[flang] Support OPEN(..., FORM="BINARY") (#124657)
[llvm-project.git] / lld / COFF / Writer.cpp
blob2bdaeb58ab432d3a5ebc4cab27fc735b5cb7279e
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Writer.h"
10 #include "COFFLinkerContext.h"
11 #include "CallGraphSort.h"
12 #include "Config.h"
13 #include "DLL.h"
14 #include "InputFiles.h"
15 #include "LLDMapFile.h"
16 #include "MapFile.h"
17 #include "PDB.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "lld/Common/Timer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/Support/BinaryStreamReader.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/FileOutputBuffer.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include "llvm/Support/RandomNumberGenerator.h"
34 #include "llvm/Support/TimeProfiler.h"
35 #include "llvm/Support/xxhash.h"
36 #include <algorithm>
37 #include <cstdio>
38 #include <map>
39 #include <memory>
40 #include <utility>
42 using namespace llvm;
43 using namespace llvm::COFF;
44 using namespace llvm::object;
45 using namespace llvm::support;
46 using namespace llvm::support::endian;
47 using namespace lld;
48 using namespace lld::coff;
50 /* To re-generate DOSProgram:
51 $ cat > /tmp/DOSProgram.asm
52 org 0
53 ; Copy cs to ds.
54 push cs
55 pop ds
56 ; Point ds:dx at the $-terminated string.
57 mov dx, str
58 ; Int 21/AH=09h: Write string to standard output.
59 mov ah, 0x9
60 int 0x21
61 ; Int 21/AH=4Ch: Exit with return code (in AL).
62 mov ax, 0x4C01
63 int 0x21
64 str:
65 db 'This program cannot be run in DOS mode.$'
66 align 8, db 0
67 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
68 $ xxd -i /tmp/DOSProgram.bin
70 static unsigned char dosProgram[] = {
71 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
72 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
73 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
74 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
75 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
77 static_assert(sizeof(dosProgram) % 8 == 0,
78 "DOSProgram size must be multiple of 8");
79 static_assert((sizeof(dos_header) + sizeof(dosProgram)) % 8 == 0,
80 "DOSStub size must be multiple of 8");
82 static const int numberOfDataDirectory = 16;
84 namespace {
86 class DebugDirectoryChunk : public NonSectionChunk {
87 public:
88 DebugDirectoryChunk(const COFFLinkerContext &c,
89 const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
90 bool writeRepro)
91 : records(r), writeRepro(writeRepro), ctx(c) {}
93 size_t getSize() const override {
94 return (records.size() + int(writeRepro)) * sizeof(debug_directory);
97 void writeTo(uint8_t *b) const override {
98 auto *d = reinterpret_cast<debug_directory *>(b);
100 for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
101 Chunk *c = record.second;
102 const OutputSection *os = ctx.getOutputSection(c);
103 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
104 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
105 ++d;
108 if (writeRepro) {
109 // FIXME: The COFF spec allows either a 0-sized entry to just say
110 // "the timestamp field is really a hash", or a 4-byte size field
111 // followed by that many bytes containing a longer hash (with the
112 // lowest 4 bytes usually being the timestamp in little-endian order).
113 // Consider storing the full 8 bytes computed by xxh3_64bits here.
114 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
118 void setTimeDateStamp(uint32_t timeDateStamp) {
119 for (support::ulittle32_t *tds : timeDateStamps)
120 *tds = timeDateStamp;
123 private:
124 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
125 uint64_t rva, uint64_t offs) const {
126 d->Characteristics = 0;
127 d->TimeDateStamp = 0;
128 d->MajorVersion = 0;
129 d->MinorVersion = 0;
130 d->Type = debugType;
131 d->SizeOfData = size;
132 d->AddressOfRawData = rva;
133 d->PointerToRawData = offs;
135 timeDateStamps.push_back(&d->TimeDateStamp);
138 mutable std::vector<support::ulittle32_t *> timeDateStamps;
139 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
140 bool writeRepro;
141 const COFFLinkerContext &ctx;
144 class CVDebugRecordChunk : public NonSectionChunk {
145 public:
146 CVDebugRecordChunk(const COFFLinkerContext &c) : ctx(c) {}
148 size_t getSize() const override {
149 return sizeof(codeview::DebugInfo) + ctx.config.pdbAltPath.size() + 1;
152 void writeTo(uint8_t *b) const override {
153 // Save off the DebugInfo entry to backfill the file signature (build id)
154 // in Writer::writeBuildId
155 buildId = reinterpret_cast<codeview::DebugInfo *>(b);
157 // variable sized field (PDB Path)
158 char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
159 if (!ctx.config.pdbAltPath.empty())
160 memcpy(p, ctx.config.pdbAltPath.data(), ctx.config.pdbAltPath.size());
161 p[ctx.config.pdbAltPath.size()] = '\0';
164 mutable codeview::DebugInfo *buildId = nullptr;
166 private:
167 const COFFLinkerContext &ctx;
170 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
171 public:
172 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
174 size_t getSize() const override { return 4; }
176 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
178 uint32_t characteristics = 0;
181 // PartialSection represents a group of chunks that contribute to an
182 // OutputSection. Collating a collection of PartialSections of same name and
183 // characteristics constitutes the OutputSection.
184 class PartialSectionKey {
185 public:
186 StringRef name;
187 unsigned characteristics;
189 bool operator<(const PartialSectionKey &other) const {
190 int c = name.compare(other.name);
191 if (c > 0)
192 return false;
193 if (c == 0)
194 return characteristics < other.characteristics;
195 return true;
199 struct ChunkRange {
200 Chunk *first = nullptr, *last;
203 // The writer writes a SymbolTable result to a file.
204 class Writer {
205 public:
206 Writer(COFFLinkerContext &c)
207 : buffer(c.e.outputBuffer), delayIdata(c), ctx(c) {}
208 void run();
210 private:
211 void calculateStubDependentSizes();
212 void createSections();
213 void createMiscChunks();
214 void createImportTables();
215 void appendImportThunks();
216 void locateImportTables();
217 void createExportTable();
218 void mergeSections();
219 void sortECChunks();
220 void appendECImportTables();
221 void removeUnusedSections();
222 void assignAddresses();
223 bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin,
224 MachineTypes machine);
225 std::pair<Defined *, bool> getThunk(DenseMap<uint64_t, Defined *> &lastThunks,
226 Defined *target, uint64_t p,
227 uint16_t type, int margin,
228 MachineTypes machine);
229 bool createThunks(OutputSection *os, int margin);
230 bool verifyRanges(const std::vector<Chunk *> chunks);
231 void createECCodeMap();
232 void finalizeAddresses();
233 void removeEmptySections();
234 void assignOutputSectionIndices();
235 void createSymbolAndStringTable();
236 void openFile(StringRef outputPath);
237 template <typename PEHeaderTy> void writeHeader();
238 void createSEHTable();
239 void createRuntimePseudoRelocs();
240 void createECChunks();
241 void insertCtorDtorSymbols();
242 void markSymbolsWithRelocations(ObjFile *file, SymbolRVASet &usedSymbols);
243 void createGuardCFTables();
244 void markSymbolsForRVATable(ObjFile *file,
245 ArrayRef<SectionChunk *> symIdxChunks,
246 SymbolRVASet &tableSymbols);
247 void getSymbolsFromSections(ObjFile *file,
248 ArrayRef<SectionChunk *> symIdxChunks,
249 std::vector<Symbol *> &symbols);
250 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
251 StringRef countSym, bool hasFlag=false);
252 void setSectionPermissions();
253 void setECSymbols();
254 void writeSections();
255 void writeBuildId();
256 void writePEChecksum();
257 void sortSections();
258 template <typename T> void sortExceptionTable(ChunkRange &exceptionTable);
259 void sortExceptionTables();
260 void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
261 void addSyntheticIdata();
262 void sortBySectionOrder(std::vector<Chunk *> &chunks);
263 void fixPartialSectionChars(StringRef name, uint32_t chars);
264 bool fixGnuImportChunks();
265 void fixTlsAlignment();
266 PartialSection *createPartialSection(StringRef name, uint32_t outChars);
267 PartialSection *findPartialSection(StringRef name, uint32_t outChars);
269 std::optional<coff_symbol16> createSymbol(Defined *d);
270 size_t addEntryToStringTable(StringRef str);
272 OutputSection *findSection(StringRef name);
273 void addBaserels();
274 void addBaserelBlocks(std::vector<Baserel> &v);
275 void createDynamicRelocs();
277 uint32_t getSizeOfInitializedData();
279 void prepareLoadConfig();
280 template <typename T>
281 void prepareLoadConfig(SymbolTable &symtab, T *loadConfig);
283 std::unique_ptr<FileOutputBuffer> &buffer;
284 std::map<PartialSectionKey, PartialSection *> partialSections;
285 std::vector<char> strtab;
286 std::vector<llvm::object::coff_symbol16> outputSymtab;
287 std::vector<ECCodeMapEntry> codeMap;
288 IdataContents idata;
289 Chunk *importTableStart = nullptr;
290 uint64_t importTableSize = 0;
291 Chunk *iatStart = nullptr;
292 uint64_t iatSize = 0;
293 DelayLoadContents delayIdata;
294 bool setNoSEHCharacteristic = false;
295 uint32_t tlsAlignment = 0;
297 DebugDirectoryChunk *debugDirectory = nullptr;
298 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
299 CVDebugRecordChunk *buildId = nullptr;
300 ArrayRef<uint8_t> sectionTable;
302 // List of Arm64EC export thunks.
303 std::vector<std::pair<Chunk *, Defined *>> exportThunks;
305 uint64_t fileSize;
306 uint32_t pointerToSymbolTable = 0;
307 uint64_t sizeOfImage;
308 uint64_t sizeOfHeaders;
310 uint32_t dosStubSize;
311 uint32_t coffHeaderOffset;
312 uint32_t peHeaderOffset;
313 uint32_t dataDirOffset64;
315 OutputSection *textSec;
316 OutputSection *hexpthkSec;
317 OutputSection *rdataSec;
318 OutputSection *buildidSec;
319 OutputSection *dataSec;
320 OutputSection *pdataSec;
321 OutputSection *idataSec;
322 OutputSection *edataSec;
323 OutputSection *didatSec;
324 OutputSection *a64xrmSec;
325 OutputSection *rsrcSec;
326 OutputSection *relocSec;
327 OutputSection *ctorsSec;
328 OutputSection *dtorsSec;
329 // Either .rdata section or .buildid section.
330 OutputSection *debugInfoSec;
332 // The range of .pdata sections in the output file.
334 // We need to keep track of the location of .pdata in whichever section it
335 // gets merged into so that we can sort its contents and emit a correct data
336 // directory entry for the exception table. This is also the case for some
337 // other sections (such as .edata) but because the contents of those sections
338 // are entirely linker-generated we can keep track of their locations using
339 // the chunks that the linker creates. All .pdata chunks come from input
340 // files, so we need to keep track of them separately.
341 ChunkRange pdata;
343 // x86_64 .pdata sections on ARM64EC/ARM64X targets.
344 ChunkRange hybridPdata;
346 COFFLinkerContext &ctx;
348 } // anonymous namespace
350 void lld::coff::writeResult(COFFLinkerContext &ctx) {
351 llvm::TimeTraceScope timeScope("Write output(s)");
352 Writer(ctx).run();
355 void OutputSection::addChunk(Chunk *c) {
356 chunks.push_back(c);
359 void OutputSection::insertChunkAtStart(Chunk *c) {
360 chunks.insert(chunks.begin(), c);
363 void OutputSection::setPermissions(uint32_t c) {
364 header.Characteristics &= ~permMask;
365 header.Characteristics |= c;
368 void OutputSection::merge(OutputSection *other) {
369 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
370 other->chunks.clear();
371 contribSections.insert(contribSections.end(), other->contribSections.begin(),
372 other->contribSections.end());
373 other->contribSections.clear();
375 // MS link.exe compatibility: when merging a code section into a data section,
376 // mark the target section as a code section.
377 if (other->header.Characteristics & IMAGE_SCN_CNT_CODE) {
378 header.Characteristics |= IMAGE_SCN_CNT_CODE;
379 header.Characteristics &=
380 ~(IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_CNT_UNINITIALIZED_DATA);
384 // Write the section header to a given buffer.
385 void OutputSection::writeHeaderTo(uint8_t *buf, bool isDebug) {
386 auto *hdr = reinterpret_cast<coff_section *>(buf);
387 *hdr = header;
388 if (stringTableOff) {
389 // If name is too long, write offset into the string table as a name.
390 encodeSectionName(hdr->Name, stringTableOff);
391 } else {
392 assert(!isDebug || name.size() <= COFF::NameSize ||
393 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
394 strncpy(hdr->Name, name.data(),
395 std::min(name.size(), (size_t)COFF::NameSize));
399 void OutputSection::addContributingPartialSection(PartialSection *sec) {
400 contribSections.push_back(sec);
403 // Check whether the target address S is in range from a relocation
404 // of type relType at address P.
