[flang] Support OPEN(..., FORM="BINARY") (#124657)
[llvm-project.git] / lld / COFF / Chunks.cpp
bloba01c69c709876b37e4983495f761a0ceb95ba328
1 //===- Chunks.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Chunks.h"
10 #include "COFFLinkerContext.h"
11 #include "InputFiles.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "Writer.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/BinaryFormat/COFF.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <algorithm>
24 #include <iterator>
26 using namespace llvm;
27 using namespace llvm::object;
28 using namespace llvm::support;
29 using namespace llvm::support::endian;
30 using namespace llvm::COFF;
31 using llvm::support::ulittle32_t;
33 namespace lld::coff {
35 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h, Kind k)
36 : Chunk(k), file(f), header(h), repl(this) {
37 // Initialize relocs.
38 if (file)
39 setRelocs(file->getCOFFObj()->getRelocations(header));
41 // Initialize sectionName.
42 StringRef sectionName;
43 if (file) {
44 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header))
45 sectionName = *e;
47 sectionNameData = sectionName.data();
48 sectionNameSize = sectionName.size();
50 setAlignment(header->getAlignment());
52 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
54 // If linker GC is disabled, every chunk starts out alive. If linker GC is
55 // enabled, treat non-comdat sections as roots. Generally optimized object
56 // files will be built with -ffunction-sections or /Gy, so most things worth
57 // stripping will be in a comdat.
58 if (file)
59 live = !file->symtab.ctx.config.doGC || !isCOMDAT();
60 else
61 live = true;
64 // SectionChunk is one of the most frequently allocated classes, so it is
65 // important to keep it as compact as possible. As of this writing, the number
66 // below is the size of this class on x64 platforms.
67 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly");
69 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); }
70 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); }
71 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); }
72 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); }
73 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); }
75 // Verify that given sections are appropriate targets for SECREL
76 // relocations. This check is relaxed because unfortunately debug
77 // sections have section-relative relocations against absolute symbols.
78 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) {
79 if (os)
80 return true;
81 if (sec->isCodeView())
82 return false;
83 error("SECREL relocation cannot be applied to absolute symbols");
84 return false;
87 static void applySecRel(const SectionChunk *sec, uint8_t *off,
88 OutputSection *os, uint64_t s) {
89 if (!checkSecRel(sec, os))
90 return;
91 uint64_t secRel = s - os->getRVA();
92 if (secRel > UINT32_MAX) {
93 error("overflow in SECREL relocation in section: " + sec->getSectionName());
94 return;
96 add32(off, secRel);
99 static void applySecIdx(uint8_t *off, OutputSection *os,
100 unsigned numOutputSections) {
101 // numOutputSections is the largest valid section index. Make sure that
102 // it fits in 16 bits.
103 assert(numOutputSections <= 0xffff && "size of outputSections is too big");
105 // Absolute symbol doesn't have section index, but section index relocation
106 // against absolute symbol should be resolved to one plus the last output
107 // section index. This is required for compatibility with MSVC.
108 if (os)
109 add16(off, os->sectionIndex);
110 else
111 add16(off, numOutputSections + 1);
114 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os,
115 uint64_t s, uint64_t p,
116 uint64_t imageBase) const {
117 switch (type) {
118 case IMAGE_REL_AMD64_ADDR32:
119 add32(off, s + imageBase);
120 break;
121 case IMAGE_REL_AMD64_ADDR64:
122 add64(off, s + imageBase);
123 break;
124 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break;
125 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break;
126 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break;
127 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break;
128 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break;
129 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break;
130 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break;
131 case IMAGE_REL_AMD64_SECTION:
132 applySecIdx(off, os, file->symtab.ctx.outputSections.size());
133 break;
134 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break;
135 default:
136 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
137 toString(file));
141 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os,
142 uint64_t s, uint64_t p,
143 uint64_t imageBase) const {
144 switch (type) {
145 case IMAGE_REL_I386_ABSOLUTE: break;
146 case IMAGE_REL_I386_DIR32:
147 add32(off, s + imageBase);
148 break;
149 case IMAGE_REL_I386_DIR32NB: add32(off, s); break;
150 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break;
151 case IMAGE_REL_I386_SECTION:
152 applySecIdx(off, os, file->symtab.ctx.outputSections.size());
153 break;
154 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break;
155 default:
156 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
157 toString(file));
161 static void applyMOV(uint8_t *off, uint16_t v) {
162 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf));
163 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff));
166 static uint16_t readMOV(uint8_t *off, bool movt) {
167 uint16_t op1 = read16le(off);
168 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240))
169 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
170 " instruction in MOV32T relocation");
171 uint16_t op2 = read16le(off + 2);
172 if ((op2 & 0x8000) != 0)
173 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
174 " instruction in MOV32T relocation");
175 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) |
176 ((op1 & 0x000f) << 12);
179 void applyMOV32T(uint8_t *off, uint32_t v) {
180 uint16_t immW = readMOV(off, false); // read MOVW operand
181 uint16_t immT = readMOV(off + 4, true); // read MOVT operand
182 uint32_t imm = immW | (immT << 16);
183 v += imm; // add the immediate offset
184 applyMOV(off, v); // set MOVW operand
185 applyMOV(off + 4, v >> 16); // set MOVT operand
188 static void applyBranch20T(uint8_t *off, int32_t v) {
189 if (!isInt<21>(v))
190 error("relocation out of range");
191 uint32_t s = v < 0 ? 1 : 0;
192 uint32_t j1 = (v >> 19) & 1;
193 uint32_t j2 = (v >> 18) & 1;
194 or16(off, (s << 10) | ((v >> 12) & 0x3f));
195 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
198 void applyBranch24T(uint8_t *off, int32_t v) {
199 if (!isInt<25>(v))
200 error("relocation out of range");
201 uint32_t s = v < 0 ? 1 : 0;
202 uint32_t j1 = ((~v >> 23) & 1) ^ s;
203 uint32_t j2 = ((~v >> 22) & 1) ^ s;
204 or16(off, (s << 10) | ((v >> 12) & 0x3ff));
205 // Clear out the J1 and J2 bits which may be set.
