2 * z_Linux_util.cpp -- platform specific routines.
5 //===----------------------------------------------------------------------===//
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
14 #include "kmp_affinity.h"
19 #include "kmp_stats.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
27 #include <math.h> // HUGE_VAL.
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
31 #include <sys/times.h>
35 #include <sys/sysinfo.h>
37 // We should really include <futex.h>, but that causes compatibility problems on
38 // different Linux* OS distributions that either require that you include (or
39 // break when you try to include) <pci/types.h>. Since all we need is the two
40 // macros below (which are part of the kernel ABI, so can't change) we just
41 // define the constants here and don't include <futex.h>
50 #include <mach/mach.h>
51 #include <sys/sysctl.h>
52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
53 #include <sys/types.h>
54 #include <sys/sysctl.h>
56 #include <pthread_np.h>
57 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
58 #include <sys/types.h>
59 #include <sys/sysctl.h>
66 #include "tsan_annotations.h"
68 struct kmp_sys_timer
{
69 struct timespec start
;
72 // Convert timespec to nanoseconds.
73 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
75 static struct kmp_sys_timer __kmp_sys_timer_data
;
77 #if KMP_HANDLE_SIGNALS
78 typedef void (*sig_func_t
)(int);
79 STATIC_EFI2_WORKAROUND
struct sigaction __kmp_sighldrs
[NSIG
];
80 static sigset_t __kmp_sigset
;
83 static int __kmp_init_runtime
= FALSE
;
85 static int __kmp_fork_count
= 0;
87 static pthread_condattr_t __kmp_suspend_cond_attr
;
88 static pthread_mutexattr_t __kmp_suspend_mutex_attr
;
90 static kmp_cond_align_t __kmp_wait_cv
;
91 static kmp_mutex_align_t __kmp_wait_mx
;
93 kmp_uint64 __kmp_ticks_per_msec
= 1000000;
96 static void __kmp_print_cond(char *buffer
, kmp_cond_align_t
*cond
) {
97 KMP_SNPRINTF(buffer
, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
98 cond
->c_cond
.__c_lock
.__status
, cond
->c_cond
.__c_lock
.__spinlock
,
99 cond
->c_cond
.__c_waiting
);
103 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
105 /* Affinity support */
107 void __kmp_affinity_bind_thread(int which
) {
108 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
109 "Illegal set affinity operation when not capable");
111 kmp_affin_mask_t
*mask
;
112 KMP_CPU_ALLOC_ON_STACK(mask
);
114 KMP_CPU_SET(which
, mask
);
115 __kmp_set_system_affinity(mask
, TRUE
);
116 KMP_CPU_FREE_FROM_STACK(mask
);
119 /* Determine if we can access affinity functionality on this version of
120 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
121 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
122 void __kmp_affinity_determine_capable(const char *env_var
) {
123 // Check and see if the OS supports thread affinity.
126 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
128 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
134 // If the syscall fails or returns a suggestion for the size,
135 // then we don't have to search for an appropriate size.
139 buf
= (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT
);
140 gCode
= syscall(__NR_sched_getaffinity
, 0, KMP_CPU_SET_SIZE_LIMIT
, buf
);
141 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
142 "initial getaffinity call returned %d errno = %d\n",
145 // if ((gCode < 0) && (errno == ENOSYS))
147 // System call not supported
148 if (__kmp_affinity_verbose
||
149 (__kmp_affinity_warnings
&& (__kmp_affinity_type
!= affinity_none
) &&
150 (__kmp_affinity_type
!= affinity_default
) &&
151 (__kmp_affinity_type
!= affinity_disabled
))) {
153 kmp_msg_t err_code
= KMP_ERR(error
);
154 __kmp_msg(kmp_ms_warning
, KMP_MSG(GetAffSysCallNotSupported
, env_var
),
155 err_code
, __kmp_msg_null
);
156 if (__kmp_generate_warnings
== kmp_warnings_off
) {
157 __kmp_str_free(&err_code
.str
);
160 KMP_AFFINITY_DISABLE();
161 KMP_INTERNAL_FREE(buf
);
164 if (gCode
> 0) { // Linux* OS only
165 // The optimal situation: the OS returns the size of the buffer it expects.
167 // A verification of correct behavior is that setaffinity on a NULL
168 // buffer with the same size fails with errno set to EFAULT.
169 sCode
= syscall(__NR_sched_setaffinity
, 0, gCode
, NULL
);
170 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
171 "setaffinity for mask size %d returned %d errno = %d\n",
172 gCode
, sCode
, errno
));
174 if (errno
== ENOSYS
) {
175 if (__kmp_affinity_verbose
||
176 (__kmp_affinity_warnings
&&
177 (__kmp_affinity_type
!= affinity_none
) &&
178 (__kmp_affinity_type
!= affinity_default
) &&
179 (__kmp_affinity_type
!= affinity_disabled
))) {
181 kmp_msg_t err_code
= KMP_ERR(error
);
182 __kmp_msg(kmp_ms_warning
, KMP_MSG(SetAffSysCallNotSupported
, env_var
),
183 err_code
, __kmp_msg_null
);
184 if (__kmp_generate_warnings
== kmp_warnings_off
) {
185 __kmp_str_free(&err_code
.str
);
188 KMP_AFFINITY_DISABLE();
189 KMP_INTERNAL_FREE(buf
);
191 if (errno
== EFAULT
) {
192 KMP_AFFINITY_ENABLE(gCode
);
193 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
194 "affinity supported (mask size %d)\n",
195 (int)__kmp_affin_mask_size
));
196 KMP_INTERNAL_FREE(buf
);
202 // Call the getaffinity system call repeatedly with increasing set sizes
203 // until we succeed, or reach an upper bound on the search.
204 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
205 "searching for proper set size\n"));
207 for (size
= 1; size
<= KMP_CPU_SET_SIZE_LIMIT
; size
*= 2) {
208 gCode
= syscall(__NR_sched_getaffinity
, 0, size
, buf
);
209 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
210 "getaffinity for mask size %d returned %d errno = %d\n",
211 size
, gCode
, errno
));
214 if (errno
== ENOSYS
) {
215 // We shouldn't get here
216 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
217 "inconsistent OS call behavior: errno == ENOSYS for mask "
220 if (__kmp_affinity_verbose
||
221 (__kmp_affinity_warnings
&&
222 (__kmp_affinity_type
!= affinity_none
) &&
223 (__kmp_affinity_type
!= affinity_default
) &&
224 (__kmp_affinity_type
!= affinity_disabled
))) {
226 kmp_msg_t err_code
= KMP_ERR(error
);
227 __kmp_msg(kmp_ms_warning
, KMP_MSG(GetAffSysCallNotSupported
, env_var
),
228 err_code
, __kmp_msg_null
);
229 if (__kmp_generate_warnings
== kmp_warnings_off
) {
230 __kmp_str_free(&err_code
.str
);
233 KMP_AFFINITY_DISABLE();
234 KMP_INTERNAL_FREE(buf
);
240 sCode
= syscall(__NR_sched_setaffinity
, 0, gCode
, NULL
);
241 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
242 "setaffinity for mask size %d returned %d errno = %d\n",
243 gCode
, sCode
, errno
));
245 if (errno
== ENOSYS
) { // Linux* OS only
246 // We shouldn't get here
247 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
248 "inconsistent OS call behavior: errno == ENOSYS for mask "
251 if (__kmp_affinity_verbose
||
252 (__kmp_affinity_warnings
&&
253 (__kmp_affinity_type
!= affinity_none
) &&
254 (__kmp_affinity_type
!= affinity_default
) &&
255 (__kmp_affinity_type
!= affinity_disabled
))) {
257 kmp_msg_t err_code
= KMP_ERR(error
);
258 __kmp_msg(kmp_ms_warning
, KMP_MSG(SetAffSysCallNotSupported
, env_var
),
259 err_code
, __kmp_msg_null
);
260 if (__kmp_generate_warnings
== kmp_warnings_off
) {
261 __kmp_str_free(&err_code
.str
);
264 KMP_AFFINITY_DISABLE();
265 KMP_INTERNAL_FREE(buf
);
268 if (errno
== EFAULT
) {
269 KMP_AFFINITY_ENABLE(gCode
);
270 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
271 "affinity supported (mask size %d)\n",
272 (int)__kmp_affin_mask_size
));
273 KMP_INTERNAL_FREE(buf
);
281 buf
= (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT
);
282 gCode
= pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT
, reinterpret_cast<cpuset_t
*>(buf
));
283 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
284 "initial getaffinity call returned %d errno = %d\n",
287 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT
);
288 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
289 "affinity supported (mask size %d)\n",
290 (int)__kmp_affin_mask_size
));
291 KMP_INTERNAL_FREE(buf
);
295 // save uncaught error code
296 // int error = errno;
297 KMP_INTERNAL_FREE(buf
);
298 // restore uncaught error code, will be printed at the next KMP_WARNING below
301 // Affinity is not supported
302 KMP_AFFINITY_DISABLE();
303 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
304 "cannot determine mask size - affinity not supported\n"));
305 if (__kmp_affinity_verbose
||
306 (__kmp_affinity_warnings
&& (__kmp_affinity_type
!= affinity_none
) &&
307 (__kmp_affinity_type
!= affinity_default
) &&
308 (__kmp_affinity_type
!= affinity_disabled
))) {
309 KMP_WARNING(AffCantGetMaskSize
, env_var
);
313 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
317 int __kmp_futex_determine_capable() {
319 int rc
= syscall(__NR_futex
, &loc
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
320 int retval
= (rc
== 0) || (errno
!= ENOSYS
);
323 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc
, errno
));
324 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
325 retval
? "" : " not"));
330 #endif // KMP_USE_FUTEX
332 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
333 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
334 use compare_and_store for these routines */
336 kmp_int8
__kmp_test_then_or8(volatile kmp_int8
*p
, kmp_int8 d
) {
337 kmp_int8 old_value
, new_value
;
339 old_value
= TCR_1(*p
);
340 new_value
= old_value
| d
;
342 while (!KMP_COMPARE_AND_STORE_REL8(p
, old_value
, new_value
)) {
344 old_value
= TCR_1(*p
);
345 new_value
= old_value
| d
;
350 kmp_int8
__kmp_test_then_and8(volatile kmp_int8
*p
, kmp_int8 d
) {
351 kmp_int8 old_value
, new_value
;
353 old_value
= TCR_1(*p
);
354 new_value
= old_value
& d
;
356 while (!KMP_COMPARE_AND_STORE_REL8(p
, old_value
, new_value
)) {
358 old_value
= TCR_1(*p
);
359 new_value
= old_value
& d
;
364 kmp_uint32
__kmp_test_then_or32(volatile kmp_uint32
*p
, kmp_uint32 d
) {
365 kmp_uint32 old_value
, new_value
;
367 old_value
= TCR_4(*p
);
368 new_value
= old_value
| d
;
370 while (!KMP_COMPARE_AND_STORE_REL32(p
, old_value
, new_value
)) {
372 old_value
= TCR_4(*p
);
373 new_value
= old_value
| d
;
378 kmp_uint32
__kmp_test_then_and32(volatile kmp_uint32
*p
, kmp_uint32 d
) {
379 kmp_uint32 old_value
, new_value
;
381 old_value
= TCR_4(*p
);
382 new_value
= old_value
& d
;
384 while (!KMP_COMPARE_AND_STORE_REL32(p
, old_value
, new_value
)) {
386 old_value
= TCR_4(*p
);
387 new_value
= old_value
& d
;
393 kmp_int8
__kmp_test_then_add8(volatile kmp_int8
*p
, kmp_int8 d
) {
394 kmp_int8 old_value
, new_value
;
396 old_value
= TCR_1(*p
);
397 new_value
= old_value
+ d
;
399 while (!KMP_COMPARE_AND_STORE_REL8(p
, old_value
, new_value
)) {
401 old_value
= TCR_1(*p
);
402 new_value
= old_value
+ d
;
407 kmp_int64
__kmp_test_then_add64(volatile kmp_int64
*p
, kmp_int64 d
) {
408 kmp_int64 old_value
, new_value
;
410 old_value
= TCR_8(*p
);
411 new_value
= old_value
+ d
;
413 while (!KMP_COMPARE_AND_STORE_REL64(p
, old_value
, new_value
)) {
415 old_value
= TCR_8(*p
);
416 new_value
= old_value
+ d
;
420 #endif /* KMP_ARCH_X86 */
422 kmp_uint64
__kmp_test_then_or64(volatile kmp_uint64
*p
, kmp_uint64 d
) {
423 kmp_uint64 old_value
, new_value
;
425 old_value
= TCR_8(*p
);
426 new_value
= old_value
| d
;
427 while (!KMP_COMPARE_AND_STORE_REL64(p
, old_value
, new_value
)) {
429 old_value
= TCR_8(*p
);
430 new_value
= old_value
| d
;
435 kmp_uint64
__kmp_test_then_and64(volatile kmp_uint64
*p
, kmp_uint64 d
) {
436 kmp_uint64 old_value
, new_value
;
438 old_value
= TCR_8(*p
);
439 new_value
= old_value
& d
;
440 while (!KMP_COMPARE_AND_STORE_REL64(p
, old_value
, new_value
)) {
442 old_value
= TCR_8(*p
);
443 new_value
= old_value
& d
;
448 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
450 void __kmp_terminate_thread(int gtid
) {
452 kmp_info_t
*th
= __kmp_threads
[gtid
];
457 #ifdef KMP_CANCEL_THREADS
458 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid
));
459 status
= pthread_cancel(th
->th
.th_info
.ds
.ds_thread
);
460 if (status
!= 0 && status
!= ESRCH
) {
461 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread
), KMP_ERR(status
),
468 /* Set thread stack info according to values returned by pthread_getattr_np().