405 bool Writer::isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin,
406 MachineTypes machine) {
407 if (machine == ARMNT) {
408 int64_t diff = AbsoluteDifference(s, p + 4) + margin;
409 switch (relType) {
410 case IMAGE_REL_ARM_BRANCH20T:
411 return isInt<21>(diff);
412 case IMAGE_REL_ARM_BRANCH24T:
413 case IMAGE_REL_ARM_BLX23T:
414 return isInt<25>(diff);
415 default:
416 return true;
418 } else if (isAnyArm64(machine)) {
419 int64_t diff = AbsoluteDifference(s, p) + margin;
420 switch (relType) {
421 case IMAGE_REL_ARM64_BRANCH26:
422 return isInt<28>(diff);
423 case IMAGE_REL_ARM64_BRANCH19:
424 return isInt<21>(diff);
425 case IMAGE_REL_ARM64_BRANCH14:
426 return isInt<16>(diff);
427 default:
428 return true;
430 } else {
431 return true;
435 // Return the last thunk for the given target if it is in range,
436 // or create a new one.
437 std::pair<Defined *, bool>
438 Writer::getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target,
439 uint64_t p, uint16_t type, int margin, MachineTypes machine) {
440 Defined *&lastThunk = lastThunks[target->getRVA()];
441 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin, machine))
442 return {lastThunk, false};
443 Chunk *c;
444 switch (getMachineArchType(machine)) {
445 case Triple::thumb:
446 c = make<RangeExtensionThunkARM>(ctx, target);
447 break;
448 case Triple::aarch64:
449 c = make<RangeExtensionThunkARM64>(machine, target);
450 break;
451 default:
452 llvm_unreachable("Unexpected architecture");
454 Defined *d = make<DefinedSynthetic>("range_extension_thunk", c);
455 lastThunk = d;
456 return {d, true};
459 // This checks all relocations, and for any relocation which isn't in range
460 // it adds a thunk after the section chunk that contains the relocation.
461 // If the latest thunk for the specific target is in range, that is used
462 // instead of creating a new thunk. All range checks are done with the
463 // specified margin, to make sure that relocations that originally are in
464 // range, but only barely, also get thunks - in case other added thunks makes
465 // the target go out of range.
467 // After adding thunks, we verify that all relocations are in range (with
468 // no extra margin requirements). If this failed, we restart (throwing away
469 // the previously created thunks) and retry with a wider margin.
470 bool Writer::createThunks(OutputSection *os, int margin) {
471 bool addressesChanged = false;
472 DenseMap<uint64_t, Defined *> lastThunks;
473 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
474 size_t thunksSize = 0;
475 // Recheck Chunks.size() each iteration, since we can insert more
476 // elements into it.
477 for (size_t i = 0; i != os->chunks.size(); ++i) {
478 SectionChunk *sc = dyn_cast<SectionChunk>(os->chunks[i]);
479 if (!sc) {
480 auto chunk = cast<NonSectionChunk>(os->chunks[i]);
481 if (uint32_t size = chunk->extendRanges()) {
482 thunksSize += size;
483 addressesChanged = true;
485 continue;
487 MachineTypes machine = sc->getMachine();
488 size_t thunkInsertionSpot = i + 1;
490 // Try to get a good enough estimate of where new thunks will be placed.
491 // Offset this by the size of the new thunks added so far, to make the
492 // estimate slightly better.
493 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
494 ObjFile *file = sc->file;
495 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
496 ArrayRef<coff_relocation> originalRelocs =
497 file->getCOFFObj()->getRelocations(sc->header);
498 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
499 const coff_relocation &rel = originalRelocs[j];
500 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
502 // The estimate of the source address P should be pretty accurate,
503 // but we don't know whether the target Symbol address should be
504 // offset by thunksSize or not (or by some of thunksSize but not all of
505 // it), giving us some uncertainty once we have added one thunk.
506 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
508 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
509 if (!sym)
510 continue;
512 uint64_t s = sym->getRVA();
514 if (isInRange(rel.Type, s, p, margin, machine))
515 continue;
517 // If the target isn't in range, hook it up to an existing or new thunk.
518 auto [thunk, wasNew] =
519 getThunk(lastThunks, sym, p, rel.Type, margin, machine);
520 if (wasNew) {
521 Chunk *thunkChunk = thunk->getChunk();
522 thunkChunk->setRVA(
523 thunkInsertionRVA); // Estimate of where it will be located.
524 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
525 thunkInsertionSpot++;
526 thunksSize += thunkChunk->getSize();
527 thunkInsertionRVA += thunkChunk->getSize();
528 addressesChanged = true;
531 // To redirect the relocation, add a symbol to the parent object file's
532 // symbol table, and replace the relocation symbol table index with the
533 // new index.
534 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
535 uint32_t &thunkSymbolIndex = insertion.first->second;
536 if (insertion.second)
537 thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
538 relocReplacements.emplace_back(j, thunkSymbolIndex);
541 // Get a writable copy of this section's relocations so they can be
542 // modified. If the relocations point into the object file, allocate new
543 // memory. Otherwise, this must be previously allocated memory that can be
544 // modified in place.
545 ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
546 MutableArrayRef<coff_relocation> newRelocs;
547 if (originalRelocs.data() == curRelocs.data()) {
548 newRelocs = MutableArrayRef(
549 bAlloc().Allocate<coff_relocation>(originalRelocs.size()),
550 originalRelocs.size());
551 } else {
552 newRelocs = MutableArrayRef(
553 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
556 // Copy each relocation, but replace the symbol table indices which need
557 // thunks.
558 auto nextReplacement = relocReplacements.begin();
559 auto endReplacement = relocReplacements.end();
560 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
561 newRelocs[i] = originalRelocs[i];
562 if (nextReplacement != endReplacement && nextReplacement->first == i) {
563 newRelocs[i].SymbolTableIndex = nextReplacement->second;
564 ++nextReplacement;
568 sc->setRelocs(newRelocs);
570 return addressesChanged;
573 // Create a code map for CHPE metadata.
574 void Writer::createECCodeMap() {
575 if (!ctx.symtabEC)
576 return;
578 // Clear the map in case we were're recomputing the map after adding
579 // a range extension thunk.
580 codeMap.clear();
582 std::optional<chpe_range_type> lastType;
583 Chunk *first, *last;
585 auto closeRange = [&]() {
586 if (lastType) {
587 codeMap.push_back({first, last, *lastType});
588 lastType.reset();
592 for (OutputSection *sec : ctx.outputSections) {
593 for (Chunk *c : sec->chunks) {
594 // Skip empty section chunks. MS link.exe does not seem to do that and
595 // generates empty code ranges in some cases.
596 if (isa<SectionChunk>(c) && !c->getSize())
597 continue;
599 std::optional<chpe_range_type> chunkType = c->getArm64ECRangeType();
600 if (chunkType != lastType) {
601 closeRange();
602 first = c;
603 lastType = chunkType;
605 last = c;
609 closeRange();
611 Symbol *tableCountSym =
612 ctx.symtabEC->findUnderscore("__hybrid_code_map_count");
613 cast<DefinedAbsolute>(tableCountSym)->setVA(codeMap.size());
616 // Verify that all relocations are in range, with no extra margin requirements.
617 bool Writer::verifyRanges(const std::vector<Chunk *> chunks) {
618 for (Chunk *c : chunks) {
619 SectionChunk *sc = dyn_cast<SectionChunk>(c);
620 if (!sc) {
621 if (!cast<NonSectionChunk>(c)->verifyRanges())
622 return false;
623 continue;
625 MachineTypes machine = sc->getMachine();
627 ArrayRef<coff_relocation> relocs = sc->getRelocs();
628 for (const coff_relocation &rel : relocs) {
629 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
631 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
632 if (!sym)
633 continue;
635 uint64_t p = sc->getRVA() + rel.VirtualAddress;
636 uint64_t s = sym->getRVA();
638 if (!isInRange(rel.Type, s, p, 0, machine))
639 return false;
642 return true;
645 // Assign addresses and add thunks if necessary.
646 void Writer::finalizeAddresses() {
647 assignAddresses();
648 if (ctx.config.machine != ARMNT && !isAnyArm64(ctx.config.machine))
649 return;
651 size_t origNumChunks = 0;
652 for (OutputSection *sec : ctx.outputSections) {
653 sec->origChunks = sec->chunks;
654 origNumChunks += sec->chunks.size();
657 int pass = 0;
658 int margin = 1024 * 100;
659 while (true) {
660 llvm::TimeTraceScope timeScope2("Add thunks pass");
662 // First check whether we need thunks at all, or if the previous pass of
663 // adding them turned out ok.
664 bool rangesOk = true;
665 size_t numChunks = 0;
667 llvm::TimeTraceScope timeScope3("Verify ranges");
668 for (OutputSection *sec : ctx.outputSections) {
669 if (!verifyRanges(sec->chunks)) {
670 rangesOk = false;
671 break;
673 numChunks += sec->chunks.size();
676 if (rangesOk) {
677 if (pass > 0)
678 Log(ctx) << "Added " << (numChunks - origNumChunks) << " thunks with "
679 << "margin " << margin << " in " << pass << " passes";
680 return;
683 if (pass >= 10)
684 Fatal(ctx) << "adding thunks hasn't converged after " << pass
685 << " passes";
687 if (pass > 0) {
688 // If the previous pass didn't work out, reset everything back to the
689 // original conditions before retrying with a wider margin. This should
690 // ideally never happen under real circumstances.
691 for (OutputSection *sec : ctx.outputSections)
692 sec->chunks = sec->origChunks;
693 margin *= 2;
696 // Try adding thunks everywhere where it is needed, with a margin
697 // to avoid things going out of range due to the added thunks.
698 bool addressesChanged = false;
700 llvm::TimeTraceScope timeScope3("Create thunks");
701 for (OutputSection *sec : ctx.outputSections)
702 addressesChanged |= createThunks(sec, margin);
704 // If the verification above thought we needed thunks, we should have
705 // added some.
706 assert(addressesChanged);
707 (void)addressesChanged;
709 // Recalculate the layout for the whole image (and verify the ranges at
710 // the start of the next round).
711 assignAddresses();
713 pass++;
717 void Writer::writePEChecksum() {
718 if (!ctx.config.writeCheckSum) {
719 return;
722 llvm::TimeTraceScope timeScope("PE checksum");
724 // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum
725 uint32_t *buf = (uint32_t *)buffer->getBufferStart();
726 uint32_t size = (uint32_t)(buffer->getBufferSize());
728 pe32_header *peHeader = (pe32_header *)((uint8_t *)buf + coffHeaderOffset +
729 sizeof(coff_file_header));
731 uint64_t sum = 0;
732 uint32_t count = size;
733 ulittle16_t *addr = (ulittle16_t *)buf;
735 // The PE checksum algorithm, implemented as suggested in RFC1071
736 while (count > 1) {
737 sum += *addr++;
738 count -= 2;
741 // Add left-over byte, if any
742 if (count > 0)
743 sum += *(unsigned char *)addr;
745 // Fold 32-bit sum to 16 bits
746 while (sum >> 16) {
747 sum = (sum & 0xffff) + (sum >> 16);
750 sum += size;
751 peHeader->CheckSum = sum;
754 // The main function of the writer.
755 void Writer::run() {
757 llvm::TimeTraceScope timeScope("Write PE");
758 ScopedTimer t1(ctx.codeLayoutTimer);
760 calculateStubDependentSizes();
761 if (ctx.config.machine == ARM64X)
762 ctx.dynamicRelocs = make<DynamicRelocsChunk>();
763 createImportTables();
764 createSections();
765 appendImportThunks();
766 // Import thunks must be added before the Control Flow Guard tables are
767 // added.
768 createMiscChunks();
769 createExportTable();
770 mergeSections();
771 sortECChunks();
772 appendECImportTables();
773 createDynamicRelocs();
774 removeUnusedSections();
775 finalizeAddresses();
776 removeEmptySections();
777 assignOutputSectionIndices();
778 setSectionPermissions();
779 setECSymbols();
780 createSymbolAndStringTable();
782 if (fileSize > UINT32_MAX)
783 Fatal(ctx) << "image size (" << fileSize << ") "
784 << "exceeds maximum allowable size (" << UINT32_MAX << ")";
786 openFile(ctx.config.outputFile);
787 if (ctx.config.is64()) {
788 writeHeader<pe32plus_header>();
789 } else {
790 writeHeader<pe32_header>();
792 writeSections();
793 prepareLoadConfig();
794 sortExceptionTables();
796 // Fix up the alignment in the TLS Directory's characteristic field,
797 // if a specific alignment value is needed
798 if (tlsAlignment)
799 fixTlsAlignment();
802 if (!ctx.config.pdbPath.empty() && ctx.config.debug) {
803 assert(buildId);
804 createPDB(ctx, sectionTable, buildId->buildId);
806 writeBuildId();
808 writeLLDMapFile(ctx);
809 writeMapFile(ctx);
811 writePEChecksum();
813 if (errorCount())
814 return;
816 llvm::TimeTraceScope timeScope("Commit PE to disk");
817 ScopedTimer t2(ctx.outputCommitTimer);
818 if (auto e = buffer->commit())
819 Fatal(ctx) << "failed to write output '" << buffer->getPath()
820 << "': " << toString(std::move(e));
823 static StringRef getOutputSectionName(StringRef name) {
824 StringRef s = name.split('$').first;
826 // Treat a later period as a separator for MinGW, for sections like
827 // ".ctors.01234".