206 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
209 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os,
210 uint64_t s, uint64_t p,
211 uint64_t imageBase) const {
212 // Pointer to thumb code must have the LSB set.
213 uint64_t sx = s;
214 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE))
215 sx |= 1;
216 switch (type) {
217 case IMAGE_REL_ARM_ADDR32:
218 add32(off, sx + imageBase);
219 break;
220 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break;
221 case IMAGE_REL_ARM_MOV32T:
222 applyMOV32T(off, sx + imageBase);
223 break;
224 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break;
225 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break;
226 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break;
227 case IMAGE_REL_ARM_SECTION:
228 applySecIdx(off, os, file->symtab.ctx.outputSections.size());
229 break;
230 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break;
231 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break;
232 default:
233 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
234 toString(file));
238 // Interpret the existing immediate value as a byte offset to the
239 // target symbol, then update the instruction with the immediate as
240 // the page offset from the current instruction to the target.
241 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) {
242 uint32_t orig = read32le(off);
243 int64_t imm =
244 SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC));
245 s += imm;
246 imm = (s >> shift) - (p >> shift);
247 uint32_t immLo = (imm & 0x3) << 29;
248 uint32_t immHi = (imm & 0x1FFFFC) << 3;
249 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
250 write32le(off, (orig & ~mask) | immLo | immHi);
253 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
254 // Optionally limit the range of the written immediate by one or more bits
255 // (rangeLimit).
256 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) {
257 uint32_t orig = read32le(off);
258 imm += (orig >> 10) & 0xFFF;
259 orig &= ~(0xFFF << 10);
260 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10));
263 // Add the 12 bit page offset to the existing immediate.
264 // Ldr/str instructions store the opcode immediate scaled
265 // by the load/store size (giving a larger range for larger
266 // loads/stores). The immediate is always (both before and after
267 // fixing up the relocation) stored scaled similarly.
268 // Even if larger loads/stores have a larger range, limit the
269 // effective offset to 12 bit, since it is intended to be a
270 // page offset.
271 static void applyArm64Ldr(uint8_t *off, uint64_t imm) {
272 uint32_t orig = read32le(off);
273 uint32_t size = orig >> 30;
274 // 0x04000000 indicates SIMD/FP registers
275 // 0x00800000 indicates 128 bit
276 if ((orig & 0x4800000) == 0x4800000)
277 size += 4;
278 if ((imm & ((1 << size) - 1)) != 0)
279 error("misaligned ldr/str offset");
280 applyArm64Imm(off, imm >> size, size);
283 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off,
284 OutputSection *os, uint64_t s) {
285 if (checkSecRel(sec, os))
286 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0);
289 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off,
290 OutputSection *os, uint64_t s) {
291 if (!checkSecRel(sec, os))
292 return;
293 uint64_t secRel = (s - os->getRVA()) >> 12;
294 if (0xfff < secRel) {
295 error("overflow in SECREL_HIGH12A relocation in section: " +
296 sec->getSectionName());
297 return;
299 applyArm64Imm(off, secRel & 0xfff, 0);
302 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off,
303 OutputSection *os, uint64_t s) {
304 if (checkSecRel(sec, os))
305 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff);
308 void applyArm64Branch26(uint8_t *off, int64_t v) {
309 if (!isInt<28>(v))
310 error("relocation out of range");
311 or32(off, (v & 0x0FFFFFFC) >> 2);
314 static void applyArm64Branch19(uint8_t *off, int64_t v) {
315 if (!isInt<21>(v))
316 error("relocation out of range");
317 or32(off, (v & 0x001FFFFC) << 3);
320 static void applyArm64Branch14(uint8_t *off, int64_t v) {
321 if (!isInt<16>(v))
322 error("relocation out of range");
323 or32(off, (v & 0x0000FFFC) << 3);
326 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os,
327 uint64_t s, uint64_t p,
328 uint64_t imageBase) const {
329 switch (type) {
330 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break;
331 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break;
332 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break;
333 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break;
334 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break;
335 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break;
336 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break;
337 case IMAGE_REL_ARM64_ADDR32:
338 add32(off, s + imageBase);
339 break;
340 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break;
341 case IMAGE_REL_ARM64_ADDR64:
342 add64(off, s + imageBase);
343 break;
344 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break;
345 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break;
346 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break;
347 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break;
348 case IMAGE_REL_ARM64_SECTION:
349 applySecIdx(off, os, file->symtab.ctx.outputSections.size());
350 break;
351 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break;
352 default:
353 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
354 toString(file));
358 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk,
359 Defined *sym,
360 const coff_relocation &rel,
361 bool isMinGW) {
362 // Don't report these errors when the relocation comes from a debug info
363 // section or in mingw mode. MinGW mode object files (built by GCC) can
364 // have leftover sections with relocations against discarded comdat
365 // sections. Such sections are left as is, with relocations untouched.
366 if (fromChunk->isCodeView() || fromChunk->isDWARF() || isMinGW)
367 return;
369 // Get the name of the symbol. If it's null, it was discarded early, so we
370 // have to go back to the object file.
371 ObjFile *file = fromChunk->file;
372 std::string name;
373 if (sym) {
374 name = toString(file->symtab.ctx, *sym);
375 } else {
376 COFFSymbolRef coffSym =
377 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex));
378 name = maybeDemangleSymbol(
379 file->symtab.ctx, check(file->getCOFFObj()->getSymbolName(coffSym)));
382 std::vector<std::string> symbolLocations =
383 getSymbolLocations(file, rel.SymbolTableIndex);
385 std::string out;
386 llvm::raw_string_ostream os(out);
387 os << "relocation against symbol in discarded section: " + name;
388 for (const std::string &s : symbolLocations)
389 os << s;
390 error(out);
393 void SectionChunk::writeTo(uint8_t *buf) const {
394 if (!hasData)
395 return;
396 // Copy section contents from source object file to output file.