469 If values are unreasonable, assume call failed and use incremental stack
470 refinement method instead. Returns TRUE if the stack parameters could be
471 determined exactly, FALSE if incremental refinement is necessary. */
472 static kmp_int32
__kmp_set_stack_info(int gtid
, kmp_info_t
*th
) {
474 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
481 /* Always do incremental stack refinement for ubermaster threads since the
482 initial thread stack range can be reduced by sibling thread creation so
483 pthread_attr_getstack may cause thread gtid aliasing */
484 if (!KMP_UBER_GTID(gtid
)) {
486 /* Fetch the real thread attributes */
487 status
= pthread_attr_init(&attr
);
488 KMP_CHECK_SYSFAIL("pthread_attr_init", status
);
489 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
490 status
= pthread_attr_get_np(pthread_self(), &attr
);
491 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status
);
493 status
= pthread_getattr_np(pthread_self(), &attr
);
494 KMP_CHECK_SYSFAIL("pthread_getattr_np", status
);
496 status
= pthread_attr_getstack(&attr
, &addr
, &size
);
497 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status
);
499 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
500 " %lu, low addr: %p\n",
502 status
= pthread_attr_destroy(&attr
);
503 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status
);
506 if (size
!= 0 && addr
!= 0) { // was stack parameter determination successful?
507 /* Store the correct base and size */
508 TCW_PTR(th
->th
.th_info
.ds
.ds_stackbase
, (((char *)addr
) + size
));
509 TCW_PTR(th
->th
.th_info
.ds
.ds_stacksize
, size
);
510 TCW_4(th
->th
.th_info
.ds
.ds_stackgrow
, FALSE
);
513 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
515 /* Use incremental refinement starting from initial conservative estimate */
516 TCW_PTR(th
->th
.th_info
.ds
.ds_stacksize
, 0);
517 TCW_PTR(th
->th
.th_info
.ds
.ds_stackbase
, &stack_data
);
518 TCW_4(th
->th
.th_info
.ds
.ds_stackgrow
, TRUE
);
522 static void *__kmp_launch_worker(void *thr
) {
523 int status
, old_type
, old_state
;
524 #ifdef KMP_BLOCK_SIGNALS
525 sigset_t new_set
, old_set
;
526 #endif /* KMP_BLOCK_SIGNALS */
528 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
529 KMP_OS_OPENBSD || KMP_OS_HURD
530 void *volatile padding
= 0;
534 gtid
= ((kmp_info_t
*)thr
)->th
.th_info
.ds
.ds_gtid
;
535 __kmp_gtid_set_specific(gtid
);
536 #ifdef KMP_TDATA_GTID
539 #if KMP_STATS_ENABLED
540 // set thread local index to point to thread-specific stats
541 __kmp_stats_thread_ptr
= ((kmp_info_t
*)thr
)->th
.th_stats
;
542 __kmp_stats_thread_ptr
->startLife();
543 KMP_SET_THREAD_STATE(IDLE
);
544 KMP_INIT_PARTITIONED_TIMERS(OMP_idle
);
548 __kmp_itt_thread_name(gtid
);
549 #endif /* USE_ITT_BUILD */
551 #if KMP_AFFINITY_SUPPORTED
552 __kmp_affinity_set_init_mask(gtid
, FALSE
);
555 #ifdef KMP_CANCEL_THREADS
556 status
= pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS
, &old_type
);
557 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status
);
558 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
559 status
= pthread_setcancelstate(PTHREAD_CANCEL_ENABLE
, &old_state
);
560 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status
);
563 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
564 // Set FP control regs to be a copy of the parallel initialization thread's.
565 __kmp_clear_x87_fpu_status_word();
566 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word
);
567 __kmp_load_mxcsr(&__kmp_init_mxcsr
);
568 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
570 #ifdef KMP_BLOCK_SIGNALS
571 status
= sigfillset(&new_set
);
572 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status
);
573 status
= pthread_sigmask(SIG_BLOCK
, &new_set
, &old_set
);
574 KMP_CHECK_SYSFAIL("pthread_sigmask", status
);
575 #endif /* KMP_BLOCK_SIGNALS */
577 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
579 if (__kmp_stkoffset
> 0 && gtid
> 0) {
580 padding
= KMP_ALLOCA(gtid
* __kmp_stkoffset
);
585 __kmp_set_stack_info(gtid
, (kmp_info_t
*)thr
);
587 __kmp_check_stack_overlap((kmp_info_t
*)thr
);
589 exit_val
= __kmp_launch_thread((kmp_info_t
*)thr
);
591 #ifdef KMP_BLOCK_SIGNALS
592 status
= pthread_sigmask(SIG_SETMASK
, &old_set
, NULL
);
593 KMP_CHECK_SYSFAIL("pthread_sigmask", status
);
594 #endif /* KMP_BLOCK_SIGNALS */
600 /* The monitor thread controls all of the threads in the complex */
602 static void *__kmp_launch_monitor(void *thr
) {
603 int status
, old_type
, old_state
;
604 #ifdef KMP_BLOCK_SIGNALS
606 #endif /* KMP_BLOCK_SIGNALS */
607 struct timespec interval
;
609 KMP_MB(); /* Flush all pending memory write invalidates. */
611 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
613 /* register us as the monitor thread */
614 __kmp_gtid_set_specific(KMP_GTID_MONITOR
);
615 #ifdef KMP_TDATA_GTID
616 __kmp_gtid
= KMP_GTID_MONITOR
;
622 // Instruct Intel(R) Threading Tools to ignore monitor thread.
623 __kmp_itt_thread_ignore();
624 #endif /* USE_ITT_BUILD */
626 __kmp_set_stack_info(((kmp_info_t
*)thr
)->th
.th_info
.ds
.ds_gtid
,
629 __kmp_check_stack_overlap((kmp_info_t
*)thr
);
631 #ifdef KMP_CANCEL_THREADS
632 status
= pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS
, &old_type
);
633 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status
);
634 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
635 status
= pthread_setcancelstate(PTHREAD_CANCEL_ENABLE
, &old_state
);
636 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status
);
639 #if KMP_REAL_TIME_FIX
640 // This is a potential fix which allows application with real-time scheduling
641 // policy work. However, decision about the fix is not made yet, so it is
642 // disabled by default.
643 { // Are program started with real-time scheduling policy?
644 int sched
= sched_getscheduler(0);
645 if (sched
== SCHED_FIFO
|| sched
== SCHED_RR
) {
646 // Yes, we are a part of real-time application. Try to increase the
647 // priority of the monitor.
648 struct sched_param param
;
649 int max_priority
= sched_get_priority_max(sched
);
651 KMP_WARNING(RealTimeSchedNotSupported
);
652 sched_getparam(0, ¶m
);
653 if (param
.sched_priority
< max_priority
) {
654 param
.sched_priority
+= 1;
655 rc
= sched_setscheduler(0, sched
, ¶m
);
658 kmp_msg_t err_code
= KMP_ERR(error
);
659 __kmp_msg(kmp_ms_warning
, KMP_MSG(CantChangeMonitorPriority
),
660 err_code
, KMP_MSG(MonitorWillStarve
), __kmp_msg_null
);
661 if (__kmp_generate_warnings
== kmp_warnings_off
) {
662 __kmp_str_free(&err_code
.str
);
666 // We cannot abort here, because number of CPUs may be enough for all
667 // the threads, including the monitor thread, so application could
668 // potentially work...
