
? "memptr.ne" : "memptr.eq");
1131 ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction
&CGF
,
1132 llvm::Value
*MemPtr
,
1133 const MemberPointerType
*MPT
) {
1134 CGBuilderTy
&Builder
= CGF
.Builder
;
1136 /// For member data pointers, this is just a check against -1.
1137 if (MPT
->isMemberDataPointer()) {
1138 assert(MemPtr
->getType() == CGM
.PtrDiffTy
);
1139 llvm::Value
*NegativeOne
=
1140 llvm::Constant::getAllOnesValue(MemPtr
->getType());
1141 return Builder
.CreateICmpNE(MemPtr
, NegativeOne
, "memptr.tobool");
1144 // In Itanium, a member function pointer is not null if 'ptr' is not null.
1145 llvm::Value
*Ptr
= Builder
.CreateExtractValue(MemPtr
, 0, "memptr.ptr");
1147 llvm::Constant
*Zero
= llvm::ConstantInt::get(Ptr
->getType(), 0);
1148 llvm::Value
*Result
= Builder
.CreateICmpNE(Ptr
, Zero
, "memptr.tobool");
1150 // On ARM, a member function pointer is also non-null if the low bit of 'adj'
1151 // (the virtual bit) is set.
1152 if (UseARMMethodPtrABI
) {
1153 llvm::Constant
*One
= llvm::ConstantInt::get(Ptr
->getType(), 1);
1154 llvm::Value
*Adj
= Builder
.CreateExtractValue(MemPtr
, 1, "memptr.adj");
1155 llvm::Value
*VirtualBit
= Builder
.CreateAnd(Adj
, One
, "memptr.virtualbit");
1156 llvm::Value
*IsVirtual
= Builder
.CreateICmpNE(VirtualBit
, Zero
,
1157 "memptr.isvirtual");
1158 Result
= Builder
.CreateOr(Result
, IsVirtual
);
1164 bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo
&FI
) const {
1165 const CXXRecordDecl
*RD
= FI
.getReturnType()->getAsCXXRecordDecl();
1169 // If C++ prohibits us from making a copy, return by address.
1170 if (!RD
->canPassInRegisters()) {
1171 auto Align
= CGM
.getContext().getTypeAlignInChars(FI
.getReturnType());
1172 FI
.getReturnInfo() = ABIArgInfo::getIndirect(Align
, /*ByVal=*/false);
1178 /// The Itanium ABI requires non-zero initialization only for data
1179 /// member pointers, for which '0' is a valid offset.
1180 bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType
*MPT
) {
1181 return MPT
->isMemberFunctionPointer();
1184 /// The Itanium ABI always places an offset to the complete object
1185 /// at entry -2 in the vtable.
1186 void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction
&CGF
,
1187 const CXXDeleteExpr
*DE
,
1189 QualType ElementType
,
1190 const CXXDestructorDecl
*Dtor
) {
1191 bool UseGlobalDelete
= DE
->isGlobalDelete();
1192 if (UseGlobalDelete
) {
1193 // Derive the complete-object pointer, which is what we need
1194 // to pass to the deallocation function.
1196 // Grab the vtable pointer as an intptr_t*.
1198 cast
<CXXRecordDecl
>(ElementType
->castAs
<RecordType
>()->getDecl());
1199 llvm::Value
*VTable
= CGF
.GetVTablePtr(
1200 Ptr
, llvm::PointerType::getUnqual(CGF
.getLLVMContext()), ClassDecl
);
1202 // Track back to entry -2 and pull out the offset there.
1203 llvm::Value
*OffsetPtr
= CGF
.Builder
.CreateConstInBoundsGEP1_64(
1204 CGF
.IntPtrTy
, VTable
, -2, "complete-offset.ptr");
1205 llvm::Value
*Offset
= CGF
.Builder
.CreateAlignedLoad(CGF
.IntPtrTy
, OffsetPtr
, CGF
.getPointerAlign());
1207 // Apply the offset.
1208 llvm::Value
*CompletePtr
=
1209 CGF
.Builder
.CreateBitCast(Ptr
.getPointer(), CGF
.Int8PtrTy
);
1211 CGF
.Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, CompletePtr
, Offset
);
1213 // If we're supposed to call the global delete, make sure we do so
1214 // even if the destructor throws.
1215 CGF
.pushCallObjectDeleteCleanup(DE
->getOperatorDelete(), CompletePtr
,
1219 // FIXME: Provide a source location here even though there's no
1220 // CXXMemberCallExpr for dtor call.
1221 CXXDtorType DtorType
= UseGlobalDelete
? Dtor_Complete
: Dtor_Deleting
;
1222 EmitVirtualDestructorCall(CGF
, Dtor
, DtorType
, Ptr
, DE
);
1224 if (UseGlobalDelete
)
1225 CGF
.PopCleanupBlock();
1228 void ItaniumCXXABI::emitRethrow(CodeGenFunction
&CGF
, bool isNoReturn
) {
1229 // void __cxa_rethrow();
1231 llvm::FunctionType
*FTy
=
1232 llvm::FunctionType::get(CGM
.VoidTy
, /*isVarArg=*/false);
1234 llvm::FunctionCallee Fn
= CGM
.CreateRuntimeFunction(FTy
, "__cxa_rethrow");
1237 CGF
.EmitNoreturnRuntimeCallOrInvoke(Fn
, std::nullopt
);
1239 CGF
.EmitRuntimeCallOrInvoke(Fn
);
1242 static llvm::FunctionCallee
getAllocateExceptionFn(CodeGenModule
&CGM
) {
1243 // void *__cxa_allocate_exception(size_t thrown_size);
1245 llvm::FunctionType
*FTy
=
1246 llvm::FunctionType::get(CGM
.Int8PtrTy
, CGM
.SizeTy
, /*isVarArg=*/false);
1248 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_allocate_exception");
1251 static llvm::FunctionCallee
getThrowFn(CodeGenModule
&CGM
) {
1252 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
1253 // void (*dest) (void *));
1255 llvm::Type
*Args
[3] = { CGM
.Int8PtrTy
, CGM
.Int8PtrTy
, CGM
.Int8PtrTy
};
1256 llvm::FunctionType
*FTy
=
1257 llvm::FunctionType::get(CGM
.VoidTy
, Args
, /*isVarArg=*/false);
1259 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_throw");
1262 void ItaniumCXXABI::emitThrow(CodeGenFunction
&CGF
, const CXXThrowExpr
*E
) {
1263 QualType ThrowType
= E
->getSubExpr()->getType();
1264 // Now allocate the exception object.
1265 llvm::Type
*SizeTy
= CGF
.ConvertType(getContext().getSizeType());
1266 uint64_t TypeSize
= getContext().getTypeSizeInChars(ThrowType
).getQuantity();
1268 llvm::FunctionCallee AllocExceptionFn
= getAllocateExceptionFn(CGM
);
1269 llvm::CallInst
*ExceptionPtr
= CGF
.EmitNounwindRuntimeCall(
1270 AllocExceptionFn
, llvm::ConstantInt::get(SizeTy
, TypeSize
), "exception");
1272 CharUnits ExnAlign
= CGF
.getContext().getExnObjectAlignment();
1273 CGF
.EmitAnyExprToExn(
1274 E
->getSubExpr(), Address(ExceptionPtr
, CGM
.Int8Ty
, ExnAlign
));
1276 // Now throw the exception.
1277 llvm::Constant
*TypeInfo
= CGM
.GetAddrOfRTTIDescriptor(ThrowType
,
1280 // The address of the destructor. If the exception type has a
1281 // trivial destructor (or isn't a record), we just pass null.
1282 llvm::Constant
*Dtor
= nullptr;
1283 if (const RecordType
*RecordTy
= ThrowType
->getAs
<RecordType
>()) {
1284 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(RecordTy
->getDecl());
1285 if (!Record
->hasTrivialDestructor()) {
1286 CXXDestructorDecl
*DtorD
= Record
->getDestructor();
1287 Dtor
= CGM
.getAddrOfCXXStructor(GlobalDecl(DtorD
, Dtor_Complete
));
1288 Dtor
= llvm::ConstantExpr::getBitCast(Dtor
, CGM
.Int8PtrTy
);
1291 if (!Dtor
) Dtor
= llvm::Constant::getNullValue(CGM
.Int8PtrTy
);
1293 llvm::Value
*args
[] = { ExceptionPtr
, TypeInfo
, Dtor
};
1294 CGF
.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM
), args
);
1297 static llvm::FunctionCallee
getItaniumDynamicCastFn(CodeGenFunction
&CGF
) {
1298 // void *__dynamic_cast(const void *sub,
1299 // const abi::__class_type_info *src,
1300 // const abi::__class_type_info *dst,
1301 // std::ptrdiff_t src2dst_offset);
1303 llvm::Type
*Int8PtrTy
= CGF
.Int8PtrTy
;
1304 llvm::Type
*PtrDiffTy
=
1305 CGF
.ConvertType(CGF
.getContext().getPointerDiffType());
1307 llvm::Type
*Args
[4] = { Int8PtrTy
, Int8PtrTy
, Int8PtrTy
, PtrDiffTy
};
1309 llvm::FunctionType
*FTy
= llvm::FunctionType::get(Int8PtrTy
, Args
, false);
1311 // Mark the function as nounwind readonly.
1312 llvm::AttrBuilder
FuncAttrs(CGF
.getLLVMContext());
1313 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
1314 FuncAttrs
.addMemoryAttr(llvm::MemoryEffects::readOnly());
1315 llvm::AttributeList Attrs
= llvm::AttributeList::get(
1316 CGF
.getLLVMContext(), llvm::AttributeList::FunctionIndex
, FuncAttrs
);
1318 return CGF
.CGM
.CreateRuntimeFunction(FTy
, "__dynamic_cast", Attrs
);
1321 static llvm::FunctionCallee
getBadCastFn(CodeGenFunction
&CGF
) {
1322 // void __cxa_bad_cast();
1323 llvm::FunctionType
*FTy
= llvm::FunctionType::get(CGF
.VoidTy
, false);
1324 return CGF
.CGM
.CreateRuntimeFunction(FTy
, "__cxa_bad_cast");
1327 /// Compute the src2dst_offset hint as described in the
1328 /// Itanium C++ ABI [2.9.7]
1329 static CharUnits
computeOffsetHint(ASTContext
&Context
,
1330 const CXXRecordDecl
*Src
,
1331 const CXXRecordDecl
*Dst
) {
1332 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1333 /*DetectVirtual=*/false);
1335 // If Dst is not derived from Src we can skip the whole computation below and
1336 // return that Src is not a public base of Dst. Record all inheritance paths.
1337 if (!Dst
->isDerivedFrom(Src
, Paths
))
1338 return CharUnits::fromQuantity(-2ULL);
1340 unsigned NumPublicPaths
= 0;
1343 // Now walk all possible inheritance paths.
1344 for (const CXXBasePath
&Path
: Paths
) {
1345 if (Path
.Access
!= AS_public
) // Ignore non-public inheritance.
1350 for (const CXXBasePathElement
&PathElement
: Path
) {
1351 // If the path contains a virtual base class we can't give any hint.
1353 if (PathElement
.Base
->isVirtual())
1354 return CharUnits::fromQuantity(-1ULL);
1356 if (NumPublicPaths
> 1) // Won't use offsets, skip computation.
1359 // Accumulate the base class offsets.
1360 const ASTRecordLayout
&L
= Context
.getASTRecordLayout(PathElement
.Class
);
1361 Offset
+= L
.getBaseClassOffset(
1362 PathElement
.Base
->getType()->getAsCXXRecordDecl());
1366 // -2: Src is not a public base of Dst.
1367 if (NumPublicPaths
== 0)
1368 return CharUnits::fromQuantity(-2ULL);
1370 // -3: Src is a multiple public base type but never a virtual base type.
1371 if (NumPublicPaths
> 1)
1372 return CharUnits::fromQuantity(-3ULL);
1374 // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
1375 // Return the offset of Src from the origin of Dst.
1379 static llvm::FunctionCallee
getBadTypeidFn(CodeGenFunction
&CGF
) {
1380 // void __cxa_bad_typeid();
1381 llvm::FunctionType
*FTy
= llvm::FunctionType::get(CGF
.VoidTy
, false);
1383 return CGF
.CGM
.CreateRuntimeFunction(FTy
, "__cxa_bad_typeid");
1386 bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref
,
1387 QualType SrcRecordTy
) {
1391 void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction
&CGF
) {
1392 llvm::FunctionCallee Fn
= getBadTypeidFn(CGF
);
1393 llvm::CallBase
*Call
= CGF
.EmitRuntimeCallOrInvoke(Fn
);
1394 Call
->setDoesNotReturn();
1395 CGF
.Builder
.CreateUnreachable();
1398 llvm::Value
*ItaniumCXXABI::EmitTypeid(CodeGenFunction
&CGF
,
1399 QualType SrcRecordTy
,
1401 llvm::Type
*StdTypeInfoPtrTy
) {
1403 cast
<CXXRecordDecl
>(SrcRecordTy
->castAs
<RecordType
>()->getDecl());
1404 llvm::Value
*Value
= CGF
.GetVTablePtr(
1405 ThisPtr
, llvm::PointerType::getUnqual(CGF
.getLLVMContext()), ClassDecl
);
1407 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
1408 // Load the type info.
1409 Value
= CGF
.Builder
.CreateBitCast(Value
, CGM
.Int8PtrTy
);
1410 Value
= CGF
.Builder
.CreateCall(
1411 CGM
.getIntrinsic(llvm::Intrinsic::load_relative
, {CGM
.Int32Ty
}),
1412 {Value
, llvm::ConstantInt::get(CGM
.Int32Ty
, -4)});
1414 // Load the type info.
1416 CGF
.Builder
.CreateConstInBoundsGEP1_64(StdTypeInfoPtrTy
, Value
, -1ULL);
1418 return CGF
.Builder
.CreateAlignedLoad(StdTypeInfoPtrTy
, Value
,
1419 CGF
.getPointerAlign());
1422 bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr
,
1423 QualType SrcRecordTy
) {
1427 llvm::Value
*ItaniumCXXABI::emitDynamicCastCall(
1428 CodeGenFunction
&CGF
, Address ThisAddr
, QualType SrcRecordTy
,
1429 QualType DestTy
, QualType DestRecordTy
, llvm::BasicBlock
*CastEnd
) {
1430 llvm::Type
*PtrDiffLTy
=
1431 CGF
.ConvertType(CGF
.getContext().getPointerDiffType());
1433 llvm::Value
*SrcRTTI
=
1434 CGF
.CGM
.GetAddrOfRTTIDescriptor(SrcRecordTy
.getUnqualifiedType());
1435 llvm::Value
*DestRTTI
=
1436 CGF
.CGM
.GetAddrOfRTTIDescriptor(DestRecordTy
.getUnqualifiedType());
1438 // Compute the offset hint.
1439 const CXXRecordDecl
*SrcDecl
= SrcRecordTy
->getAsCXXRecordDecl();
1440 const CXXRecordDecl
*DestDecl
= DestRecordTy
->getAsCXXRecordDecl();
1441 llvm::Value
*OffsetHint
= llvm::ConstantInt::get(
1443 computeOffsetHint(CGF
.getContext(), SrcDecl
, DestDecl
).getQuantity());
1445 // Emit the call to __dynamic_cast.
1446 llvm::Value
*Args
[] = {ThisAddr
.getPointer(), SrcRTTI
, DestRTTI
, OffsetHint
};
1447 llvm::Value
*Value
=
1448 CGF
.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF
), Args
);
1450 /// C++ [expr.dynamic.cast]p9:
1451 /// A failed cast to reference type throws std::bad_cast
1452 if (DestTy
->isReferenceType()) {
1453 llvm::BasicBlock
*BadCastBlock
=
1454 CGF
.createBasicBlock("dynamic_cast.bad_cast");
1456 llvm::Value
*IsNull
= CGF
.Builder
.CreateIsNull(Value
);
1457 CGF
.Builder
.CreateCondBr(IsNull
, BadCastBlock
, CastEnd
);
1459 CGF
.EmitBlock(BadCastBlock
);
1460 EmitBadCastCall(CGF
);
1466 llvm::Value
*ItaniumCXXABI::emitDynamicCastToVoid(CodeGenFunction
&CGF
,
1468 QualType SrcRecordTy
) {
1470 cast
<CXXRecordDecl
>(SrcRecordTy
->castAs
<RecordType
>()->getDecl());
1471 llvm::Value
*OffsetToTop
;
1472 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
1473 // Get the vtable pointer.
1474 llvm::Value
*VTable
= CGF
.GetVTablePtr(
1475 ThisAddr
, llvm::PointerType::getUnqual(CGF
.getLLVMContext()),
1478 // Get the offset-to-top from the vtable.
1480 CGF
.Builder
.CreateConstInBoundsGEP1_32(CGM
.Int32Ty
, VTable
, -2U);
1481 OffsetToTop
= CGF
.Builder
.CreateAlignedLoad(
1482 CGM
.Int32Ty
, OffsetToTop
, CharUnits::fromQuantity(4), "offset.to.top");
1484 llvm::Type
*PtrDiffLTy
=
1485 CGF
.ConvertType(CGF
.getContext().getPointerDiffType());
1487 // Get the vtable pointer.
1488 llvm::Value
*VTable
= CGF
.GetVTablePtr(
1489 ThisAddr
, llvm::PointerType::getUnqual(CGF
.getLLVMContext()),
1492 // Get the offset-to-top from the vtable.
1494 CGF
.Builder
.CreateConstInBoundsGEP1_64(PtrDiffLTy
, VTable
, -2ULL);
1495 OffsetToTop
= CGF
.Builder
.CreateAlignedLoad(
1496 PtrDiffLTy
, OffsetToTop
, CGF
.getPointerAlign(), "offset.to.top");
1498 // Finally, add the offset to the pointer.
1499 return CGF
.Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, ThisAddr
.getPointer(),
1503 bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction
&CGF
) {
1504 llvm::FunctionCallee Fn
= getBadCastFn(CGF
);
1505 llvm::CallBase
*Call
= CGF
.EmitRuntimeCallOrInvoke(Fn
);
1506 Call
->setDoesNotReturn();
1507 CGF
.Builder
.CreateUnreachable();
1512 ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction
&CGF
,
1514 const CXXRecordDecl
*ClassDecl
,
1515 const CXXRecordDecl
*BaseClassDecl
) {
1516 llvm::Value
*VTablePtr
= CGF
.GetVTablePtr(This
, CGM
.Int8PtrTy
, ClassDecl
);
1517 CharUnits VBaseOffsetOffset
=
1518 CGM
.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl
,
1520 llvm::Value
*VBaseOffsetPtr
=
1521 CGF
.Builder
.CreateConstGEP1_64(
1522 CGF
.Int8Ty
, VTablePtr
, VBaseOffsetOffset
.getQuantity(),
1523 "vbase.offset.ptr");
1525 llvm::Value
*VBaseOffset
;
1526 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
1527 VBaseOffset
= CGF
.Builder
.CreateAlignedLoad(
1528 CGF
.Int32Ty
, VBaseOffsetPtr
, CharUnits::fromQuantity(4),
1531 VBaseOffset
= CGF
.Builder
.CreateAlignedLoad(
1532 CGM
.PtrDiffTy
, VBaseOffsetPtr
, CGF
.getPointerAlign(), "vbase.offset");
1537 void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl
*D
) {
1538 // Just make sure we're in sync with TargetCXXABI.
1539 assert(CGM
.getTarget().getCXXABI().hasConstructorVariants());
1541 // The constructor used for constructing this as a base class;
1542 // ignores virtual bases.
1543 CGM
.EmitGlobal(GlobalDecl(D
, Ctor_Base
));
1545 // The constructor used for constructing this as a complete class;
1546 // constructs the virtual bases, then calls the base constructor.
1547 if (!D
->getParent()->isAbstract()) {
1548 // We don't need to emit the complete ctor if the class is abstract.
1549 CGM
.EmitGlobal(GlobalDecl(D
, Ctor_Complete
));
1553 CGCXXABI::AddedStructorArgCounts
1554 ItaniumCXXABI::buildStructorSignature(GlobalDecl GD
,
1555 SmallVectorImpl
<CanQualType
> &ArgTys
) {
1556 ASTContext
&Context
= getContext();
1558 // All parameters are already in place except VTT, which goes after 'this'.
1559 // These are Clang types, so we don't need to worry about sret yet.
1561 // Check if we need to add a VTT parameter (which has type global void **).