397 ArrayRef<uint8_t> a = getContents();
398 if (!a.empty())
399 memcpy(buf, a.data(), a.size());
401 // Apply relocations.
402 size_t inputSize = getSize();
403 for (const coff_relocation &rel : getRelocs()) {
404 // Check for an invalid relocation offset. This check isn't perfect, because
405 // we don't have the relocation size, which is only known after checking the
406 // machine and relocation type. As a result, a relocation may overwrite the
407 // beginning of the following input section.
408 if (rel.VirtualAddress >= inputSize) {
409 error("relocation points beyond the end of its parent section");
410 continue;
413 applyRelocation(buf + rel.VirtualAddress, rel);
416 // Write the offset to EC entry thunk preceding section contents. The low bit
417 // is always set, so it's effectively an offset from the last byte of the
418 // offset.
419 if (Defined *entryThunk = getEntryThunk())
420 write32le(buf - sizeof(uint32_t), entryThunk->getRVA() - rva + 1);
423 void SectionChunk::applyRelocation(uint8_t *off,
424 const coff_relocation &rel) const {
425 auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
427 // Get the output section of the symbol for this relocation. The output
428 // section is needed to compute SECREL and SECTION relocations used in debug
429 // info.
430 Chunk *c = sym ? sym->getChunk() : nullptr;
431 COFFLinkerContext &ctx = file->symtab.ctx;
432 OutputSection *os = c ? ctx.getOutputSection(c) : nullptr;
434 // Skip the relocation if it refers to a discarded section, and diagnose it
435 // as an error if appropriate. If a symbol was discarded early, it may be
436 // null. If it was discarded late, the output section will be null, unless
437 // it was an absolute or synthetic symbol.
438 if (!sym ||
439 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) {
440 maybeReportRelocationToDiscarded(this, sym, rel, ctx.config.mingw);
441 return;
444 uint64_t s = sym->getRVA();
446 // Compute the RVA of the relocation for relative relocations.
447 uint64_t p = rva + rel.VirtualAddress;
448 uint64_t imageBase = ctx.config.imageBase;
449 switch (getArch()) {
450 case Triple::x86_64:
451 applyRelX64(off, rel.Type, os, s, p, imageBase);
452 break;
453 case Triple::x86:
454 applyRelX86(off, rel.Type, os, s, p, imageBase);
455 break;
456 case Triple::thumb:
457 applyRelARM(off, rel.Type, os, s, p, imageBase);
458 break;
459 case Triple::aarch64:
460 applyRelARM64(off, rel.Type, os, s, p, imageBase);
461 break;
462 default:
463 llvm_unreachable("unknown machine type");
467 // Defend against unsorted relocations. This may be overly conservative.
468 void SectionChunk::sortRelocations() {
469 auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) {
470 return l.VirtualAddress < r.VirtualAddress;
472 if (llvm::is_sorted(getRelocs(), cmpByVa))
473 return;
474 warn("some relocations in " + file->getName() + " are not sorted");
475 MutableArrayRef<coff_relocation> newRelocs(
476 bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize);
477 memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation));
478 llvm::sort(newRelocs, cmpByVa);
479 setRelocs(newRelocs);
482 // Similar to writeTo, but suitable for relocating a subsection of the overall
483 // section.
484 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec,
485 ArrayRef<uint8_t> subsec,
486 uint32_t &nextRelocIndex,
487 uint8_t *buf) const {
488 assert(!subsec.empty() && !sec.empty());
489 assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() &&
490 "subsection is not part of this section");
491 size_t vaBegin = std::distance(sec.begin(), subsec.begin());
492 size_t vaEnd = std::distance(sec.begin(), subsec.end());
493 memcpy(buf, subsec.data(), subsec.size());
494 for (; nextRelocIndex < relocsSize; ++nextRelocIndex) {
495 const coff_relocation &rel = relocsData[nextRelocIndex];
496 // Only apply relocations that apply to this subsection. These checks
497 // assume that all subsections completely contain their relocations.
498 // Relocations must not straddle the beginning or end of a subsection.
499 if (rel.VirtualAddress < vaBegin)
500 continue;
501 if (rel.VirtualAddress + 1 >= vaEnd)
502 break;
503 applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel);
507 void SectionChunk::addAssociative(SectionChunk *child) {
508 // Insert the child section into the list of associated children. Keep the
509 // list ordered by section name so that ICF does not depend on section order.
510 assert(child->assocChildren == nullptr &&
511 "associated sections cannot have their own associated children");
512 SectionChunk *prev = this;
513 SectionChunk *next = assocChildren;
514 for (; next != nullptr; prev = next, next = next->assocChildren) {
515 if (next->getSectionName() <= child->getSectionName())
516 break;
519 // Insert child between prev and next.