669 __kmp_msg(kmp_ms_warning
, KMP_MSG(RunningAtMaxPriority
),
670 KMP_MSG(MonitorWillStarve
), KMP_HNT(RunningAtMaxPriority
),
674 // AC: free thread that waits for monitor started
675 TCW_4(__kmp_global
.g
.g_time
.dt
.t_value
, 0);
677 #endif // KMP_REAL_TIME_FIX
679 KMP_MB(); /* Flush all pending memory write invalidates. */
681 if (__kmp_monitor_wakeups
== 1) {
683 interval
.tv_nsec
= 0;
686 interval
.tv_nsec
= (KMP_NSEC_PER_SEC
/ __kmp_monitor_wakeups
);
689 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
691 while (!TCR_4(__kmp_global
.g
.g_done
)) {
695 /* This thread monitors the state of the system */
697 KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
699 status
= gettimeofday(&tval
, NULL
);
700 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status
);
701 TIMEVAL_TO_TIMESPEC(&tval
, &now
);
703 now
.tv_sec
+= interval
.tv_sec
;
704 now
.tv_nsec
+= interval
.tv_nsec
;
706 if (now
.tv_nsec
>= KMP_NSEC_PER_SEC
) {
708 now
.tv_nsec
-= KMP_NSEC_PER_SEC
;
711 status
= pthread_mutex_lock(&__kmp_wait_mx
.m_mutex
);
712 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status
);
713 // AC: the monitor should not fall asleep if g_done has been set
714 if (!TCR_4(__kmp_global
.g
.g_done
)) { // check once more under mutex
715 status
= pthread_cond_timedwait(&__kmp_wait_cv
.c_cond
,
716 &__kmp_wait_mx
.m_mutex
, &now
);
718 if (status
!= ETIMEDOUT
&& status
!= EINTR
) {
719 KMP_SYSFAIL("pthread_cond_timedwait", status
);
723 status
= pthread_mutex_unlock(&__kmp_wait_mx
.m_mutex
);
724 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status
);
726 TCW_4(__kmp_global
.g
.g_time
.dt
.t_value
,
727 TCR_4(__kmp_global
.g
.g_time
.dt
.t_value
) + 1);
729 KMP_MB(); /* Flush all pending memory write invalidates. */
732 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
734 #ifdef KMP_BLOCK_SIGNALS
735 status
= sigfillset(&new_set
);
736 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status
);
737 status
= pthread_sigmask(SIG_UNBLOCK
, &new_set
, NULL
);
738 KMP_CHECK_SYSFAIL("pthread_sigmask", status
);
739 #endif /* KMP_BLOCK_SIGNALS */
741 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
743 if (__kmp_global
.g
.g_abort
!= 0) {
744 /* now we need to terminate the worker threads */
745 /* the value of t_abort is the signal we caught */
749 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
750 __kmp_global
.g
.g_abort
));
752 /* terminate the OpenMP worker threads */
753 /* TODO this is not valid for sibling threads!!
754 * the uber master might not be 0 anymore.. */
755 for (gtid
= 1; gtid
< __kmp_threads_capacity
; ++gtid
)
756 __kmp_terminate_thread(gtid
);
760 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
761 __kmp_global
.g
.g_abort
));
763 if (__kmp_global
.g
.g_abort
> 0)
764 raise(__kmp_global
.g
.g_abort
);
767 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
771 #endif // KMP_USE_MONITOR
773 void __kmp_create_worker(int gtid
, kmp_info_t
*th
, size_t stack_size
) {
775 pthread_attr_t thread_attr
;
778 th
->th
.th_info
.ds
.ds_gtid
= gtid
;
780 #if KMP_STATS_ENABLED
781 // sets up worker thread stats
782 __kmp_acquire_tas_lock(&__kmp_stats_lock
, gtid
);
784 // th->th.th_stats is used to transfer thread-specific stats-pointer to
785 // __kmp_launch_worker. So when thread is created (goes into
786 // __kmp_launch_worker) it will set its thread local pointer to
788 if (!KMP_UBER_GTID(gtid
)) {
789 th
->th
.th_stats
= __kmp_stats_list
->push_back(gtid
);
791 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
792 // so set the th->th.th_stats field to it.
793 th
->th
.th_stats
= __kmp_stats_thread_ptr
;
795 __kmp_release_tas_lock(&__kmp_stats_lock
, gtid
);
797 #endif // KMP_STATS_ENABLED
799 if (KMP_UBER_GTID(gtid
)) {
800 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid
));
801 th
->th
.th_info
.ds
.ds_thread
= pthread_self();
802 __kmp_set_stack_info(gtid
, th
);
803 __kmp_check_stack_overlap(th
);
807 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid
));
809 KMP_MB(); /* Flush all pending memory write invalidates. */
811 #ifdef KMP_THREAD_ATTR
812 status
= pthread_attr_init(&thread_attr
);
814 __kmp_fatal(KMP_MSG(CantInitThreadAttrs
), KMP_ERR(status
), __kmp_msg_null
);
816 status
= pthread_attr_setdetachstate(&thread_attr
, PTHREAD_CREATE_JOINABLE
);
818 __kmp_fatal(KMP_MSG(CantSetWorkerState
), KMP_ERR(status
), __kmp_msg_null
);
821 /* Set stack size for this thread now.
822 The multiple of 2 is there because on some machines, requesting an unusual
823 stacksize causes the thread to have an offset before the dummy alloca()
824 takes place to create the offset. Since we want the user to have a
825 sufficient stacksize AND support a stack offset, we alloca() twice the
826 offset so that the upcoming alloca() does not eliminate any premade offset,
827 and also gives the user the stack space they requested for all threads */
828 stack_size
+= gtid
* __kmp_stkoffset
* 2;
830 #if defined(__ANDROID__) && __ANDROID_API__ < 19
831 // Round the stack size to a multiple of the page size. Older versions of
832 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
833 // if the stack size was not a multiple of the page size.
834 stack_size
= (stack_size
+ PAGE_SIZE
- 1) & ~(PAGE_SIZE
- 1);
837 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
838 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
839 gtid
, KMP_DEFAULT_STKSIZE
, __kmp_stksize
, stack_size
));
841 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
842 status
= pthread_attr_setstacksize(&thread_attr
, stack_size
);
843 #ifdef KMP_BACKUP_STKSIZE
845 if (!__kmp_env_stksize
) {
846 stack_size
= KMP_BACKUP_STKSIZE
+ gtid
* __kmp_stkoffset
;
847 __kmp_stksize
= KMP_BACKUP_STKSIZE
;
848 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
849 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
851 gtid
, KMP_DEFAULT_STKSIZE
, __kmp_stksize
, stack_size
));
852 status
= pthread_attr_setstacksize(&thread_attr
, stack_size
);
855 #endif /* KMP_BACKUP_STKSIZE */
857 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize
, stack_size
), KMP_ERR(status
),
858 KMP_HNT(ChangeWorkerStackSize
), __kmp_msg_null
);
860 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
862 #endif /* KMP_THREAD_ATTR */
865 pthread_create(&handle
, &thread_attr
, __kmp_launch_worker
, (void *)th
);
866 if (status
!= 0 || !handle
) { // ??? Why do we check handle??
867 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
868 if (status
== EINVAL
) {
869 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize
, stack_size
), KMP_ERR(status
),
870 KMP_HNT(IncreaseWorkerStackSize
), __kmp_msg_null
);
872 if (status
== ENOMEM
) {
873 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize
, stack_size
), KMP_ERR(status
),
874 KMP_HNT(DecreaseWorkerStackSize
), __kmp_msg_null
);
876 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
877 if (status
== EAGAIN
) {
878 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread
), KMP_ERR(status
),
879 KMP_HNT(Decrease_NUM_THREADS
), __kmp_msg_null
);
881 KMP_SYSFAIL("pthread_create", status
);
884 th
->th
.th_info
.ds
.ds_thread
= handle
;
886 #ifdef KMP_THREAD_ATTR
887 status
= pthread_attr_destroy(&thread_attr
);
889 kmp_msg_t err_code
= KMP_ERR(status
);
890 __kmp_msg(kmp_ms_warning
, KMP_MSG(CantDestroyThreadAttrs
), err_code
,
892 if (__kmp_generate_warnings
== kmp_warnings_off
) {
893 __kmp_str_free(&err_code
.str
);
896 #endif /* KMP_THREAD_ATTR */
898 KMP_MB(); /* Flush all pending memory write invalidates. */
900 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid
));
902 } // __kmp_create_worker
905 void __kmp_create_monitor(kmp_info_t
*th
) {
907 pthread_attr_t thread_attr
;
910 int auto_adj_size
= FALSE
;
912 if (__kmp_dflt_blocktime
== KMP_MAX_BLOCKTIME
) {
913 // We don't need monitor thread in case of MAX_BLOCKTIME
914 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
916 th
->th
.th_info
.ds
.ds_tid
= 0; // this makes reap_monitor no-op
917 th
->th
.th_info
.ds
.ds_gtid
= 0;
920 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
922 KMP_MB(); /* Flush all pending memory write invalidates. */
924 th
->th
.th_info
.ds
.ds_tid
= KMP_GTID_MONITOR
;
925 th
->th
.th_info
.ds
.ds_gtid
= KMP_GTID_MONITOR
;
926 #if KMP_REAL_TIME_FIX
927 TCW_4(__kmp_global
.g
.g_time
.dt
.t_value
,
928 -1); // Will use it for synchronization a bit later.