1562 if ((isa
<CXXConstructorDecl
>(GD
.getDecl()) ? GD
.getCtorType() == Ctor_Base
1563 : GD
.getDtorType() == Dtor_Base
) &&
1564 cast
<CXXMethodDecl
>(GD
.getDecl())->getParent()->getNumVBases() != 0) {
1565 LangAS AS
= CGM
.GetGlobalVarAddressSpace(nullptr);
1566 QualType Q
= Context
.getAddrSpaceQualType(Context
.VoidPtrTy
, AS
);
1567 ArgTys
.insert(ArgTys
.begin() + 1,
1568 Context
.getPointerType(CanQualType::CreateUnsafe(Q
)));
1569 return AddedStructorArgCounts::prefix(1);
1571 return AddedStructorArgCounts
{};
1574 void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl
*D
) {
1575 // The destructor used for destructing this as a base class; ignores
1577 CGM
.EmitGlobal(GlobalDecl(D
, Dtor_Base
));
1579 // The destructor used for destructing this as a most-derived class;
1580 // call the base destructor and then destructs any virtual bases.
1581 CGM
.EmitGlobal(GlobalDecl(D
, Dtor_Complete
));
1583 // The destructor in a virtual table is always a 'deleting'
1584 // destructor, which calls the complete destructor and then uses the
1585 // appropriate operator delete.
1587 CGM
.EmitGlobal(GlobalDecl(D
, Dtor_Deleting
));
1590 void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction
&CGF
,
1592 FunctionArgList
&Params
) {
1593 const CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(CGF
.CurGD
.getDecl());
1594 assert(isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
));
1596 // Check if we need a VTT parameter as well.
1597 if (NeedsVTTParameter(CGF
.CurGD
)) {
1598 ASTContext
&Context
= getContext();
1600 // FIXME: avoid the fake decl
1601 LangAS AS
= CGM
.GetGlobalVarAddressSpace(nullptr);
1602 QualType Q
= Context
.getAddrSpaceQualType(Context
.VoidPtrTy
, AS
);
1603 QualType T
= Context
.getPointerType(Q
);
1604 auto *VTTDecl
= ImplicitParamDecl::Create(
1605 Context
, /*DC=*/nullptr, MD
->getLocation(), &Context
.Idents
.get("vtt"),
1606 T
, ImplicitParamDecl::CXXVTT
);
1607 Params
.insert(Params
.begin() + 1, VTTDecl
);
1608 getStructorImplicitParamDecl(CGF
) = VTTDecl
;
1612 void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction
&CGF
) {
1613 // Naked functions have no prolog.
1614 if (CGF
.CurFuncDecl
&& CGF
.CurFuncDecl
->hasAttr
<NakedAttr
>())
1617 /// Initialize the 'this' slot. In the Itanium C++ ABI, no prologue
1618 /// adjustments are required, because they are all handled by thunks.
1619 setCXXABIThisValue(CGF
, loadIncomingCXXThis(CGF
));
1621 /// Initialize the 'vtt' slot if needed.
1622 if (getStructorImplicitParamDecl(CGF
)) {
1623 getStructorImplicitParamValue(CGF
) = CGF
.Builder
.CreateLoad(
1624 CGF
.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF
)), "vtt");
1627 /// If this is a function that the ABI specifies returns 'this', initialize
1628 /// the return slot to 'this' at the start of the function.
1630 /// Unlike the setting of return types, this is done within the ABI
1631 /// implementation instead of by clients of CGCXXABI because:
1632 /// 1) getThisValue is currently protected
1633 /// 2) in theory, an ABI could implement 'this' returns some other way;
1634 /// HasThisReturn only specifies a contract, not the implementation
1635 if (HasThisReturn(CGF
.CurGD
))
1636 CGF
.Builder
.CreateStore(getThisValue(CGF
), CGF
.ReturnValue
);
1639 CGCXXABI::AddedStructorArgs
ItaniumCXXABI::getImplicitConstructorArgs(
1640 CodeGenFunction
&CGF
, const CXXConstructorDecl
*D
, CXXCtorType Type
,
1641 bool ForVirtualBase
, bool Delegating
) {
1642 if (!NeedsVTTParameter(GlobalDecl(D
, Type
)))
1643 return AddedStructorArgs
{};
1645 // Insert the implicit 'vtt' argument as the second argument. Make sure to
1646 // correctly reflect its address space, which can differ from generic on
1649 CGF
.GetVTTParameter(GlobalDecl(D
, Type
), ForVirtualBase
, Delegating
);
1650 LangAS AS
= CGM
.GetGlobalVarAddressSpace(nullptr);
1651 QualType Q
= getContext().getAddrSpaceQualType(getContext().VoidPtrTy
, AS
);
1652 QualType VTTTy
= getContext().getPointerType(Q
);
1653 return AddedStructorArgs::prefix({{VTT
, VTTTy
}});
1656 llvm::Value
*ItaniumCXXABI::getCXXDestructorImplicitParam(
1657 CodeGenFunction
&CGF
, const CXXDestructorDecl
*DD
, CXXDtorType Type
,
1658 bool ForVirtualBase
, bool Delegating
) {
1659 GlobalDecl
GD(DD
, Type
);
1660 return CGF
.GetVTTParameter(GD
, ForVirtualBase
, Delegating
);
1663 void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction
&CGF
,
1664 const CXXDestructorDecl
*DD
,
1665 CXXDtorType Type
, bool ForVirtualBase
,
1666 bool Delegating
, Address This
,
1668 GlobalDecl
GD(DD
, Type
);
1670 getCXXDestructorImplicitParam(CGF
, DD
, Type
, ForVirtualBase
, Delegating
);
1671 QualType VTTTy
= getContext().getPointerType(getContext().VoidPtrTy
);
1674 if (getContext().getLangOpts().AppleKext
&&
1675 Type
!= Dtor_Base
&& DD
->isVirtual())
1676 Callee
= CGF
.BuildAppleKextVirtualDestructorCall(DD
, Type
, DD
->getParent());
1678 Callee
= CGCallee::forDirect(CGM
.getAddrOfCXXStructor(GD
), GD
);
1680 CGF
.EmitCXXDestructorCall(GD
, Callee
, This
.getPointer(), ThisTy
, VTT
, VTTTy
,
1684 void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables
&CGVT
,
1685 const CXXRecordDecl
*RD
) {
1686 llvm::GlobalVariable
*VTable
= getAddrOfVTable(RD
, CharUnits());
1687 if (VTable
->hasInitializer())
1690 ItaniumVTableContext
&VTContext
= CGM
.getItaniumVTableContext();
1691 const VTableLayout
&VTLayout
= VTContext
.getVTableLayout(RD
);
1692 llvm::GlobalVariable::LinkageTypes Linkage
= CGM
.getVTableLinkage(RD
);
1693 llvm::Constant
*RTTI
=
1694 CGM
.GetAddrOfRTTIDescriptor(CGM
.getContext().getTagDeclType(RD
));
1696 // Create and set the initializer.
1697 ConstantInitBuilder
builder(CGM
);
1698 auto components
= builder
.beginStruct();
1699 CGVT
.createVTableInitializer(components
, VTLayout
, RTTI
,
1700 llvm::GlobalValue::isLocalLinkage(Linkage
));
1701 components
.finishAndSetAsInitializer(VTable
);
1703 // Set the correct linkage.
1704 VTable
->setLinkage(Linkage
);
1706 if (CGM
.supportsCOMDAT() && VTable
->isWeakForLinker())
1707 VTable
->setComdat(CGM
.getModule().getOrInsertComdat(VTable
->getName()));
1709 // Set the right visibility.
1710 CGM
.setGVProperties(VTable
, RD
);
1712 // If this is the magic class __cxxabiv1::__fundamental_type_info,
1713 // we will emit the typeinfo for the fundamental types. This is the
1714 // same behaviour as GCC.
1715 const DeclContext
*DC
= RD
->getDeclContext();
1716 if (RD
->getIdentifier() &&
1717 RD
->getIdentifier()->isStr("__fundamental_type_info") &&
1718 isa
<NamespaceDecl
>(DC
) && cast
<NamespaceDecl
>(DC
)->getIdentifier() &&
1719 cast
<NamespaceDecl
>(DC
)->getIdentifier()->isStr("__cxxabiv1") &&
1720 DC
->getParent()->isTranslationUnit())
1721 EmitFundamentalRTTIDescriptors(RD
);
1723 // Always emit type metadata on non-available_externally definitions, and on
1724 // available_externally definitions if we are performing whole program
1725 // devirtualization. For WPD we need the type metadata on all vtable
1726 // definitions to ensure we associate derived classes with base classes
1727 // defined in headers but with a strong definition only in a shared library.
1728 if (!VTable
->isDeclarationForLinker() ||
1729 CGM
.getCodeGenOpts().WholeProgramVTables
) {
1730 CGM
.EmitVTableTypeMetadata(RD
, VTable
, VTLayout
);
1731 // For available_externally definitions, add the vtable to
1732 // @llvm.compiler.used so that it isn't deleted before whole program
1734 if (VTable
->isDeclarationForLinker()) {
1735 assert(CGM
.getCodeGenOpts().WholeProgramVTables
);
1736 CGM
.addCompilerUsedGlobal(VTable
);
1740 if (VTContext
.isRelativeLayout()) {
1741 CGVT
.RemoveHwasanMetadata(VTable
);
1742 if (!VTable
->isDSOLocal())
1743 CGVT
.GenerateRelativeVTableAlias(VTable
, VTable
->getName());
1747 bool ItaniumCXXABI::isVirtualOffsetNeededForVTableField(
1748 CodeGenFunction
&CGF
, CodeGenFunction::VPtr Vptr
) {
1749 if (Vptr
.NearestVBase
== nullptr)
1751 return NeedsVTTParameter(CGF
.CurGD
);
1754 llvm::Value
*ItaniumCXXABI::getVTableAddressPointInStructor(
1755 CodeGenFunction
&CGF
, const CXXRecordDecl
*VTableClass
, BaseSubobject Base
,
1756 const CXXRecordDecl
*NearestVBase
) {
1758 if ((Base
.getBase()->getNumVBases() || NearestVBase
!= nullptr) &&
1759 NeedsVTTParameter(CGF
.CurGD
)) {
1760 return getVTableAddressPointInStructorWithVTT(CGF
, VTableClass
, Base
,
1763 return getVTableAddressPoint(Base
, VTableClass
);
1767 ItaniumCXXABI::getVTableAddressPoint(BaseSubobject Base
,
1768 const CXXRecordDecl
*VTableClass
) {
1769 llvm::GlobalValue
*VTable
= getAddrOfVTable(VTableClass
, CharUnits());
1771 // Find the appropriate vtable within the vtable group, and the address point
1772 // within that vtable.
1773 VTableLayout::AddressPointLocation AddressPoint
=
1774 CGM
.getItaniumVTableContext()
1775 .getVTableLayout(VTableClass
)
1776 .getAddressPoint(Base
);
1777 llvm::Value
*Indices
[] = {
1778 llvm::ConstantInt::get(CGM
.Int32Ty
, 0),
1779 llvm::ConstantInt::get(CGM
.Int32Ty
, AddressPoint
.VTableIndex
),
1780 llvm::ConstantInt::get(CGM
.Int32Ty
, AddressPoint
.AddressPointIndex
),
1783 return llvm::ConstantExpr::getGetElementPtr(VTable
->getValueType(), VTable
,
1784 Indices
, /*InBounds=*/true,
1785 /*InRangeIndex=*/1);
1788 // Check whether all the non-inline virtual methods for the class have the
1789 // specified attribute.
1790 template <typename T
>
1791 static bool CXXRecordAllNonInlineVirtualsHaveAttr(const CXXRecordDecl
*RD
) {
1792 bool FoundNonInlineVirtualMethodWithAttr
= false;
1793 for (const auto *D
: RD
->noload_decls()) {
1794 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
1795 if (!FD
->isVirtualAsWritten() || FD
->isInlineSpecified() ||
1796 FD
->doesThisDeclarationHaveABody())
1798 if (!D
->hasAttr
<T
>())
1800 FoundNonInlineVirtualMethodWithAttr
= true;
1804 // We didn't find any non-inline virtual methods missing the attribute. We
1805 // will return true when we found at least one non-inline virtual with the
1806 // attribute. (This lets our caller know that the attribute needs to be
1807 // propagated up to the vtable.)
1808 return FoundNonInlineVirtualMethodWithAttr
;
1811 llvm::Value
*ItaniumCXXABI::getVTableAddressPointInStructorWithVTT(
1812 CodeGenFunction
&CGF
, const CXXRecordDecl
*VTableClass
, BaseSubobject Base
,
1813 const CXXRecordDecl
*NearestVBase
) {
1814 assert((Base
.getBase()->getNumVBases() || NearestVBase
!= nullptr) &&
1815 NeedsVTTParameter(CGF
.CurGD
) && "This class doesn't have VTT");
1817 // Get the secondary vpointer index.
1818 uint64_t VirtualPointerIndex
=
1819 CGM
.getVTables().getSecondaryVirtualPointerIndex(VTableClass
, Base
);
1822 llvm::Value
*VTT
= CGF
.LoadCXXVTT();
1823 if (VirtualPointerIndex
)
1824 VTT
= CGF
.Builder
.CreateConstInBoundsGEP1_64(CGF
.GlobalsVoidPtrTy
, VTT
,
1825 VirtualPointerIndex
);
1827 // And load the address point from the VTT.
1828 return CGF
.Builder
.CreateAlignedLoad(CGF
.GlobalsVoidPtrTy
, VTT
,
1829 CGF
.getPointerAlign());
1832 llvm::Constant
*ItaniumCXXABI::getVTableAddressPointForConstExpr(
1833 BaseSubobject Base
, const CXXRecordDecl
*VTableClass
) {
1834 return getVTableAddressPoint(Base
, VTableClass
);
1837 llvm::GlobalVariable
*ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl
*RD
,
1838 CharUnits VPtrOffset
) {
1839 assert(VPtrOffset
.isZero() && "Itanium ABI only supports zero vptr offsets");
1841 llvm::GlobalVariable
*&VTable
= VTables
[RD
];
1845 // Queue up this vtable for possible deferred emission.
1846 CGM
.addDeferredVTable(RD
);
1848 SmallString
<256> Name
;
1849 llvm::raw_svector_ostream
Out(Name
);
1850 getMangleContext().mangleCXXVTable(RD
, Out
);
1852 const VTableLayout
&VTLayout
=
1853 CGM
.getItaniumVTableContext().getVTableLayout(RD
);
1854 llvm::Type
*VTableType
= CGM
.getVTables().getVTableType(VTLayout
);
1856 // Use pointer to global alignment for the vtable. Otherwise we would align
1857 // them based on the size of the initializer which doesn't make sense as only
1858 // single values are read.
1859 LangAS AS
= CGM
.GetGlobalVarAddressSpace(nullptr);
1860 unsigned PAlign
= CGM
.getItaniumVTableContext().isRelativeLayout()
1862 : CGM
.getTarget().getPointerAlign(AS
);
1864 VTable
= CGM
.CreateOrReplaceCXXRuntimeVariable(
1865 Name
, VTableType
, llvm::GlobalValue::ExternalLinkage
,
1866 getContext().toCharUnitsFromBits(PAlign
).getAsAlign());
1867 VTable
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
1869 // In MS C++ if you have a class with virtual functions in which you are using
1870 // selective member import/export, then all virtual functions must be exported
1871 // unless they are inline, otherwise a link error will result. To match this
1872 // behavior, for such classes, we dllimport the vtable if it is defined
1873 // externally and all the non-inline virtual methods are marked dllimport, and
1874 // we dllexport the vtable if it is defined in this TU and all the non-inline
1875 // virtual methods are marked dllexport.
1876 if (CGM
.getTarget().hasPS4DLLImportExport()) {
1877 if ((!RD
->hasAttr
<DLLImportAttr
>()) && (!RD
->hasAttr
<DLLExportAttr
>())) {
1878 if (CGM
.getVTables().isVTableExternal(RD
)) {
1879 if (CXXRecordAllNonInlineVirtualsHaveAttr
<DLLImportAttr
>(RD
))
1880 VTable
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
1882 if (CXXRecordAllNonInlineVirtualsHaveAttr
<DLLExportAttr
>(RD
))
1883 VTable
->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass
);
1887 CGM
.setGVProperties(VTable
, RD
);
1892 CGCallee
ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction
&CGF
,
1896 SourceLocation Loc
) {
1897 llvm::Type
*PtrTy
= CGM
.GlobalsInt8PtrTy
;
1898 auto *MethodDecl
= cast
<CXXMethodDecl
>(GD
.getDecl());
1899 llvm::Value
*VTable
= CGF
.GetVTablePtr(This
, PtrTy
, MethodDecl
->getParent());
1901 uint64_t VTableIndex
= CGM
.getItaniumVTableContext().getMethodVTableIndex(GD
);
1903 if (CGF
.ShouldEmitVTableTypeCheckedLoad(MethodDecl
->getParent())) {
1904 VFunc
= CGF
.EmitVTableTypeCheckedLoad(
1905 MethodDecl
->getParent(), VTable
, PtrTy
,
1907 CGM
.getContext().getTargetInfo().getPointerWidth(LangAS::Default
) /
1910 CGF
.EmitTypeMetadataCodeForVCall(MethodDecl
->getParent(), VTable
, Loc
);
1912 llvm::Value
*VFuncLoad
;
1913 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
1914 VFuncLoad
= CGF
.Builder
.CreateCall(
1915 CGM
.getIntrinsic(llvm::Intrinsic::load_relative
, {CGM
.Int32Ty
}),
1916 {VTable
, llvm::ConstantInt::get(CGM
.Int32Ty
, 4 * VTableIndex
)});
1918 llvm::Value
*VTableSlotPtr
= CGF
.Builder
.CreateConstInBoundsGEP1_64(
1919 PtrTy
, VTable
, VTableIndex
, "vfn");
1920 VFuncLoad
= CGF
.Builder
.CreateAlignedLoad(PtrTy
, VTableSlotPtr
,
1921 CGF
.getPointerAlign());
1924 // Add !invariant.load md to virtual function load to indicate that
1925 // function didn't change inside vtable.
1926 // It's safe to add it without -fstrict-vtable-pointers, but it would not
1927 // help in devirtualization because it will only matter if we will have 2
1928 // the same virtual function loads from the same vtable load, which won't
1929 // happen without enabled devirtualization with -fstrict-vtable-pointers.
1930 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
1931 CGM
.getCodeGenOpts().StrictVTablePointers
) {
1932 if (auto *VFuncLoadInstr
= dyn_cast
<llvm::Instruction
>(VFuncLoad
)) {
1933 VFuncLoadInstr
->setMetadata(
1934 llvm::LLVMContext::MD_invariant_load
,
1935 llvm::MDNode::get(CGM
.getLLVMContext(),
1936 llvm::ArrayRef
<llvm::Metadata
*>()));
1942 CGCallee
Callee(GD
, VFunc
);
1946 llvm::Value
*ItaniumCXXABI::EmitVirtualDestructorCall(
1947 CodeGenFunction
&CGF
, const CXXDestructorDecl
*Dtor
, CXXDtorType DtorType
,
1948 Address This
, DeleteOrMemberCallExpr E
) {
1949 auto *CE
= E
.dyn_cast
<const CXXMemberCallExpr
*>();
1950 auto *D
= E
.dyn_cast
<const CXXDeleteExpr
*>();
1951 assert((CE
!= nullptr) ^ (D
!= nullptr));
1952 assert(CE
== nullptr || CE
->arg_begin() == CE
->arg_end());
1953 assert(DtorType
== Dtor_Deleting
|| DtorType
== Dtor_Complete
);
1955 GlobalDecl
GD(Dtor
, DtorType
);
1956 const CGFunctionInfo
*FInfo
=
1957 &CGM
.getTypes().arrangeCXXStructorDeclaration(GD
);
1958 llvm::FunctionType
*Ty
= CGF
.CGM
.getTypes().GetFunctionType(*FInfo
);
1959 CGCallee Callee
= CGCallee::forVirtual(CE
, GD
, This
, Ty
);
1963 ThisTy
= CE
->getObjectType();
1965 ThisTy
= D
->getDestroyedType();
1968 CGF
.EmitCXXDestructorCall(GD
, Callee
, This
.getPointer(), ThisTy
, nullptr,
1969 QualType(), nullptr);
1973 void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl
*RD
) {
1974 CodeGenVTables
&VTables
= CGM
.getVTables();
1975 llvm::GlobalVariable
*VTT
= VTables
.GetAddrOfVTT(RD
);
1976 VTables
.EmitVTTDefinition(VTT
, CGM
.getVTableLinkage(RD
), RD
);
1979 bool ItaniumCXXABI::canSpeculativelyEmitVTableAsBaseClass(
1980 const CXXRecordDecl
*RD
) const {
1981 // We don't emit available_externally vtables if we are in -fapple-kext mode
1982 // because kext mode does not permit devirtualization.
1983 if (CGM
.getLangOpts().AppleKext
)
1986 // If the vtable is hidden then it is not safe to emit an available_externally
1988 if (isVTableHidden(RD
))
1991 if (CGM
.getCodeGenOpts().ForceEmitVTables
)
1994 // If we don't have any not emitted inline virtual function then we are safe
1995 // to emit an available_externally copy of vtable.