520 assert(prev->assocChildren == next);
521 prev->assocChildren = child;
522 child->assocChildren = next;
525 static uint8_t getBaserelType(const coff_relocation &rel,
526 Triple::ArchType arch) {
527 switch (arch) {
528 case Triple::x86_64:
529 if (rel.Type == IMAGE_REL_AMD64_ADDR64)
530 return IMAGE_REL_BASED_DIR64;
531 if (rel.Type == IMAGE_REL_AMD64_ADDR32)
532 return IMAGE_REL_BASED_HIGHLOW;
533 return IMAGE_REL_BASED_ABSOLUTE;
534 case Triple::x86:
535 if (rel.Type == IMAGE_REL_I386_DIR32)
536 return IMAGE_REL_BASED_HIGHLOW;
537 return IMAGE_REL_BASED_ABSOLUTE;
538 case Triple::thumb:
539 if (rel.Type == IMAGE_REL_ARM_ADDR32)
540 return IMAGE_REL_BASED_HIGHLOW;
541 if (rel.Type == IMAGE_REL_ARM_MOV32T)
542 return IMAGE_REL_BASED_ARM_MOV32T;
543 return IMAGE_REL_BASED_ABSOLUTE;
544 case Triple::aarch64:
545 if (rel.Type == IMAGE_REL_ARM64_ADDR64)
546 return IMAGE_REL_BASED_DIR64;
547 return IMAGE_REL_BASED_ABSOLUTE;
548 default:
549 llvm_unreachable("unknown machine type");
553 // Windows-specific.
554 // Collect all locations that contain absolute addresses, which need to be
555 // fixed by the loader if load-time relocation is needed.
556 // Only called when base relocation is enabled.
557 void SectionChunk::getBaserels(std::vector<Baserel> *res) {
558 for (const coff_relocation &rel : getRelocs()) {
559 uint8_t ty = getBaserelType(rel, getArch());
560 if (ty == IMAGE_REL_BASED_ABSOLUTE)
561 continue;
562 Symbol *target = file->getSymbol(rel.SymbolTableIndex);
563 if (!target || isa<DefinedAbsolute>(target))
564 continue;
565 res->emplace_back(rva + rel.VirtualAddress, ty);
568 // Insert a 64-bit relocation for CHPEMetadataPointer in the native load
569 // config of a hybrid ARM64X image. Its value will be set in prepareLoadConfig
570 // to match the value in the EC load config, which is expected to be
571 // a relocatable pointer to the __chpe_metadata symbol.
572 COFFLinkerContext &ctx = file->symtab.ctx;
573 if (ctx.hybridSymtab && ctx.symtab.loadConfigSym &&
574 ctx.symtab.loadConfigSym->getChunk() == this &&
575 ctx.hybridSymtab->loadConfigSym &&
576 ctx.symtab.loadConfigSize >=
577 offsetof(coff_load_configuration64, CHPEMetadataPointer) +
578 sizeof(coff_load_configuration64::CHPEMetadataPointer))
579 res->emplace_back(
580 ctx.symtab.loadConfigSym->getRVA() +
581 offsetof(coff_load_configuration64, CHPEMetadataPointer),
582 IMAGE_REL_BASED_DIR64);
585 // MinGW specific.
586 // Check whether a static relocation of type Type can be deferred and
587 // handled at runtime as a pseudo relocation (for references to a module
588 // local variable, which turned out to actually need to be imported from
589 // another DLL) This returns the size the relocation is supposed to update,
590 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo
591 // relocation.
592 static int getRuntimePseudoRelocSize(uint16_t type, Triple::ArchType arch) {
593 // Relocations that either contain an absolute address, or a plain
594 // relative offset, since the runtime pseudo reloc implementation
595 // adds 8/16/32/64 bit values to a memory address.
597 // Given a pseudo relocation entry,
599 // typedef struct {
600 // DWORD sym;
601 // DWORD target;
602 // DWORD flags;
603 // } runtime_pseudo_reloc_item_v2;
605 // the runtime relocation performs this adjustment:
606 // *(base + .target) += *(base + .sym) - (base + .sym)
608 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
609 // IMAGE_REL_I386_DIR32, where the memory location initially contains
610 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
611 // where the memory location originally contains the relative offset to the
612 // IAT slot.
614 // This requires the target address to be writable, either directly out of
615 // the image, or temporarily changed at runtime with VirtualProtect.
616 // Since this only operates on direct address values, it doesn't work for
617 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
618 switch (arch) {
619 case Triple::x86_64:
620 switch (type) {
621 case IMAGE_REL_AMD64_ADDR64:
622 return 64;
623 case IMAGE_REL_AMD64_ADDR32:
624 case IMAGE_REL_AMD64_REL32:
625 case IMAGE_REL_AMD64_REL32_1:
626 case IMAGE_REL_AMD64_REL32_2:
627 case IMAGE_REL_AMD64_REL32_3:
628 case IMAGE_REL_AMD64_REL32_4:
629 case IMAGE_REL_AMD64_REL32_5:
630 return 32;
631 default:
632 return 0;
634 case Triple::x86:
635 switch (type) {
636 case IMAGE_REL_I386_DIR32:
637 case IMAGE_REL_I386_REL32:
638 return 32;
639 default:
640 return 0;
642 case Triple::thumb:
643 switch (type) {
644 case IMAGE_REL_ARM_ADDR32:
645 return 32;
646 default:
647 return 0;
649 case Triple::aarch64:
650 switch (type) {
651 case IMAGE_REL_ARM64_ADDR64:
652 return 64;
653 case IMAGE_REL_ARM64_ADDR32:
654 return 32;
655 default:
656 return 0;
658 default:
659 llvm_unreachable("unknown machine type");
663 // MinGW specific.
664 // Append information to the provided vector about all relocations that
665 // need to be handled at runtime as runtime pseudo relocations (references
666 // to a module local variable, which turned out to actually need to be
667 // imported from another DLL).
668 void SectionChunk::getRuntimePseudoRelocs(
669 std::vector<RuntimePseudoReloc> &res) {
670 for (const coff_relocation &rel : getRelocs()) {
671 auto *target =
672 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
673 if (!target || !target->isRuntimePseudoReloc)
674 continue;
675 // If the target doesn't have a chunk allocated, it may be a
676 // DefinedImportData symbol which ended up unnecessary after GC.
677 // Normally we wouldn't eliminate section chunks that are referenced, but
678 // references within DWARF sections don't count for keeping section chunks
679 // alive. Thus such dangling references in DWARF sections are expected.