930 TCW_4(__kmp_global
.g
.g_time
.dt
.t_value
, 0);
931 #endif // KMP_REAL_TIME_FIX
933 #ifdef KMP_THREAD_ATTR
934 if (__kmp_monitor_stksize
== 0) {
935 __kmp_monitor_stksize
= KMP_DEFAULT_MONITOR_STKSIZE
;
936 auto_adj_size
= TRUE
;
938 status
= pthread_attr_init(&thread_attr
);
940 __kmp_fatal(KMP_MSG(CantInitThreadAttrs
), KMP_ERR(status
), __kmp_msg_null
);
942 status
= pthread_attr_setdetachstate(&thread_attr
, PTHREAD_CREATE_JOINABLE
);
944 __kmp_fatal(KMP_MSG(CantSetMonitorState
), KMP_ERR(status
), __kmp_msg_null
);
947 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
948 status
= pthread_attr_getstacksize(&thread_attr
, &size
);
949 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status
);
951 size
= __kmp_sys_min_stksize
;
952 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
953 #endif /* KMP_THREAD_ATTR */
955 if (__kmp_monitor_stksize
== 0) {
956 __kmp_monitor_stksize
= KMP_DEFAULT_MONITOR_STKSIZE
;
958 if (__kmp_monitor_stksize
< __kmp_sys_min_stksize
) {
959 __kmp_monitor_stksize
= __kmp_sys_min_stksize
;
962 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
963 "requested stacksize = %lu bytes\n",
964 size
, __kmp_monitor_stksize
));
968 /* Set stack size for this thread now. */
969 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
970 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
971 __kmp_monitor_stksize
));
972 status
= pthread_attr_setstacksize(&thread_attr
, __kmp_monitor_stksize
);
975 __kmp_monitor_stksize
*= 2;
978 kmp_msg_t err_code
= KMP_ERR(status
);
979 __kmp_msg(kmp_ms_warning
, // should this be fatal? BB
980 KMP_MSG(CantSetMonitorStackSize
, (long int)__kmp_monitor_stksize
),
981 err_code
, KMP_HNT(ChangeMonitorStackSize
), __kmp_msg_null
);
982 if (__kmp_generate_warnings
== kmp_warnings_off
) {
983 __kmp_str_free(&err_code
.str
);
986 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
989 pthread_create(&handle
, &thread_attr
, __kmp_launch_monitor
, (void *)th
);
992 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
993 if (status
== EINVAL
) {
994 if (auto_adj_size
&& (__kmp_monitor_stksize
< (size_t)0x40000000)) {
995 __kmp_monitor_stksize
*= 2;
998 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize
, __kmp_monitor_stksize
),
999 KMP_ERR(status
), KMP_HNT(IncreaseMonitorStackSize
),
1002 if (status
== ENOMEM
) {
1003 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize
, __kmp_monitor_stksize
),
1004 KMP_ERR(status
), KMP_HNT(DecreaseMonitorStackSize
),
1007 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1008 if (status
== EAGAIN
) {
1009 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread
), KMP_ERR(status
),
1010 KMP_HNT(DecreaseNumberOfThreadsInUse
), __kmp_msg_null
);
1012 KMP_SYSFAIL("pthread_create", status
);
1015 th
->th
.th_info
.ds
.ds_thread
= handle
;
1017 #if KMP_REAL_TIME_FIX
1018 // Wait for the monitor thread is really started and set its *priority*.
1019 KMP_DEBUG_ASSERT(sizeof(kmp_uint32
) ==
1020 sizeof(__kmp_global
.g
.g_time
.dt
.t_value
));
1021 __kmp_wait_4((kmp_uint32
volatile *)&__kmp_global
.g
.g_time
.dt
.t_value
, -1,
1022 &__kmp_neq_4
, NULL
);
1023 #endif // KMP_REAL_TIME_FIX
1025 #ifdef KMP_THREAD_ATTR
1026 status
= pthread_attr_destroy(&thread_attr
);
1028 kmp_msg_t err_code
= KMP_ERR(status
);
1029 __kmp_msg(kmp_ms_warning
, KMP_MSG(CantDestroyThreadAttrs
), err_code
,
1031 if (__kmp_generate_warnings
== kmp_warnings_off
) {
1032 __kmp_str_free(&err_code
.str
);
1037 KMP_MB(); /* Flush all pending memory write invalidates. */
1039 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1040 th
->th
.th_info
.ds
.ds_thread
));
1042 } // __kmp_create_monitor
1043 #endif // KMP_USE_MONITOR
1045 void __kmp_exit_thread(int exit_status
) {
1046 pthread_exit((void *)(intptr_t)exit_status
);
1047 } // __kmp_exit_thread
1050 void __kmp_resume_monitor();
1052 void __kmp_reap_monitor(kmp_info_t
*th
) {
1056 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1058 th
->th
.th_info
.ds
.ds_thread
));
1060 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1061 // If both tid and gtid are 0, it means the monitor did not ever start.
1062 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1063 KMP_DEBUG_ASSERT(th
->th
.th_info
.ds
.ds_tid
== th
->th
.th_info
.ds
.ds_gtid
);
1064 if (th
->th
.th_info
.ds
.ds_gtid
!= KMP_GTID_MONITOR
) {
1065 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1069 KMP_MB(); /* Flush all pending memory write invalidates. */
1071 /* First, check to see whether the monitor thread exists to wake it up. This
1072 is to avoid performance problem when the monitor sleeps during
1073 blocktime-size interval */
1075 status
= pthread_kill(th
->th
.th_info
.ds
.ds_thread
, 0);
1076 if (status
!= ESRCH
) {
1077 __kmp_resume_monitor(); // Wake up the monitor thread
1079 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1080 status
= pthread_join(th
->th
.th_info
.ds
.ds_thread
, &exit_val
);
1081 if (exit_val
!= th
) {
1082 __kmp_fatal(KMP_MSG(ReapMonitorError
), KMP_ERR(status
), __kmp_msg_null
);
1085 th
->th
.th_info
.ds
.ds_tid
= KMP_GTID_DNE
;
1086 th
->th
.th_info
.ds
.ds_gtid
= KMP_GTID_DNE
;
1088 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1090 th
->th
.th_info
.ds
.ds_thread
));
1092 KMP_MB(); /* Flush all pending memory write invalidates. */
1094 #endif // KMP_USE_MONITOR
1096 void __kmp_reap_worker(kmp_info_t
*th
) {
1100 KMP_MB(); /* Flush all pending memory write invalidates. */
1103 10, ("__kmp_reap_worker: try to reap T#%d\n", th
->th
.th_info
.ds
.ds_gtid
));
1105 status
= pthread_join(th
->th
.th_info
.ds
.ds_thread
, &exit_val
);
1107 /* Don't expose these to the user until we understand when they trigger */
1109 __kmp_fatal(KMP_MSG(ReapWorkerError
), KMP_ERR(status
), __kmp_msg_null
);
1111 if (exit_val
!= th
) {
1112 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1114 th
->th
.th_info
.ds
.ds_gtid
, exit_val
));
1116 #endif /* KMP_DEBUG */
1118 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1119 th
->th
.th_info
.ds
.ds_gtid
));
1121 KMP_MB(); /* Flush all pending memory write invalidates. */
1124 #if KMP_HANDLE_SIGNALS
1126 static void __kmp_null_handler(int signo
) {
1127 // Do nothing, for doing SIG_IGN-type actions.
1128 } // __kmp_null_handler
1130 static void __kmp_team_handler(int signo
) {
1131 if (__kmp_global
.g
.g_abort
== 0) {
1132 /* Stage 1 signal handler, let's shut down all of the threads */
1134 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo
);
1149 if (__kmp_debug_buf
) {
1150 __kmp_dump_debug_buffer();
1152 KMP_MB(); // Flush all pending memory write invalidates.
1153 TCW_4(__kmp_global
.g
.g_abort
, signo
);
1154 KMP_MB(); // Flush all pending memory write invalidates.
1155 TCW_4(__kmp_global
.g
.g_done
, TRUE
);
1156 KMP_MB(); // Flush all pending memory write invalidates.
1160 __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1165 } // __kmp_team_handler
1167 static void __kmp_sigaction(int signum
, const struct sigaction
*act
,
1168 struct sigaction
*oldact
) {
1169 int rc
= sigaction(signum
, act
, oldact
);
1170 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc
);
1173 static void __kmp_install_one_handler(int sig
, sig_func_t handler_func
,
1174 int parallel_init
) {
1175 KMP_MB(); // Flush all pending memory write invalidates.
1177 ("__kmp_install_one_handler( %d, ..., %d )\n", sig
, parallel_init
));
1178 if (parallel_init
) {
1179 struct sigaction new_action
;
1180 struct sigaction old_action
;
1181 new_action
.sa_handler
= handler_func
;
1182 new_action
.sa_flags
= 0;
1183 sigfillset(&new_action
.sa_mask
);
1184 __kmp_sigaction(sig
, &new_action
, &old_action
);
1185 if (old_action
.sa_handler
== __kmp_sighldrs
[sig
].sa_handler
) {
1186 sigaddset(&__kmp_sigset
, sig
);
1188 // Restore/keep user's handler if one previously installed.
1189 __kmp_sigaction(sig
, &old_action
, NULL
);
1192 // Save initial/system signal handlers to see if user handlers installed.
1193 __kmp_sigaction(sig
, NULL
, &__kmp_sighldrs
[sig
]);
1195 KMP_MB(); // Flush all pending memory write invalidates.
1196 } // __kmp_install_one_handler
1198 static void __kmp_remove_one_handler(int sig
) {
1199 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig
));
1200 if (sigismember(&__kmp_sigset
, sig
)) {
1201 struct sigaction old
;
1202 KMP_MB(); // Flush all pending memory write invalidates.
1203 __kmp_sigaction(sig
, &__kmp_sighldrs
[sig
], &old
);
1204 if ((old
.sa_handler
!= __kmp_team_handler
) &&
1205 (old
.sa_handler
!= __kmp_null_handler
)) {
1206 // Restore the users signal handler.
1207 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1208 "restoring: sig=%d\n",
1210 __kmp_sigaction(sig
, &old
, NULL
);
1212 sigdelset(&__kmp_sigset
, sig
);
1213 KMP_MB(); // Flush all pending memory write invalidates.
1215 } // __kmp_remove_one_handler
1217 void __kmp_install_signals(int parallel_init
) {
1218 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init
));
1219 if (__kmp_handle_signals
|| !parallel_init
) {
1220 // If ! parallel_init, we do not install handlers, just save original
1221 // handlers. Let us do it even __handle_signals is 0.
1222 sigemptyset(&__kmp_sigset
);
1223 __kmp_install_one_handler(SIGHUP
, __kmp_team_handler
, parallel_init
);
1224 __kmp_install_one_handler(SIGINT
, __kmp_team_handler
, parallel_init
);
1225 __kmp_install_one_handler(SIGQUIT
, __kmp_team_handler
, parallel_init
);
1226 __kmp_install_one_handler(SIGILL
, __kmp_team_handler
, parallel_init
);
1227 __kmp_install_one_handler(SIGABRT
, __kmp_team_handler
, parallel_init
);
1228 __kmp_install_one_handler(SIGFPE
, __kmp_team_handler
, parallel_init
);
1229 __kmp_install_one_handler(SIGBUS
, __kmp_team_handler
, parallel_init
);
1230 __kmp_install_one_handler(SIGSEGV
, __kmp_team_handler
, parallel_init
);
1232 __kmp_install_one_handler(SIGSYS
, __kmp_team_handler
, parallel_init
);
1234 __kmp_install_one_handler(SIGTERM
, __kmp_team_handler
, parallel_init
);
1236 __kmp_install_one_handler(SIGPIPE
, __kmp_team_handler
, parallel_init
);
1239 } // __kmp_install_signals
1241 void __kmp_remove_signals(void) {
1243 KB_TRACE(10, ("__kmp_remove_signals()\n"));
1244 for (sig
= 1; sig
< NSIG
; ++sig
) {
1245 __kmp_remove_one_handler(sig
);
1247 } // __kmp_remove_signals
1249 #endif // KMP_HANDLE_SIGNALS
1251 void __kmp_enable(int new_state
) {
1252 #ifdef KMP_CANCEL_THREADS
1253 int status
, old_state
;
1254 status
= pthread_setcancelstate(new_state
, &old_state
);
1255 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status
);
1256 KMP_DEBUG_ASSERT(old_state
== PTHREAD_CANCEL_DISABLE
);
1260 void __kmp_disable(int *old_state
) {
1261 #ifdef KMP_CANCEL_THREADS
1263 status
= pthread_setcancelstate(PTHREAD_CANCEL_DISABLE
, old_state
);
1264 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status
);
1268 static void __kmp_atfork_prepare(void) {
1269 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
1270 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock
);
1273 static void __kmp_atfork_parent(void) {
1274 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
1275 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
1278 /* Reset the library so execution in the child starts "all over again" with
1279 clean data structures in initial states. Don't worry about freeing memory
1280 allocated by parent, just abandon it to be safe. */
1281 static void __kmp_atfork_child(void) {
1282 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
1283 /* TODO make sure this is done right for nested/sibling */
1284 // ATT: Memory leaks are here? TODO: Check it and fix.