828 return s.substr(0, s.find('.', 1));
831 // For /order.
832 void Writer::sortBySectionOrder(std::vector<Chunk *> &chunks) {
833 auto getPriority = [&ctx = ctx](const Chunk *c) {
834 if (auto *sec = dyn_cast<SectionChunk>(c))
835 if (sec->sym)
836 return ctx.config.order.lookup(sec->sym->getName());
837 return 0;
840 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
841 return getPriority(a) < getPriority(b);
845 // Change the characteristics of existing PartialSections that belong to the
846 // section Name to Chars.
847 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
848 for (auto it : partialSections) {
849 PartialSection *pSec = it.second;
850 StringRef curName = pSec->name;
851 if (!curName.consume_front(name) ||
852 (!curName.empty() && !curName.starts_with("$")))
853 continue;
854 if (pSec->characteristics == chars)
855 continue;
856 PartialSection *destSec = createPartialSection(pSec->name, chars);
857 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
858 pSec->chunks.end());
859 pSec->chunks.clear();
863 // Sort concrete section chunks from GNU import libraries.
865 // GNU binutils doesn't use short import files, but instead produces import
866 // libraries that consist of object files, with section chunks for the .idata$*
867 // sections. These are linked just as regular static libraries. Each import
868 // library consists of one header object, one object file for every imported
869 // symbol, and one trailer object. In order for the .idata tables/lists to
870 // be formed correctly, the section chunks within each .idata$* section need
871 // to be grouped by library, and sorted alphabetically within each library
872 // (which makes sure the header comes first and the trailer last).
873 bool Writer::fixGnuImportChunks() {
874 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
876 // Make sure all .idata$* section chunks are mapped as RDATA in order to
877 // be sorted into the same sections as our own synthesized .idata chunks.
878 fixPartialSectionChars(".idata", rdata);
880 bool hasIdata = false;
881 // Sort all .idata$* chunks, grouping chunks from the same library,
882 // with alphabetical ordering of the object files within a library.
883 for (auto it : partialSections) {
884 PartialSection *pSec = it.second;
885 if (!pSec->name.starts_with(".idata"))
886 continue;
888 if (!pSec->chunks.empty())
889 hasIdata = true;
890 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
891 SectionChunk *sc1 = dyn_cast<SectionChunk>(s);
892 SectionChunk *sc2 = dyn_cast<SectionChunk>(t);
893 if (!sc1 || !sc2) {
894 // if SC1, order them ascending. If SC2 or both null,
895 // S is not less than T.
896 return sc1 != nullptr;
898 // Make a string with "libraryname/objectfile" for sorting, achieving
899 // both grouping by library and sorting of objects within a library,
900 // at once.
901 std::string key1 =
902 (sc1->file->parentName + "/" + sc1->file->getName()).str();
903 std::string key2 =
904 (sc2->file->parentName + "/" + sc2->file->getName()).str();
905 return key1 < key2;
908 return hasIdata;
911 // Add generated idata chunks, for imported symbols and DLLs, and a
912 // terminator in .idata$2.
913 void Writer::addSyntheticIdata() {
914 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
915 idata.create(ctx);
917 // Add the .idata content in the right section groups, to allow
918 // chunks from other linked in object files to be grouped together.
919 // See Microsoft PE/COFF spec 5.4 for details.
920 auto add = [&](StringRef n, std::vector<Chunk *> &v) {
921 PartialSection *pSec = createPartialSection(n, rdata);
922 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
925 // The loader assumes a specific order of data.
926 // Add each type in the correct order.
927 add(".idata$2", idata.dirs);
928 add(".idata$4", idata.lookups);
929 add(".idata$5", idata.addresses);
930 if (!idata.hints.empty())
931 add(".idata$6", idata.hints);
932 add(".idata$7", idata.dllNames);
933 if (!idata.auxIat.empty())
934 add(".idata$9", idata.auxIat);
935 if (!idata.auxIatCopy.empty())
936 add(".idata$a", idata.auxIatCopy);
939 void Writer::appendECImportTables() {
940 if (!isArm64EC(ctx.config.machine))
941 return;
943 const uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
945 // IAT is always placed at the beginning of .rdata section and its size
946 // is aligned to 4KB. Insert it here, after all merges all done.
947 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
948 if (!rdataSec->chunks.empty())
949 rdataSec->chunks.front()->setAlignment(
950 std::max(0x1000u, rdataSec->chunks.front()->getAlignment()));
951 iatSize = alignTo(iatSize, 0x1000);
953 rdataSec->chunks.insert(rdataSec->chunks.begin(),
954 importAddresses->chunks.begin(),
955 importAddresses->chunks.end());
956 rdataSec->contribSections.insert(rdataSec->contribSections.begin(),
957 importAddresses);
960 // The auxiliary IAT is always placed at the end of the .rdata section
961 // and is aligned to 4KB.
962 if (PartialSection *auxIat = findPartialSection(".idata$9", rdata)) {
963 auxIat->chunks.front()->setAlignment(0x1000);
964 rdataSec->chunks.insert(rdataSec->chunks.end(), auxIat->chunks.begin(),
965 auxIat->chunks.end());
966 rdataSec->addContributingPartialSection(auxIat);
969 if (!delayIdata.getAuxIat().empty()) {
970 delayIdata.getAuxIat().front()->setAlignment(0x1000);
971 rdataSec->chunks.insert(rdataSec->chunks.end(),
972 delayIdata.getAuxIat().begin(),
973 delayIdata.getAuxIat().end());
977 // Locate the first Chunk and size of the import directory list and the
978 // IAT.
979 void Writer::locateImportTables() {
980 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
982 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
983 if (!importDirs->chunks.empty())
984 importTableStart = importDirs->chunks.front();
985 for (Chunk *c : importDirs->chunks)
986 importTableSize += c->getSize();
989 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
990 if (!importAddresses->chunks.empty())
991 iatStart = importAddresses->chunks.front();
992 for (Chunk *c : importAddresses->chunks)
993 iatSize += c->getSize();
997 // Return whether a SectionChunk's suffix (the dollar and any trailing
998 // suffix) should be removed and sorted into the main suffixless
999 // PartialSection.
1000 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name,
1001 bool isMinGW) {
1002 // On MinGW, comdat groups are formed by putting the comdat group name
1003 // after the '$' in the section name. For .eh_frame$<symbol>, that must
1004 // still be sorted before the .eh_frame trailer from crtend.o, thus just
1005 // strip the section name trailer. For other sections, such as
1006 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
1007 // ".tls$"), they must be strictly sorted after .tls. And for the
1008 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
1009 // suffix for sorting. Thus, to play it safe, only strip the suffix for
1010 // the standard sections.
1011 if (!isMinGW)
1012 return false;
1013 if (!sc || !sc->isCOMDAT())
1014 return false;
1015 return name.starts_with(".text$") || name.starts_with(".data$") ||
1016 name.starts_with(".rdata$") || name.starts_with(".pdata$") ||
1017 name.starts_with(".xdata$") || name.starts_with(".eh_frame$");
1020 void Writer::sortSections() {
1021 if (!ctx.config.callGraphProfile.empty()) {
1022 DenseMap<const SectionChunk *, int> order =
1023 computeCallGraphProfileOrder(ctx);
1024 for (auto it : order) {
1025 if (DefinedRegular *sym = it.first->sym)
1026 ctx.config.order[sym->getName()] = it.second;
1029 if (!ctx.config.order.empty())
1030 for (auto it : partialSections)
1031 sortBySectionOrder(it.second->chunks);
1034 void Writer::calculateStubDependentSizes() {
1035 if (ctx.config.dosStub)
1036 dosStubSize = alignTo(ctx.config.dosStub->getBufferSize(), 8);
1037 else
1038 dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
1040 coffHeaderOffset = dosStubSize + sizeof(PEMagic);
1041 peHeaderOffset = coffHeaderOffset + sizeof(coff_file_header);
1042 dataDirOffset64 = peHeaderOffset + sizeof(pe32plus_header);
1045 // Create output section objects and add them to OutputSections.
1046 void Writer::createSections() {
1047 llvm::TimeTraceScope timeScope("Output sections");
1048 // First, create the builtin sections.
1049 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
1050 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
1051 const uint32_t code = IMAGE_SCN_CNT_CODE;
1052 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
1053 const uint32_t r = IMAGE_SCN_MEM_READ;
1054 const uint32_t w = IMAGE_SCN_MEM_WRITE;
1055 const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
1057 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
1058 auto createSection = [&](StringRef name, uint32_t outChars) {
1059 OutputSection *&sec = sections[{name, outChars}];
1060 if (!sec) {
1061 sec = make<OutputSection>(name, outChars);
1062 ctx.outputSections.push_back(sec);
1064 return sec;
1067 // Try to match the section order used by link.exe.
1068 textSec = createSection(".text", code | r | x);
1069 if (isArm64EC(ctx.config.machine))
1070 hexpthkSec = createSection(".hexpthk", code | r | x);
1071 createSection(".bss", bss | r | w);
1072 rdataSec = createSection(".rdata", data | r);
1073 buildidSec = createSection(".buildid", data | r);
1074 dataSec = createSection(".data", data | r | w);
1075 pdataSec = createSection(".pdata", data | r);
1076 idataSec = createSection(".idata", data | r);
1077 edataSec = createSection(".edata", data | r);
1078 didatSec = createSection(".didat", data | r);
1079 if (isArm64EC(ctx.config.machine))
1080 a64xrmSec = createSection(".a64xrm", data | r);
1081 rsrcSec = createSection(".rsrc", data | r);
1082 relocSec = createSection(".reloc", data | discardable | r);
1083 ctorsSec = createSection(".ctors", data | r | w);
1084 dtorsSec = createSection(".dtors", data | r | w);
1086 // Then bin chunks by name and output characteristics.
1087 for (Chunk *c : ctx.driver.getChunks()) {
1088 auto *sc = dyn_cast<SectionChunk>(c);
1089 if (sc && !sc->live) {
1090 if (ctx.config.verbose)
1091 sc->printDiscardedMessage();
1092 continue;
1094 StringRef name = c->getSectionName();
1095 if (shouldStripSectionSuffix(sc, name, ctx.config.mingw))
1096 name = name.split('$').first;
1098 if (name.starts_with(".tls"))
1099 tlsAlignment = std::max(tlsAlignment, c->getAlignment());
1101 PartialSection *pSec = createPartialSection(name,
1102 c->getOutputCharacteristics());
1103 pSec->chunks.push_back(c);
1106 fixPartialSectionChars(".rsrc", data | r);
1107 fixPartialSectionChars(".edata", data | r);
1108 // Even in non MinGW cases, we might need to link against GNU import
1109 // libraries.
1110 bool hasIdata = fixGnuImportChunks();
1111 if (!idata.empty())
1112 hasIdata = true;
1114 if (hasIdata)
1115 addSyntheticIdata();
1117 sortSections();
1119 if (hasIdata)
1120 locateImportTables();
1122 // Then create an OutputSection for each section.
1123 // '$' and all following characters in input section names are
1124 // discarded when determining output section. So, .text$foo
1125 // contributes to .text, for example. See PE/COFF spec 3.2.
1126 for (auto it : partialSections) {
1127 PartialSection *pSec = it.second;
1128 StringRef name = getOutputSectionName(pSec->name);
1129 uint32_t outChars = pSec->characteristics;
1131 if (name == ".CRT") {
1132 // In link.exe, there is a special case for the I386 target where .CRT
1133 // sections are treated as if they have output characteristics DATA | R if
1134 // their characteristics are DATA | R | W. This implements the same
1135 // special case for all architectures.
1136 outChars = data | r;
1138 Log(ctx) << "Processing section " << pSec->name << " -> " << name;
1140 sortCRTSectionChunks(pSec->chunks);
1143 // ARM64EC has specific placement and alignment requirements for the IAT.
1144 // Delay adding its chunks until appendECImportTables.
1145 if (isArm64EC(ctx.config.machine) &&
1146 (pSec->name == ".idata$5" || pSec->name == ".idata$9"))
1147 continue;
1149 OutputSection *sec = createSection(name, outChars);
1150 for (Chunk *c : pSec->chunks)
1151 sec->addChunk(c);
1153 sec->addContributingPartialSection(pSec);
1156 // Finally, move some output sections to the end.
1157 auto sectionOrder = [&](const OutputSection *s) {
1158 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
1159 // because the loader cannot handle holes. Stripping can remove other
1160 // discardable ones than .reloc, which is first of them (created early).
1161 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) {
1162 // Move discardable sections named .debug_ to the end, after other
1163 // discardable sections. Stripping only removes the sections named
1164 // .debug_* - thus try to avoid leaving holes after stripping.
1165 if (s->name.starts_with(".debug_"))
1166 return 3;
1167 return 2;
1169 // .rsrc should come at the end of the non-discardable sections because its
1170 // size may change by the Win32 UpdateResources() function, causing
1171 // subsequent sections to move (see https://crbug.com/827082).