680 if (!target->getChunk())
681 continue;
682 int sizeInBits = getRuntimePseudoRelocSize(rel.Type, getArch());
683 if (sizeInBits == 0) {
684 error("unable to automatically import from " + target->getName() +
685 " with relocation type " +
686 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " +
687 toString(file));
688 continue;
690 int addressSizeInBits = file->symtab.ctx.config.is64() ? 64 : 32;
691 if (sizeInBits < addressSizeInBits) {
692 warn("runtime pseudo relocation in " + toString(file) + " against " +
693 "symbol " + target->getName() + " is too narrow (only " +
694 Twine(sizeInBits) + " bits wide); this can fail at runtime " +
695 "depending on memory layout");
697 // sizeInBits is used to initialize the Flags field; currently no
698 // other flags are defined.
699 res.emplace_back(target, this, rel.VirtualAddress, sizeInBits);
703 bool SectionChunk::isCOMDAT() const {
704 return header->Characteristics & IMAGE_SCN_LNK_COMDAT;
707 void SectionChunk::printDiscardedMessage() const {
708 // Removed by dead-stripping. If it's removed by ICF, ICF already
709 // printed out the name, so don't repeat that here.
710 if (sym && this == repl)
711 log("Discarded " + sym->getName());
714 StringRef SectionChunk::getDebugName() const {
715 if (sym)
716 return sym->getName();
717 return "";
720 ArrayRef<uint8_t> SectionChunk::getContents() const {
721 ArrayRef<uint8_t> a;
722 cantFail(file->getCOFFObj()->getSectionContents(header, a));
723 return a;
726 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() {
727 assert(isCodeView());
728 return consumeDebugMagic(getContents(), getSectionName());
731 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data,
732 StringRef sectionName) {
733 if (data.empty())
734 return {};
736 // First 4 bytes are section magic.
737 if (data.size() < 4)
738 fatal("the section is too short: " + sectionName);
740 if (!sectionName.starts_with(".debug$"))
741 fatal("invalid section: " + sectionName);
743 uint32_t magic = support::endian::read32le(data.data());
744 uint32_t expectedMagic = sectionName == ".debug$H"
745 ? DEBUG_HASHES_SECTION_MAGIC
746 : DEBUG_SECTION_MAGIC;
747 if (magic != expectedMagic) {
748 warn("ignoring section " + sectionName + " with unrecognized magic 0x" +
749 utohexstr(magic));
750 return {};
752 return data.slice(4);
755 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections,
756 StringRef name) {
757 for (SectionChunk *c : sections)
758 if (c->getSectionName() == name)
759 return c;
760 return nullptr;
763 void SectionChunk::replace(SectionChunk *other) {
764 p2Align = std::max(p2Align, other->p2Align);
765 other->repl = repl;
766 other->live = false;
769 uint32_t SectionChunk::getSectionNumber() const {
770 DataRefImpl r;
771 r.p = reinterpret_cast<uintptr_t>(header);
772 SectionRef s(r, file->getCOFFObj());
773 return s.getIndex() + 1;
776 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) {
777 // The value of a common symbol is its size. Align all common symbols smaller
778 // than 32 bytes naturally, i.e. round the size up to the next power of two.
779 // This is what MSVC link.exe does.
780 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue()))));
781 hasData = false;
784 uint32_t CommonChunk::getOutputCharacteristics() const {
785 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
786 IMAGE_SCN_MEM_WRITE;
789 void StringChunk::writeTo(uint8_t *buf) const {
790 memcpy(buf, str.data(), str.size());
791 buf[str.size()] = '\0';
794 ImportThunkChunk::ImportThunkChunk(COFFLinkerContext &ctx, Defined *s)
795 : NonSectionCodeChunk(ImportThunkKind), live(!ctx.config.doGC),
796 impSymbol(s), ctx(ctx) {}
798 ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s)
799 : ImportThunkChunk(ctx, s) {
800 // Intel Optimization Manual says that all branch targets
801 // should be 16-byte aligned. MSVC linker does this too.
802 setAlignment(16);
805 void ImportThunkChunkX64::writeTo(uint8_t *buf) const {
806 memcpy(buf, importThunkX86, sizeof(importThunkX86));
807 // The first two bytes is a JMP instruction. Fill its operand.
808 write32le(buf + 2, impSymbol->getRVA() - rva - getSize());
811 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) {
812 res->emplace_back(getRVA() + 2, ctx.config.machine);
815 void ImportThunkChunkX86::writeTo(uint8_t *buf) const {
816 memcpy(buf, importThunkX86, sizeof(importThunkX86));
817 // The first two bytes is a JMP instruction. Fill its operand.
818 write32le(buf + 2, impSymbol->getRVA() + ctx.config.imageBase);
821 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) {
822 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
825 void ImportThunkChunkARM::writeTo(uint8_t *buf) const {
826 memcpy(buf, importThunkARM, sizeof(importThunkARM));
827 // Fix mov.w and mov.t operands.
828 applyMOV32T(buf, impSymbol->getRVA() + ctx.config.imageBase);
831 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const {
832 int64_t off = impSymbol->getRVA() & 0xfff;
833 memcpy(buf, importThunkARM64, sizeof(importThunkARM64));
834 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12);
835 applyArm64Ldr(buf + 4, off);
838 // A Thumb2, PIC, non-interworking range extension thunk.
839 const uint8_t armThunk[] = {
840 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4)
841 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4)
842 0xe7, 0x44, // L1: add pc, ip
845 size_t RangeExtensionThunkARM::getSize() const {
846 assert(ctx.config.machine == ARMNT);
847 (void)&ctx;
848 return sizeof(armThunk);
851 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const {
852 assert(ctx.config.machine == ARMNT);
853 uint64_t offset = target->getRVA() - rva - 12;
854 memcpy(buf, armThunk, sizeof(armThunk));
855 applyMOV32T(buf, uint32_t(offset));
858 // A position independent ARM64 adrp+add thunk, with a maximum range of
859 // +/- 4 GB, which is enough for any PE-COFF.