1285 /* KMP_ASSERT( 0 ); */
1289 #if KMP_AFFINITY_SUPPORTED
1290 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1291 // reset the affinity in the child to the initial thread
1292 // affinity in the parent
1293 kmp_set_thread_affinity_mask_initial();
1295 // Set default not to bind threads tightly in the child (we’re expecting
1296 // over-subscription after the fork and this can improve things for
1297 // scripting languages that use OpenMP inside process-parallel code).
1298 __kmp_affinity_type
= affinity_none
;
1299 if (__kmp_nested_proc_bind
.bind_types
!= NULL
) {
1300 __kmp_nested_proc_bind
.bind_types
[0] = proc_bind_false
;
1302 #endif // KMP_AFFINITY_SUPPORTED
1304 __kmp_init_runtime
= FALSE
;
1306 __kmp_init_monitor
= 0;
1308 __kmp_init_parallel
= FALSE
;
1309 __kmp_init_middle
= FALSE
;
1310 __kmp_init_serial
= FALSE
;
1311 TCW_4(__kmp_init_gtid
, FALSE
);
1312 __kmp_init_common
= FALSE
;
1314 TCW_4(__kmp_init_user_locks
, FALSE
);
1315 #if !KMP_USE_DYNAMIC_LOCK
1316 __kmp_user_lock_table
.used
= 1;
1317 __kmp_user_lock_table
.allocated
= 0;
1318 __kmp_user_lock_table
.table
= NULL
;
1319 __kmp_lock_blocks
= NULL
;
1323 TCW_4(__kmp_nth
, 0);
1325 __kmp_thread_pool
= NULL
;
1326 __kmp_thread_pool_insert_pt
= NULL
;
1327 __kmp_team_pool
= NULL
;
1329 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1330 here so threadprivate doesn't use stale data */
1331 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1332 __kmp_threadpriv_cache_list
));
1334 while (__kmp_threadpriv_cache_list
!= NULL
) {
1336 if (*__kmp_threadpriv_cache_list
->addr
!= NULL
) {
1337 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1338 &(*__kmp_threadpriv_cache_list
->addr
)));
1340 *__kmp_threadpriv_cache_list
->addr
= NULL
;
1342 __kmp_threadpriv_cache_list
= __kmp_threadpriv_cache_list
->next
;
1345 __kmp_init_runtime
= FALSE
;
1347 /* reset statically initialized locks */
1348 __kmp_init_bootstrap_lock(&__kmp_initz_lock
);
1349 __kmp_init_bootstrap_lock(&__kmp_stdio_lock
);
1350 __kmp_init_bootstrap_lock(&__kmp_console_lock
);
1351 __kmp_init_bootstrap_lock(&__kmp_task_team_lock
);
1354 __kmp_itt_reset(); // reset ITT's global state
1355 #endif /* USE_ITT_BUILD */
1357 /* This is necessary to make sure no stale data is left around */
1358 /* AC: customers complain that we use unsafe routines in the atfork
1359 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1360 in dynamic_link when check the presence of shared tbbmalloc library.
1361 Suggestion is to make the library initialization lazier, similar
1362 to what done for __kmpc_begin(). */
1363 // TODO: synchronize all static initializations with regular library
1364 // startup; look at kmp_global.cpp and etc.
1365 //__kmp_internal_begin ();
1368 void __kmp_register_atfork(void) {
1369 if (__kmp_need_register_atfork
) {
1370 int status
= pthread_atfork(__kmp_atfork_prepare
, __kmp_atfork_parent
,
1371 __kmp_atfork_child
);
1372 KMP_CHECK_SYSFAIL("pthread_atfork", status
);
1373 __kmp_need_register_atfork
= FALSE
;
1377 void __kmp_suspend_initialize(void) {
1379 status
= pthread_mutexattr_init(&__kmp_suspend_mutex_attr
);
1380 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status
);
1381 status
= pthread_condattr_init(&__kmp_suspend_cond_attr
);
1382 KMP_CHECK_SYSFAIL("pthread_condattr_init", status
);
1385 void __kmp_suspend_initialize_thread(kmp_info_t
*th
) {
1386 ANNOTATE_HAPPENS_AFTER(&th
->th
.th_suspend_init_count
);
1387 int old_value
= KMP_ATOMIC_LD_RLX(&th
->th
.th_suspend_init_count
);
1388 int new_value
= __kmp_fork_count
+ 1;
1389 // Return if already initialized
1390 if (old_value
== new_value
)
1392 // Wait, then return if being initialized
1393 if (old_value
== -1 ||
1394 !__kmp_atomic_compare_store(&th
->th
.th_suspend_init_count
, old_value
,
1396 while (KMP_ATOMIC_LD_ACQ(&th
->th
.th_suspend_init_count
) != new_value
) {
1400 // Claim to be the initializer and do initializations
1402 status
= pthread_cond_init(&th
->th
.th_suspend_cv
.c_cond
,
1403 &__kmp_suspend_cond_attr
);
1404 KMP_CHECK_SYSFAIL("pthread_cond_init", status
);
1405 status
= pthread_mutex_init(&th
->th
.th_suspend_mx
.m_mutex
,
1406 &__kmp_suspend_mutex_attr
);
1407 KMP_CHECK_SYSFAIL("pthread_mutex_init", status
);
1408 KMP_ATOMIC_ST_REL(&th
->th
.th_suspend_init_count
, new_value
);
1409 ANNOTATE_HAPPENS_BEFORE(&th
->th
.th_suspend_init_count
);
1413 void __kmp_suspend_uninitialize_thread(kmp_info_t
*th
) {
1414 if (KMP_ATOMIC_LD_ACQ(&th
->th
.th_suspend_init_count
) > __kmp_fork_count
) {
1415 /* this means we have initialize the suspension pthread objects for this
1416 thread in this instance of the process */
1419 status
= pthread_cond_destroy(&th
->th
.th_suspend_cv
.c_cond
);
1420 if (status
!= 0 && status
!= EBUSY
) {
1421 KMP_SYSFAIL("pthread_cond_destroy", status
);
1423 status
= pthread_mutex_destroy(&th
->th
.th_suspend_mx
.m_mutex
);
1424 if (status
!= 0 && status
!= EBUSY
) {
1425 KMP_SYSFAIL("pthread_mutex_destroy", status
);
1427 --th
->th
.th_suspend_init_count
;
1428 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th
->th
.th_suspend_init_count
) ==
1433 // return true if lock obtained, false otherwise
1434 int __kmp_try_suspend_mx(kmp_info_t
*th
) {
1435 return (pthread_mutex_trylock(&th
->th
.th_suspend_mx
.m_mutex
) == 0);
1438 void __kmp_lock_suspend_mx(kmp_info_t
*th
) {
1439 int status
= pthread_mutex_lock(&th
->th
.th_suspend_mx
.m_mutex
);
1440 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status
);
1443 void __kmp_unlock_suspend_mx(kmp_info_t
*th
) {
1444 int status
= pthread_mutex_unlock(&th
->th
.th_suspend_mx
.m_mutex
);
1445 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status
);
1448 /* This routine puts the calling thread to sleep after setting the
1449 sleep bit for the indicated flag variable to true. */
1451 static inline void __kmp_suspend_template(int th_gtid
, C
*flag
) {
1452 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend
);
1453 kmp_info_t
*th
= __kmp_threads
[th_gtid
];
1455 typename
C::flag_t old_spin
;
1457 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid
,
1460 __kmp_suspend_initialize_thread(th
);
1462 status
= pthread_mutex_lock(&th
->th
.th_suspend_mx
.m_mutex
);
1463 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status
);
1465 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1466 th_gtid
, flag
->get()));
1468 /* TODO: shouldn't this use release semantics to ensure that
1469 __kmp_suspend_initialize_thread gets called first? */
1470 old_spin
= flag
->set_sleeping();
1471 if (__kmp_dflt_blocktime
== KMP_MAX_BLOCKTIME
&&
1472 __kmp_pause_status
!= kmp_soft_paused
) {
1473 flag
->unset_sleeping();
1474 status
= pthread_mutex_unlock(&th
->th
.th_suspend_mx
.m_mutex
);
1475 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status
);
1478 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1480 th_gtid
, flag
->get(), flag
->load(), old_spin
));
1482 if (flag
->done_check_val(old_spin
)) {
1483 old_spin
= flag
->unset_sleeping();
1484 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1486 th_gtid
, flag
->get()));
1488 /* Encapsulate in a loop as the documentation states that this may
1489 "with low probability" return when the condition variable has
1490 not been signaled or broadcast */
1491 int deactivated
= FALSE
;
1492 TCW_PTR(th
->th
.th_sleep_loc
, (void *)flag
);
1494 while (flag
->is_sleeping()) {
1495 #ifdef DEBUG_SUSPEND
1497 __kmp_suspend_count
++;
1498 __kmp_print_cond(buffer
, &th
->th
.th_suspend_cv
);
1499 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid
,
1502 // Mark the thread as no longer active (only in the first iteration of the
1505 th
->th
.th_active
= FALSE
;
1506 if (th
->th
.th_active_in_pool
) {
1507 th
->th
.th_active_in_pool
= FALSE
;
1508 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth
);
1509 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth
) >= 0);
1514 #if USE_SUSPEND_TIMEOUT
1515 struct timespec now
;
1516 struct timeval tval
;
1519 status
= gettimeofday(&tval
, NULL
);
1520 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status
);
1521 TIMEVAL_TO_TIMESPEC(&tval
, &now
);
1523 msecs
= (4 * __kmp_dflt_blocktime
) + 200;
1524 now
.tv_sec
+= msecs
/ 1000;
1525 now
.tv_nsec
+= (msecs
% 1000) * 1000;
1527 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1528 "pthread_cond_timedwait\n",
1530 status
= pthread_cond_timedwait(&th
->th
.th_suspend_cv
.c_cond
,
1531 &th
->th
.th_suspend_mx
.m_mutex
, &now
);
1533 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1534 " pthread_cond_wait\n",
1536 status
= pthread_cond_wait(&th
->th
.th_suspend_cv
.c_cond
,
1537 &th
->th
.th_suspend_mx
.m_mutex
);
1540 if ((status
!= 0) && (status
!= EINTR
) && (status
!= ETIMEDOUT
)) {
1541 KMP_SYSFAIL("pthread_cond_wait", status
);
1544 if (status
== ETIMEDOUT
) {
1545 if (flag
->is_sleeping()) {
1547 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid
));
1549 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1553 } else if (flag
->is_sleeping()) {
1555 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid
));
1560 // Mark the thread as active again (if it was previous marked as inactive)
1562 th
->th
.th_active
= TRUE
;
1563 if (TCR_4(th
->th
.th_in_pool
)) {
1564 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth
);
1565 th
->th
.th_active_in_pool
= TRUE
;
1569 #ifdef DEBUG_SUSPEND
1572 __kmp_print_cond(buffer
, &th
->th
.th_suspend_cv
);
1573 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid
,
1578 status
= pthread_mutex_unlock(&th
->th
.th_suspend_mx
.m_mutex
);
1579 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status
);
1580 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid
));
1583 void __kmp_suspend_32(int th_gtid
, kmp_flag_32
*flag
) {
1584 __kmp_suspend_template(th_gtid
, flag
);
1586 void __kmp_suspend_64(int th_gtid
, kmp_flag_64
*flag
) {
1587 __kmp_suspend_template(th_gtid
, flag
);
1589 void __kmp_suspend_oncore(int th_gtid
, kmp_flag_oncore
*flag
) {
1590 __kmp_suspend_template(th_gtid
, flag
);
1593 /* This routine signals the thread specified by target_gtid to wake up
1594 after setting the sleep bit indicated by the flag argument to FALSE.