1172 if (s == rsrcSec)
1173 return 1;
1174 return 0;
1176 llvm::stable_sort(ctx.outputSections,
1177 [&](const OutputSection *s, const OutputSection *t) {
1178 return sectionOrder(s) < sectionOrder(t);
1182 void Writer::createMiscChunks() {
1183 llvm::TimeTraceScope timeScope("Misc chunks");
1184 Configuration *config = &ctx.config;
1186 for (MergeChunk *p : ctx.mergeChunkInstances) {
1187 if (p) {
1188 p->finalizeContents();
1189 rdataSec->addChunk(p);
1193 // Create thunks for locally-dllimported symbols.
1194 if (!ctx.symtab.localImportChunks.empty()) {
1195 for (Chunk *c : ctx.symtab.localImportChunks)
1196 rdataSec->addChunk(c);
1199 // Create Debug Information Chunks
1200 debugInfoSec = config->mingw ? buildidSec : rdataSec;
1201 if (config->buildIDHash != BuildIDHash::None || config->debug ||
1202 config->repro || config->cetCompat) {
1203 debugDirectory =
1204 make<DebugDirectoryChunk>(ctx, debugRecords, config->repro);
1205 debugDirectory->setAlignment(4);
1206 debugInfoSec->addChunk(debugDirectory);
1209 if (config->debug || config->buildIDHash != BuildIDHash::None) {
1210 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
1211 // output a PDB no matter what, and this chunk provides the only means of
1212 // allowing a debugger to match a PDB and an executable. So we need it even
1213 // if we're ultimately not going to write CodeView data to the PDB.
1214 buildId = make<CVDebugRecordChunk>(ctx);
1215 debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId);
1216 if (Symbol *buildidSym = ctx.symtab.findUnderscore("__buildid"))
1217 replaceSymbol<DefinedSynthetic>(buildidSym, buildidSym->getName(),
1218 buildId, 4);
1221 if (config->cetCompat) {
1222 debugRecords.emplace_back(COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
1223 make<ExtendedDllCharacteristicsChunk>(
1224 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT));
1227 // Align and add each chunk referenced by the debug data directory.
1228 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
1229 r.second->setAlignment(4);
1230 debugInfoSec->addChunk(r.second);
1233 // Create SEH table. x86-only.
1234 if (config->safeSEH)
1235 createSEHTable();
1237 // Create /guard:cf tables if requested.
1238 createGuardCFTables();
1240 createECChunks();
1242 if (config->autoImport)
1243 createRuntimePseudoRelocs();
1245 if (config->mingw)
1246 insertCtorDtorSymbols();
1249 // Create .idata section for the DLL-imported symbol table.
1250 // The format of this section is inherently Windows-specific.
1251 // IdataContents class abstracted away the details for us,
1252 // so we just let it create chunks and add them to the section.
1253 void Writer::createImportTables() {
1254 llvm::TimeTraceScope timeScope("Import tables");
1255 // Initialize DLLOrder so that import entries are ordered in
1256 // the same order as in the command line. (That affects DLL
1257 // initialization order, and this ordering is MSVC-compatible.)
1258 for (ImportFile *file : ctx.importFileInstances) {
1259 if (!file->live)
1260 continue;
1262 std::string dll = StringRef(file->dllName).lower();
1263 if (ctx.config.dllOrder.count(dll) == 0)
1264 ctx.config.dllOrder[dll] = ctx.config.dllOrder.size();
1266 if (file->impSym && !isa<DefinedImportData>(file->impSym))
1267 Fatal(ctx) << file->impSym << " was replaced";
1268 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1269 if (ctx.config.delayLoads.count(StringRef(file->dllName).lower())) {
1270 if (!file->thunkSym)
1271 Fatal(ctx) << "cannot delay-load " << toString(file)
1272 << " due to import of data: " << impSym;
1273 delayIdata.add(impSym);
1274 } else {
1275 idata.add(impSym);
1280 void Writer::appendImportThunks() {
1281 if (ctx.importFileInstances.empty())
1282 return;
1284 llvm::TimeTraceScope timeScope("Import thunks");
1285 for (ImportFile *file : ctx.importFileInstances) {
1286 if (!file->live)
1287 continue;
1289 if (file->thunkSym) {
1290 if (!isa<DefinedImportThunk>(file->thunkSym))
1291 Fatal(ctx) << file->thunkSym << " was replaced";
1292 auto *chunk = cast<DefinedImportThunk>(file->thunkSym)->getChunk();
1293 if (chunk->live)
1294 textSec->addChunk(chunk);
1297 if (file->auxThunkSym) {
1298 if (!isa<DefinedImportThunk>(file->auxThunkSym))
1299 Fatal(ctx) << file->auxThunkSym << " was replaced";
1300 auto *chunk = cast<DefinedImportThunk>(file->auxThunkSym)->getChunk();
1301 if (chunk->live)
1302 textSec->addChunk(chunk);
1305 if (file->impchkThunk)
1306 textSec->addChunk(file->impchkThunk);
1309 if (!delayIdata.empty()) {
1310 delayIdata.create();
1311 for (Chunk *c : delayIdata.getChunks())
1312 didatSec->addChunk(c);
1313 for (Chunk *c : delayIdata.getDataChunks())
1314 dataSec->addChunk(c);
1315 for (Chunk *c : delayIdata.getCodeChunks())
1316 textSec->addChunk(c);
1317 for (Chunk *c : delayIdata.getCodePData())
1318 pdataSec->addChunk(c);
1319 for (Chunk *c : delayIdata.getAuxIatCopy())
1320 rdataSec->addChunk(c);
1321 for (Chunk *c : delayIdata.getCodeUnwindInfo())
1322 rdataSec->addChunk(c);
1326 void Writer::createExportTable() {
1327 llvm::TimeTraceScope timeScope("Export table");
1328 if (!edataSec->chunks.empty()) {
1329 // Allow using a custom built export table from input object files, instead
1330 // of having the linker synthesize the tables.
1331 if (!ctx.hybridSymtab) {
1332 ctx.symtab.edataStart = edataSec->chunks.front();
1333 ctx.symtab.edataEnd = edataSec->chunks.back();
1334 } else {
1335 // On hybrid target, split EC and native chunks.
1336 llvm::stable_sort(edataSec->chunks, [=](const Chunk *a, const Chunk *b) {
1337 return (a->getMachine() != ARM64) < (b->getMachine() != ARM64);
1340 for (auto chunk : edataSec->chunks) {
1341 if (chunk->getMachine() != ARM64) {
1342 ctx.hybridSymtab->edataStart = chunk;
1343 ctx.hybridSymtab->edataEnd = edataSec->chunks.back();
1344 break;
1347 if (!ctx.symtab.edataStart)
1348 ctx.symtab.edataStart = chunk;
1349 ctx.symtab.edataEnd = chunk;
1353 ctx.forEachSymtab([&](SymbolTable &symtab) {
1354 if (symtab.edataStart) {
1355 if (symtab.hadExplicitExports)
1356 Warn(ctx) << "literal .edata sections override exports";
1357 } else if (!symtab.exports.empty()) {
1358 std::vector<Chunk *> edataChunks;
1359 createEdataChunks(symtab, edataChunks);
1360 for (Chunk *c : edataChunks)
1361 edataSec->addChunk(c);
1362 symtab.edataStart = edataChunks.front();
1363 symtab.edataEnd = edataChunks.back();
1366 // Warn on exported deleting destructor.
1367 for (auto e : symtab.exports)
1368 if (e.sym && e.sym->getName().starts_with("??_G"))
1369 Warn(ctx) << "export of deleting dtor: " << toString(ctx, *e.sym);
1373 void Writer::removeUnusedSections() {
1374 llvm::TimeTraceScope timeScope("Remove unused sections");
1375 // Remove sections that we can be sure won't get content, to avoid
1376 // allocating space for their section headers.
1377 auto isUnused = [this](OutputSection *s) {
1378 if (s == relocSec)
1379 return false; // This section is populated later.
1380 // MergeChunks have zero size at this point, as their size is finalized
1381 // later. Only remove sections that have no Chunks at all.
1382 return s->chunks.empty();
1384 llvm::erase_if(ctx.outputSections, isUnused);
1387 // The Windows loader doesn't seem to like empty sections,
1388 // so we remove them if any.
1389 void Writer::removeEmptySections() {
1390 llvm::TimeTraceScope timeScope("Remove empty sections");
1391 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1392 llvm::erase_if(ctx.outputSections, isEmpty);
1395 void Writer::assignOutputSectionIndices() {
1396 llvm::TimeTraceScope timeScope("Output sections indices");
1397 // Assign final output section indices, and assign each chunk to its output
1398 // section.
1399 uint32_t idx = 1;
1400 for (OutputSection *os : ctx.outputSections) {
1401 os->sectionIndex = idx;
1402 for (Chunk *c : os->chunks)
1403 c->setOutputSectionIdx(idx);
1404 ++idx;
1407 // Merge chunks are containers of chunks, so assign those an output section
1408 // too.
1409 for (MergeChunk *mc : ctx.mergeChunkInstances)
1410 if (mc)
1411 for (SectionChunk *sc : mc->sections)
1412 if (sc && sc->live)
1413 sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1416 size_t Writer::addEntryToStringTable(StringRef str) {
1417 assert(str.size() > COFF::NameSize);
1418 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1419 strtab.insert(strtab.end(), str.begin(), str.end());
1420 strtab.push_back('\0');
1421 return offsetOfEntry;
1424 std::optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1425 coff_symbol16 sym;
1426 switch (def->kind()) {
1427 case Symbol::DefinedAbsoluteKind: {
1428 auto *da = dyn_cast<DefinedAbsolute>(def);
1429 // Note: COFF symbol can only store 32-bit values, so 64-bit absolute
1430 // values will be truncated.
1431 sym.Value = da->getVA();
1432 sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1433 break;
1435 default: {
1436 // Don't write symbols that won't be written to the output to the symbol
1437 // table.
1438 // We also try to write DefinedSynthetic as a normal symbol. Some of these
1439 // symbols do point to an actual chunk, like __safe_se_handler_table. Others
1440 // like __ImageBase are outside of sections and thus cannot be represented.
1441 Chunk *c = def->getChunk();
1442 if (!c)
1443 return std::nullopt;
1444 OutputSection *os = ctx.getOutputSection(c);
1445 if (!os)
1446 return std::nullopt;
1448 sym.Value = def->getRVA() - os->getRVA();
1449 sym.SectionNumber = os->sectionIndex;
1450 break;
1454 // Symbols that are runtime pseudo relocations don't point to the actual
1455 // symbol data itself (as they are imported), but points to the IAT entry
1456 // instead. Avoid emitting them to the symbol table, as they can confuse
1457 // debuggers.
1458 if (def->isRuntimePseudoReloc)
1459 return std::nullopt;
1461 StringRef name = def->getName();
1462 if (name.size() > COFF::NameSize) {
1463 sym.Name.Offset.Zeroes = 0;
1464 sym.Name.Offset.Offset = addEntryToStringTable(name);
1465 } else {
1466 memset(sym.Name.ShortName, 0, COFF::NameSize);
1467 memcpy(sym.Name.ShortName, name.data(), name.size());
1470 if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1471 COFFSymbolRef ref = d->getCOFFSymbol();
1472 sym.Type = ref.getType();
1473 sym.StorageClass = ref.getStorageClass();
1474 } else if (def->kind() == Symbol::DefinedImportThunkKind) {
1475 sym.Type = (IMAGE_SYM_DTYPE_FUNCTION << SCT_COMPLEX_TYPE_SHIFT) |
1476 IMAGE_SYM_TYPE_NULL;
1477 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1478 } else {
1479 sym.Type = IMAGE_SYM_TYPE_NULL;
1480 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1482 sym.NumberOfAuxSymbols = 0;
1483 return sym;
1486 void Writer::createSymbolAndStringTable() {
1487 llvm::TimeTraceScope timeScope("Symbol and string table");
1488 // PE/COFF images are limited to 8 byte section names. Longer names can be
1489 // supported by writing a non-standard string table, but this string table is
1490 // not mapped at runtime and the long names will therefore be inaccessible.
1491 // link.exe always truncates section names to 8 bytes, whereas binutils always
1492 // preserves long section names via the string table. LLD adopts a hybrid
1493 // solution where discardable sections have long names preserved and
1494 // non-discardable sections have their names truncated, to ensure that any
1495 // section which is mapped at runtime also has its name mapped at runtime.