1996 // FIXME we can still emit a copy of the vtable if we
1997 // can emit definition of the inline functions.
1998 if (hasAnyUnusedVirtualInlineFunction(RD
))
2001 // For a class with virtual bases, we must also be able to speculatively
2002 // emit the VTT, because CodeGen doesn't have separate notions of "can emit
2003 // the vtable" and "can emit the VTT". For a base subobject, this means we
2004 // need to be able to emit non-virtual base vtables.
2005 if (RD
->getNumVBases()) {
2006 for (const auto &B
: RD
->bases()) {
2007 auto *BRD
= B
.getType()->getAsCXXRecordDecl();
2008 assert(BRD
&& "no class for base specifier");
2009 if (B
.isVirtual() || !BRD
->isDynamicClass())
2011 if (!canSpeculativelyEmitVTableAsBaseClass(BRD
))
2019 bool ItaniumCXXABI::canSpeculativelyEmitVTable(const CXXRecordDecl
*RD
) const {
2020 if (!canSpeculativelyEmitVTableAsBaseClass(RD
))
2023 // For a complete-object vtable (or more specifically, for the VTT), we need
2024 // to be able to speculatively emit the vtables of all dynamic virtual bases.
2025 for (const auto &B
: RD
->vbases()) {
2026 auto *BRD
= B
.getType()->getAsCXXRecordDecl();
2027 assert(BRD
&& "no class for base specifier");
2028 if (!BRD
->isDynamicClass())
2030 if (!canSpeculativelyEmitVTableAsBaseClass(BRD
))
2036 static llvm::Value
*performTypeAdjustment(CodeGenFunction
&CGF
,
2038 int64_t NonVirtualAdjustment
,
2039 int64_t VirtualAdjustment
,
2040 bool IsReturnAdjustment
) {
2041 if (!NonVirtualAdjustment
&& !VirtualAdjustment
)
2042 return InitialPtr
.getPointer();
2044 Address V
= InitialPtr
.withElementType(CGF
.Int8Ty
);
2046 // In a base-to-derived cast, the non-virtual adjustment is applied first.
2047 if (NonVirtualAdjustment
&& !IsReturnAdjustment
) {
2048 V
= CGF
.Builder
.CreateConstInBoundsByteGEP(V
,
2049 CharUnits::fromQuantity(NonVirtualAdjustment
));
2052 // Perform the virtual adjustment if we have one.
2053 llvm::Value
*ResultPtr
;
2054 if (VirtualAdjustment
) {
2055 Address VTablePtrPtr
= V
.withElementType(CGF
.Int8PtrTy
);
2056 llvm::Value
*VTablePtr
= CGF
.Builder
.CreateLoad(VTablePtrPtr
);
2058 llvm::Value
*Offset
;
2059 llvm::Value
*OffsetPtr
= CGF
.Builder
.CreateConstInBoundsGEP1_64(
2060 CGF
.Int8Ty
, VTablePtr
, VirtualAdjustment
);
2061 if (CGF
.CGM
.getItaniumVTableContext().isRelativeLayout()) {
2062 // Load the adjustment offset from the vtable as a 32-bit int.
2064 CGF
.Builder
.CreateAlignedLoad(CGF
.Int32Ty
, OffsetPtr
,
2065 CharUnits::fromQuantity(4));
2067 llvm::Type
*PtrDiffTy
=
2068 CGF
.ConvertType(CGF
.getContext().getPointerDiffType());
2070 // Load the adjustment offset from the vtable.
2071 Offset
= CGF
.Builder
.CreateAlignedLoad(PtrDiffTy
, OffsetPtr
,
2072 CGF
.getPointerAlign());
2074 // Adjust our pointer.
2075 ResultPtr
= CGF
.Builder
.CreateInBoundsGEP(
2076 V
.getElementType(), V
.getPointer(), Offset
);
2078 ResultPtr
= V
.getPointer();
2081 // In a derived-to-base conversion, the non-virtual adjustment is
2083 if (NonVirtualAdjustment
&& IsReturnAdjustment
) {
2084 ResultPtr
= CGF
.Builder
.CreateConstInBoundsGEP1_64(CGF
.Int8Ty
, ResultPtr
,
2085 NonVirtualAdjustment
);
2088 // Cast back to the original type.
2089 return CGF
.Builder
.CreateBitCast(ResultPtr
, InitialPtr
.getType());
2092 llvm::Value
*ItaniumCXXABI::performThisAdjustment(CodeGenFunction
&CGF
,
2094 const ThisAdjustment
&TA
) {
2095 return performTypeAdjustment(CGF
, This
, TA
.NonVirtual
,
2096 TA
.Virtual
.Itanium
.VCallOffsetOffset
,
2097 /*IsReturnAdjustment=*/false);
2101 ItaniumCXXABI::performReturnAdjustment(CodeGenFunction
&CGF
, Address Ret
,
2102 const ReturnAdjustment
&RA
) {
2103 return performTypeAdjustment(CGF
, Ret
, RA
.NonVirtual
,
2104 RA
.Virtual
.Itanium
.VBaseOffsetOffset
,
2105 /*IsReturnAdjustment=*/true);
2108 void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction
&CGF
,
2109 RValue RV
, QualType ResultType
) {
2110 if (!isa
<CXXDestructorDecl
>(CGF
.CurGD
.getDecl()))
2111 return ItaniumCXXABI::EmitReturnFromThunk(CGF
, RV
, ResultType
);
2113 // Destructor thunks in the ARM ABI have indeterminate results.
2114 llvm::Type
*T
= CGF
.ReturnValue
.getElementType();
2115 RValue Undef
= RValue::get(llvm::UndefValue::get(T
));
2116 return ItaniumCXXABI::EmitReturnFromThunk(CGF
, Undef
, ResultType
);
2119 /************************** Array allocation cookies **************************/
2121 CharUnits
ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType
) {
2122 // The array cookie is a size_t; pad that up to the element alignment.
2123 // The cookie is actually right-justified in that space.
2124 return std::max(CharUnits::fromQuantity(CGM
.SizeSizeInBytes
),
2125 CGM
.getContext().getPreferredTypeAlignInChars(elementType
));
2128 Address
ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction
&CGF
,
2130 llvm::Value
*NumElements
,
2131 const CXXNewExpr
*expr
,
2132 QualType ElementType
) {
2133 assert(requiresArrayCookie(expr
));
2135 unsigned AS
= NewPtr
.getAddressSpace();
2137 ASTContext
&Ctx
= getContext();
2138 CharUnits SizeSize
= CGF
.getSizeSize();
2140 // The size of the cookie.
2141 CharUnits CookieSize
=
2142 std::max(SizeSize
, Ctx
.getPreferredTypeAlignInChars(ElementType
));
2143 assert(CookieSize
== getArrayCookieSizeImpl(ElementType
));
2145 // Compute an offset to the cookie.
2146 Address CookiePtr
= NewPtr
;
2147 CharUnits CookieOffset
= CookieSize
- SizeSize
;
2148 if (!CookieOffset
.isZero())
2149 CookiePtr
= CGF
.Builder
.CreateConstInBoundsByteGEP(CookiePtr
, CookieOffset
);
2151 // Write the number of elements into the appropriate slot.
2152 Address NumElementsPtr
= CookiePtr
.withElementType(CGF
.SizeTy
);
2153 llvm::Instruction
*SI
= CGF
.Builder
.CreateStore(NumElements
, NumElementsPtr
);
2155 // Handle the array cookie specially in ASan.
2156 if (CGM
.getLangOpts().Sanitize
.has(SanitizerKind::Address
) && AS
== 0 &&
2157 (expr
->getOperatorNew()->isReplaceableGlobalAllocationFunction() ||
2158 CGM
.getCodeGenOpts().SanitizeAddressPoisonCustomArrayCookie
)) {
2159 // The store to the CookiePtr does not need to be instrumented.
2160 SI
->setNoSanitizeMetadata();
2161 llvm::FunctionType
*FTy
=
2162 llvm::FunctionType::get(CGM
.VoidTy
, NumElementsPtr
.getType(), false);
2163 llvm::FunctionCallee F
=
2164 CGM
.CreateRuntimeFunction(FTy
, "__asan_poison_cxx_array_cookie");
2165 CGF
.Builder
.CreateCall(F
, NumElementsPtr
.getPointer());
2168 // Finally, compute a pointer to the actual data buffer by skipping
2169 // over the cookie completely.
2170 return CGF
.Builder
.CreateConstInBoundsByteGEP(NewPtr
, CookieSize
);
2173 llvm::Value
*ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction
&CGF
,
2175 CharUnits cookieSize
) {
2176 // The element size is right-justified in the cookie.
2177 Address numElementsPtr
= allocPtr
;
2178 CharUnits numElementsOffset
= cookieSize
- CGF
.getSizeSize();
2179 if (!numElementsOffset
.isZero())
2181 CGF
.Builder
.CreateConstInBoundsByteGEP(numElementsPtr
, numElementsOffset
);
2183 unsigned AS
= allocPtr
.getAddressSpace();
2184 numElementsPtr
= numElementsPtr
.withElementType(CGF
.SizeTy
);
2185 if (!CGM
.getLangOpts().Sanitize
.has(SanitizerKind::Address
) || AS
!= 0)
2186 return CGF
.Builder
.CreateLoad(numElementsPtr
);
2187 // In asan mode emit a function call instead of a regular load and let the
2188 // run-time deal with it: if the shadow is properly poisoned return the
2189 // cookie, otherwise return 0 to avoid an infinite loop calling DTORs.
2190 // We can't simply ignore this load using nosanitize metadata because
2191 // the metadata may be lost.
2192 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
2193 CGF
.SizeTy
, llvm::PointerType::getUnqual(CGF
.getLLVMContext()), false);
2194 llvm::FunctionCallee F
=
2195 CGM
.CreateRuntimeFunction(FTy
, "__asan_load_cxx_array_cookie");
2196 return CGF
.Builder
.CreateCall(F
, numElementsPtr
.getPointer());
2199 CharUnits
ARMCXXABI::getArrayCookieSizeImpl(QualType elementType
) {
2200 // ARM says that the cookie is always:
2201 // struct array_cookie {
2202 // std::size_t element_size; // element_size != 0
2203 // std::size_t element_count;
2205 // But the base ABI doesn't give anything an alignment greater than
2206 // 8, so we can dismiss this as typical ABI-author blindness to
2207 // actual language complexity and round up to the element alignment.
2208 return std::max(CharUnits::fromQuantity(2 * CGM
.SizeSizeInBytes
),
2209 CGM
.getContext().getTypeAlignInChars(elementType
));
2212 Address
ARMCXXABI::InitializeArrayCookie(CodeGenFunction
&CGF
,
2214 llvm::Value
*numElements
,
2215 const CXXNewExpr
*expr
,
2216 QualType elementType
) {
2217 assert(requiresArrayCookie(expr
));
2219 // The cookie is always at the start of the buffer.
2220 Address cookie
= newPtr
;
2222 // The first element is the element size.
2223 cookie
= cookie
.withElementType(CGF
.SizeTy
);
2224 llvm::Value
*elementSize
= llvm::ConstantInt::get(CGF
.SizeTy
,
2225 getContext().getTypeSizeInChars(elementType
).getQuantity());
2226 CGF
.Builder
.CreateStore(elementSize
, cookie
);
2228 // The second element is the element count.
2229 cookie
= CGF
.Builder
.CreateConstInBoundsGEP(cookie
, 1);
2230 CGF
.Builder
.CreateStore(numElements
, cookie
);
2232 // Finally, compute a pointer to the actual data buffer by skipping
2233 // over the cookie completely.
2234 CharUnits cookieSize
= ARMCXXABI::getArrayCookieSizeImpl(elementType
);
2235 return CGF
.Builder
.CreateConstInBoundsByteGEP(newPtr
, cookieSize
);
2238 llvm::Value
*ARMCXXABI::readArrayCookieImpl(CodeGenFunction
&CGF
,
2240 CharUnits cookieSize
) {
2241 // The number of elements is at offset sizeof(size_t) relative to
2242 // the allocated pointer.
2243 Address numElementsPtr
2244 = CGF
.Builder
.CreateConstInBoundsByteGEP(allocPtr
, CGF
.getSizeSize());
2246 numElementsPtr
= numElementsPtr
.withElementType(CGF
.SizeTy
);
2247 return CGF
.Builder
.CreateLoad(numElementsPtr
);
2250 /*********************** Static local initialization **************************/
2252 static llvm::FunctionCallee
getGuardAcquireFn(CodeGenModule
&CGM
,
2253 llvm::PointerType
*GuardPtrTy
) {
2254 // int __cxa_guard_acquire(__guard *guard_object);
2255 llvm::FunctionType
*FTy
=
2256 llvm::FunctionType::get(CGM
.getTypes().ConvertType(CGM
.getContext().IntTy
),
2257 GuardPtrTy
, /*isVarArg=*/false);
2258 return CGM
.CreateRuntimeFunction(
2259 FTy
, "__cxa_guard_acquire",
2260 llvm::AttributeList::get(CGM
.getLLVMContext(),
2261 llvm::AttributeList::FunctionIndex
,
2262 llvm::Attribute::NoUnwind
));
2265 static llvm::FunctionCallee
getGuardReleaseFn(CodeGenModule
&CGM
,
2266 llvm::PointerType
*GuardPtrTy
) {
2267 // void __cxa_guard_release(__guard *guard_object);
2268 llvm::FunctionType
*FTy
=
2269 llvm::FunctionType::get(CGM
.VoidTy
, GuardPtrTy
, /*isVarArg=*/false);
2270 return CGM
.CreateRuntimeFunction(
2271 FTy
, "__cxa_guard_release",
2272 llvm::AttributeList::get(CGM
.getLLVMContext(),
2273 llvm::AttributeList::FunctionIndex
,
2274 llvm::Attribute::NoUnwind
));
2277 static llvm::FunctionCallee
getGuardAbortFn(CodeGenModule
&CGM
,
2278 llvm::PointerType
*GuardPtrTy
) {
2279 // void __cxa_guard_abort(__guard *guard_object);
2280 llvm::FunctionType
*FTy
=
2281 llvm::FunctionType::get(CGM
.VoidTy
, GuardPtrTy
, /*isVarArg=*/false);
2282 return CGM
.CreateRuntimeFunction(
2283 FTy
, "__cxa_guard_abort",
2284 llvm::AttributeList::get(CGM
.getLLVMContext(),
2285 llvm::AttributeList::FunctionIndex
,
2286 llvm::Attribute::NoUnwind
));
2290 struct CallGuardAbort final
: EHScopeStack::Cleanup
{
2291 llvm::GlobalVariable
*Guard
;
2292 CallGuardAbort(llvm::GlobalVariable
*Guard
) : Guard(Guard
) {}
2294 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2295 CGF
.EmitNounwindRuntimeCall(getGuardAbortFn(CGF
.CGM
, Guard
->getType()),
2301 /// The ARM code here follows the Itanium code closely enough that we
2302 /// just special-case it at particular places.
2303 void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction
&CGF
,
2305 llvm::GlobalVariable
*var
,
2306 bool shouldPerformInit
) {
2307 CGBuilderTy
&Builder
= CGF
.Builder
;
2309 // Inline variables that weren't instantiated from variable templates have
2310 // partially-ordered initialization within their translation unit.
2311 bool NonTemplateInline
=
2313 !isTemplateInstantiation(D
.getTemplateSpecializationKind());
2315 // We only need to use thread-safe statics for local non-TLS variables and
2316 // inline variables; other global initialization is always single-threaded
2317 // or (through lazy dynamic loading in multiple threads) unsequenced.
2318 bool threadsafe
= getContext().getLangOpts().ThreadsafeStatics
&&
2319 (D
.isLocalVarDecl() || NonTemplateInline
) &&
2322 // If we have a global variable with internal linkage and thread-safe statics
2323 // are disabled, we can just let the guard variable be of type i8.
2324 bool useInt8GuardVariable
= !threadsafe
&& var
->hasInternalLinkage();
2326 llvm::IntegerType
*guardTy
;
2327 CharUnits guardAlignment
;
2328 if (useInt8GuardVariable
) {
2329 guardTy
= CGF
.Int8Ty
;
2330 guardAlignment
= CharUnits::One();
2332 // Guard variables are 64 bits in the generic ABI and size width on ARM
2333 // (i.e. 32-bit on AArch32, 64-bit on AArch64).
2334 if (UseARMGuardVarABI
) {
2335 guardTy
= CGF
.SizeTy
;
2336 guardAlignment
= CGF
.getSizeAlign();
2338 guardTy
= CGF
.Int64Ty
;
2340 CharUnits::fromQuantity(CGM
.getDataLayout().getABITypeAlign(guardTy
));
2343 llvm::PointerType
*guardPtrTy
= llvm::PointerType::get(
2344 CGF
.CGM
.getLLVMContext(),
2345 CGF
.CGM
.getDataLayout().getDefaultGlobalsAddressSpace());
2347 // Create the guard variable if we don't already have it (as we
2348 // might if we're double-emitting this function body).
2349 llvm::GlobalVariable
*guard
= CGM
.getStaticLocalDeclGuardAddress(&D
);
2351 // Mangle the name for the guard.
2352 SmallString
<256> guardName
;
2354 llvm::raw_svector_ostream
out(guardName
);
2355 getMangleContext().mangleStaticGuardVariable(&D
, out
);
2358 // Create the guard variable with a zero-initializer.
2359 // Just absorb linkage, visibility and dll storage class from the guarded
2361 guard
= new llvm::GlobalVariable(CGM
.getModule(), guardTy
,
2362 false, var
->getLinkage(),
2363 llvm::ConstantInt::get(guardTy
, 0),
2365 guard
->setDSOLocal(var
->isDSOLocal());
2366 guard
->setVisibility(var
->getVisibility());
2367 guard
->setDLLStorageClass(var
->getDLLStorageClass());
2368 // If the variable is thread-local, so is its guard variable.
2369 guard
->setThreadLocalMode(var
->getThreadLocalMode());
2370 guard
->setAlignment(guardAlignment
.getAsAlign());
2372 // The ABI says: "It is suggested that it be emitted in the same COMDAT
2373 // group as the associated data object." In practice, this doesn't work for
2374 // non-ELF and non-Wasm object formats, so only do it for ELF and Wasm.
2375 llvm::Comdat
*C
= var
->getComdat();
2376 if (!D
.isLocalVarDecl() && C
&&
2377 (CGM
.getTarget().getTriple().isOSBinFormatELF() ||
2378 CGM
.getTarget().getTriple().isOSBinFormatWasm())) {
2379 guard
->setComdat(C
);
2380 } else if (CGM
.supportsCOMDAT() && guard
->isWeakForLinker()) {
2381 guard
->setComdat(CGM
.getModule().getOrInsertComdat(guard
->getName()));
2384 CGM
.setStaticLocalDeclGuardAddress(&D
, guard
);
2387 Address guardAddr
= Address(guard
, guard
->getValueType(), guardAlignment
);
2389 // Test whether the variable has completed initialization.
2391 // Itanium C++ ABI 3.3.2:
2392 // The following is pseudo-code showing how these functions can be used:
2393 // if (obj_guard.first_byte == 0) {
2394 // if ( __cxa_guard_acquire (&obj_guard) ) {
2396 // ... initialize the object ...;
2398 // __cxa_guard_abort (&obj_guard);
2401 // ... queue object destructor with __cxa_atexit() ...;
2402 // __cxa_guard_release (&obj_guard);
2406 // If threadsafe statics are enabled, but we don't have inline atomics, just
2407 // call __cxa_guard_acquire unconditionally. The "inline" check isn't
2408 // actually inline, and the user might not expect calls to __atomic libcalls.
2410 unsigned MaxInlineWidthInBits
= CGF
.getTarget().getMaxAtomicInlineWidth();
2411 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("init.end");
2412 if (!threadsafe
|| MaxInlineWidthInBits
) {
2413 // Load the first byte of the guard variable.
2414 llvm::LoadInst
*LI
=
2415 Builder
.CreateLoad(guardAddr
.withElementType(CGM
.Int8Ty
));
2418 // An implementation supporting thread-safety on multiprocessor
2419 // systems must also guarantee that references to the initialized
2420 // object do not occur before the load of the initialization flag.
2422 // In LLVM, we do this by marking the load Acquire.
2424 LI
->setAtomic(llvm::AtomicOrdering::Acquire
);
2426 // For ARM, we should only check the first bit, rather than the entire byte:
2428 // ARM C++ ABI 3.2.3.1:
2429 // To support the potential use of initialization guard variables
2430 // as semaphores that are the target of ARM SWP and LDREX/STREX
2431 // synchronizing instructions we define a static initialization
2432 // guard variable to be a 4-byte aligned, 4-byte word with the
2433 // following inline access protocol.