860 const uint8_t arm64Thunk[] = {
861 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
862 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest
863 0x00, 0x02, 0x1f, 0xd6, // br x16
866 size_t RangeExtensionThunkARM64::getSize() const { return sizeof(arm64Thunk); }
868 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const {
869 memcpy(buf, arm64Thunk, sizeof(arm64Thunk));
870 applyArm64Addr(buf + 0, target->getRVA(), rva, 12);
871 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0);
874 LocalImportChunk::LocalImportChunk(COFFLinkerContext &c, Defined *s)
875 : sym(s), ctx(c) {
876 setAlignment(ctx.config.wordsize);
879 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) {
880 res->emplace_back(getRVA(), ctx.config.machine);
883 size_t LocalImportChunk::getSize() const { return ctx.config.wordsize; }
885 void LocalImportChunk::writeTo(uint8_t *buf) const {
886 if (ctx.config.is64()) {
887 write64le(buf, sym->getRVA() + ctx.config.imageBase);
888 } else {
889 write32le(buf, sym->getRVA() + ctx.config.imageBase);
893 void RVATableChunk::writeTo(uint8_t *buf) const {
894 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf);
895 size_t cnt = 0;
896 for (const ChunkAndOffset &co : syms)
897 begin[cnt++] = co.inputChunk->getRVA() + co.offset;
898 llvm::sort(begin, begin + cnt);
899 assert(std::unique(begin, begin + cnt) == begin + cnt &&
900 "RVA tables should be de-duplicated");
903 void RVAFlagTableChunk::writeTo(uint8_t *buf) const {
904 struct RVAFlag {
905 ulittle32_t rva;
906 uint8_t flag;
908 auto flags =
909 MutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size());
910 for (auto t : zip(syms, flags)) {
911 const auto &sym = std::get<0>(t);
912 auto &flag = std::get<1>(t);
913 flag.rva = sym.inputChunk->getRVA() + sym.offset;
914 flag.flag = 0;
916 llvm::sort(flags,
917 [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; });
918 assert(llvm::unique(flags, [](const RVAFlag &a,
919 const RVAFlag &b) { return a.rva == b.rva; }) ==
920 flags.end() &&
921 "RVA tables should be de-duplicated");
924 size_t ECCodeMapChunk::getSize() const {
925 return map.size() * sizeof(chpe_range_entry);
928 void ECCodeMapChunk::writeTo(uint8_t *buf) const {
929 auto table = reinterpret_cast<chpe_range_entry *>(buf);
930 for (uint32_t i = 0; i < map.size(); i++) {
931 const ECCodeMapEntry &entry = map[i];
932 uint32_t start = entry.first->getRVA();
933 table[i].StartOffset = start | entry.type;
934 table[i].Length = entry.last->getRVA() + entry.last->getSize() - start;
938 // MinGW specific, for the "automatic import of variables from DLLs" feature.
939 size_t PseudoRelocTableChunk::getSize() const {
940 if (relocs.empty())
941 return 0;
942 return 12 + 12 * relocs.size();
945 // MinGW specific.
946 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const {
947 if (relocs.empty())
948 return;
950 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf);
951 // This is the list header, to signal the runtime pseudo relocation v2
952 // format.
953 table[0] = 0;
954 table[1] = 0;
955 table[2] = 1;
957 size_t idx = 3;
958 for (const RuntimePseudoReloc &rpr : relocs) {
959 table[idx + 0] = rpr.sym->getRVA();
960 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset;
961 table[idx + 2] = rpr.flags;
962 idx += 3;
966 // Windows-specific. This class represents a block in .reloc section.
967 // The format is described here.
969 // On Windows, each DLL is linked against a fixed base address and
970 // usually loaded to that address. However, if there's already another
971 // DLL that overlaps, the loader has to relocate it. To do that, DLLs
972 // contain .reloc sections which contain offsets that need to be fixed
973 // up at runtime. If the loader finds that a DLL cannot be loaded to its
974 // desired base address, it loads it to somewhere else, and add <actual
975 // base address> - <desired base address> to each offset that is
976 // specified by the .reloc section. In ELF terms, .reloc sections
977 // contain relative relocations in REL format (as opposed to RELA.)
979 // This already significantly reduces the size of relocations compared
980 // to ELF .rel.dyn, but Windows does more to reduce it (probably because
981 // it was invented for PCs in the late '80s or early '90s.) Offsets in
982 // .reloc are grouped by page where the page size is 12 bits, and
983 // offsets sharing the same page address are stored consecutively to
984 // represent them with less space. This is very similar to the page
985 // table which is grouped by (multiple stages of) pages.
987 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
988 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
989 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
990 // are represented like this:
992 // 0x00000 -- page address (4 bytes)
993 // 16 -- size of this block (4 bytes)
994 // 0xA030 -- entries (2 bytes each)
995 // 0xA500
996 // 0xA700
997 // 0xAA00
998 // 0x20000 -- page address (4 bytes)
999 // 12 -- size of this block (4 bytes)
1000 // 0xA004 -- entries (2 bytes each)
1001 // 0xA008
1003 // Usually we have a lot of relocations for each page, so the number of
1004 // bytes for one .reloc entry is close to 2 bytes on average.
1005 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) {
1006 // Block header consists of 4 byte page RVA and 4 byte block size.
1007 // Each entry is 2 byte. Last entry may be padding.