1595 The target thread must already have called __kmp_suspend_template() */
1597 static inline void __kmp_resume_template(int target_gtid
, C
*flag
) {
1598 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume
);
1599 kmp_info_t
*th
= __kmp_threads
[target_gtid
];
1603 int gtid
= TCR_4(__kmp_init_gtid
) ? __kmp_get_gtid() : -1;
1606 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1607 gtid
, target_gtid
));
1608 KMP_DEBUG_ASSERT(gtid
!= target_gtid
);
1610 __kmp_suspend_initialize_thread(th
);
1612 status
= pthread_mutex_lock(&th
->th
.th_suspend_mx
.m_mutex
);
1613 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status
);
1615 if (!flag
) { // coming from __kmp_null_resume_wrapper
1616 flag
= (C
*)CCAST(void *, th
->th
.th_sleep_loc
);
1619 // First, check if the flag is null or its type has changed. If so, someone
1621 if (!flag
|| flag
->get_type() != flag
->get_ptr_type()) { // get_ptr_type
1622 // simply shows what
1624 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1625 "awake: flag(%p)\n",
1626 gtid
, target_gtid
, NULL
));
1627 status
= pthread_mutex_unlock(&th
->th
.th_suspend_mx
.m_mutex
);
1628 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status
);
1630 } else { // if multiple threads are sleeping, flag should be internally
1631 // referring to a specific thread here
1632 typename
C::flag_t old_spin
= flag
->unset_sleeping();
1633 if (!flag
->is_sleeping_val(old_spin
)) {
1634 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1637 gtid
, target_gtid
, flag
->get(), old_spin
, flag
->load()));
1638 status
= pthread_mutex_unlock(&th
->th
.th_suspend_mx
.m_mutex
);
1639 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status
);
1642 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1643 "sleep bit for flag's loc(%p): "
1645 gtid
, target_gtid
, flag
->get(), old_spin
, flag
->load()));
1647 TCW_PTR(th
->th
.th_sleep_loc
, NULL
);
1649 #ifdef DEBUG_SUSPEND
1652 __kmp_print_cond(buffer
, &th
->th
.th_suspend_cv
);
1653 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid
,
1654 target_gtid
, buffer
);
1657 status
= pthread_cond_signal(&th
->th
.th_suspend_cv
.c_cond
);
1658 KMP_CHECK_SYSFAIL("pthread_cond_signal", status
);
1659 status
= pthread_mutex_unlock(&th
->th
.th_suspend_mx
.m_mutex
);
1660 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status
);
1661 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1663 gtid
, target_gtid
));
1666 void __kmp_resume_32(int target_gtid
, kmp_flag_32
*flag
) {
1667 __kmp_resume_template(target_gtid
, flag
);
1669 void __kmp_resume_64(int target_gtid
, kmp_flag_64
*flag
) {
1670 __kmp_resume_template(target_gtid
, flag
);
1672 void __kmp_resume_oncore(int target_gtid
, kmp_flag_oncore
*flag
) {
1673 __kmp_resume_template(target_gtid
, flag
);
1677 void __kmp_resume_monitor() {
1678 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume
);
1681 int gtid
= TCR_4(__kmp_init_gtid
) ? __kmp_get_gtid() : -1;
1682 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid
,
1684 KMP_DEBUG_ASSERT(gtid
!= KMP_GTID_MONITOR
);
1686 status
= pthread_mutex_lock(&__kmp_wait_mx
.m_mutex
);
1687 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status
);
1688 #ifdef DEBUG_SUSPEND
1691 __kmp_print_cond(buffer
, &__kmp_wait_cv
.c_cond
);
1692 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid
,
1693 KMP_GTID_MONITOR
, buffer
);
1696 status
= pthread_cond_signal(&__kmp_wait_cv
.c_cond
);
1697 KMP_CHECK_SYSFAIL("pthread_cond_signal", status
);
1698 status
= pthread_mutex_unlock(&__kmp_wait_mx
.m_mutex
);
1699 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status
);
1700 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1702 gtid
, KMP_GTID_MONITOR
));
1704 #endif // KMP_USE_MONITOR
1706 void __kmp_yield() { sched_yield(); }
1708 void __kmp_gtid_set_specific(int gtid
) {
1709 if (__kmp_init_gtid
) {
1711 status
= pthread_setspecific(__kmp_gtid_threadprivate_key
,
1712 (void *)(intptr_t)(gtid
+ 1));
1713 KMP_CHECK_SYSFAIL("pthread_setspecific", status
);
1715 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1719 int __kmp_gtid_get_specific() {
1721 if (!__kmp_init_gtid
) {
1722 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1723 "KMP_GTID_SHUTDOWN\n"));
1724 return KMP_GTID_SHUTDOWN
;
1726 gtid
= (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key
);
1728 gtid
= KMP_GTID_DNE
;
1732 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1733 __kmp_gtid_threadprivate_key
, gtid
));
1737 double __kmp_read_cpu_time(void) {
1741 /*t =*/times(&buffer
);
1743 return (buffer
.tms_utime
+ buffer
.tms_cutime
) / (double)CLOCKS_PER_SEC
;
1746 int __kmp_read_system_info(struct kmp_sys_info
*info
) {
1748 struct rusage r_usage
;
1750 memset(info
, 0, sizeof(*info
));
1752 status
= getrusage(RUSAGE_SELF
, &r_usage
);
1753 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status
);
1755 // The maximum resident set size utilized (in kilobytes)
1756 info
->maxrss
= r_usage
.ru_maxrss
;
1757 // The number of page faults serviced without any I/O
1758 info
->minflt
= r_usage
.ru_minflt
;
1759 // The number of page faults serviced that required I/O
1760 info
->majflt
= r_usage
.ru_majflt
;
1761 // The number of times a process was "swapped" out of memory
1762 info
->nswap
= r_usage
.ru_nswap
;
1763 // The number of times the file system had to perform input
1764 info
->inblock
= r_usage
.ru_inblock
;
1765 // The number of times the file system had to perform output
1766 info
->oublock
= r_usage
.ru_oublock
;
1767 // The number of times a context switch was voluntarily
1768 info
->nvcsw
= r_usage
.ru_nvcsw
;
1769 // The number of times a context switch was forced
1770 info
->nivcsw
= r_usage
.ru_nivcsw
;
1772 return (status
!= 0);
1775 void __kmp_read_system_time(double *delta
) {
1777 struct timeval tval
;
1778 struct timespec stop
;
1781 status
= gettimeofday(&tval
, NULL
);
1782 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status
);
1783 TIMEVAL_TO_TIMESPEC(&tval
, &stop
);
1784 t_ns
= TS2NS(stop
) - TS2NS(__kmp_sys_timer_data
.start
);
1785 *delta
= (t_ns
* 1e-9);
1788 void __kmp_clear_system_time(void) {
1789 struct timeval tval
;
1791 status
= gettimeofday(&tval
, NULL
);
1792 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status
);
1793 TIMEVAL_TO_TIMESPEC(&tval
, &__kmp_sys_timer_data
.start
);
1796 static int __kmp_get_xproc(void) {
1800 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
1801 KMP_OS_OPENBSD || KMP_OS_HURD
1803 r
= sysconf(_SC_NPROCESSORS_ONLN
);
1807 // Bug C77011 High "OpenMP Threads and number of active cores".
1809 // Find the number of available CPUs.
1811 host_basic_info_data_t info
;
1812 mach_msg_type_number_t num
= HOST_BASIC_INFO_COUNT
;
1813 rc
= host_info(mach_host_self(), HOST_BASIC_INFO
, (host_info_t
)&info
, &num
);
1814 if (rc
== 0 && num
== HOST_BASIC_INFO_COUNT
) {
1815 // Cannot use KA_TRACE() here because this code works before trace support
1817 r
= info
.avail_cpus
;
1819 KMP_WARNING(CantGetNumAvailCPU
);
1820 KMP_INFORM(AssumedNumCPU
);
1825 #error "Unknown or unsupported OS."