2434 // #define INITIALIZED 1
2435 // if ((obj_guard & INITIALIZED) != INITIALIZED) {
2436 // if (__cxa_guard_acquire(&obj_guard))
2440 // and similarly for ARM64:
2442 // ARM64 C++ ABI 3.2.2:
2443 // This ABI instead only specifies the value bit 0 of the static guard
2444 // variable; all other bits are platform defined. Bit 0 shall be 0 when the
2445 // variable is not initialized and 1 when it is.
2447 (UseARMGuardVarABI
&& !useInt8GuardVariable
)
2448 ? Builder
.CreateAnd(LI
, llvm::ConstantInt::get(CGM
.Int8Ty
, 1))
2450 llvm::Value
*NeedsInit
= Builder
.CreateIsNull(V
, "guard.uninitialized");
2452 llvm::BasicBlock
*InitCheckBlock
= CGF
.createBasicBlock("init.check");
2454 // Check if the first byte of the guard variable is zero.
2455 CGF
.EmitCXXGuardedInitBranch(NeedsInit
, InitCheckBlock
, EndBlock
,
2456 CodeGenFunction::GuardKind::VariableGuard
, &D
);
2458 CGF
.EmitBlock(InitCheckBlock
);
2461 // The semantics of dynamic initialization of variables with static or thread
2462 // storage duration depends on whether they are declared at block-scope. The
2463 // initialization of such variables at block-scope can be aborted with an
2464 // exception and later retried (per C++20 [stmt.dcl]p4), and recursive entry
2465 // to their initialization has undefined behavior (also per C++20
2466 // [stmt.dcl]p4). For such variables declared at non-block scope, exceptions
2467 // lead to termination (per C++20 [except.terminate]p1), and recursive
2468 // references to the variables are governed only by the lifetime rules (per
2469 // C++20 [class.cdtor]p2), which means such references are perfectly fine as
2470 // long as they avoid touching memory. As a result, block-scope variables must
2471 // not be marked as initialized until after initialization completes (unless
2472 // the mark is reverted following an exception), but non-block-scope variables
2473 // must be marked prior to initialization so that recursive accesses during
2474 // initialization do not restart initialization.
2476 // Variables used when coping with thread-safe statics and exceptions.
2478 // Call __cxa_guard_acquire.
2480 = CGF
.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM
, guardPtrTy
), guard
);
2482 llvm::BasicBlock
*InitBlock
= CGF
.createBasicBlock("init");
2484 Builder
.CreateCondBr(Builder
.CreateIsNotNull(V
, "tobool"),
2485 InitBlock
, EndBlock
);
2487 // Call __cxa_guard_abort along the exceptional edge.
2488 CGF
.EHStack
.pushCleanup
<CallGuardAbort
>(EHCleanup
, guard
);
2490 CGF
.EmitBlock(InitBlock
);
2491 } else if (!D
.isLocalVarDecl()) {
2492 // For non-local variables, store 1 into the first byte of the guard
2493 // variable before the object initialization begins so that references
2494 // to the variable during initialization don't restart initialization.
2495 Builder
.CreateStore(llvm::ConstantInt::get(CGM
.Int8Ty
, 1),
2496 guardAddr
.withElementType(CGM
.Int8Ty
));
2499 // Emit the initializer and add a global destructor if appropriate.
2500 CGF
.EmitCXXGlobalVarDeclInit(D
, var
, shouldPerformInit
);
2503 // Pop the guard-abort cleanup if we pushed one.
2504 CGF
.PopCleanupBlock();
2506 // Call __cxa_guard_release. This cannot throw.
2507 CGF
.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM
, guardPtrTy
),
2508 guardAddr
.getPointer());
2509 } else if (D
.isLocalVarDecl()) {
2510 // For local variables, store 1 into the first byte of the guard variable
2511 // after the object initialization completes so that initialization is
2512 // retried if initialization is interrupted by an exception.
2513 Builder
.CreateStore(llvm::ConstantInt::get(CGM
.Int8Ty
, 1),
2514 guardAddr
.withElementType(CGM
.Int8Ty
));
2517 CGF
.EmitBlock(EndBlock
);
2520 /// Register a global destructor using __cxa_atexit.
2521 static void emitGlobalDtorWithCXAAtExit(CodeGenFunction
&CGF
,
2522 llvm::FunctionCallee dtor
,
2523 llvm::Constant
*addr
, bool TLS
) {
2524 assert(!CGF
.getTarget().getTriple().isOSAIX() &&
2525 "unexpected call to emitGlobalDtorWithCXAAtExit");
2526 assert((TLS
|| CGF
.getTypes().getCodeGenOpts().CXAAtExit
) &&
2527 "__cxa_atexit is disabled");
2528 const char *Name
= "__cxa_atexit";
2530 const llvm::Triple
&T
= CGF
.getTarget().getTriple();
2531 Name
= T
.isOSDarwin() ? "_tlv_atexit" : "__cxa_thread_atexit";
2534 // We're assuming that the destructor function is something we can
2535 // reasonably call with the default CC.
2536 llvm::Type
*dtorTy
= llvm::PointerType::getUnqual(CGF
.getLLVMContext());
2538 // Preserve address space of addr.
2539 auto AddrAS
= addr
? addr
->getType()->getPointerAddressSpace() : 0;
2540 auto AddrPtrTy
= AddrAS
? llvm::PointerType::get(CGF
.getLLVMContext(), AddrAS
)
2543 // Create a variable that binds the atexit to this shared object.
2544 llvm::Constant
*handle
=
2545 CGF
.CGM
.CreateRuntimeVariable(CGF
.Int8Ty
, "__dso_handle");
2546 auto *GV
= cast
<llvm::GlobalValue
>(handle
->stripPointerCasts());
2547 GV
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
2549 // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
2550 llvm::Type
*paramTys
[] = {dtorTy
, AddrPtrTy
, handle
->getType()};
2551 llvm::FunctionType
*atexitTy
=
2552 llvm::FunctionType::get(CGF
.IntTy
, paramTys
, false);
2554 // Fetch the actual function.
2555 llvm::FunctionCallee atexit
= CGF
.CGM
.CreateRuntimeFunction(atexitTy
, Name
);
2556 if (llvm::Function
*fn
= dyn_cast
<llvm::Function
>(atexit
.getCallee()))
2557 fn
->setDoesNotThrow();
2560 // addr is null when we are trying to register a dtor annotated with
2561 // __attribute__((destructor)) in a constructor function. Using null here is
2562 // okay because this argument is just passed back to the destructor
2564 addr
= llvm::Constant::getNullValue(CGF
.Int8PtrTy
);
2566 llvm::Value
*args
[] = {dtor
.getCallee(), addr
, handle
};
2567 CGF
.EmitNounwindRuntimeCall(atexit
, args
);
2570 static llvm::Function
*createGlobalInitOrCleanupFn(CodeGen::CodeGenModule
&CGM
,
2572 // Create a function that registers/unregisters destructors that have the same
2574 llvm::FunctionType
*FTy
= llvm::FunctionType::get(CGM
.VoidTy
, false);
2575 llvm::Function
*GlobalInitOrCleanupFn
= CGM
.CreateGlobalInitOrCleanUpFunction(
2576 FTy
, FnName
, CGM
.getTypes().arrangeNullaryFunction(), SourceLocation());
2578 return GlobalInitOrCleanupFn
;
2581 void CodeGenModule::unregisterGlobalDtorsWithUnAtExit() {
2582 for (const auto &I
: DtorsUsingAtExit
) {
2583 int Priority
= I
.first
;
2584 std::string GlobalCleanupFnName
=
2585 std::string("__GLOBAL_cleanup_") + llvm::to_string(Priority
);
2587 llvm::Function
*GlobalCleanupFn
=
2588 createGlobalInitOrCleanupFn(*this, GlobalCleanupFnName
);
2590 CodeGenFunction
CGF(*this);
2591 CGF
.StartFunction(GlobalDecl(), getContext().VoidTy
, GlobalCleanupFn
,
2592 getTypes().arrangeNullaryFunction(), FunctionArgList(),
2593 SourceLocation(), SourceLocation());
2594 auto AL
= ApplyDebugLocation::CreateArtificial(CGF
);
2596 // Get the destructor function type, void(*)(void).
2597 llvm::FunctionType
*dtorFuncTy
= llvm::FunctionType::get(CGF
.VoidTy
, false);
2599 // Destructor functions are run/unregistered in non-ascending
2600 // order of their priorities.
2601 const llvm::TinyPtrVector
<llvm::Function
*> &Dtors
= I
.second
;
2602 auto itv
= Dtors
.rbegin();
2603 while (itv
!= Dtors
.rend()) {
2604 llvm::Function
*Dtor
= *itv
;
2606 // We're assuming that the destructor function is something we can
2607 // reasonably call with the correct CC.
2608 llvm::Value
*V
= CGF
.unregisterGlobalDtorWithUnAtExit(Dtor
);
2609 llvm::Value
*NeedsDestruct
=
2610 CGF
.Builder
.CreateIsNull(V
, "needs_destruct");
2612 llvm::BasicBlock
*DestructCallBlock
=
2613 CGF
.createBasicBlock("destruct.call");
2614 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock(
2615 (itv
+ 1) != Dtors
.rend() ? "unatexit.call" : "destruct.end");
2616 // Check if unatexit returns a value of 0. If it does, jump to
2617 // DestructCallBlock, otherwise jump to EndBlock directly.
2618 CGF
.Builder
.CreateCondBr(NeedsDestruct
, DestructCallBlock
, EndBlock
);
2620 CGF
.EmitBlock(DestructCallBlock
);
2622 // Emit the call to casted Dtor.
2623 llvm::CallInst
*CI
= CGF
.Builder
.CreateCall(dtorFuncTy
, Dtor
);
2624 // Make sure the call and the callee agree on calling convention.
2625 CI
->setCallingConv(Dtor
->getCallingConv());
2627 CGF
.EmitBlock(EndBlock
);
2632 CGF
.FinishFunction();
2633 AddGlobalDtor(GlobalCleanupFn
, Priority
);
2637 void CodeGenModule::registerGlobalDtorsWithAtExit() {
2638 for (const auto &I
: DtorsUsingAtExit
) {
2639 int Priority
= I
.first
;
2640 std::string GlobalInitFnName
=
2641 std::string("__GLOBAL_init_") + llvm::to_string(Priority
);
2642 llvm::Function
*GlobalInitFn
=
2643 createGlobalInitOrCleanupFn(*this, GlobalInitFnName
);
2645 CodeGenFunction
CGF(*this);
2646 CGF
.StartFunction(GlobalDecl(), getContext().VoidTy
, GlobalInitFn
,
2647 getTypes().arrangeNullaryFunction(), FunctionArgList(),
2648 SourceLocation(), SourceLocation());
2649 auto AL
= ApplyDebugLocation::CreateArtificial(CGF
);
2651 // Since constructor functions are run in non-descending order of their
2652 // priorities, destructors are registered in non-descending order of their
2653 // priorities, and since destructor functions are run in the reverse order
2654 // of their registration, destructor functions are run in non-ascending
2655 // order of their priorities.
2656 const llvm::TinyPtrVector
<llvm::Function
*> &Dtors
= I
.second
;
2657 for (auto *Dtor
: Dtors
) {
2658 // Register the destructor function calling __cxa_atexit if it is
2659 // available. Otherwise fall back on calling atexit.
2660 if (getCodeGenOpts().CXAAtExit
) {
2661 emitGlobalDtorWithCXAAtExit(CGF
, Dtor
, nullptr, false);
2663 // We're assuming that the destructor function is something we can
2664 // reasonably call with the correct CC.
2665 CGF
.registerGlobalDtorWithAtExit(Dtor
);
2669 CGF
.FinishFunction();
2670 AddGlobalCtor(GlobalInitFn
, Priority
);
2673 if (getCXXABI().useSinitAndSterm())
2674 unregisterGlobalDtorsWithUnAtExit();
2677 /// Register a global destructor as best as we know how.
2678 void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction
&CGF
, const VarDecl
&D
,
2679 llvm::FunctionCallee dtor
,
2680 llvm::Constant
*addr
) {
2681 if (D
.isNoDestroy(CGM
.getContext()))
2684 // emitGlobalDtorWithCXAAtExit will emit a call to either __cxa_thread_atexit
2685 // or __cxa_atexit depending on whether this VarDecl is a thread-local storage
2686 // or not. CXAAtExit controls only __cxa_atexit, so use it if it is enabled.
2687 // We can always use __cxa_thread_atexit.
2688 if (CGM
.getCodeGenOpts().CXAAtExit
|| D
.getTLSKind())
2689 return emitGlobalDtorWithCXAAtExit(CGF
, dtor
, addr
, D
.getTLSKind());
2691 // In Apple kexts, we want to add a global destructor entry.
2692 // FIXME: shouldn't this be guarded by some variable?
2693 if (CGM
.getLangOpts().AppleKext
) {
2694 // Generate a global destructor entry.
2695 return CGM
.AddCXXDtorEntry(dtor
, addr
);
2698 CGF
.registerGlobalDtorWithAtExit(D
, dtor
, addr
);
2701 static bool isThreadWrapperReplaceable(const VarDecl
*VD
,
2702 CodeGen::CodeGenModule
&CGM
) {
2703 assert(!VD
->isStaticLocal() && "static local VarDecls don't need wrappers!");
2704 // Darwin prefers to have references to thread local variables to go through
2705 // the thread wrapper instead of directly referencing the backing variable.
2706 return VD
->getTLSKind() == VarDecl::TLS_Dynamic
&&
2707 CGM
.getTarget().getTriple().isOSDarwin();
2710 /// Get the appropriate linkage for the wrapper function. This is essentially
2711 /// the weak form of the variable's linkage; every translation unit which needs
2712 /// the wrapper emits a copy, and we want the linker to merge them.
2713 static llvm::GlobalValue::LinkageTypes
2714 getThreadLocalWrapperLinkage(const VarDecl
*VD
, CodeGen::CodeGenModule
&CGM
) {
2715 llvm::GlobalValue::LinkageTypes VarLinkage
=
2716 CGM
.getLLVMLinkageVarDefinition(VD
, /*IsConstant=*/false);
2718 // For internal linkage variables, we don't need an external or weak wrapper.
2719 if (llvm::GlobalValue::isLocalLinkage(VarLinkage
))
2722 // If the thread wrapper is replaceable, give it appropriate linkage.
2723 if (isThreadWrapperReplaceable(VD
, CGM
))
2724 if (!llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage
) &&
2725 !llvm::GlobalVariable::isWeakODRLinkage(VarLinkage
))
2727 return llvm::GlobalValue::WeakODRLinkage
;
2731 ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl
*VD
,
2733 // Mangle the name for the thread_local wrapper function.
2734 SmallString
<256> WrapperName
;
2736 llvm::raw_svector_ostream
Out(WrapperName
);
2737 getMangleContext().mangleItaniumThreadLocalWrapper(VD
, Out
);
2740 // FIXME: If VD is a definition, we should regenerate the function attributes
2741 // before returning.
2742 if (llvm::Value
*V
= CGM
.getModule().getNamedValue(WrapperName
))
2743 return cast
<llvm::Function
>(V
);
2745 QualType RetQT
= VD
->getType();
2746 if (RetQT
->isReferenceType())
2747 RetQT
= RetQT
.getNonReferenceType();
2749 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeBuiltinFunctionDeclaration(
2750 getContext().getPointerType(RetQT
), FunctionArgList());
2752 llvm::FunctionType
*FnTy
= CGM
.getTypes().GetFunctionType(FI
);
2753 llvm::Function
*Wrapper
=
2754 llvm::Function::Create(FnTy
, getThreadLocalWrapperLinkage(VD
, CGM
),
2755 WrapperName
.str(), &CGM
.getModule());
2757 if (CGM
.supportsCOMDAT() && Wrapper
->isWeakForLinker())
2758 Wrapper
->setComdat(CGM
.getModule().getOrInsertComdat(Wrapper
->getName()));
2760 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
, Wrapper
, /*IsThunk=*/false);
2762 // Always resolve references to the wrapper at link time.
2763 if (!Wrapper
->hasLocalLinkage())
2764 if (!isThreadWrapperReplaceable(VD
, CGM
) ||
2765 llvm::GlobalVariable::isLinkOnceLinkage(Wrapper
->getLinkage()) ||
2766 llvm::GlobalVariable::isWeakODRLinkage(Wrapper
->getLinkage()) ||
2767 VD
->getVisibility() == HiddenVisibility
)
2768 Wrapper
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
2770 if (isThreadWrapperReplaceable(VD
, CGM
)) {
2771 Wrapper
->setCallingConv(llvm::CallingConv::CXX_FAST_TLS
);
2772 Wrapper
->addFnAttr(llvm::Attribute::NoUnwind
);
2775 ThreadWrappers
.push_back({VD
, Wrapper
});
2779 void ItaniumCXXABI::EmitThreadLocalInitFuncs(
2780 CodeGenModule
&CGM
, ArrayRef
<const VarDecl
*> CXXThreadLocals
,
2781 ArrayRef
<llvm::Function
*> CXXThreadLocalInits
,
2782 ArrayRef
<const VarDecl
*> CXXThreadLocalInitVars
) {
2783 llvm::Function
*InitFunc
= nullptr;
2785 // Separate initializers into those with ordered (or partially-ordered)
2786 // initialization and those with unordered initialization.
2787 llvm::SmallVector
<llvm::Function
*, 8> OrderedInits
;
2788 llvm::SmallDenseMap
<const VarDecl
*, llvm::Function
*> UnorderedInits
;
2789 for (unsigned I
= 0; I
!= CXXThreadLocalInits
.size(); ++I
) {
2790 if (isTemplateInstantiation(
2791 CXXThreadLocalInitVars
[I
]->getTemplateSpecializationKind()))
2792 UnorderedInits
[CXXThreadLocalInitVars
[I
]->getCanonicalDecl()] =
2793 CXXThreadLocalInits
[I
];
2795 OrderedInits
.push_back(CXXThreadLocalInits
[I
]);
2798 if (!OrderedInits
.empty()) {
2799 // Generate a guarded initialization function.
2800 llvm::FunctionType
*FTy
=
2801 llvm::FunctionType::get(CGM
.VoidTy
, /*isVarArg=*/false);
2802 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeNullaryFunction();
2803 InitFunc
= CGM
.CreateGlobalInitOrCleanUpFunction(FTy
, "__tls_init", FI
,
2806 llvm::GlobalVariable
*Guard
= new llvm::GlobalVariable(
2807 CGM
.getModule(), CGM
.Int8Ty
, /*isConstant=*/false,
2808 llvm::GlobalVariable::InternalLinkage
,
2809 llvm::ConstantInt::get(CGM
.Int8Ty
, 0), "__tls_guard");
2810 Guard
->setThreadLocal(true);
2811 Guard
->setThreadLocalMode(CGM
.GetDefaultLLVMTLSModel());
2813 CharUnits GuardAlign
= CharUnits::One();
2814 Guard
->setAlignment(GuardAlign
.getAsAlign());
2816 CodeGenFunction(CGM
).GenerateCXXGlobalInitFunc(
2817 InitFunc
, OrderedInits
, ConstantAddress(Guard
, CGM
.Int8Ty
, GuardAlign
));
2818 // On Darwin platforms, use CXX_FAST_TLS calling convention.
2819 if (CGM
.getTarget().getTriple().isOSDarwin()) {
2820 InitFunc
->setCallingConv(llvm::CallingConv::CXX_FAST_TLS
);
2821 InitFunc
->addFnAttr(llvm::Attribute::NoUnwind
);
2825 // Create declarations for thread wrappers for all thread-local variables
2826 // with non-discardable definitions in this translation unit.
2827 for (const VarDecl
*VD
: CXXThreadLocals
) {
2828 if (VD
->hasDefinition() &&
2829 !isDiscardableGVALinkage(getContext().GetGVALinkageForVariable(VD
))) {
2830 llvm::GlobalValue
*GV
= CGM
.GetGlobalValue(CGM
.getMangledName(VD
));
2831 getOrCreateThreadLocalWrapper(VD
, GV
);
2835 // Emit all referenced thread wrappers.
2836 for (auto VDAndWrapper
: ThreadWrappers
) {
2837 const VarDecl
*VD
= VDAndWrapper
.first
;
2838 llvm::GlobalVariable
*Var
=
2839 cast
<llvm::GlobalVariable
>(CGM
.GetGlobalValue(CGM
.getMangledName(VD
)));
2840 llvm::Function
*Wrapper
= VDAndWrapper
.second
;
2842 // Some targets require that all access to thread local variables go through
2843 // the thread wrapper. This means that we cannot attempt to create a thread
2844 // wrapper or a thread helper.
2845 if (!VD
->hasDefinition()) {
2846 if (isThreadWrapperReplaceable(VD
, CGM
)) {
2847 Wrapper
->setLinkage(llvm::Function::ExternalLinkage
);
2851 // If this isn't a TU in which this variable is defined, the thread
2852 // wrapper is discardable.