1008 data.resize(alignTo((end - begin) * 2 + 8, 4));
1009 uint8_t *p = data.data();
1010 write32le(p, page);
1011 write32le(p + 4, data.size());
1012 p += 8;
1013 for (Baserel *i = begin; i != end; ++i) {
1014 write16le(p, (i->type << 12) | (i->rva - page));
1015 p += 2;
1019 void BaserelChunk::writeTo(uint8_t *buf) const {
1020 memcpy(buf, data.data(), data.size());
1023 uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine) {
1024 return is64Bit(machine) ? IMAGE_REL_BASED_DIR64 : IMAGE_REL_BASED_HIGHLOW;
1027 MergeChunk::MergeChunk(uint32_t alignment)
1028 : builder(StringTableBuilder::RAW, llvm::Align(alignment)) {
1029 setAlignment(alignment);
1032 void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) {
1033 assert(isPowerOf2_32(c->getAlignment()));
1034 uint8_t p2Align = llvm::Log2_32(c->getAlignment());
1035 assert(p2Align < std::size(ctx.mergeChunkInstances));
1036 auto *&mc = ctx.mergeChunkInstances[p2Align];
1037 if (!mc)
1038 mc = make<MergeChunk>(c->getAlignment());
1039 mc->sections.push_back(c);
1042 void MergeChunk::finalizeContents() {
1043 assert(!finalized && "should only finalize once");
1044 for (SectionChunk *c : sections)
1045 if (c->live)
1046 builder.add(toStringRef(c->getContents()));
1047 builder.finalize();
1048 finalized = true;
1051 void MergeChunk::assignSubsectionRVAs() {
1052 for (SectionChunk *c : sections) {
1053 if (!c->live)
1054 continue;
1055 size_t off = builder.getOffset(toStringRef(c->getContents()));
1056 c->setRVA(rva + off);
1060 uint32_t MergeChunk::getOutputCharacteristics() const {
1061 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA;
1064 size_t MergeChunk::getSize() const {
1065 return builder.getSize();
1068 void MergeChunk::writeTo(uint8_t *buf) const {
1069 builder.write(buf);
1072 // MinGW specific.
1073 size_t AbsolutePointerChunk::getSize() const { return ctx.config.wordsize; }
1075 void AbsolutePointerChunk::writeTo(uint8_t *buf) const {
1076 if (ctx.config.is64()) {
1077 write64le(buf, value);
1078 } else {
1079 write32le(buf, value);
1083 void ECExportThunkChunk::writeTo(uint8_t *buf) const {
1084 memcpy(buf, ECExportThunkCode, sizeof(ECExportThunkCode));
1085 write32le(buf + 10, target->getRVA() - rva - 14);
1088 size_t CHPECodeRangesChunk::getSize() const {
1089 return exportThunks.size() * sizeof(chpe_code_range_entry);
1092 void CHPECodeRangesChunk::writeTo(uint8_t *buf) const {
1093 auto ranges = reinterpret_cast<chpe_code_range_entry *>(buf);
1095 for (uint32_t i = 0; i < exportThunks.size(); i++) {
1096 Chunk *thunk = exportThunks[i].first;
1097 uint32_t start = thunk->getRVA();
1098 ranges[i].StartRva = start;
1099 ranges[i].EndRva = start + thunk->getSize();
1100 ranges[i].EntryPoint = start;
1104 size_t CHPERedirectionChunk::getSize() const {
1105 // Add an extra +1 for a terminator entry.
1106 return (exportThunks.size() + 1) * sizeof(chpe_redirection_entry);
1109 void CHPERedirectionChunk::writeTo(uint8_t *buf) const {
1110 auto entries = reinterpret_cast<chpe_redirection_entry *>(buf);
1112 for (uint32_t i = 0; i < exportThunks.size(); i++) {
1113 entries[i].Source = exportThunks[i].first->getRVA();
1114 entries[i].Destination = exportThunks[i].second->getRVA();
1118 ImportThunkChunkARM64EC::ImportThunkChunkARM64EC(ImportFile *file)
1119 : ImportThunkChunk(file->symtab.ctx, file->impSym), file(file) {}
1121 size_t ImportThunkChunkARM64EC::getSize() const {
1122 if (!extended)
1123 return sizeof(importThunkARM64EC);
1124 // The last instruction is replaced with an inline range extension thunk.
1125 return sizeof(importThunkARM64EC) + sizeof(arm64Thunk) - sizeof(uint32_t);
1128 void ImportThunkChunkARM64EC::writeTo(uint8_t *buf) const {
1129 memcpy(buf, importThunkARM64EC, sizeof(importThunkARM64EC));
1130 applyArm64Addr(buf, file->impSym->getRVA(), rva, 12);
1131 applyArm64Ldr(buf + 4, file->impSym->getRVA() & 0xfff);
1133 // The exit thunk may be missing. This can happen if the application only
1134 // references a function by its address (in which case the thunk is never
1135 // actually used, but is still required to fill the auxiliary IAT), or in
1136 // cases of hand-written assembly calling an imported ARM64EC function (where
1137 // the exit thunk is ignored by __icall_helper_arm64ec). In such cases, MSVC
1138 // link.exe uses 0 as the RVA.
1139 uint32_t exitThunkRVA = exitThunk ? exitThunk->getRVA() : 0;
1140 applyArm64Addr(buf + 8, exitThunkRVA, rva + 8, 12);
1141 applyArm64Imm(buf + 12, exitThunkRVA & 0xfff, 0);
1143 Defined *helper = cast<Defined>(file->symtab.ctx.config.arm64ECIcallHelper);
1144 if (extended) {
1145 // Replace last instruction with an inline range extension thunk.