1496 for (OutputSection *sec : ctx.outputSections) {
1497 if (sec->name.size() <= COFF::NameSize)
1498 continue;
1499 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1500 continue;
1501 if (ctx.config.warnLongSectionNames) {
1502 Warn(ctx)
1503 << "section name " << sec->name
1504 << " is longer than 8 characters and will use a non-standard string "
1505 "table";
1507 sec->setStringTableOff(addEntryToStringTable(sec->name));
1510 if (ctx.config.writeSymtab) {
1511 for (ObjFile *file : ctx.objFileInstances) {
1512 for (Symbol *b : file->getSymbols()) {
1513 auto *d = dyn_cast_or_null<Defined>(b);
1514 if (!d || d->writtenToSymtab)
1515 continue;
1516 d->writtenToSymtab = true;
1517 if (auto *dc = dyn_cast_or_null<DefinedCOFF>(d)) {
1518 COFFSymbolRef symRef = dc->getCOFFSymbol();
1519 if (symRef.isSectionDefinition() ||
1520 symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL)
1521 continue;
1524 if (std::optional<coff_symbol16> sym = createSymbol(d))
1525 outputSymtab.push_back(*sym);
1527 if (auto *dthunk = dyn_cast<DefinedImportThunk>(d)) {
1528 if (!dthunk->wrappedSym->writtenToSymtab) {
1529 dthunk->wrappedSym->writtenToSymtab = true;
1530 if (std::optional<coff_symbol16> sym =
1531 createSymbol(dthunk->wrappedSym))
1532 outputSymtab.push_back(*sym);
1539 if (outputSymtab.empty() && strtab.empty())
1540 return;
1542 // We position the symbol table to be adjacent to the end of the last section.
1543 uint64_t fileOff = fileSize;
1544 pointerToSymbolTable = fileOff;
1545 fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1546 fileOff += 4 + strtab.size();
1547 fileSize = alignTo(fileOff, ctx.config.fileAlign);
1550 void Writer::mergeSections() {
1551 llvm::TimeTraceScope timeScope("Merge sections");
1552 if (!pdataSec->chunks.empty()) {
1553 if (isArm64EC(ctx.config.machine)) {
1554 // On ARM64EC .pdata may contain both ARM64 and X64 data. Split them by
1555 // sorting and store their regions separately.
1556 llvm::stable_sort(pdataSec->chunks, [=](const Chunk *a, const Chunk *b) {
1557 return (a->getMachine() == AMD64) < (b->getMachine() == AMD64);
1560 for (auto chunk : pdataSec->chunks) {
1561 if (chunk->getMachine() == AMD64) {
1562 hybridPdata.first = chunk;
1563 hybridPdata.last = pdataSec->chunks.back();
1564 break;
1567 if (!pdata.first)
1568 pdata.first = chunk;
1569 pdata.last = chunk;
1571 } else {
1572 pdata.first = pdataSec->chunks.front();
1573 pdata.last = pdataSec->chunks.back();
1577 for (auto &p : ctx.config.merge) {
1578 StringRef toName = p.second;
1579 if (p.first == toName)
1580 continue;
1581 StringSet<> names;
1582 while (true) {
1583 if (!names.insert(toName).second)
1584 Fatal(ctx) << "/merge: cycle found for section '" << p.first << "'";
1585 auto i = ctx.config.merge.find(toName);
1586 if (i == ctx.config.merge.end())
1587 break;
1588 toName = i->second;
1590 OutputSection *from = findSection(p.first);
1591 OutputSection *to = findSection(toName);
1592 if (!from)
1593 continue;
1594 if (!to) {
1595 from->name = toName;
1596 continue;
1598 to->merge(from);
1602 // EC targets may have chunks of various architectures mixed together at this
1603 // point. Group code chunks of the same architecture together by sorting chunks
1604 // by their EC range type.
1605 void Writer::sortECChunks() {
1606 if (!isArm64EC(ctx.config.machine))
1607 return;
1609 for (OutputSection *sec : ctx.outputSections) {
1610 if (sec->isCodeSection())
1611 llvm::stable_sort(sec->chunks, [=](const Chunk *a, const Chunk *b) {
1612 std::optional<chpe_range_type> aType = a->getArm64ECRangeType(),
1613 bType = b->getArm64ECRangeType();
1614 return bType && (!aType || *aType < *bType);
1619 // Visits all sections to assign incremental, non-overlapping RVAs and
1620 // file offsets.
1621 void Writer::assignAddresses() {
1622 llvm::TimeTraceScope timeScope("Assign addresses");
1623 Configuration *config = &ctx.config;
1625 // We need to create EC code map so that ECCodeMapChunk knows its size.
1626 // We do it here to make sure that we account for range extension chunks.
1627 createECCodeMap();
1629 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1630 sizeof(data_directory) * numberOfDataDirectory +
1631 sizeof(coff_section) * ctx.outputSections.size();
1632 sizeOfHeaders +=
1633 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1634 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1635 fileSize = sizeOfHeaders;
1637 // The first page is kept unmapped.
1638 uint64_t rva = alignTo(sizeOfHeaders, config->align);
1640 for (OutputSection *sec : ctx.outputSections) {
1641 llvm::TimeTraceScope timeScope("Section: ", sec->name);
1642 if (sec == relocSec) {
1643 sec->chunks.clear();
1644 addBaserels();
1645 if (ctx.dynamicRelocs) {
1646 ctx.dynamicRelocs->finalize();
1647 relocSec->addChunk(ctx.dynamicRelocs);
1650 uint64_t rawSize = 0, virtualSize = 0;
1651 sec->header.VirtualAddress = rva;
1653 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1654 // hotpatchable image.
1655 uint32_t padding = sec->isCodeSection() ? config->functionPadMin : 0;
1656 std::optional<chpe_range_type> prevECRange;
1658 for (Chunk *c : sec->chunks) {
1659 // Alignment EC code range baudaries.
1660 if (isArm64EC(ctx.config.machine) && sec->isCodeSection()) {
1661 std::optional<chpe_range_type> rangeType = c->getArm64ECRangeType();
1662 if (rangeType != prevECRange) {
1663 virtualSize = alignTo(virtualSize, 4096);
1664 prevECRange = rangeType;
1667 if (padding && c->isHotPatchable())
1668 virtualSize += padding;
1669 // If chunk has EC entry thunk, reserve a space for an offset to the
1670 // thunk.
1671 if (c->getEntryThunk())
1672 virtualSize += sizeof(uint32_t);
1673 virtualSize = alignTo(virtualSize, c->getAlignment());
1674 c->setRVA(rva + virtualSize);
1675 virtualSize += c->getSize();
1676 if (c->hasData)
1677 rawSize = alignTo(virtualSize, config->fileAlign);
1679 if (virtualSize > UINT32_MAX)
1680 Err(ctx) << "section larger than 4 GiB: " << sec->name;
1681 sec->header.VirtualSize = virtualSize;
1682 sec->header.SizeOfRawData = rawSize;
1683 if (rawSize != 0)
1684 sec->header.PointerToRawData = fileSize;
1685 rva += alignTo(virtualSize, config->align);
1686 fileSize += alignTo(rawSize, config->fileAlign);
1688 sizeOfImage = alignTo(rva, config->align);
1690 // Assign addresses to sections in MergeChunks.
1691 for (MergeChunk *mc : ctx.mergeChunkInstances)
1692 if (mc)
1693 mc->assignSubsectionRVAs();
1696 template <typename PEHeaderTy> void Writer::writeHeader() {
1697 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1698 // executable consists of an MS-DOS MZ executable. If the executable is run
1699 // under DOS, that program gets run (usually to just print an error message).
1700 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1701 // the PE header instead.
1702 Configuration *config = &ctx.config;
1704 uint8_t *buf = buffer->getBufferStart();
1705 auto *dos = reinterpret_cast<dos_header *>(buf);
1707 // Write DOS program.
1708 if (config->dosStub) {
1709 memcpy(buf, config->dosStub->getBufferStart(),
1710 config->dosStub->getBufferSize());
1711 // MS link.exe accepts an invalid `e_lfanew` (AddressOfNewExeHeader) and
1712 // updates it automatically. Replicate the same behaviour.
1713 dos->AddressOfNewExeHeader = alignTo(config->dosStub->getBufferSize(), 8);
1714 // Unlike MS link.exe, LLD accepts non-8-byte-aligned stubs.
1715 // In that case, we add zero paddings ourselves.
1716 buf += alignTo(config->dosStub->getBufferSize(), 8);
1717 } else {
1718 buf += sizeof(dos_header);
1719 dos->Magic[0] = 'M';
1720 dos->Magic[1] = 'Z';
1721 dos->UsedBytesInTheLastPage = dosStubSize % 512;
1722 dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1723 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1725 dos->AddressOfRelocationTable = sizeof(dos_header);
1726 dos->AddressOfNewExeHeader = dosStubSize;
1728 memcpy(buf, dosProgram, sizeof(dosProgram));
1729 buf += sizeof(dosProgram);
1732 // Make sure DOS stub is aligned to 8 bytes at this point
1733 assert((buf - buffer->getBufferStart()) % 8 == 0);
1735 // Write PE magic
1736 memcpy(buf, PEMagic, sizeof(PEMagic));
1737 buf += sizeof(PEMagic);
1739 // Write COFF header
1740 assert(coffHeaderOffset == buf - buffer->getBufferStart());
1741 auto *coff = reinterpret_cast<coff_file_header *>(buf);
1742 buf += sizeof(*coff);
1743 switch (config->machine) {
1744 case ARM64EC:
1745 coff->Machine = AMD64;
1746 break;
1747 case ARM64X:
1748 coff->Machine = ARM64;
1749 break;
1750 default:
1751 coff->Machine = config->machine;
1753 coff->NumberOfSections = ctx.outputSections.size();
1754 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1755 if (config->largeAddressAware)
1756 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1757 if (!config->is64())
1758 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1759 if (config->dll)
1760 coff->Characteristics |= IMAGE_FILE_DLL;
1761 if (config->driverUponly)
1762 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1763 if (!config->relocatable)
1764 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1765 if (config->swaprunCD)
1766 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1767 if (config->swaprunNet)
1768 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1769 coff->SizeOfOptionalHeader =
1770 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1772 // Write PE header
1773 assert(peHeaderOffset == buf - buffer->getBufferStart());
1774 auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1775 buf += sizeof(*pe);
1776 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1778 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1779 // reason signing the resulting PE file with Authenticode produces a
1780 // signature that fails to validate on Windows 7 (but is OK on 10).
1781 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1782 // that problem.
1783 pe->MajorLinkerVersion = 14;
1784 pe->MinorLinkerVersion = 0;
1786 pe->ImageBase = config->imageBase;
1787 pe->SectionAlignment = config->align;
1788 pe->FileAlignment = config->fileAlign;
1789 pe->MajorImageVersion = config->majorImageVersion;
1790 pe->MinorImageVersion = config->minorImageVersion;
1791 pe->MajorOperatingSystemVersion = config->majorOSVersion;
1792 pe->MinorOperatingSystemVersion = config->minorOSVersion;
1793 pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1794 pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1795 pe->Subsystem = config->subsystem;
1796 pe->SizeOfImage = sizeOfImage;
1797 pe->SizeOfHeaders = sizeOfHeaders;
1798 if (!config->noEntry) {
1799 Defined *entry = cast<Defined>(ctx.symtab.entry);
1800 pe->AddressOfEntryPoint = entry->getRVA();
1801 // Pointer to thumb code must have the LSB set, so adjust it.
1802 if (config->machine == ARMNT)
1803 pe->AddressOfEntryPoint |= 1;
1805 pe->SizeOfStackReserve = config->stackReserve;
1806 pe->SizeOfStackCommit = config->stackCommit;
1807 pe->SizeOfHeapReserve = config->heapReserve;
1808 pe->SizeOfHeapCommit = config->heapCommit;
1809 if (config->appContainer)
1810 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1811 if (config->driverWdm)
1812 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1813 if (config->dynamicBase)
1814 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1815 if (config->highEntropyVA)
1816 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1817 if (!config->allowBind)
1818 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1819 if (config->nxCompat)
1820 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1821 if (!config->allowIsolation)
1822 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1823 if (config->guardCF != GuardCFLevel::Off)
1824 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1825 if (config->integrityCheck)
1826 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1827 if (setNoSEHCharacteristic || config->noSEH)
1828 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1829 if (config->terminalServerAware)
1830 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1831 pe->NumberOfRvaAndSize = numberOfDataDirectory;
1832 if (textSec->getVirtualSize()) {
1833 pe->BaseOfCode = textSec->getRVA();
1834 pe->SizeOfCode = textSec->getRawSize();
1836 pe->SizeOfInitializedData = getSizeOfInitializedData();
1838 // Write data directory
1839 assert(!ctx.config.is64() ||
1840 dataDirOffset64 == buf - buffer->getBufferStart());
1841 auto *dir = reinterpret_cast<data_directory *>(buf);
1842 buf += sizeof(*dir) * numberOfDataDirectory;
1843 if (ctx.symtab.edataStart) {
1844 dir[EXPORT_TABLE].RelativeVirtualAddress = ctx.symtab.edataStart->getRVA();
1845 dir[EXPORT_TABLE].Size = ctx.symtab.edataEnd->getRVA() +
1846 ctx.symtab.edataEnd->getSize() -
1847 ctx.symtab.edataStart->getRVA();
1849 if (importTableStart) {
1850 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1851 dir[IMPORT_TABLE].Size = importTableSize;
1853 if (iatStart) {
1854 dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1855 dir[IAT].Size = iatSize;
1857 if (rsrcSec->getVirtualSize()) {
1858 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1859 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1861 // ARM64EC (but not ARM64X) contains x86_64 exception table in data directory.