2853 if (Wrapper
->getLinkage() == llvm::Function::WeakODRLinkage
)
2854 Wrapper
->setLinkage(llvm::Function::LinkOnceODRLinkage
);
2857 CGM
.SetLLVMFunctionAttributesForDefinition(nullptr, Wrapper
);
2859 // Mangle the name for the thread_local initialization function.
2860 SmallString
<256> InitFnName
;
2862 llvm::raw_svector_ostream
Out(InitFnName
);
2863 getMangleContext().mangleItaniumThreadLocalInit(VD
, Out
);
2866 llvm::FunctionType
*InitFnTy
= llvm::FunctionType::get(CGM
.VoidTy
, false);
2868 // If we have a definition for the variable, emit the initialization
2869 // function as an alias to the global Init function (if any). Otherwise,
2870 // produce a declaration of the initialization function.
2871 llvm::GlobalValue
*Init
= nullptr;
2872 bool InitIsInitFunc
= false;
2873 bool HasConstantInitialization
= false;
2874 if (!usesThreadWrapperFunction(VD
)) {
2875 HasConstantInitialization
= true;
2876 } else if (VD
->hasDefinition()) {
2877 InitIsInitFunc
= true;
2878 llvm::Function
*InitFuncToUse
= InitFunc
;
2879 if (isTemplateInstantiation(VD
->getTemplateSpecializationKind()))
2880 InitFuncToUse
= UnorderedInits
.lookup(VD
->getCanonicalDecl());
2882 Init
= llvm::GlobalAlias::create(Var
->getLinkage(), InitFnName
.str(),
2885 // Emit a weak global function referring to the initialization function.
2886 // This function will not exist if the TU defining the thread_local
2887 // variable in question does not need any dynamic initialization for
2888 // its thread_local variables.
2889 Init
= llvm::Function::Create(InitFnTy
,
2890 llvm::GlobalVariable::ExternalWeakLinkage
,
2891 InitFnName
.str(), &CGM
.getModule());
2892 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeNullaryFunction();
2893 CGM
.SetLLVMFunctionAttributes(
2894 GlobalDecl(), FI
, cast
<llvm::Function
>(Init
), /*IsThunk=*/false);
2898 Init
->setVisibility(Var
->getVisibility());
2899 // Don't mark an extern_weak function DSO local on windows.
2900 if (!CGM
.getTriple().isOSWindows() || !Init
->hasExternalWeakLinkage())
2901 Init
->setDSOLocal(Var
->isDSOLocal());
2904 llvm::LLVMContext
&Context
= CGM
.getModule().getContext();
2906 // The linker on AIX is not happy with missing weak symbols. However,
2907 // other TUs will not know whether the initialization routine exists
2908 // so create an empty, init function to satisfy the linker.
2909 // This is needed whenever a thread wrapper function is not used, and
2910 // also when the symbol is weak.
2911 if (CGM
.getTriple().isOSAIX() && VD
->hasDefinition() &&
2912 isEmittedWithConstantInitializer(VD
, true) &&
2913 !mayNeedDestruction(VD
)) {
2914 // Init should be null. If it were non-null, then the logic above would
2915 // either be defining the function to be an alias or declaring the
2916 // function with the expectation that the definition of the variable
2918 assert(Init
== nullptr && "Expected Init to be null.");
2920 llvm::Function
*Func
= llvm::Function::Create(
2921 InitFnTy
, Var
->getLinkage(), InitFnName
.str(), &CGM
.getModule());
2922 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeNullaryFunction();
2923 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
,
2924 cast
<llvm::Function
>(Func
),
2926 // Create a function body that just returns
2927 llvm::BasicBlock
*Entry
= llvm::BasicBlock::Create(Context
, "", Func
);
2928 CGBuilderTy
Builder(CGM
, Entry
);
2929 Builder
.CreateRetVoid();
2932 llvm::BasicBlock
*Entry
= llvm::BasicBlock::Create(Context
, "", Wrapper
);
2933 CGBuilderTy
Builder(CGM
, Entry
);
2934 if (HasConstantInitialization
) {
2935 // No dynamic initialization to invoke.
2936 } else if (InitIsInitFunc
) {
2938 llvm::CallInst
*CallVal
= Builder
.CreateCall(InitFnTy
, Init
);
2939 if (isThreadWrapperReplaceable(VD
, CGM
)) {
2940 CallVal
->setCallingConv(llvm::CallingConv::CXX_FAST_TLS
);
2941 llvm::Function
*Fn
=
2942 cast
<llvm::Function
>(cast
<llvm::GlobalAlias
>(Init
)->getAliasee());
2943 Fn
->setCallingConv(llvm::CallingConv::CXX_FAST_TLS
);
2946 } else if (CGM
.getTriple().isOSAIX()) {
2947 // On AIX, except if constinit and also neither of class type or of
2948 // (possibly multi-dimensional) array of class type, thread_local vars
2949 // will have init routines regardless of whether they are
2950 // const-initialized. Since the routine is guaranteed to exist, we can
2951 // unconditionally call it without testing for its existance. This
2952 // avoids potentially unresolved weak symbols which the AIX linker
2953 // isn't happy with.
2954 Builder
.CreateCall(InitFnTy
, Init
);
2956 // Don't know whether we have an init function. Call it if it exists.
2957 llvm::Value
*Have
= Builder
.CreateIsNotNull(Init
);
2958 llvm::BasicBlock
*InitBB
= llvm::BasicBlock::Create(Context
, "", Wrapper
);
2959 llvm::BasicBlock
*ExitBB
= llvm::BasicBlock::Create(Context
, "", Wrapper
);
2960 Builder
.CreateCondBr(Have
, InitBB
, ExitBB
);
2962 Builder
.SetInsertPoint(InitBB
);
2963 Builder
.CreateCall(InitFnTy
, Init
);
2964 Builder
.CreateBr(ExitBB
);
2966 Builder
.SetInsertPoint(ExitBB
);
2969 // For a reference, the result of the wrapper function is a pointer to
2970 // the referenced object.
2971 llvm::Value
*Val
= Builder
.CreateThreadLocalAddress(Var
);
2973 if (VD
->getType()->isReferenceType()) {
2974 CharUnits Align
= CGM
.getContext().getDeclAlign(VD
);
2975 Val
= Builder
.CreateAlignedLoad(Var
->getValueType(), Val
, Align
);
2977 if (Val
->getType() != Wrapper
->getReturnType())
2978 Val
= Builder
.CreatePointerBitCastOrAddrSpaceCast(
2979 Val
, Wrapper
->getReturnType(), "");
2981 Builder
.CreateRet(Val
);
2985 LValue
ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction
&CGF
,
2987 QualType LValType
) {
2988 llvm::Value
*Val
= CGF
.CGM
.GetAddrOfGlobalVar(VD
);
2989 llvm::Function
*Wrapper
= getOrCreateThreadLocalWrapper(VD
, Val
);
2991 llvm::CallInst
*CallVal
= CGF
.Builder
.CreateCall(Wrapper
);
2992 CallVal
->setCallingConv(Wrapper
->getCallingConv());
2995 if (VD
->getType()->isReferenceType())
2996 LV
= CGF
.MakeNaturalAlignAddrLValue(CallVal
, LValType
);
2998 LV
= CGF
.MakeAddrLValue(CallVal
, LValType
,
2999 CGF
.getContext().getDeclAlign(VD
));
3000 // FIXME: need setObjCGCLValueClass?
3004 /// Return whether the given global decl needs a VTT parameter, which it does
3005 /// if it's a base constructor or destructor with virtual bases.
3006 bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD
) {
3007 const CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(GD
.getDecl());
3009 // We don't have any virtual bases, just return early.
3010 if (!MD
->getParent()->getNumVBases())
3013 // Check if we have a base constructor.
3014 if (isa
<CXXConstructorDecl
>(MD
) && GD
.getCtorType() == Ctor_Base
)
3017 // Check if we have a base destructor.
3018 if (isa
<CXXDestructorDecl
>(MD
) && GD
.getDtorType() == Dtor_Base
)
3025 class ItaniumRTTIBuilder
{
3026 CodeGenModule
&CGM
; // Per-module state.
3027 llvm::LLVMContext
&VMContext
;
3028 const ItaniumCXXABI
&CXXABI
; // Per-module state.
3030 /// Fields - The fields of the RTTI descriptor currently being built.
3031 SmallVector
<llvm::Constant
*, 16> Fields
;
3033 /// GetAddrOfTypeName - Returns the mangled type name of the given type.
3034 llvm::GlobalVariable
*
3035 GetAddrOfTypeName(QualType Ty
, llvm::GlobalVariable::LinkageTypes Linkage
);
3037 /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
3038 /// descriptor of the given type.
3039 llvm::Constant
*GetAddrOfExternalRTTIDescriptor(QualType Ty
);
3041 /// BuildVTablePointer - Build the vtable pointer for the given type.
3042 void BuildVTablePointer(const Type
*Ty
);
3044 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
3045 /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
3046 void BuildSIClassTypeInfo(const CXXRecordDecl
*RD
);
3048 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
3049 /// classes with bases that do not satisfy the abi::__si_class_type_info
3050 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
3051 void BuildVMIClassTypeInfo(const CXXRecordDecl
*RD
);
3053 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
3054 /// for pointer types.
3055 void BuildPointerTypeInfo(QualType PointeeTy
);
3057 /// BuildObjCObjectTypeInfo - Build the appropriate kind of
3058 /// type_info for an object type.
3059 void BuildObjCObjectTypeInfo(const ObjCObjectType
*Ty
);
3061 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
3062 /// struct, used for member pointer types.
3063 void BuildPointerToMemberTypeInfo(const MemberPointerType
*Ty
);
3066 ItaniumRTTIBuilder(const ItaniumCXXABI
&ABI
)
3067 : CGM(ABI
.CGM
), VMContext(CGM
.getModule().getContext()), CXXABI(ABI
) {}
3069 // Pointer type info flags.
3071 /// PTI_Const - Type has const qualifier.
3074 /// PTI_Volatile - Type has volatile qualifier.
3077 /// PTI_Restrict - Type has restrict qualifier.
3080 /// PTI_Incomplete - Type is incomplete.
3081 PTI_Incomplete
= 0x8,
3083 /// PTI_ContainingClassIncomplete - Containing class is incomplete.
3084 /// (in pointer to member).
3085 PTI_ContainingClassIncomplete
= 0x10,
3087 /// PTI_TransactionSafe - Pointee is transaction_safe function (C++ TM TS).
3088 //PTI_TransactionSafe = 0x20,
3090 /// PTI_Noexcept - Pointee is noexcept function (C++1z).
3091 PTI_Noexcept
= 0x40,
3094 // VMI type info flags.
3096 /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
3097 VMI_NonDiamondRepeat
= 0x1,
3099 /// VMI_DiamondShaped - Class is diamond shaped.
3100 VMI_DiamondShaped
= 0x2
3103 // Base class type info flags.
3105 /// BCTI_Virtual - Base class is virtual.
3108 /// BCTI_Public - Base class is public.
3112 /// BuildTypeInfo - Build the RTTI type info struct for the given type, or
3113 /// link to an existing RTTI descriptor if one already exists.
3114 llvm::Constant
*BuildTypeInfo(QualType Ty
);
3116 /// BuildTypeInfo - Build the RTTI type info struct for the given type.
3117 llvm::Constant
*BuildTypeInfo(
3119 llvm::GlobalVariable::LinkageTypes Linkage
,
3120 llvm::GlobalValue::VisibilityTypes Visibility
,
3121 llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass
);
3125 llvm::GlobalVariable
*ItaniumRTTIBuilder::GetAddrOfTypeName(
3126 QualType Ty
, llvm::GlobalVariable::LinkageTypes Linkage
) {
3127 SmallString
<256> Name
;
3128 llvm::raw_svector_ostream
Out(Name
);
3129 CGM
.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty
, Out
);
3131 // We know that the mangled name of the type starts at index 4 of the
3132 // mangled name of the typename, so we can just index into it in order to
3133 // get the mangled name of the type.
3134 llvm::Constant
*Init
= llvm::ConstantDataArray::getString(VMContext
,
3136 auto Align
= CGM
.getContext().getTypeAlignInChars(CGM
.getContext().CharTy
);
3138 llvm::GlobalVariable
*GV
= CGM
.CreateOrReplaceCXXRuntimeVariable(
3139 Name
, Init
->getType(), Linkage
, Align
.getAsAlign());
3141 GV
->setInitializer(Init
);
3147 ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty
) {
3148 // Mangle the RTTI name.
3149 SmallString
<256> Name
;
3150 llvm::raw_svector_ostream
Out(Name
);
3151 CGM
.getCXXABI().getMangleContext().mangleCXXRTTI(Ty
, Out
);
3153 // Look for an existing global.
3154 llvm::GlobalVariable
*GV
= CGM
.getModule().getNamedGlobal(Name
);
3157 // Create a new global variable.
3158 // Note for the future: If we would ever like to do deferred emission of
3159 // RTTI, check if emitting vtables opportunistically need any adjustment.
3161 GV
= new llvm::GlobalVariable(
3162 CGM
.getModule(), CGM
.GlobalsInt8PtrTy
,
3163 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage
, nullptr, Name
);
3164 const CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
3165 CGM
.setGVProperties(GV
, RD
);
3166 // Import the typeinfo symbol when all non-inline virtual methods are
3168 if (CGM
.getTarget().hasPS4DLLImportExport()) {
3169 if (RD
&& CXXRecordAllNonInlineVirtualsHaveAttr
<DLLImportAttr
>(RD
)) {
3170 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
3171 CGM
.setDSOLocal(GV
);
3179 /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
3180 /// info for that type is defined in the standard library.
3181 static bool TypeInfoIsInStandardLibrary(const BuiltinType
*Ty
) {
3182 // Itanium C++ ABI 2.9.2:
3183 // Basic type information (e.g. for "int", "bool", etc.) will be kept in
3184 // the run-time support library. Specifically, the run-time support
3185 // library should contain type_info objects for the types X, X* and
3186 // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
3187 // unsigned char, signed char, short, unsigned short, int, unsigned int,
3188 // long, unsigned long, long long, unsigned long long, float, double,
3189 // long double, char16_t, char32_t, and the IEEE 754r decimal and
3190 // half-precision floating point types.
3192 // GCC also emits RTTI for __int128.
3193 // FIXME: We do not emit RTTI information for decimal types here.
3195 // Types added here must also be added to EmitFundamentalRTTIDescriptors.
3196 switch (Ty
->getKind()) {
3197 case BuiltinType::Void
:
3198 case BuiltinType::NullPtr
:
3199 case BuiltinType::Bool
:
3200 case BuiltinType::WChar_S
:
3201 case BuiltinType::WChar_U
:
3202 case BuiltinType::Char_U
:
3203 case BuiltinType::Char_S
:
3204 case BuiltinType::UChar
:
3205 case BuiltinType::SChar
:
3206 case BuiltinType::Short
:
3207 case BuiltinType::UShort
:
3208 case BuiltinType::Int
:
3209 case BuiltinType::UInt
:
3210 case BuiltinType::Long
:
3211 case BuiltinType::ULong
:
3212 case BuiltinType::LongLong
:
3213 case BuiltinType::ULongLong
:
3214 case BuiltinType::Half
:
3215 case BuiltinType::Float
:
3216 case BuiltinType::Double
:
3217 case BuiltinType::LongDouble
:
3218 case BuiltinType::Float16
:
3219 case BuiltinType::Float128
:
3220 case BuiltinType::Ibm128
:
3221 case BuiltinType::Char8
:
3222 case BuiltinType::Char16
:
3223 case BuiltinType::Char32
:
3224 case BuiltinType::Int128
:
3225 case BuiltinType::UInt128
:
3228 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3229 case BuiltinType::Id:
3230 #include "clang/Basic/OpenCLImageTypes.def"
3231 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3232 case BuiltinType::Id:
3233 #include "clang/Basic/OpenCLExtensionTypes.def"
3234 case BuiltinType::OCLSampler
:
3235 case BuiltinType::OCLEvent
:
3236 case BuiltinType::OCLClkEvent
:
3237 case BuiltinType::OCLQueue
:
3238 case BuiltinType::OCLReserveID
:
3239 #define SVE_TYPE(Name, Id, SingletonId) \
3240 case BuiltinType::Id:
3241 #include "clang/Basic/AArch64SVEACLETypes.def"
3242 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3243 case BuiltinType::Id:
3244 #include "clang/Basic/PPCTypes.def"
3245 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
3246 #include "clang/Basic/RISCVVTypes.def"
3247 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
3248 #include "clang/Basic/WebAssemblyReferenceTypes.def"
3249 case BuiltinType::ShortAccum
:
3250 case BuiltinType::Accum
:
3251 case BuiltinType::LongAccum
:
3252 case BuiltinType::UShortAccum
:
3253 case BuiltinType::UAccum
:
3254 case BuiltinType::ULongAccum
:
3255 case BuiltinType::ShortFract
:
3256 case BuiltinType::Fract
:
3257 case BuiltinType::LongFract
:
3258 case BuiltinType::UShortFract
:
3259 case BuiltinType::UFract
:
3260 case BuiltinType::ULongFract
:
3261 case BuiltinType::SatShortAccum
:
3262 case BuiltinType::SatAccum
:
3263 case BuiltinType::SatLongAccum
:
3264 case BuiltinType::SatUShortAccum
:
3265 case BuiltinType::SatUAccum
:
3266 case BuiltinType::SatULongAccum
:
3267 case BuiltinType::SatShortFract
:
3268 case BuiltinType::SatFract
:
3269 case BuiltinType::SatLongFract
:
3270 case BuiltinType::SatUShortFract
:
3271 case BuiltinType::SatUFract
:
3272 case BuiltinType::SatULongFract
:
3273 case BuiltinType::BFloat16
:
3276 case BuiltinType::Dependent
:
3277 #define BUILTIN_TYPE(Id, SingletonId)
3278 #define PLACEHOLDER_TYPE(Id, SingletonId) \
3279 case BuiltinType::Id:
3280 #include "clang/AST/BuiltinTypes.def"
3281 llvm_unreachable("asking for RRTI for a placeholder type!");
3283 case BuiltinType::ObjCId
:
3284 case BuiltinType::ObjCClass
:
3285 case BuiltinType::ObjCSel
:
3286 llvm_unreachable("FIXME: Objective-C types are unsupported!");
3289 llvm_unreachable("Invalid BuiltinType Kind!");
3292 static bool TypeInfoIsInStandardLibrary(const PointerType
*PointerTy
) {
3293 QualType PointeeTy
= PointerTy
->getPointeeType();
3294 const BuiltinType
*BuiltinTy
= dyn_cast
<BuiltinType
>(PointeeTy
);
3298 // Check the qualifiers.
3299 Qualifiers Quals
= PointeeTy
.getQualifiers();
3300 Quals
.removeConst();
3305 return TypeInfoIsInStandardLibrary(BuiltinTy
);
3308 /// IsStandardLibraryRTTIDescriptor - Returns whether the type
3309 /// information for the given type exists in the standard library.
3310 static bool IsStandardLibraryRTTIDescriptor(QualType Ty
) {
3311 // Type info for builtin types is defined in the standard library.
3312 if (const BuiltinType
*BuiltinTy
= dyn_cast
<BuiltinType
>(Ty
))
3313 return TypeInfoIsInStandardLibrary(BuiltinTy
);
3315 // Type info for some pointer types to builtin types is defined in the
3316 // standard library.
3317 if (const PointerType
*PointerTy
= dyn_cast
<PointerType
>(Ty
))
3318 return TypeInfoIsInStandardLibrary(PointerTy
);
3323 /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
3324 /// the given type exists somewhere else, and that we should not emit the type
3325 /// information in this translation unit. Assumes that it is not a
3326 /// standard-library type.
3327 static bool ShouldUseExternalRTTIDescriptor(CodeGenModule
&CGM
,
3329 ASTContext
&Context
= CGM
.getContext();
3331 // If RTTI is disabled, assume it might be disabled in the
3332 // translation unit that defines any potential key function, too.
3333 if (!Context
.getLangOpts().RTTI
) return false;
3335 if (const RecordType
*RecordTy
= dyn_cast
<RecordType
>(Ty
)) {
3336 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RecordTy
->getDecl());
3337 if (!RD
->hasDefinition())
3340 if (!RD
->isDynamicClass())
3343 // FIXME: this may need to be reconsidered if the key function
3345 // N.B. We must always emit the RTTI data ourselves if there exists a key
3347 bool IsDLLImport
= RD
->hasAttr
<DLLImportAttr
>();
3349 // Don't import the RTTI but emit it locally.