1829 return r
> 0 ? r
: 2; /* guess value of 2 if OS told us 0 */
1831 } // __kmp_get_xproc
1833 int __kmp_read_from_file(char const *path
, char const *format
, ...) {
1837 va_start(args
, format
);
1838 FILE *f
= fopen(path
, "rb");
1841 result
= vfscanf(f
, format
, args
);
1847 void __kmp_runtime_initialize(void) {
1849 pthread_mutexattr_t mutex_attr
;
1850 pthread_condattr_t cond_attr
;
1852 if (__kmp_init_runtime
) {
1856 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1857 if (!__kmp_cpuinfo
.initialized
) {
1858 __kmp_query_cpuid(&__kmp_cpuinfo
);
1860 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1862 __kmp_xproc
= __kmp_get_xproc();
1864 #if ! KMP_32_BIT_ARCH
1866 // read stack size of calling thread, save it as default for worker threads;
1867 // this should be done before reading environment variables
1868 status
= getrlimit(RLIMIT_STACK
, &rlim
);
1869 if (status
== 0) { // success?
1870 __kmp_stksize
= rlim
.rlim_cur
;
1871 __kmp_check_stksize(&__kmp_stksize
); // check value and adjust if needed
1873 #endif /* KMP_32_BIT_ARCH */
1875 if (sysconf(_SC_THREADS
)) {
1877 /* Query the maximum number of threads */
1878 __kmp_sys_max_nth
= sysconf(_SC_THREAD_THREADS_MAX
);
1879 if (__kmp_sys_max_nth
== -1) {
1880 /* Unlimited threads for NPTL */
1881 __kmp_sys_max_nth
= INT_MAX
;
1882 } else if (__kmp_sys_max_nth
<= 1) {
1883 /* Can't tell, just use PTHREAD_THREADS_MAX */
1884 __kmp_sys_max_nth
= KMP_MAX_NTH
;
1887 /* Query the minimum stack size */
1888 __kmp_sys_min_stksize
= sysconf(_SC_THREAD_STACK_MIN
);
1889 if (__kmp_sys_min_stksize
<= 1) {
1890 __kmp_sys_min_stksize
= KMP_MIN_STKSIZE
;
1894 /* Set up minimum number of threads to switch to TLS gtid */
1895 __kmp_tls_gtid_min
= KMP_TLS_GTID_MIN
;
1897 status
= pthread_key_create(&__kmp_gtid_threadprivate_key
,
1898 __kmp_internal_end_dest
);
1899 KMP_CHECK_SYSFAIL("pthread_key_create", status
);
1900 status
= pthread_mutexattr_init(&mutex_attr
);
1901 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status
);
1902 status
= pthread_mutex_init(&__kmp_wait_mx
.m_mutex
, &mutex_attr
);
1903 KMP_CHECK_SYSFAIL("pthread_mutex_init", status
);
1904 status
= pthread_condattr_init(&cond_attr
);
1905 KMP_CHECK_SYSFAIL("pthread_condattr_init", status
);
1906 status
= pthread_cond_init(&__kmp_wait_cv
.c_cond
, &cond_attr
);
1907 KMP_CHECK_SYSFAIL("pthread_cond_init", status
);
1909 __kmp_itt_initialize();
1910 #endif /* USE_ITT_BUILD */
1912 __kmp_init_runtime
= TRUE
;
1915 void __kmp_runtime_destroy(void) {
1918 if (!__kmp_init_runtime
) {
1919 return; // Nothing to do.
1923 __kmp_itt_destroy();
1924 #endif /* USE_ITT_BUILD */
1926 status
= pthread_key_delete(__kmp_gtid_threadprivate_key
);
1927 KMP_CHECK_SYSFAIL("pthread_key_delete", status
);
1929 status
= pthread_mutex_destroy(&__kmp_wait_mx
.m_mutex
);
1930 if (status
!= 0 && status
!= EBUSY
) {
1931 KMP_SYSFAIL("pthread_mutex_destroy", status
);
1933 status
= pthread_cond_destroy(&__kmp_wait_cv
.c_cond
);
1934 if (status
!= 0 && status
!= EBUSY
) {
1935 KMP_SYSFAIL("pthread_cond_destroy", status
);
1937 #if KMP_AFFINITY_SUPPORTED
1938 __kmp_affinity_uninitialize();
1941 __kmp_init_runtime
= FALSE
;
1944 /* Put the thread to sleep for a time period */
1945 /* NOTE: not currently used anywhere */
1946 void __kmp_thread_sleep(int millis
) { sleep((millis
+ 500) / 1000); }
1948 /* Calculate the elapsed wall clock time for the user */
1949 void __kmp_elapsed(double *t
) {
1951 #ifdef FIX_SGI_CLOCK
1954 status
= clock_gettime(CLOCK_PROCESS_CPUTIME_ID
, &ts
);
1955 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status
);
1957 (double)ts
.tv_nsec
* (1.0 / (double)KMP_NSEC_PER_SEC
) + (double)ts
.tv_sec
;
1961 status
= gettimeofday(&tv
, NULL
);
1962 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status
);
1964 (double)tv
.tv_usec
* (1.0 / (double)KMP_USEC_PER_SEC
) + (double)tv
.tv_sec
;
1968 /* Calculate the elapsed wall clock tick for the user */
1969 void __kmp_elapsed_tick(double *t
) { *t
= 1 / (double)CLOCKS_PER_SEC
; }
1971 /* Return the current time stamp in nsec */
1972 kmp_uint64
__kmp_now_nsec() {
1974 gettimeofday(&t
, NULL
);
1975 kmp_uint64 nsec
= (kmp_uint64
)KMP_NSEC_PER_SEC
* (kmp_uint64
)t
.tv_sec
+
1976 (kmp_uint64
)1000 * (kmp_uint64
)t
.tv_usec
;
1980 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1981 /* Measure clock ticks per millisecond */
1982 void __kmp_initialize_system_tick() {
1983 kmp_uint64 now
, nsec2
, diff
;
1984 kmp_uint64 delay
= 100000; // 50~100 usec on most machines.
1985 kmp_uint64 nsec
= __kmp_now_nsec();
1986 kmp_uint64 goal
= __kmp_hardware_timestamp() + delay
;
1987 while ((now
= __kmp_hardware_timestamp()) < goal
)
1989 nsec2
= __kmp_now_nsec();
1990 diff
= nsec2
- nsec
;
1992 kmp_uint64 tpms
= (kmp_uint64
)(1e6
* (delay
+ (now
- goal
)) / diff
);
1994 __kmp_ticks_per_msec
= tpms
;
1999 /* Determine whether the given address is mapped into the current address
2002 int __kmp_is_address_mapped(void *addr
) {
2007 #if KMP_OS_LINUX || KMP_OS_HURD
2009 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
2010 ranges mapped into the address space. */
2012 char *name
= __kmp_str_format("/proc/%d/maps", getpid());
2015 file
= fopen(name
, "r");
2016 KMP_ASSERT(file
!= NULL
);
2020 void *beginning
= NULL
;
2021 void *ending
= NULL
;
2024 rc
= fscanf(file
, "%p-%p %4s %*[^\n]\n", &beginning
, &ending
, perms
);
2028 KMP_ASSERT(rc
== 3 &&
2029 KMP_STRLEN(perms
) == 4); // Make sure all fields are read.
2031 // Ending address is not included in the region, but beginning is.
2032 if ((addr
>= beginning
) && (addr
< ending
)) {
2033 perms
[2] = 0; // 3th and 4th character does not matter.
2034 if (strcmp(perms
, "rw") == 0) {
2035 // Memory we are looking for should be readable and writable.
2044 KMP_INTERNAL_FREE(name
);
2045 #elif KMP_OS_FREEBSD
2048 int mib
[] = {CTL_KERN
, KERN_PROC
, KERN_PROC_VMMAP
, getpid()};
2049 rc
= sysctl(mib
, 4, NULL
, &lstsz
, NULL
, 0);
2052 // We pass from number of vm entry's semantic
2053 // to size of whole entry map list.
2054 lstsz
= lstsz
* 4 / 3;
2055 buf
= reinterpret_cast<char *>(kmpc_malloc(lstsz
));
2056 rc
= sysctl(mib
, 4, buf
, &lstsz
, NULL
, 0);
2063 char *up
= buf
+ lstsz
;
2066 struct kinfo_vmentry
*cur
= reinterpret_cast<struct kinfo_vmentry
*>(lw
);
2067 size_t cursz
= cur
->kve_structsize
;
2070 void *start
= reinterpret_cast<void *>(cur
->kve_start
);
2071 void *end
= reinterpret_cast<void *>(cur
->kve_end
);
2072 // Readable/Writable addresses within current map entry
2073 if ((addr
>= start
) && (addr
< end
)) {
2074 if ((cur
->kve_protection
& KVME_PROT_READ
) != 0 &&
2075 (cur
->kve_protection
& KVME_PROT_WRITE
) != 0) {
2086 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2087 using vm interface. */
2091 rc
= vm_read_overwrite(
2092 mach_task_self(), // Task to read memory of.
2093 (vm_address_t
)(addr
), // Address to read from.
2094 1, // Number of bytes to be read.
2095 (vm_address_t
)(&buffer
), // Address of buffer to save read bytes in.
2096 &count
// Address of var to save number of read bytes in.
2099 // Memory successfully read.
2108 mib
[2] = VM_PROC_MAP
;
2110 mib
[4] = sizeof(struct kinfo_vmentry
);
2113 rc
= sysctl(mib
, __arraycount(mib
), NULL
, &size
, NULL
, 0);
2117 size
= size
* 4 / 3;
2118 struct kinfo_vmentry
*kiv
= (struct kinfo_vmentry
*)KMP_INTERNAL_MALLOC(size
);
2121 rc
= sysctl(mib
, __arraycount(mib
), kiv
, &size
, NULL
, 0);
2125 for (size_t i
= 0; i
< size
; i
++) {
2126 if (kiv
[i
].kve_start
>= (uint64_t)addr
&&
2127 kiv
[i
].kve_end
<= (uint64_t)addr
) {
2132 KMP_INTERNAL_FREE(kiv
);
2133 #elif KMP_OS_OPENBSD
2137 mib
[1] = KERN_PROC_VMMAP
;
2142 rc
= sysctl(mib
, 3, NULL
, &size
, NULL
, 0);
2147 struct kinfo_vmentry kiv
= {.kve_start
= 0};
2149 while ((rc
= sysctl(mib
, 3, &kiv
, &size
, NULL
, 0)) == 0) {
2151 if (kiv
.kve_end
== end
)
2154 if (kiv
.kve_start
>= (uint64_t)addr
&& kiv
.kve_end
<= (uint64_t)addr
) {
2160 #elif KMP_OS_DRAGONFLY
2162 // FIXME(DragonFly): Implement this
2167 #error "Unknown or unsupported OS"
2173 } // __kmp_is_address_mapped
2175 #ifdef USE_LOAD_BALANCE
2177 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2179 // The function returns the rounded value of the system load average
2180 // during given time interval which depends on the value of
2181 // __kmp_load_balance_interval variable (default is 60 sec, other values
2182 // may be 300 sec or 900 sec).