1862 ChunkRange &exceptionTable =
1863 ctx.config.machine == ARM64EC ? hybridPdata : pdata;
1864 if (exceptionTable.first) {
1865 dir[EXCEPTION_TABLE].RelativeVirtualAddress =
1866 exceptionTable.first->getRVA();
1867 dir[EXCEPTION_TABLE].Size = exceptionTable.last->getRVA() +
1868 exceptionTable.last->getSize() -
1869 exceptionTable.first->getRVA();
1871 size_t relocSize = relocSec->getVirtualSize();
1872 if (ctx.dynamicRelocs)
1873 relocSize -= ctx.dynamicRelocs->getSize();
1874 if (relocSize) {
1875 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1876 dir[BASE_RELOCATION_TABLE].Size = relocSize;
1878 if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) {
1879 if (Defined *b = dyn_cast<Defined>(sym)) {
1880 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1881 dir[TLS_TABLE].Size = config->is64()
1882 ? sizeof(object::coff_tls_directory64)
1883 : sizeof(object::coff_tls_directory32);
1886 if (debugDirectory) {
1887 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1888 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1890 if (ctx.symtab.loadConfigSym) {
1891 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress =
1892 ctx.symtab.loadConfigSym->getRVA();
1893 dir[LOAD_CONFIG_TABLE].Size = ctx.symtab.loadConfigSize;
1895 if (!delayIdata.empty()) {
1896 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1897 delayIdata.getDirRVA();
1898 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1901 // Write section table
1902 for (OutputSection *sec : ctx.outputSections) {
1903 sec->writeHeaderTo(buf, config->debug);
1904 buf += sizeof(coff_section);
1906 sectionTable = ArrayRef<uint8_t>(
1907 buf - ctx.outputSections.size() * sizeof(coff_section), buf);
1909 if (outputSymtab.empty() && strtab.empty())
1910 return;
1912 coff->PointerToSymbolTable = pointerToSymbolTable;
1913 uint32_t numberOfSymbols = outputSymtab.size();
1914 coff->NumberOfSymbols = numberOfSymbols;
1915 auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1916 buffer->getBufferStart() + coff->PointerToSymbolTable);
1917 for (size_t i = 0; i != numberOfSymbols; ++i)
1918 symbolTable[i] = outputSymtab[i];
1919 // Create the string table, it follows immediately after the symbol table.
1920 // The first 4 bytes is length including itself.
1921 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1922 write32le(buf, strtab.size() + 4);
1923 if (!strtab.empty())
1924 memcpy(buf + 4, strtab.data(), strtab.size());
1927 void Writer::openFile(StringRef path) {
1928 buffer = CHECK(
1929 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1930 "failed to open " + path);
1933 void Writer::createSEHTable() {
1934 SymbolRVASet handlers;
1935 for (ObjFile *file : ctx.objFileInstances) {
1936 if (!file->hasSafeSEH())
1937 Err(ctx) << "/safeseh: " << file->getName()
1938 << " is not compatible with SEH";
1939 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1942 // Set the "no SEH" characteristic if there really were no handlers, or if
1943 // there is no load config object to point to the table of handlers.
1944 setNoSEHCharacteristic =
1945 handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used");
1947 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1948 "__safe_se_handler_count");
1951 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1952 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1953 // symbol's offset into that Chunk.
1954 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1955 Chunk *c = s->getChunk();
1956 if (!c)
1957 return;
1958 if (auto *sc = dyn_cast<SectionChunk>(c))
1959 c = sc->repl; // Look through ICF replacement.
1960 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1961 rvaSet.insert({c, off});
1964 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1965 // symbol in an executable section.
1966 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1967 Symbol *s) {
1968 if (!s)
1969 return;
1971 switch (s->kind()) {
1972 case Symbol::DefinedLocalImportKind:
1973 case Symbol::DefinedImportDataKind:
1974 // Defines an __imp_ pointer, so it is data, so it is ignored.
1975 break;
1976 case Symbol::DefinedCommonKind:
1977 // Common is always data, so it is ignored.
1978 break;
1979 case Symbol::DefinedAbsoluteKind:
1980 case Symbol::DefinedSyntheticKind:
1981 // Absolute is never code, synthetic generally isn't and usually isn't
1982 // determinable.
1983 break;
1984 case Symbol::LazyArchiveKind:
1985 case Symbol::LazyObjectKind:
1986 case Symbol::LazyDLLSymbolKind:
1987 case Symbol::UndefinedKind:
1988 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1989 // symbols shouldn't have relocations.
1990 break;
1992 case Symbol::DefinedImportThunkKind:
1993 // Thunks are always code, include them.
1994 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1995 break;
1997 case Symbol::DefinedRegularKind: {
1998 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1999 // address taken if the symbol type is function and it's in an executable
2000 // section.
2001 auto *d = cast<DefinedRegular>(s);
2002 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
2003 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
2004 if (sc && sc->live &&
2005 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
2006 addSymbolToRVASet(addressTakenSyms, d);
2008 break;
2013 // Visit all relocations from all section contributions of this object file and
2014 // mark the relocation target as address-taken.
2015 void Writer::markSymbolsWithRelocations(ObjFile *file,
2016 SymbolRVASet &usedSymbols) {
2017 for (Chunk *c : file->getChunks()) {
2018 // We only care about live section chunks. Common chunks and other chunks
2019 // don't generally contain relocations.
2020 SectionChunk *sc = dyn_cast<SectionChunk>(c);
2021 if (!sc || !sc->live)
2022 continue;
2024 for (const coff_relocation &reloc : sc->getRelocs()) {
2025 if (ctx.config.machine == I386 &&
2026 reloc.Type == COFF::IMAGE_REL_I386_REL32)
2027 // Ignore relative relocations on x86. On x86_64 they can't be ignored
2028 // since they're also used to compute absolute addresses.
2029 continue;
2031 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
2032 maybeAddAddressTakenFunction(usedSymbols, ref);
2037 // Create the guard function id table. This is a table of RVAs of all
2038 // address-taken functions. It is sorted and uniqued, just like the safe SEH
2039 // table.
2040 void Writer::createGuardCFTables() {
2041 Configuration *config = &ctx.config;
2043 if (config->guardCF == GuardCFLevel::Off) {
2044 // MSVC marks the entire image as instrumented if any input object was built
2045 // with /guard:cf.
2046 for (ObjFile *file : ctx.objFileInstances) {
2047 if (file->hasGuardCF()) {
2048 Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags");
2049 cast<DefinedAbsolute>(flagSym)->setVA(
2050 uint32_t(GuardFlags::CF_INSTRUMENTED));
2051 break;
2054 return;
2057 SymbolRVASet addressTakenSyms;
2058 SymbolRVASet giatsRVASet;
2059 std::vector<Symbol *> giatsSymbols;
2060 SymbolRVASet longJmpTargets;
2061 SymbolRVASet ehContTargets;
2062 for (ObjFile *file : ctx.objFileInstances) {
2063 // If the object was compiled with /guard:cf, the address taken symbols
2064 // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
2065 // sections. If the object was not compiled with /guard:cf, we assume there
2066 // were no setjmp targets, and that all code symbols with relocations are
2067 // possibly address-taken.
2068 if (file->hasGuardCF()) {
2069 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
2070 markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
2071 getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
2072 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
2073 } else {
2074 markSymbolsWithRelocations(file, addressTakenSyms);
2076 // If the object was compiled with /guard:ehcont, the ehcont targets are in
2077 // .gehcont$y sections.
2078 if (file->hasGuardEHCont())
2079 markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets);
2082 // Mark the image entry as address-taken.
2083 ctx.forEachSymtab([&](SymbolTable &symtab) {
2084 if (symtab.entry)
2085 maybeAddAddressTakenFunction(addressTakenSyms, symtab.entry);
2087 // Mark exported symbols in executable sections as address-taken.
2088 for (Export &e : symtab.exports)
2089 maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
2092 // For each entry in the .giats table, check if it has a corresponding load
2093 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
2094 // so, add the load thunk to the address taken (.gfids) table.
2095 for (Symbol *s : giatsSymbols) {
2096 if (auto *di = dyn_cast<DefinedImportData>(s)) {
2097 if (di->loadThunkSym)
2098 addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
2102 // Ensure sections referenced in the gfid table are 16-byte aligned.
2103 for (const ChunkAndOffset &c : addressTakenSyms)
2104 if (c.inputChunk->getAlignment() < 16)
2105 c.inputChunk->setAlignment(16);
2107 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
2108 "__guard_fids_count");
2110 // Add the Guard Address Taken IAT Entry Table (.giats).
2111 maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
2112 "__guard_iat_count");
2114 // Add the longjmp target table unless the user told us not to.
2115 if (config->guardCF & GuardCFLevel::LongJmp)
2116 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
2117 "__guard_longjmp_count");
2119 // Add the ehcont target table unless the user told us not to.
2120 if (config->guardCF & GuardCFLevel::EHCont)
2121 maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table",
2122 "__guard_eh_cont_count");
2124 // Set __guard_flags, which will be used in the load config to indicate that
2125 // /guard:cf was enabled.
2126 uint32_t guardFlags = uint32_t(GuardFlags::CF_INSTRUMENTED) |
2127 uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT);
2128 if (config->guardCF & GuardCFLevel::LongJmp)
2129 guardFlags |= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT);
2130 if (config->guardCF & GuardCFLevel::EHCont)
2131 guardFlags |= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT);
2132 Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags");
2133 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
2136 // Take a list of input sections containing symbol table indices and add those
2137 // symbols to a vector. The challenge is that symbol RVAs are not known and
2138 // depend on the table size, so we can't directly build a set of integers.
2139 void Writer::getSymbolsFromSections(ObjFile *file,
2140 ArrayRef<SectionChunk *> symIdxChunks,
2141 std::vector<Symbol *> &symbols) {
2142 for (SectionChunk *c : symIdxChunks) {
2143 // Skip sections discarded by linker GC. This comes up when a .gfids section
2144 // is associated with something like a vtable and the vtable is discarded.
2145 // In this case, the associated gfids section is discarded, and we don't
2146 // mark the virtual member functions as address-taken by the vtable.
2147 if (!c->live)
2148 continue;
2150 // Validate that the contents look like symbol table indices.
2151 ArrayRef<uint8_t> data = c->getContents();
2152 if (data.size() % 4 != 0) {
2153 Warn(ctx) << "ignoring " << c->getSectionName()
2154 << " symbol table index section in object " << file;
2155 continue;
2158 // Read each symbol table index and check if that symbol was included in the
2159 // final link. If so, add it to the vector of symbols.
2160 ArrayRef<ulittle32_t> symIndices(
2161 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
2162 ArrayRef<Symbol *> objSymbols = file->getSymbols();
2163 for (uint32_t symIndex : symIndices) {
2164 if (symIndex >= objSymbols.size()) {
2165 Warn(ctx) << "ignoring invalid symbol table index in section "
2166 << c->getSectionName() << " in object " << file;
2167 continue;
2169 if (Symbol *s = objSymbols[symIndex]) {
2170 if (s->isLive())
2171 symbols.push_back(cast<Symbol>(s));
2177 // Take a list of input sections containing symbol table indices and add those
2178 // symbols to an RVA table.
2179 void Writer::markSymbolsForRVATable(ObjFile *file,
2180 ArrayRef<SectionChunk *> symIdxChunks,
2181 SymbolRVASet &tableSymbols) {
2182 std::vector<Symbol *> syms;
2183 getSymbolsFromSections(file, symIdxChunks, syms);
2185 for (Symbol *s : syms)
2186 addSymbolToRVASet(tableSymbols, cast<Defined>(s));
2189 // Replace the absolute table symbol with a synthetic symbol pointing to
2190 // tableChunk so that we can emit base relocations for it and resolve section
2191 // relative relocations.
2192 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
2193 StringRef countSym, bool hasFlag) {
2194 if (tableSymbols.empty())
2195 return;
2197 NonSectionChunk *tableChunk;
2198 if (hasFlag)
2199 tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols));
2200 else
2201 tableChunk = make<RVATableChunk>(std::move(tableSymbols));
2202 rdataSec->addChunk(tableChunk);
2204 Symbol *t = ctx.symtab.findUnderscore(tableSym);
2205 Symbol *c = ctx.symtab.findUnderscore(countSym);
2206 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
2207 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4));
2210 // Create CHPE metadata chunks.
2211 void Writer::createECChunks() {
2212 SymbolTable *symtab = ctx.symtabEC;
2213 if (!symtab)
2214 return;
2216 for (Symbol *s : symtab->expSymbols) {
2217 auto sym = dyn_cast<Defined>(s);
2218 if (!sym || !sym->getChunk())
2219 continue;
2220 if (auto thunk = dyn_cast<ECExportThunkChunk>(sym->getChunk())) {
2221 hexpthkSec->addChunk(thunk);
2222 exportThunks.push_back({thunk, thunk->target});
2223 } else if (auto def = dyn_cast<DefinedRegular>(sym)) {
2224 // Allow section chunk to be treated as an export thunk if it looks like
2225 // one.