3350 if (CGM
.getTriple().isWindowsGNUEnvironment())
3353 if (CGM
.getVTables().isVTableExternal(RD
)) {
3354 if (CGM
.getTarget().hasPS4DLLImportExport())
3357 return IsDLLImport
&& !CGM
.getTriple().isWindowsItaniumEnvironment()
3368 /// IsIncompleteClassType - Returns whether the given record type is incomplete.
3369 static bool IsIncompleteClassType(const RecordType
*RecordTy
) {
3370 return !RecordTy
->getDecl()->isCompleteDefinition();
3373 /// ContainsIncompleteClassType - Returns whether the given type contains an
3374 /// incomplete class type. This is true if
3376 /// * The given type is an incomplete class type.
3377 /// * The given type is a pointer type whose pointee type contains an
3378 /// incomplete class type.
3379 /// * The given type is a member pointer type whose class is an incomplete
3381 /// * The given type is a member pointer type whoise pointee type contains an
3382 /// incomplete class type.
3383 /// is an indirect or direct pointer to an incomplete class type.
3384 static bool ContainsIncompleteClassType(QualType Ty
) {
3385 if (const RecordType
*RecordTy
= dyn_cast
<RecordType
>(Ty
)) {
3386 if (IsIncompleteClassType(RecordTy
))
3390 if (const PointerType
*PointerTy
= dyn_cast
<PointerType
>(Ty
))
3391 return ContainsIncompleteClassType(PointerTy
->getPointeeType());
3393 if (const MemberPointerType
*MemberPointerTy
=
3394 dyn_cast
<MemberPointerType
>(Ty
)) {
3395 // Check if the class type is incomplete.
3396 const RecordType
*ClassType
= cast
<RecordType
>(MemberPointerTy
->getClass());
3397 if (IsIncompleteClassType(ClassType
))
3400 return ContainsIncompleteClassType(MemberPointerTy
->getPointeeType());
3406 // CanUseSingleInheritance - Return whether the given record decl has a "single,
3407 // public, non-virtual base at offset zero (i.e. the derived class is dynamic
3408 // iff the base is)", according to Itanium C++ ABI, 2.95p6b.
3409 static bool CanUseSingleInheritance(const CXXRecordDecl
*RD
) {
3410 // Check the number of bases.
3411 if (RD
->getNumBases() != 1)
3415 CXXRecordDecl::base_class_const_iterator Base
= RD
->bases_begin();
3417 // Check that the base is not virtual.
3418 if (Base
->isVirtual())
3421 // Check that the base is public.
3422 if (Base
->getAccessSpecifier() != AS_public
)
3425 // Check that the class is dynamic iff the base is.
3427 cast
<CXXRecordDecl
>(Base
->getType()->castAs
<RecordType
>()->getDecl());
3428 if (!BaseDecl
->isEmpty() &&
3429 BaseDecl
->isDynamicClass() != RD
->isDynamicClass())
3435 void ItaniumRTTIBuilder::BuildVTablePointer(const Type
*Ty
) {
3436 // abi::__class_type_info.
3437 static const char * const ClassTypeInfo
=
3438 "_ZTVN10__cxxabiv117__class_type_infoE";
3439 // abi::__si_class_type_info.
3440 static const char * const SIClassTypeInfo
=
3441 "_ZTVN10__cxxabiv120__si_class_type_infoE";
3442 // abi::__vmi_class_type_info.
3443 static const char * const VMIClassTypeInfo
=
3444 "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
3446 const char *VTableName
= nullptr;
3448 switch (Ty
->getTypeClass()) {
3449 #define TYPE(Class, Base)
3450 #define ABSTRACT_TYPE(Class, Base)
3451 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3452 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3453 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3454 #include "clang/AST/TypeNodes.inc"
3455 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
3457 case Type::LValueReference
:
3458 case Type::RValueReference
:
3459 llvm_unreachable("References shouldn't get here");
3462 case Type::DeducedTemplateSpecialization
:
3463 llvm_unreachable("Undeduced type shouldn't get here");
3466 llvm_unreachable("Pipe types shouldn't get here");
3470 // GCC treats vector and complex types as fundamental types.
3472 case Type::ExtVector
:
3473 case Type::ConstantMatrix
:
3476 // FIXME: GCC treats block pointers as fundamental types?!
3477 case Type::BlockPointer
:
3478 // abi::__fundamental_type_info.
3479 VTableName
= "_ZTVN10__cxxabiv123__fundamental_type_infoE";
3482 case Type::ConstantArray
:
3483 case Type::IncompleteArray
:
3484 case Type::VariableArray
:
3485 // abi::__array_type_info.
3486 VTableName
= "_ZTVN10__cxxabiv117__array_type_infoE";
3489 case Type::FunctionNoProto
:
3490 case Type::FunctionProto
:
3491 // abi::__function_type_info.
3492 VTableName
= "_ZTVN10__cxxabiv120__function_type_infoE";
3496 // abi::__enum_type_info.
3497 VTableName
= "_ZTVN10__cxxabiv116__enum_type_infoE";
3500 case Type::Record
: {
3501 const CXXRecordDecl
*RD
=
3502 cast
<CXXRecordDecl
>(cast
<RecordType
>(Ty
)->getDecl());
3504 if (!RD
->hasDefinition() || !RD
->getNumBases()) {
3505 VTableName
= ClassTypeInfo
;
3506 } else if (CanUseSingleInheritance(RD
)) {
3507 VTableName
= SIClassTypeInfo
;
3509 VTableName
= VMIClassTypeInfo
;
3515 case Type::ObjCObject
:
3516 // Ignore protocol qualifiers.
3517 Ty
= cast
<ObjCObjectType
>(Ty
)->getBaseType().getTypePtr();
3519 // Handle id and Class.
3520 if (isa
<BuiltinType
>(Ty
)) {
3521 VTableName
= ClassTypeInfo
;
3525 assert(isa
<ObjCInterfaceType
>(Ty
));
3528 case Type::ObjCInterface
:
3529 if (cast
<ObjCInterfaceType
>(Ty
)->getDecl()->getSuperClass()) {
3530 VTableName
= SIClassTypeInfo
;
3532 VTableName
= ClassTypeInfo
;
3536 case Type::ObjCObjectPointer
:
3538 // abi::__pointer_type_info.
3539 VTableName
= "_ZTVN10__cxxabiv119__pointer_type_infoE";
3542 case Type::MemberPointer
:
3543 // abi::__pointer_to_member_type_info.
3544 VTableName
= "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
3548 llvm::Constant
*VTable
= nullptr;
3550 // Check if the alias exists. If it doesn't, then get or create the global.
3551 if (CGM
.getItaniumVTableContext().isRelativeLayout())
3552 VTable
= CGM
.getModule().getNamedAlias(VTableName
);
3555 CGM
.getModule().getOrInsertGlobal(VTableName
, CGM
.GlobalsInt8PtrTy
);
3557 CGM
.setDSOLocal(cast
<llvm::GlobalValue
>(VTable
->stripPointerCasts()));
3559 llvm::Type
*PtrDiffTy
=
3560 CGM
.getTypes().ConvertType(CGM
.getContext().getPointerDiffType());
3562 // The vtable address point is 2.
3563 if (CGM
.getItaniumVTableContext().isRelativeLayout()) {
3564 // The vtable address point is 8 bytes after its start:
3565 // 4 for the offset to top + 4 for the relative offset to rtti.
3566 llvm::Constant
*Eight
= llvm::ConstantInt::get(CGM
.Int32Ty
, 8);
3568 llvm::ConstantExpr::getInBoundsGetElementPtr(CGM
.Int8Ty
, VTable
, Eight
);
3570 llvm::Constant
*Two
= llvm::ConstantInt::get(PtrDiffTy
, 2);
3571 VTable
= llvm::ConstantExpr::getInBoundsGetElementPtr(CGM
.GlobalsInt8PtrTy
,
3575 Fields
.push_back(VTable
);
3578 /// Return the linkage that the type info and type info name constants
3579 /// should have for the given type.
3580 static llvm::GlobalVariable::LinkageTypes
getTypeInfoLinkage(CodeGenModule
&CGM
,
3582 // Itanium C++ ABI 2.9.5p7:
3583 // In addition, it and all of the intermediate abi::__pointer_type_info
3584 // structs in the chain down to the abi::__class_type_info for the
3585 // incomplete class type must be prevented from resolving to the
3586 // corresponding type_info structs for the complete class type, possibly
3587 // by making them local static objects. Finally, a dummy class RTTI is
3588 // generated for the incomplete type that will not resolve to the final
3589 // complete class RTTI (because the latter need not exist), possibly by
3590 // making it a local static object.
3591 if (ContainsIncompleteClassType(Ty
))
3592 return llvm::GlobalValue::InternalLinkage
;
3594 switch (Ty
->getLinkage()) {
3596 case InternalLinkage
:
3597 case UniqueExternalLinkage
:
3598 return llvm::GlobalValue::InternalLinkage
;
3600 case VisibleNoLinkage
:
3602 case ExternalLinkage
:
3603 // RTTI is not enabled, which means that this type info struct is going
3604 // to be used for exception handling. Give it linkonce_odr linkage.
3605 if (!CGM
.getLangOpts().RTTI
)
3606 return llvm::GlobalValue::LinkOnceODRLinkage
;
3608 if (const RecordType
*Record
= dyn_cast
<RecordType
>(Ty
)) {
3609 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(Record
->getDecl());
3610 if (RD
->hasAttr
<WeakAttr
>())
3611 return llvm::GlobalValue::WeakODRLinkage
;
3612 if (CGM
.getTriple().isWindowsItaniumEnvironment())
3613 if (RD
->hasAttr
<DLLImportAttr
>() &&
3614 ShouldUseExternalRTTIDescriptor(CGM
, Ty
))
3615 return llvm::GlobalValue::ExternalLinkage
;
3616 // MinGW always uses LinkOnceODRLinkage for type info.
3617 if (RD
->isDynamicClass() &&
3621 .isWindowsGNUEnvironment())
3622 return CGM
.getVTableLinkage(RD
);
3625 return llvm::GlobalValue::LinkOnceODRLinkage
;
3628 llvm_unreachable("Invalid linkage!");
3631 llvm::Constant
*ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty
) {
3632 // We want to operate on the canonical type.
3633 Ty
= Ty
.getCanonicalType();
3635 // Check if we've already emitted an RTTI descriptor for this type.
3636 SmallString
<256> Name
;
3637 llvm::raw_svector_ostream
Out(Name
);
3638 CGM
.getCXXABI().getMangleContext().mangleCXXRTTI(Ty
, Out
);
3640 llvm::GlobalVariable
*OldGV
= CGM
.getModule().getNamedGlobal(Name
);
3641 if (OldGV
&& !OldGV
->isDeclaration()) {
3642 assert(!OldGV
->hasAvailableExternallyLinkage() &&
3643 "available_externally typeinfos not yet implemented");
3648 // Check if there is already an external RTTI descriptor for this type.
3649 if (IsStandardLibraryRTTIDescriptor(Ty
) ||
3650 ShouldUseExternalRTTIDescriptor(CGM
, Ty
))
3651 return GetAddrOfExternalRTTIDescriptor(Ty
);
3653 // Emit the standard library with external linkage.
3654 llvm::GlobalVariable::LinkageTypes Linkage
= getTypeInfoLinkage(CGM
, Ty
);
3656 // Give the type_info object and name the formal visibility of the
3658 llvm::GlobalValue::VisibilityTypes llvmVisibility
;
3659 if (llvm::GlobalValue::isLocalLinkage(Linkage
))
3660 // If the linkage is local, only default visibility makes sense.
3661 llvmVisibility
= llvm::GlobalValue::DefaultVisibility
;
3662 else if (CXXABI
.classifyRTTIUniqueness(Ty
, Linkage
) ==
3663 ItaniumCXXABI::RUK_NonUniqueHidden
)
3664 llvmVisibility
= llvm::GlobalValue::HiddenVisibility
;
3666 llvmVisibility
= CodeGenModule::GetLLVMVisibility(Ty
->getVisibility());
3668 llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass
=
3669 llvm::GlobalValue::DefaultStorageClass
;
3670 if (auto RD
= Ty
->getAsCXXRecordDecl()) {
3671 if ((CGM
.getTriple().isWindowsItaniumEnvironment() &&
3672 RD
->hasAttr
<DLLExportAttr
>()) ||
3673 (CGM
.shouldMapVisibilityToDLLExport(RD
) &&
3674 !llvm::GlobalValue::isLocalLinkage(Linkage
) &&
3675 llvmVisibility
== llvm::GlobalValue::DefaultVisibility
))
3676 DLLStorageClass
= llvm::GlobalValue::DLLExportStorageClass
;
3678 return BuildTypeInfo(Ty
, Linkage
, llvmVisibility
, DLLStorageClass
);
3681 llvm::Constant
*ItaniumRTTIBuilder::BuildTypeInfo(
3683 llvm::GlobalVariable::LinkageTypes Linkage
,
3684 llvm::GlobalValue::VisibilityTypes Visibility
,
3685 llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass
) {
3686 // Add the vtable pointer.
3687 BuildVTablePointer(cast
<Type
>(Ty
));
3690 llvm::GlobalVariable
*TypeName
= GetAddrOfTypeName(Ty
, Linkage
);
3691 llvm::Constant
*TypeNameField
;
3693 // If we're supposed to demote the visibility, be sure to set a flag
3694 // to use a string comparison for type_info comparisons.
3695 ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness
=
3696 CXXABI
.classifyRTTIUniqueness(Ty
, Linkage
);
3697 if (RTTIUniqueness
!= ItaniumCXXABI::RUK_Unique
) {
3698 // The flag is the sign bit, which on ARM64 is defined to be clear
3699 // for global pointers. This is very ARM64-specific.
3700 TypeNameField
= llvm::ConstantExpr::getPtrToInt(TypeName
, CGM
.Int64Ty
);
3701 llvm::Constant
*flag
=
3702 llvm::ConstantInt::get(CGM
.Int64Ty
, ((uint64_t)1) << 63);
3703 TypeNameField
= llvm::ConstantExpr::getAdd(TypeNameField
, flag
);
3705 llvm::ConstantExpr::getIntToPtr(TypeNameField
, CGM
.GlobalsInt8PtrTy
);
3707 TypeNameField
= TypeName
;
3709 Fields
.push_back(TypeNameField
);
3711 switch (Ty
->getTypeClass()) {
3712 #define TYPE(Class, Base)
3713 #define ABSTRACT_TYPE(Class, Base)
3714 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3715 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3716 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3717 #include "clang/AST/TypeNodes.inc"
3718 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
3720 // GCC treats vector types as fundamental types.
3723 case Type::ExtVector
:
3724 case Type::ConstantMatrix
:
3726 case Type::BlockPointer
:
3727 // Itanium C++ ABI 2.9.5p4:
3728 // abi::__fundamental_type_info adds no data members to std::type_info.
3731 case Type::LValueReference
:
3732 case Type::RValueReference
:
3733 llvm_unreachable("References shouldn't get here");
3736 case Type::DeducedTemplateSpecialization
:
3737 llvm_unreachable("Undeduced type shouldn't get here");
3745 case Type::ConstantArray
:
3746 case Type::IncompleteArray
:
3747 case Type::VariableArray
:
3748 // Itanium C++ ABI 2.9.5p5:
3749 // abi::__array_type_info adds no data members to std::type_info.
3752 case Type::FunctionNoProto
:
3753 case Type::FunctionProto
:
3754 // Itanium C++ ABI 2.9.5p5:
3755 // abi::__function_type_info adds no data members to std::type_info.
3759 // Itanium C++ ABI 2.9.5p5:
3760 // abi::__enum_type_info adds no data members to std::type_info.
3763 case Type::Record
: {
3764 const CXXRecordDecl
*RD
=
3765 cast
<CXXRecordDecl
>(cast
<RecordType
>(Ty
)->getDecl());
3766 if (!RD
->hasDefinition() || !RD
->getNumBases()) {
3767 // We don't need to emit any fields.
3771 if (CanUseSingleInheritance(RD
))
3772 BuildSIClassTypeInfo(RD
);
3774 BuildVMIClassTypeInfo(RD
);
3779 case Type::ObjCObject
:
3780 case Type::ObjCInterface
:
3781 BuildObjCObjectTypeInfo(cast
<ObjCObjectType
>(Ty
));
3784 case Type::ObjCObjectPointer
:
3785 BuildPointerTypeInfo(cast
<ObjCObjectPointerType
>(Ty
)->getPointeeType());
3789 BuildPointerTypeInfo(cast
<PointerType
>(Ty
)->getPointeeType());
3792 case Type::MemberPointer
:
3793 BuildPointerToMemberTypeInfo(cast
<MemberPointerType
>(Ty
));
3797 // No fields, at least for the moment.
3801 llvm::Constant
*Init
= llvm::ConstantStruct::getAnon(Fields
);
3803 SmallString
<256> Name
;
3804 llvm::raw_svector_ostream
Out(Name
);
3805 CGM
.getCXXABI().getMangleContext().mangleCXXRTTI(Ty
, Out
);
3806 llvm::Module
&M
= CGM
.getModule();
3807 llvm::GlobalVariable
*OldGV
= M
.getNamedGlobal(Name
);
3808 llvm::GlobalVariable
*GV
=
3809 new llvm::GlobalVariable(M
, Init
->getType(),
3810 /*isConstant=*/true, Linkage
, Init
, Name
);
3812 // Export the typeinfo in the same circumstances as the vtable is exported.
3813 auto GVDLLStorageClass
= DLLStorageClass
;
3814 if (CGM
.getTarget().hasPS4DLLImportExport()) {
3815 if (const RecordType
*RecordTy
= dyn_cast
<RecordType
>(Ty
)) {
3816 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RecordTy
->getDecl());
3817 if (RD
->hasAttr
<DLLExportAttr
>() ||
3818 CXXRecordAllNonInlineVirtualsHaveAttr
<DLLExportAttr
>(RD
)) {
3819 GVDLLStorageClass
= llvm::GlobalVariable::DLLExportStorageClass
;
3824 // If there's already an old global variable, replace it with the new one.
3826 GV
->takeName(OldGV
);
3827 llvm::Constant
*NewPtr
=
3828 llvm::ConstantExpr::getBitCast(GV
, OldGV
->getType());
3829 OldGV
->replaceAllUsesWith(NewPtr
);
3830 OldGV
->eraseFromParent();
3833 if (CGM
.supportsCOMDAT() && GV
->isWeakForLinker())
3834 GV
->setComdat(M
.getOrInsertComdat(GV
->getName()));
3836 CharUnits Align
= CGM
.getContext().toCharUnitsFromBits(
3837 CGM
.getTarget().getPointerAlign(CGM
.GetGlobalVarAddressSpace(nullptr)));
3838 GV
->setAlignment(Align
.getAsAlign());
3840 // The Itanium ABI specifies that type_info objects must be globally
3841 // unique, with one exception: if the type is an incomplete class
3842 // type or a (possibly indirect) pointer to one. That exception
3843 // affects the general case of comparing type_info objects produced
3844 // by the typeid operator, which is why the comparison operators on
3845 // std::type_info generally use the type_info name pointers instead
3846 // of the object addresses. However, the language's built-in uses
3847 // of RTTI generally require class types to be complete, even when
3848 // manipulating pointers to those class types. This allows the
3849 // implementation of dynamic_cast to rely on address equality tests,
3850 // which is much faster.
3852 // All of this is to say that it's important that both the type_info
3853 // object and the type_info name be uniqued when weakly emitted.
3855 TypeName
->setVisibility(Visibility
);
3856 CGM
.setDSOLocal(TypeName
);
3858 GV
->setVisibility(Visibility
);
3859 CGM
.setDSOLocal(GV
);
3861 TypeName
->setDLLStorageClass(DLLStorageClass
);
3862 GV
->setDLLStorageClass(CGM
.getTarget().hasPS4DLLImportExport()
3866 TypeName
->setPartition(CGM
.getCodeGenOpts().SymbolPartition
);
3867 GV
->setPartition(CGM
.getCodeGenOpts().SymbolPartition
);
3872 /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
3873 /// for the given Objective-C object type.
3874 void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType
*OT
) {
3876 const Type
*T
= OT
->getBaseType().getTypePtr();
3877 assert(isa
<BuiltinType
>(T
) || isa
<ObjCInterfaceType
>(T
));
3879 // The builtin types are abi::__class_type_infos and don't require
3881 if (isa
<BuiltinType
>(T
)) return;
3883 ObjCInterfaceDecl
*Class
= cast
<ObjCInterfaceType
>(T
)->getDecl();
3884 ObjCInterfaceDecl
*Super
= Class
->getSuperClass();
3886 // Root classes are also __class_type_info.
3889 QualType SuperTy
= CGM
.getContext().getObjCInterfaceType(Super
);
3891 // Everything else is single inheritance.