2183 // It returns -1 in case of error.
2184 int __kmp_get_load_balance(int max
) {
2188 int res
= getloadavg(averages
, 3);
2190 // Check __kmp_load_balance_interval to determine which of averages to use.
2191 // getloadavg() may return the number of samples less than requested that is
2193 if (__kmp_load_balance_interval
< 180 && (res
>= 1)) {
2194 ret_avg
= averages
[0]; // 1 min
2195 } else if ((__kmp_load_balance_interval
>= 180 &&
2196 __kmp_load_balance_interval
< 600) &&
2198 ret_avg
= averages
[1]; // 5 min
2199 } else if ((__kmp_load_balance_interval
>= 600) && (res
== 3)) {
2200 ret_avg
= averages
[2]; // 15 min
2201 } else { // Error occurred
2210 // The function returns number of running (not sleeping) threads, or -1 in case
2211 // of error. Error could be reported if Linux* OS kernel too old (without
2212 // "/proc" support). Counting running threads stops if max running threads
2214 int __kmp_get_load_balance(int max
) {
2215 static int permanent_error
= 0;
2216 static int glb_running_threads
= 0; // Saved count of the running threads for
2217 // the thread balance algorithm
2218 static double glb_call_time
= 0; /* Thread balance algorithm call time */
2220 int running_threads
= 0; // Number of running threads in the system.
2222 DIR *proc_dir
= NULL
; // Handle of "/proc/" directory.
2223 struct dirent
*proc_entry
= NULL
;
2225 kmp_str_buf_t task_path
; // "/proc/<pid>/task/<tid>/" path.
2226 DIR *task_dir
= NULL
; // Handle of "/proc/<pid>/task/<tid>/" directory.
2227 struct dirent
*task_entry
= NULL
;
2228 int task_path_fixed_len
;
2230 kmp_str_buf_t stat_path
; // "/proc/<pid>/task/<tid>/stat" path.
2232 int stat_path_fixed_len
;
2234 int total_processes
= 0; // Total number of processes in system.
2235 int total_threads
= 0; // Total number of threads in system.
2237 double call_time
= 0.0;
2239 __kmp_str_buf_init(&task_path
);
2240 __kmp_str_buf_init(&stat_path
);
2242 __kmp_elapsed(&call_time
);
2244 if (glb_call_time
&&
2245 (call_time
- glb_call_time
< __kmp_load_balance_interval
)) {
2246 running_threads
= glb_running_threads
;
2250 glb_call_time
= call_time
;
2252 // Do not spend time on scanning "/proc/" if we have a permanent error.
2253 if (permanent_error
) {
2254 running_threads
= -1;
2262 // Open "/proc/" directory.
2263 proc_dir
= opendir("/proc");
2264 if (proc_dir
== NULL
) {
2265 // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2266 // error now and in subsequent calls.
2267 running_threads
= -1;
2268 permanent_error
= 1;
2272 // Initialize fixed part of task_path. This part will not change.
2273 __kmp_str_buf_cat(&task_path
, "/proc/", 6);
2274 task_path_fixed_len
= task_path
.used
; // Remember number of used characters.
2276 proc_entry
= readdir(proc_dir
);
2277 while (proc_entry
!= NULL
) {
2278 // Proc entry is a directory and name starts with a digit. Assume it is a
2279 // process' directory.
2280 if (proc_entry
->d_type
== DT_DIR
&& isdigit(proc_entry
->d_name
[0])) {
2283 // Make sure init process is the very first in "/proc", so we can replace
2284 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2285 // 1. We are going to check that total_processes == 1 => d_name == "1" is
2286 // true (where "=>" is implication). Since C++ does not have => operator,
2287 // let us replace it with its equivalent: a => b == ! a || b.
2288 KMP_DEBUG_ASSERT(total_processes
!= 1 ||
2289 strcmp(proc_entry
->d_name
, "1") == 0);
2291 // Construct task_path.
2292 task_path
.used
= task_path_fixed_len
; // Reset task_path to "/proc/".
2293 __kmp_str_buf_cat(&task_path
, proc_entry
->d_name
,
2294 KMP_STRLEN(proc_entry
->d_name
));
2295 __kmp_str_buf_cat(&task_path
, "/task", 5);
2297 task_dir
= opendir(task_path
.str
);
2298 if (task_dir
== NULL
) {
2299 // Process can finish between reading "/proc/" directory entry and
2300 // opening process' "task/" directory. So, in general case we should not
2301 // complain, but have to skip this process and read the next one. But on
2302 // systems with no "task/" support we will spend lot of time to scan
2303 // "/proc/" tree again and again without any benefit. "init" process
2304 // (its pid is 1) should exist always, so, if we cannot open
2305 // "/proc/1/task/" directory, it means "task/" is not supported by
2306 // kernel. Report an error now and in the future.
2307 if (strcmp(proc_entry
->d_name
, "1") == 0) {
2308 running_threads
= -1;
2309 permanent_error
= 1;
2313 // Construct fixed part of stat file path.
2314 __kmp_str_buf_clear(&stat_path
);
2315 __kmp_str_buf_cat(&stat_path
, task_path
.str
, task_path
.used
);
2316 __kmp_str_buf_cat(&stat_path
, "/", 1);
2317 stat_path_fixed_len
= stat_path
.used
;
2319 task_entry
= readdir(task_dir
);
2320 while (task_entry
!= NULL
) {
2321 // It is a directory and name starts with a digit.
2322 if (proc_entry
->d_type
== DT_DIR
&& isdigit(task_entry
->d_name
[0])) {
2325 // Construct complete stat file path. Easiest way would be:
2326 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2327 // task_entry->d_name );
2328 // but seriae of __kmp_str_buf_cat works a bit faster.
2330 stat_path_fixed_len
; // Reset stat path to its fixed part.
2331 __kmp_str_buf_cat(&stat_path
, task_entry
->d_name
,
2332 KMP_STRLEN(task_entry
->d_name
));
2333 __kmp_str_buf_cat(&stat_path
, "/stat", 5);
2335 // Note: Low-level API (open/read/close) is used. High-level API
2336 // (fopen/fclose) works ~ 30 % slower.
2337 stat_file
= open(stat_path
.str
, O_RDONLY
);
2338 if (stat_file
== -1) {
2339 // We cannot report an error because task (thread) can terminate
2340 // just before reading this file.
2342 /* Content of "stat" file looks like:
2343 24285 (program) S ...
2345 It is a single line (if program name does not include funny
2346 symbols). First number is a thread id, then name of executable
2347 file name in paretheses, then state of the thread. We need just
2350 Good news: Length of program name is 15 characters max. Longer
2351 names are truncated.
2353 Thus, we need rather short buffer: 15 chars for program name +
2354 2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2356 Bad news: Program name may contain special symbols like space,
2357 closing parenthesis, or even new line. This makes parsing
2358 "stat" file not 100 % reliable. In case of fanny program names
2359 parsing may fail (report incorrect thread state).
2361 Parsing "status" file looks more promissing (due to different
2362 file structure and escaping special symbols) but reading and
2363 parsing of "status" file works slower.
2368 len
= read(stat_file
, buffer
, sizeof(buffer
) - 1);
2372 // sscanf( buffer, "%*d (%*s) %c ", & state );
2373 // looks very nice, but searching for a closing parenthesis
2374 // works a bit faster.
2375 char *close_parent
= strstr(buffer
, ") ");
2376 if (close_parent
!= NULL
) {
2377 char state
= *(close_parent
+ 2);
2380 if (running_threads
>= max
) {
2390 task_entry
= readdir(task_dir
);
2396 proc_entry
= readdir(proc_dir
);
2399 // There _might_ be a timing hole where the thread executing this
2400 // code get skipped in the load balance, and running_threads is 0.
2401 // Assert in the debug builds only!!!
2402 KMP_DEBUG_ASSERT(running_threads
> 0);
2403 if (running_threads
<= 0) {
2404 running_threads
= 1;
2407 finish
: // Clean up and exit.
2408 if (proc_dir
!= NULL
) {
2411 __kmp_str_buf_free(&task_path
);
2412 if (task_dir
!= NULL
) {
2415 __kmp_str_buf_free(&stat_path
);
2416 if (stat_file
!= -1) {
2420 glb_running_threads
= running_threads
;
2422 return running_threads
;
2424 } // __kmp_get_load_balance
2426 #endif // KMP_OS_DARWIN
2428 #endif // USE_LOAD_BALANCE
2430 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2431 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \
2432 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2434 // we really only need the case with 1 argument, because CLANG always build
2435 // a struct of pointers to shared variables referenced in the outlined function
2436 int __kmp_invoke_microtask(microtask_t pkfn
, int gtid
, int tid
, int argc
,
2440 void **exit_frame_ptr
2444 *exit_frame_ptr
= OMPT_GET_FRAME_ADDRESS(0);
2449 fprintf(stderr
, "Too many args to microtask: %d!\n", argc
);
2453 (*pkfn
)(>id
, &tid
);
2456 (*pkfn
)(>id
, &tid
, p_argv
[0]);
2459 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1]);
2462 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2]);
2465 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3]);
2468 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4]);
2471 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2475 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2476 p_argv
[5], p_argv
[6]);
2479 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2480 p_argv
[5], p_argv
[6], p_argv
[7]);
2483 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2484 p_argv
[5], p_argv
[6], p_argv
[7], p_argv
[8]);
2487 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2488 p_argv
[5], p_argv
[6], p_argv
[7], p_argv
[8], p_argv
[9]);
2491 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2492 p_argv
[5], p_argv
[6], p_argv
[7], p_argv
[8], p_argv
[9], p_argv
[10]);
2495 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2496 p_argv
[5], p_argv
[6], p_argv
[7], p_argv
[8], p_argv
[9], p_argv
[10],
2500 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2501 p_argv
[5], p_argv
[6], p_argv
[7], p_argv
[8], p_argv
[9], p_argv
[10],
2502 p_argv
[11], p_argv
[12]);
2505 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2506 p_argv
[5], p_argv
[6], p_argv
[7], p_argv
[8], p_argv
[9], p_argv
[10],
2507 p_argv
[11], p_argv
[12], p_argv
[13]);
2510 (*pkfn
)(>id
, &tid
, p_argv
[0], p_argv
[1], p_argv
[2], p_argv
[3], p_argv
[4],
2511 p_argv
[5], p_argv
[6], p_argv
[7], p_argv
[8], p_argv
[9], p_argv
[10],
2512 p_argv
[11], p_argv
[12], p_argv
[13], p_argv
[14]);