2226 SectionChunk *chunk = def->getChunk();
2227 if (!chunk->live || chunk->getMachine() != AMD64)
2228 continue;
2229 assert(sym->getName().starts_with("EXP+"));
2230 StringRef targetName = sym->getName().substr(strlen("EXP+"));
2231 // If EXP+#foo is an export thunk of a hybrid patchable function,
2232 // we should use the #foo$hp_target symbol as the redirection target.
2233 // First, try to look up the $hp_target symbol. If it can't be found,
2234 // assume it's a regular function and look for #foo instead.
2235 Symbol *targetSym = symtab->find((targetName + "$hp_target").str());
2236 if (!targetSym)
2237 targetSym = symtab->find(targetName);
2238 Defined *t = dyn_cast_or_null<Defined>(targetSym);
2239 if (t && isArm64EC(t->getChunk()->getMachine()))
2240 exportThunks.push_back({chunk, t});
2244 auto codeMapChunk = make<ECCodeMapChunk>(codeMap);
2245 rdataSec->addChunk(codeMapChunk);
2246 Symbol *codeMapSym = symtab->findUnderscore("__hybrid_code_map");
2247 replaceSymbol<DefinedSynthetic>(codeMapSym, codeMapSym->getName(),
2248 codeMapChunk);
2250 CHPECodeRangesChunk *ranges = make<CHPECodeRangesChunk>(exportThunks);
2251 rdataSec->addChunk(ranges);
2252 Symbol *rangesSym =
2253 symtab->findUnderscore("__x64_code_ranges_to_entry_points");
2254 replaceSymbol<DefinedSynthetic>(rangesSym, rangesSym->getName(), ranges);
2256 CHPERedirectionChunk *entryPoints = make<CHPERedirectionChunk>(exportThunks);
2257 a64xrmSec->addChunk(entryPoints);
2258 Symbol *entryPointsSym =
2259 symtab->findUnderscore("__arm64x_redirection_metadata");
2260 replaceSymbol<DefinedSynthetic>(entryPointsSym, entryPointsSym->getName(),
2261 entryPoints);
2264 // MinGW specific. Gather all relocations that are imported from a DLL even
2265 // though the code didn't expect it to, produce the table that the runtime
2266 // uses for fixing them up, and provide the synthetic symbols that the
2267 // runtime uses for finding the table.
2268 void Writer::createRuntimePseudoRelocs() {
2269 std::vector<RuntimePseudoReloc> rels;
2271 for (Chunk *c : ctx.driver.getChunks()) {
2272 auto *sc = dyn_cast<SectionChunk>(c);
2273 if (!sc || !sc->live)
2274 continue;
2275 // Don't create pseudo relocations for sections that won't be
2276 // mapped at runtime.
2277 if (sc->header->Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2278 continue;
2279 sc->getRuntimePseudoRelocs(rels);
2282 if (!ctx.config.pseudoRelocs) {
2283 // Not writing any pseudo relocs; if some were needed, error out and
2284 // indicate what required them.
2285 for (const RuntimePseudoReloc &rpr : rels)
2286 Err(ctx) << "automatic dllimport of " << rpr.sym->getName() << " in "
2287 << toString(rpr.target->file) << " requires pseudo relocations";
2288 return;
2291 if (!rels.empty()) {
2292 Log(ctx) << "Writing " << rels.size() << " runtime pseudo relocations";
2293 const char *symbolName = "_pei386_runtime_relocator";
2294 Symbol *relocator = ctx.symtab.findUnderscore(symbolName);
2295 if (!relocator)
2296 Err(ctx)
2297 << "output image has runtime pseudo relocations, but the function "
2298 << symbolName
2299 << " is missing; it is needed for fixing the relocations at runtime";
2302 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
2303 rdataSec->addChunk(table);
2304 EmptyChunk *endOfList = make<EmptyChunk>();
2305 rdataSec->addChunk(endOfList);
2307 Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
2308 Symbol *endSym =
2309 ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
2310 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
2311 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
2314 // MinGW specific.
2315 // The MinGW .ctors and .dtors lists have sentinels at each end;
2316 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
2317 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
2318 // and __DTOR_LIST__ respectively.
2319 void Writer::insertCtorDtorSymbols() {
2320 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(ctx, -1);
2321 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(ctx, 0);
2322 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(ctx, -1);
2323 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(ctx, 0);
2324 ctorsSec->insertChunkAtStart(ctorListHead);
2325 ctorsSec->addChunk(ctorListEnd);
2326 dtorsSec->insertChunkAtStart(dtorListHead);
2327 dtorsSec->addChunk(dtorListEnd);
2329 Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__");
2330 Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__");
2331 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
2332 ctorListHead);
2333 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
2334 dtorListHead);
2337 // Handles /section options to allow users to overwrite
2338 // section attributes.
2339 void Writer::setSectionPermissions() {
2340 llvm::TimeTraceScope timeScope("Sections permissions");
2341 for (auto &p : ctx.config.section) {
2342 StringRef name = p.first;
2343 uint32_t perm = p.second;
2344 for (OutputSection *sec : ctx.outputSections)
2345 if (sec->name == name)
2346 sec->setPermissions(perm);
2350 // Set symbols used by ARM64EC metadata.
2351 void Writer::setECSymbols() {
2352 SymbolTable *symtab = ctx.symtabEC;
2353 if (!symtab)
2354 return;
2356 llvm::stable_sort(exportThunks, [](const std::pair<Chunk *, Defined *> &a,
2357 const std::pair<Chunk *, Defined *> &b) {
2358 return a.first->getRVA() < b.first->getRVA();
2361 Symbol *rfeTableSym = symtab->findUnderscore("__arm64x_extra_rfe_table");
2362 replaceSymbol<DefinedSynthetic>(rfeTableSym, "__arm64x_extra_rfe_table",
2363 pdata.first);
2365 if (pdata.first) {
2366 Symbol *rfeSizeSym =
2367 symtab->findUnderscore("__arm64x_extra_rfe_table_size");
2368 cast<DefinedAbsolute>(rfeSizeSym)
2369 ->setVA(pdata.last->getRVA() + pdata.last->getSize() -
2370 pdata.first->getRVA());
2373 Symbol *rangesCountSym =
2374 symtab->findUnderscore("__x64_code_ranges_to_entry_points_count");
2375 cast<DefinedAbsolute>(rangesCountSym)->setVA(exportThunks.size());
2377 Symbol *entryPointCountSym =
2378 symtab->findUnderscore("__arm64x_redirection_metadata_count");
2379 cast<DefinedAbsolute>(entryPointCountSym)->setVA(exportThunks.size());
2381 Symbol *iatSym = symtab->findUnderscore("__hybrid_auxiliary_iat");
2382 replaceSymbol<DefinedSynthetic>(iatSym, "__hybrid_auxiliary_iat",
2383 idata.auxIat.empty() ? nullptr
2384 : idata.auxIat.front());
2386 Symbol *iatCopySym = symtab->findUnderscore("__hybrid_auxiliary_iat_copy");
2387 replaceSymbol<DefinedSynthetic>(
2388 iatCopySym, "__hybrid_auxiliary_iat_copy",
2389 idata.auxIatCopy.empty() ? nullptr : idata.auxIatCopy.front());
2391 Symbol *delayIatSym =
2392 symtab->findUnderscore("__hybrid_auxiliary_delayload_iat");
2393 replaceSymbol<DefinedSynthetic>(
2394 delayIatSym, "__hybrid_auxiliary_delayload_iat",
2395 delayIdata.getAuxIat().empty() ? nullptr
2396 : delayIdata.getAuxIat().front());
2398 Symbol *delayIatCopySym =
2399 symtab->findUnderscore("__hybrid_auxiliary_delayload_iat_copy");
2400 replaceSymbol<DefinedSynthetic>(
2401 delayIatCopySym, "__hybrid_auxiliary_delayload_iat_copy",
2402 delayIdata.getAuxIatCopy().empty() ? nullptr
2403 : delayIdata.getAuxIatCopy().front());
2405 if (ctx.hybridSymtab) {
2406 // For the hybrid image, set the alternate entry point to the EC entry
2407 // point. In the hybrid view, it is swapped to the native entry point
2408 // using ARM64X relocations.
2409 if (auto altEntrySym = cast_or_null<Defined>(ctx.hybridSymtab->entry)) {
2410 // If the entry is an EC export thunk, use its target instead.
2411 if (auto thunkChunk =
2412 dyn_cast<ECExportThunkChunk>(altEntrySym->getChunk()))
2413 altEntrySym = thunkChunk->target;
2414 symtab->findUnderscore("__arm64x_native_entrypoint")
2415 ->replaceKeepingName(altEntrySym, sizeof(SymbolUnion));
2418 if (symtab->edataStart)
2419 ctx.dynamicRelocs->set(
2420 dataDirOffset64 + EXPORT_TABLE * sizeof(data_directory) +
2421 offsetof(data_directory, Size),
2422 symtab->edataEnd->getRVA() - symtab->edataStart->getRVA() +
2423 symtab->edataEnd->getSize());
2424 if (hybridPdata.first)
2425 ctx.dynamicRelocs->set(
2426 dataDirOffset64 + EXCEPTION_TABLE * sizeof(data_directory) +
2427 offsetof(data_directory, Size),
2428 hybridPdata.last->getRVA() - hybridPdata.first->getRVA() +
2429 hybridPdata.last->getSize());
2433 // Write section contents to a mmap'ed file.
2434 void Writer::writeSections() {
2435 llvm::TimeTraceScope timeScope("Write sections");
2436 uint8_t *buf = buffer->getBufferStart();
2437 for (OutputSection *sec : ctx.outputSections) {
2438 uint8_t *secBuf = buf + sec->getFileOff();
2439 // Fill gaps between functions in .text with INT3 instructions
2440 // instead of leaving as NUL bytes (which can be interpreted as
2441 // ADD instructions). Only fill the gaps between chunks. Most
2442 // chunks overwrite it anyway, but uninitialized data chunks
2443 // merged into a code section don't.
2444 if ((sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
2445 (ctx.config.machine == AMD64 || ctx.config.machine == I386)) {
2446 uint32_t prevEnd = 0;
2447 for (Chunk *c : sec->chunks) {
2448 uint32_t off = c->getRVA() - sec->getRVA();
2449 memset(secBuf + prevEnd, 0xCC, off - prevEnd);
2450 prevEnd = off + c->getSize();
2452 memset(secBuf + prevEnd, 0xCC, sec->getRawSize() - prevEnd);
2455 parallelForEach(sec->chunks, [&](Chunk *c) {
2456 c->writeTo(secBuf + c->getRVA() - sec->getRVA());
2461 void Writer::writeBuildId() {
2462 llvm::TimeTraceScope timeScope("Write build ID");
2464 // There are two important parts to the build ID.
2465 // 1) If building with debug info, the COFF debug directory contains a
2466 // timestamp as well as a Guid and Age of the PDB.
2467 // 2) In all cases, the PE COFF file header also contains a timestamp.
2468 // For reproducibility, instead of a timestamp we want to use a hash of the
2469 // PE contents.
2470 Configuration *config = &ctx.config;
2471 bool generateSyntheticBuildId = config->buildIDHash == BuildIDHash::Binary;
2472 if (generateSyntheticBuildId) {
2473 assert(buildId && "BuildId is not set!");
2474 // BuildId->BuildId was filled in when the PDB was written.
2477 // At this point the only fields in the COFF file which remain unset are the
2478 // "timestamp" in the COFF file header, and the ones in the coff debug
2479 // directory. Now we can hash the file and write that hash to the various
2480 // timestamp fields in the file.
2481 StringRef outputFileData(
2482 reinterpret_cast<const char *>(buffer->getBufferStart()),
2483 buffer->getBufferSize());
2485 uint32_t timestamp = config->timestamp;
2486 uint64_t hash = 0;
2488 if (config->repro || generateSyntheticBuildId)
2489 hash = xxh3_64bits(outputFileData);
2491 if (config->repro)
2492 timestamp = static_cast<uint32_t>(hash);
2494 if (generateSyntheticBuildId) {
2495 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
2496 buildId->buildId->PDB70.Age = 1;
2497 memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
2498 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
2499 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
2502 if (debugDirectory)
2503 debugDirectory->setTimeDateStamp(timestamp);
2505 uint8_t *buf = buffer->getBufferStart();
2506 buf += dosStubSize + sizeof(PEMagic);
2507 object::coff_file_header *coffHeader =
2508 reinterpret_cast<coff_file_header *>(buf);
2509 coffHeader->TimeDateStamp = timestamp;
2512 // Sort .pdata section contents according to PE/COFF spec 5.5.
2513 template <typename T>
2514 void Writer::sortExceptionTable(ChunkRange &exceptionTable) {
2515 if (!exceptionTable.first)
2516 return;
2518 // We assume .pdata contains function table entries only.
2519 auto bufAddr = [&](Chunk *c) {
2520 OutputSection *os = ctx.getOutputSection(c);
2521 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
2522 os->getRVA();
2524 uint8_t *begin = bufAddr(exceptionTable.first);
2525 uint8_t *end = bufAddr(exceptionTable.last) + exceptionTable.last->getSize();
2526 if ((end - begin) % sizeof(T) != 0) {
2527 Fatal(ctx) << "unexpected .pdata size: " << (end - begin)
2528 << " is not a multiple of " << sizeof(T);
2531 parallelSort(MutableArrayRef<T>(reinterpret_cast<T *>(begin),
2532 reinterpret_cast<T *>(end)),
2533 [](const T &a, const T &b) { return a.begin < b.begin; });
2536 // Sort .pdata section contents according to PE/COFF spec 5.5.