1146 memcpy(buf + 16, arm64Thunk, sizeof(arm64Thunk));
1147 applyArm64Addr(buf + 16, helper->getRVA(), rva + 16, 12);
1148 applyArm64Imm(buf + 20, helper->getRVA() & 0xfff, 0);
1149 } else {
1150 applyArm64Branch26(buf + 16, helper->getRVA() - rva - 16);
1154 bool ImportThunkChunkARM64EC::verifyRanges() {
1155 if (extended)
1156 return true;
1157 auto helper = cast<Defined>(file->symtab.ctx.config.arm64ECIcallHelper);
1158 return isInt<28>(helper->getRVA() - rva - 16);
1161 uint32_t ImportThunkChunkARM64EC::extendRanges() {
1162 if (extended || verifyRanges())
1163 return 0;
1164 extended = true;
1165 // The last instruction is replaced with an inline range extension thunk.
1166 return sizeof(arm64Thunk) - sizeof(uint32_t);
1169 uint64_t Arm64XRelocVal::get() const {
1170 return (sym ? sym->getRVA() : 0) + (chunk ? chunk->getRVA() : 0) + value;
1173 size_t Arm64XDynamicRelocEntry::getSize() const {
1174 switch (type) {
1175 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL:
1176 return sizeof(uint16_t); // Just a header.
1177 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE:
1178 return sizeof(uint16_t) + size; // A header and a payload.
1179 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA:
1180 return 2 * sizeof(uint16_t); // A header and a delta.
1182 llvm_unreachable("invalid type");
1185 void Arm64XDynamicRelocEntry::writeTo(uint8_t *buf) const {
1186 auto out = reinterpret_cast<ulittle16_t *>(buf);
1187 *out = (offset.get() & 0xfff) | (type << 12);
1189 switch (type) {
1190 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL:
1191 *out |= ((bit_width(size) - 1) << 14); // Encode the size.
1192 break;
1193 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE:
1194 *out |= ((bit_width(size) - 1) << 14); // Encode the size.
1195 switch (size) {
1196 case 2:
1197 out[1] = value.get();
1198 break;
1199 case 4:
1200 *reinterpret_cast<ulittle32_t *>(out + 1) = value.get();
1201 break;
1202 case 8:
1203 *reinterpret_cast<ulittle64_t *>(out + 1) = value.get();
1204 break;
1205 default:
1206 llvm_unreachable("invalid size");
1208 break;
1209 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA:
1210 int delta = value.get();
1211 // Negative offsets use a sign bit in the header.
1212 if (delta < 0) {
1213 *out |= 1 << 14;
1214 delta = -delta;
1216 // Depending on the value, the delta is encoded with a shift of 2 or 3 bits.
1217 if (delta & 7) {
1218 assert(!(delta & 3));
1219 delta >>= 2;
1220 } else {
1221 *out |= (1 << 15);
1222 delta >>= 3;
1224 out[1] = delta;
1225 assert(!(delta & ~0xffff));
1226 break;
1230 void DynamicRelocsChunk::finalize() {
1231 llvm::stable_sort(arm64xRelocs, [=](const Arm64XDynamicRelocEntry &a,
1232 const Arm64XDynamicRelocEntry &b) {
1233 return a.offset.get() < b.offset.get();
1236 size = sizeof(coff_dynamic_reloc_table) + sizeof(coff_dynamic_relocation64);
1237 uint32_t prevPage = 0xfff;
1239 for (const Arm64XDynamicRelocEntry &entry : arm64xRelocs) {
1240 uint32_t page = entry.offset.get() & ~0xfff;
1241 if (page != prevPage) {
1242 size = alignTo(size, sizeof(uint32_t)) +
1243 sizeof(coff_base_reloc_block_header);
1244 prevPage = page;
1246 size += entry.getSize();
1249 size = alignTo(size, sizeof(uint32_t));
1252 // Set the reloc value. The reloc entry must be allocated beforehand.
1253 void DynamicRelocsChunk::set(uint32_t rva, Arm64XRelocVal value) {
1254 auto entry =
1255 llvm::find_if(arm64xRelocs, [rva](const Arm64XDynamicRelocEntry &e) {
1256 return e.offset.get() == rva;
1258 assert(entry != arm64xRelocs.end());
1259 assert(!entry->value.get());
1260 entry->value = value;
1263 void DynamicRelocsChunk::writeTo(uint8_t *buf) const {
1264 auto table = reinterpret_cast<coff_dynamic_reloc_table *>(buf);
1265 table->Version = 1;
1266 table->Size = sizeof(coff_dynamic_relocation64);
1267 buf += sizeof(*table);
1269 auto header = reinterpret_cast<coff_dynamic_relocation64 *>(buf);
1270 header->Symbol = IMAGE_DYNAMIC_RELOCATION_ARM64X;
1271 buf += sizeof(*header);
1273 coff_base_reloc_block_header *pageHeader = nullptr;
1274 size_t relocSize = 0;
1275 for (const Arm64XDynamicRelocEntry &entry : arm64xRelocs) {
1276 uint32_t page = entry.offset.get() & ~0xfff;
1277 if (!pageHeader || page != pageHeader->PageRVA) {
1278 relocSize = alignTo(relocSize, sizeof(uint32_t));
1279 if (pageHeader)
1280 pageHeader->BlockSize =
1281 buf + relocSize - reinterpret_cast<uint8_t *>(pageHeader);
1282 pageHeader =
1283 reinterpret_cast<coff_base_reloc_block_header *>(buf + relocSize);
1284 pageHeader->PageRVA = page;
1285 relocSize += sizeof(*pageHeader);
1288 entry.writeTo(buf + relocSize);
1289 relocSize += entry.getSize();
1291 relocSize = alignTo(relocSize, sizeof(uint32_t));
1292 pageHeader->BlockSize =
1293 buf + relocSize - reinterpret_cast<uint8_t *>(pageHeader);
1295 header->BaseRelocSize = relocSize;
1296 table->Size += relocSize;
1297 assert(size == sizeof(*table) + sizeof(*header) + relocSize);
1300 } // namespace lld::coff