3892 llvm::Constant
*BaseTypeInfo
=
3893 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(SuperTy
);
3894 Fields
.push_back(BaseTypeInfo
);
3897 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
3898 /// inheritance, according to the Itanium C++ ABI, 2.95p6b.
3899 void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl
*RD
) {
3900 // Itanium C++ ABI 2.9.5p6b:
3901 // It adds to abi::__class_type_info a single member pointing to the
3902 // type_info structure for the base type,
3903 llvm::Constant
*BaseTypeInfo
=
3904 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(RD
->bases_begin()->getType());
3905 Fields
.push_back(BaseTypeInfo
);
3909 /// SeenBases - Contains virtual and non-virtual bases seen when traversing
3910 /// a class hierarchy.
3912 llvm::SmallPtrSet
<const CXXRecordDecl
*, 16> NonVirtualBases
;
3913 llvm::SmallPtrSet
<const CXXRecordDecl
*, 16> VirtualBases
;
3917 /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
3918 /// abi::__vmi_class_type_info.
3920 static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier
*Base
,
3926 cast
<CXXRecordDecl
>(Base
->getType()->castAs
<RecordType
>()->getDecl());
3928 if (Base
->isVirtual()) {
3929 // Mark the virtual base as seen.
3930 if (!Bases
.VirtualBases
.insert(BaseDecl
).second
) {
3931 // If this virtual base has been seen before, then the class is diamond
3933 Flags
|= ItaniumRTTIBuilder::VMI_DiamondShaped
;
3935 if (Bases
.NonVirtualBases
.count(BaseDecl
))
3936 Flags
|= ItaniumRTTIBuilder::VMI_NonDiamondRepeat
;
3939 // Mark the non-virtual base as seen.
3940 if (!Bases
.NonVirtualBases
.insert(BaseDecl
).second
) {
3941 // If this non-virtual base has been seen before, then the class has non-
3942 // diamond shaped repeated inheritance.
3943 Flags
|= ItaniumRTTIBuilder::VMI_NonDiamondRepeat
;
3945 if (Bases
.VirtualBases
.count(BaseDecl
))
3946 Flags
|= ItaniumRTTIBuilder::VMI_NonDiamondRepeat
;
3951 for (const auto &I
: BaseDecl
->bases())
3952 Flags
|= ComputeVMIClassTypeInfoFlags(&I
, Bases
);
3957 static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl
*RD
) {
3962 for (const auto &I
: RD
->bases())
3963 Flags
|= ComputeVMIClassTypeInfoFlags(&I
, Bases
);
3968 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
3969 /// classes with bases that do not satisfy the abi::__si_class_type_info
3970 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
3971 void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl
*RD
) {
3972 llvm::Type
*UnsignedIntLTy
=
3973 CGM
.getTypes().ConvertType(CGM
.getContext().UnsignedIntTy
);
3975 // Itanium C++ ABI 2.9.5p6c:
3976 // __flags is a word with flags describing details about the class
3977 // structure, which may be referenced by using the __flags_masks
3978 // enumeration. These flags refer to both direct and indirect bases.
3979 unsigned Flags
= ComputeVMIClassTypeInfoFlags(RD
);
3980 Fields
.push_back(llvm::ConstantInt::get(UnsignedIntLTy
, Flags
));
3982 // Itanium C++ ABI 2.9.5p6c:
3983 // __base_count is a word with the number of direct proper base class
3984 // descriptions that follow.
3985 Fields
.push_back(llvm::ConstantInt::get(UnsignedIntLTy
, RD
->getNumBases()));
3987 if (!RD
->getNumBases())
3990 // Now add the base class descriptions.
3992 // Itanium C++ ABI 2.9.5p6c:
3993 // __base_info[] is an array of base class descriptions -- one for every
3994 // direct proper base. Each description is of the type:
3996 // struct abi::__base_class_type_info {
3998 // const __class_type_info *__base_type;
3999 // long __offset_flags;
4001 // enum __offset_flags_masks {
4002 // __virtual_mask = 0x1,
4003 // __public_mask = 0x2,
4004 // __offset_shift = 8
4008 // If we're in mingw and 'long' isn't wide enough for a pointer, use 'long
4009 // long' instead of 'long' for __offset_flags. libstdc++abi uses long long on
4011 // FIXME: Consider updating libc++abi to match, and extend this logic to all
4013 QualType OffsetFlagsTy
= CGM
.getContext().LongTy
;
4014 const TargetInfo
&TI
= CGM
.getContext().getTargetInfo();
4015 if (TI
.getTriple().isOSCygMing() &&
4016 TI
.getPointerWidth(LangAS::Default
) > TI
.getLongWidth())
4017 OffsetFlagsTy
= CGM
.getContext().LongLongTy
;
4018 llvm::Type
*OffsetFlagsLTy
=
4019 CGM
.getTypes().ConvertType(OffsetFlagsTy
);
4021 for (const auto &Base
: RD
->bases()) {
4022 // The __base_type member points to the RTTI for the base type.
4023 Fields
.push_back(ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(Base
.getType()));
4026 cast
<CXXRecordDecl
>(Base
.getType()->castAs
<RecordType
>()->getDecl());
4028 int64_t OffsetFlags
= 0;
4030 // All but the lower 8 bits of __offset_flags are a signed offset.
4031 // For a non-virtual base, this is the offset in the object of the base
4032 // subobject. For a virtual base, this is the offset in the virtual table of
4033 // the virtual base offset for the virtual base referenced (negative).
4035 if (Base
.isVirtual())
4037 CGM
.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD
, BaseDecl
);
4039 const ASTRecordLayout
&Layout
= CGM
.getContext().getASTRecordLayout(RD
);
4040 Offset
= Layout
.getBaseClassOffset(BaseDecl
);
4043 OffsetFlags
= uint64_t(Offset
.getQuantity()) << 8;
4045 // The low-order byte of __offset_flags contains flags, as given by the
4046 // masks from the enumeration __offset_flags_masks.
4047 if (Base
.isVirtual())
4048 OffsetFlags
|= BCTI_Virtual
;
4049 if (Base
.getAccessSpecifier() == AS_public
)
4050 OffsetFlags
|= BCTI_Public
;
4052 Fields
.push_back(llvm::ConstantInt::get(OffsetFlagsLTy
, OffsetFlags
));
4056 /// Compute the flags for a __pbase_type_info, and remove the corresponding
4057 /// pieces from \p Type.
4058 static unsigned extractPBaseFlags(ASTContext
&Ctx
, QualType
&Type
) {
4061 if (Type
.isConstQualified())
4062 Flags
|= ItaniumRTTIBuilder::PTI_Const
;
4063 if (Type
.isVolatileQualified())
4064 Flags
|= ItaniumRTTIBuilder::PTI_Volatile
;
4065 if (Type
.isRestrictQualified())
4066 Flags
|= ItaniumRTTIBuilder::PTI_Restrict
;
4067 Type
= Type
.getUnqualifiedType();
4069 // Itanium C++ ABI 2.9.5p7:
4070 // When the abi::__pbase_type_info is for a direct or indirect pointer to an
4071 // incomplete class type, the incomplete target type flag is set.
4072 if (ContainsIncompleteClassType(Type
))
4073 Flags
|= ItaniumRTTIBuilder::PTI_Incomplete
;
4075 if (auto *Proto
= Type
->getAs
<FunctionProtoType
>()) {
4076 if (Proto
->isNothrow()) {
4077 Flags
|= ItaniumRTTIBuilder::PTI_Noexcept
;
4078 Type
= Ctx
.getFunctionTypeWithExceptionSpec(Type
, EST_None
);
4085 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
4086 /// used for pointer types.
4087 void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy
) {
4088 // Itanium C++ ABI 2.9.5p7:
4089 // __flags is a flag word describing the cv-qualification and other
4090 // attributes of the type pointed to
4091 unsigned Flags
= extractPBaseFlags(CGM
.getContext(), PointeeTy
);
4093 llvm::Type
*UnsignedIntLTy
=
4094 CGM
.getTypes().ConvertType(CGM
.getContext().UnsignedIntTy
);
4095 Fields
.push_back(llvm::ConstantInt::get(UnsignedIntLTy
, Flags
));
4097 // Itanium C++ ABI 2.9.5p7:
4098 // __pointee is a pointer to the std::type_info derivation for the
4099 // unqualified type being pointed to.
4100 llvm::Constant
*PointeeTypeInfo
=
4101 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(PointeeTy
);
4102 Fields
.push_back(PointeeTypeInfo
);
4105 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
4106 /// struct, used for member pointer types.
4108 ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType
*Ty
) {
4109 QualType PointeeTy
= Ty
->getPointeeType();
4111 // Itanium C++ ABI 2.9.5p7:
4112 // __flags is a flag word describing the cv-qualification and other
4113 // attributes of the type pointed to.
4114 unsigned Flags
= extractPBaseFlags(CGM
.getContext(), PointeeTy
);
4116 const RecordType
*ClassType
= cast
<RecordType
>(Ty
->getClass());
4117 if (IsIncompleteClassType(ClassType
))
4118 Flags
|= PTI_ContainingClassIncomplete
;
4120 llvm::Type
*UnsignedIntLTy
=
4121 CGM
.getTypes().ConvertType(CGM
.getContext().UnsignedIntTy
);
4122 Fields
.push_back(llvm::ConstantInt::get(UnsignedIntLTy
, Flags
));
4124 // Itanium C++ ABI 2.9.5p7:
4125 // __pointee is a pointer to the std::type_info derivation for the
4126 // unqualified type being pointed to.
4127 llvm::Constant
*PointeeTypeInfo
=
4128 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(PointeeTy
);
4129 Fields
.push_back(PointeeTypeInfo
);
4131 // Itanium C++ ABI 2.9.5p9:
4132 // __context is a pointer to an abi::__class_type_info corresponding to the
4133 // class type containing the member pointed to
4134 // (e.g., the "A" in "int A::*").
4136 ItaniumRTTIBuilder(CXXABI
).BuildTypeInfo(QualType(ClassType
, 0)));
4139 llvm::Constant
*ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty
) {
4140 return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty
);
4143 void ItaniumCXXABI::EmitFundamentalRTTIDescriptors(const CXXRecordDecl
*RD
) {
4144 // Types added here must also be added to TypeInfoIsInStandardLibrary.
4145 QualType FundamentalTypes
[] = {
4146 getContext().VoidTy
, getContext().NullPtrTy
,
4147 getContext().BoolTy
, getContext().WCharTy
,
4148 getContext().CharTy
, getContext().UnsignedCharTy
,
4149 getContext().SignedCharTy
, getContext().ShortTy
,
4150 getContext().UnsignedShortTy
, getContext().IntTy
,
4151 getContext().UnsignedIntTy
, getContext().LongTy
,
4152 getContext().UnsignedLongTy
, getContext().LongLongTy
,
4153 getContext().UnsignedLongLongTy
, getContext().Int128Ty
,
4154 getContext().UnsignedInt128Ty
, getContext().HalfTy
,
4155 getContext().FloatTy
, getContext().DoubleTy
,
4156 getContext().LongDoubleTy
, getContext().Float128Ty
,
4157 getContext().Char8Ty
, getContext().Char16Ty
,
4158 getContext().Char32Ty
4160 llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass
=
4161 RD
->hasAttr
<DLLExportAttr
>() || CGM
.shouldMapVisibilityToDLLExport(RD
)
4162 ? llvm::GlobalValue::DLLExportStorageClass
4163 : llvm::GlobalValue::DefaultStorageClass
;
4164 llvm::GlobalValue::VisibilityTypes Visibility
=
4165 CodeGenModule::GetLLVMVisibility(RD
->getVisibility());
4166 for (const QualType
&FundamentalType
: FundamentalTypes
) {
4167 QualType PointerType
= getContext().getPointerType(FundamentalType
);
4168 QualType PointerTypeConst
= getContext().getPointerType(
4169 FundamentalType
.withConst());
4170 for (QualType Type
: {FundamentalType
, PointerType
, PointerTypeConst
})
4171 ItaniumRTTIBuilder(*this).BuildTypeInfo(
4172 Type
, llvm::GlobalValue::ExternalLinkage
,
4173 Visibility
, DLLStorageClass
);
4177 /// What sort of uniqueness rules should we use for the RTTI for the
4179 ItaniumCXXABI::RTTIUniquenessKind
ItaniumCXXABI::classifyRTTIUniqueness(
4180 QualType CanTy
, llvm::GlobalValue::LinkageTypes Linkage
) const {
4181 if (shouldRTTIBeUnique())
4184 // It's only necessary for linkonce_odr or weak_odr linkage.
4185 if (Linkage
!= llvm::GlobalValue::LinkOnceODRLinkage
&&
4186 Linkage
!= llvm::GlobalValue::WeakODRLinkage
)
4189 // It's only necessary with default visibility.
4190 if (CanTy
->getVisibility() != DefaultVisibility
)
4193 // If we're not required to publish this symbol, hide it.
4194 if (Linkage
== llvm::GlobalValue::LinkOnceODRLinkage
)
4195 return RUK_NonUniqueHidden
;
4197 // If we're required to publish this symbol, as we might be under an
4198 // explicit instantiation, leave it with default visibility but
4199 // enable string-comparisons.
4200 assert(Linkage
== llvm::GlobalValue::WeakODRLinkage
);
4201 return RUK_NonUniqueVisible
;
4204 // Find out how to codegen the complete destructor and constructor
4206 enum class StructorCodegen
{ Emit
, RAUW
, Alias
, COMDAT
};
4208 static StructorCodegen
getCodegenToUse(CodeGenModule
&CGM
,
4209 const CXXMethodDecl
*MD
) {
4210 if (!CGM
.getCodeGenOpts().CXXCtorDtorAliases
)
4211 return StructorCodegen::Emit
;
4213 // The complete and base structors are not equivalent if there are any virtual
4214 // bases, so emit separate functions.
4215 if (MD
->getParent()->getNumVBases())
4216 return StructorCodegen::Emit
;
4218 GlobalDecl AliasDecl
;
4219 if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(MD
)) {
4220 AliasDecl
= GlobalDecl(DD
, Dtor_Complete
);
4222 const auto *CD
= cast
<CXXConstructorDecl
>(MD
);
4223 AliasDecl
= GlobalDecl(CD
, Ctor_Complete
);
4225 llvm::GlobalValue::LinkageTypes Linkage
= CGM
.getFunctionLinkage(AliasDecl
);
4227 if (llvm::GlobalValue::isDiscardableIfUnused(Linkage
))
4228 return StructorCodegen::RAUW
;
4230 // FIXME: Should we allow available_externally aliases?
4231 if (!llvm::GlobalAlias::isValidLinkage(Linkage
))
4232 return StructorCodegen::RAUW
;
4234 if (llvm::GlobalValue::isWeakForLinker(Linkage
)) {
4235 // Only ELF and wasm support COMDATs with arbitrary names (C5/D5).
4236 if (CGM
.getTarget().getTriple().isOSBinFormatELF() ||
4237 CGM
.getTarget().getTriple().isOSBinFormatWasm())
4238 return StructorCodegen::COMDAT
;
4239 return StructorCodegen::Emit
;
4242 return StructorCodegen::Alias
;
4245 static void emitConstructorDestructorAlias(CodeGenModule
&CGM
,
4246 GlobalDecl AliasDecl
,
4247 GlobalDecl TargetDecl
) {
4248 llvm::GlobalValue::LinkageTypes Linkage
= CGM
.getFunctionLinkage(AliasDecl
);
4250 StringRef MangledName
= CGM
.getMangledName(AliasDecl
);
4251 llvm::GlobalValue
*Entry
= CGM
.GetGlobalValue(MangledName
);
4252 if (Entry
&& !Entry
->isDeclaration())
4255 auto *Aliasee
= cast
<llvm::GlobalValue
>(CGM
.GetAddrOfGlobal(TargetDecl
));
4257 // Create the alias with no name.
4258 auto *Alias
= llvm::GlobalAlias::create(Linkage
, "", Aliasee
);
4260 // Constructors and destructors are always unnamed_addr.
4261 Alias
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
4263 // Switch any previous uses to the alias.
4265 assert(Entry
->getType() == Aliasee
->getType() &&
4266 "declaration exists with different type");
4267 Alias
->takeName(Entry
);
4268 Entry
->replaceAllUsesWith(Alias
);
4269 Entry
->eraseFromParent();
4271 Alias
->setName(MangledName
);
4274 // Finally, set up the alias with its proper name and attributes.
4275 CGM
.SetCommonAttributes(AliasDecl
, Alias
);
4278 void ItaniumCXXABI::emitCXXStructor(GlobalDecl GD
) {
4279 auto *MD
= cast
<CXXMethodDecl
>(GD
.getDecl());
4280 auto *CD
= dyn_cast
<CXXConstructorDecl
>(MD
);
4281 const CXXDestructorDecl
*DD
= CD
? nullptr : cast
<CXXDestructorDecl
>(MD
);
4283 StructorCodegen CGType
= getCodegenToUse(CGM
, MD
);
4285 if (CD
? GD
.getCtorType() == Ctor_Complete
4286 : GD
.getDtorType() == Dtor_Complete
) {
4287 GlobalDecl BaseDecl
;
4289 BaseDecl
= GD
.getWithCtorType(Ctor_Base
);
4291 BaseDecl
= GD
.getWithDtorType(Dtor_Base
);
4293 if (CGType
== StructorCodegen::Alias
|| CGType
== StructorCodegen::COMDAT
) {
4294 emitConstructorDestructorAlias(CGM
, GD
, BaseDecl
);
4298 if (CGType
== StructorCodegen::RAUW
) {
4299 StringRef MangledName
= CGM
.getMangledName(GD
);
4300 auto *Aliasee
= CGM
.GetAddrOfGlobal(BaseDecl
);
4301 CGM
.addReplacement(MangledName
, Aliasee
);
4306 // The base destructor is equivalent to the base destructor of its
4307 // base class if there is exactly one non-virtual base class with a
4308 // non-trivial destructor, there are no fields with a non-trivial
4309 // destructor, and the body of the destructor is trivial.
4310 if (DD
&& GD
.getDtorType() == Dtor_Base
&&
4311 CGType
!= StructorCodegen::COMDAT
&&
4312 !CGM
.TryEmitBaseDestructorAsAlias(DD
))
4315 // FIXME: The deleting destructor is equivalent to the selected operator
4317 // * either the delete is a destroying operator delete or the destructor
4318 // would be trivial if it weren't virtual,
4319 // * the conversion from the 'this' parameter to the first parameter of the
4320 // destructor is equivalent to a bitcast,
4321 // * the destructor does not have an implicit "this" return, and
4322 // * the operator delete has the same calling convention and IR function type
4323 // as the destructor.
4324 // In such cases we should try to emit the deleting dtor as an alias to the
4325 // selected 'operator delete'.
4327 llvm::Function
*Fn
= CGM
.codegenCXXStructor(GD
);
4329 if (CGType
== StructorCodegen::COMDAT
) {
4330 SmallString
<256> Buffer
;
4331 llvm::raw_svector_ostream
Out(Buffer
);
4333 getMangleContext().mangleCXXDtorComdat(DD
, Out
);
4335 getMangleContext().mangleCXXCtorComdat(CD
, Out
);
4336 llvm::Comdat
*C
= CGM
.getModule().getOrInsertComdat(Out
.str());
4339 CGM
.maybeSetTrivialComdat(*MD
, *Fn
);
4343 static llvm::FunctionCallee
getBeginCatchFn(CodeGenModule
&CGM
) {
4344 // void *__cxa_begin_catch(void*);
4345 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
4346 CGM
.Int8PtrTy
, CGM
.Int8PtrTy
, /*isVarArg=*/false);
4348 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_begin_catch");
4351 static llvm::FunctionCallee
getEndCatchFn(CodeGenModule
&CGM
) {
4352 // void __cxa_end_catch();
4353 llvm::FunctionType
*FTy
=
4354 llvm::FunctionType::get(CGM
.VoidTy
, /*isVarArg=*/false);
4356 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_end_catch");
4359 static llvm::FunctionCallee
getGetExceptionPtrFn(CodeGenModule
&CGM
) {
4360 // void *__cxa_get_exception_ptr(void*);
4361 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
4362 CGM
.Int8PtrTy
, CGM
.Int8PtrTy
, /*isVarArg=*/false);
4364 return CGM
.CreateRuntimeFunction(FTy
, "__cxa_get_exception_ptr");
4368 /// A cleanup to call __cxa_end_catch. In many cases, the caught
4369 /// exception type lets us state definitively that the thrown exception
4370 /// type does not have a destructor. In particular:
4371 /// - Catch-alls tell us nothing, so we have to conservatively
4372 /// assume that the thrown exception might have a destructor.
4373 /// - Catches by reference behave according to their base types.
4374 /// - Catches of non-record types will only trigger for exceptions
4375 /// of non-record types, which never have destructors.
4376 /// - Catches of record types can trigger for arbitrary subclasses
4377 /// of the caught type, so we have to assume the actual thrown
4378 /// exception type might have a throwing destructor, even if the
4379 /// caught type's destructor is trivial or nothrow.