2537 void Writer::sortExceptionTables() {
2538 llvm::TimeTraceScope timeScope("Sort exception table");
2540 struct EntryX64 {
2541 ulittle32_t begin, end, unwind;
2543 struct EntryArm {
2544 ulittle32_t begin, unwind;
2547 switch (ctx.config.machine) {
2548 case AMD64:
2549 sortExceptionTable<EntryX64>(pdata);
2550 break;
2551 case ARM64EC:
2552 case ARM64X:
2553 sortExceptionTable<EntryX64>(hybridPdata);
2554 [[fallthrough]];
2555 case ARMNT:
2556 case ARM64:
2557 sortExceptionTable<EntryArm>(pdata);
2558 break;
2559 default:
2560 if (pdata.first)
2561 ctx.e.errs() << "warning: don't know how to handle .pdata\n";
2562 break;
2566 // The CRT section contains, among other things, the array of function
2567 // pointers that initialize every global variable that is not trivially
2568 // constructed. The CRT calls them one after the other prior to invoking
2569 // main().
2571 // As per C++ spec, 3.6.2/2.3,
2572 // "Variables with ordered initialization defined within a single
2573 // translation unit shall be initialized in the order of their definitions
2574 // in the translation unit"
2576 // It is therefore critical to sort the chunks containing the function
2577 // pointers in the order that they are listed in the object file (top to
2578 // bottom), otherwise global objects might not be initialized in the
2579 // correct order.
2580 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
2581 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
2582 auto sa = dyn_cast<SectionChunk>(a);
2583 auto sb = dyn_cast<SectionChunk>(b);
2584 assert(sa && sb && "Non-section chunks in CRT section!");
2586 StringRef sAObj = sa->file->mb.getBufferIdentifier();
2587 StringRef sBObj = sb->file->mb.getBufferIdentifier();
2589 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
2591 llvm::stable_sort(chunks, sectionChunkOrder);
2593 if (ctx.config.verbose) {
2594 for (auto &c : chunks) {
2595 auto sc = dyn_cast<SectionChunk>(c);
2596 Log(ctx) << " " << sc->file->mb.getBufferIdentifier().str()
2597 << ", SectionID: " << sc->getSectionNumber();
2602 OutputSection *Writer::findSection(StringRef name) {
2603 for (OutputSection *sec : ctx.outputSections)
2604 if (sec->name == name)
2605 return sec;
2606 return nullptr;
2609 uint32_t Writer::getSizeOfInitializedData() {
2610 uint32_t res = 0;
2611 for (OutputSection *s : ctx.outputSections)
2612 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
2613 res += s->getRawSize();
2614 return res;
2617 // Add base relocations to .reloc section.
2618 void Writer::addBaserels() {
2619 if (!ctx.config.relocatable)
2620 return;
2621 std::vector<Baserel> v;
2622 for (OutputSection *sec : ctx.outputSections) {
2623 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2624 continue;
2625 llvm::TimeTraceScope timeScope("Base relocations: ", sec->name);
2626 // Collect all locations for base relocations.
2627 for (Chunk *c : sec->chunks)
2628 c->getBaserels(&v);
2629 // Add the addresses to .reloc section.
2630 if (!v.empty())
2631 addBaserelBlocks(v);
2632 v.clear();
2636 // Add addresses to .reloc section. Note that addresses are grouped by page.
2637 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2638 const uint32_t mask = ~uint32_t(pageSize - 1);
2639 uint32_t page = v[0].rva & mask;
2640 size_t i = 0, j = 1;
2641 llvm::sort(v,
2642 [](const Baserel &x, const Baserel &y) { return x.rva < y.rva; });
2643 for (size_t e = v.size(); j < e; ++j) {
2644 uint32_t p = v[j].rva & mask;
2645 if (p == page)
2646 continue;
2647 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2648 i = j;
2649 page = p;
2651 if (i == j)
2652 return;
2653 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2656 void Writer::createDynamicRelocs() {
2657 if (!ctx.dynamicRelocs)
2658 return;
2660 // Adjust the Machine field in the COFF header to AMD64.
2661 ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint16_t),
2662 coffHeaderOffset + offsetof(coff_file_header, Machine),
2663 AMD64);
2665 if (ctx.symtab.entry != ctx.hybridSymtab->entry) {
2666 ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint32_t),
2667 peHeaderOffset +
2668 offsetof(pe32plus_header, AddressOfEntryPoint),
2669 cast_or_null<Defined>(ctx.hybridSymtab->entry));
2671 // Swap the alternate entry point in the CHPE metadata.
2672 Symbol *s = ctx.hybridSymtab->findUnderscore("__chpe_metadata");
2673 if (auto chpeSym = cast_or_null<DefinedRegular>(s))
2674 ctx.dynamicRelocs->add(
2675 IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint32_t),
2676 Arm64XRelocVal(chpeSym, offsetof(chpe_metadata, AlternateEntryPoint)),
2677 cast_or_null<Defined>(ctx.symtab.entry));
2678 else
2679 Warn(ctx) << "'__chpe_metadata' is missing for ARM64X target";
2682 if (ctx.symtab.edataStart != ctx.hybridSymtab->edataStart) {
2683 ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint32_t),
2684 dataDirOffset64 +
2685 EXPORT_TABLE * sizeof(data_directory) +
2686 offsetof(data_directory, RelativeVirtualAddress),
2687 ctx.hybridSymtab->edataStart);
2688 // The Size value is assigned after addresses are finalized.
2689 ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint32_t),
2690 dataDirOffset64 +
2691 EXPORT_TABLE * sizeof(data_directory) +
2692 offsetof(data_directory, Size));
2695 if (pdata.first != hybridPdata.first) {
2696 ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint32_t),
2697 dataDirOffset64 +
2698 EXCEPTION_TABLE * sizeof(data_directory) +
2699 offsetof(data_directory, RelativeVirtualAddress),
2700 hybridPdata.first);
2701 // The Size value is assigned after addresses are finalized.
2702 ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint32_t),
2703 dataDirOffset64 +
2704 EXCEPTION_TABLE * sizeof(data_directory) +
2705 offsetof(data_directory, Size));
2708 // Set the hybrid load config to the EC load config.
2709 ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint32_t),
2710 dataDirOffset64 +
2711 LOAD_CONFIG_TABLE * sizeof(data_directory) +
2712 offsetof(data_directory, RelativeVirtualAddress),
2713 ctx.hybridSymtab->loadConfigSym);
2714 ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint32_t),
2715 dataDirOffset64 +
2716 LOAD_CONFIG_TABLE * sizeof(data_directory) +
2717 offsetof(data_directory, Size),
2718 ctx.hybridSymtab->loadConfigSize);
2721 PartialSection *Writer::createPartialSection(StringRef name,
2722 uint32_t outChars) {
2723 PartialSection *&pSec = partialSections[{name, outChars}];
2724 if (pSec)
2725 return pSec;
2726 pSec = make<PartialSection>(name, outChars);
2727 return pSec;
2730 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2731 auto it = partialSections.find({name, outChars});
2732 if (it != partialSections.end())
2733 return it->second;
2734 return nullptr;
2737 void Writer::fixTlsAlignment() {
2738 Defined *tlsSym =
2739 dyn_cast_or_null<Defined>(ctx.symtab.findUnderscore("_tls_used"));
2740 if (!tlsSym)
2741 return;
2743 OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk());
2744 assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2745 "no output section for _tls_used");
2747 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2748 uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2749 uint64_t directorySize = ctx.config.is64()
2750 ? sizeof(object::coff_tls_directory64)
2751 : sizeof(object::coff_tls_directory32);
2753 if (tlsOffset + directorySize > sec->getRawSize())
2754 Fatal(ctx) << "_tls_used sym is malformed";
2756 if (ctx.config.is64()) {
2757 object::coff_tls_directory64 *tlsDir =
2758 reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2759 tlsDir->setAlignment(tlsAlignment);
2760 } else {
2761 object::coff_tls_directory32 *tlsDir =
2762 reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2763 tlsDir->setAlignment(tlsAlignment);
2767 void Writer::prepareLoadConfig() {
2768 ctx.forEachSymtab([&](SymbolTable &symtab) {
2769 if (!symtab.loadConfigSym)
2770 return;
2772 OutputSection *sec = ctx.getOutputSection(symtab.loadConfigSym->getChunk());
2773 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2774 uint8_t *symBuf = secBuf + (symtab.loadConfigSym->getRVA() - sec->getRVA());
2776 if (ctx.config.is64())
2777 prepareLoadConfig(symtab,
2778 reinterpret_cast<coff_load_configuration64 *>(symBuf));
2779 else
2780 prepareLoadConfig(symtab,
2781 reinterpret_cast<coff_load_configuration32 *>(symBuf));
2785 template <typename T>
2786 void Writer::prepareLoadConfig(SymbolTable &symtab, T *loadConfig) {
2787 size_t loadConfigSize = loadConfig->Size;
2789 #define RETURN_IF_NOT_CONTAINS(field) \
2790 if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) { \
2791 Warn(ctx) << "'_load_config_used' structure too small to include " #field; \
2792 return; \
2795 #define IF_CONTAINS(field) \
2796 if (loadConfigSize >= offsetof(T, field) + sizeof(T::field))
2798 #define CHECK_VA(field, sym) \
2799 if (auto *s = dyn_cast<DefinedSynthetic>(symtab.findUnderscore(sym))) \
2800 if (loadConfig->field != ctx.config.imageBase + s->getRVA()) \
2801 Warn(ctx) << #field " not set correctly in '_load_config_used'";
2803 #define CHECK_ABSOLUTE(field, sym) \
2804 if (auto *s = dyn_cast<DefinedAbsolute>(symtab.findUnderscore(sym))) \
2805 if (loadConfig->field != s->getVA()) \
2806 Warn(ctx) << #field " not set correctly in '_load_config_used'";
2808 if (ctx.config.dependentLoadFlags) {
2809 RETURN_IF_NOT_CONTAINS(DependentLoadFlags)
2810 loadConfig->DependentLoadFlags = ctx.config.dependentLoadFlags;
2813 if (ctx.dynamicRelocs) {
2814 IF_CONTAINS(DynamicValueRelocTableSection) {
2815 loadConfig->DynamicValueRelocTableSection = relocSec->sectionIndex;
2816 loadConfig->DynamicValueRelocTableOffset =
2817 ctx.dynamicRelocs->getRVA() - relocSec->getRVA();
2819 else {
2820 Warn(ctx) << "'_load_config_used' structure too small to include dynamic "
2821 "relocations";
2825 IF_CONTAINS(CHPEMetadataPointer) {
2826 // On ARM64X, only the EC version of the load config contains
2827 // CHPEMetadataPointer. Copy its value to the native load config.
2828 if (ctx.hybridSymtab && !symtab.isEC() &&
2829 ctx.hybridSymtab->loadConfigSize >=
2830 offsetof(T, CHPEMetadataPointer) + sizeof(T::CHPEMetadataPointer)) {
2831 OutputSection *sec =
2832 ctx.getOutputSection(ctx.hybridSymtab->loadConfigSym->getChunk());
2833 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2834 auto hybridLoadConfig =
2835 reinterpret_cast<const coff_load_configuration64 *>(
2836 secBuf +
2837 (ctx.hybridSymtab->loadConfigSym->getRVA() - sec->getRVA()));
2838 loadConfig->CHPEMetadataPointer = hybridLoadConfig->CHPEMetadataPointer;
2842 if (ctx.config.guardCF == GuardCFLevel::Off)
2843 return;
2844 RETURN_IF_NOT_CONTAINS(GuardFlags)
2845 CHECK_VA(GuardCFFunctionTable, "__guard_fids_table")
2846 CHECK_ABSOLUTE(GuardCFFunctionCount, "__guard_fids_count")
2847 CHECK_ABSOLUTE(GuardFlags, "__guard_flags")
2848 IF_CONTAINS(GuardAddressTakenIatEntryCount) {
2849 CHECK_VA(GuardAddressTakenIatEntryTable, "__guard_iat_table")
2850 CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount, "__guard_iat_count")
2853 if (!(ctx.config.guardCF & GuardCFLevel::LongJmp))
2854 return;
2855 RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount)
2856 CHECK_VA(GuardLongJumpTargetTable, "__guard_longjmp_table")
2857 CHECK_ABSOLUTE(GuardLongJumpTargetCount, "__guard_longjmp_count")
2859 if (!(ctx.config.guardCF & GuardCFLevel::EHCont))
2860 return;
2861 RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount)
2862 CHECK_VA(GuardEHContinuationTable, "__guard_eh_cont_table")
2863 CHECK_ABSOLUTE(GuardEHContinuationCount, "__guard_eh_cont_count")
2865 #undef RETURN_IF_NOT_CONTAINS
2866 #undef IF_CONTAINS
2867 #undef CHECK_VA
2868 #undef CHECK_ABSOLUTE