4380 struct CallEndCatch final
: EHScopeStack::Cleanup
{
4381 CallEndCatch(bool MightThrow
) : MightThrow(MightThrow
) {}
4384 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
4386 CGF
.EmitNounwindRuntimeCall(getEndCatchFn(CGF
.CGM
));
4390 CGF
.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF
.CGM
));
4395 /// Emits a call to __cxa_begin_catch and enters a cleanup to call
4396 /// __cxa_end_catch.
4398 /// \param EndMightThrow - true if __cxa_end_catch might throw
4399 static llvm::Value
*CallBeginCatch(CodeGenFunction
&CGF
,
4401 bool EndMightThrow
) {
4402 llvm::CallInst
*call
=
4403 CGF
.EmitNounwindRuntimeCall(getBeginCatchFn(CGF
.CGM
), Exn
);
4405 CGF
.EHStack
.pushCleanup
<CallEndCatch
>(NormalAndEHCleanup
, EndMightThrow
);
4410 /// A "special initializer" callback for initializing a catch
4411 /// parameter during catch initialization.
4412 static void InitCatchParam(CodeGenFunction
&CGF
,
4413 const VarDecl
&CatchParam
,
4415 SourceLocation Loc
) {
4416 // Load the exception from where the landing pad saved it.
4417 llvm::Value
*Exn
= CGF
.getExceptionFromSlot();
4419 CanQualType CatchType
=
4420 CGF
.CGM
.getContext().getCanonicalType(CatchParam
.getType());
4421 llvm::Type
*LLVMCatchTy
= CGF
.ConvertTypeForMem(CatchType
);
4423 // If we're catching by reference, we can just cast the object
4424 // pointer to the appropriate pointer.
4425 if (isa
<ReferenceType
>(CatchType
)) {
4426 QualType CaughtType
= cast
<ReferenceType
>(CatchType
)->getPointeeType();
4427 bool EndCatchMightThrow
= CaughtType
->isRecordType();
4429 // __cxa_begin_catch returns the adjusted object pointer.
4430 llvm::Value
*AdjustedExn
= CallBeginCatch(CGF
, Exn
, EndCatchMightThrow
);
4432 // We have no way to tell the personality function that we're
4433 // catching by reference, so if we're catching a pointer,
4434 // __cxa_begin_catch will actually return that pointer by value.
4435 if (const PointerType
*PT
= dyn_cast
<PointerType
>(CaughtType
)) {
4436 QualType PointeeType
= PT
->getPointeeType();
4438 // When catching by reference, generally we should just ignore
4439 // this by-value pointer and use the exception object instead.
4440 if (!PointeeType
->isRecordType()) {
4442 // Exn points to the struct _Unwind_Exception header, which
4443 // we have to skip past in order to reach the exception data.
4444 unsigned HeaderSize
=
4445 CGF
.CGM
.getTargetCodeGenInfo().getSizeOfUnwindException();
4447 CGF
.Builder
.CreateConstGEP1_32(CGF
.Int8Ty
, Exn
, HeaderSize
);
4449 // However, if we're catching a pointer-to-record type that won't
4450 // work, because the personality function might have adjusted
4451 // the pointer. There's actually no way for us to fully satisfy
4452 // the language/ABI contract here: we can't use Exn because it
4453 // might have the wrong adjustment, but we can't use the by-value
4454 // pointer because it's off by a level of abstraction.
4456 // The current solution is to dump the adjusted pointer into an
4457 // alloca, which breaks language semantics (because changing the
4458 // pointer doesn't change the exception) but at least works.
4459 // The better solution would be to filter out non-exact matches
4460 // and rethrow them, but this is tricky because the rethrow
4461 // really needs to be catchable by other sites at this landing
4462 // pad. The best solution is to fix the personality function.
4464 // Pull the pointer for the reference type off.
4465 llvm::Type
*PtrTy
= CGF
.ConvertTypeForMem(CaughtType
);
4467 // Create the temporary and write the adjusted pointer into it.
4469 CGF
.CreateTempAlloca(PtrTy
, CGF
.getPointerAlign(), "exn.byref.tmp");
4470 llvm::Value
*Casted
= CGF
.Builder
.CreateBitCast(AdjustedExn
, PtrTy
);
4471 CGF
.Builder
.CreateStore(Casted
, ExnPtrTmp
);
4473 // Bind the reference to the temporary.
4474 AdjustedExn
= ExnPtrTmp
.getPointer();
4478 llvm::Value
*ExnCast
=
4479 CGF
.Builder
.CreateBitCast(AdjustedExn
, LLVMCatchTy
, "exn.byref");
4480 CGF
.Builder
.CreateStore(ExnCast
, ParamAddr
);
4484 // Scalars and complexes.
4485 TypeEvaluationKind TEK
= CGF
.getEvaluationKind(CatchType
);
4486 if (TEK
!= TEK_Aggregate
) {
4487 llvm::Value
*AdjustedExn
= CallBeginCatch(CGF
, Exn
, false);
4489 // If the catch type is a pointer type, __cxa_begin_catch returns
4490 // the pointer by value.
4491 if (CatchType
->hasPointerRepresentation()) {
4492 llvm::Value
*CastExn
=
4493 CGF
.Builder
.CreateBitCast(AdjustedExn
, LLVMCatchTy
, "exn.casted");
4495 switch (CatchType
.getQualifiers().getObjCLifetime()) {
4496 case Qualifiers::OCL_Strong
:
4497 CastExn
= CGF
.EmitARCRetainNonBlock(CastExn
);
4500 case Qualifiers::OCL_None
:
4501 case Qualifiers::OCL_ExplicitNone
:
4502 case Qualifiers::OCL_Autoreleasing
:
4503 CGF
.Builder
.CreateStore(CastExn
, ParamAddr
);
4506 case Qualifiers::OCL_Weak
:
4507 CGF
.EmitARCInitWeak(ParamAddr
, CastExn
);
4510 llvm_unreachable("bad ownership qualifier!");
4513 // Otherwise, it returns a pointer into the exception object.
4515 LValue srcLV
= CGF
.MakeNaturalAlignAddrLValue(AdjustedExn
, CatchType
);
4516 LValue destLV
= CGF
.MakeAddrLValue(ParamAddr
, CatchType
);
4519 CGF
.EmitStoreOfComplex(CGF
.EmitLoadOfComplex(srcLV
, Loc
), destLV
,
4523 llvm::Value
*ExnLoad
= CGF
.EmitLoadOfScalar(srcLV
, Loc
);
4524 CGF
.EmitStoreOfScalar(ExnLoad
, destLV
, /*init*/ true);
4528 llvm_unreachable("evaluation kind filtered out!");
4530 llvm_unreachable("bad evaluation kind");
4533 assert(isa
<RecordType
>(CatchType
) && "unexpected catch type!");
4534 auto catchRD
= CatchType
->getAsCXXRecordDecl();
4535 CharUnits caughtExnAlignment
= CGF
.CGM
.getClassPointerAlignment(catchRD
);
4538 llvm::PointerType::getUnqual(CGF
.getLLVMContext()); // addrspace 0 ok
4540 // Check for a copy expression. If we don't have a copy expression,
4541 // that means a trivial copy is okay.
4542 const Expr
*copyExpr
= CatchParam
.getInit();
4544 llvm::Value
*rawAdjustedExn
= CallBeginCatch(CGF
, Exn
, true);
4545 Address
adjustedExn(CGF
.Builder
.CreateBitCast(rawAdjustedExn
, PtrTy
),
4546 LLVMCatchTy
, caughtExnAlignment
);
4547 LValue Dest
= CGF
.MakeAddrLValue(ParamAddr
, CatchType
);
4548 LValue Src
= CGF
.MakeAddrLValue(adjustedExn
, CatchType
);
4549 CGF
.EmitAggregateCopy(Dest
, Src
, CatchType
, AggValueSlot::DoesNotOverlap
);
4553 // We have to call __cxa_get_exception_ptr to get the adjusted
4554 // pointer before copying.
4555 llvm::CallInst
*rawAdjustedExn
=
4556 CGF
.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF
.CGM
), Exn
);
4558 // Cast that to the appropriate type.
4559 Address
adjustedExn(CGF
.Builder
.CreateBitCast(rawAdjustedExn
, PtrTy
),
4560 LLVMCatchTy
, caughtExnAlignment
);
4562 // The copy expression is defined in terms of an OpaqueValueExpr.
4563 // Find it and map it to the adjusted expression.
4564 CodeGenFunction::OpaqueValueMapping
4565 opaque(CGF
, OpaqueValueExpr::findInCopyConstruct(copyExpr
),
4566 CGF
.MakeAddrLValue(adjustedExn
, CatchParam
.getType()));
4568 // Call the copy ctor in a terminate scope.
4569 CGF
.EHStack
.pushTerminate();
4571 // Perform the copy construction.
4572 CGF
.EmitAggExpr(copyExpr
,
4573 AggValueSlot::forAddr(ParamAddr
, Qualifiers(),
4574 AggValueSlot::IsNotDestructed
,
4575 AggValueSlot::DoesNotNeedGCBarriers
,
4576 AggValueSlot::IsNotAliased
,
4577 AggValueSlot::DoesNotOverlap
));
4579 // Leave the terminate scope.
4580 CGF
.EHStack
.popTerminate();
4582 // Undo the opaque value mapping.
4585 // Finally we can call __cxa_begin_catch.
4586 CallBeginCatch(CGF
, Exn
, true);
4589 /// Begins a catch statement by initializing the catch variable and
4590 /// calling __cxa_begin_catch.
4591 void ItaniumCXXABI::emitBeginCatch(CodeGenFunction
&CGF
,
4592 const CXXCatchStmt
*S
) {
4593 // We have to be very careful with the ordering of cleanups here:
4594 // C++ [except.throw]p4:
4595 // The destruction [of the exception temporary] occurs
4596 // immediately after the destruction of the object declared in
4597 // the exception-declaration in the handler.
4599 // So the precise ordering is:
4600 // 1. Construct catch variable.
4601 // 2. __cxa_begin_catch
4602 // 3. Enter __cxa_end_catch cleanup
4603 // 4. Enter dtor cleanup
4605 // We do this by using a slightly abnormal initialization process.
4606 // Delegation sequence:
4607 // - ExitCXXTryStmt opens a RunCleanupsScope
4608 // - EmitAutoVarAlloca creates the variable and debug info
4609 // - InitCatchParam initializes the variable from the exception
4610 // - CallBeginCatch calls __cxa_begin_catch
4611 // - CallBeginCatch enters the __cxa_end_catch cleanup
4612 // - EmitAutoVarCleanups enters the variable destructor cleanup
4613 // - EmitCXXTryStmt emits the code for the catch body
4614 // - EmitCXXTryStmt close the RunCleanupsScope
4616 VarDecl
*CatchParam
= S
->getExceptionDecl();
4618 llvm::Value
*Exn
= CGF
.getExceptionFromSlot();
4619 CallBeginCatch(CGF
, Exn
, true);
4624 CodeGenFunction::AutoVarEmission var
= CGF
.EmitAutoVarAlloca(*CatchParam
);
4625 InitCatchParam(CGF
, *CatchParam
, var
.getObjectAddress(CGF
), S
->getBeginLoc());
4626 CGF
.EmitAutoVarCleanups(var
);
4629 /// Get or define the following function:
4630 /// void @__clang_call_terminate(i8* %exn) nounwind noreturn
4631 /// This code is used only in C++.
4632 static llvm::FunctionCallee
getClangCallTerminateFn(CodeGenModule
&CGM
) {
4633 ASTContext
&C
= CGM
.getContext();
4634 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeBuiltinFunctionDeclaration(
4635 C
.VoidTy
, {C
.getPointerType(C
.CharTy
)});
4636 llvm::FunctionType
*fnTy
= CGM
.getTypes().GetFunctionType(FI
);
4637 llvm::FunctionCallee fnRef
= CGM
.CreateRuntimeFunction(
4638 fnTy
, "__clang_call_terminate", llvm::AttributeList(), /*Local=*/true);
4639 llvm::Function
*fn
=
4640 cast
<llvm::Function
>(fnRef
.getCallee()->stripPointerCasts());
4642 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
, fn
, /*IsThunk=*/false);
4643 CGM
.SetLLVMFunctionAttributesForDefinition(nullptr, fn
);
4644 fn
->setDoesNotThrow();
4645 fn
->setDoesNotReturn();
4647 // What we really want is to massively penalize inlining without
4648 // forbidding it completely. The difference between that and
4649 // 'noinline' is negligible.
4650 fn
->addFnAttr(llvm::Attribute::NoInline
);
4652 // Allow this function to be shared across translation units, but
4653 // we don't want it to turn into an exported symbol.
4654 fn
->setLinkage(llvm::Function::LinkOnceODRLinkage
);
4655 fn
->setVisibility(llvm::Function::HiddenVisibility
);
4656 if (CGM
.supportsCOMDAT())
4657 fn
->setComdat(CGM
.getModule().getOrInsertComdat(fn
->getName()));
4659 // Set up the function.
4660 llvm::BasicBlock
*entry
=
4661 llvm::BasicBlock::Create(CGM
.getLLVMContext(), "", fn
);
4662 CGBuilderTy
builder(CGM
, entry
);
4664 // Pull the exception pointer out of the parameter list.
4665 llvm::Value
*exn
= &*fn
->arg_begin();
4667 // Call __cxa_begin_catch(exn).
4668 llvm::CallInst
*catchCall
= builder
.CreateCall(getBeginCatchFn(CGM
), exn
);
4669 catchCall
->setDoesNotThrow();
4670 catchCall
->setCallingConv(CGM
.getRuntimeCC());
4672 // Call std::terminate().
4673 llvm::CallInst
*termCall
= builder
.CreateCall(CGM
.getTerminateFn());
4674 termCall
->setDoesNotThrow();
4675 termCall
->setDoesNotReturn();
4676 termCall
->setCallingConv(CGM
.getRuntimeCC());
4678 // std::terminate cannot return.
4679 builder
.CreateUnreachable();
4685 ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction
&CGF
,
4687 // In C++, we want to call __cxa_begin_catch() before terminating.
4689 assert(CGF
.CGM
.getLangOpts().CPlusPlus
);
4690 return CGF
.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF
.CGM
), Exn
);
4692 return CGF
.EmitNounwindRuntimeCall(CGF
.CGM
.getTerminateFn());
4695 std::pair
<llvm::Value
*, const CXXRecordDecl
*>
4696 ItaniumCXXABI::LoadVTablePtr(CodeGenFunction
&CGF
, Address This
,
4697 const CXXRecordDecl
*RD
) {
4698 return {CGF
.GetVTablePtr(This
, CGM
.Int8PtrTy
, RD
), RD
};
4701 void WebAssemblyCXXABI::emitBeginCatch(CodeGenFunction
&CGF
,
4702 const CXXCatchStmt
*C
) {
4703 if (CGF
.getTarget().hasFeature("exception-handling"))
4704 CGF
.EHStack
.pushCleanup
<CatchRetScope
>(
4705 NormalCleanup
, cast
<llvm::CatchPadInst
>(CGF
.CurrentFuncletPad
));
4706 ItaniumCXXABI::emitBeginCatch(CGF
, C
);
4710 WebAssemblyCXXABI::emitTerminateForUnexpectedException(CodeGenFunction
&CGF
,
4712 // Itanium ABI calls __clang_call_terminate(), which __cxa_begin_catch() on
4713 // the violating exception to mark it handled, but it is currently hard to do
4714 // with wasm EH instruction structure with catch/catch_all, we just call
4715 // std::terminate and ignore the violating exception as in CGCXXABI.
4716 // TODO Consider code transformation that makes calling __clang_call_terminate
4718 return CGCXXABI::emitTerminateForUnexpectedException(CGF
, Exn
);
4721 /// Register a global destructor as best as we know how.
4722 void XLCXXABI::registerGlobalDtor(CodeGenFunction
&CGF
, const VarDecl
&D
,
4723 llvm::FunctionCallee Dtor
,
4724 llvm::Constant
*Addr
) {
4725 if (D
.getTLSKind() != VarDecl::TLS_None
) {
4726 llvm::PointerType
*PtrTy
=
4727 llvm::PointerType::getUnqual(CGF
.getLLVMContext());
4729 // extern "C" int __pt_atexit_np(int flags, int(*)(int,...), ...);
4730 llvm::FunctionType
*AtExitTy
=
4731 llvm::FunctionType::get(CGM
.IntTy
, {CGM
.IntTy
, PtrTy
}, true);
4733 // Fetch the actual function.
4734 llvm::FunctionCallee AtExit
=
4735 CGM
.CreateRuntimeFunction(AtExitTy
, "__pt_atexit_np");
4737 // Create __dtor function for the var decl.
4738 llvm::Function
*DtorStub
= CGF
.createTLSAtExitStub(D
, Dtor
, Addr
, AtExit
);
4740 // Register above __dtor with atexit().
4741 // First param is flags and must be 0, second param is function ptr
4742 llvm::Value
*NV
= llvm::Constant::getNullValue(CGM
.IntTy
);
4743 CGF
.EmitNounwindRuntimeCall(AtExit
, {NV
, DtorStub
});
4745 // Cannot unregister TLS __dtor so done
4749 // Create __dtor function for the var decl.
4750 llvm::Function
*DtorStub
= CGF
.createAtExitStub(D
, Dtor
, Addr
);
4752 // Register above __dtor with atexit().
4753 CGF
.registerGlobalDtorWithAtExit(DtorStub
);
4755 // Emit __finalize function to unregister __dtor and (as appropriate) call
4757 emitCXXStermFinalizer(D
, DtorStub
, Addr
);
4760 void XLCXXABI::emitCXXStermFinalizer(const VarDecl
&D
, llvm::Function
*dtorStub
,
4761 llvm::Constant
*addr
) {
4762 llvm::FunctionType
*FTy
= llvm::FunctionType::get(CGM
.VoidTy
, false);
4763 SmallString
<256> FnName
;
4765 llvm::raw_svector_ostream
Out(FnName
);
4766 getMangleContext().mangleDynamicStermFinalizer(&D
, Out
);
4769 // Create the finalization action associated with a variable.
4770 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeNullaryFunction();
4771 llvm::Function
*StermFinalizer
= CGM
.CreateGlobalInitOrCleanUpFunction(
4772 FTy
, FnName
.str(), FI
, D
.getLocation());
4774 CodeGenFunction
CGF(CGM
);
4776 CGF
.StartFunction(GlobalDecl(), CGM
.getContext().VoidTy
, StermFinalizer
, FI
,
4777 FunctionArgList(), D
.getLocation(),
4778 D
.getInit()->getExprLoc());
4780 // The unatexit subroutine unregisters __dtor functions that were previously
4781 // registered by the atexit subroutine. If the referenced function is found,
4782 // the unatexit returns a value of 0, meaning that the cleanup is still
4783 // pending (and we should call the __dtor function).
4784 llvm::Value
*V
= CGF
.unregisterGlobalDtorWithUnAtExit(dtorStub
);
4786 llvm::Value
*NeedsDestruct
= CGF
.Builder
.CreateIsNull(V
, "needs_destruct");
4788 llvm::BasicBlock
*DestructCallBlock
= CGF
.createBasicBlock("destruct.call");
4789 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("destruct.end");
4791 // Check if unatexit returns a value of 0. If it does, jump to
4792 // DestructCallBlock, otherwise jump to EndBlock directly.
4793 CGF
.Builder
.CreateCondBr(NeedsDestruct
, DestructCallBlock
, EndBlock
);
4795 CGF
.EmitBlock(DestructCallBlock
);
4797 // Emit the call to dtorStub.
4798 llvm::CallInst
*CI
= CGF
.Builder
.CreateCall(dtorStub
);
4800 // Make sure the call and the callee agree on calling convention.
4801 CI
->setCallingConv(dtorStub
->getCallingConv());
4803 CGF
.EmitBlock(EndBlock
);
4805 CGF
.FinishFunction();
4807 if (auto *IPA
= D
.getAttr
<InitPriorityAttr
>()) {
4808 CGM
.AddCXXPrioritizedStermFinalizerEntry(StermFinalizer
,
4809 IPA
->getPriority());
4810 } else if (isTemplateInstantiation(D
.getTemplateSpecializationKind()) ||
4811 getContext().GetGVALinkageForVariable(&D
) == GVA_DiscardableODR
) {
4812 // According to C++ [basic.start.init]p2, class template static data
4813 // members (i.e., implicitly or explicitly instantiated specializations)
4814 // have unordered initialization. As a consequence, we can put them into
4815 // their own llvm.global_dtors entry.
4816 CGM
.AddCXXStermFinalizerToGlobalDtor(StermFinalizer
, 65535);
4818 CGM
.AddCXXStermFinalizerEntry(StermFinalizer
);